

Encyclopedia of Machine Learning

Claude Sammut, Geoffrey I. Webb (Eds.)

Encyclopedia of Machine
Learning
With Figures and Tables

123

Editors
Claude Sammut
School of Computer Science and Engineering
University of New South Wales
Sydney
Australia
claude@cse.unsw.edu.au

Geoffrey I. Webb
Faculty of Information Technology
Clayton School of Information Technology
Monash University
P.O. Box
Victoria
Australia
Geoff.Webb@monash.edu

ISBN ---- e-ISBN ----
Print and electronic bundle ISBN ----
DOI ./----
Springer New York

Library of Congress Control Number:

© Springer Science+Business Media, LLC
All rights reserved.This workmay not be translated or copied in whole or in part without thewritten permission of the publisher
(Springer Science+Business Media, LLC, Spring Street, New York, NY , USA), except for brief excerpts in connection
with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The
publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The term “Machine Learning” came into wide-spread use following the first workshop by that name, held at Carnegie-Mellon
University in . The papers from that workshop were published as Machine Learning: An Artificial Intelligence Approach,
edited by Ryszard Michalski, Jaime Carbonell and Tom Mitchell. Machine Learning came to be identified as a research field in
its own right as the workshops evolved into international conferences and journals of machine learning appeared.

Although the field coalesced in the s, research on what we now call machine learning has a long history. In his
paper on “Computing Machinery and Intelligence”, Alan Turing introduced his imitation game as a means of determining if a
machine could be considered intelligent. In the same paper he speculates that programming the computer to have adult level
intelligence would be too difficult. “Instead of trying to produce a programme to simulate the adult mind, why not rather try
to produce one which simulates the child’s? If this were then subjected to an appropriate course of education one would obtain
the adult brain”. Investigations into induction, a fundamental operation in learning, go backmuch further to Francis Bacon and
David Hume in the th and th centuries.

Early approaches followed the classical AI tradition of symbolic representation and logical inference. As machine learning
began to be used in a wide variety of areas, the range of techniques expanded to incorporate ideas from psychology, information
theory, statistics, neuroscience, genetics, operations research and more. Because of this diversity, it is not always easy for a new
researcher to find his or her way around the machine learning landscape.The purpose of this encyclopedia is to guide enquiries
into the field as a whole and to serve as an entry point to specific topics, providing overviews and,most importantly, references to
sourcematerial. All the entries have been written by experts in their field and have been refereed and revised by an international
editorial board consisting of leading machine learning researchers.

Putting together an encyclopedia for such a diverse field has been a major undertaking. We thank all the authors, without
whom this would not have been possible.They have devoted their expertise and patience to the project because of their desire to
contribute to this dynamic and still growing field. A project as large as this could only succeed with the help of the area editors
whose specialised knowledge was essential in defining the range and structure of the entries.

The encyclopedia was started by the enthusiasm of Springer editors Jennifer Evans and Oona Schmidt and continued with
the support of Melissa Fearon. Special thanks to Andrew Spencer, who oversaw production and kept everyone, including the
editors on track.

Claude Sammut and Geoffrey I. Webb

Editors-in-Chief

Claude Sammut
School of Computer Science and Engineering
University of New South Wales
Sydney, Australia
claude@cse.unsw.edu.au

Geoffrey I. Webb
Faculty of Information Technology
Clayton School of Information Technology
Monash University
P.O. Box
Victoria, Australia
Geoff.Webb@monash.edu

Area Editors

Charu Aggarwal
IBM T. J. Watson Research Center
 Skyline Drive
Hawthorne
NY
USA
charu@us.ibm.com

Wray Buntine
NICTA
Locked Bag
Canberra ACT
Australia
wray.buntine@nicta.com.au

James Cussens
Department of Biology (Area)
York Centre for Complex Systems Analysis
University of York
PO Box
York YO YW
UK
jc@cs.york.ac.uk

Luc De Raedt
Dept. of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan A
 Heverlee
Belgium
luc.deraedt@cs.kuleuven.be

Peter A. Flach
Department of Computer Science
University of Bristol
Woodland Road
Bristol BS UB
UK
Peter.Flach@bristol.ac.uk

Russ Greiner
Department of Computing Science
University of Alberta
Athabasca Hall
Edmonton

Alberta TG E
Canada
greiner@cs.ualberta.ca

Eamonn Keogh
Computer Science & Engineering Department
University of California
Riverside
California
CA
USA
eamonn@cs.ucr.edu

Michael L. Littman
Department of Computer Science
Rutgers, the State University of New Jersey
 Frelinghuysen Road
Piscataway
New Jersey -
USA
mlittman@cs.rutgers.edu

Sridhar Mahadevan
Department of Computer Science
University of Massachusetts
 Governor’s Drive
Amherst
MA
USA
mahadeva@cs.umass.edu

StanMatwin
School of Information Technology and
Engineering
University of Ottawa
 King Edward Ave., P.O. Box Stn A
Ottawa
Ontario KN N
Canada
stan@site.uottawa.ca

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
 University Station C

x Area Editors

Austin
Texas
TX -
USA
risto@cs.utexas.edu

Dunja Mladenic
Department for Intelligent Systems
J. Stefan Institute
Jamova
 Ljubljana
Slovenia
Dunja.Mladenic@ijs.si

C. David Page
Department of Biostatistics and Medical Informatics
University of Wisconsin Medical School
 University Avenue
Wisconsin
Madison WI
USA
page@biostat.wisc.edu

Bernhard Pfahringer
Department of Computer Science
University of Waikato
Private Bag
Hamilton
New Zealand
bernhard@cs.waikato.ac.nz

Michail Prokopenko
CSIRO
Macquarie University
Building EB,
Campus Herring Road
North Ryde
NSW
Australia

Frank Stephan
Department of Mathematics
National University of Singapore
 Science Drive
S, Singapore
Singapore
fstephan@comp.nus.edu.sg

Peter Stone
Department of Computer Sciences
The University of Texas at Austin
 University Station C
Austin
Texas
TX -
USA
pstone@cs.utexas.edu

Prasad Tadepalli
School of Electrical Engineering and Computer Science
Oregon State University
 Kelley Engineering Center
Corvallis
Oregon
OR -
USA
tadepall@eecs.oregonstate.edu

Takashi Washio
The Institute of Scientific and Industrial Research
Osaka University
- Mihogaoka
Osaka
Ibaraki
Japan
washio@ar.sanken.osaka-u.ac.jp

List of Contributors

Pieter Abbeel
Department of Electrical Engineering
and Computer Sciences
University of California
 Sutardja Dai Hall #
CA -, Berkeley
California
USA
pabbeel@stanford.edu

Charu C. Aggarwal
IBM T. J. Watson Research Center
 Skyline Drive
Hawthorne
NY
USA
charu@us.ibm.com

Biliana Alexandrova-Kabadjova
General Directorate of Central Bank Operations
Central Banking Operations Division
Bank of Mexico
Av. de Mayo No.
Col. Centro, C.P.
Mexico, D.F
balexandrova@banxico.org.mx

Periklis Andritsos
Thoora Inc.
Toronto, ON
Canada
periklis@thoora.com

Peter Auer
Institute of Computer Science
University of Leoben
Franz-Josef-Strasse
 Leoben
Austria
auer@unileoben.ac.at

J. Andrew Bagnell
Robotics Institute
Carnegie Mellon University
 Forbes Avenue
Pittsburgh, PA
USA
dbagnell@ri.cmu.edu

Michael Bain
University of New South Wales
Sydney
Australia
mike@cse.unsw.edu.au

Arindam Banerjee
Department of Computer Science and
Engineering
University of Minnesota
Minneapolis, MN
USA
banerjee@cs.umn.edu

Andrew G. Barto
Department of Computer Science
University of Massachusetts Amherst
 Computer Science Building
Amherst, MA
USA
barto@cs.umass.edu

Rohan A. Baxter
Analytics, Intelligence and Risk
Australian Taxation Office
PO Box
Civic Square, ACT
Australia
r.baxter@computer.org

Bettina Berendt
Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan A
 Heverlee
Belgium
Bettina.Berendt@cs.kuleuven.be

xii List of Contributors

Indrajit Bhattacharya
IBM India Research Laboratory
New Delhi
India

Mustafa Bilgic
University of Maryland
AV Williams Bldg
Rm
College Park, MD
USA

Mauro Birattari
IRIDIA
Université Libre de Bruxelles
Brussels
Belgium
mbiro@ulb.ac.be

Hendrik Blockeel
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan A
 Heverlee
Belgium
Hendrik.Blockeel@cs.kuleuven.be

Shawn Bohn
Pacific Northwest National Laboratory

Antal van den Bosch
Tilburg centre for Creative Computing
Tilburg University
P.O. Box
 LE, Tilburg
The Netherlands
Antal.vdnBosch@uvt.nl

Janez Brank
Department for Intelligent Systems
Jožef Stefan Institute
Jamova
 Ljubljana
Slovenia
janez.brank@ijs.si

Jürgen Branke
Institut für Angewandte Informatik
und Formale Beschreibungsverfahren
Universität Karlsruhe (TH)
 Karlsruhe
Germany
branke@aifb.uni-karlsruhe.de

Pavel Brazdil
LIAAD-INESC Porto L.A./Faculdade de Economia
Laboratory of Artificial
Intelligence and Computer Science
University of Porto
Rua de Ceuta n.
.piso
Porto -
Portugal
pbrazdil@liaad.up.pt

Gavin Brown
The University of Manchester
School of Computer Science
Kilburn Building
Oxford Road
Manchester, M PL
UK
Gavin.Brown@manchester.ac.uk

Ivan Bruha
Department of Computing & Software
McMaster University
Hamilton, ON
Canada
bruha@cas.mcmaster.ca

M.D. Buhmann
Numerische Mathematik
Justus-Liebig University
Mathematisches Institut
Heinrich-Buff-Ring
 Giessen
Germany
Martin.Buhmann@math.uni-giessen.de

Wray L. Buntine
NICTA
Locked Bag
Canberra ACT
Australia
wray.buntine@nicta.com.au

List of Contributors xiii

Tibério Caetano
Research School of Information Sciences
and Engineering
Australian National University
Canberra ACT
Australia
tibério.caetano@nicta.com.au

Nicola Cancedda
Xerox Research Centre Europe
, chemin de Maupertuis
 Meylan
France
nicola.cancedda@xrce.xerox.com

Gail A. Carpenter
Department of Cognitive and Neural Systems
Center for Adaptive Systems
Boston University
Boston, MA
USA

John Case
Department of Computer and Information
Sciences
University of Delaware
Newark DE -
USA
case@cis.udel.edu

Tonatiuh Peña Centeno
Economic Research Division
Bank of Mexico
Av. de Mayo #
Col. Centro, C.P.
Mexico, D.F.

Deepayan Chakrabarti
Yahoo! Research
 st Avenue
Sunnyvale, CA
USA
deepay@yahoo-inc.com

Philip K. Chan
Department of Computer Sciences
Florida Institute of Technology
Melbourne, FL
USA
pkc@cs.fit.edu

Massimiliano Ciaramita
Yahoo! Research Barcelona
Ocata
Barcelona
Spain
massi@yahoo-inc.com

Adam Coates
Department of Computer Science
Stanford University
Stanford, CA
USA

David Cohn
Google, Inc.
 Amphitheatre Parkway
Mountain View, CA
USA
david.cohn@somerandom.com

David Corne
Heriot-Watt University
Earl Mountbatten Building
Edinburgh EH AS
UK
dwcorne@macs.hw.ac.uk

Susan Craw
IDEAS Research Institute
School of Computing
The Robert Gordon University
St. Andrew Street
Aberdeen AB HG
Scotland
UK
s.crow@comp.rgu.ac.uk

Artur Czumaj
Department of Computer Science
University of Warwick
Coventry CV AL
UK
aczumaj@acm.org

Walter Daelemans
Department of Linguistics
CLIPS University of Antwerp
Prinsstraat
Antwerpen
Belgium
walter.daelemans@ua.ac.be

xiv List of Contributors

Sanjoy Dasgupta
Department of Computer Science and Engineering
University of California
San Diego
 Gilman Drive
Mail Code
La Jolla, California -
USA
dasgupta@cs.ucsd.edu

Gerald DeJong
Department of Computer Science
University of Illinois at Urbana
Urbana, IL
USA
mrebl@uiuc.edu

Marco Dorigo
IRIDIA
Université Libre de Bruxelles
Avenue Franklin Roosevelt
 Brussels
Belgium
mdorigo@ulb.ac.be

Kurt Driessens
Departement Computerwetenschappen
Katholieke Universiteit Leuven
Celestijnenlaan A
 Heverlee
Belgium
kurt.driessens@cs.kuleuven.be

Christopher Drummond
Integrated Reasoning
National Research Council Institute
for Information Technology
 Montreal Road
Building M-, Room
Ottawa, ON KA R
Canada
Christopher.Drummond@nrc-cnrc.gc.ca

Yaakov Engel
AICML, Department of Computing Science
University of Alberta
- Athabasca Hall
Edmonton
Alberta TG E
Canada
yakiengel@gmail.com

Scott E. Fahlman
Language Technologies Institute
Carnegie Mellon University GHC
 Forbes Avenue
Pittsburgh, PA
USA
sef@cs.cmu.edu

Alan Fern
School of Electrical Engineering and
Computer Science
Oregon State University
 Kelley Engineering Center
Corvallis, OR -
USA
afern@eecs.orst.edu

Peter A. Flach
Department of Computer Science
University of Bristol
Woodland Road
Bristol, BS UB
UK
Peter.Flach@bristol.ac.uk

Pierre Flener
Department of Information Technology
Uppsala University
Box
SE- Uppsala
Sweden
Pierre.Flener@it.uu.se

Johannes Fürnkranz
TU Darmstadt
Fachbereich Informatik
Hochschulstraße
 Darmstadt
Germany
juffi@ke.informatik.tu-darmstadt.de

Thomas Gärtner
Knowledge Discovery
Fraunhofer Institute for Intelligent Analysis and
Information Systems
Schloss Birlinghoven
 Sankt Augustin
Germany
thomas.gaertner@iais.fraunhofer.de

List of Contributors xv

João Gama
Laboratory of Artificial Intelligence
and Decision Support
University of Porto
Porto
Portugal
jgama@fep.up.pt

Alma Lilia García-Almanza
General Directorate of Information Technology
Bank of Mexico
Av. de Mayo No.
Col. Centro, C.P.
Mexico, D.F.
algarcia@banxico.org.mx

Gemma C. Garriga
Laboratoire d’Informatique de Paris
Universite Pierre et Marie Curie
 place Jussieu
Paris
France
gemma.garriga@hut.fi

Wulfram Gerstner
Laboratory of Computational Neuroscience
Brain Mind Institute
Ecole Polytechnique Fédérale de Lausanne
Station
 Lausanne EPFL
Switzerland
wulfram.gerstner@ep.ch

Lise Getoor
Department of Computer Science
University of Maryland
AV Williams Bldg, Rm
College Park, MD
USA
getoor@cs.umd.edu

Christophe Giraud-Carrier
Department of Computer Science
Brigham Young University
 TMCB Provo
UT
USA

Marko Grobelnik
Department for Intelligent Systems
Jožef Stefan Institute
Jamova
, Ljubljana
Slovenia
Marko.Grobelnik@ijs.si

Stephen Grossberg
Department of Cognitive
Boston University
 Beacon Street
Boston, MA
USA
steve@bu.edu

Jiawei Han
Department of Computer Science
University of Illinois
at Urbana Champaign
 N. Goodwin Avenue
Urbana, IL
USA
hanj@cs.uiuc.edu

Julia Handl
Faculty of Life Sciences in Manchester
University of Manchester
UK
j.handl@manchester.ac.uk

Michael Harries
Technology Strategy Division
Advanced Products Group, Citrix Labs
North Ryde
NSW
Australia

Jun He
Department of Computer Science
Aberystwyth University
Aberystwyth SY DB
Wales
UK
j.he@cs.bham.ac.uk

xvi List of Contributors

Bernhard Hengst
School of Computer Science & Engineering
University of New South Wales
Sydney
NSW
Australia
bernhardh@cse.unsw.edu.au

Tom Heskes
Radboud University Nijmegen
Toernooiveld
 ED
Nijmegen
The Netherlands
t.heskes@science.ru.nl

Geoffrey Hinton
Department of Computer Science Office PT G
University of Toronto
 King’s College Road
MS G, Toronto
Ontario
Canada
hinton@cs.toronto.edu

Lawrence Holder
School of Electrical Engineering and Computer Science
Box
Washington State University
Pullman, WA
USA
holder@wsu.edu

Tamás Horváth
Department of Computer Science III
University of Bonn and Fraunhofer IAIS
Fraunhofer Institute for Intelligent
Analysis and Information Systems
Schloss Birlinghoven
 Sankt Augustin
Germany
tamas.horvath@ais.fraunhofer.de

Eyke Hüllermeier
Knowledge Engineering & Bioinformatics
Head of the KEBI Lab
Department of Mathematics and Computer Science
Philipps-Universität Marburg
Mehrzweckgebäude
Hans-Meerwein-Straße
 Marburg
Germany
eyke@informatik.uni-marburg.de

Phil Husbands
Department of Informatics
University of Sussex
Brighton BNQH
UK
philh@sussex.ac.uk

Marcus Hutter
Australian National University
RSIS Room B
Building
Corner of North and Daley Road
ACT
Canberra
Australia
marcus.hutter@anu.edu.au

Christian Igel
Institut für Neuroinformatik
Ruhr-Universität Bochum
Universitstr.
 Bochum
Germany
Christian.Igel@neuroinformatik.ruhr-uni-bochum.de

Sanjay Jain
Department of Computer Science
National University of Singapore
 Computing Drive
Singapore
Republic of Singapore
sanjay@comp.nus.edu.sg

Tommy R. Jensen
Institut für Mathematik
Alpen-Adria-Universität Klagenfurt
Universitässtr. -
 Klagenfurt
Austria
tjensen@uni-klu.ac.at

Xin Jin
University of Illinois at Urbana-Champaign
Toernooiveld
 ED
Urbana, IL
USA

List of Contributors xvii

Antonis C. Kakas
Department of Computer Science
University of Cyprus
 Kallipoleos Str., P.O. Box
Nicosia
Cyprus
antonis@ucy.ac.cy

Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University
Tempe, AZ
USA
rao@asu.edu

Anne Kao
The Boeing Company
P.O. Box MC L-
Seattle, WA -
USA
akao@thumper.rt.cs.boeing.com

George Karypis
Department of Computer Science and Engineering
Digital Technology Center
and Army HPC Research Center
University of Minnesota
Minneapolis, MN
USA
karypis@cs.umn.edu

Samuel Kaski
Laboratory of Computer
and Information Science
Helsinki University of Technology
P.O. Box
 TKK
Finland
samuel.kaski@tkk.fi

Carlos Kavka
Istituto Nazionale di Fisica Nucleare
University of Trieste
Trieste
Italy
Carlos.Kavka@ts.infn.it

James Kennedy
U.S. Bureau of Labor Statistics
Postal Square Building
 Massachusetts Ave., NE
Washington, DC -
USA
Kennedy.Jim@bls.gov

Eamonn Keogh
Computer Science & Engineering Department
University of California
Riverside, CA
USA
eamonn@cs.ucr.edu

Kristian Kersting
Knowledge Discovery
Fraunhofer IAIS
Schloß Birlinghoven
 Sankt Augustin
Germany
kristian.kersting@iais.fraunhofer.de

Joshua Knowles
University of Manchester

Aleksander Kołcz
Microsoft One Microsoft Way
Redmond, WA
USA
alek@ir.iit.edu

Kevin B. Korb
School of Information Technology
Monash University
Room , Bldg ,
Clayton, Victoria
Australia
kbkorb@gmail.com

Stefan Kramer
Institut für Informatik/I
Technische Universität München
Boltzmannstr.
 Garching b. München
Germany
kramer@in.tum.de

xviii List of Contributors

Krzysztof Krawiec
Institute of Computing Science
Poznan University of Technology
Piotrowo
- Poznan
Poland
krawiec@cs.put.poznan.pl

Nicolas Lachiche
Image Sciences, Computer Sciences and Remote
Sensing Laboratory
, bld Brant
 llkirch-Graffenstaden
France
Nicolas.Lachiche@urs.u-strasbg.fr

Michail G. Lagoudakis
Department of Electronic and Computer Engineering
Technical University of Crete
 Chania
Crete
Greece
lagoudakie@intelligence.tuc.gr

John Langford
Yahoo Research
New York, NY
USA
jl@yahoo-inc.com

Pier Luca Lanzi
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Milano
Italy
lanzi@elet.polimi.it

Nada Lavrač
Department of Knowledge Technologies
Jožef Stefan Institute
Jamova
Ljubljana
Slovenia
Faculty of Information Technology
University of Nova Gorica
Vipavska
 Nova Gorica
Slovenia

Christina Leslie
Computational Biology Program
Sloan-Kettering Institute
Memorial Sloan-Kettering Cancer Center
 York Ave
Mail Box #
New York, NY
cleslie@cbio.mskcc.org

Shiau Hong Lim
University of Illinois
IL
USA
shonglim@uiuc.edu

Charles X. Ling
The University of Western Ontario
Canada
dr_charles_ling@yahoo.com

Huan Liu
Computer Science and Engineering
Ira Fulton School of Engineering
Arizona State University
Brickyard Suite
 South Mill Avenue
Tempe, AZ -
USA
huan.liu@asu.edu

Bin Liu
Faculty of Information Technology
Monash University
Melbourne
Australia
bin.liu@infotech.monash.edu.au

John Lloyd
College of Engineering and Computer Science
The Australian National University
, Canberra ACT
Australia
jwl@mail.rise.anu.edu.au

Shie Mannor
Department of Electrical Engineering
Israel Institute of Technology
Technion
Technion City
 Haifa
Israel
shie@ee.technion.ac.il

List of Contributors xix

Eric Martin
Department of Artificial Intelligence
School of Computer Science and Engineering
University of New South Wales
NSW
Sydney
Australia
emartin@cse.unsw.edu.au

Serafín Martínez-Jaramillo
General Directorate of Financial System Analysis
Financial System Analysis Division
Bank of Mexico
Av. de Mayo No.
Col. Centro, C.P.
Mexico, D.F
smartin@banxico.org.mx

Stan Matwin
School of Information Technology and Engineering
University of Ottawa
Ottawa, ON
Canada
stan@site.uottawa.ca

Julian McAuley
Statistical Machine Learning Program
Department of Engineering and
Computer Science
National University of Australia
NICTA, Locked Bag
Canberra ACT
Australia
julian.mcauley@nicta.com.au

Prem Melville
Machine Learning
IBM T. J. Watson Research Center
Route /P.O. Box
 Kitchawan Rd
Yorktown Heights, NY
USA
pmelvil@us.ibm.com

Pietro Michelucci
Strategic Analysis, Inc.
 Wilson Blvd
Suite
Arlington, VA
USA
pmichelucci@sainc.com

Rada Mihalcea
Department of Computer Science
and Engineering
University of North Texas
Denton, TX -
USA
rada@cs.unt.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
 University Station C
Austin, TX -
USA
risto@cs.utexas.edu

Dunja Mladenić
Department of Knowledge Technologies
Jožef Stefan Insitute
Jamova
, Ljubljana
Slovenia
Dunja.Mladenic@ijs.si

Katharina Morik
Department of Computer Science
Technische Universität Dortmund
Dortmund
Germany
katharina.morik@tu-dortmund.de

Jun Morimoto
Advanced Telecommunication
Research Institute International ATR
Kyoto
Japan

Abdullah Mueen
Department of Computer Science and Engineering
University California-Riverside
Riverside, CA
USA

Paul Munro
School of Information Sciences
University of Pittsburgh
Pittsburgh, PA
USA
pmunro@mail.sis.pitt.edu

xx List of Contributors

Ion Muslea
Language Weaver, Inc.
 Admiralty Way, Suite
Marina del Rey, CA
USA
imuslea@languageweaver.com

Galileo Namata
Department of Computer Science
University of Maryland
College Park, MD
USA

Sriraam Natarajan
Department of Computer Sciences
University of Wisconsin Medical School
 University Avenue
Madison, WI
USA
natarasr@biostat.wisc.edu

Andrew Y. Ng
Stanford AI Laboratory
Stanford University
 Serra Mall, Gates Building A
Stanford, CA -
USA
ang@cs.stanford.edu

Siegfried Nijssen
Institut für Informatik
Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee, Gebäude
 Freiburg i. Br.
Germany
snijssen@informatik.uni-freiburg.de

William Stafford Noble
Department of Genome Sciences
University of Washington
Seattle, WA
USA
noble@gs.washington.edu

Petra Kralj Novak
Department of Knowledge Technologies
Jožef Stefan Institute
Jamova
Ljubljana
Slovenia
Petra.Kralj.Novak@ijs.si

Daniel Oblinger
DARPA/IPTO
 Fairfax Drive
Arlington, VA
USA
oblinger@pobox.com

Peter Orbanz
Department of Engineering
Cambridge University
Trumpington Street
Cambridge, CB PZ
UK

Miles Osborne
Institute for Communicating and
Collaborative Systems
University of Edinburgh
 Buccleuch Place
Edinburgh EH LW
Scotland
UK
miles@inf.ed.ac.uk

C. David page
Department of Biostatistics and Medical Informatics
University of Wisconsin Medical School
 University Avenue
Madison, WI
USA
page@biostat.wisc.edu

Jonathan Patrick
Telfer School of Management
University of Ottawa
 Laurier avenue
Ottawa, ON KN N
Canada
patrick@telfer.uottawa.ca

Claudia Perlich
Data Analytics Research Group
IBM T.J. Watson Research Center
P.O. Box
Yorktown Heights, NY
USA
perlich@us.ibm.com

List of Contributors xxi

Jan Peters
Department of Empirical
Inference and Machine Learning
Max Planck Institute for Biological Cybernetics
Spemannstr.
 Tuebingen
Germany
mail@jan-peters.net

Bernhard Pfahringer
Department of Computer Science
University of Waikato
Private Bag
Hamilton
New Zealand
bernhard@cs.waikato.ac.nz

Steve Poteet
Boeing Phantom Works
P.O. Box MC L-
Seattle, WA
USA

Pascal Poupart
School of Computer Science
University of Waterloo
 University Avenue West
Waterloo
ON NL G
Canada
pponpart@cs.uwaterloo.ca

Rob Powers
Computer Science Department
Stanford University
 Serra Mall
Stanford, CA
USA
powers@cs.stanford.edu

Cecilia M. Procopiuc
AT&T Labs
Florham Park, NJ
USA
magda@research.att.com

Martin L. Puterman
Centre for Health Care Management
Sauder School of Business
University of British Columbia
 Main Mall
Vancouver, BC VT Z
Canada
marty@chem.ubc.ca

Lesley Quach
Boeing Phantom Works
P.O. Box MC L-
Seattle, WA
USA

Novi Quadrianto
Department of Engineering and Computer Science
Australian National University NICTA London Circuit
Canberra ACT
Australia
novi.quadrianto@nicta.com.au

Luc De Raedt
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan A
BE - Heverlee
Belgium
luc.deraedt@cs.kuleuven.be

Dev Rajnarayan
NASA Ames Research Center
Mail Stop -
Moffett Field, CA
USA

Adwait Ratnaparkhi
Yahoo! Labs
Santa Clara
California
USA
adwait_ratnaparkhi@yahoo.com

Soumya Ray
School of EECS
Oregon State University
 Kelley Engineering Center

Corvallis, OR
USA
sray@eecs.oregonstate.edu

xxii List of Contributors

Mark Reid
Research School of Information Sciences and
Engineering
The Australian National University
Canberra, ACT
Australia
mark.reid@anu.edu.au

Jean-Michel Renders
Xerox Research Centre Europe
, chemin de Maupertuis
 Meylan
France

John Risch
Pacific Northwest National Laboratory

Jorma Rissanen
Complex Systems Computation Group
Department of Computer Science
Helsinki Institute of Information Technology
Helsinki
Finland
Jorma.Rissanen@hiit.fi

Nicholas Roy
Massachusetts Institute of Technology
Cambridge, MA
USA

Lorenza Saitta
Università del Piemonte Orientale
Alessandria
Italy
Michele.Sebag@lri.fr

Yasubumi Sakakibara
Department of Biosciences and Informatics
Keio University
yasu@bio.keio.ac.jp
Hiyoshi
Kohoku-ku
Japan

Claude Sammut
School of Computer Science and Engineering
The University of New South Wales
Sydney
NSW
Australia
claude@cse.unsw.edu.au

Joerg Sander
Department of Computing Science
University of Alberta
Edmonton, AB
Canada
joerg@cs.ualberta.ca

Scott Sanner
Statistical Machine Learning Group
NICTA, London Circuit, Tower A
ACT
Canberra
Australia
scott.sanner@nicta.com.au

Stefan Schaal
Department of Computer Science
University of Southern California
ATR Computational Neuroscience Labs
 Watt Way
Los Angeles, CA -
USA
sschaal@usc.edu

Ute Schmid
Department of Information Systems
and Applied Computer Science
University of Bamberg
Feldkirchenstr.
 Bamberg
Germany
ute.schmid@uni-bamberg.de

Stephen Scott
University of Nebraska
Lincoln, NE
USA

Michele Sebag
Laboratoire de Recherche en Informatique
Université Paris-Sud
Bât
 Orsay
France
Michele.Sebag@lri.fr

Prithviraj Sen
University of Maryland
AV Williams Bldg, Rm
College Park, MD
USA

List of Contributors xxiii

Hanhuai Shan
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN
USA
shan@cs.umn.edu

Hossam Sharara
Department of Computer Science
University of Maryland
College Park, MD
Maryland
USA

Victor S. Sheng
The University of Western Ontario
Canada

Jelber Sayyad Shirabad
School of Information Technology
and Engineering
University of Ottawa
 King Edward
P.O. Box
Stn A, KN N
Ottawa, Ontario
Canada
jsayyad@site.uottawa.ca

Yoav Shoham
Computer Science Department
Stanford University
 Serra Mall
Stanford, CA
USA
shoham@standford.edn

Thomas R. Shultz
Department of Psychology and
School of Computer Science
McGill University
 Dr. Penfield Avenue
Montréal
QC HA B
Canada
thomas.shultz@mcgill.ca

Ricardo Silva
Gatsby Computational Neuroscience Unit
University College London
Alexandra House
 Queen Square
London WCN AR
UK
rbas@gatsby.ucl.ac.uk

Vikas Sindhwani
IBM T. J. Watson Research Center
Route /P.O. Box
 Kitchawan Rd
Yorktown Heights, NY
USA

Moshe Sipper
Department of Computer Science
Ben-Gurion University
P.O. Box
Beer-Sheva
Israel
sipper@cs.bgu.ac.il

William D. Smart
Associate Professor
Department of Computer Science and Engineering
Washington University in St. Louis
Campus Box
One Brookings Drive
St. Louis, MO
USA
wds@cse.wustl.edu

Carlos Soares
LIAAD-INESC Porto L.A./Faculdade de Economia
Laboratory of Artificial Intelligence
and Computer Science
University of Porto
Rua de Ceuta n.
.piso, -
Porto
Portugal

Christian Sohler
Heinz Nixdorf Institute & Computer Science Department
University of Paderborn
Fuerstenallee
 Paderborn
Germany
csohler@upb.de

xxiv List of Contributors

Frank Stephan
Department of Computer Science
and Department of Mathematics
National University of Singapore
Singapore
Republic of Singapore
fstephan@comp.nus.edu.sg

Peter Stone
Department of Computer Sciences
The University of Texas at Austin
Austin, TX
USA
pstone@cs.utexas.edu

Alexander L. Strehl
Department of Computer Science
Rutgers University
 Frelinghuysen Road
Piscataway, NJ
USA
strehl@cs.rutgers.edu

Prasad Tadepalli
School of Electrical Engineering and Computer Science
Oregon State University
 Kelley Engineering Center
Corvallis, OR -
USA
tadepall@eecs.oregonstate.edu

Russ Tedrake
Department of Computer Science
Massachusetts Institute of Technology
 Vassar Street
Cambridge, MA
USA
russt@mit.edu

Yee Whye Teh
Gatsby Computational Neuroscience Unit
University College London
 Queen Square
London WCN AR
UK
yeewhye@gmail.com

Jon Timmis
Department of Computer Science
and Department of Electronics
University of York
Heslington
York DD
UK
jtimmis@cs.york.ac.uk

Jo-Anne Ting
University of Edinburgh

Kai Ming Ting
Gippsland School of Information Technology
Monash University
Gippsland Campus Churchill
, Victoria
Australia
kaiming.ting@infotech.monash.edu.au

Ljupčo Todorovski
Faculty of Administration
University of Ljubljana
Gosarjeva
 Ljubljana
Slovenia
Ljupco.Todorovski@fu.uni-lj.si

Hannu Toivonen
Department of Computer Science
University of Helsinki
P.O. Box (Gustaf Hällströmin katu b)
 Helsinki
Finland
hannu.toivonen@cs.helsinki.fi

Luís Torgo
Department of Computer Science
Faculty of Sciences
University of Porto
Rua Campo Alegre
/, –
Porto
Portugal
ltorgo@dcc.fc.up.pt

Panayiotis Tsaparas
Microsoft Research
Microsoft
Mountain View, CA
USA
panayiotis.tsaparas@micorsoft.com

List of Contributors xxv

Paul E. Utgoff
Department of Computer Science
University of Massachusetts
 Governor’s Drive
Amherst, MA –
USA

William Uther
NICTA and the University of New South Wales
William.Uther@nicta.com.au

Sethu Vijayakumar
University of Edinburgh
University of Southern California

Ricardo Vilalta
Department of Computer Science
University of Houston
 Calhoun Rd
Houston, TX -
USA

Michail Vlachos
IBM Zürich Research Laboratory
Säumerstrasse
 Rüschlikon
Switzerland
michaliso@gmail.com

Kiri L. Wagstaff
Machine Learning Systems
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA
USA
kiri.wagstaff@jpl.nasa.gov

Geoffrey I. Webb
Faculty of Information Technology
Clayton School of Information Technology
Monash University
P.O. Box
Victoria
Australia
Geoff.Webb@monash.edu

R. Paul Wiegand
Institute for Simulation and Training
University of Central Florida
Orlando, FL
USA
paul@tesseraet.org
wiegand@ist.ucf.edu

Eric Wiewiora
University of California
San Diego
ewiewior@cs.ucsd.edu

Anthony Wirth
Department of Computer Science
and Software Engineering
The University of Melbourne
Victoria
Australia
awirth@csse.unimelb.edu.au

Michael Witbrock
Cycorp, Inc.
 Executive Center Drive
Austin, TX
USA
witbrock@cyc.com

David Wolpert
NASA Ames Research Center
Moffett Field, CA
USA
dhw@ptolemy.arc.nasa.gov

Stefan Wrobel
Department of Computer Science
University of Bonn, and Fraunhofer IAIS
(Institute for Intelligent Analysis and
Information Systems) Fraunhofer IAIS
Schloss Birlinghoven
 Sankt Augustin
Germany

Jason Wu
Boeing Phantom Works
P.O. Box MC L-
Seattle, WA
USA

Zhao Xu
Knowledge Discovery
Fraunhofer IAIS
Schloß Birlinghoven
 Sankt Augustin
Germany

xxvi List of Contributors

Ying Yang
Australian Taxation Office
 White Horse Road
Box Hill
VIC
Australia
Ying.Yang@ato.gov.au

Sungwook Yoon
PARC Labs
Coyote Hill Road
Palo Alto, CA
USA

Thomas Zeugmann
Division of Computer Science
Graduate School of
Information Science and Technology
Hokkaido University
Sapparo
Japan
thomas@ist.hokudai.ac.jp

Xinhua Zhang
School of Computer Science
Australian National University
NICTA London Circuit
Canberra
Australia
xinhua.zhang@anu.edu.au

Ying Zhao
Department of Computer Science and Technology
Tsinghua University
Beijing
China

Fei Zheng
Faculty of Information Technology
Monash University
Clayton School of I.T.
Room , Bldg
Wellington Road
Clayton
Melbourne
Victoria
Australia
fei.zheng@infotech.monash.edu.au

Xiaojin Zhu
Department of Computer Sciences
University of Wisconsin-Madison
 West Dayton Street,
Madison, WI
USA
jerryzhu@cs.wisc.edu

-

-Norm Distance

7Manhattan Distance

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

A

Abduction

Antonis C. Kakas

University of Cyprus, Nicosia, Cyprus

Definition
Abduction is a form of reasoning, sometimes described

as “deduction in reverse,” whereby given a rule that

“A follows from B” and the observed result of “A” we

infer the condition “B” of the rule. More generally,

given a theory, T, modeling a domain of interest and

an observation, “A,” we infer a hypothesis “B” such that

the observation follows deductively from T augmented

with “B.” We think of “B” as a possible explanation

for the observation according to the given theory that

contains our rule.�is new information and its conse-

quences (or rami�cations) according to the given theory

can be considered as the result of a (or part of a) learn-

ing process based on the given theory and driven by the

observations that are explained by abduction. Abduc-

tion can be combinedwith7induction in di�erent ways
to enhance this learning process.

Motivation and Background
Abduction is, along with induction, a synthetic form

of reasoning whereby it generates, in its explanations,

new information not hitherto contained in the cur-

rent theory with which the reasoning is performed.

As such, it has a natural relation to learning, and in

particular to knowledge intensive learning, where the

new information generated aims to complete, at least

partially, the current knowledge (or model) of the prob-

lem domain as described in the given theory.

Early uses of abduction in the context of machine

learning concentrated on how abduction can be used

as a theory revision operator for identifying where

the current theory could be revised in order to

accommodate the new learning data. �is includes

the work of Michalski (), Ourston and Mooney

(), and Ade, Malfait, and Raedt (). Another

early link of abduction to learning was given by

the 7explanation based learning method (DeJong &
Mooney,), where the abductive explanations of

the learning data (training examples) are generalized to

all cases.

Following this, it was realized (Flach & Kakas,

) that the role of abduction in learning could

be strengthened by linking it to induction, culmi-

nating in a hybrid integrated approach to learning

where abduction and induction are tightly integrated

to provide powerful learning frameworks such as the

ones of Progol . (Muggleton & Bryant,) and

HAIL (Ray, Broda, & Russo,). On the other

hand, from the point of view of abduction as “infer-

ence to the best explanation” (Josephson & Josephson,

) the link with induction provides a way to distin-

guish between di�erent explanations and to select those

explanations that give a better inductive generalization

result.

A recent application of abduction, on its own or

in combination with induction, is in Systems Biol-

ogy where we try to model biological processes and

pathways at di�erent levels. �is challenging domain

provides an important development test-bed for these

methods of knowledge intensive learning (see e.g., King

et al., ; Papatheodorou, Kakas, & Sergot, ; Ray,

Antoniades, Kakas, & Demetriades, ; Tamaddoni-

Nezhad, Kakas, Muggleton, & Pazos, ; Zupan et al.,

).

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC

 A Abduction

Structure of the Learning Task
Abduction contributes to the learning task by �rst

explaining, and thus rationalizing, the training data

according to a given and current model of the domain

to be learned.�ese abductive explanations either form

on their own the result of learning or they feed into a

subsequent phase to generate the �nal result of learning.

Abduction in Artificial Intelligence

Abduction as studied in the area of Arti�cial Intelli-

gence and the perspective of learning is mainly de�ned

in a logic-based approach (Other approaches to abduc-

tion include the set covering approach See, e.g., Reggia

() or case-based explanation, e.g., Leake ().) as

follows.

Given a set of sentences T (a theory or model),

and a sentence O (observation), the abductive task is

the problem of �nding a set of sentences H (abductive

explanation for O) such that:

. T ∪H ⊧ O,

. T ∪H is consistent,

where ⊧ denotes the deductive entailment relation of
the formal logic used in the representation of our theory

and consistency refers also to the corresponding notion

in this logic. �e particular choice of this underlying

formal framework of logic is in general a matter that

depends on the problem or phenomena that we are try-

ing tomodel. Inmany cases, this is based on7�rst order
predicate calculus, as, for example, in the approach of

theory completion inMuggleton andBryant (). But

other logics can be used, e.g., the nonmonotonic logics

of default logic or logic programming with negation as

failure when the modeling of our problem requires this

level of expressivity.

�is basic formalization as it stands, does not fully

capture the explanatory nature of the abductive expla-

nation H in the sense that it necessarily conveys some

reason why the observations hold. It would, for exam-

ple, allow an observationO to be explained by itself or in

terms of some other observations rather than in terms

of some “deeper” reason for which the observationmust

hold according to the theory T. Also, as the above

speci�cation stands, the observation can be abductively

explained by generating inH somenew (general) theory

completely unrelated to the given theory T. In this case,

H does not account for the observationsO according to

the given theory T and in this sense it may not be con-

sidered as an explanation for O relative to T. For these

reasons, in order to specify a “level” at which the expla-

nations are required and to understand these relative to

the given general theory about the domain of interest,

the members of an explanation are normally restricted

to belong to a special preassigned, domain-speci�c class

of sentences called abducible.

Hence abduction, is typically applied on a model, T,

in which we can separate two disjoint sets of predicates:

the observable predicates and the abducible (or open)

predicates.�e basic assumption then is that our model

T has reached a su�cient level of comprehension of the

domain such that all the incompleteness of the model

can be isolated (under some working hypotheses) in

its abducible predicates.�e observable predicates are

assumed to be completely de�ned (in T) in terms of the

abducible predicates and other background auxiliary

predicates; any incompleteness in their representation

comes from the incompleteness in the abducible predi-

cates. In practice, the empirical observations that drive

the learning task are described using the observable

predicates. Observations are represented by formulae

that refer only to the observable predicates (and possi-

bly some background auxiliary predicates) typically by

ground atomic facts on these observable predicates.�e

abducible predicates describe underlying (theoretical)

relations in our model that are not observable directly

but can, through the model T, bring about observable

information.

�e assumptions on the abducible predicates used

for building up the explanations may be subject to

restrictions that are expressed through integrity con-

straints.�ese represent additional knowledge that we

have on our domain expressing general properties of the

domain that remain valid no matter how the theory is

to be extended in the process of abduction and associ-

ated learning.�erefore, in general, an abductive theory

is a triple, denoted by ⟨T,A, IC⟩, where T is the back-
ground theory, A is a set of abducible predicates, and

IC is a set of integrity constraints.�en, in the de�ni-

tion of an abductive explanation given above, one more

requirement is added:

. T ∪H satis�es IC.

Abduction A

A�e satisfaction of integrity constraints can be formally

understood in several ways (see Kakas, Kowalski, &

Toni, and references therein). Note that the

integrity constraints reduce the number of explanations

for a set of observations �ltering out those explana-

tions that do not satisfy them. Based on this notion

of abductive explanation a credulous form of abduc-

tive entailment is de�ned. Given an abductive theory,

T = ⟨T,A, IC⟩, and an observation O then, O is abduc-
tively entailed by T, denoted by T ⊧A O, if there exists

an abductive explanation of O in T.

�is notion of abductive entailment can then form

the basis of a coverage relation for learning in the face

of incomplete information.

Abductive Concept Learning

Abduction allows us to reason in the face of incomplete

information. As such when we have learning problems

where the background data on the training examples

is incomplete the use of abduction can enhance the

learning capabilities.

Abductive concept learning (ACL) (Kakas&Riguzzi,

) is a learning framework that allows us to learn

from incomplete information and to later be able to clas-

sify new cases that again could be incompletely speci-

�ed. Under ACL, we learn abductive theories, ⟨T,A, IC⟩
with abduction playing a central role in the covering

relation of the learning problem.�e abductive theories

learned in ACL contain both rules, in T, for the con-

cept(s) to be learned as well as general clauses acting as

integrity constraints in IC.

Practical problems that can be addressed with ACL:

() concept learning from incomplete background data

where some of the background predicates are incom-

pletely speci�ed and () concept learning from incom-

plete background data together with given integrity

constraints that provide some information on the

incompleteness of the data. �e treatment of incom-

pleteness through abduction is integrated within the

learning process.�is allows the possibility of learning

more compact theories that can alleviate the problem

of over �tting due to the incompleteness in the data.

A speci�c subcase of these two problems and important

third application problem of ACL is that of () multi-

ple predicate learning, where each predicate is required

to be learned from the incomplete data for the other

predicates. Here the abductive reasoning can be used to

suitably connect and integrate the learning of the dif-

ferent predicates. �is can help to overcome some of

the nonlocality di�culties of multiple predicate learn-

ing, such as order-dependence and global consistency

of the learned theory.

ACL is de�ned as an extension of7Inductive Logic
Programming (ILP)where both the background knowl-

edge and the learned theory are abductive theories.�e

central formal de�nition of ACL is given as follows

where examples are atomic ground facts on the target

predicate(s) to be learned.

De�nition (Abductive Concept Learning)
Given

● A set of positive examples E+

● A set of negative examples E−

● An abductive theory T = ⟨P,A, I⟩ as background the-

ory

● An hypothesis space T = ⟨P ,I⟩ consisting of a space
of possible programs P and a space of possible con-

straints I

Find
A set of rules P′ ∈ P and a set of constraints I′ ∈ I such

that the new abductive theory T′ = ⟨P ∪ P′,A, I ∪ I′⟩
satis�es the following conditions

● T′ ⊧A E+

● ∀e− ∈ E−, T′ ⊭A e−

where E+ stands for the conjunction of all positive

examples.

An individual example e is said to be covered by a

theoryT′ ifT′ ⊧A e. In e�ect, this de�nition replaces the

deductive entailment as the example coverage relation

in the ILP problem with abductive entailment to de�ne

the ACL learning problem.

�e fact that the conjunction of positive exam-

ples must be covered means that, for every positive

example, there must exist an abductive explanation and

the explanations for all the positive examples must be

consistent with each other. For negative examples, it is

required that no abductive explanation exists for any of

them. ACL can be illustrated as follows.

 A Abduction

Example Suppose we want to learn the concept

father. Let the background theory be T = ⟨P,A,∅⟩where:
P = {parent(john,mary),male(john),
parent(david, steve),
parent(kathy, ellen), female(kathy)},
A = {male, female}.

Let the training examples be:

E+ = {father(john,mary), father(david, steve)},
E− = {father(kathy, ellen), father(john, steve)}.

In this case, a possible hypotheses T′ = ⟨P ∪ P′,A, I′⟩
learned by ACL would consist of

P′ = {father(X,Y)← parent(X,Y),male(X)},
I′ = {←male(X), female(X)}.

�is hypothesis satis�es the de�nition of ACL because:

. T′ ⊧A father(john,mary), father(david, steve)
with ∆ = {male(david)}.

. T′ ⊭A father(kathy, ellen),
as the only possible explanation for this goal, namely

{male(kathy)} is made inconsistent by the learned

integrity constraint in I′.

. T′ ⊭A father(john, steve),
as this has no possible abductive explanations.

Hence, despite the fact that the background theory

is incomplete (in its abducible predicates), ACL can �nd

an appropriate solution to the learning problem by suit-

ably extending the background theory with abducible

assumptions. Note that the learned theory without the

integrity constraint would not satisfy the de�nition of

ACL, because there would exist an abductive explana-

tion for the negative example father(kathy, ellen), namely

∆− = {male(kathy)}. �is explanation is prohibited in

the complete theory by the learned constraint together

with the fact female(kathy).

�e algorithm and learning system for ACL is based

on a decomposition of this problem into two sub-

problems: () learning the rules in P′ together with

appropriate explanations for the training examples and

() learning integrity constraints driven by the expla-

nations generated in the �rst part.�is decomposition

allows ACL to be developed by combining the two IPL

settings of explanatory (predictive) learning and con-

�rmatory (descriptive) learning. In fact, the �rst sub-

problem can be seen as a problem of learning from

entailment, while the second subproblem as a problem

of learning from interpretations.

Abduction and Induction

�e utility of abduction in learning can be enhanced

signi�cantly when this is integrated with induction.

Several approaches for synthesizing abduction and

induction in learning have been developed, e.g., Ade

and Denecker (), Muggleton and Bryant (),

Yamamoto (), and Flach and Kakas ().�ese

approaches aim to develop techniques for knowledge

intensive learning with complex background theo-

ries. One problem to be faced by purely inductive

techniques, is that the training data on which the

inductive process operates, o�en contain gaps and

inconsistencies.�e general idea is that abductive rea-

soning can feed information into the inductive pro-

cess by using the background theory for inserting new

hypotheses and removing inconsistent data. Stated dif-

ferently, abductive inference is used to complete the

training data with hypotheses about missing or incon-

sistent data that explain the example or training data,

using the background theory.�is process gives alter-

native possibilities for assimilating and generalizing

this data.

Induction is a form of synthetic reasoning that typ-

ically generates knowledge in the form of new gen-

eral rules that can provide, either directly, or indirectly

through the current theory T that they extend, new

interrelationships between the predicates of our theory

that can include, unlike abduction, the observable

predicates and even in some cases new predicates.

�e inductive hypothesis thus introduces new, hith-

erto unknown, links between the relations that we

are studying thus allowing new predictions on the

observable predicates that would not have been possi-

ble before from the original theory under any abductive

explanation.

An inductive hypothesis, H, extends, like in abduc-

tion, the existing theory T to a new theory T′=T ∪ H,

but now H provides new links between observables

and nonobservables that was missing or incomplete

in the original theory T. �is is particularly evident

from the fact that induction can be performed even

with an empty given theory T, using just the set

of observations. �e observations specify incomplete

(usually extensional) knowledge about the observable

Abduction A

Apredicates, which we try to generalize into new knowl-

edge. In contrast, the generalizing e�ect of abduc-

tion, if at all present, is much more limited. With the

given current theory T, that abduction always needs to

refer to, we implicitly restrict the generalizing power

of abduction as we require that the basic model of our

domain remains that of T. Induction has a stronger

and genuinely new generalizing e�ect on the observ-

able predicates than abduction. While the purpose of

abduction is to extend the theory with an explanation

and then reason with it, thus enabling the generalizing

potential of the given theory T, in induction the pur-

pose is to extend the given theory to a new theory, which

can provide new possible observable consequences.

�is complementarity of abduction and induc-

tion – abduction providing explanations from the the-

ory while induction generalizes to form new parts of

the theory – suggests a basis for their integration within

the context of theory formation and theory develop-

ment. A cycle of integration of abduction and induc-

tion (Flach & Kakas,) emerges that is suitable for

the task of incremental modeling (Fig.). Abduction

is used to transform (and in some sense normalize)

the observations to information on the abducible pred-

icates. �en, induction takes this as input and tries

to generalize this information to general rules for the

abducible predicates now treating these as observable

predicates for its own purposes. �e cycle can then

be repeated by adding the learned information on the

abducibles back in themodel as newpartial information

T

T ′

O ′

O

T∪H O AbductionInduction

Abduction. Figure . The cycle of abductive and induc-

tive knowledge development. The cycle is governed by

the “equation” T ∪ H ⊧ O, where T is the current theory,

O the observations triggering theory development, andH

the new knowledge generated. On the left-hand side we

have induction, its output feeding into the theory T for

later use by abduction on the right; the abductive output

in turn feeds into the observational data O′ for later use

by induction, and so on

on the incomplete abducible predicates.�is will a�ect

the abductive explanations of new observations to be

used again in a subsequent phase of induction. Hence,

through this cycle of integration the abductive explana-

tions of the observations are added to the theory, not in

the (simple) form in which they have been generated,

but in a generalized formgiven by a process of induction

on these.

A simple example, adapted from Ray et al. (),

that illustrates this cycle of integration of abduction and

induction is as follows. Suppose that our current model,

T, contains the following rule and background facts:

sad(X) ← tired(X), poor(X),

tired(oli), tired(ale), tired(kr),

academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr),

where the only observable predicate is sad/.
Given the observations O={sad(ale), sad(kr), not

sad(oli)} can we improve our model?�e incomplete-
ness of our model resides in the predicate poor. �is

is the only abducible predicate in our model. Using

abduction we can explain the observations O via the

explanation:

E = {poor(ale), poor(kr), not poor(oli)}.

Subsequently, treating this explanation as training data

for inductive generalizationwe can generalize this to get

the rule:

poor(X) ← lecturer(X)

thus (partially) de�ning the abducible predicate poor

when we extend our theory with this rule.

�is combination of abduction and induction has

recently been studied and deployed in several ways

within the context of ILP. In particular, inverse entail-

ment (Muggleton and Bryant,) can be seen as a

particular case of integration of abductive inference for

constructing a “bottom” clause and inductive inference

to generalize it.�is is realized in Progol . and applied

to several problems including the discovery of the

function of genes in a network of metabolic pathways

(King et al.,), and more recently to the study of

 A Abduction

inhibition in metabolic networks (Tamaddoni-Nezhad,

Chaleil, Kakas,&Muggleton, ; Tamaddoni-Nezhad

et al.,). In Moyle (), an ILP system called

ALECTO, integrates a phase of extraction-case abduc-

tion to transform each case of a training example to

an abductive hypothesis with a phase of induction that

generalizes these abductive hypotheses. It has been used

to learn robot navigation control programs by complet-

ing the speci�c domain knowledge required, within a

general theory of planning that the robot uses for its

navigation (Moyle,).

�e development of these initial frameworks that

realize the cycle of integration of abduction and induc-

tion prompted the study of the problem of completeness

for �nding any hypotheses H that satis�es the basic

task of �nding a consistent hypothesis H such that

T ∪ H ⊧ O for a given theory T, and observations O.

Progol was found to be incomplete (Yamamoto,)

and several new frameworks of integration of abduction

and induction have been proposed such as SOLDR (Ito

& Yamamoto,), CF-induction (Inoue,), and

HAIL (Ray et al.,). In particular, HAIL has demon-

strated that one of the main reasons for the incom-

pleteness of Progol is that in its cycle of integration of

abduction and induction, it uses a very restricted form

of abduction. Li�ing some of these restrictions, through

the employment of methods from abductive logic pro-

gramming (Kakas et al.,), has allowed HAIL to

solve awider class of problems.HAILhas been extended

to a framework, called XHAIL (Ray,), for learn-

ing nonmonotonic ILP, allowing it to be applied to learn

Event Calculus theories for action description (Alra-

jeh, Ray, Russo, & Uchitel,) and complex scienti�c

theories for systems biology (Ray & Bryant,).

Applications of this integration of abduction and

induction and the cycle of knowledge development can

be found in the recent proceedings of the Abduction

and Induction in Arti�cial Intelligence workshops in

 (Flach & Kakas,) and (Ray, Flach, &

Kakas,).

Abduction in Systems Biology

Abduction has found a rich �eld of application in the

domain of systems biology and the declarative model-

ing of computational biology. In a project called, Robot

scientist (King et al.,), Progol . was used to

generate abductive hypotheses about the function of

genes. Similarly, learning the function of genes using

abduction has been studied in GenePath (Zupan et al.,

) where experimental genetic data is explained

in order to facilitate the analysis of genetic networks.

Also in Papatheodorou et al. () abduction is used

to learn gene interactions and genetic pathways from

microarray experimental data. Abduction and its inte-

gration with induction has been used in the study

of inhibitory e�ect of toxins in metabolic networks

(Tamaddoni-Nezhad et al., ,) taking into

account also the temporal variation that the inhibitory

e�ect can have. Another bioinformatics application of

abduction (Ray et al.,) concerns the modeling of

human immunode�ciency virus (HIV) drug resistance

and using this in order to assist medical practition-

ers in the selection of antiretroviral drugs for patients

infected with HIV. Also, the recently developed frame-

works of XHAIL and CF-induction have been applied

to several problems in systems biology, see e.g., Ray

(), Ray and Bryant (), and Doncescu, Inoue,

and Yamamoto (), respectively.

Cross References
7Explanation-Based Learning
7Inductive Logic Programming

Recommended Reading
Ade, H., & Denecker, M. (). AILP: Abductive inductive logic

programming. In C. S. Mellish (Ed.), IJCAI (pp. –). San

Francisco: Morgan Kaufmann.

Ade, H., Malfait, B., & Raedt, L. D. (). Ruth: An ILP theory

revision system. In ISMIS. Berlin: Springer.

Alrajeh, D., Ray, O., Russo, A., & Uchitel, S. (). Using abduc-

tion and induction for operational requirements elaboration.

Journal of Applied Logic, (), –.

DeJong, G., & Mooney, R. (). Explanation-based learning: An

alternate view. Machine Learning, , –.

Doncescu, A., Inoue, K., & Yamamoto, Y. (). Knowledge

based discovery in systems biology using cf-induction. In

H. G. Okuno & M. Ali (Eds.), IEA/AIE (pp. –). Heidel-

berg: Springer.

Flach, P., & Kakas, A. (). Abductive and inductive reason-

ing: Background and issues. In P. A. Flach & A. C. Kakas

(Eds.), Abductive and inductive reasoning. Pure and applied

logic. Dordrecht: Kluwer.

Flach, P. A., & Kakas, A. C. (Eds.). (). Abduction and induction

in artificial intelligence [Special issue]. Journal of Applied Logic,

().

Inoue, K. (). Inverse entailment for full clausal theories. In LICS-

 workshop on logic and learning.

Accuracy A

AIto, K., & Yamamoto, A. (). Finding hypotheses from exam-

ples by computing the least generlisation of bottom clauses.

In Proceedings of discovery science ’ (pp. –). Berlin:

Springer.

Josephson, J., & Josephson, S. (Eds.). (). Abductive inference:

Computation, philosophy, technology. New York: Cambridge

University Press.

Kakas, A., Kowalski, R., & Toni, F. (). Abductive logic program-

ming. Journal of Logic and Computation, (), –.

Kakas, A., & Riguzzi, F. (). Abductive concept learning. New

Generation Computing, , –.

King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggle-

ton, S., et al. (). Functional genomic hypothesis gener-

ation and experimentation by a robot scientist. Nature, ,

–.

Leake, D. (). Abduction, experience and goals: A model for

everyday abductive explanation. The Journal of Experimental

and Theoretical Artificial Intelligence, , –.

Michalski, R. S. (). Inferential theory of learning as a con-

ceptual basis for multistrategy learning. Machine Learning, ,

–.

Moyle, S. (). Using theory completion to learn a robot navi-

gation control program. In Proceedings of the th international

conference on inductive logic programming (pp. –). Berlin:

Springer.

Moyle, S. A. (). An investigation into theory completion

techniques in inductive logic programming. PhD thesis,

Oxford University Computing Laboratory, University of

Oxford.

Muggleton, S. (). Inverse entailment and Progol. New Genera-

tion Computing, , –.

Muggleton, S., & Bryant, C. (). Theory completion using

inverse entailment. In Proceedings of the tenth interna-

tional workshop on inductive logic programming (ILP-)

(pp. –). Berlin: Springer.

Ourston, D., & Mooney, R. J. (). Theory refinement combin-

ing analytical and empirical methods. Artificial Intelligence, ,

–.

Papatheodorou, I., Kakas, A., & Sergot, M. (). Inference of gene

relations from microarray data by abduction. In Proceedings of

the eighth international conference on logic programming and

non-monotonic reasoning (LPNMR’) (Vol. , pp. –).

Berlin: Springer.

Ray, O. (). Nonmonotonic abductive inductive learning. Journal

of Applied Logic, (), –.

Ray, O., Antoniades, A., Kakas, A., & Demetriades, I. ().

Abductive logic programming in the clinical management

of HIV/AIDS. In G. Brewka, S. Coradeschi, A. Perini, &

P. Traverso (Eds.), Proceedings of the th European confer-

ence on artificial intelligence. Frontiers in artificial intelli-

gence and applications (Vol. , pp. –). Amsterdam:

IOS Press.

Ray, O., Broda, K., & Russo, A. (). Hybrid abductive inductive

learning: A generalisation of Progol. In Proceedings of the th

international conference on inductive logic programming. Lecture

notes in artificial intelligence (Vol. , pp. –). Berlin:

Springer.

Ray, O., & Bryant, C. (). Inferring the function of genes

from synthetic lethal mutations. In Proceedings of the second

international conference on complex, intelligent and software

intensive systems (pp. –). Washington, DC: IEEE Com-

puter Society.

Ray, O., Flach, P. A., & Kakas, A. C. (Eds.). (). Abduction and

induction in artificial intelligence. Proceedings of IJCAI

workshop.

Reggia, J. (). Diagnostic experts systems based on a set-covering

model. International Journal of Man-Machine Studies, (),

–.

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S.

(). Application of abductive ILP to learning metabolic net-

work inhibition from temporal data.Machine Learning, (–),

–.

Tamaddoni-Nezhad, A., Kakas, A., Muggleton, S., & Pazos, F. ().

Modelling inhibition in metabolic pathways through abduction

and induction. In Proceedings of the th international con-

ference on inductive logic programming (pp. –). Berlin:

Springer.

Yamamoto, A. (). Which hypotheses can be found with

inverse entailment? In Proceedings of the seventh interna-

tional workshop on inductive logic programming. Lecture notes

in artificial intelligence (Vol. , pp. –). Berlin:

Springer.

Zupan, B., Bratko, I., Demsar, J., Juvan, P., Halter, J., Kuspa, A.,

et al. (). Genepath: A system for automated construction

of genetic networks from mutant data. Bioinformatics, (),

–.

Absolute Error Loss

7Mean Absolute Error

Accuracy

Definition
Accuracy refers to a measure of the degree to which the

predictions of a 7model match the reality being mod-
eled.�e term accuracy is o�en applied in the context

of 7classi�cation models. In this context, accuracy =
P(λ(X) = Y), where XY is a7joint distribution and the
classi�cation model λ is a function X → Y . Sometimes,

this quantity is expressed as a percentage rather than a

value between . and ..

�e accuracy of a model is o�en assessed or esti-

mated by applying it to test data for which the 7labels
(Y values) are known. �e accuracy of a classi�er on

test data may be calculated as number of correctly clas-

si�ed objects/total number of objects. Alternatively, a

smoothing functionmay be applied, such as a7Laplace
estimate or an7m-estimate.

 A ACO

Accuracy is directly related to7error rate, such that
accuracy = . − error rate (or when expressed as a per-

centage, accuracy = − error rate).

Cross References
7Confusion Matrix
7Resubstitution Accuracy

ACO

7Ant Colony Optimization

Actions

In a 7Markov decision process, actions are the avail-
able choices for the decision-maker at any given decision

epoch, in any given state.

Active Learning

David Cohn

Mountain View, CA, USA

Definition
�e term Active Learning is generally used to refer

to a learning problem or system where the learner

has some role in determining on what data it will be

trained. �is is in contrast to Passive Learning, where

the learner is simply presented with a 7training set
over which it has no control. Active learning is o�en

used in settingswhere obtaining7labeled data is expen-
sive or time-consuming; by sequentially identifying

which examples are most likely to be useful, an active

learner can sometimes achieve good performance,

using far less 7training data than would otherwise be
required.

Structure of Learning System
In many machine learning problems, the training data

are treated as a �xed and given part of the prob-

lem de�nition. In practice, however, the training data

are o�en not �xed beforehand. Rather, the learner

has an opportunity to play a role in deciding what

data will be acquired for training.�is process is usu-

ally referred to as “active learning,” recognizing that

the learner is an active participant in the training

process.

�e typical goal in active learning is to select train-

ing examples that best enable the learner to minimize

its loss on future test cases. �ere are many theo-

retical and practical results demonstrating that, when

applied properly, active learning can greatly reduce the

number of training examples, and even the compu-

tational e�ort required for a learner to achieve good

generalization.

A toy example that is o�en used to illustrate the

utility of active learning is that of learning a thresh-

old function over a one-dimensional interval. Given

+/− labels forN points drawn uniformly over the inter-
val, the expected error between the true value of the

threshold and any learner’s best guess is bounded by

O(/N). Given the opportunity to sequentially select
the position of points to be labeled, however, a learner

can pursue a binary search strategy, obtaining a best

guess that is within O(/N) of the true threshold
value.

�is toy example illustrates the sequential nature of

example selection that is a component of most (but not

all) active learning strategies: the learner makes use of

initial information to discard parts of the solution space,

and to focus future data acquisition on distinguishing

parts that are still viable.

Related Problems
�e term “active learning” is usually applied in super-

vised learning settings, though there are many related

problems in other branches of machine learning and

beyond. �e “exploration” component of the “explo-

ration/exploitation” strategy in reinforcement learning

is one such example. �e learner must take actions

to gain information, and must decide what actions

will give him/her the information that will best min-

imize future loss. A number of �elds of Operations

Research predate and parallel machine learning work

on active learning, including Decision�eory (North,

), Value of Information Computation, Bandit prob-

lems (Robbins,), and Optimal Experiment Design

(Fedorov, ; Box & Draper,).

Active Learning A

AActive Learning Scenarios
When active learning is used for classi�cation or regres-

sion, there are three common settings: constructive

active learning, pool-based active learning, and stream-

based active learning (also called selective sampling).

Constructive Active Learning

In constructive active learning, the learner is allowed

to propose arbitrary points in the input space as exam-

ples to be labeled. While this in theory gives the learner

the most power to explore, it is o�en not practical.

One obstacle is the observation that most learning sys-

tems train on only a reduced representation of the

instances they are presentedwith: text classi�ers on bags

of words (rather than fully-structured text) and speech

recognizers on formants (rather than raw audio).While

a learning system may be able to identify what pat-

tern of formants would be most informative to label,

there is no reliable way to generate audio that a human

could recognize (and label) from the desired formants

alone.

Pool-Based Active Learning

Pool-based active learning (McCallum & Nigam,)

is popular in domains such as text classi�cation and

speech recognition where unlabeled data are plentiful

and cheap, but labels are expensive and slow to acquire.

In pool-based active learning, the learner may not pro-

pose arbitrary points to label, but instead has access to a

set of unlabeled examples, and is allowed to select which

of them to request labels for.

A special case of pool-based learning is transductive

active learning, where the test distribution is exactly the

set of unlabeled examples.�e goal then is to sequen-

tially select and label a small number of examples that

will best allow predicting the labels of those points that

remain unlabeled.

A theme that is common to both constructive and

pool-based active learning is the principle of sequen-

tial experimentation. Information gained from early

queries allows the learner to focus its search on portions

of the domain that are most likely to give it additional

information on subsequent queries.

Stream-Based Active Learning

Stream-based active learning resembles pool-based

learning in many ways, except that the learner only has

access to the unlabeled instances as a stream; when an

instance arrives, the learner must decide whether to ask

for its label or let it go.

Other Forms of Active Learning

By virtue of the broad de�nition of active learning, there

is no real limit on the possible settings for framing it.

Angluin’s early work on learning regular sets (Angluin,

) employed a “counterexample” oracle: the learner

would propose a solution, and the oracle would either

declare it correct, or divulge a counterexample – an

instance on which the proposed and true solutions dis-

agreed. Jin and Si () describe a Bayesian method

for selecting informative items to recommend when

learning a collaborative �ltering model, and Steck and

Jaakkola () describe a method best described as

unsupervised active learning to build Bayesian networks

in large domains.

While most active learning work assumes that the

cost of obtaining a label is independent of the instance

to be labeled, there are many scenarios where this is not

the case. A mobile robot taking surface measurements

must �rst travel to the point it wishes to sample, mak-

ing distant points more expensive than nearby ones.

In some cases, the cost of a query (e.g., the di�culty

of traveling to a remote point to sample it) may not

even be known until it is made, requiring the learner

to learn a model of that as well. In these situations,

the sequential nature of active learning is greatly accen-

tuated, and a learner faces the additional challenges

of planning under uncertainty (see “Greedy vs. Batch

Active Learning,” below).

Common Active Learning Strategies
. Version space partitioning. �e earliest practical

active learning work (Ru� & Dietterich, ;

Mitchell,) explicitly relied on 7version space
partitioning. �ese approaches tried to select

examples on which there was maximal disagree-

ment between hypotheses in the current version

space. When such examples were labeled, they

would invalidate as large a portion of the version

space as possible. A limitation of explicit version

space approaches is that, in underconstrained

domains, a learner may waste its e�ort di�erenti-

ating portions of the version space that have little

 A Active Learning

e�ect on the classi�er’s predictions, and thus on its

error.

. Query by Committee (Seung, Opper, & Sompolin-

sky). In query by committee, the experimenter

trains an ensemble of models, either by selecting

randomized starting points (e.g., in the case of a

neural network) or by bootstrapping the training

set. Candidate examples are scored based on dis-

agreement among the ensemble models – examples

with high disagreement indicate areas in the sam-

ple space that are underdetermined by the train-

ing data, and therefore potentially valuable to label.

Models in the ensemble may be looked at as sam-

ples from the version space; picking exampleswhere

these models disagree is a way of splitting the ver-

sion space.

. Uncertainty sampling (Lewis & Gail,). Uncer-

tainty sampling is a heuristic form of statistical

active learning. Rather than sampling di�erent

points in the version space by training multiple

learners, the learner itself maintains an explicit

model of uncertainty over its input space. It then

selects for labeling those examples on which it

is least con�dent. In classi�cation and regres-

sion problems, uncertainty contributes directly to

expected loss (as the variance component of the

“error = bias + variance” decomposition), so that

gathering examples where the learner has greatest

uncertainty is o�en an e�ective loss-minimization

heuristic. �is approach has also been found

e�ective for non-probabilistic models, by simply

selecting examples that lie near the current deci-

sion boundary. For some learners, such as support

vector machines, this heuristic can be shown to be

an approximate partitioning of the learner’s version

space (Tong & Koller,).

. Loss minimization (Cohn, Ghahramani, & Jordan,

). Uncertainty sampling can stumble when

parts of the learner’s domain are inherently noisy.

It may be that, regardless of the number of

samples labeled in some neighborhood, it will

remain impossible to accurately predict these. In

these cases, it would be desirable to not only

model the learner’s uncertainty over arbitrary

parts of its domain, but also to model what

e�ect labeling any future example is expected

to have on that uncertainty. For some learning

algorithms it is feasible to explicitly compute

such estimates (e.g., for locally-weighted regres-

sion and mixture models, these estimates may

be computed in closed form). It is, therefore,

practical to select examples that directly minimize

the expected loss to the learner, as discussed below

under “Statistical Active Learning.”

Statistical Active Learning
Uncertainty sampling and direct loss minimization are

two examples of statistical active learning. Both rely on

the learner’s ability to statistically model its own uncer-

tainty. When learning with a statistical model, such as

a linear regressor or a mixture of Gaussians (Dasgupta,

), the objective is usually to �nd model parameters

that minimize some form of expected loss. When active

learning is applied to such models, it is natural to also

select training data so as to minimize that same objec-

tive. As statistical models usually give us estimates on

the probability of (as yet) unknown values, it is o�en

straightforward to turn this machinery upon itself to

assist in the active learning process (Cohn et al.,).

�e process is usually as follows:

. Begin by requesting labels for a small random sub-

sample of the examples x, x, K, xnx and �t our

model to the labeled data.

. For any x in our domain, a statistical model lets us

estimate both the conditional expectation ŷ(x) and
σ
ŷ(x), the variance of that expectation. We estimate

our current loss by drawing a new randomsample of

unlabeled data, and computing the averaged σ
ŷ(x).

. We now consider a candidate point x̃, and ask what

reduction in loss we would obtain if we had labeled

it ỹ. If we knew its label with certainty, we could sim-

ply add the point to the training set, retrain, and

compute the new expected loss. While we do not

know the true ỹ, we could, in theory, compute the

new expected loss for every possible ỹ and average

those losses, weighting them by our model’s esti-

mate of p(ỹ∣x̃). In practice, this is normally unfea-
sible; however, for some statistical models, such as

locally-weighted regression and mixtures of Gaus-

sians, we can compute the distribution of p(ỹ∣x̃) and
its e�ect on σ

ŷ(x) in closed form (Cohn et al.,).

Active Learning A

A. Given the ability to estimate the expected e�ect of

obtaining label ỹ for candidate x̃, we repeat this

computation for a sample ofMcandidates, and then

request a label for the candidate with the largest

expected decrease in loss.We add the newly-labeled

example to our training set, retrain, and begin look-

ing at candidate points to add on the next iteration.

The Need for Reference Distributions
Step () above illustrates a complication that is unique to

active learning approaches. Traditional “passive” learn-

ing usually relies on the assumption that the distribu-

tion over which the learner will be tested is the same as

the one fromwhich the training datawere drawn.When

the learner is allowed to select its own training data, it

still needs some formof access to the distribution of data

onwhich it will be tested. A pool-based or stream-based

learner can use the pool or streamas a proxy for that dis-

tribution, but if the learner is allowed (or required) to

construct its own examples, it risks wasting all its e�ort

on resolving portions of the solution space that are of

no interest to the problem at hand.

A Detailed Example: Statistical Active
Learning with LOESS
LOESS (Cleveland, Devlin, & Gross,) is a sim-

ple form of locally-weighted regression using a kernel

function. When asked to predict the unknown output

y corresponding to a given input x, LOESS computes a

7linear regression over known (x, y) pairs, in which it
gives pair (xi, yi) weight according to the proximity of xi
to x. We will write this weighting as a kernel function,

K(xi, x), or simplify it to ki when there is no chance of
confusion.

In the active learning setting, we will assume that

we have a large supply of unlabeled examples drawn

from the test distribution, along with labels for a small

number of them. We wish to label a small num-

ber more so as to minimize the mean squared error

(MSE) of our model. MSE can be decomposed into

two terms: squared 7bias and variance. If we make the
(inaccurate but simplifying) assumption that LOESS

is approximately unbiased for the problem at hand,

minimizingMSE reduces to minimizing the variance of

our estimates.

Given n labeled pairs, and a prediction to make

for input x, LOESS computes the following covariance

statistics around x:

µx =
∑i kixi

n
, σ x =

∑i ki (xi − µx)

n
,

σxy =
∑i ki (xi − µx) (yi − µy)

n

µy =
∑i kiyi

n
, σ y =

∑i ki (yi − µy)

n
,

σ y∣x = σ y −
σxy

σ x

We can combine these to express the conditional

expectation of y (our estimate) and its variance as:

ŷ = µy +
σxy

σ x
(x − µx),

σ ŷ =
σ
y∣x

n
(∑

i

ki +
(x − µx)

σ x
∑
i

ki
(xi − µx)

σ x
) .

Our proxy for model error is the variance of our pre-

diction, integrated over the test distribution ⟨σ ŷ ⟩. As we
have assumed a pool-based setting in which we have a

large number of unlabeled examples from that distribu-

tion, we can simply compute the above variance over a

sample from the pool, and use the resulting average as

our estimate.

To perform statistical active learning, we want to

compute how our estimated variance will change if

we add an (as yet unknown) label ỹ for an arbitrary x̃.

We will write this new expected variance as ⟨σ̃ ŷ ⟩. While
we do not know what value ỹ will take, our model gives

us an estimated mean ŷ(x̃) and variance σ
ŷ(x̃) for the

value, as above. We can add this “distributed” y value

to LOESS just as though it were a discrete one, and

compute the resulting expectation ⟨σ̃ ŷ ⟩ in closed form.
De�ning k̃ as K(x̃, x), we write:

⟨σ̃ ŷ ⟩ =
⟨σ̃

y∣x⟩
(n + k̃)

(∑
i

ki + k̃ + (x − µ̃x)
σ̃ x

× (∑
i

ki
(xi − µ̃x)

σ̃ x
+ k̃

(x̃ − µ̃x)
σ̃ x

)) ,

 A Active Learning Theory

where the component expectations are computed as

follows:

⟨σ̃ y∣x⟩ = ⟨σ̃ y ⟩ −
⟨σ̃ xy⟩

σ̃ x
,

⟨σ̃ y ⟩ =
nσ y

n + k̃
+
nk̃(σ

y∣x̃ + (ŷ(x̃) − µy))
(n + k̃)

,

µ̃x =
nµx + k̃x̃

n + k̃
,

⟨σ̃xy⟩ =
nσxy

n + k̃
+
nk̃(x̃ − µx)(ŷ(x̃) − µy)

(n + k̃)
,

σ̃ x =
nσ x

n + k̃
+ nk̃(x̃ − µx)

(n + k̃)
,

⟨σ̃ xy⟩ = ⟨σ̃xy⟩
 +

nk̃σ
y∣x̃(x̃ − µx)

(n + k̃)
.

Greedy Versus Batch Active Learning
It is also worth pointing out that virtually all active

learning work relies on greedy strategies – the learner

estimates what single example best achieves its objec-

tive, requests that one, retrains, and repeats. In theory,

it is possible to plan some number of queries ahead,

asking what point is best to label now, given that N-

more labeling opportunities remain. While such strate-

gies have been explored inOperations Research for very

small problem domains, their computational require-

ments make this approach unfeasible for problems of

the size typically encountered in machine learning.

�ere are cases where retraining the learner a�er

every new label would be prohibitively expensive, or

where access to labels is limited by the number of iter-

ations as well as by the total number of labels (e.g.,

for a �nite number of clinical trials). In this case, the

learner may select a set of examples to be labeled on

each iteration. �is batch approach, however, is only

useful if the learner is able to identify a set of exam-

ples whose expected contributions are non-redundant,

which substantially complicates the process.

Cross References
7Active Learning�eory

Recommended Reading
Angluin, D. (). Learning regular sets from queries and coun-

terexamples. Information and Computation, (), –.

Angluin, D. (). Queries and concept learning.Machine Learning,

, –.

Box, G. E. P., & Draper, N. (). Empirical model-building and

response surfaces. New York: Wiley.

Cleveland, W., Devlin, S., & Gross, E. (). Regression by local

fitting. Journal of Econometrics, , –.

Cohn, D., Atlas, L., & Ladner, R. (). Training connectionist

networks with queries and selective sampling. In D. Touretzky

(Ed.)., Advances in neural information processing systems. Mor-

gan Kaufmann.

Cohn, D., Ghahramani, Z., & Jordan, M. I. (). Active

learning with statistical models. Journal of Artificial Intel-

ligence Research, , –. http://citeseer.ist.psu.edu/

.html

Dasgupta, S. (). Learning mixtures of Gaussians. Foundations of

Computer Science, –.

Fedorov, V. (). Theory of optimal experiments. New York:

Academic Press.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (). On the learnabil-

ity of Boolean formulae, Proceedings of the th annual ACM

conference on theory of computing (pp. –). New York:

ACM Press.

Lewis, D. D., & Gail, W. A. (). A sequential algorithm for training

text classifiers. Proceedings of the th annual international ACM

SIGIR conference (pp. –). Dublin.

McCallum, A., & Nigam, K. (). Employing EM and pool-based

active learning for text classification. In Machine learning:

Proceedings of the fifteenth international conference (ICML’)

(pp. –).

North, D. W. (). A tutorial introduction to decision theory. IEEE

Transactions Systems Science and Cybernetics, ().

Pitt, L., & Valiant, L. G. (). Computational limitations on learn-

ing from examples. Journal of the ACM (JACM), (), –.

Robbins, H. (). Some aspects of the sequential design of exper-

iments. Bulletin of the American Mathematical Society, ,

–.

Ruff, R., & Dietterich, T. (). What good are experiments? Pro-

ceedings of the sixth international workshop on machine learning.

Ithaca, NY.

Seung, H. S., Opper, M., & Sompolinsky, H. (). Query by

committee. In Proceedings of the fifth workshop on computa-

tional learning theory (pp. –). San Mateo, CA: Morgan

Kaufmann.

Steck, H., & Jaakkola, T. (). Unsupervised active

learning in large domains. In Proceeding of the con-

ference on uncertainty in AI. http://citeseer.ist.psu.edu/

steckunsupervised.html

Active Learning Theory

Sanjoy Dasgupta

University of California, San Diego, La Jolla, CA, USA

Definition
�e term active learning applies to a wide range of situ-

ations in which a learner is able to exert some control

over its source of data. For instance, when �tting a

http://citeseer.ist.psu.edu/321503.html
http://citeseer.ist.psu.edu/steck��unsupervised.html

Active Learning Theory A

Aregression function, the learner may itself supply a set

of data points at which to measure response values, in

the hope of reducing the variance of its estimate. Such

problems have been studied formany decades under the

rubric of experimental design (Cherno�, ; Fedorov,

). More recently, there has been substantial interest

within the machine learning community in the spe-

ci�c task of actively learning binary classi�ers.�is task

presents several fundamental statistical and algorithmic

challenges, and an understanding of its mathematical

underpinnings is only gradually emerging. �is brief

survey will describe some of the progress that has been

made so far.

Learning from Labeled and Unlabeled Data
In the machine learning literature, the task of learning

a classi�er has traditionally been studied in the frame-

work of supervised learning.�is paradigm assumes that

there is a training set consisting of data points x (from

some set X) and their labels y (from some set Y), and
the goal is to learn a function f : X → Y that will
accurately predict the labels of data points arising in the

future. Over the past years, tremendous progress has

beenmade in resolvingmany of the basic questions sur-

rounding thismodel, such as “howmany training points

are needed to learn an accurate classi�er?”

Although this framework is now fairly well under-

stood, it is a poor �t for many modern learning tasks

because of its assumption that all training points auto-

matically come labeled. In practice, it is frequently the

case that the raw, abundant, easily obtained form of data

is unlabeled, whereas labels must be explicitly procured

and are expensive. In such situations, the reality is that

the learner starts with a large pool of unlabeled points

and must then strategically decide which ones it wants

labeled: how best to spend its limited budget.

Example: Speech recognition. When building a speech

recognizer, the unlabeled training data consists of raw

speech samples, which are very easy to collect: just walk

around with a microphone. For all practical purposes,

an unlimited quantity of such samples can be obtained.

On the other hand, the “label” for each speech sam-

ple is a segmentation into its constituent phonemes,

and producing even one such label requires substan-

tial human time and attention. Over the past decades,

research labs and the government have expended an

enormous amount of money, time, and e�ort on creat-

ing labeled datasets of English speech.�is investment

has paid o�, but our ambitions are inevitably moving

past what these datasets can provide: wewould now like,

for instance, to create recognizers for other languages,

or for English in speci�c contexts. Is there some way to

avoid more painstaking years of data labeling, to some-

how leverage the easy availability of raw speech so as to

signi�cantly reduce the number of labels needed?�is

is the hope of active learning.

Some early results on active learning were in the

membership querymodel, where the data is assumed to

be separable (that is, some hypothesis h perfectly classi-

�es all points) and the learner is allowed to query the

label of any point in the input space X (rather than
being constrained to a prespeci�ed unlabeled set), with

the goal of eventually returning the perfect hypothe-

sis h∗. �ere is a signi�cant body of beautiful theo-

retical work in this model (Angluin,), but early

experiments ran into some telling di�culties. One study

(Baum& Lang,) found that when training a neural

network for handwritten digit recognition, the queries

synthesized by the learner were such bizarre and unnat-

ural images that they were impossible for a human to

classify. In such contexts, the membership query model

is of limited practical value; nonetheless, many of the

insights obtained from this model carry over to other

settings (Hanneke, a).

We will �x as our standard model one in which the

learner is given a source of unlabeled data, rather than

being able to generate these points himself. Each point

has an associated label, but the label is initially hidden,

and there is a cost for revealing it.�e hope is that an

accurate classi�er can be found by querying just a few

labels, much fewer than would be required by regular

supervised learning.

How can the learner decide which labels to probe?

One option is to select the query points at random, but

it is not hard to show that this yields the same label

complexity as supervised learning. A better idea is to

choose the query points adaptively: for instance, start

by querying some random data points to get a rough

sense of where the decision boundary lies, and then

gradually re�ne the estimate of the boundary by specif-

ically querying points in its immediate vicinity. In other

 A Active Learning Theory

words, ask for the labels of data points whose par-

ticular positioning makes them especially informative.

Such strategies certainly sound good, but can they be

�eshed out into practical algorithms?And if so, do these

algorithms work well in the sense of producing good

classi�ers with fewer labels than would be required by

supervised learning?

On account of the enormous practical importance of

active learning, there are a wide range of algorithms and

techniques already available, most of which resemble

the aggressive, adaptive sampling strategy just outlined,

andmany of which show promise in experimental stud-

ies. However, a big problem with this kind of sampling

is that very quickly the set of labeled points no longer

re�ects the underlying data distribution. �is makes

it hard to show that the classi�ers learned have good

statistical properties (for instance, that they converge

to an optimal classi�er in the limit of in�nitely many

labels).�is survey will only discuss methods that have

proofs of statistical well-foundedness, and whose label

complexity can be explicitly analyzed.

Motivating Examples
Wewill start by looking at a few examples that illustrate

the enormous potential of active learning and that also

make it clear why analyses of this new model require

concepts and intuitions that are fundamentally di�er-

ent from those that have already been developed for

supervised learning.

Example: Thresholds on the Line

Suppose the data lie on the real line, and the available

classi�ers are simple thresholding functions,H = {hw :
w ∈ R}:

hw(x) =
⎧⎪⎪⎨⎪⎪⎩

+ if x ≥ w

− if x < w

Tomake things precise, let us denote the (unknown)

underlying distribution on the data (X,Y) ∈ R ×
{+,−} byP, and let us suppose that we want a hypoth-
esis h ∈ H whose error with respect to P, namely
errP(h) = P(h(X) ≠ Y), is at most some є. How many
labels do we need?

In supervised learning, such issues are well under-

stood. �e standard machinery of sample complexity

(using VC theory) tells us that if the data are separa-

ble – that is, if they can be perfectly classi�ed by some

hypothesis inH – then we need approximately /є ran-
dom labeled examples fromP, and it is enough to return
any classi�er consistent with them.

Now suppose we instead draw /є unlabeled sam-

ples from P. If we lay these points down on the line,
their hidden labels are a sequence of −s followed by a
sequence of +s, and the goal is to discover the point
w at which the transition occurs. �is can be accom-

plished with a simple binary search which asks for just

log /є labels: �rst ask for the label of the median point;
if it is +, move to the th percentile point, otherwise
move to the th percentile point; and so on.�us, for

this hypothesis class, active learning gives an exponen-

tial improvement in the number of labels needed, from

/є to just log /є. For instance, if supervised learning
requires a million labels, active learning requires just

log ,, ≈ , literally!
It is a tantalizing possibility that even for more

complicated hypothesis classes H, a sort of general-
ized binary search is possible. A natural next step is to

consider linear separators in two dimensions.

Example: Linear Separators in R

Let H be the hypothesis class of linear separators in
R, and suppose the data is distributed according to
some density supported on the perimeter of the unit

circle. It turns out that the positive results of the one-

dimensional case do not generalize: there are some tar-

get hypotheses inH for which Ω(/є) labels are needed
to �nd a classi�er with error rate less than є, no matter

what active learning scheme is used.

To see this, consider the following possible target

hypotheses (Fig.):

● h: all points are positive.

● hi (≤ i ≤ /є): all points are positive except for a
small slice Bi of probability mass є.

�e slices Bi are explicitly chosen to be disjoint, with

the result that Ω(/є) labels are needed to distinguish
between these hypotheses. For instance, suppose nature

chooses a target hypothesis at random from among the

hi, ≤ i ≤ /є.�en, to identify this target with probabil-
ity at least /, it is necessary to query points in at least
(about) half the Bis.

Active Learning Theory A

A

Active Learning Theory. Figure . P is supported on the

circumference of a circle. Each Bi is an arc of probability

mass є

�us for these particular target hypotheses, active

learning o�ers little improvement in sample com-

plexity over regular supervised learning. What about

other target hypotheses in H, for instance those in
which the positive and negative regions are more

evenly balanced? It is quite easy (Dasgupta,)

to devise an active learning scheme which asks for

O(min{/i(h), /є}) + O(log /є) labels, where i(h) =
min{positive mass of h, negative mass of h}.�us even
within this simple hypothesis class, the label complexity

can run anywhere from O(log /є) to Ω(/є), depend-
ing on the speci�c target hypothesis!

Example: An Overabundance of Unlabeled Data

In our two previous examples, the amount of unlabeled

data needed was O(/є), exactly the usual sample com-
plexity of supervised learning. But it is sometimes help-

ful to have signi�cantly more unlabeled data than this.

In Dasgupta (), a distribution P is described for
which if the amount of unlabeled data is small (below

any prespeci�ed threshold), then the number of labels

needed to learn the target linear separator is Ω(/є);
whereas if the amount of unlabeled data is much larger,

then onlyO(log /є) labels are needed.�is is a situation
where most of the data distribution is fairly uninfor-

mative while a miniscule fraction is highly informative.

A lot of unlabeled data is needed in order to get even a

few of the informative points.

The Sample Complexity of Active Learning
Wewill think of the unlabeled points x, . . . , xn as being

drawn i.i.d. from an underlying distribution PX on X
(namely, the marginal of the distribution P on X × Y),
either all at once (a pool) or one at a time (a stream).

�e learner is only allowed to query the labels of points

in the pool/stream; that is, it is restricted to “natu-

rally occurring” data points rather than synthetic ones

(Fig.). It returns a hypothesis h ∈ H whose quality is
measured by its error rate, errP(h).
In regular supervised learning, it is well known that

if the VC dimension ofH is d, then the number of labels
that will with high probability ensure errP(h) ≤ є is

roughly O(d/є) if the data is separable and O(d/є)
otherwise (Haussler,); various logarithmic terms

are omitted here. For active learning, it is clear from

the examples above that the VC dimension alone does

not adequately characterize label complexity. Is there a

di�erent combinatorial parameter that does?

Generic Results for Separable Data

For separable data, it is possible to give upper and lower

bounds on label complexity in terms of a special param-

eter known as the splitting index (Dasgupta,).�is

is merely an existence result: the algorithm needed to

realize the upper bound is intractable because it involves

explicitly maintaining an є-cover (a coarse approxima-

tion) of the hypothesis class, and the size of this cover

is in general exponential in the VC dimension. Nev-

ertheless, it does give us an idea of the kinds of label

complexity we can hope to achieve.

Example. Suppose the hypothesis class consists of inter-

vals on the real line: X = R and H = {ha,b : a, b ∈ R},
where ha,b(x) = (a ≤ x ≤ b). Using the splitting
index, the label complexity of active learning is seen to

be Θ̃(min{/PX([a, b]), /є} + log /є) when the target
hypothesis is ha,b (Dasgupta,).Here the Θ̃ notation

is used to suppress logarithmic terms.

Example. SupposeX = Rd andH consists of linear sep-
arators through the origin. If PX is the uniform distri-

bution on the unit sphere, the number of labels needed

to learn a hypothesis of error ≤ є is just Θ̃(d log /є),
exponentially smaller than the Õ(d/є) label complex-
ity of supervised learning. If PX is not the uniform

distribution but is everywhere within a multiplicative

 A Active Learning Theory

Pool-based active learning

Get a set of unlabeled points U ⊂ X
Repeat until satisfied:
Pick some x ∈ U to label

Return a hypothesis h ∈H

Stream-based active learning

Repeat for t = , , , . . .:
Choose a hypothesis ht ∈H
Receive an unlabeled point x ∈ X
Decide whether to query its label

Active Learning Theory. Figure . Models of pool- and stream-based active learning. The data are draws from an under-

lying distribution PX , and hypotheses h are evaluated by errP(h). If we want to get this error below є, how many labels

are needed, as a function of є?

factor λ > of it, then the label complexity becomes
Õ((d log /є) log λ), provided the amount of unlabeled
data is increased by a factor of λ (Dasgupta,).

�ese results are very encouraging, but the question

of an e�cient active learning algorithm remains open.

We now consider two approaches.

Mildly Selective Sampling

�e label complexity results mentioned above are based

on querying maximally informative points. A less

aggressive strategy is to be mildly selective, to query all

points except those that are quite clearly uninformative.

�is is the idea behind one of the earliest generic active

learning schemes (Cohn, Atlas, & Ladner,). Data

points x, x, . . . arrive in a stream, and for each one the

learner makes a spot decision about whether or not to

request a label. When xt arrives, the learner behaves as

follows.

● Determine whether both possible labelings, (xt ,+)
and (xt ,−), are consistent with the labeled examples
seen so far.

● If so, ask for the label yt . Otherwise set yt to be the

unique consistent label.

Fortunately, the check required for the �rst step can be

performed e�ciently by making two calls to a super-

vised learner. �us this is a very simple and elegant

active learning scheme, although as one might expect,

it is suboptimal in its label complexity (Balcan et al.,

). Interestingly, there is a parameter called the dis-

agreement coe�cient that characterizes the label com-

plexity of this scheme and also of some other mildly

selective learners (Friedman, ; Hanneke, b).

In practice, the biggest limitation of the algorithm

above is that it assumes the data are separable. Recent

results have shown how to remove this assumption

(Balcan, Beygelzimer,&Langford, ;Dasgupta et al.,

) and to accommodate classi�cation loss functions

other than − loss (Beygelzimer et al.,). Variants
of the disagreement coe�cient continue to character-

ize label complexity in the agnostic setting (Beygelzimer

et al., ; Dasgupta et al.,).

A Bayesian Model

�e query by committee algorithm (Seung, Opper, &

Sompolinsky,) is based on a Bayesian view of active

learning.�e learner starts with a prior distribution on

the hypothesis space, and is then exposed to a stream of

unlabeled data. Upon receiving xt , the learner performs

the following steps.

● Draw two hypotheses h,h′ at random from the pos-

terior overH.
● If h(xt) ≠ h′(xt) then ask for the label of xt and
update the posterior accordingly.

�is algorithm queries points that substantially shrink

the posterior, while at the same time taking account

of the data distribution. Various theoretical guaran-

tees have been shown for it (Freund, Seung, Shamir, &

Tishby,); in particular, in the case of linear separa-

tors with a uniform data distribution, it achieves a label

complexity of O(d log /є), the best possible.
Sampling from the posterior over the hypothesis

class is, in general, computationally prohibitive. How-

ever, for linear separators with a uniform prior, it can be

implemented e�ciently using random walks on convex

bodies (Gilad-Bachrach, Navot, & Tishby,).

Adaboost A

AOther Work

In this survey, I have touched mostly on active learning

results of the greatest generality, those that apply to arbi-

trary hypothesis classes.�ere is also a signi�cant body

of more specialized results.

● E�cient active learning algorithms for speci�c

hypothesis classes.

�is includes an online learning algorithm for lin-

ear separators that only queries some of the points

and yet achieves similar regret bounds to algo-

rithms that query all the points (Cesa-Bianchi,

Gentile, & Zaniboni,).�e label complexity of

this method is yet to be characterized.

● Algorithms and label bounds for linear separators

under the uniform data distribution.

�is particular setting has been amenable to mathe-

matical analysis. For separable data, it turns out that a

variantof theperceptronalgorithmachieves theopti-

malO(d log /є) labelcomplexity(Dasgupta,Kalai,&
Monteleoni,).Asimplealgorithmisalsoavailable

for the agnostic setting (Balcan et al.,).

Conclusion
�e theoretical frontier of active learning is mostly an

unexplored wilderness. Except for a few speci�c cases,

we donot have a clear sense of howmuch active learning

can reduce label complexity: whether by just a constant

factor, or polynomially, or exponentially. �e funda-

mental statistical and algorithmic challenges involved,

together with the huge practical importance of the �eld,

make active learning a particularly rewarding terrain for

investigation.

Cross References
7Active Learning

Recommended Reading
Angluin, D. (). Queries revisited. In Proceedings of the th

international conference on algorithmic learning theory (pp.

–).

Balcan, M.-F., Beygelzimer, A., & Langford, J. (). Agnostic

active learning. In International Conference on Machine Learn-

ing (pp. –). New York: ACM Press.

Balcan, M.-F., Broder, A., & Zhang, T. (). Margin based active

learning. In Conference on Learning Theory. pp. –.

Baum, E. B., & Lang, K. (). Query learning can work poorly

when a human oracle is used. In International Joint Conference

on Neural Networks.

Beygelzimer, A., Dasgupta, S., & Langford, J. (). Impor-

tance weighted active learning. In International Conference on

Machine Learning (pp. –). New York: ACM Press.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (). Worst-case

analysis of selective sampling for linear-threshold algorithms.

Advances in Neural Information Processing Systems.

Chernoff, H. (). Sequential analysis and optimal design. In

CBMS-NSF Regional Conference Series in Applied Mathema-

tics . SIAM.

Cohn, D., Atlas, L., & Ladner, R. (). Improving generalization

with active learning. Machine Learning, (),–.

Dasgupta, S. (). Coarse sample complexity bounds for active

learning. Advances in Neural Information Processing Systems.

Dasgupta, S., Kalai, A., & Monteleoni, C. (). Analysis of

perceptron-based active learning. In th Annual Conference on

Learning Theory. pp. –.

Dasgupta, S., Hsu, D. J., & Monteleoni, C. (). A general agnos-

tic active learning algorithm. Advances in Neural Information

Processing Systems.

Fedorov, V. V. (). Theory of optimal experiments. (W. J. Studden

& E. M. Klimko, Trans.). New York: Academic Press.

Freund, Y., Seung, S., Shamir, E., & Tishby, N. (). Selective

sampling using the query by committee algorithm. Machine

Learning Journal, ,–.

Friedman, E. (). Active learning for smooth problems. In Con-

ference on Learning Theory. pp. –.

Gilad-Bachrach, R., Navot, A., & Tishby, N. (). Query by com-

mitteee made real. Advances in Neural Information Processing

Systems.

Hanneke, S. (a). Teaching dimension and the complexity

of active learning. In Conference on Learning Theory. pp.

–.

Hanneke, S. (b). A bound on the label complexity of agnos-

tic active learning. In International Conference on Machine

Learning. pp. –.

Haussler, D. (). Decision-theoretic generalizations of the PAC

model for neural net and other learning applications. Informa-

tion and Computation, (),–.

Seung, H. S., Opper, M., & Sompolinsky, H. (). Query by

committee. In Conference on Computational Learning Theory,

pp. –.

Adaboost

Adaboost is an 7ensemble learning technique, and the
most well-known of the 7Boosting family of algo-
rithms.�e algorithm trains models sequentially, with

a new model trained at each round. At the end of each

round, mis-classi�ed examples are identi�ed and have

their emphasis increased in a new training set which is

then fed back into the start of the next round, and a new

model is trained. �e idea is that subsequent models

 A Adaptive Control Processes

should be able to compensate for errors made by earlier

models. See7ensemble learning for full details.

Adaptive Control Processes

7Bayesian Reinforcement Learning

Adaptive Real-Time Dynamic
Programming

Andrew G. Barto

University of Massachusetts, Amherst, MA, USA

Synonyms
ARTDP

Definition
Adaptive Real-Time Dynamic Programming (ARTDP)

is an algorithm that allows an agent to improve its

behavior while interacting over time with an incom-

pletely known dynamic environment. It can also be

viewed as a heuristic search algorithm for �nding short-

est paths in incompletely known stochastic domains.

ARTDP is based on 7Dynamic Programming (DP),
but unlike conventional DP, which consists of o�-line

algorithms, ARTDP is an on-line algorithm because it

uses agent behavior to guide its computation. ARTDP

is adaptive because it does not need a complete

and accurate model of the environment but learns a

model from data collected during agent-environment

interaction. When a good model is available, 7Real-
Time Dynamic Programming (RTDP) is applica-

ble, which is ARTDP without the model-learning

component.

Motivation and Background
RTDP combines strengths of heuristic search and DP.

Like heuristic search – and unlike conventional DP – it

does not have to evaluate the entire state space in order

to produce an optimal solution. Like DP – and unlike

most heuristic search algorithms – it is applicable to

nondeterministic problems. Additionally, RTDP’s per-

formance as an7anytime algorithm is better than con-
ventional DP and heuristic search algorithms. ARTDP

extends these strengths to problems for which a good

model is not initially available.

In arti�cial intelligence, control engineering, and

operations research, many problems require �nding a

policy (or control rule) that determines how an agent

(or controller) should generate actions in response to

the states of its environment (the controlled system).

When a “cost” or a “reward” is associated with each

step of the agent’s behavior, policies can be compared

according to howmuch cost or reward they are expected

to accumulate over time.

�e usual formulation for problems like this in the

discrete-time case is the 7Markov Decision Process
(MDP).�e objective is to �nd a policy that minimizes

(maximizes) a measure of the total cost (reward) over

time, assuming that the agent–environment interaction

can begin in any of the possible states. In other cases,

there is a designated set of “start states” that is much

smaller than the entire state set (e.g., the initial board

con�guration in a board game). In these cases, any given

policy only has to be de�ned for the set of states that

can be reached from the starting states when the agent

is using that policy.�e rest of the states will never arise

when that policy is being followed, so the policy does

not need to specify what the agent should do in those

states.

ARTDP and RTDP exploit situations where the set

of states reachable from the start states is a small subset

of the entire state space.�ey can dramatically reduce

the amount of computation needed to determine an

optimal policy for the relevant states as compared with

the amount of computation that a conventional DP

algorithmwould require to determine an optimal policy

for all the states.�ese algorithms do this by focussing

computation around simulated behavioral experiences

(if there is a model available capable of simulating these

experiences), or around real behavioral experiences (if

no model is available).

RTDP and ARTDP were introduced by Barto,

Bradtke, and Singh (). �e starting point was the

novel observation by Bradtke that Korf ’s Learning

Real-Time A* heuristic search algorithm (Korf,)

Adaptive Real-Time Dynamic Programming A

Ais closely related to DP. RTDP generalizes Learning

Real-Time A* to stochastic problems. ARTDP is also

closely related to Sutton’s Dyna system (Sutton,)

and Jalali and Ferguson’s () Transient DP.�eoreti-

cal analysis relies on the theory of Asnychronous DP as

described by Bertsekas and Tsitsiklis ().

ARTDP and RTDP are 7model-based reinforce-
ment learning algorithms, so called because they

take advantage of an environment model, unlike

7model-free reinforcement learning algorithms such as
7Q-Learning and7Sarsa.

Structure of Learning System
Backup Operations

A basic step of many DP and RL algorithms is a backup

operation. �is is an operation that updates a current

estimate of the cost of an MDP’s state. (We use the cost

formulation instead of reward to be consistent with the

original presentation of the algorithms. In the case of

rewards, this would be called the value of a state and

we would maximize instead of minimize.) Suppose X is

the set of MDP states. For each state x ∈ X, f (x), the
cost of state x, gives a measure (which varies with dif-

ferent MDP formulations) of the total cost the agent is

expected to incur over the future if it starts in x. If fk(x)
and fk+(x), respectively, denote the estimate of f (x)
before and a�er a backup, a typical backup operation

applied to x looks like this:

fk+(x) = mina∈A[cx(a) +∑
y∈X

pxy(a)fk(y)],

where A is the set of possible agent actions, cx(a) is the
immediate cost the agent incurs for performing action

a in state x, and pxy(a) is the probability that the envi-
ronment makes a transition from state x to state y as a

result of the agent’s action a.�is backup operation is

associated with theDP algorithm known as7value iter-
ation. It is also the backup operation used by RTDP and

ARTDP.

Conventional DP algorithms consist of successive

“sweeps” of the state set. Each sweep consists of applying

a backup operation to each state. Sweeps continue until

the algorithm converges to a solution. Asynchronous

DP, which underlies RTDP and ARTDP, does not use

systematic sweeps. States can be chosen in any way

whatsoever, and as long as backups continue to be

applied to all states (and some other conditions are sat-

is�ed), the algorithmwill converge. RTDP is an instance

of asynchronous DP in which the states chosen for

backups are determined by the agent’s behavior.

�e backup operation above ismodel-based because

it uses known rewards and transition probabilities, and

the values of all the states appear on the right-hand-side

of the equation. In contrast, a sample backup uses the

value of just one sample successor state. RTDP and

ARTDP are like RL algorithms in that they rely on

real or simulated behavioral experience, but unlike

many (but not all) RL algorithms, they use full backups

like DP.

Off-Line Versus On-Line

AconventionalDP algorithm typically executes o�-line.

When applied to �nding an optimal policy for an MDP,

this means that the DP algorithm executes to com-

pletion before its result (an optimal policy) is used to

control the agent’s behavior.�e sweeps of DP sequen-

tially “visit” the states of the MDP, performing a backup

operation on each state. But it is important not to con-

fuse these visits with the behaving agent’s visits to states:

the agent is not yet behaving while the o�-line DP com-

putation is being done. Hence, the agent’s behavior has

no in�uence on the DP computation.�e same is true

for o�-line asynchronous DP.

RTDP is an on-line, or “real-time,” algorithm. It is

an asynchronous DP computation that executes con-

currently with the agent’s behavior so that the agent’s

behavior can in�uence the DP computation. Further,

the concurrently executing DP computation can in�u-

ence the agent’s behavior. �e agent’s visits to states

directs the “visits” to states made by the concurrent

asynchronous DP computation. At the same time, the

action performed by the agent is the action speci�ed by

the policy corresponding to the latest results of the DP

computation: it is the “greedy” actionwith respect to the

current estimate of the cost function.

Asynchronous
Dynamic Programming

Computation
Behaving Agent

Specify
actions

Specify states
to backup

In the simplest version of RTDP, when a state is vis-

ited by the agent, the DP computation performs the

 A Adaptive Real-Time Dynamic Programming

model-based backup operation given above on that

same state. In general, for each step of the agent’s behav-

ior, RTDP can apply the backup operation to each of an

arbitrary set of states, provided that the agent’s current

state is included. For example, at each step of behavior,

a limited-horizon look-ahead search can be conducted

from the agent’s current state, with the backup opera-

tion applied to each of the states generated in the search.

Essentially, RTDP is an asynchronous DP computation

with the computational e�ort focused along simulated

or actual behavioral trajectories.

Learning A Model

ARTDP is the same as RTDP except that () an

environment model is updated using any on-line

model-learning, or system identi�cation, method, ()

the current environment model is used in performing

the RTDP backup operations, and () the agent has

to perform exploratory actions occasionally instead of

always greedy actions as in RTDP.�is last step is essen-

tial to ensure that the environment model eventually

converges to the correct model. If the state and action

sets are �nite, the simplest way to learn a model is to

keep counts of the number of times each transition

occurs for each action and convert these frequencies

to probabilities, thus forming the maximum-likelihood

model.

Summary of Theoretical Results

When RTDP and ARTDP are applied to stochastic opti-

mal path problems, one can prove that under certain

conditions they converge to optimal policies without

the need to apply backup operations to all the states.

Indeed, is some problems, only a small fraction of the

states need to be visited. A stochastic optimal path prob-

lem is an MDP with a nonempty set of start states and a

nonempty set of goal states. Each transition until a goal

state is reached has a nonnegative immediate cost, and

once the agent reaches a goal state, it stays there and

therea�er incurs zero cost. Each episode of agent expe-

rience begins with a start state. An optimal policy is one

that minimizes the cost of every state, i.e., minimizes

f (x) for all states x. Under some relatively mild condi-
tions, every optimal policy is guaranteed to eventually

reach a goal state.

A state x is relevant if a start state s and an opti-

mal policy exist such that x can be reached from s

when the agent uses that policy. If we could somehow

know which states are relevant, we could restrict DP to

just these states and obtain an optimal policy. But this

is not possible because knowing which states are rele-

vant requires knowledge of optimal policies, which is

what one is seeking. However, under certain conditions,

without requiring repeated visits to all the irrelevant

states, RTDP produces a policy that is optimal for all

the relevant states.�e conditions are that () the ini-

tial cost of every goal state is zero, () there exists at

least one policy that guarantees that a goal state will be

reached with probability one from any start state, () all

immediate costs for transitions from non-goal states are

strictly positive, and () none of the initial costs are

larger than the actual costs.�is result is proved inBarto

et al. () by combining aspects of Korf ’s () proof

for LRTA* with results for asynchronous DP.

Special Cases and Extensions

A number of special cases and extensions of RTDP have

been developed that improve performance over the

basic version. Some examples are as follows. Bonnet and

Ge�ner’s () Labeled RTDP labels states that have

already been “solved,” allowing faster convergence than

RTDP. Feng, Hansen, and Zilberstein () proposed

Symbolic RTDP, which selects a set of states to update

at each step using symbolicmodel-checking techniques.

�e RTDP convergence theorem still applies because

this is a special case of RTDP. Smith and Simmons

() developed Focused RTDP that maintains a pri-

ority value for each state to better direct search and

produce faster convergence. Hansen and Zilberstein’s

() LAO* uses some of the same ideas as RTDP to

produce a heuristic search algorithm that can �nd solu-

tions with loops to non-deterministic heuristic search

problems. Many other variants are possible. Extending

ARTDP instead of RTDP in all of these ways would pro-

duce analogous algorithms that could be used when a

good model is not available.

Cross References
7Anytime Algorithm
7Approximate Dynamic Programming
7Reinforcement Learning
7System Identi�cation

Adaptive Resonance Theory A

ARecommended Reading
Barto, A., Bradtke, S., & Singh, S. (). Learning to act using real-

time dynamic programming. Artificial Intelligence, (–), –

.

Bertsekas, D., & Tsitsiklis, J. (). Parallel and distributed compu-

tation: Numerical methods. Englewood Cliffs, NJ: Prentice-Hall.

Bonet, B., & Geffner, H. (a). Labeled RTDP: Improving the con-

vergence of real-time dynamic programming. In Proceedings

of the th international conference on automated planning and

scheduling (ICAPS-). Trento, Italy.

Bonet, B., & Geffner, H. (b). Faster heuristic search algorithms

for planning with uncertainty and full feedback. In Proceed-

ings of the international joint conference on artificial intelligence

(IJCAI-). Acapulco, Mexico.

Feng, Z., Hansen, E., & Zilberstein, S. (). Symbolic generaliza-

tion for on-line planning. In Proceedings of the th conference

on uncertainty in artificial intelligence. Acapulco, Mexico.

Hansen. E., & Zilberstein, S. (). LAO*: A heuristic search algo-

rithm that finds solutions with loops. Artificial Intelligence, ,

–.

Jalali, A., & Ferguson, M. (). Computationally efficient con-

trol algorithms for Markov chains. In Proceedings of the th

conference on decision and control (pp.–), Tampa, FL.

Korf, R. (). Real-time heuristic search. Artificial Intelligence,

(–), –.

Smith, T., & Simmons, R. (). Focused real-time dynamic pro-

gramming for MDPs: Squeezing more out of a heuristic. In

Proceedings of the national conference on artificial intelligence

(AAAI). Boston, MA: AAAI Press.

Sutton, R. (). Integrated architectures for learning, plan-

ning, and reacting based on approximating dynamic pro-

gramming. In Proceedings of the th international conference

on machine learning (pp.–). San Mateo, CA: Morgan

Kaufmann.

Adaptive Resonance Theory

Gail A. Carpenter, Stephen Grossberg

Boston University, Boston, MA, USA

Synonyms
ART

Definition
Adaptive resonance theory, or ART, is both a cognitive

and neural theory of how the brain quickly learns to

categorize, recognize, and predict objects and events in

a changing world, and a set of algorithms that compu-

tationally embody ART principles and that are used in

large-scale engineering and technological applications

wherein fast, stable, and incremental learning about

complex changing environment is needed. ART clari�es

the brain processes from which conscious experiences

emerge. It predicts a functional link between processes

of consciousness, learning, expectation, attention, res-

onance, and synchrony (CLEARS), including the pre-

diction that “all conscious states are resonant states.”

�is connection clari�es how brain dynamics enable

a behaving individual to autonomously adapt in real

time to a rapidly changing world. ART predicts how

top-down attention works and regulates fast stable

learning of recognition categories. In particular, ART

articulates a critical role for “resonant” states in driv-

ing fast stable learning; and thus the name adaptive

resonance. �ese resonant states are bound together,

using top-down attentive feedback in the form of

learned expectations, into coherent representations of

the world. ART hereby clari�es one important sense

in which the brain carries out predictive computa-

tion. ART has explained and successfully predicted

a wide range of behavioral and neurobiological data,

including data about human cognition and the dynam-

ics of spiking laminar cortical networks. ART algo-

rithms have been used in large-scale applications such

as medical database prediction, remote sensing, air-

plane design, and the control of autonomous adaptive

robots.

Motivation and Background
Many current learning algorithms do not emulate

the way in which humans and other animals learn.

�e power of human and animal learning provides

high motivation to discover computational principles

whereby machines can learn with similar capabilities.

Humans and animals experience the world on the

�y, and carry out incremental learning of sequences

of episodes in real time. O�en such learning is

unsupervised, with the world itself as the teacher.

Learning can also proceed with an unpredictable mix-

ture of unsupervised and supervised learning tri-

als. Such learning goes on successfully in a world

that is nonstationary; that is, the rules of which can

change unpredictably through time. Moreover, humans

and animals can learn quickly and stably through

time. A single important experience can be remem-

bered for a long time. ART proposes a solution of

this stability–plasticity dilemma (Grossberg,) by

 A Adaptive Resonance Theory

showing howbrains learn quickly without forcing catas-

trophic forgetting of already learned, and still success-

ful, memories.

�us, ART autonomously carries out fast, yet sta-

ble, incremental learning under both unsupervised and

supervised learning conditions in response to a complex

nonstationaryworld. In contrast,many current learning

algorithms use batch learning in which all the informa-

tion about the world to be learned is available at a single

time. Other algorithms are not de�ned unless all learn-

ing trials are supervised. Yet other algorithms become

unstable in a nonstationary world, or become unsta-

ble if learning is fast; that is, if an event can be fully

learned on a single learning trial. ART overcomes these

problems.

Somemachine learning algorithms are feed-forward

clustering algorithms that undergo catastrophic forget-

ting in a nonstationary world.�e ART solution of the

stability–plasticity dilemma depends upon feedback,

or top-down, expectations that are matched against

bottom-up data and thereby focus attention upon

critical feature patterns. A good enough match leads to

resonance and fast learning. A big enough mismatch

leads to hypothesis testing or memory search that dis-

covers and learns a more predictive category. �us,

ART is a self-organizing expert system that avoids the

brittleness of traditional expert systems.

�e world is �lled with uncertainty, so probability

concepts seem relevant to understanding how brains

learn about uncertain data. �is fact has led some

machine learning practitioners to assume that brains

obey Bayesian laws. However, the Bayes rule is so gen-

eral that it can accommodate any system in nature.

Additional computational principles and mechanisms

must augment Bayes to distinguish a brain from, say, a

hydrogen atom or storm. Moreover, probabilistic mod-

els o�en use nonlocal computations. ART shows how

the brain embodies a novel kind of real-time probability

theory, hypothesis testing, prediction, and decision-

making, the local computations of which adapt to a

nonstationary world.�ese ART principles and mech-

anisms go beyond Bayesian analysis, and are embodied

parsimoniously in the laminar circuits of cerebral cor-

tex. Indeed, the cortex embodies a new kind of lam-

inar computing that reconciles the best properties of

feedforward and feedback processing, digital and ana-

log processing, and data-driven bottom-up processing

combined with hypothesis-driven top-down processing

(Grossberg,).

Structure of Learning System
How CLEARS Mechanisms Interact

Humans are intentional beings who learn expecta-

tions about the world and make predictions about

what is about to happen. Humans are also attentional

beingswho focus processing resources upon a restricted

amount of incoming information at any time. Why

are we both intentional and attentional beings, and

are these two types of processes related?�e stability–

plasticity dilemma and its solution using resonant states

provide a unifying framework for understanding these

issues.

To clarify the role of sensory or cognitive expec-

tations, and of how a resonant state is activated, sup-

pose you were asked to “�nd the yellow ball as quickly

as possible, and you will win a $, prize.” Acti-

vating an expectation of a “yellow ball” enables its

more rapid detection, and with a more energetic neu-

ral response. Sensory and cognitive top-down expecta-

tions hereby lead to excitatory matching with consistent

bottom-up data. Mismatch between top-down expecta-

tions and bottom-up data can suppress the mismatched

part of the bottom-up data, to focus attention upon the

matched, or expected, part of the bottom-up data.

Excitatory matching and attentional focusing on

bottom-up data using top-down expectations generates

resonant brain states: When there is a good enough

match between bottom-up and top-down signal pat-

terns between two or more levels of processing, their

positive feedback signals amplify and prolong their

mutual activation, leading to a resonant state. Ampli-

�cation and prolongation of activity triggers learning

in the more slowly varying adaptive weights that con-

trol the signal �ow along pathways from cell to cell.

Resonance hereby provides a global context-sensitive

indicator that the system is processing data worthy of

learning, hence the name adaptive resonance theory.

In summary, ART predicts a link between themech-

anisms which enable us to learn quickly and stably

about a changing world, and the mechanisms that

enable us to learn expectations about such a world,

test hypotheses about it, and focus attention upon

information that we �nd interesting. ART clari�es this

link by asserting that to solve the stability–plasticity

Adaptive Resonance Theory A

Adilemma, only resonant states can drive rapid new

learning.

It is just a step from here to propose that those expe-

riences which can attract our attention and guide our

future lives by being learned are also among the ones

that are conscious. Support for this additional assertion

derives from the many modeling studies whose simula-

tions of behavioral and brain data using resonant states

map onto properties of conscious experiences in those

experiments.

�e type of learning within the sensory and cog-

nitive domain that ART mechanizes is match learning:

Match learning occurs only if a good enough match

occurs between bottom-up information and a learned

top-down expectation that is read out by an active

recognition category, or code. When such an approxi-

mate match occurs, previously learned knowledge can

be re�ned. Match learning raises the concern about

what happens if a match is not good enough? How does

such a model escape perseveration on already learned

representations?

If novel information cannot form a good enough

match with the expectations that are read-out by pre-

viously learned recognition categories, then a memory

search or hypothesis testing is triggered, which leads

to selection and learning of a new recognition cate-

gory, rather than catastrophic forgetting of an old one.

Figure illustrates how this happens in an ART model;

it is discussed in great detail below. In contrast, learn-

ing within spatial andmotor processes is proposed to be

mismatch learning that continuously updates sensory-

motor maps or the gains of sensory-motor commands.

As a result, we can stably learn what is happening in a

changing world, thereby solving the stability–plasticity

dilemma,while adaptively updating our representations

of where objects are and how to act upon them using

bodies whose parameters change continuously through

time. Brain systems that use inhibitory matching and

mismatch learning cannot generate resonances; hence,

their representations are not conscious.

Complementary Computing in the Brain: Resonance

and Reset

It has been mathematically proved that match learn-

ing within an ART model leads to stable memories in

response to arbitrary list of events to be learned (e.g.,

Carpenter & Grossberg,). However, match learn-

ing also has a serious potential weakness: If you can only

learn when there is a good match between bottom-up

data and learned top-down expectations, then how do

you ever learn anything that you do not already know?

ARTproposes that this problem is solved by the brain by

using an interaction between complementary processes

of resonance and reset, which are predicted to control

properties of attention andmemory search, respectively.

�ese complementary processes help our brains to bal-

ance between the complementary demands of process-

ing the familiar and the unfamiliar, the expected and the

unexpected.

Organization of the brain into complementary pro-

cesses is predicted to be a general principle of brain

design that is not just found in ART (Grossberg,).

A complementary process can individually compute

some properties well, but cannot, by itself, process

other complementary properties. In thinking intuitively

about complementary properties, one can imagine puz-

zle pieces �tting together. Both pieces are needed

to �nish the puzzle. Complementary brain processes

are more dynamic than any such analogy: Pairs of

complementary processes interact to form emergent

properties which overcome their complementary de�-

ciencies to compute complete information with which

to represent or control some aspect of intelligent

behavior.

�e resonance process in the complementary pair

of resonance and reset is predicted to take place in

the What cortical stream, notably in the inferotempo-

ral and prefrontal cortex. Here top-down expectations

are matched against bottom-up inputs. When a top-

down expectation achieves a good enough match with

bottom-up data, this match process focuses attention

upon those feature clusters in the bottom-up input that

are expected. If the expectation is close enough to the

input pattern, then a state of resonance develops as the

attentional focus takes hold.

Figure illustrates these ART ideas in a simple

two-level example. Here, a bottom-up input pattern,

or vector, I activates a pattern X of activity across the
feature detectors of the �rst level F. For example, a

visual scene may be represented by the features com-

prising its boundary and surface representations.�is

feature pattern represents the relative importance of dif-

ferent features in the inputs pattern I. In Fig. a, the

 A Adaptive Resonance Theory

F2

F2

T

Y

Y

+

F2

T

Y

+

F1

S

X

Reset

X *

*

*

+

+

F2

TT +

+

+

–

F1

S

U

V

+ +

+

–

–
ρ

F1

S

X
+

++

+

–

–
ρ

F1

S

X
+ +

–
ρ

ρ

a b

c d

Adaptive Resonance Theory. Figure . Search for a recognition code within an ART learning circuit: (a) The input pat-

tern I is instated across the feature detectors at level F as a short term memory (STM) activity pattern X. Input I also

nonspecifically activates the orienting system with a gain that is called vigilance (ρ); that is, all the input pathways con-

verge with gain ρ onto the orienting system and try to activate it. STM pattern X is represented by the hatched pattern

across F. Pattern X both inhibits the orienting system and generates the output pattern S. Pattern S is multiplied by

learned adaptive weights, also called long term memory (LTM) traces. These LTM-gated signals are added at Fcells,

or nodes, to form the input pattern T , which activates the STM pattern Y across the recognition categories coded at

level F. (b) Pattern Y generates the top-down output patternU which is multiplied by top-down LTM traces and added

at F nodes to form a prototypepatternV that encodes the learned expectation of the active F nodes. Such a prototype

represents the set of commonly shared features in all the input patterns capable of activating Y. If V mismatches I at F,

then a new STM activity pattern X∗ is selected at F. X∗ is represented by the hatched pattern. It consists of the features

of I that are confirmed by V. Mismatched features are inhibited. The inactivated nodes corresponding to unconfirmed

features of X are unhatched. The reduction in total STM activity which occurs when X is transformed into X∗ causes

a decrease in the total inhibitionfrom F to the orienting system. (c) If inhibition decreases sufficiently, the orienting

system releases a nonspecific arousal wave to F; that is, a wave of activation that equally activates all F nodes. This

wave instantiates the intuition that “novel events are arousing.” This arousal wave resets the STM pattern Y at F by

inhibiting Y. (d) After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated at F. The prior

reset event maintains inhibition of Y during the search cycle. As a result, X can activate a different STM pattern Y at F.

If the top-down prototype due to this new Y pattern also mismatches I at F, then the search for an appropriate F code

continues until a more appropriate F representation is selected. Such a search cycle represents a type of nonstationary

hypothesis testing. When search ends, an attentive resonance develops and learning of the attended data is initiated

(adapted with permission from Carpenter and Grossberg ()). The distributed ART architecture supports fast stable

learning with arbitrarily distributed F codes (Carpenter,)

Adaptive Resonance Theory A

Apattern peaks represent more activated feature detector

cells, and the troughs, less-activated feature detectors.

�is feature pattern sends signals S through an adap-

tive �lter to the second level F at which a compressed

representation Y (also called a recognition category, or

a symbol) is activated in response to the distributed

input T. Input T is computed by multiplying the sig-

nal vector S by a matrix of adaptive weights that can be

altered through learning.�e representation Y is com-

pressed by competitive interactions across F that allow

only a small subset of its most strongly activated cells

to remain active in response to T.�e pattern Y in the

�gure indicates that a small number of category cells

may be activated to di�erent degrees. �ese category

cells, in turn, send top-down signals U to F.�e vec-

tor U is converted into the top-down expectation V by

being multiplied by another matrix of adaptive weights.

WhenV is received byF, amatching process takes place

between the input vector I andVwhich selects that sub-
set X* of F features that were “expected” by the active

F category Y.�e set of these selected features is the

emerging “attentional focus.”

Binding Distributed Feature Patterns and Symbols

During Conscious Resonances

If the top-down expectation is close enough to the

bottom-up input pattern, then the pattern X∗ of

attended features reactivates the category Y which, in

turn, reactivates X∗. �e network hereby locks into a

resonant state through a positive feedback loop that

dynamically links, or binds, the attended features across

X∗ with their category, or symbol, Y.

Resonance itself embodies another type of comple-

mentary processing. Indeed, there seem to be comple-

mentary processes both within and between cortical

processing streams (Grossberg,). �is particu-

lar complementary relation occurs between distributed

feature patterns and the compressed categories, or sym-

bols, that selectively code them:

Individual features at F have no meaning on their

own, just like the pixels in a picture are meaningless

one-by-one.�e category, or symbol, in F is sensitive

to the global patterning of these features, and can selec-

tively �re in response to this pattern. But it cannot rep-

resent the “contents” of the experience, including their

conscious qualia, due to the very fact that a category is a

compressed or “symbolic” representation. Practitioners

of arti�cial intelligence have claimed that neuralmodels

can process distributed features, but not symbolic rep-

resentations.�is is not, of course, true in the brain. Nor

is it true in ART.

Resonance between these two types of informa-

tion converts the pattern of attended features into a

coherent context-sensitive state that is linked to its

category through feedback.�is coherent state, which

binds together distributed features and symbolic cate-

gories, can enter consciousness while it binds together

spatially distributed features into either a stable equi-

librium or a synchronous oscillation. �e original

ART article (Grossberg,) predicted the existence

of such synchronous oscillations, which were there

described in terms of their mathematical properties as

“order-preserving limit cycles.” See Carpenter, Gross-

berg, Markuzon, Reynolds & Rosen () and Gross-

berg & Versace () for reviews of con�rmed ART

predictions, including predictions about synchronous

oscillations.

Resonance Links Intentional and Attentional

Information Processing to Learning

In ART, the resonant state, rather than bottom-up acti-

vation, is predicted to drive learning.�is state persists

long enough, and at a high enough activity level, to

activate the slower learning processes in the adaptive

weights that guide the �ow of signals between bottom-

up and top-down pathways between levels F and F
in Fig. .�is viewpoint helps to explain how adaptive

weights that were changed through previous learning

can regulate the brain’s present information processing,

without learning about the signals that they are cur-

rently processing unless they can initiate a resonant

state. �rough resonance as a mediating event, one

can understand from a deeper mechanistic view why

humans are intentional beings who are continually pre-

dicting what may next occur, and why we tend to learn

about the events to which we pay attention.

More recent versions of ART, notably the synchro-

nous matching ART (SMART) model (Grossberg &

Versace,) show how a match may lead to fast

gamma oscillations that facilitate spike-timing depen-

dent plasticity (STDP), whereas mismatch can lead

to slower beta oscillations that lower the probability

that mismatched events can be learned by a STDP

learning law.

 A Adaptive Resonance Theory

Complementary Attentional and Orienting Systems

Control Resonance Versus Reset

A su�ciently bad mismatch between an active top-

down expectation and a bottom-up input, say because

the input represents an unfamiliar type of experience,

can drive amemory search. Such amismatch within the

attentional system is proposed to activate a complemen-

tary orienting system, which is sensitive to unexpected

and unfamiliar events. ART suggests that this orienting

system includes the nonspeci�c thalamus and the hip-

pocampal system. See Grossberg & Versace () for

a summary of data supporting this prediction. Output

signals from the orienting system rapidly reset the

recognition category that has been reading out the

poorly matching top-down expectation (Figs. b and c).

�e cause of the mismatch is hereby removed, thereby

freeing the system to activate a di�erent recognition cat-

egory (Fig. d).�e reset event hereby triggers memory

search, or hypothesis testing, which automatically leads

to the selection of a recognition category that can better

match the input.

If no such recognition category exists, say because

the bottom-up input represents a truly novel experi-

ence, then the search process automatically activates an

as yet uncommitted population of cells, with which to

learn about the novel information. In order for a top-

down expectation to match a newly discovered recog-

nition category, its top-down adaptive weights initially

have large values, which are pruned by the learning of a

particular expectation.

�is learning process works well under both unsu-

pervised and supervised conditions (Carpenter et al.,

). Unsupervised learningmeans that the system can

learn how to categorize novel input patternswithout any

external feedback. Supervised learning uses predictive

errors to let the system know whether it has catego-

rized the information correctly. Supervision can force

a search for new categories that may be culturally deter-

mined, and are not based on feature similarity alone. For

example, separating the letters E and F that are of sim-

ilar features into separate recognition categories is cul-

turally determined. Such error-based feedback enables

variants of E and F to learn their own category and

top-down expectation, or prototype.�e complemen-

tary, but interacting, processes of attentive-learning and

orienting-search together realize a type of error cor-

rection through hypothesis testing that can build an

ever-growing, self-re�ning internalmodel of a changing

world.

Controlling the Content of Conscious Experiences:

Exemplars and Prototypes

What combinations of features or other information are

bound together into conscious object or event repre-

sentations? One view is that exemplars or individual

experiences are learned because humans can have very

speci�c memories. For example, we can all recognize

the particular faces of our friends. On the other hand,

storing every remembered experience as exemplars can

lead to a combinatorial explosion of memory, as well as

to unmanageable problems of memory retrieval. A pos-

sible way out is suggested by the fact that humans can

learn prototypes which represent general properties of

the environment (Posner & Keele,). For example,

we can recognize that everyone has a face. But then how

do we learn speci�c episodic memories? ART provides

an answer that overcomes the problems faced by earlier

models.

ART prototypes are not merely averages of the

exemplars that are classi�ed by a category, as is typically

assumed in classical prototype models. Rather, they

are the actively selected critical feature patterns upon

which the top-down expectations of the category focus

attention. In addition, the generality of the information

that is codes by these critical feature patterns is con-

trolled by a gain control process, called vigilance control,

which can be in�uenced by environmental feedback or

internal volition (Carpenter & Grossberg,). Low

vigilance permits the learning of general categories with

abstract prototypes. High vigilance forces a memory

search to occur for a new category when even small

mismatches exist between an exemplar and the cate-

gory that it activates. As a result, in the limit of high

vigilance, the category prototype may encode an indi-

vidual exemplar.

Vigilance is computed within the orienting system

of an ART model (Fig. b–d). It is here that bottom-up

excitation from all the active features in an input pat-

tern I is compared with inhibition from all the active

features in a distributed feature representation across F.

If the ratio of the total activity across the active features

in F (i.e., the “matched” features) to the total activity of

all the features in I is less than a vigilance parameter ρ

(Fig. b), then a reset wave is activated (Fig. c), which

Adaptive Resonance Theory A

Acan drive the search for another category to classify the

exemplar. In other words, the vigilance parameter con-

trols how bad amatch can be tolerated before search for

a new category is initiated. If the vigilance parameter is

low, then many exemplars can in�uence the learning of

a shared prototype, by chipping away at the features that

are not shared with all the exemplars. If the vigilance

parameter is high, then even a small di�erence between

a new exemplar and a known prototype (e.g., F vs. E)

can drive the search for a new category with which to

represent F.

One way to control vigilance is by a process ofmatch

tracking. Here a predictive error (e.g., D is predicted in

response to F), the vigilance parameter increases until

it is just higher than the ratio of active features in F to

total features in I. In other words, vigilance “tracks” the

degree of match between input exemplar and matched

prototype. �is is the minimal level of vigilance that

can trigger a reset wave and thus a memory search

for a new category. Match tracking realizes a minimax

learning rule that conjointlymaximizes category gener-

ality while itminimizes predictive error. In other words,

match tracking uses the leastmemory resources that can

prevent errors from being made.

Because vigilance can vary across learning trials,

recognition categories capable of encoding widely dif-

fering degrees of generalization or abstraction can be

learned by a single ART system. Low vigilance leads to

broad generalization and abstract prototypes. High vig-

ilance leads to narrow generalization and to prototypes

that represent fewer input exemplars, even a single

exemplar.�us a single ART system may be used, say,

to learn abstract prototypes with which to recognize

abstract categories of faces and dogs, as well as “exem-

plar prototypes” with which to recognize individual

views of faces and dogs. ARTmodels hereby try to learn

the most general category that is consistent with the

data.�is tendency can, for example, lead to the type of

overgeneralization that is seen in young children until

further learning leads to category re�nement.

Memory Consolidation and the Emergence of Rules:

Direct Access to Globally Best Match

As sequences of inputs are practiced over learning

trials, the search process eventually converges upon

stable categories. It has been mathematically proved

(Carpenter & Grossberg,) that familiar inputs

directly access the category whose prototype provides

the best match globally, while unfamiliar inputs engage

the orienting subsystem to trigger memory searches for

better categories until they become familiar.�is pro-

cess continues until the memory capacity, which can

be chosen arbitrarily large, is fully utilized.�e process

whereby search is automatically disengaged is a form

of memory consolidation that emerges from network

interactions. Emergent consolidation does not preclude

structural consolidation at individual cells, since the

ampli�ed and prolonged activities that subserve a res-

onance may be a trigger for learning-dependent cellu-

lar processes, such as protein synthesis and transmitter

production.

It has also been shown that the adaptive weights

which are learned by some ART models can, at any

stage of learning, be translated into fuzzy IF-THEN

rules (Carpenter et al.,).�us the ART model is a

self-organizing rule-discovering production system as

well as a neural network.�ese examples show that the

claims of some cognitive scientists and AI practition-

ers that neural network models cannot learn rule-based

behaviors are as incorrect as the claims that neural

models cannot learn symbols.

How the Laminar Circuits of Cerebral Cortex Embody

ART Mechanisms

More recent versions of ART have shown how predicted

ARTmechanismsmay be embodiedwithin known lam-

inar microcircuits of the cerebral cortex.�ese include

the family of LAMINARTmodels (Fig. ; see Raizada &

Grossberg,) and the synchronous matching ART,

or SMART, model (Fig. ; see Grossberg & Versace,

). SMART, in particular, predicts how a top-down

match may lead to fast gamma oscillations that facili-

tate spike-timing dependent plasticity (STDP), whereas

a mismatch can lead to slower beta oscillations that

prevent learning by a STDP learning law. At least three

neurophysiological labs have recently reported data

consistent with the SMART prediction.

Review of ART and ARTMAP Algorithms

From Winner-Take-All to Distributed Coding As noted

above, ART networks serve both as models of human

cognitive information processing (Carpenter, ;

 A Adaptive Resonance Theory

2/3

4

6

4

6
5

1

V2 layer 6

V1

4

6

LGN

6

LGN

LGN

V1

V2

2/3

4

6

2/3

4

6

a

b

c

d

e
Adaptive Resonance Theory. Figure . LAMINART circuit clarifies how known cortical connections within and across

cortical layers join the layer → and layer / circuits to form a laminar circuit model for the interblobs and pale stripe

regions of cortical areas V and V. Inhibitory interneurons are shown filled-in black. (a) The LGN provides bottom-up

activation to layer via two routes. First, it makes a strong connection directly into layer . Second, LGN axons send

collaterals into layer , and thereby also activate layer via the → on-center off-surround path. The combined

effect of the bottom-up LGN pathways is to stimulate layer via an on-center off-surround, which provides divisive

contrast normalization (Grossberg,) of layer cell responses. (b)Folded feedback carries attentional signals from

higher cortex into layer of V, via the modulatory → path. Corticocortical feedback axons tend preferentially to

originate in layer of the higher area and to terminate in layer of the lower cortex, where they can excite the apical

dendrites of layer pyramidal cells whose axons send collaterals into layer . The triangle in the figure represents such

a layer pyramidal cell. Several other routes through which feedback can pass into V layer exist. Having arrived in

layer , the feedback is then “folded” back up into the feedforward stream by passing through the → on-center

off-surround path (Bullier, Hup’e, James, & Girard,). (c)Connecting the → on-centeroff-surround to the layer

/ grouping circuit: like-oriented layer simple cells with opposite contrast polarities compete (not shown) before

generating half-wave rectified outputs that converge onto layer / complex cells in the column above them. Just like

attentional signals from higher cortex, as shown in (b), groupings that form within layer / also send activation into

the folded feedback path, to enhance their own positions in layer beneath them via the → on-center, and to

suppress input to other groupings via the → off-surround. There exist direct layer /→ connections in macaque

V, as well as indirect routes via layer . (d) Top-down corticogeniculate feedback from V layer to LGN also has an on-

center off-surround anatomy, similar to the → path. The on-center feedback selectively enhances LGN cells that are

consistent with the activation that they cause (Sillito, Jones, Gerstein, & West,), and the off-surround contributes

to length-sensitive (endstopped) responses that facilitate grouping perpendicular to line ends. (e) The entire V/V

circuit: V repeats the laminar pattern of V circuitry, but at a larger spatial scale. In particular, the horizontal layer /

connections have a longer range in V, allowing above-threshold perceptual groupings between more widely spaced

Adaptive Resonance Theory A

AGrossberg, ,) and as neural systems for

technology transfer (Caudell, Smith, Escobedo, &

Anderson, ; Parsons & Carpenter,). Design

principles derived from scienti�c analyses and design

constraints imposed by targeted applications have

jointly guided the development of many variants

of the basic networks, including fuzzy ARTMAP

(Carpenter et al.,), ART-EMAP, ARTMAP-IC, and

Gaussian ARTMAP. Early ARTMAP systems, including

fuzzy ARTMAP, employ winner-take-all (WTA) coding,

whereby each input activates a single category node

during both training and testing. When a node is �rst

activated during training, it is mapped to its designated

output class.

Starting with ART-EMAP, subsequent systems have

used distributed coding during testing, which typ-

ically improves predictive accuracy, while avoiding

the computational problems inherent in the use of

distributed code representations during training. In

order to address these problems, distributed ARTMAP

(Carpenter, ; Carpenter,Milenova, &Noeske,)

introduced a new network con�guration, in addition to

new learning laws.

Comparative analysis of the performance of

ARTMAP systems on a variety of benchmark prob-

lems has led to the identi�cation of a default ARTMAP

network, which features simplicity of design and

robust performance in many application domains.

Default ARTMAP employs winner-take-all coding

during training and distributed coding during test-

ing within a distributed ARTMAP network archi-

tecture. With winner-take-all coding during testing,

default ARTMAP reduces to a version of fuzzy

ARTMAP.

Complement Coding: Learning both Absent and Present

Features ART and ARTMAP employ a preprocess-

ing step called complement coding (Fig.), which

models the nervous system’s ubiquitous use of the

computational design known as opponent processing.

Balancing an entity against its opponent, as in agonist–

antagonist muscle pairs, allows a system to act upon

relative quantities, even as absolute magnitudes may

vary unpredictably. In ART systems, complement cod-

ing is analogous to retinal ON-cells and OFF-cells.

When the learning system is presented with a set of

input features a ≡ (a...ai...aM), complement coding
doubles the number of input components, presenting

to the network both the original feature vector and its

complement.

Complement coding allows an ART system to

encode within its critical feature patterns of memory

features that are consistently absent on an equal basis

with features that are consistently present. Features that

are sometimes absent and sometimes present when a

given category is learning are regarded as uninforma-

tive with respect to that category. Since its introduc-

tion, complement coding has been a standard element

of ART and ARTMAP networks, where it plays multi-

ple computational roles, including input normalization.

However, this device is not particular toART, and could,

in principle, be used to preprocess the inputs to any type

of system.

To implement complement coding, component

activities ai of a feature vector a are scaled; thus, ≤
ai ≤ . For each feature i, the ON activity ai deter-

mines the complementary OFF activity (− ai). Both
ai and (− ai) are represented in the M-dimensional
system input vector A = (a ∣ ac) (Fig.). Subse-
quent network computations then operate in this M-

dimensional input space. In particular, learned weight

vectors wJ are M-dimensional.

ARTMAP Search and Match Tracking in Fuzzy ARTMAP

As illustrated by Fig. , the ART matching process

triggers either learning or a parallel memory search.

If search ends at an established code, the memory

inducing stimuli to form. V layer / projects up to V layers and , just as LGN projects to layers an of V. Higher

cortical areas send feedback into V which ultimately reaches layer , just as V feedback acts on layer of V. Feedback

paths from higher cortical areas straight into V (not shown) can complement and enhance feedback from V into V.

Top-down attention can also modulate layer / pyramidal cells directly by activating both the pyramidal cells and

inhibitory interneurons in that layer. The inhibition tends to balance the excitation, leading to a modulatory effect.

These top-down attentional pathways tend to synapse in layer , as shown in Fig. b. Their synapses on apical dendrites

in layer are not shown, for simplicity. (Reprinted with permission from Raizada & Grossberg ())

 A Adaptive Resonance Theory

Adaptive Resonance Theory. Figure . SMART model overview. A first-order and higher-order cortical area are linked

by corticocortical and corticothalamocortical connections. The thalamus is subdivided into specific first-order, second-

order, nonspecific, and thalamic reticular nucleus (TRN). The thalamic matrix (one cell population shown as an open

ring) provides priming to layer , where layer pyramidal cell apical dendrites terminate. The specific thalamus

relays sensory information (first-order thalamus) or lower-order cortical information (second-order thalamus) to the

respective cortical areas via plastic connections. The nonspecific thalamic nucleus receives convergent BU input and

inhibition from the TRN, and projects to layer of the laminar cortical circuit, where it regulates reset and search in

the cortical circuit (see text). Corticocortical feedback connections link layer II of the higher cortical area to layer

 of the lower cortical area, whereas thalamocortical feedback originates in layer II and terminates in the specific

thalamus after synapsing on the TRN. Layer II corticothalamic feedback matches the BU input in the specific thala-

mus. V receives two parallel BU thalamocortical pathways. The LGN→V layer pathway and the modulatory LGN→V

layer I→ pathway provide divisive contrast normalization of layer cell responses. The intracortical loop V layer

→/→→I→ pathway (folded feedback) enhances the activity of winning layer / cells at their own positions via

the I→ on-center, and suppresses input to other layer / cells via the I→ off-surround. V also activates the BU

V→V corticocortical pathways (V layer /→V layers I and) and the BU corticothalamocortical pathways (V layer

→PULV→V layers I and), where the layer I→ pathway provides divisive contrast normalization to V layer cells

analogously to V. Corticocortical feedback from V layer II→V layer →I→ also uses the same modulatory I→

pathway. TRN cells of the two thalamic sectors are linked via gap junctions, which provide synchronization of the two

thalamocortical sectors when processing BU stimuli (reprinted with permission from Grossberg & Versace ())

representation may either remain the same or incor-

porate new information from matched portions of the

current input. While this dynamic applies to arbitrarily

distributed activation patterns, the F search and code

for fuzzy ARTMAP (Fig.) describes a winner-take all

system.

Before ARTMAP makes a class prediction, the

bottom-up input A is matched against the top-down

Adaptive Resonance Theory A

A
complement coded input

ON channel

(a1...ai ...am) = a ac = ((1 – ai)...(1 – ai)...(1 – aM))

OFF channel

feature vector

A = (A1...AM ⏐ AM+1...A2M) = (a ⏐ ac)

a

Adaptive Resonance Theory. Figure . Complement coding transforms an M-dimensional feature vector a into a M-

dimensional system input vector A. A complement-coded system input represents both the degree to which a feature

i is present (ai) and the degree to which that feature is absent (− ai)

J = J1

y

y

J = J1

y

F2

A

a

r

rr

r

A

a

A

X

X

X

r = 1
reset

a

A

fuzzy ART
a

–

– – ––

– –

F2

F2

J = J1

y

F2

F1

F1

F1

F1

F0F0

F0 F0

Adaptive Resonance Theory. Figure . A fuzzy ART search cycle, with a distributed ART network configuration

(Carpenter,). The ART search cycle (Carpenter and Grossberg,) is the same, but allows only binary

inputs and did not originally feature complement coding. The match field F represents the matched activa-

tion pattern x = A ∧ wJ, where ∧ denotes the component-wise minimum, or fuzzy intersection, between the

bottom-up input A and the top-down expectation wJ. If the matched pattern fails to meet the matching crite-

rion, then the active code is reset at F, and the system searches for another code y that better represents the

input. The match/mismatch decision takes place in the ART orienting system. Each active feature in the input

pattern A excites the orienting system with gain equal to the vigilance parameter ρ. Hence, with complement

coding, the total excitatory input is ρ ∣A∣ = ρ
M

∑
i=

Ai =ρM. Active cells in the matched pattern x inhibit the ori-

enting system, leading to a total inhibitory input equal to − ∣x∣ = −
M

∑
i=
xi. If ρ ∣A∣ − ∣x∣ ≤ , then the orient-

ing system remains quiet, allowing resonance and learning to occur. If ρ ∣A∣ − ∣x∣ > , then the reset signal

r = , initiating search for a better matching code

 A Adaptive Resonance Theory

learned expectation, or critical feature pattern, that is

read out by the active node (Fig. b). �e matching

criterion is set by a vigilance parameter ρ. As noted

above, low vigilance permits the learning of abstract,

prototype-like patterns, while high vigilance requires

the learning of speci�c, exemplar-like patterns. When

a new input arrives, vigilance equals a baseline level ρ̄.

Baseline vigilance is set equal to zero by default, in order

to maximize generalization. Vigilance rises only a�er

the system has made a predictive error. �e internal

control process that determines how far it must rise

in order to correct the error is called match tracking.

As vigilance rises, the network is required to pay more

attention to how well top-down expectations match the

current bottom-up input.

Match tracking (Fig.) forces an ARTMAP system

not only to reset its mistakes, but to learn from them.

With match tracking and fast learning, each ARTMAP

network passes the next input test, which requires that,

match tracking
dr

= –(r – r–)+ΓRr c

dt

match
A

A

A

R

r c

x

x = A ∧ wJ

0–

x–

+

r c= 1
≤

predictive error
R = 1

y

A

a

a

ac

wJ

J

F2

F1

F0

r

r

r

Adaptive Resonance Theory. Figure . ARTMAP match

tracking. When an active node J meets the matching

criterion (ρ ∣A∣ − ∣x∣ ≤), the reset signal r = and

the node makes an prediction. If the predicted output

is incorrect, the feedback signal R = . While R = rc = ,

r increases rapidly. As soon as ρ > ∣x∣
∣A∣ , r switches to ,

which both halts the increase of r and resets the active

F node. From one chosen node to the next, r decays to

slightly below ∣x∣
∣A∣ (MT–). On the time scale of learning r

returns to ρ̄

if a training input were re-presented immediately a�er

a learning trial, it would directly activate the cor-

rect output class, with no predictive errors or search.

Match tracking thus simultaneously implements the

design goals of maximizing generalization and mini-

mizing predictive error, without requiring the choice of

a �xedmatching criterion. ARTMAPmemories thereby

include both broad and speci�c pattern classes, with the

latter typically formed as exceptions to themore general

“rules” de�ned by the former. ARTMAP learning typi-

cally produces a wide variety of such mixtures, whose

exact composition depends upon the order of training

exemplar presentation.

Unless they have already activated all their coding

nodes, ARTMAP systems contain a reserve of nodes

that have never been activated, with weights at their

initial values.�ese uncommitted nodes compete with

the previously active committed nodes, and an uncom-

mitted node is chosen over poorly matched committed

nodes. An ARTMAP design constraint speci�es that

an active uncommitted node should not reset itself.

Weights initially begin with wiJ = . �us, when the
active node J is uncommitted, x = A ∧ wJ = A at the
match �eld.�en, ρ ∣A∣ − ∣x∣ = ρ ∣A∣ − ∣A∣ = (ρ −) ∣A∣.
�us ρ ∣A∣ − ∣x∣ ≤ and an uncommitted node does not
trigger a reset, provided ρ ≤ .

ART Geometry Fuzzy ART long-term memories are

visualized as hyper-rectangles, called category boxes.

�e weight vector wJ is interpreted geometrically as a

box RJ whose ON-channel corner uJ and OFF-channel

corner vJ are, in the format of the complement-coded
input vector, de�ned by (uJ ∣ vCJ) ≡ wJ (Fig.). For

fuzzy ARTwith the choice-by-di�erence F → F signal

functionTJ , an input a activates the node J of the closest
category box RJ , according to the L (city-block) met-

ric. In case of a tie, as when a lies in more than one box,
the node with the smallest RJ is chosen, where ∣RJ ∣ is
de�ned as the sum of the edge lengths

M

∑
i=

∣viJ − uiJ ∣.�e
chosen node J will reset if ∣RJ ⊕ a∣ > M (− ρ), where
RJ ⊕ a is the smallest box enclosing both RJ and a. Oth-
erwise, RJ expands toward RJ ⊕ a during learning. With
fast learning, RnewJ = RoldJ ⊕ a.

Adaptive Resonance Theory A

A

a

vJ

RJ

0

1

a1

a2

10

uJ RJ a

Adaptive Resonance Theory. Figure . Fuzzy ART geom-

etry. The weight of a category node J is represented

in complement-coding form as wJ = (uJ ∣ vC
J), and the

M-dimensional vectors uJ and vJ define the corners of

the category box RJ. When M = , the size of RJ equals its

width plus its height. During learning, RJ expands toward

RJ⊕a, defined as the smallest box enclosing bothRJ and a.

Node J will reset before learning if ∣RJ ⊕ a∣ > M (− ρ)

Biasing Against Previously Active Category Nodes and

Previously Attended Features During Attentive Memory

Search Activity x at theART�eld F continuously com-
putes the match between the �eld’s bottom-up and top-

down input patterns. A reset signal r shuts o� the active

F node J when x fails to meet the matching criterion
determined by the value of the vigilance parameter ρ.

Reset alone does not, however, trigger a search for a dif-

ferent F node: unless the prior activation has le� an

enduring trace within the F-to-F subsystem, the net-

work will simply reactivate the same node as before.

As modeled in ART , biasing the bottom-up input

to the coding �eld F to favor the previously inactive

nodes implements search by allowing the network to

activate a new node in response to a reset signal. �e

ART searchmechanismde�nes amedium-termmem-

ory (MTM) in the F-to-F adaptive �lter which biases

the system against re-choosing a node that had just pro-

duced a reset. A presynaptic interpretation of this bias

is transmitter depletion, or habituation (Fig.).

Medium-term memory in all ART models allows

the network to shi� attention among learned categories

at the coding �eldF during search.�e new biasedART

network (Carpenter & Gaddam,) introduces a sec-

ond medium-termmemory that shi�s attention among

input features, as well as categories, during search.

Self-Organizing Rule Discovery �is foundation of com-

putational principles and mechanisms has enabled the

ART 3 search mechanism

reset

r = 1
ρ|A| - |x| > 0

+ ρ|A|

ρ

x = A ^ wj
- |x|

|A|

J

F2

F0

F1

Y

A

a

a

ac

Adaptive Resonance Theory. Figure . ART search imp-

lements a medium-term memory within the F-to-F

pathways, which biases the system against choosing a

category node that had just produced a reset

development of an ART information fusion system

that is capable of incrementally learning a cognitive

hierarchy of rules in response to probabilistic, incom-

plete, and even contradictory data that are collected by

multiple observers (Carpenter, Martens, & Ogas,).

Cross References
7Bayes Rule
7Bayesian Methods

Recommended Reading
Bullier, J., Hupé, J. M., James, A., & Girard, P. (). Functional

interactions between areas V and V in the monkey. Journal of

Physiology Paris, (–), –.

Carpenter, G. A. (). Distributed learning, recognition, and pre-

diction by ART and ARTMAP neural networks. Neural Net-

works, , –.

Carpenter, G. A. & Gaddam, S. C. (). Biased ART: A neu-

ral architecture that shifts attention towards previously dis-

regarded features following an incorrect prediction. Neural

Networks, .

Carpenter, G. A., & Grossberg, S. (). A massively parallel

architecture for a self-organizing neural pattern recognition

machine. Computer Vision, Graphics, and Image Processing, ,

–.

Carpenter, G. A. & Grossberg, S. (). Normal and amnesic

learning, recognition, and memory by a neural model of

cortico-hippocampal interactions. Trends in Neurosciences, ,

–.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H. &

Rosen, D. B. (). Fuzzy ARTMAP: A neural network archi-

tecture for incremental supervised learning of analog multi-

dimensional maps. IEEE Transactions on Neural Networks, ,

–.

Carpenter, G. A., Martens, S., & Ogas, O. J. (). Self-organizing

information fusion and hierarchical knowledge discovery: A

 A Adaptive System

new framework using ARTMAP neural networks. Neural Net-

works, , –.

Carpenter, G. A., Milenova, B. L., & Noeske, B. W. (). Distributed

ARTMAP: A neural network for fast distributed supervised

learning. Neural Networks, , –.

Caudell, T. P., Smith, S. D. G., Escobedo, R., & Anderson, M. ().

NIRS: Large scale ART neural architectures for engineering

design retrieval. Neural Networks, , –.

Grossberg, S. (). Adaptive pattern classification and universal

recoding, II: Feedback, expectation, olfaction, and illusions.

Biological Cybernetics, , –.

Grossberg, S. (). How does a brain build a cognitive code?

Psychological Review, , –.

Grossberg, S. (). The link between brain, learning, attention,

and consciousness. Consciousness and Cognition, , –.

Grossberg, S. (). The complementary brain: Unifying brain

dynamics and modularity. Trends in Cognitive Sciences, ,

–.

Grossberg, S. (). How does the cerebral cortex work? Develop-

ment, learning, attention, and D vision by laminar circuits of

visual cortex. Behavioral and Cognitive Neuroscience Reviews, ,

–.

Grossberg, S. (). Consciousness CLEARS the mind. Neural

Networks, , –.

Grossberg, S. & Versace, M. (). Spikes, synchrony, and attentive

learning by laminar thalamocortical circuits. Brain Research,

, –.

Parsons, O., & Carpenter, G. A. (). ARTMAP neural net-

works for information fusion and data mining: Map production

and target recognition methodologies. Neural Networks, (),

–.

Posner, M. I., & Keele, S. W. (). On the genesis of abstract ideas.

Journal of Experimental Psychology, , –.

Raizada, R., & Grossberg, S. (). Towards a theory of the laminar

architecture of cerebral cortex: Computational clues from the

visual system. Cerebral Cortex, , –.

Sillito, A. M., Jones, H. E., Gerstein, G. L., & West, D. C. ().

Feature-linked synchronization of thalamic relay cell firing

induced by feedback from the visual cortex. Nature, ,

–.

Adaptive System

7Complexity in Adaptive Systems

Agent

In computer science, the term “agent” usually denotes

a so�ware abstraction of a real entity which is capable

of acting with a certain degree of autonomy. For exam-

ple, in arti�cial societies, agents are so�ware abstrac-

tions of real people, interacting in an arti�cal, simulated

environment. Various authors have proposed di�erent

de�nitions of agents. Most of them would agree on the

following set of agent properties:

● Persistence: Code is not executed on demand but

runs continuously and decides autonomously when

it should perform some activity.

● Social ability: Agents are able to interact with other

agents.

● Reactivity: Agents perceive the environment and are

able to react.

● Proactivity: Agents exhibit goal-directed behavior

and can take the initiative.

Agent-Based Computational Models

7Arti�cial Societies

Agent-Based Modeling and
Simulation

7Arti�cial Societies

Agent-Based Simulation Models

7Arti�cial Societies

AIS

7Arti�cial Immune Systems

Algorithm Evaluation

Geoffrey I. Webb

Monash University, Victoria, Australia

Definition
Algorithm evaluation is the process of assessing a prop-

erty or properties of an algorithm.

Motivation and Background
It is o�en valuable to assess the e�cacy of an algo-

rithm. Inmany cases, such assessment is relative, that is,

Ant Colony Optimization A

Aevaluating which of several alternative algorithms is

best suited to a speci�c application.

Processes and Techniques
Many learning algorithms have been proposed. In order

to understand the relative merits of these alternatives, it

is necessary to evaluate them.�e primary approaches

to evaluation can be characterized as either theoreti-

cal or experimental.�eoretical evaluation uses formal

methods to infer properties of the algorithm, such as its

computational complexity (Papadimitriou,), and

also employs the tools of7computational learning the-
ory to assess learning theoretic properties. Experimen-

tal evaluation applies the algorithm to learning tasks to

study its performance in practice.

�ere are many di�erent types of property that

may be relevant to assess depending upon the intended

application.�ese include algorithmic properties, such

as time and space complexity.�ese algorithmic prop-

erties are o�en assessed separately with respect to per-

formance when learning a7model, that is, at7training
time, and performance when applying a learned model,

that is, at7test time.
Other types of property that are o�en studied are the

properties of the models that are learned (see 7model
evaluation). Strictly speaking, such properties should

be assessed with respect to a speci�c application or

class of applications. However, much machine learning

research includes experimental studies in which algo-

rithms are compared using a set of data sets with little

or no consideration given to what class of applications

those data sets might represent. It is dangerous to draw

general conclusions about relative performance on any

application from relative performance on this sample

of some unknown class of applications. Such experi-

mental evaluation has become known disparagingly as

a bake-o� .

An approach to experimental evaluation that may

be less subject to the limitations of bake-o�s is the use

of experimental evaluation to assess a learning algo-

rithm’s 7bias and variance pro�le. Bias and variance
measure properties of an algorithm’s propensities in

learningmodels rather than directly being properties of

the models that are learned. Hence, they may provide

more general insights into the relative characteristics

of alternative algorithms than do assessments of the

performance of learned models on a �nite number of

applications. One example of such use of bias–variance

analysis is found in Webb ().

Techniques for experimental algorithm evaluation

include 7bootstrap sampling, 7cross-validation, and
7holdout evaluation.

Cross References
7Computational Learning�eory
7Model Evaluation

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. H. (). The elements of

statistical learning. New York: Springer.

Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Papadimitriou, C. H. (). Computational complexity. Reading,

MA: Addison-Wesley.

Webb, G. I. (). MultiBoosting: A technique for combining

boosting and wagging. Machine Learning, (), –.

Witten, I. H., & Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco: Morgan

Kaufmann.

Analogical Reasoning

7Instance-Based Learning

Analysis of Text

7Text Mining

Analytical Learning

7Deductive Learning
7Explanation-Based Learning

Ant Colony Optimization

Marco Dorigo, Mauro Birattari

Université Libre de Bruxelles, Brussels, Belgium

Synonyms
ACO

Definition
Ant colony optimization (ACO) is a population-based

metaheuristic for the solution of di�cult combinatorial

 A Ant Colony Optimization

optimization problems. In ACO, each individual of the

population is an arti�cial agent that builds incremen-

tally and stochastically a solution to the considered

problem. Agents build solutions by moving on a graph-

based representation of the problem. At each step their

moves de�ne which solution components are added to

the solution under construction. A probabilistic model

is associated with the graph and is used to bias the

agents’ choices.�e probabilistic model is updated on-

line by the agents so as to increase the probability that

future agents will build good solutions.

Motivation and Background
Ant colony optimization is so called because of its

original inspiration: the foraging behavior of some ant

species. In particular, in Beckers, Deneubourg, and

Goss () it was demonstrated experimentally that

ants are able to �nd the shortest path between their

nest and a food source by collectively exploiting the

pheromone they deposit on the ground while walk-

ing. Similar to real ants, ACO’s arti�cial agents, also

called arti�cial ants, deposit arti�cial pheromone on the

graph of the problem they are solving.�e amount of

pheromone each arti�cial ant deposits is proportional

to the quality of the solution the arti�cial ant has built.

�ese arti�cial pheromones are used to implement a

probabilisticmodel that is exploited by the arti�cial ants

to make decisions during their solution construction

activity.

Structure of the Optimization System
Let us consider aminimization problem (S , f), whereS
is the set of feasible solutions, and f is the objective func-

tion, which assigns to each solution s ∈ S a cost value
f (s).�e goal is to �nd an optimal solution s∗, that is, a
feasible solution ofminimum cost.�e set of all optimal

solutions is denoted by S∗.
Ant colony optimization attempts to solve this

minimization problem by repeating the following two

steps:

● Candidate solutions are constructed using a param-

eterized probabilistic model, that is, a parameterized

probability distribution over the solution space.

● �e candidate solutions are used to modify the

model in a way that is intended to bias future sam-

pling toward low cost solutions.

The Ant Colony Optimization Probabilistic Model

We assume that the combinatorial optimization prob-

lem (S , f) is mapped on a problem that can be charac-
terized by the following list of items:

● A�nite set C ={c, c, . . . , cNC
} of components, where

NC is the number of components.

● A�nite setX of states of the problem, where a state is
a sequence x = ⟨ci, cj, . . . , ck, . . . ⟩ over the elements
of C.�e length of a sequence x, that is, the number
of components in the sequence, is expressed by ∣x∣.
�e maximum length of a sequence is bounded by a

positive constant n < +∞.
● A set of (candidate) solutions S , which is a subset of
X (i.e., S ⊆ X).

● A set of feasible states X̃ , with X̃ ⊆ X , de�ned via a
set of constraints Ω.

● A nonempty set S∗ of optimal solutions, with
S∗ ⊆ X̃ and S∗ ⊆S .

Given the above formulation (Note that, because

this formulation is always possible, ACO can in prin-

ciple be applied to any combinatorial optimization

problem.) arti�cial ants build candidate solutions by

performing randomized walks on the completely con-

nected, weighted graph G = (C,L,T), where the
vertices are the components C, the set L fully con-
nects the components C, and T is a vector of so-called
pheromone trails τ. Pheromone trails can be associ-

ated with components, connections, or both. Here we

assume that the pheromone trails are associated with

connections, so that τ(i, j) is the pheromone associ-
ated with the connection between components i and

j. It is straightforward to extend the algorithm to the

other cases. �e graph G is called the construction

graph.

To construct candidate solutions, each arti�cial ant

is �rst put on a randomly chosen vertex of the graph.

It then performs a randomized walk by moving at each

step from vertex to vertex on the graph in such a way

that the next vertex is chosen stochastically according

to the strength of the pheromone currently on the arcs.

Ant Colony Optimization A

AWhilemoving from one node to another of the graphG,
constraints Ωmay be used to prevent ants frombuilding

infeasible solutions. Formally, the solution construction

behavior of a generic ant can be described as follows:

ant_solution_construction

● For each ant:

– Select a start node c according to some problem

dependent criterion.

– Set k = and xk = ⟨c⟩.
● While xk = ⟨c, c, . . . , ck⟩ ∈ X̃ , xk ∉ S , and the set Jxk
of components that can be appended to xk is not

empty, select the next node (component) ck+ ran-

domly according to:

PT (ck+ = c∣xk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(ck ,c)(τ(ck, c))
∑(ck ,y)∈Jxk F(ck ,y)(τ(ck, y))

if (ck, c)∈ Jxk ,

 otherwise,

()

where a connection (ck, y) belongs to Jxk if and only
if the sequence xk+ = ⟨c, c, . . . , ck, y⟩ satis�es the
constraints Ω (that is, xk+ ∈ X̃) and F(i, j)(z) is
somemonotonic function – a common choice being

zα η(i, j)β , where α, β > , and η(i, j)’s are heuristic
values measuring the desirability of adding compo-

nent j a�er i. If at some stage xk ∉ S and Jxk = ∅, that
is, the construction process has reached a dead-end,

the current state xk is discarded. However, this sit-

uation may be prevented by allowing arti�cial ants

to build infeasible solutions as well. In such a case,

an infeasibility penalty term is usually added to the

cost function. Nevertheless, inmost of the settings in

whichACOhas been applied, the dead-end situation

does not occur.

For certain problems, one may �nd it useful to use

a more general scheme, where F depends on the

pheromone values of several “related” connections

rather than just a single one. Moreover, instead of

the random-proportional rule above, di�erent selection

schemes, such as the pseudo-random-proportional rule

(Dorigo & Gambardella,), may be used.

The Ant Colony Optimization Pheromone Update

Many di�erent schemes for pheromone update have

been proposed within the ACO framework. For an

extensive overview, see Dorigo and Stützle ().Most

pheromone updates can be described using the follow-

ing generic scheme:

Generic_ACO_Update

● ∀s ∈ Ŝt ,∀(i, j) ∈ s : τ(i, j)← τ(i, j)+Qf (s∣S, . . . , St),
● ∀(i, j) : τ(i, j)← (− ρ) ⋅ τ(i, j),

where Si is the sample in the ith iteration, ρ, ≤ ρ < ,
is the evaporation rate, and Qf (s∣S, . . . , St) is some
“quality function,” which is typically required to be non-

increasing with respect to f and is de�ned over the

“reference set” Ŝt .

Di�erent ACO algorithms may use di�erent quality

functions and reference sets. For example, in the very

�rstACOalgorithm–Ant System (Dorigo,Maniezzo,&

Colorni, ,) – the quality function is simply

/f (s) and the reference set Ŝt = St . In a subsequently

proposed scheme, called iteration best update (Dorigo

& Gambardella,), the reference set is a singleton

containing the best solution within St (if there are sev-

eral iteration-best solutions, one of them is chosen ran-

domly). For the global-best update (Dorigo et al., ;

Stützle &Hoos,), the reference set contains the best

among all the iteration-best solutions (and if there are

more than one global-best solution, the earliest one is

chosen). In Dorigo et al. () an elitist strategy was

introduced, in which the update is a combination of the

previous two.

In case a good lower bound on the optimal solu-

tion cost is available, one may use the following quality

function (Maniezzo,):

Qf (s∣S, . . . , St) = τ (−
f (s) − LB
f̄ − LB

) = τ
f̄ − f (s)
f̄ − LB

,

()

where f̄ is the average of the costs of the last k solutions

and LB is the lower bound on the optimal solution cost.

With this quality function, the solutions are evaluated

by comparing their cost to the average cost of the other

recent solutions, rather than by using the absolute cost

values. In addition, the quality function is automatically

scaled based on the proximity of the average cost to the

lower bound.

 A Anytime Algorithm

A pheromone update that slightly di�ers from the

generic update described above was used in ant colony

system (ACS) (Dorigo & Gambardella,).�ere the

pheromone is evaporated by the ants online during

the solution construction, hence only the pheromone

involved in the construction evaporates.

Another modi�cation of the generic update was

introduced in MAX–MIN Ant System (Stützle &

Hoos, ,), which uses maximum and mini-

mum pheromone trail limits. With this modi�cation,

the probability of generating any particular solution is

kept above some positive threshold.�is helps to pre-

vent search stagnation and premature convergence to

suboptimal solutions.

Cross References
7Swarm Intelligence

Recommended Reading
Beckers, R., Deneubourg, J. L., & Goss, S. (). Trails and U-turns

in the selection of the shortest path by the ant Lasius Niger.

Journal of Theoretical Biology, , –.

Dorigo, M., & Gambardella, L. M. (). Ant colony system: A co-

operative learning approach to the traveling salesman problem.

IEEE Transactions on Evolutionary Computation, (), –.

Dorigo, M., Maniezzo, V., & Colorni, A. (). Positive feedback

as a search strategy. Technical Report -, Dipartimento di

Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo M., Maniezzo V., & Colorni A. (). Ant system: Optimiza-

tion by a colony of cooperating agents. IEEE Transactions on

Systems, Man, and Cybernetics – Part B, (), –.

Dorigo, M., & Stützle, T. (). Ant colony optimization. Cam-

bridge, MA: MIT Press.

Maniezzo, V. (). Exact and approximate nondeterministic

tree-search procedures for the quadratic assignment problem.

INFORMS Journal on Computing, (), –.

Stützle, T., & Hoos, H. H. (). TheMAX–MIN ant system and

local search for the traveling salesman problem. In Proceed-

ings of the Congress on Evolutionary Computation – CEC’

(pp. –). Piscataway, NJ: IEEE Press.

Stützle, T., & Hoos, H. H. ().MAX–MIN ant system. Future

Generation Computer Systems, (), –, .

Anytime Algorithm

An anytime algorithm is an algorithm whose out-

put increases in quality gradually with increased

running time. �is is in contrast to algorithms that

produce no output at all until they produce full-quality

output a�er a su�ciently long execution time.An exam-

ple of an algorithm with good anytime performance

is 7Adaptive Real-Time Dynamic Programming

(ARTDP).

AODE

7Averaged One-Dependence Estimators

Apprenticeship Learning

7Behavioral Cloning

Approximate Dynamic
Programming

7Value Function Approximation

Apriori Algorithm

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Definition
Apriori algorithm (Agrawal, Mannila, Srikant, Toivo-

nen,&Verkamo,) is a7dataminingmethodwhich
outputs all 7frequent itemsets and 7association rules
from given data.

Input: set I of items, multiset D of subsets of I , fre-
quency threshold min_ fr, and con�dence threshold

min_conf.

Output: all frequent itemsets and all valid association

rules inD.
Method:

: level := ; frequent_sets := ∅;
: candidate_sets := {{i} ∣ i ∈ I};
: while candidate_sets ≠ ∅
.: scan dataD to compute frequencies of all sets in can-
didate_sets;

.: frequent_sets := frequent_sets ∪ {C ∈ candi-
date_sets ∣ frequency(C) ≥ min_ fr};
. level := level + ;
.: candidate_sets := {A ⊂ I ∣ ∣A∣ = level and B ∈
frequent_sets for all B ⊂ A, ∣B∣ = level − };

Artificial Immune Systems A

A: output frequent_sets;

: for each F ∈ frequent_sets
.: for each E ⊂ F,E ≠ ∅,E ≠ F

..: if frequency(F)/frequency(E) ≥ min_conf then

output association rule E → (F / E)

�e algorithm �nds frequent itemsets (lines -) by

a breadth-�rst, general-to-speci�c search. It generates

and tests candidate itemsets in batches, to reduce the

overhead of database access.�e search starts with the

most general itemset patterns, the singletons, as can-

didate patterns (line).�e algorithm then iteratively

computes the frequencies of candidates (line .) and

saves those that are frequent (line .). �e crux of

the algorithm is in the candidate generation (line .):

on the next level, those itemsets are pruned that have

an infrequent subset. Obviously, such itemsets cannot

be frequent. �is allows Apriori to �nd all frequent

itemset without spending too much time on infrequent

itemsets. See7frequent pattern and7constraint-based
mining for more details and extensions.

Finally, the algorithm tests all frequent association

rules and outputs those that are also con�dent (lines

-..).

Cross References
7Association Rule
7Basket Analysis
7Constraint-Based Mining
7Frequent Itemset
7Frequent Pattern

Recommended Reading
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I.

(). Fast discovery of association rules. In U. M. Fayyad,

G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),

Advances in knowledge discovery and data mining (pp. –

s). Menlo Park: AAAI Press.

Area Under Curve

Synonyms
AUC

Definition
�e area under curve (AUC) statistic is an empirical

measure of classi�cation performance based on the area

under an ROC curve. It evaluates the performance of a

scoring classi�er on a test set, but ignores the magni-

tude of the scores and only takes their rank order into

account. AUC is expressed on a scale of to , where

 means that all negatives are ranked before all posi-

tives, and means that all positives are ranked before

all negatives. See7ROC Analysis.

AQ

7Rule Learning

ARL

7Average-Reward Reinforcement Learning

ART

7Adaptive Resonance�eory

ARTDP

7Adaptive Real-Time Dynamic Programming

Artificial Immune Systems

Jon Timmis

University of York, Heslington, North Yorkshire, UK

Synonyms
AIS; Immune computing; Immune-inspired computing;

Immunocomputing; Immunological computation

Definition
Arti�cial immune systems (AIS) have emerged as a

computational intelligence approach that shows great

promise. Inspired by the complexity of the immune

system, computer scientists and engineers have created

systems that in some way mimic or capture certain

computationally appealing properties of the immune

system, with the aim of buildingmore robust and adapt-

able solutions. AIS have been de�ned by de Castro and

Timmis () as:

 A Artificial Immune Systems

▸ adaptive systems, inspired by theoretical immunology

and observed immune functions, principle and models,

which are applied to problem solving

AIS are not limited to machine learning systems, there

are a wide variety of other areas in which AIS are devel-

oped such as optimization, scheduling, fault tolerance,

and robotics (Hart&Timmis,).Within the context

ofmachine learning, both supervised and unsupervised

approaches have been developed. Immune-inspired

learning approaches typically develop a memory set of

detectors that are capable of classifying unseen data

items (in the case of supervised learning) or a memory

set of detectors that represent clusters within the data

(in the case of unsupervised learning). Both static and

dynamic learning systems have been developed.

Motivation and Background
�e immune system is a complex system that under-

takes a myriad of tasks. �e abilities of the immune

system have helped to inspire computer scientists to

build systems that mimic, in some way, various prop-

erties of the immune system.�is �eld of research, AIS,

has seen the application of immune-inspired algorithms

to a wide variety of areas.

�e origin of AIS has its roots in the early theoret-

ical immunology work of Farmer, Perelson, and Varela

(Farmer, Packard, & Perelson, ; Varela, Coutinho,

Dupire, & Vaz,).�ese works investigated a num-

ber of theoretical 7immune network models proposed
to describe the maintenance of immune memory in

the absence of antigen. While controversial from an

immunological perspective, these models began to give

rise to an interest from the computing community.�e

most in�uential people at crossing the divide between

computing and immunology in the early days were

Bersini and Forrest. It is fair to say that some of the

early work by Bersini () was very well rooted in

immunology, and this is also true of the early work

by Forrest (). It was these works that formed the

basis of a solid foundation for the area of AIS. In the

case of Bersini, he concentrated on the immune net-

work theory, examining how the immune systemmain-

tained its memory and how one might build models

and algorithms mimicking that property. With regard

to Forrest, her work was focused on computer security

(in particular, network intrusion detection) and formed

the basis of a great deal of further research by the com-

munity on the application of immune-inspired tech-

niques to computer security.

At about the same time as Forrest was undertak-

ing her work, other researchers began to investigate the

nature of learning in the immune system and how that

might by used to create machine learning algorithms

(Cook & Hunt,).�ey had the idea that it might

be possible to exploit the mechanisms of the immune

system (in particular, the immune network) in learn-

ing systems, so they set about doing a proof of concept

(Cook & Hunt,). Initial results were very encour-

aging, and they built on their success by applying the

immune ideas to the classi�cation of DNA sequences as

either promoter or nonpromoter classes: this work was

generalized in Timmis and Neal ().

Similar work was carried out by de Castro and

Von Zuben (), who developed algorithms for

use in function optimization and data clustering.

Work in dynamic unsupervised machine learning algo-

rithms was also undertaken, meeting with success in

works such as Neal (). In the supervised learning

domain, very little happened until the work byWatkins

() (later expanded in Watkins,) developed an

immune-based classi�er known as AIRS, and in the

dynamic supervised domain, with the work in Secker,

Freitas, and Timmis () being one of a number of

successes.

Structure of the Learning System
In an attempt to create a common basis for AIS, the

work in de Castro and Timmis () proposed the idea

of a framework for engineering AIS.�ey argued that

the case for such a framework as the existence of similar

frameworks in other biologically inspired approaches,

such as 7arti�cial neural networks (ANNs) and evolu-
tionary algorithms (EAs), has helped considerably with

the understanding and construction of such systems.

For example, de Castro and Timmis () consider a

set of arti�cial neurons, which can be arranged together

to form an ANN. In order to acquire knowledge, these

neural networks undergo an adaptive process, known as

learning or training, which alters (some of) the param-

eters within the network. �erefore, they argued that

in a simpli�ed form, a framework to design an ANN is

Artificial Immune Systems A

Acomposed of a set of arti�cial neurons, a pattern of inter-

connection for these neurons, and a learning algorithm.

Similarly, they argued that in evolutionary algorithms,

there is a set of arti�cial chromosomes representing a

population of individuals that iteratively su�er a process

of reproduction, genetic variation, and selection. As a

result of this process, a population of evolved arti�cial

individuals arises. A framework, in this case, would cor-

respond to the genetic representation of the individuals

of the population, plus the procedures for reproduc-

tion, genetic variation, and selection. �erefore, they

proposed that a framework to design a biologically

inspired algorithm requires, at least, the following basic

elements:

● A representation for the components of the system

● A set of mechanisms to evaluate the interaction of

individuals with the environment and each other.

�e environment is usually stimulated by a set of

input stimuli, one or more �tness function(s), or

other means

● Procedures of adaptation that govern the dynam-

ics of the system, i.e., how its behavior varies

over time

�is framework can be thought of as a layered

approach such as the speci�c framework for engi-

neering AIS of de Castro and Timmis () shown

in Fig. . �is framework follows the three basic

elements for designing a biologically inspired algo-

rithm just described, where the set of mechanisms for

evaluation are the a�nity measures and the procedures

of adaptation are the immune algorithms. In order to

build a system such as an AIS, one typically requires

an application domain or target function. From this

basis, the way in which the components of the sys-

tem will be represented is considered. For example, the

representation of network tra�c may well be di�erent

from the representation of a real-time embedded sys-

tem. In AIS, the way in which something is represented

is known as shape space.�ere are many kinds of shape

space, such as Hamming, real valued, and so on, each of

which carries it own bias and should be selected with

care (Freitas & Timmis,). Once the representa-

tion has been chosen, one or more a�nity measures

are used to quantify the interactions of the elements of

the system.�ere are many possible a�nity measures

(which are partially dependent upon the representation

adopted), such as Hamming and Euclidean distance

metrics. Again, each of these has its own bias, and the

a�nity function must be selected with great care, as it

can a�ect the overall performance (and ultimately the

result) of the system (Freitas & Timmis,).

Supervised Immune-Inspired Learning

�e arti�cial immune recognition system (AIRS)

algorithm was introduced as one of the �rst immune-

inspired supervised learning algorithms and has

subsequently gone through a period of study and

re�nement (Watkins,). To use classi�cations

from de Castro and Timmis (), for the proce-

dures of adaptation, AIRS is a, 7clonal selection type
of immune-inspired algorithm. �e representation

and a�nity layers of the system are standard in

Artificial Immune Systems. Figure . AIS layered framework adapted from de Castro and Timmis ()

 A Artificial Immune Systems

that any number of representations such as binary,

real values, etc., can be used with the appropriate

a�nity function. AIRS has its origin in two other

immune-inspired algorithms: CLONALG (CLONAL

Selection alGorithm) and Arti�cial Immune NEt-

work (AINE) (de Castro and Timmis,). AIRS

resembles CLONALG in the sense that both the

algorithms are concerned with developing a set of

memory cells that give a representation of the learned

environment.

AIRS is concerned with the development of a set

of memory cells that can encapsulate the training data.

�is is done in a two-stage process of �rst evolving

a candidate memory cell and then determining if this

candidate cell should be added to the overall pool of

memory cells.�e learning process can be outlined as

follows:

. For each pattern to be recognized, do

(a) Compare a training instance with all memory

cells of the same class and �nd thememory cell

with the best a�nity for the training instance.

�is is referred to as a memory cell mcmatch.

(b) Clone and mutate mcmatch in proportion to its

a�nity to create a pool of abstract B-cells.

(c) Calculate the a�nity of each B-cell with the

training instance.

(d) Allocate resources to each B-cell based on its

a�nity.

(e) Remove the weakest B-cells until the number

of resources returns to a preset limit.

(f) If the average a�nity of the surviving B-cells

is above a certain level, continue to step (g).

Else, clone and mutate these surviving B-cells

based on their a�nity and return to step (c).

(g) Choose the best B-cell as a candidate memory

cell (mccand).

(h) If the a�nity of mccand for the training

instance is better than the a�nity of mcmatch,

then add mccand to the memory cell pool.

If, in addition to this, the a�nity between

mccand and mcmatch is within a certain thresh-

old, then remove mcmatch from the memory

cell pool.

. Repeat from step (a) until all training instances

have been presented.

Once this training routine is complete, AIRS clas-

si�es the instances using k-nearest neighbor with the

developed set of memory cells.

Unsupervised Immune-Inspired Learning

�e arti�cial immune network (aiNET) algorithm was

introduced as one of the �rst immune-inspired unsu-

pervised learning algorithms and has subsequently

gone through a period of study and re�nement (de

Castro & Von Zuben,). To use classi�cations

from de Castro and Timmis (), for the proce-

dures of adaptation, aiNET is an immune network type

of immune-inspired algorithm.�e representation and

a�nity layers of the system are standard (the same as

in AIRS). aiNET has its origin in another immune-

inspired algorithms: CLONALG (the same forerunner

to AIRS), and resembles CLONALG in the sense that

both algorithms (again) are concerned with developing

a set of memory cells that give a representation of the

learnt environment. However, within aiNET there is no

error feedback into the learning process.�e learning

process can be outlined as follows:

. Randomly initialize a population P

. For each pattern to be recognized, do

(a) Calculate the a�nity of each B-cell (b) in the

network for an instance of the pattern being

learnt

(b) Select a number of elements from P into a

clonal pool C

(c) Mutate each element of C proportional to

a�nity to the pattern being learnt (the higher

the a�nity, the less mutation applied)

(d) Select the highest a�nity members of C to

remain in the set C and remove the remaining

elements

(e) Calculate the a�nity between allmembers ofC

and remove elements in C that have an a�nity

below a certain threshold (user de�ned)

(f) Combine the elements of C with the set P

(g) Introduce a random number of randomly cre-

ated elements into P to maintain diversity

. Repeat from (a) until stopping criteria is met

Once this training routine is complete, theminimum-

spanning tree algorithm is applied to the network to

extract the clusters from within the network.

Artificial Societies A

ARecommended Reading
Bersini, H. (). Immune network and adaptive control. In Pro-

ceedings of the st European conference on artificial life (ECAL)

(pp. –). Cambridge, MA: MIT Press.

Cooke, D., & Hunt, J. (). Recognising promoter sequences using

an artificial immune system. In Proceedings of intelligent systems

in molecular biology (pp. –). California: AAAI Press.

de Castro, L. N., & Timmis, J. (). Artificial immune sys-

tems: A new computational intelligence approach. New York:

Springer.

de Castro, L. N., & Von Zuben, F. J. (). aiNet: An artificial

immune network for data analysis (pp. –). Hershey, PA:

Idea Group Publishing.

Farmer, J. D., Packard, N. H., & Perelson, A. S. (). The

immune system, adaptation, and machine learning. Physica D,

, –.

Forrest, S., Perelson, A. S., Allen, L., Cherukuri, R. ().

Self–nonself discrimination in a computer. In Proceedings

of the IEEE symposium on research security and privacy

(pp. –).

Freitas, A., & Timmis, J. (). Revisiting the foundations of arti-

ficial immune systems: A problem oriented perspective, LNCS

(Vol.) (pp. –). New York: Springer.

Hart, E., & Timmis, J. (). Application Areas of AIS: The Past,

Present and the Future. Journal of Applied Soft Computing, ().

pp. –.

Neal, M. (). An artificial immune system for continuous analy-

sis of time-varying data. In J. Timmis & P. Bentley (Eds.), Pro-

ceedings of the st international conference on artificial immune

system (ICARIS) (pp. –). Canterbury, UK: University of

Kent Printing Unit.

Secker, A., Freitas, A., & Timmis, J. (). AISEC: An artificial

immune system for email classification. In Proceedings of

congress on evolutionary computation (CEC) (pp. –).

Timmis, J., & Bentley (Eds.). (). Proceedings of the st inter-

national conference on artificial immune system (ICARIS).

Canterbury, UK: University of Kent Printing Unit.

Timmis, J., & Neal, M. (). A resource limited artificial immune

system for data analysis. Knowledge Based Systems, (–),

–.

Varela, F., Coutinho, A., Dupire, B., & Vaz, N. (). Cognitive net-

works: Immune, neural and otherwise. Journal of Theoretical

Immunology, , –.

Watkins, A. (). AIRS: A resource limited artificial immune

classifier. Master’s thesis, Mississippi State University.

Watkins, A. (). Exploiting immunological metaphors in the

development of serial, parallel and distributed learning algo-

rithms. PhD thesis, University of Kent.

Artificial Life

Arti�cial Life is an interdisciplinary research area trying

to reveal and understand the principles and organiza-

tion of living systems. Its main goal is to arti�cially

synthesize life-like behavior from scratch in computers

or other arti�cial media. Important topics in arti�cial

life include the origin of life, growth and develop-

ment, evolutionary and ecological dynamics, adaptive

autonomous robots, emergence and self-organization,

social organization, and cultural evolution.

Artificial Neural Networks

(ANNs) is a computational model based on biologi-

cal neural networks. It consists of an interconnected

group of arti�cial neurons and processes information

using a connectionist approach to computation. Inmost

cases an ANN is an adaptive system that changes its

structure based on external or internal information

that �ows through the network during the learning

phase.

Cross References
7Adaptive Resonance�eory
7Backpropagation
7Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

7Boltzmann Machines
7Cascade Correlation
7Competitive Learning
7Deep Belief Networks
7Evolving Neural Networks
7Hypothesis Language
7Neural Network Topology
7Neuroevolution
7Radial Basis Function Networks
7Reservoir Computing
7Self-Organizing Maps
7Simple Recurrent Networks
7Weights

Artificial Societies

Jürgen Branke

University of Warwick, Coventry, UK

Synonyms
Agent-based computational models; Agent-based

modeling and simulation; Agent-based simulation

models

 A Artificial Societies

Definition
An arti�cial society is an agent-based, computer-

implemented simulation model of a society or group

of people, usually restricted to their interaction in a

particular situation. Arti�cial societies are used in eco-

nomics and social sciences to explain, understand, and

analyze socioeconomic phenomena.�ey provide sci-

entists with a fully controllable virtual laboratory to

test hypotheses and observe complex system behavior

emerging as result of the 7agents’ interaction. �ey
allow formalizing and testing social theories by using

computer code, and make it possible to use experi-

mental methods with social phenomena, or at least

with their computer representations, on a large scale.

Because the designer is free to choose any desired

7agent behavior as long as it can be implemented,
research based on arti�cial societies is not restricted

by assumptions typical in classical economics, such as

homogeneity and full rationality of agents. Overall, arti-

�cial societies have added an all new dimension to

research in economics and social sciences and have

resulted in a new research �eld called “agent-based

computational economics.”

Arti�cial societies should be distinguished from vir-

tual worlds and7arti�cial life.�e term virtual world is
usually used for virtual environments to interact with,

as, e.g., in computer games. In arti�cial life, the goal

is more to learn about biological principles, under-

stand how life could emerge, and create life within a

computer.

Motivation and Background
Classical economics can be roughly divided into

analytical and empirical approaches. �e former uses

deduction to derive theorems from assumptions.

�ereby, analytical models usually include a num-

ber of simplifying assumptions in order to keep the

model tractable, the most typical being full rationality

and homogeneity of agents. Also, analytical economics

is o�en limited to equilibrium calculations. Classical

empirical economics collects data from the real world,

and derives patterns and regularities inductively. In

recent years, the tremendous increase in available com-

putational power gave rise to a new branch of eco-

nomics and sociologywhich uses simulation of arti�cial

societies as a tool to generate new insights.

Arti�cial societies are agent-based, computer-

implemented simulation models of real societies or a

group of people in a speci�c situation. �ey are built

from the bottom up, by specifying the behavior of

the agents in di�erent situations. �e simulation then

reveals the emerging global behavior of the system,

and thus provides a link between micro-level behavior

of the agents and macro-level characteristics of the

system. Using simulation, researchers can now carry

out social experiments under fully controlled and

reproducible laboratory conditions, trying out di�erent

con�gurations and observing the consequences.

Like deduction, simulation models are based on a

set of clearly speci�ed assumptions as written down

in a computer program. �is is then used to generate

data, from which regularities and patterns are derived

inductively. As such, research based on arti�cial soci-

eties stands somewhere between the classical analytical

and empirical social sciences.

One of the main advantages of arti�cial societies

is that they allow to consider very complex scenarios

where agents are heterogeneous, boundedly rational, or

have the ability to learn. Also, they allow to observe

evolution over time, instead of just the equilibrium.

Arti�cial societies can be used for many purposes,

e.g.:

. Veri�cation: Test a hypothesis or theory by examin-

ing its validity in relevant, clearly de�ned scenarios.

. Explanation: Construct an arti�cial society which

shows the same behavior as the real society.�en

analyze themodel to explain the emergent behavior.

. Prediction: Run a model of an existing society into

the future. Also, feed the model with di�erent input

parameters and use the result as a prediction onhow

the society would react.

. Optimization: Test di�erent strategies in the sim-

ulation environment, trying to �nd a best possible

strategy.

. Existence proof: Demonstrate that a speci�c sim-

ulation model is able to generate a certain global

behavior.

. Discovery: Play around with parameter settings,

discovering new interdependencies and gaining

new insights.

. Training and education: Use simulation as demon-

strator.

Artificial Societies A

AStructure of the Learning System
Using arti�cial societies requires the usual steps in

model building and experimental science, including

. Developing a conceptual model

. Building the simulation model

. Veri�cation (making sure the model is correct)

. Validation (making sure the model is suitable to

answer the posed questions)

. Simulation and analysis using an appropriate exper-

imental design.

Arti�cial society is an interdisciplinary research area

involving, among others, computer science, psychology,

economics, sociology, and biology.

Important Aspects

�e modeling, simulation, and analysis process des-

cribed in the previous section is rather complex and

only remotely connected to machine learning. �us,

instead of a detailed description of all steps, the follow-

ing focuses on aspects particularly interesting from a

machine learning point of view.

Modeling Learning

One of the main advantages of arti�cial societies is

that they can account for boundedly rational and learn-

ing agents. For that, one has to specify (in form of a

program) exactly how agents decide and learn.

In principle, all the learning algorithms developed in

machine learning could be used, and many have been

used successfully, including 7reinforcement learning,
7arti�cial neural networks, and 7evolutionary algo-
rithms. However, note that the choice of a learning

algorithm is not determined by its learning speed and

e�ciency (as usual in machine learning), but by how

well it re�ects human learning in the considered sce-

nario, at least if the goal is to construct an arti�cial

society which allows conclusions to be transferred to

the real world. As a consequence,many learningmodels

used in arti�cial societies are motivated by psychology.

�e idea of themost suitablemodel depends on the sim-

ulation context, e.g., on whether the simulated learning

process is conscious or nonconscious, or on the time

and e�ort an individual may be expected to spend on

a particular decision.

Besides individual learning (i.e., learning from

own past experience), arti�cial societies usually feature

social learning (where one agent learns by observing

others), and cultural learning (e.g., the evolution of

norms). While the latter simply emerges from the inter-

action of the agents, the former has to be modeled

explicitly. Several di�erent models for learning in arti�-

cial societies are discussed in Brenner ().

One popular learning paradigm which can be used

as a model for individual as well as social learning

are 7evolutionary algorithms (EAs). Several studies
suggest that EAs are indeed an appropriate model for

learning in arti�cial societies, either based on compar-

isons of simulations with human subject experiments or

based on comparisons with other learning mechanisms

such as reinforcement learning (Du�y,). As EAs

are successful search strategies, they seem particularly

suitable if the space of possible actions or strategies is

very large.

If used tomodel individual learning, each agent uses

a separate EA to search for a better personal solution.

In this case, the EA population represents the di�er-

ent alternative actions or strategies that an agent con-

siders. �e genetic operators crossover and mutation

are clearly related to two major ingredients of human

innovation: combination and variation. Crossover can

be seen as deriving a new concept by combining two

known concepts, and mutation corresponds to a small

variation of an existing concept. So, the agent, in some

sense, creatively tries out new possibilities. Selection,

which favors the best solutions found so far, models the

learning part. A solution’s quality is usually assessed by

evaluating it in a simulation assuming all other agents

keep their behavior.

For modeling social learning, EAs can be used in

two di�erent ways. In both cases, the population rep-

resents the actions or strategies of the di�erent agents

in the population. From this it follows that the popu-

lation size corresponds to the number of agents in the

simulation. Fitness values are calculated by running the

simulation and observing how the di�erent agents per-

form. Crossover is now seen as a model for information

exchange, or imitation, among agents. Mutation, as in

the individual learning case, is seen as a small variation

of an existing concept.

�e �rst social learning model simply uses a stan-

dard EA, i.e., selection chooses agents to “reproduce,”

 A Artificial Societies

and the resulting new agent strategy replaces an old

strategy in the population. While allowing to use stan-

dard EA libraries, this approach does not provide

a direct link between agents in the simulation and

individuals in the EA population. In the second social

learning model, each agent directly corresponds to an

individual in the EA. In every iteration, each agent cre-

ates and tests a new strategy as follows. First, it selects a

“donor” individual, with preference to successful indi-

viduals.�en it performs a crossover of its own strategy

and the donor’s strategy, andmutates the result.�is can

be regarded as an agent observing other agents, and par-

tially adopting the strategies of successful other agents.

�en, the resulting new strategy is tested in a “thought

experiment,” by testing whether the agent would be bet-

ter o� with the new strategy compared with its current

strategy, assuming all other agents keep their behavior.

If the new strategy performs better, it replaces the cur-

rent strategy in the next iteration. Otherwise, the new

strategy is discarded and the agent again uses its old

strategy in the next iteration.�e testing of new strate-

gies against their parents has been termed election oper-

ator in Arifovic (), and makes sure that some very

bad and obviously implausible agent strategies never

enter the arti�cial society.

Examples

One of the �rst forerunners of arti�cial societies

was Schelling’s segregation model, . In this study,

Schelling placed some arti�cial agents of two di�erent

colors on a simple grid. Each agent follows a simple

rule: if less than a given percentage of agents in the

neighborhood had the same color, the agent moves to

a random free spot. Otherwise, it stays. As the simula-

tion shows, in this model, segregation of agent colors

could be observed even if every individual agent was

satis�ed to live in a neighborhood with only % of

its neighbors being of the same color. �us, with this

simple model, Schelling demonstrated that segregation

of races in suburbs can occur even if each individual

would be happy to live in a diverse neighborhood. Note

that the simulations were actually not implemented on

a computer but carried out by moving coins on a grid

by hand.

Other milestones in arti�cial societies are cer-

tainly the work by Epstein and Axtell on their “sug-

arscape” model (Epstein & Axtell,), and the Santa

Fe arti�cial stock market (Arthur, Holland, LeBaron,

Palmer, & Taylor,). In the former, agents popu-

late a simple grid world, with sugar growing as the

only resource. �e agents need the sugar for sur-

vival, and can move around to collect it. Axtell and

Epstein have shown that even with agents following

some very simple rules, the emerging behavior of the

overall system can be quite complex and similar in

many aspects to observations in the real world, e.g.,

showing a similar wealth distribution or population

trajectories.

�e latter is a simple model of a stock market with

only a single stock and a risk-free �xed-interest alter-

native. �is model has subsequently been re�ned and

studied by many researchers. One remarkable result of

the �rst model was to demonstrate that technical trad-

ing can actually be a viable strategy, something widely

accepted in practice, but which classical analytical eco-

nomics struggled to explain.

One of the most sophisticated arti�cial societies is

perhaps the model of the Anasazi tribe, who le� their

dwellings in the Long House Valley in northeastern

Arizona for so far unknown reasons around BC

(Axtell et al.,). By building an arti�cial society of

this tribe and the natural surroundings (climate etc.),

it was possible to replicate macro behavior which is

known to have occurred and provide a possible expla-

nation for the sudden move.

�e NewTies project (Gilbert et al.,) has a dif-

ferent and quite ambitious focus: it constructs arti�cial

societies with the hope of an emerging arti�cial lan-

guage and culture, which then might be studied to help

explain how language and culture formed in human

societies.

Software Systems

Agent-based simulations can be facilitated by using

specialized so�ware libraries such as Ascape, Netlogo,

Repast, StarLogo, Mason, and Swarm. A comparison of

di�erent libraries can be found in Railsback, Lytinen,

and Jackson ().

Applications
Arti�cial societies have many practical applications,

from rather simple simulation models to very com-

plex economic decision problems, examples include

Association Rule A

Atra�c simulation, market design, evaluation of vaccina-

tion programs, evacuation plans, or supermarket layout

optimization. See, e.g., Bonabeau () for a discus-

sion of several such applications.

Future Directions, Challenges
�e science on arti�cial societies is still at its infancy,

but the �eld is burgeoning and has already produced

some remarkable results. Major challenges lie in the

model building, calibration, and validation of the arti-

�cial society simulation model. Despite several agent-

based modeling toolkits available, there is a lot to be

gained by making them more �exible, intuitive, and

user-friendly, allowing to construct complex models

simply by selecting and combining provided building

blocks of agent behavior. 7Behavioral Cloning may
be a suitable machine learning approach to generate

representative agent models.

Cross References
7Arti�cial Life
7Behavioral Cloning
7Co-Evolutionary Learning
7Multi-Agent Learning

Recommended Reading
Agent-based computational economics, website maintained by Tes-

fatsion ()

Axelrod: The Complexity of Cooperation: Agent-Based Models of

Competition and Collaboration (Axelrod,)

Bonabeau: Agent-based modeling (Bonabeau,)

Brenner: Agent learning representation: Advice on modeling eco-

nomic learning (Brenner,)

Epstein: Generative social science (Epstein,)

Journal of Artificial Societies and Social Simulation ()

Tesfatsion and Judd (eds.): Handbook of computational economics

(Tesfatsion & Judd,)

Arifovic, J. (). Genetic algorithm learning and the cobweb-

model. Journal of Economic Dynamics and Control, ,

–.

Arthur, B., Holland, J., LeBaron, B., Palmer, R., & Taylor, P.

(). Asset pricing under endogenous expectations in an

artificial stock market. In B. Arthur et al., (Eds.), The econ-

omy as an evolvin complex system II (pp. –). Boston:

Addison-Wesley.

Axelrod, R. (). The complexity of cooperation: Agent-based mod-

els of competition and collaboration. Princeton, NJ: Princeton

University Press.

Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund,

A. C., Harburger, J., et al. (). Population growth and

collapse in a multiagent model of the kayenta anasazi in long

house valley. Proceedings of the National Academy of Sciences,

, –.

Bonabeau, E. (). Agent-based modeling: Methods and tech-

niques for simulating human systems. Proceedings of the

National Academy of Sciences, , –.

Brenner, T. (). Agent learning representation: Advice on mod-

elling economic learning. In L. Tesfatsion & K. L. Judd, (Eds.),

Handbook of computational economics (Vol. , pp.–).

Amsterdam: North-Holland.

Duffy, J. (). Agent-based models and human subject exper-

iments. In L. Tesfatsion & K. L. Judd, (Eds.), Handbook of

computational economics (Vol. , pp.–). Amsterdam:

North-Holland.

Epstein, J. M. (). Generative social science: Studies in agent-

based computational modeling. Princeton, NJ: Princeton Uni-

versity Press.

Epstein, J. M., & Axtell, R. (). Growing artificial societies. Wash-

ington, DC: Brookings Institution Press.

Gilbert, N., den Besten, M., Bontovics, A., Craenen, B. G. W.,

Divina, F., Eiben, A. E., et al. (). Emerging artifi-

cial societies through learning. Journal of Artificial Societies

and Social Simulation, (). http://jasss.soc.surrey.ac.uk///.

html.

Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (). Agent-based

simulation platforms: Review and development recommenda-

tions. Simulation, (), –.

Schelling, T. C. (). Dynamic models of segregation. Journal of

Mathematical Sociology, , –.

Tesfatsion, L. (). Website on agent-based computa-

tional economics. http://www.econ.iastate.edu/tesfatsi/ace.

htm.

Tesfatsion, L., & Judd, K. L. (Eds.) (). Handbook of computa-

tional economics – Vol : Agent-based computational economics.

Amsterdam: Elsevier.

The journal of artificial societies and social simulation. http://

jasss.soc.surrey.ac.uk/JASSS.html.

Assertion

In 7Minimum Message Length, the code or language
shared between sender and receiver that is used to

describe the model.

Association Rule

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Definition
Association rules (Agrawal, Imieliński, & Swami,)

can be extracted from data sets where each example

http://jasss.soc.surrey.ac.uk/9/2/9.html.
http://www.econ.iastate.edu/tesfatsi/ace.htm.
http://jasss.soc.surrey.ac.uk/JASSS.html.

 A Associative Bandit Problem

consists of a set of items. An association rule has the

form X → Y , where X and Y are 7itemsets, and the
interpretation is that if set X occurs in an example, then

set Y is also likely to occur in the example.

Each association rule is usually associated with

two statistics measured from the given data set. �e

frequency or support of a ruleX → Y , denoted fr(X→Y),
is the number (or alternatively the relative frequency)

of examples in which X ∪ Y occurs. Its con�dence, in

turn, is the observed conditional probability P(Y ∣ X) =
fr(X ∪ Y)/fr(X).

�e7Apriori algorithm (Agrawal,Mannila, Srikant,
Toivonen & Verkamo,) �nds all association rules,

between any sets X and Y , which exceed user-speci�ed

support and con�dence thresholds. In association rule

mining, unlike in most other learning tasks, the result

thus is a set of rules concerning di�erent subsets of the

feature space.

Association rules were originally motivated by

supermarket 7basket analysis, but as a domain inde-
pendent technique they have found applications in

numerous �elds. Association rule mining is part of the

larger �eld of 7frequent itemset or 7frequent pattern
mining.

Cross References
7Apriori Algorithm
7Basket Analysis
7Frequent Itemset
7Frequent Pattern

Recommended Reading
Agrawal, R., Imieliński, T., & Swami, A. (). Mining association

rules between sets of items in large databases. In Proceedings

of the ACM SIGMOD international conference on man-

agement of data, Washington, DC (pp. –). New York:

ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I.

(). Fast discovery of association rules. In U. M. Fayyad,

G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),

Advances in knowledge discovery and data mining (pp. –).

Menlo Park: AAAI Press.

Associative Bandit Problem

7Associative Reinforcement Learning

Associative Reinforcement Learning

Alexander L. Strehl

Rütgers University, USA

Synonyms
Associative bandit problem; Bandit problem with side

information; Bandit problem with side observations;

One-step reinforcement learning

Definition
�e associative reinforcement-learning problem is a spe-

ci�c instance of the 7reinforcement learning problem

whose solution requires generalization and exploration

but not temporal credit assignment. In associative rein-

forcement learning, an action (also called an arm) must

be chosen from a �xed set of actions during succes-

sive timesteps and from this choice a real-valued reward

or payo� results. On each timestep, an input vector is

provided that along with the action determines, o�en

probabilistically, the reward. �e goal is to maximize

the expected long-term reward over a �nite or in�nite

horizon. It is typically assumed that the action choices

do not a�ect the sequence of input vectors. However,

even if this assumption is not asserted, learning algo-

rithms are not required to infer or model the relation-

ship between input vectors from one timestep to the

next. Requiring a learning algorithm to discover and

reason about this underlying process results in the full

reinforcement learning problem.

Motivation and Background
�e problem of associative reinforcement learning may

be viewed as connecting the problems of 7supervised
learning or 7classi�cation, which is more speci�c, and
reinforcement learning, which ismore general. Its study

is motivated by real-world applications such as choos-

ing which internet advertisements to display based on

information about the user or choosing which stock to

buy based on current information related to themarket.

Both problems are distinguished from supervised learn-

ing by the absence of labeled training examples to learn

from. For instance, in the advertisement problem, the

learner is never told which ads would have resulted in

the greatest expected reward (in this problem, reward is

Associative Reinforcement Learning A

Adetermined bywhether an ad is clicked onor not). In the

stock problem, the best choice is never revealed since

the choice itself a�ects the future price of the stocks and

therefore the payo�.

The Learning Setting
�e learning problem consists of the following core

objects:

● An input space X , which is a set of objects (o�en a
subset of the n-dimension Euclidean space Rn).

● A set of actions or armsA, which is o�en a �nite set
of size k.

● A distributionD overX . In some cases,D is allowed
to be time-dependent and may be denoted Dt on

timestep t for t = , ,

A learning sequence proceeds as follows. During

each timestep t = , , . . ., an input vector xt ∈ X is
is drawn according to the distribution D and is pro-

vided to the algorithm.�e algorithm selects an aarm

at at ∈ A. �is choice may be stochastic and depend
on all previous inputs and rewards observed by the

algorithm as well as all previous action choices made

by the algorithm for timesteps t = , , �en, the
learner receives a payo� rt generated according to some

unknown stochastic process that depends only on the xt
and at .�e informal goal is to maximize the expected

long-term payo�. Let π : X → A be any policy that
maps input vectors to actions. Let

Vπ(T) := E [
T

∑
i=

ri ∣ ai = π(xi) for i = , , . . . ,T] ()

denotes the expected total reward over T steps obtained

by choosing arms according to policy π.�e expecta-

tion is taken over any randomness in the generation of

input vectors xi and rewards ri.�e expected regret of a

learning algorithmwith respect to policy π is de�ned as

Vπ(T)−E[∑T
i= ri] the expected di�erence between the

return from following policy π and the actual obtained

return.

Power of Side Information

Wang, Kulkarni, and Poor () studied the associa-

tive reinforcement learning problem from a statistical

viewpoint.�ey considered the setting with two action

and analyzed the expected inferior sampling time, which

is the number of times that the lesser action, in terms

of expected reward, is selected. �e function map-

ping input vectors to conditional reward distributions

belongs to a known parameterized class of functions,

with the true parameters being unknown. �ey show

that, under some mild conditions, an algorithm can

achieve �nite expected inferior sampling time. �is

demonstrates the power provided by the input vec-

tors (also called side observations or side information),

because such a result is not possible in the stan-

dardmulti-armed bandit problem, which corresponds to

the associative reinforcement-learning problem with-

out input vectors xi. Intuitively, this type of result is

possible when the side information can be used to infer

the payo� function of the optimal action.

Linear Payoff Functions

In its most general setting, the associative reinforce-

ment learning problem is intractable. Oneway to rectify

this problem is to assume that the payo� function is

described by a linear system. For instance, Abe and

Long () and Auer () consider a model where

during each timestep t, there is a vector zt,i associ-

ated with each arm i. �e expected payo� of pulling

arm i on this timestep is given by θTzt,i where θ is an

unknown parameter vector and θT denotes the trans-

pose of f . �is framework maps to the framework

described above by taking xt = (zt,, zt,, . . . , zt,k).�ey
assume a time-dependent distribution D and focus on

obtaining bounds on the regret against the optimal

policy. Assuming that all rewards lie in the interval

[,], the worst possible regret of any learning algo-
rithm is linear. When considering only the number

of timesteps T, Auer () shows that a regret (with

respect to the optimal policy) of O(
√
T ln(T)) can be

obtained.

PAC Associative Reinforcement Learning

�e previously mentioned works analyze the growth

rate of the regret of a learning algorithm with respect to

the optimal policy. Another way to approach the prob-

lem is to allow the learner some number of timesteps of

exploration. A�er the exploration trials, the algorithm

is required to output a policy. More speci�cally, given

inputs < є < and < δ < , the algorithm is

 A Attribute

required to output an є-optimal policy with probability

at least − δ.�is type of analysis is based on the work

by Valiant (), and learning algorithms satisfying

the above condition are termed probably approximately

correct (PAC).

Motivated by the work of Kaelbling (), Fiechter

() developed a PAC algorithm when the true pay-

o� function can be described by a decision list over the

action and input vector. Building on both works, Strehl,

Mesterharm, Littman, and Hirsh () showed that

a class of associative reinforcement learning problems

can be solved e�ciently, in a PAC sense, when given a

learning algorithm for e�ciently solving classi�cation

problems.

Recommended Reading
Section . of the survey by Kaelbling, Littman, and Moore ()

presents a nice overview of several techniques for the asso-

ciative reinforcement-learning problem, such as CRBP (Ack-

ley and Littman,), ARC (Sutton,), and REINFORCE

(Williams,).

Abe, N., & Long, P. M. (). Associative reinforcement learning

using linear probabilistic concepts. In Proceedings of the th

international conference on machine learning (pp. –).

Ackley, D. H., & Littman, M. L. (). Generalization and scaling

in reinforcement learning. In Advances in neural information

processing systems (pp. –). San Mateo, CA: Morgan

Kaufmann.

Auer, P. (). Using confidence bounds for exploitation–

exploration trade-offs. Journal of Machine Learning Research,

, –.

Fiechter, C.-N. (). PAC associative reinforcement learning.

Unpublished manuscript.

Kaelbling, L. P. (). Associative reinforcement learning: Func-

tions in k-DNF. Machine Learning, , –.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (). Rein-

forcement learning: A survey. Journal of Artificial Intelligence

Research, , –.

Strehl, A. L., Mesterharm, C., Littman, M. L., & Hirsh, H.

(). Experience-efficient learning in associative bandit

problems. In ICML-: Proceedings of the rd interna-

tional conference on machine learning, Pittsburgh, Pennsylvania

(pp. –).

Sutton, R. S. (). Temporal credit assignment in reinforcement

learning. Doctoral dissertation, University of Massachusetts,

Amherst, MA.

Valiant, L. G. (). A theory of the learnable. Communications of

the ACM, , –.

Wang, C.-C., Kulkarni, S. R., & Poor, H. V. (). Bandit prob-

lems with side observations. IEEE Transactions on Automatic

Control, , –.

Williams, R. J. (). Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

Learning, , –.

Attribute

Chris Drummond

National Research Council of Canada, Ottawa, ON,

Canada

Synonyms
Characteristic; Feature; Property; Trait

Definition
Attributes are properties of things, ways that we, as

humans, might describe them. If we were talking about

the appearance of our friends, we might describe one of

them as “sex female,” “hair brown,” “height � in.” Lin-

guistically, this is rather terse, but this very terseness has

the advantage of limiting ambiguity.�e attributes are

sex, hair color, andheight. For each friend,we could give

the appropriate values to go along with each attribute,

some examples are shown in Table . Attribute-value

pairs are a standard way of describing things within

the machine learning community. Traditionally, values

have come in one of three types: binary, sex has two val-

ues; nominal, hair color has many values; real, height

has an ordered set of values. Ideally, the attribute-value

pairs are su�cient to describe some things accurately

and to tell them apart from others. What might be

described is very varied, so the attributes themselves

will vary widely.

Motivation and Background
For machine learning to be successful, we need a lan-

guage to describe everyday things that is su�ciently

powerful to capture the similarities and di�erences

between them and yet is computationally easy to man-

age.�e idea that a su�cient number of attribute-value

Attribute. Table Some friends

Sex Hair color Height

Male Black ft in.

Female Brown ft in.

Female Blond ft in.

Male Brown ft in.

Attribute A

Apairs would meet this requirement is an intuitive one.

It has also been studied extensively in philosophy and

psychology, as a way that humans represent thingsmen-

tally. In the early days of arti�cial intelligence research,

the frame (Minsky,) became a common way of

representing knowledge.We have, in many ways, inher-

ited this representation, attribute-value pairs sharing

much in common with the labeled slots for values used

in frames. In addition, the data formany practical prob-

lems comes in this form. Popular methods of storing

and manipulating data such as relational databases,

and less formal structures such as spread sheets, have

columns as attributes and cells as values. So, attribute-

value pairs are a ubiquitous way of representing

data.

Future Directions
�e notion of an attribute-value pair is so well

entrenched in machine learning that it is di�cult to

perceive what might replace it. As, in many practical

applications, the data comes in this form, this repre-

sentation will undoubtedly be around for some time.

One change that is occurring is the growing complex-

ity of attribute-values. Traditionally, we have used the

simple value types, binary, nominal, and real, discussed

earlier. But to e�ectively describe many things, we need

to extend this simple language and use more complex

values. For example, in 7data mining applied to mul-
timedia, more new complex representations abound.

Sound and video streams, images, and various proper-

ties of them, are just a few examples (Cord et al., ;

Simo� & Djeraba,).

Perhaps, the most signi�cant change is away

from attributes, albeit with complex values, to struc-

tural forms where the relationship between things is

included. As Quinlan () states “Data may concern

objects or observations with arbitrarily complex struc-

ture that cannot be captured by the values of a prede-

termined set of attributes.”�ere is a large and growing

community of researchers in7relational learning.�is
is evidenced by the number, and growing frequency,

of recent workshops at the International Conference

for Machine Learning (Cord et al., ; De Raedt

& Kramer, ; Dietterich, Getoor, & Murphy, ;

Fern, Getoor, & Milch,).

Limitations
In philosophy there is the idea of essence, the properties

an objectmust have to bewhat it is. Inmachine learning,

particularly in practical applications, we get what we are

given and have little control in the choice of attributes

and their range of values. If domain experts have chosen

the attributes, we might hope that they are properties

that can be readily ascertained and are relevant to the

task at the hand. For example, when describing one

of our friends, we would not say Fred is the one with

the spleen. It is not only di�cult to observe, it is also

poor at discriminating between people. Data are col-

lected for many reasons. In medical applications, all

sorts of attribute-values would be collected on patients.

Most are unlikely to be important to the current task.

An important part of learning is 7feature extraction,
determiningwhich attributes are necessary for learning.

Whether or not attribute-value pairs are an essen-

tial representation for the type of learning required in

the development, and functioning, of intelligent agents,

remains to be seen. Attribute-values readily capture

symbolic information, typically at the level of words

that humans naturally use. But if our agents need to

move around in their environment, recognizing what

they encounter, we might need a di�erent nonlin-

guistic representation. Certainly, other representations

based on a much �ner granularity of features, and

more holistic in nature, have been central to areas such

as 7neural networks for some time. In research into
7dynamic systems, attractors in a sensor space might
be more realistic that attribute-values (See chapter on

7Classi�cation).

Recommended Reading
Cord, M., Dahyot, R., Cunningham, P., & Sziranyi, T. (Eds.). ().

Workshop on machine learning techniques for processing mul-

timedia content. In Proceedings of the twenty-second interna-

tional conference on machine learning.

De Raedt, L., & Kramer, S. (Eds.). (). In Proceedings of the sev-

enteenth international conference on machine learning. Work-

shop on attribute-value and relational learning: Crossing the

boundaries, Stanford University, Palo Alto, CA.

Dietterich, T., Getoor, L., &Murphy, K. (Eds.). (). In Proceedings

of the twenty-first international conference on machine learning.

Workshop on statistical relational learning and its connections

to other fields.

Fern, A., Getoor, L., & Milch, B. (Eds.). (). In Proceedings of

the twenty-fourth international conference on machine learning.

Workshop on open problems in statistical relational learning.

 A Attribute Selection

Minsky, M. (). A framework for representing knowledge. Tech-

nical report, Massachusetts Institute of Technology, Cambridge,

MA.

Quinlan, J. R. (). Learning first-order definitions of functions.

Journal of Artificial Intelligence Research, , –.

Simoff, S. J., & Djeraba, C. (Eds.). (). In Proceedings of the

sixth international conference on knowledge discovery and data

mining. Workshop on multimedia data mining.

Attribute Selection

7Feature Selection

Attribute-Value Learning

Attribute-value learning refers to any learning task in

which the each 7Instance is described by the values
of some �nite set of attributes (see 7Attribute). Each
of these instances is o�en represented as a vector of

attribute values, each position in the vector correspond-

ing to a unique attribute.

AUC

7Area Under Curve

Autonomous Helicopter Flight Using
Reinforcement Learning

Adam Coates, Pieter Abbeel, Andrew Y. Ng

Stanford University, Stanford, CA, USA
University of California, Berkeley, CA, USA
Stanford University, Stanford, CA, USA

Definition
Helicopter �ight is a highly challenging control prob-

lem. While it is possible to obtain controllers for simple

maneuvers (like hovering) by traditional manual design

procedures, this approach is tedious and typically

requires many hours of adjustments and �ight testing,

even for an experienced control engineer. For complex

maneuvers, such as aerobatic routines, this approach

is likely infeasible. In contrast, 7reinforcement learn-
ing (RL) algorithms enable faster and more automated

design of controllers. Model-based RL algorithms have

been used successfully for autonomous helicopter �ight

for hovering, forward �ight and, using apprenticeship

learning methods for expert-level aerobatics. In model-

based RL, �rst one builds a model of the helicopter

dynamics and speci�es the task using a reward func-

tion. �en, given the model and the reward function,

the RL algorithm �nds a controller that maximizes the

expected sum of rewards accumulated over time.

Motivation and Background
Autonomous helicopter �ight represents a challenging

control problem and is widely regarded as being signi�-

cantly harder than control of �xed-wing aircra�. (See,

e.g., Leishman, (); Seddon, ()). At the same

time, helicopters provide unique capabilities such as in-

place hover, vertical takeo� and landing, and low-speed

maneuvering. �ese capabilities make helicopter con-

trol an important research problem for many practical

applications.

Building autonomous �ight controllers for heli-

copters, however, is far from trivial. When done

by hand, it can require many hours of tuning by

experts with extensive prior knowledge about heli-

copter dynamics. Meanwhile, the automated develop-

ment of helicopter controllers has been a major success

story for RL methods. Controllers built using RL algo-

rithms have established state-of-the-art performance

for both basic �ight maneuvers, such as hovering and

forward �ight (Bagnell & Schneider, ; Ng, Kim,

Jordan, & Sastry,), as well as being among the

only successful methods for advanced aerobatic stunts.

Autonomous helicopter aerobatics has been success-

fully tackled using the innovation of “apprenticeship

learning,” where the algorithm learns by watching a

humandemonstrator (Abbeel&Ng,).�esemeth-

ods have enabled autonomous helicopters to �y aero-

batics as well as an expert human pilot, and o�en even

better (Coates, Abbeel, & Ng,).

Developing autonomous �ight controllers for heli-

copters is challenging for a number of reasons:

. Helicopters haveunstable, high-dimensional, asym-

metric,noisy,nonlinear,non-minimumphasedynam-

ics. As a consequence, all successful helicopter �ight

Autonomous Helicopter Flight Using Reinforcement Learning A

Acontrollers (to date) have many parameters. Con-

trollers with – gains are not atypical. Hand

engineering the right setting for each of the parame-

ters is di�cult and time consuming, especially since

their e�ects on performance are o�en highly cou-

pled through thehelicopter’s complicateddynamics.

Moreover, the unstable dynamics, especially in the

low-speed �ight regime, complicates �ight testing.

. Helicopters are underactuated: their position and

orientation is representable using six parameters,

but they have only four control inputs. �us heli-

copter control requires signi�cant planning and

making trade-o�s between errors in orientation and

errors in desired position.

. Helicopters have highly complex dynamics: Even

though we describe the helicopter as having a

twelve dimensional state (position, velocity, orien-

tation, and angular velocity), the true dynamics are

signi�cantly more complicated. To determine the

precise e�ects of the inputs, one would have to con-

sider the air�ow in a large volume around the heli-

copter, as well as the parasitic coupling between the

di�erent inputs, the engine performance, and the

non-rigidity of the rotor blades. Highly accurate

simulators are thus di�cult to create, and con-

trollers developed in simulationmust be su�ciently

robust that they generalize to the real helicopter in

spite of the simulator’s imperfections.

. Sensing capabilities are o�en poor: For small

remotely controlled (RC) helicopters, sensing is

limited because the on-board sensors must deal

with a large amount of vibration caused by the heli-

copter blades rotating at about Hz, as well as

higher frequency noise from the engine. Although

noise at these frequencies (which are well above the

roughly Hz at which the helicopter dynamics can

be modeled reasonably) might be easily removed

by low pass �ltering, this introduces latency and

damping e�ects that are detrimental to control per-

formance. As a consequence, helicopter �ight con-

trollers have to be robust to noise and/or latency in

the state estimates to work well in practice.

Typical Hardware Setup
A typical autonomous helicopter has several basic sen-

sors on board. An Inertial Measurement Unit (IMU)

measures angular rates and linear accelerations for each

of the helicopter’s three axes. A -axis magnetometer

senses the direction of the Earth’smagnetic �eld, similar

to a magnetic compass (Fig.).

Attitude-only sensing, as provided by the inertial

and magnetic sensors, is insu�cient for precise, stable

hovering, and slow-speed maneuvers. �ese maneu-

vers require that the helicopter maintain relatively

tight control over its position error, and hence high-

quality position sensing is needed. GPS is o�en used to

determine helicopter position (with carrier-phase GPS

units achieving sub-decimeter accuracy), but vision-

based solutions have also been employed (Abbeel,

Coates, Quigley, & Ng, ; Coates et al., ;

Saripalli, Montgomery, & Sukhatme,).

Vibration adds errors to the sensor measurements

and may damage the sensors themselves, hence signi�-

cant e�ort may be required to mount the sensors on the

airframe (Dunbabin, Brosnan, Roberts, &Corke,).

Provided there is no aliasing, sensor errors added by

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . (a) Stanford University’s instrumented XCell

Tempest autonomous helicopter. (b) A Bergen Industrial Twin autonomous helicopter with sensors and on-board

computer

 A Autonomous Helicopter Flight Using Reinforcement Learning

vibration can be removed by using a digital �lter on the

measurements (though, again, one must be careful to

avoid adding too much latency).

Sensor data from the aircra� sensors is used to

estimate the state of the helicopter for use by the con-

trol algorithm. �is is usually done with an extended

Kalman �lter (EKF). A unimodal distribution (as com-

puted by the EKF) su�ces to represent the uncertainty

in the state estimates and it is common practice to use

the mode of the distribution as the state estimate for

feedback control. In general the accuracy obtained with

this method is su�ciently high that one can treat the

state as fully observed.

Most autonomous helicopters have an on-board

computer that runs the EKF and the control algo-

rithm (Gavrilets, Martinos, Mettler, & Feron, a;

La Civita, Papageorgiou, Messner, & Kanade, ; Ng

et al.,). However, it is also possible to use ground-

based computers by sending sensor data by wireless

to the ground, and then transmitting control signals

back to the helicopter through the pilot’s RC transmit-

ter (Abbeel et al., ; Coates et al.,).

Helicopter State and Controls
�e helicopter state s is de�ned by its position

(px, py, pz), orientation (which could be expressed using

a unit quaternion q), velocity (vx, vy, vz) and angular

velocity (ωx,ωy,ωz).

�e helicopter is controlled via a -dimensional

action space:

. u and u:�e lateral (le�-right) and longitudinal

(front-back) cyclic pitch controls (together referred

to as the “cyclic” controls) cause the helicopter to

roll le� or right, and pitch forward or backward,

respectively.

. u: �e tail rotor pitch control a�ects tail rotor

thrust, and can be used to yaw (turn) the helicopter

about its vertical axis. In analogy to airplane con-

trol, the tail rotor control is commonly referred to

as “rudder.”

. u: �e collective pitch control (o�en referred to

simply as “collective”), increases and decreases the

pitch of the main rotor blades, thus increasing

or decreasing the vertical thrust produced as the

blades sweep through the air.

By using the cyclic and rudder controls, the pilot can

rotate the helicopter into any orientation. �is allows

the pilot to direct the thrust of the main rotor in any

particular direction, and thus �y in any direction, by

rotating the helicopter appropriately.

Helicopter Flight as an RL Problem
Formulation

A RL problem can be described by a tuple (S,A,T,H,
s(),R), which is referred to as a 7Markov decision
process (MDP). Here S is the set of states;A is the set of
actions or inputs; T is the dynamics model, which is a

set of probability distributions {Pt
su} (Pt

su(s′∣s,u) is the
probability of being in state s′ at time t + , given the
state and action at time t are s and u); H is the horizon

or number of time steps of interest; s() ∈ S is the initial
state; R : S ×A→ R is the reward function.
A policy π = (µ, µ, . . . , µH) is a tuple of map-

pings from states S to actions A, one mapping for
each time t = , . . . ,H. �e expected sum of rewards
when acting according to a policy π is given by:

U(π) = E[∑H
t = R(s(t),u(t))∣π].�e optimal policy π∗

for an MDP (S,A,T,H, s(),R) is the policy that max-
imizes the expected sum of rewards. In particular, the

optimal policy is given by: π∗ = argmaxπ U(π).
�e common approach to �nding a good policy

for autonomous helicopter �ight proceeds in two steps:

First one collects data frommanual helicopter �ights to

build a model (One could also build a helicopter model

by directlymeasuring physical parameters such asmass,

rotor span, etc. However, even when this approach is

pursued, one o�en resorts to collecting �ight data to

complete the model.).�en one solves the MDP com-

prised of the model and some chosen reward function.

Although the controller obtained, in principle, is only

optimal for the learned simulator model, it has been

shown in various settings that optimal controllers per-

form well even when the model has some inaccuracies

(see, e.g., Anderson & Moore, ()).

Modeling

One way to create a helicopter model is to use direct

knowledge of aerodynamics to derive an explicit math-

ematical model. �is model will depends on a num-

ber of parameters that are particular to the helicopter

Autonomous Helicopter Flight Using Reinforcement Learning A

Abeing �own. Many of the parameters may be mea-

sured directly (e.g., mass, rotational inertia), while oth-

ers must be estimated from �ight experiments. �is

approach has been used successfully on several systems

(see, e.g., (Gavrilets,Martinos,Mettler, & Feron, b;

Gavrilets, Mettler, & Feron, ; La Civita,)).

However, substantial expert aerodynamics knowledge

is required for this modeling approach. Moreover, these

models tend to cover only a limited fraction of the �ight

envelope.

Alternatively, one can learn a model of the dynam-

ics directly from �ight data, with only limited a priori

knowledge of the helicopter’s dynamics. Data is usually

collected from a series of manually controlled �ights.

�ese �ights involve the human sweeping the control

sticks back and forth at varying frequencies to cover as

much of the �ight envelope as possible, while record-

ing the helicopter’s state and the pilot inputs at each

instant.

Given a corpus of �ight data, various di�erent learn-

ing algorithms can be used to learn the underlying

model of the helicopter dynamics.

If one is only interested in a single �ight regime,

one could learn a linear model that maps from the

current state and action to the next state. Such a model

can be easily estimated using7linear regression (While
the methods presented here emphasize time-domain

estimation, frequency domain estimation is also pos-

sible for the special case of estimating linear models

(Tischler & Cau�man,).). Linear models are

restricted to small �ight regimes (e.g., hover or inverted

hover) and do not immediately generalize to full-

envelope �ight. To cover a broader �ight regime, non

parametric algorithms such as locally-weighted linear

regression have been used (Bagnell & Schneider, ;

Ng et al.,). Non parametric models that map from

current state and action to next state can, in princi-

ple, cover the entire �ight regime. Unfortunately, one

must collect large amounts of data to obtain an accu-

rate model and the models are o�en quite slow to

evaluate.

An alternative way to increase the expressiveness of

the model, without resorting to non parametric meth-

ods, is to consider a time-varying model where the

dynamics are explicitly allowed to depend on time. One

can then proceed to compute simpler (say, linear) para-

metric models for each choice of the time parameter.

�is method is e�ective when learning a model spe-

ci�c to a trajectory whose dynamics are repeatable but

vary as the aircra� travels along the trajectory. Since

this method can also require a great deal of data (simi-

lar to nonparametric methods) in practice, it is helpful

to begin with a non-time-varying parametric model �t

from a large amount of data, and then augment it with

a time-varying component that has fewer parameters

(Abbeel, Quigley, & Ng, ; Coates et al.,).

One can also take advantage of symmetry in the

helicopter dynamics to reduce the amount of data

needed to �t a parametric model. In Abbeel, Ganap-

athi, andNg () observe that – in a coordinate frame

attached to the helicopter – the helicopter dynamics

are essentially the same for any orientation (or posi-

tion) once the e�ect of gravity is removed.�ey learn

a model that predicts (angular and linear) accelera-

tions – except for the e�ects of gravity – in the helicopter

frame as a function of the inputs and the (angu-

lar and linear) velocity in the helicopter frame. �is

leads to a lower-dimensional learning problem, which

requires signi�cantly less data. To simulate the heli-

copter dynamics over time, the predicted accelerations

augmented with the e�ects of gravity are integrated

over time to obtain velocity, angular rates, position, and

orientation.

Abbeel et al. () used this approach to learn a

helicopter model that was later used for autonomous

aerobatic helicopter �ight maneuvers covering a large

part of the �ight envelope. Signi�cantly less data is

required to learn a model using the gravity-free param-

eterization compared to a parameterization that directly

predicts the next state as a function of current state

and actions (as was used in Bagnell and Schneider

(), Ng et al. ()). Abbeel et al. evaluate their

model by checking its simulation accuracy over longer

time scales than just a one-step acceleration predic-

tion. Such an evaluation criterionmapsmore directly to

the reinforcement learning objective of maximizing the

expected sum of rewards accumulated over time (see

also Abbeel & Ng, (b)).

�e models considered above are deterministic.

�is normally would allow us to drop the expectation

when evaluating a policy according to E[∑H
t = R(s(t),

u(t))∣π]. However, it is common to add stochasticity
to account for unmodeled e�ects. Abbeel et al. ()

and Ng et al. () include additive process noise in

 A Autonomous Helicopter Flight Using Reinforcement Learning

their models. Bagnell and Schneider () go further,

learning a distribution over models.�eir policy must

then perform well, on expectation, for a (deterministic)

model selected randomly from the distribution.

Control Problem Solution Methods

Given a model of the helicopter, we now seek a pol-

icy π that maximizes the expected sum of rewards

U(π) = E[∑H
t = R(s(t),u(t))∣π] achieved when acting

according to the policy π.

Policy Search General policy search algorithms can be

employed to search for optimal policies for the MDP

based on the learned model. Given a policy π, we can

directly try to optimize the objective U(π). Unfortu-
nately,U(π) is an expectation over a complicated distri-
butionmaking it impractical to evaluate the expectation

exactly in general.

One solution is to approximate the expectation

U(π) by Monte Carlo sampling: under certain bound-
edness assumptions the empirical average of the sum

of rewards accumulated over time will give a good

estimate Û(π) of the expectationU(π). Naively Apply-
ing Monte Carlo sampling to accurately compute, e.g.,

the local gradient from the di�erence in function value

at nearby points, requires very large amounts of samples

due to the stochasticity in the function evaluation.

To get around this hurdle, the PEGASUS algo-

rithm (Ng & Jordan,) can be used to convert the

stochastic optimization problem into a deterministic

one. When evaluating by averaging over n simulations,

PEGASUS initially �xes n random seeds. For each pol-

icy evaluation, the same n random seeds are used so

that the simulator is now deterministic. In particular,

multiple evaluations of the same policy will result in

the same computed reward. A search algorithm can

then be applied to the deterministic problem to �nd an

optimum.

�e PEGASUS algorithm coupled with a simple

local policy search was used by Ng et al. () to

develop a policy for their autonomous helicopter

that successfully sustains inverted hover. Bagnell and

Schneider () proceed similarly, but use the “amoeba”

search algorithm (Nelder & Mead,) for policy

search.

Because of the searching involved, the policy class

must generally have low dimension. Nonetheless, it is

o�en possible to �nd good policies within these policy

classes.�e policy class of Ng et al. (), for instance,

is a decoupled, linear PD controller with a sparse depen-

dence on the state variables (For instance, the linear

controller for the pitch axis is parametrized as u =
c(px−p∗x)+c(vx−v∗x)+cθ, which has just three param-
eters while the entire state is nine dimensional. Here, p⋅,

v⋅, and p∗⋅ , v
∗
⋅ , respectively, are the actual and desired

position and velocity. θ denotes the pitch angle.).�e

sparsity reduces the policy class to just nine parame-

ters. In Bagnell and Schneider (), two-layer neural

network structures are usedwith a similar sparse depen-

dence on the state variables. Two neural networks with

�ve parameters each are learned for the cyclic controls.

Differential Dynamic Programming Abbeel et al. ()

use di�erential dynamic programming (DDP) for the

task of aerobatic trajectory following. DDP (Jacobson

& Mayne,) works by iteratively approximating the

MDP as linear quadratic regulator (LQR) problems.�e

LQR control problem is a special class of MDPs, for

which the optimal policy can be computed e�ciently.

In LQR the set of states is given by S = Rn, the set of

actions/inputs is given by A = Rp, and the dynamics

model is given by:

s(t +) = A(t)s(t) + B(t)u(t) +w(t),

where for all t = , . . . ,H we have that A(t) ∈ Rn×n,

B(t) ∈ Rn×p and w(t) is a mean zero random variable
(with �nite variance).�e reward for being in state s(t)
and taking action u(t) is given by:

−s(t)⊺Q(t)s(t) − u(t)⊺R(t)u(t).

Here Q(t),R(t) are positive semi-de�nite matrices
which parameterize the reward function. It is well-

known that the optimal policy for the LQR control

problem is a linear feedback controller which can be

e�ciently computed using dynamic programming (see,

e.g., Anderson & Moore, (), for details on linear

quadratic methods.)

DDP approximately solves general continuous state-

space MDPs by iterating the following two steps until

convergence:

. Compute a linear approximation to the nonlin-

ear dynamics and a quadratic approximation to

Autonomous Helicopter Flight Using Reinforcement Learning A

Athe reward function around the trajectory obtained

when executing the current policy in simulation.

. Compute the optimal policy for the LQR problem

obtained in Step and set the current policy equal

to the optimal policy for the LQR problem.

During the �rst iteration, the linearizations are per-

formed around the target trajectory for the maneuver,

since an initial policy is not available.

�is method is used to perform autonomous �ips,

rolls, and “funnels” (high-speed sideways �ight in a

circle) in Abbeel et al. () and autonomous autoro-

tation (Autorotation is an emergency maneuver that

allows a skilled pilot to glide a helicopter to a safe land-

ing in the event of an engine failure or tail-rotor failure.)

in Abbeel, Coates, Hunter, and Ng (), Fig. .

While DDP computes a solution to the non-linear

optimization problem, it relies on the accuracy of the

non-linearmodel to correctly predict the trajectory that

will be �own by the helicopter.�is prediction is used

in Step above to linearize the dynamics. In practice,

the helicopter will o�en not follow the predicted trajec-

tory closely (due to stochasticity and modeling errors),

and thus the linearization will become a highly inaccu-

rate approximation of the non-linearmodel. A common

solution to this, applied by Coates et al. (), is to

compute the DDP solution online, linearizing around

a trajectory that begins at the current helicopter state.

�is ensures that the model is always linearized around

a trajectory near the helicopter’s actual �ight path.

Apprenticeship Learning and Inverse RL In computing a

policy for an MDP, simply �nding a solution (using any

method) that performs well in simulation may not be

enough. One may need to adjust both the model and

reward function based on the results of �ight testing.

Modeling error may result in controllers that �y per-

fectly in simulation but perform poorly or fail entirely

in reality. Because helicopter dynamics are di�cult to

model exactly, this problem is fairly common. Mean-

while, a poor reward function can result in a controller

that is not robust to modeling errors or unpredicted

perturbations (e.g., it may use large control inputs that

are unsafe in practice). If a human “expert” is available

to demonstrate the maneuver, this demonstration �ight

can be leveraged to obtain a better model and reward

function.

�e reward function encodes both the trajectory

that the helicopter should follow, aswell as the trade-o�s

between di�erent types of errors. If the desired trajec-

tory is infeasible (either in the non-linear simulation or

in reality), this results in a signi�cantly more di�cult

control problem. Also, if the trade-o�s are not speci�ed

correctly, the helicopter may be unable to compensate

for signi�cant deviations from the desired trajectory.

For instance, a typical reward function for hovering

implicitly speci�es a trade-o� between position error

and orientation error (it is possible to reduce one error,

but usually at the cost of increasing the other). If this

trade-o� is incorrectly chosen, the controller may be

pushed o� course bywind (if it tries too hard to keep the

helicopter level) or, conversely, may tilt the helicopter

to an unsafe attitude while trying to correct for a large

position error.

We can use demonstrations from an expert pilot to

recover both a good choice for the desired trajectory as

well as good choices of reward weights for errors rela-

tive to this trajectory. In apprenticeship learning, we are

given a set of N recorded state and control sequences,

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . Snapshots of an autonomous helicopter

performing in-place flips and rolls

 A Autonomous Helicopter Flight Using Reinforcement Learning

{sk(t),uk(t)}Ht = for k = , . . . ,N, from demonstra-

tion �ights by an expert pilot. Coates et al. () note

that these demonstrations may be sub-optimal but are

o�en sub-optimal in di�erent ways.�ey suggest that a

large number of expert demonstrations may implicitly

encode the optimal trajectory and propose a genera-

tive model that explains the expert demonstrations as

stochastic instantiations of an “ideal” trajectory.�is is

the desired trajectory that the expert has in mind but

is unable to demonstrate exactly. Using an Expectation-

Maximization (Dempster, Laird, & Rubin,) algo-

rithm, they infer the desired trajectory and use this as

the target trajectory in their reward function.

A good choice of reward weights (for errors rela-

tive to the desired trajectory) can be recovered using

inverse reinforcement learning (Abbeel & Ng, ;

Ng & Russell,). Suppose the reward function

is written as a linear combination of features as fol-

lows: R(s,u) = cϕ(s,u) + cϕ(s,u) + ⋯. For a
single recorded demonstration, {s(t),u(t)}Ht=, the
pilot’s accumulated reward corresponding to each fea-

ture can be computed as ciϕ
∗
i = ci∑H

t= ϕi(s(t),u(t)). If
the pilot out-performs the autonomous �ight controller

with respect to a particular feature ϕi, this indicates

that the pilot’s own “reward function” places a higher

value on that feature, and hence its weight ci should

be increased. Using this procedure, a good choice of

reward function that makes trade-o�s similar to that of

a human pilot can be recovered.�is method has been

used to guide the choice of reward for many maneuvers

during �ight testing (Abbeel et al., , ; Coates

et al.,).

In addition to learning a better reward function

from pilot demonstration, one can also use the pilot

demonstration to improve the model directly and

attempt to reduce modeling error. Coates et al. (),

for instance, use errors observed in expert demonstra-

tions to jointly infer an improved dynamicsmodel along

with the desired trajectory. Abbeel et al. (), how-

ever, have proposed the following alternating proce-

dure that is broadly applicable (see also Abbeel and Ng

(a) for details):

. Collect data from a human pilot �ying the desired

maneuvers with the helicopter. Learn a model from

the data.

. Find a controller that works in simulation based on

the current model.

. Test the controller on the helicopter. If it works, we

are done. Otherwise, use the data from the test �ight

to learn a new (improved) model and go back to

Step .

�is procedure has similarities with model-based RL

and with the common approach in control to �rst

perform system identi�cation and then �nd a controller

using the resulting model. However, the key insight

from Abbeel and Ng (a) is that this procedure

is guaranteed to converge to expert performance in a

polynomial number of iterations. �e authors report

needing at most three iterations in practice. Impor-

tantly, unlike the E family of algorithms (Kearns &

Singh,), this procedure does not require explicit

exploration policies. One only needs to test controllers

that try to �y as well as possible (according to the

current choice of dynamics model) (Indeed, the E-

family of algorithms (Kearns & Singh,) and its

extensions (Brafman & Tennenholtz, ; Kakade,

Kearns, & Langford, ; Kearns & Koller,) pro-

ceed by generating “exploration” policies, which try

to visit inaccurately modeled parts of the state space.

Unfortunately, such exploration policies do not even

try to �y the helicopter well, and thus would almost

invariably lead to crashes.).

�e apprenticeship learning algorithms described

above have been used to �y the most advanced

autonomous maneuvers to date. �e apprenticeship

learning algorithm of Coates et al. (), for exam-

ple, has been used to attain expert level performance on

challenging aerobatic maneuvers as well as entire air-

shows composed ofmanymaneuvers in rapid sequence.

�ese maneuvers include in-place �ips and rolls, tic-

tocs (“Tic-toc” is a maneuver where the helicopter

pitches forward and backward with its nose pointed

toward the sky (resembling an inverted clock pen-

dulum).), and chaos (“Chaos” is a maneuver where

the helicopter �ips in-place but does so while con-

tinuously pirouetting at a high rate. Visually, the

helicopter body appears to tumble chaotically while

nevertheless remaining in roughly the same position.)

(see Fig.).�ese maneuvers are considered among the

most challenging possible and can only be performed

Autonomous Helicopter Flight Using Reinforcement Learning A

A

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . Snapshot sequence of an autonomous heli-

copter flying a “chaos” maneuver using apprenticeship learning methods. Beginning from top-left and proceeding

left-to-right, top-to-bottom, the helicopter performs a flip while pirouetting counter-clockwise about its vertical axis.

(This maneuver has been demonstrated continuously for as long as cycles like the one shown here)

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . Super-imposed sequence of images of auto-

nomous autorotation landings (from Abbeel et al. ())

by advanced human pilots. In fact, Coates et al. ()

show that their learned controller performance can

even exceed the performance of the expert pilot provid-

ing the demonstrations, putting many of the maneuvers

on par with professional pilots (Fig.).

A similar approach has been used in Abbeel et al.

() to perform the �rst successful autonomous

autorotations.�eir aircra� has performed more than

 autonomous landings successfully without engine

power.

Not only do apprenticeship methods achieve state-

of-the-art performance, but they are among the fastest

learning methods available, as they obviate the need

for arduous hand tuning by engineers. Coates et al.

(), for instance, report that entire airshows can be

created from scratch with just h of work. �is is in

stark contrast to previous approaches that may have

required hours or even days of tuning for relatively

simple maneuvers.

Conclusion
Helicopter control is a challenging control problem and

has recently seen major successes with the applica-

tion of learning algorithms. �is Chapter has shown

how each step of the control design process can be

automated using machine learning algorithms for sys-

tem identi�cation and reinforcment learning algo-

rithms for control. It has also shown how apprentice-

ship learning algorithms can be employed to achieve

 A Autonomous Helicopter Flight Using Reinforcement Learning

expert-level performance on challenging aerobatic

maneuvers when an expert pilot can provide demon-

strations. Autonomous helicopters with control systems

developed using these methods are now capable of

�ying advanced aerobatic maneuvers (including �ips,

rolls, tic-tocs, chaos, and auto-rotation) at the level of

expert human pilots.

Cross References
7Apprenticeship Learning
7Reinforcement Learning
7Reward Shaping

Recommended Reading
Abbeel, P., Coates, A., Hunter, T., & Ng, A. Y. (). Autonomous

autorotation of an rc helicopter. In ISER .

Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (). An application

of reinforcement learning to aerobatic helicopter flight. In NIPS

 (pp. –). Vancouver.

Abbeel, P., Ganapathi, V., & Ng, A. Y. (). Learning vehicular

dynamics with application to modeling helicopters. In NIPS .

Vancouver.

Abbeel, P., & Ng, A. Y. (). Apprenticeship learning via

inverse reinforcement learning. In Proceedings of the

international conference on machine learning. New York:

ACM.

Abbeel, P., & Ng, A. Y. (a). Exploration and apprentice-

ship learning in reinforcement learning. In Proceedings of

the international conference on machine learning. New York:

ACM

Abbeel, P., & Ng, A. Y. (b). Learning first order Markov models

for control. In NIPS .

Abbeel, P., Quigley, M., & Ng, A. Y. (). Using inaccurate mod-

els in reinforcement learning. In ICML ’: Proceedings of the

rd international conference on machine learning (pp. –).

New York: ACM.

Anderson, B., & Moore, J. (). Optimal control: linear quadratic

methods. Princeton, NJ: Prentice-Hall.

Bagnell, J., & Schneider, J. (). Autonomous helicopter con-

trol using reinforcement learning policy search methods. In

International conference on robotics and automation. Canada:

IEEE.

Brafman, R. I., & Tennenholtz, M. (). R-max, a general polyno-

mial time algorithm for near-optimal reinforcement learning.

Journal of Machine Learning Research, , –.

Coates, A., Abbeel, P., & Ng, A. Y. (). Learning for control from

multiple demonstrations. In ICML ’: Proceedings of the th

international conference on machine learning.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (). Maximum like-

lihood from incomplete data via the EM algorithm. Journal of

the Royal Statistical Society, , –.

Dunbabin, M., Brosnan, S., Roberts, J., & Corke, P. (). Vibra-

tion isolation for autonomous helicopter flight. In Proceedings

of the IEEE international conference on robotics and automation

(Vol. , pp. –).

Gavrilets, V., Martinos, I., Mettler, B., & Feron, E. (a). Control

logic for automated aerobatic flight of miniature helicopter. In

AIAA guidance, navigation and control conference. Cambridge,

MA: Massachusetts Institute of Technology.

Gavrilets, V., Martinos, I., Mettler, B., & Feron, E. (b). Flight test

and simulation results for an autonomous aerobatic helicopter.

In AIAA/IEEE digital avionics systems conference.

Gavrilets, V., Mettler, B., & Feron, E. (). Nonlinear model for

a small-size acrobatic helicopter. In AIAA guidance, navigation

and control conference (pp. –).

Jacobson, D. H., & Mayne, D. Q. (). Differential dynamic pro-

gramming. New York: Elsevier.

Kakade, S., Kearns, M., & Langford, J. (). Exploration in metric

state spaces. In Proceedings of the international conference on

machine learning.

Kearns, M., & Koller, D. (). Efficient reinforcement learn-

ing in factored MDPs. In Proceedings of the th international

joint conference on artificial intelligence. San Francisco: Morgan

Kaufmann.

Kearns, M., & Singh, S. (). Near-optimal reinforcement learning

in polynomial time. Machine Learning Journal, (–), –

.

La Civita, M. (). Integrated modeling and robust control for

full-envelope flight of robotic helicopters. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA.

La Civita, M., Papageorgiou, G., Messner, W. C., & Kanade, T. ().

Design and flight testing of a high-bandwidthH∞ loop shaping
controller for a robotic helicopter. Journal of Guidance, Control,

and Dynamics, (), –.

Leishman, J. (). Principles of helicopter aerodynamics. Cam-

bridge: Cambridge University Press.

Nelder, J. A., & Mead, R. (). A simplex method for function

minimization. The Computer Journal, , –.

Ng, A. Y., & Jordan, M. (). Pegasus: A policy search method

for large MDPs and POMDPs. In Proceedings of the uncertainty

in artificial intelligence th conference. San Francisco: Morgan

Kaufmann.

Ng, A. Y., & Russell, S. (). Algorithms for inverse reinforce-

ment learning. In Procedings of the th international conference

on machine learning (pp. –). San Francisco: Morgan

Kaufmann.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., et al.,

(). Autonomous inverted helicopter flight via reinforce-

ment learning. In International symposium on experimental

robotics. Berlin: Springer.

Ng, A. Y., Kim, H. J., Jordan, M., & Sastry, S. ().

Autonomous helicopter flight via reinforcement learning. In

NIPS .

Saripalli, S., Montgomery, J. F., & Sukhatme, G. S. ().

Visually-guided landing of an unmanned aerial vehicle. IEEE

Transactions on Robotics and Autonomous Systems, (),

–.

Seddon, J. (). Basic helicopter aerodynamics. In AIAA education

series. El Segundo, CA: America Institute of Aeronautics and

Astronautics.

Tischler, M. B., & Cauffman, M. G. (). Frequency response

method for rotorcraft system identification: Flight applica-

tion to BO- couple rotor/fuselage dynamics. Journal of the

American Helicopter Society, .

Averaged One-Dependence Estimators A

AAverage-Cost Neuro-Dynamic
Programming

7Average-Reward Reinforcement Learning

Average-Cost Optimization

7Average-Reward Reinforcement Learning

Averaged One-Dependence
Estimators

Fei Zheng, Geoffrey I. Webb

Monash University

Synonyms
AODE

Definition
Averaged one-dependence estimators is a 7semi-
naive Bayesian Learning method. It performs clas-

si�cation by aggregating the predictions of multi-

ple one-dependence classi�ers in which all attributes

depend on the same single parent attribute as well as

the class.

Classification with AODE
An e�ective approach to accommodating violations

of naive Bayes’ attribute independence assumption is

to allow an attribute to depend on other non-class

attributes. To maintain e�ciency it can be desirable to

utilize one-dependence classi�ers, such as 7Tree Aug-
mented Naive Bayes (TAN), in which each attribute

depends upon the class and at most one other attribute.

However, most approaches to learning with one-

dependence classi�ers perform model selection, a pro-

cess that usually imposes substantial computational

overheads and substantially increases variance relative

to naive Bayes.

AODE avoids model selection by averaging the pre-

dictions of multiple one-dependence classi�ers. In each

one-dependence classi�er, an attribute is selected as

the parent of all the other attributes. �is attribute is

called the SuperParent and this type of one-dependence

classi�er is called a SuperParent one-dependence esti-

mator (SPODE). Only those SPODEs with SuperParent

xi where the value of xi occurs at least m times are

used for predicting a class label y for the test instance

x = ⟨x, . . . , xn⟩. For any attribute value xi,

P(y, x) = P(y, xi)P(x ∣ y, xi).

�is equality holds for every xi.�erefore,

P(y, x) =
∑≤i≤n∧F(xi)≥m P(y, xi)P(x ∣ y, xi)

∣{ ≤ i ≤ n ∧ F(xi) ≥ m}∣ , ()

where F(xi) is the frequency of attribute value xi in
the training sample. Utilizing () and the assumption

that attributes are independent given the class and

the SuperParent xi, AODE predicts the class for x by
selecting

argmax
y

∑
≤i≤n∧F(xi)≥m

P̂(y, xi) ∏
≤j≤n,j≠i

P̂(xj ∣ y, xi). ()

It averages over estimates of the terms in (), rather than

the true values, which has the e�ect of reducing the

variance of these estimates.

Figure shows a Markov network representation of

an example AODE.

As AODE makes a weaker attribute conditional

independence assumption than naive Bayes while still

avoiding model selection, it has substantially lower

7bias with a very small increase in7variance. A num-
ber of studies (Webb, Boughton, & Wang, ; Zheng

& Webb,) have demonstrated that it o�en has

considerably lower zero-one loss than naive Bayes

with moderate time complexity. For comparisons with

other semi-naive techniques, see7semi-naive Bayesian
learning. One study (Webb, Boughton, & Wang,)

found AODE to provide classi�cation accuracy com-

petitive to a state-of-the-art discriminative algorithm,

boosted decision trees.

When a new instance is available, like naive Bayes,

AODE only needs to update the probability esti-

mates. �erefore, it is also suited to incremental

learning.

 A Average-Payoff Reinforcement Learning

... ...

y

x x x ... x . . .

y

x x x x x x x

y

x

Averaged One-Dependence Estimators. Figure . A Markov network representation of the SPODEs that comprise an

example AODE

Cross References
7Bayesian Network
7Naive Bayes
7Semi-Naive Bayesian Learning
7Tree-Augmented Naive Bayes

Recommended Reading
Webb, G. I., Boughton, J., & Wang, Z. (). Not so naive Bayes:

aggregating one-dependence estimators. Machine Learning,

(), –.

Zheng, F., & Webb, G. I. (). A comparative study of semi-

naive Bayes methods in classification learning. In Proceed-

ings of the Fourth Australasian Data Mining Conference. (pp.

–).

Average-Payoff Reinforcement
Learning

7Average-Reward Reinforcement Learning

Average-Reward Reinforcement
Learning

Prasad Tadepalli

Oregon State University, Corvallis, OR, USA

Synonyms
ARL; Average-cost neuro-dynamic programming;

Average-cost optimization; Average-payo� reinforce-

ment learning

Definition
Average-reward reinforcement learning (ARL) refers to

learning policies that optimize the average reward per

time step by continually taking actions and observing

the outcomes including the next state and the immedi-

ate reward.

Motivation and Background
7Reinforcement learning (RL) is the study of programs
that improve their performance at some task by receiv-

ing rewards and punishments from the environment

(Sutton & Barto,). RL has been quite successful

in automatic learning of good procedures for complex

tasks such as playing Backgammon and scheduling ele-

vators (Crites & Barto, ; Tesauro,). In episodic

domains in which there is a natural termination con-

dition such as the end of the game in Backgammon,

the obvious performance measure to optimize is the

expected total reward per episode. But some domains

such as elevator scheduling are recurrent, i.e., do not

have a natural termination condition. In such cases,

total expected reward can be in�nite, and we need a

di�erent optimization criterion.

In the discounted optimization framework, in each

time step, the value of the reward is multiplied by a dis-

count factor γ < , so that the total discounted reward
is always �nite. However, in many domains, there is no

natural interpretation for the discount factor γ. A natu-

ral performancemeasure to optimize in such domains is

the average reward received per time step. Although one

could use a discount factor which is close to to approx-

imate average-reward optimization, an approach that

directly optimizes the average reward avoids this addi-

tional parameter and o�en leads to faster convergence

in practice.

�ere is signi�cant theory behind average-reward

optimization based on 7Markov decision processes
(MDPs) (Puterman,). An MDP is described by a

-tuple ⟨S,A,P, r⟩, where S is a discrete set of states and
A is a discrete set of actions. P is a conditional proba-

bility distribution over the next states, given the current

state and action, and r gives the immediate reward for

a given state and action. A policy π is a mapping from

states to actions. Each policy π induces a Markov pro-

cess over some set of states. In ergodic MDPs, every

policy π forms a single closed set of states, and the aver-

age reward per time step of π in the limit of in�nite

Average-Reward Reinforcement Learning A

Ahorizon is independent of the starting state. We call it

the “gain” of the policy π, denoted by ρ(π), and consider
the problem of �nding a “gain-optimal policy,” π∗, that

maximizes ρ(π).
Even though the gain ρ(π) of a policy π is indepen-

dent of the starting state s, the total expected reward in

time t is not. It can be denoted by ρ(π)t + h(s), where
h(s) is a state-dependent bias term. It is the bias values
of states that determinewhich states and actions are pre-

ferred, and need to be learned for optimal performance.

�e following theorem gives the Bellman equation for

the bias values of states.

�eorem For ergodic MDPs, there exist a scalar ρ

and a real-valued bias function h over S that satisfy the

recurrence relation

∀s ∈ S, h(s) = max
a∈A

{r(s, a) +∑
s′∈S

P(s′∣s, a)h(s′)} − ρ.

()

Further, the gain-optimal policy µ∗ attains the above

maximum for each state s, and ρ is its gain.

Note that any one solution to () yields an in�nite

number of solutions by adding the same constant to all

h-values. However, all these sets of h-values will result

in the same set of optimal policies µ∗, since the opti-

mal action in a state is determined only by the relative

di�erences between the values of h.

0

1

2

3

h(3)=2

h(0)=0

h(1)=0

h(2)=1

3 bad-move

good-move

0

0

0

0

Average-Reward Reinforcement Learning. Figure . A

simple Markov decision process (MDP) that illustrates

the Bellman equation

For example, in Fig. , the agent has to select between

the actions good-move and bad-move in state . If it
stays in state , it gets an average reward of . If it stays in

state , it gets an average reward of −. For this domain,
ρ = for the optimal policy of choosing good-move
in state . If we arbitrarily set h() to , then h() = ,
h() = , and h() = satisfy the recurrence relations in
(). For example, the di�erence between h() and h()
is , which equals the di�erence between the immediate

reward for the optimal action in state and the optimal

average reward .

Given the probability model P and the immediate

rewards r, the above equations can be solved byWhite’s

relative value iteration method by setting the h-value of

an arbitrarily chosen reference state to and using syn-

chronous successive approximation (Bertsekas,).

�ere is also a policy iteration approach to determine

the optimal policy starting with some arbitrary pol-

icy, solving for its values using the value iteration, and

updating the policy using one step look-ahead search.

�e above iteration is repeated until the policy con-

verges (Puterman,).

Model-Based Learning
If the probabilities and the immediate rewards are

not known, the system needs to learn them before

applying the above methods. A model-based approach

called H-learning interleaves model learning with Bell-

man backups of the value function (Tadepalli & Ok,

).�is is an average-reward version of 7adaptive
real-time dynamic programming (Barto, Bradtke, &

Singh,). �e models are learned by collecting

samples of state-action-next-state triples ⟨s, a, s′⟩ and
computing P(s′∣s, a) using the maximum likelihood

estimation. It then employs the “certainty equivalence

principle” by using the current estimates as the true

value while updating the h-value of the current state

s according to the following update equation derived

from the Bellman equation.

h(s)← max
a∈A

{r(s, a) +∑
s′∈S

P(s′∣s, a)h(s′)} − ρ. ()

One complication in ARL is the estimation of

the average reward ρ in the update equations dur-

ing learning. One could use the current estimate

of the long-term average reward, but it is distorted

 A Average-Reward Reinforcement Learning

by the exploratory actions that the agent needs to

take to learn about the unexplored parts of the state

space. Without the exploratory actions, ARL meth-

ods converge to a suboptimal policy. To take this into

account, we have from (), in any state s and a non-

exploratory action a that maximizes the right-hand

side, ρ = r(s, a)−h(s)+ ∑s′∈S P(s′∣S, a)h(s′). Hence, ρ

is estimated by cumulatively averaging r − h(s) + h(s′),
whenever a greedy action a is executed in state s result-

ing in state s′ and immediate reward r. ρ is updated

using the following equation where α is the learning

rate.

ρ ← ρ + α(r − h(s) + h(s′)). ()

One issue with model-based learning is that the

models require too much space and time to learn as

tables. In many cases, actions can be represented much

more compactly. For example, Tadepalli and Ok ()

uses dynamic Bayesian networks to represent and learn

action models, resulting in signi�cant savings in space

and time for learning the models.

Model-Free Learning
One of the disadvantages of the model-based meth-

ods is the need to explicitly represent and learn action

models.�is is completely avoided inmodel-free meth-

ods such as 7Q-learning by learning value functions
over state–action pairs. Schwartz’s R-learning is an

adaptation of Q-learning, which is a discounted rein-

forcement learningmethod, to optimize average reward

(Schwartz,).

�e state–action value R(s, a) can be de�ned as the
expected long-term advantage of executing action a in

state s and from then on following the optimal average-

reward policy. It can be de�ned using the bias values h

and the optimal average reward ρ as follows.

R(s, a) = r(s, a) +∑
s′∈S

P(s′∣s, a)h(s′) − ρ. ()

�e main di�erence with Q-values is that instead

of discounting the expected total reward from the next

state, we subtract the average reward ρ in each time step,

which is the constant penalty for using up a time step.

�e h value of any state s can now be de�ned using the

following equation.

h(s′) = max
u

R(s′,u). ()

Initially all theR-values are set to .When action a is

executed in state s, the value of R(s, a) is updated using
the update equation

R(s, a)← (− β)R(s, a) + β(r + h(s′) − ρ), ()

where β is the learning rate, r is the immediate reward

received, s′ is the next state, and ρ is the estimate

of the average reward of the current greedy policy.

In any state s, the greedy action a maximizes the

value R(s, a); so R-learning does not need to explic-
itly learn the immediate reward function r(s, a) or the
action models P(s′∣s, a), since it does not use them
either for the action selection or for updating the

R-values.

Both model-free and model-based ARL methods

have been evaluated in several experimental domains

(Mahadevan, ; Tadepalli &Ok,).When there is

a compact representation formodels and can be learned

quickly, themodel-basedmethod seems to performbet-

ter. It also has the advantage of fewer number of tunable

parameters. However, model-free methods are more

convenient to implement especially if the models are

hard to learn or represent.

Scaling Average-Reward Reinforcement
Learning
Just as for discounted reinforcement learning, scaling

issues are paramount for ARL. Since the number of

states is exponential to the number of relevant state

variables, a table-based approach does not scale well.

�e problem is compounded in multi-agent domains

where the number of joint actions is exponential in

the number of agents. Several function approximation

approaches, such as linear functions, multi-layer per-

ceptrons (Marbach, Mihatsch, & Tsitsiklis,), local

7linear regression (Tadepalli & Ok,), and tile cod-
ing (Proper & Tadepalli,) were tried with varying

degrees of success.

7Hierarchical reinforcement learning based on the
MAXQ framework was also explored in the average-

reward setting and was shown to lead to signi�cantly

faster convergence. In MAXQ framework, we have a

directed acyclic graph, where each node represents a

task and stores the value function for that task. Usually,

the value function for subtasks depends on fewer state

variables than the overall value function and hence can

Average-Reward Reinforcement Learning A

Abe more compactly represented.�e relevant variables

for each subtask are �xed by the designer of the hier-

archy, which makes it much easier to learn the value

functions. One potential problem with the hierarchical

approach is the loss due to the hierarchical constraint

on the policy. Despite this limitation, bothmodel-based

(Seri & Tadepalli,) and model-free approaches

(Ghavamzadeh & Mahadevan,) were shown to

yield optimal policies in some domains that satisfy the

assumptions of these methods.

Applications
A temporal di�erence method for average reward

based on TD() was used to solve a call admis-

sion control and routing problem (Marbach et al.,

). On a modestly sized network of nodes,

it was shown that the average-reward TD() outper-

forms the discounted version because it required more

careful tuning of its parameters. Similar results were

obtained in other domains such as automatic guided

vehicle routing (Ghavamzadeh & Mahadevan,)

and transfer line optimization (Wang & Mahadevan,

).

Convergence Analysis
Unlike their discounted counterparts, both R-Learning

and H-Learning lack convergence guarantees. �is is

because due to the lack of discounting, the updates

can no longer be thought of as contraction mappings,

and hence the standard theory of stochastic approx-

imation does not apply. Simultaneous update of the

average reward ρ and the value functions makes the

analysis of these algorithms much more complicated.

However, some ARL algorithms have been proved con-

vergent in the limit using analysis based on ordinary

di�erential equations (ODE) (Abounadi, Bertsekas, &

Borkar,). �e main idea is to turn to ordinary

di�erential equations that are closely tracked by the

update equations and use two time-scale analysis to

show convergence. In addition to the standard assump-

tions of stochastic approximation theory, the two time-

scale analysis requires that ρ is updated at amuch slower

time scale than the value function.

�e previous convergence results are based on the

limit of in�nite exploration. One of themany challenges

in reinforcement learning is that of e�cient exploration

of the MDP to learn the dynamics and the rewards.

�ere aremodel-based algorithms that guarantee learn-

ing an approximately optimal average-reward policy in

time polynomial in the numbers of states and actions

of the MDP and its mixing time. �ese algorithms

work by alternating between learning the action mod-

els of the MDP by taking actions in the environ-

ment, and solving the learned MDP using o�ine value

iteration.

In the “Explicit Explore and Exploit” or E algo-

rithm, the agent explicitly decides between exploiting

the known part of the MDP and optimally trying to

reach the unknown part of the MDP (exploration)

(Kearns & Singh,). During exploration, it uses

the idea of “balanced wandering,” where the least exe-

cuted action in the current state is preferred until all

actions are executed a certain number of times. In con-

trast, the R-Max algorithm implicitly chooses between

exploration and exploitation by using the principle of

“optimism under uncertainty” (Brafman&Tennenholtz,

).�e idea here is to initialize the model parame-

ters optimistically so that all unexplored actions in all

states are assumed to reach a �ctitious state that yields

maximum possible reward from then on regardless of

which action is taken.�e optimistic initialization of the

model parameters automatically encourages the agent

to execute unexplored actions, until the truemodels and

values of more states and actions are gradually revealed

to the agent. It has been shown that with a probability

at least − δ, both E and R-MAX learn approximately

correct models whose optimal policies have an average

reward є-close to the true optimal in time polynomial

in the numbers of states and actions, the mixing time of

the MDP,
є
, and

δ
.

Unfortunately the convergence results do not apply

when there is function approximation involved. In the

presence of linear function approximation, the average-

reward version of temporal di�erence learning, which

learns a state-based value function for a �xed policy, is

shown to converge in the limit (Tsitsiklis & Van Roy,

).�e transient behavior of this algorithm is simi-

lar to that of the corresponding discounted TD-learning

with an appropriately scaled constant basis function

(Van Roy & Tsitsiklis,). As in the discounted

case, development of provably convergent optimal pol-

icy learning algorithms with function approximation is

a challenging open problem.

 A Average-Reward Reinforcement Learning

Cross References
7E�cient Exploration in Reinforcement Learning
7Hierarchical Reinforcement Learning
7Model-Based Reinforcement Learning

Recommended Reading
Abounadi, J., Bertsekas, D. P., & Borkar, V. (). Stochastic

approximation for non-expansive maps: Application to Q-

learning algorithms. SIAM Journal of Control and Optimization,

(), –.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (). Learning to act

using real-time dynamic programming. Artificial Intelligence,

(), –.

Bertsekas, D. P. (). Dynamic programming and optimal control.

Belmont, MA: Athena Scientific.

Brafman, R. I., & Tennenholtz, M. (). R-MAX – a gen-

eral polynomial time algorithm for near-optimal reinforce-

ment learning. Journal of Machine Learning Research, ,

–.

Crites, R. H., & Barto, A. G. (). Elevator group control using

multiple reinforcement agents. Machine Learning, (/),

–.

Ghavamzadeh, M., & Mahadevan, S. (). Hierarchical average

reward reinforcement learning. Journal of Machine Learning

Research, (), –.

Kearns, M., & Singh S. (). Near-optimal reinforcement learning

in polynomial time. Machine Learning, (/), –.

Mahadevan, S. (). Average reward reinforcement learning:

Foundations, algorithms, and empirical results.Machine Learn-

ing, (//), –.

Marbach, P., Mihatsch, O., & Tsitsiklis, J. N. (). Call admis-

sion control and routing in integrated service networks using

neuro-dynamic programming. IEEE Journal on Selected Areas

in Communications, (), –.

Proper, S., & Tadepalli, P. (). Scaling model-based average-

reward reinforcement learning for product delivery. In

European conference on machine learning (pp. –).

Springer.

Puterman, M. L. ().Markov decision processes: Discrete dynamic

stochastic programming. New York: Wiley.

Schwartz, A. (). A reinforcement learning method for maximiz-

ing undiscounted rewards. In Proceedings of the tenth interna-

tional conference on machine learning (pp. –). San Mateo,

CA: Morgan Kaufmann.

Seri, S., & Tadepalli, P. (). Model-based hierarchical average-

reward reinforcement learning. In Proceedings of international

machine learning conference (pp. –). Sydney, Australia:

Morgan Kaufmann.

Sutton, R., & Barto, A. (). Reinforcement learning: An introduc-

tion. Cambridge, MA: MIT Press.

Tadepalli, P., & Ok, D. (). Model-based average-reward rein-

forcement learning. Artificial Intelligence, , –.

Tesauro, G. (). Practical issues in temporal difference learning.

Machine Learning, (–), –.

Tsitsiklis, J., & Van Roy, B. (). Average cost temporal-difference

learning. Automatica, (), –.

Van Roy, B., & Tsitsiklis, J. (). On average versus discounted

temporal-difference learning. Machine Learning, (/),

–.

Wang, G., & Mahadevan, S. (). Hierarchical optimization of

policy-coupled semi-Markov decision processes. In Proceed-

ings of the th international conference on machine learning

(pp. –). Bled, Slovenia.

B

Backprop

7Backpropagation

Backpropagation

PaulMunro

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
Backprop; BP; Generalized delta rule

Definition
Backpropagation of error (henceforth BP) is a method

for training feed-forward neural networks see

7Arti�cial Neural Networks. A speci�c implementa-
tion of BP is an iterative procedure that adjusts net-

work weight parameters according to the gradient of

an error measure. �e procedure is implemented by

computing an error value for each output unit, and by

backpropagating the error values through the network.

Characteristics
Feed-Forward Networks

A feed-forward neural network is a mathematical

function that is composed of constituent “semi-linear”

functions constrained by a feed-forward network archi-

tecture, wherein the constituent functions correspond

to nodes (o�en called units or arti�cial neurons) in a

graph, as in Fig. . A feedfoward network architecture

has a connectivity structure that is an acyclic graph; that

is, there are no closed loops.

In most cases, the unit functions have a �nite range

such as [,]. �us, the network maps RN to [,]M ,

where N is the number of input values and M is the

number of output units. Let FanIn(k) refer to the set

of units that provide input to unit k, and let FanOut(k)

denote the set of units that receive input from

unit k.

In an acyclic graph, at least one unit has a FanIn

that is the null set.�ese are the input units; the activ-

ity of an input unit is not computed; rather it is set to

a value external to the network (i.e., from the training

data). Similarly, at least one unit has a null FanOut set.

Such units typically represent the output of the network;

i.e., this set of values is the result of the network com-

putation. Intermediate units (o�en called hidden units)

receive input from other units and project outputs to

other computational units.

For the BP procedure, the activity of each unit is

computed in two steps:

Linear step: the activities of the FanIn are each

multiplied by an independent “weight” parameter, to

which a “bias” parameter is added; each computa-

tional unit has a single bias parameter, independent

of the other units. Let this sum be denoted xk for

unit k.

Nonlinear step: �e activity ak of unit k is a dif-

ferentiable nonlinear function of xk. A favorite func-

tion is the logistic a = /(+ exp(−x)), because it

maps the range [−∞, +∞] to [,] and its deriva-

tive has properties conducive to the implementation

of BP.

ak = fk(xk); where xk = bk + ∑

j∈FanIn(k)

wkjsj

Gradient Descent

Derivation of BP is a direct application of the gradient

descent approach to optimization and is dependent on

a de�nition of network error, a function of the actual

network response to a stimulus, r(s) and the targetT(s).
�e twomost common error functions are the summed

squared error (SSE) and the cross entropy error (CE)

(CE error as de�ned here is based on the presumption

that the output values are in the range [,]. Likewise

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC

 B Backpropagation

Unit k

FanOut (k)

FanIn (k)

Output units

Hidden units

Input units

Standard 3 layer
classification net

General feedforward
net structure

Backpropagation. Figure . Two networks are shown. Input units are shown as simple squares at the bottom of each

figure. Other units are computational (designated by a horizontal line). Left: A standard -layer network. Four input

units project to five hidden units, which in turn project to a single output unit. Not all connections are shown. Such a

network is commonly used for classification tasks. Right: An example of a feed-forward network with four inputs, three

hidden units, and two outputs

for the target values; this is o�en used for classi�cation

tasks, wherein target values are set to the endpoints of

the range, and).

ESSE ≡ ∑
i∈Outut
s∈Train

(Ti(s) − ri(s))

ECE≡ ∑
i∈Outut
s∈Train

[Ti(s) ln (ri(s)) − (− Ti(s)) ln (− ri(s))]

Each weight parameter, wij (the weight of the connec-

tion from j to i), is updated by an amount propor-

tional to the negative gradient of the errormeasure with

respect to that parameter:

∆wij = −η
∂E

∂wij

,

where the step size, η, modulates the intrinsic tradeo�

between smooth convergence of the weights and the

speed of convergence; in the regime where η is small,

the system is well-behaved and converges smoothly, but

slowly, and for larger η, the systemmay learn some sub-

sets of the training set faster at the expense of smooth

convergence on all patterns in the set. �us, η is also

called the learning rate.

Implementation

Several aspects of the feed-forward network must be

de�ned prior to running a BP program, such as the

con�guration of the hidden units, the initial values of

the weights, the functions they will compute, and the

numerical representation of the input and target data.

�ere are also parameters of the learning algorithm that

must be chosen, such as the value of η and the form of

the error function.

�e weight and bias parameters are set to their ini-

tial values (these are usually random within speci�ed

limits). BP is implemented as an iterative process as

follows:

. A stimulus-target pair is drawn from the training

set.

. �e activity values for the units in the net-

work are computed for all the units in the net-

work in a forward fashion from input to output

(Fig. a).

. �e network output values are compared to the tar-

get and a delta (δ) value is computed for each output

unit based on the di�erence between the target and

the actual output response value.

Backpropagation B

B
ak

i

Dbi = hdi

d

Activity propagates
forward

Error propagates
backward

Weights are
updated

Errors from FanOut (k)

ak = fk(xk)

xk = bk + Σwkj aj

j ÎFanIn(k)

ek = Σwikdi

i ÎFanOut(k)

Inputs to unit k

¢dk = fk (ak) × ek

aj

Dwij = hdi aj

Backpropagation. Figure . With each iteration of the backprop algorithm, (a) An activity value is computed for every

unit in the network from the input to the output. (b) The network output is compared with the target. The error ek for

output unit k is defined as (Tk − rk). A value δk is computed for each output unit by multiplying ek by the derivative of

the activity function. For hidden units, the error is propagated backward using the weights. (c) The weight parameters

wij are updated in proportion to the product of δi and aj

. �e deltas are propagated backward through the

network using the same weights that were used to

compute the activity values (Fig. b).

. Each weight is updated by an amount proportional

to the product of the downstream delta value and

the upstream activity (Fig. c).

�e procedure can be run either in an online mode or

batch mode. In the online mode, the network param-

eters are updated for each stimulus-target pair. In the

batchmode, theweight changes are computed and accu-

mulated over several iterations without updating the

weights until a large number (B) of stimulus-target pairs

have been processed (o�en, the entire training set),

at which the weights are updated by the accumulated

amounts.

online : ∆wij(t) = ηδi(t)aj(t) ∆bi(t) = ηδi(t)

batch : ∆wij(t + B) =
t+B

∑
s=t−

ηδi(s)aj(s)

∆bi(t + T) =
t−B

∑
s=t+

ηδi(s)

Classification Tasks with BP

�e simplest and most common classi�cation func-

tion returns a binary value, indicating membership in

a particular class. �e most common network archi-

tecture for a task of this kind is the three-layer net-

work of Fig. (le�), with training values of and .

For classi�cation tasks, the cross entropy error function

generally gives signi�cantly faster convergence. A�er

training, the network is in test mode or production

mode, and the responses are in the continuous range

[,]; the response must thus be interpreted.�e value

of the response could be interpreted as a probability or

fuzzy Boolean value. O�en, however, a single threshold

is applied to give a binary answer. A double thresh-

old is sometimes used, with the midrange de�ned as

“uncertain.”

Curve Fitting with BP

A feed-forward network can be trained to approximate

any function, given the su�cient hidden units. �e

range of the output unit(s) must be capable of gen-

erating activity values in the required range. In order

to accommodate an arbitrary range uniformly, a linear

 B Backpropagation

function is advisable for the output units, and the SSE

function is the basis for gradient descent.

The Autoencoder Architecture

�e autoencoder is a network design in which the

target pattern is identical to the input pattern. �e

hidden units are con�gured such that there is a “bot-

tleneck layer” of units that is smaller than the input

layer, through which information �ows; i.e., there are

no connections bypassing the bottleneck. �us, any

information necessary to reconstruct the input pattern

at the output layer must be represented at the bottle-

neck. �is approach has been successfully applied as

an approach to nonlinear dimensionality reduction (e.g.,

Demers & Cottrell,). It bears notable similarities

and di�erences to linear techniques, such as7principal

components analysis (PCA).

Prediction with BP

�e plain “vanilla” BP propagates input to output with

no explicit representation of time. Several approaches to

processing of temporal patterns have been put forward.

Most prominent among these are:

Time delay neural network. In this approach, the

input stimulus is simply a sample of a time vary-

ing signal. �e input patterns are typically generated

by a sliding window of samples over time or over a

sequence.

7Simple recurrent network (Elman,). A sequence
of stimulus patterns is presented as input for the net-

work, which has a single hidden layer design.With each

iteration, the input is augmented by a secondary set of

input units whose activity is a copy of the hidden layer

activity from the previous iteration.�us, the network

is able to maintain a representation of the recent history

of network stimuli.

Backpropagation through time (Rumelhart, Hinton,

& Williams,). A recurrent network (i.e., a cyclic

network) is “unfolded in time” by forming a largemulti-

layer network, in which each layer is a copy of the entire

network shi�ed in time. �us, the number of layers

limits the temporal window available to the network.

Recurrent backpropagation (Pineda,). An

acyclic network is run with activity propagation and

error propagation, until variables converge. �en the

weights are updated.

Cognitive Modeling with BP

Interest in BP as a training technique for classi-

�ers has waned somewhat since the introduction of

7Support vector machines (SVMs) in the mid s.

However, the in�uence of BP as an approach to model-

ing cognitive processes, including perception, concept

learning, spatial cognition, and language learning,

remains strong. Analysis of hidden unit representations

(e.g., using clustering techniques) has given insight into

plausible intermediate processes that may underlie cog-

nitive phenomena. Also,many cognitivemodels trained

with BP have exhibited time courses consistent with

stages of human learning.

Biological Inspiration and Plausibility

�e “connectionist” approach to modeling cognition is

based on “neural network” models, which have been

touted as “biologically inspired” since their inception.

�e similarities and di�erences between connectionist

architectures and living brains have been exhaustively

debated. Like the brain, the models consist of elements

that are extremely limited, computationally. Compu-

tational power is derived by several units in network

architecture. However, there are compelling di�erences

as well. For example, the temporal dynamics in bio-

logical neurons is far more complex than the simple

functions used in connectionist networks. It remains

unclear what level of neurobiological detail is relevant

to understand the cognitive functions.

Shortcomings of BP

�e BP method is notorious for convergence problems.

An inherent problem of gradient descent approaches to

optimization is the issue of locally optimal values. Seek-

ing a minimum value be heading downhill is like water

running downhill. Not all water reaches the lowest point

(sea level). Water that �ows into a mountain lake has

landed in a local minimum, a region that is bounded by

higher ground.

Even when BP converges to a global minimum (or a

local minimum that is “good enough”), it is sometimes

very slow.�e convergence properties of BP depend on

the learning rate and random factors, such as the initial

weight and bias values.

Another di�culty with BP is the selection of a net-

work structure. �e number of hidden units and the

Basic Lemma B

B

interconnectivity among them has a strong in�uence on

both the generalization performance and the conver-

gence time. Since the nature of this in�uence is poorly

understood, the design of the network is le� to guess-

work.�e standard approach is to use a single hidden

layer (as in Fig. , le�), which has the advantage of

relatively fast convergence.

History

�e idea of training a multilayered network using error

propagation was originated by Frank Rosenblatt (,

). However, he was unable to apply gradient descent

because he was using linear threshold functions that

were not di�erentiable; therefore, the technique of gra-

dient descent was unavailable. He developed a tech-

nique known as the perceptron learning rule that is

only applicable to two layer networks (no hidden units).

Without hidden units, the computational power of the

network is severely reduced. Work in the �eld virtually

stopped with the publication of Perceptrons (Minsky &

Papert,).�e backpropagation procedure was �rst

published by Werbos (), but did not receive signi�-

cant recognition until it was put forward by Rumelhart

et al. ().

Cross References
7Arti�cial Neural Networks

Recommended Reading
Demers, D., & Cottrell, G. (). Non-linear dimensionality reduc-

tion. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances

in neural information processing systems (Vol.). SanMateo, CA:

Morgan Kaufmann.

Elman, J. (). Finding structure in time. Cognitive Science, ,

–.

Minsky, M. L., & Papert, S. A. (). Perceptrons. Cambridge, MA:

MIT Press.

Pineda, F. J. (). Recurrent backpropagation and the dynamical

approach to adaptive neural computation. Neural Computation,

, –.

Rosenblatt, F. (). The perceptron: A probabilistic model for

information storage and organization in the brain. Psychological

Review, , –.

Rosenblatt, F. (). Principles of statistical neurodynamics.

Washington, DC: Spartan.

Werbos, P. (). Beyond regression: New tools for prediction

and analysis in the behavioral sciences. Ph.D. thesis, Harvard

University, Cambridge.

Bagging

Bagging is an 7ensemble learning technique. �e
name “Bagging” is an acronym derived from Bootstrap

AGGregatING. Each member of the ensemble is con-

structed from a di�erent training dataset. Each dataset

is a 7bootstrap sample from the original.�e models
are combined by a uniform average or vote. Bagging

works best with 7unstable learners, that is those that
produce di�ering generalization patterns with small

changes to the training data. Bagging therefore tends

not to work well with linear models. See 7ensemble
learning for more details.

Bake-Off

Definition
Bake-o� is a disparaging term for experimental eval-

uation of multiple learning algorithms by a process of

applying each algorithm to a limited set of benchmark

problems.

Cross References
7Algorithm Evaluation

Bandit Problem with Side
Information

7Associative Reinforcement Learning

Bandit Problem with Side
Observations

7Associative Reinforcement Learning

Basic Lemma

7Symmetrization Lemma

 B Basket Analysis

Basket Analysis

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Synonyms
Market basket analysis

Definition
�e goal of basket analysis is to utilize large volumes

of electronic receipts, stored at the checkout terminals

of supermarkets, for better understanding of customer

behavior.

While many forms of learning and mining can

be applied to market baskets, the term usually refers

to some variant of 7association rule mining. In the
basic setting, each market basket constitutes an exam-

ple essentially de�ned by the set of purchased products.

Association rules then identify sets of items that tend

to be bought together. A classical, anecdotal discov-

ery from supermarket data is that “if a basket contains

diapers then it o�en also contains beer.”�is example

illustrates several potential bene�ts of market basket

analysis by association rules: simplicity and under-

standability of the results, actionability of the results,

and a form of nonsupervised approach where the

consequent of the rule has not been �xed by the user.

Association rules are o�en found with the7Apriori
algorithm, and are based on7frequent itemsets.

Cross References
7Apriori Algorithm
7Association Rule
7Frequent Itemset
7Frequent Pattern

Batch Learning

Synonyms
O�ine Learning

Definition
A batch learning algorithm accepts a single input that is

a set or sequence of observations.�e algorithm pro-

duces its 7model, and does no further learning. Batch
learning stands in contrast to7online learning.

Baum–Welch Algorithm

�e Baum–Welch algorithm is used for computing

maximum likelihood estimates and posterior mode

estimates for the parameters (transition and emission

probabilities) of a HMM, when given only output

sequences (emissions) as training data.

�e Baum–Welch algorithm is a particular instan-

tiation of the expectation-maximization algorithm,

suited for HMMs.

Bayes Adaptive Markov Decision
Processes

7Bayesian Reinforcement Learning

Bayes Net

7Bayesian Network

Bayes Rule

Geoffrey I. Webb

Monash University

Definition
Bayes rule provides a decomposition of a conditional

probability that is frequently used in a family of learning

techniques collectively called Bayesian Learning. Bayes

rule is the equality

P(z ∣w) =
P(z)P(w ∣ z)

P(w)
()

P(w) is called the prior probability, P(w ∣ z) is called the

posterior probability, and P(z ∣w) is called the likelihood.

Discussion
Bayes rule is used for two purposes.�e �rst is Bayesian

update. In this context, z represents some new informa-

tion that has become available since an estimate P(w)

Bayesian Methods B

B

was formed of some hypothesis w. �e application of

Bayes’ rule enables a new estimate of the probability of

w (the posterior probability) to be calculated from esti-

mates of the prior probability, the likelihood and P(z).

�e second common application of Bayes’ rule is for

estimating posterior probabilities in probabilistic learn-

ing, where it is the core of7Bayesian networks,7naïve
Bayes, and7semi-naïve Bayesian techniques.
While Bayes’ rule may initially appear mysterious, it

is readily derived from the basic principle of conditional

probability that

P(w ∣ z) = P(w, z)P(z) ()

As

P(w, z) =
P(w)P(w, z)

P(w)
()

and
P(w, z)

P(w)
= P(z ∣w), ()

Bayes’ rule (Eq.) follows by simple substitution of

Eq. () into Eq. () and then of the result into Eq. ().

Cross References
7Bayesian Methods
7Bayesian Network
7Naïve Bayes
7Semi-Naïve Bayesian Learning

Bayesian Methods

Wray Buntine

NICTA, Canberra, Australia

Definition
�e two most important concepts used in Bayesian

modeling are probability and utility. Probabilities are

used to model our belief about the state of the world

and utilities are used tomodel the value to us of di�erent

outcomes, thus to model costs and bene�ts. Probabili-

ties are represented in the form of p(x∣C), whereC is the

current known context and x is some event(s) of inter-

est from a space χ.�e le� and right arguments of the

probability function are in general propositions (in the

logical sense). Probabilities are updated based on new

evidence or outcomes y using Bayes rule, which takes

the form

p(x∣C, y) =
p(x∣C)p(y∣x,C)

p(y∣C)
,

where χ is the discrete domain of x. More generally, any

measurable set can be used for the domain χ. An inte-

gral or mixed sum and integral can replace the sum. For

a utility function u(x) of some event x, for instance the

bene�t of a particular outcome, the expected value of

u() is

Ex∣C[u(x)] = ∑
x∈X

p(x∣C)u(x).

One then estimates the expected utility Ex∣C,y[u(x)]

based on di�erent evidence, actions or outcomes y. An

action is taken tomaximize this expected utility, appeal-

ing to the principle ofmaximum expected utility (MEU).

A common application of this principle is recursive: one

should take the action now that will maximize utility in

the future, assuming all future actions are also taken to

maximize utility.

Motivation and Background
In modeling a problem, primarily, one considers an

interrelated space of events or states, actions, and out-

comes. Events describe the state of the world, outcomes

are also sometimes considered events but they are spe-

cial in that one directly obtains from them costs or

bene�ts. Actions allow one to in�uence the world. Some

actions may instigate tests and thus also help measure

the state of the world to reduce uncertainty. Some prob-

lems may be dynamic in that a sequence of actions and

outcomes are considered and the resulting changes in

states modeled.

�e Bayesian approach is a modeling methodol-

ogy that provides a principled approach of how to

reason and act in the context of uncertainty and a

dynamic environment. In the approach, probabilities

are used to model all forms of belief or proportions

about events and states, and then utilities are used

to model the costs and bene�ts of any actions taken.

An explicit assumption is that these probabilities and

utilities can be adequately elicited and precisely mod-

eled for the problem. An implicit assumption is that

the computation required – recursive evaluation of

 B Bayesian Methods

possibly nested integrals and sums (over domain vari-

ables) – can be done quickly enough so that the compu-

tation itself does not become a signi�cant factor in the

costs considered.

�e Bayesian approach is named a�er Rev.�omas

Bayes, whose work was contributed to the Royal Society

in a�er his death, although it was independently

more generally presented as a theory by Laplace in .

�e �eld was subsequently developed into a �eld of

statistics, inference and decision theory by a stream of

authors in the s including Je�reys (Bernardo and

Smith,). �e �eld of statistics was dominated by

the frequentist school during the s, and for a time

Bayesian methods were considered controversial. Like

the di�erent schools of theory in machine learning,

these statistical approaches now coexist.

�e Bayesian approach can be justi�ed by axiomatic

prescriptions of how a rational agent should reason and

act, and by appeal to principles of consistency. In the

context of learning, probabilities are used to infer mod-

els of the problem of interest, and then utilities are

used to recommend predictions or analysis based on the

models.

Theory
Basic Theory

First, consider de�nitions, the di�erent kinds of proba-

bility, the process of reasoning (about probabilities), and

making decisions.

Basic de�nitions: Probabilities are represented in the

form of p(x∣C), where C is the current known context

and x is some event(s) of interest. It is su�cient to place

in C only terms relevant to x and ignore terms assumed

by default. Moreover, both x and C must have well-

de�ned events. For instance, x = “John is tall” is not

considered a well-de�ned event since the word “tall” is

not precise. One would instead replace it with some-

thing like x = “John is greater than foot tall” or x =

“Julie said John is tall.”

An important functional used with probabilities

is the expected value. For a function f (x) of some

event x from a space χ, the expected value of f () is

Ex∈χ[f (x)].

Utility is used to measure value or relative satis-

faction, and is usually represented as a function on

outcomes. Costs are negative utility and bene�ts are

positive. Utilities should be additive in worth, and are

o�en practically interpreted in monetary units. Strictly

speaking, the value of money is nonlinear (for most

people, billion dollars is not signi�cantly better than

 billion dollars), so it is not a correct utility measure.

However, it is adequate when the range of �nancial

transactions expected is reasonable.

Expected utility, which is the expected value of

the utility function, is the fundamental quantity

assessedwith Bayesianmethods. Some scenarios are the

following:

Prediction: For prediction problems, the outcome is the

“true” value, and the utility is sometimes the mean

square error or the absolute error. In data mining,

the choices are much richer, see7Model Evaluation.
Diagnosis:�e outcome is the “true” diagnosis, and util-

ity is made up of the di�ering costs of treatment,

mistreatment, and delay or nontreatment, as well as

any bene�t from correct diagnosis.

Game playing:�e utility comes from the eventual out-

come of the game, each player has their own utility

and the state of the game constantly changes as plays

are made.

In Bayesian machine learning, we usually take utilities

as a given, and themajority of the work revolves around

evaluating and estimating probabilities andmaximizing

of expected utility. In some ranking tasks and gener-

alized agent learning, the utilities themselves may be

poorly understood.

Belief and proportions: Some probabilities corre-

spond to proportions that exist in the real world, such as

the proportion of school children in the general popula-

tion of a given state.�ese real proportions can be mea-

sured by counting or sampling, and they are governed

by Kolmogorov’s Axioms for probability, including the

probability of certainty is and the probability of a dis-

junction of mutually exclusive events is the sum of the

probabilities of the individual events.�is kind of prob-

ability is used in the Frequentist School that only con-

siders long term average proportions obtained from a

series of independent and identical experiments.�ese

proportions can be model parameters one wishes to

reason about.

Probabilities can also represent beliefs. For instance,

in , one could have had a belief about the event that

Bayesian Methods B

B

George Bush would win the Presidential Election

in the USA.�is event is unique and has only one out-

come, so the frequentist notion cannot be justi�ed, i.e.,

there is no long-term sequence of di�erent presi-

dential elections with George Bush. Beliefs are usually

considered to be subjective, in that they are speci�c to

each agent, re�ecting their sum of unique experiences,

and the unique context in which the event in question

occurs.

To better understand the role beliefs play in

Bayesian methods, also see7Prior Probabilities.

Reasoning: A stylized version of probabilistic reasoning

considers an event of interest one is reasoning about,

x, and evidence, y, one may obtain. Typical scenarios

are

Learning: x = (Θ,M) are parametersΘ of a model from
familyM, and y = D is a set of dataD = {d, . . . ,dN}.

So one considers p(Θ,M∣D,C) versus p(Θ,M∣C).

Diagnosis: x a disease or condition, and y is a set of

observable symptoms or diagnostic tests. One might

choose a test y that maximizes the expected utility.

Hypothesis testing: x is a hypothesis H and y is some

sequence of evidence E,E, . . . ,En, so we consider

p(H∣E,E, . . . ,En) and hope it is su�ciently high.

Di�erent probabilities are then considered:

p(x∣C):�e prior probability for event x, called the base-

rate in some contexts.

p(y∣C): �e prior probability for evidence y. Once the

evidence has been seen, this is also used as a proxy

for the quality of the model.

p(x∣y,C): �e posterior probability for event x given

evidence y.

p(y∣x,C): �e likelihood for the event x based on evi-

dence y.

In the case of diagnostic reasoning, the prior p(x∣C) is

usually the base rate for the disease or condition, and

can be got from the population base rate.

In the case of learning, however, the prior p(Θ,M∣C)

represents a prior distribution on parameters about

which we may well be largely ignorant, or at least

may not be able to readily elicit from experts. For

instance, the proportion θD might be the proba-

bility of a new drug slowing the onset of AIDS

related diseases. At the moment of initial testing,

θD is unknown so one places a probability distribu-

tion over θD, which represents one’s belief about the

proportion.

�ese priors are second-order probabilities, beliefs

about proportions, and they are the most challeng-

ing quantity modeled with the Bayesian approach.

�ey can be a function on thousands of parame-

ters, and can be critical in the success of applica-

tions.�ey are also challenging from the philosophical

perspective.

Decision theory:�e term Bayesian inference is usu-

ally reserved for the process of manipulating priors

and posteriors, computing probabilities, and comput-

ing expected values. Bayesian decision theory describes

the process of formulating utilities and then evaluat-

ing the (sometimes) recursive maximum expected util-

ity formula, such as in game playing, or interactive

advertising.

In Bayesian theory one takes the action that max-

imizes expected utility (MEU) in the current context,

sometimes referred to as the expected utility hypothesis.

Decision theory places this in a dynamic context and

says each action should be taken to maximize expected

future utility.�is is de�ned recursively, so taken to the

limit this implies the optimal future actions need to be

determined before the optimal current action can be got

via MEU.

Justifications

�is section covers basic mathematical justi�cations

of the theory. �e best general reference for this is

Bernardo and Smith (). Additional discussion of

prior probabilities appears in7Prior Probabilities.
Note that Bayesian theory, with its acceptance as a

branch of mainstream statistics, is widely accepted for

the following reasons:

Application: It has extensive support through practical

success, o�en times by clever combination of prior

knowledge and statistical and computational �nesse.

Explanation: It provides a convenient common lan-

guage in which a variety of other theoretical

approaches can be represented. For instance PAC,

MDL methods, penalized likelihood methods, and

the maximum margin approach all �nd good inter-

pretations within the Bayesian framework.

 B Bayesian Methods

Composition: It allows di�erent reasoning tasks to

be composed in a coherent way. With a proba-

bilistic framework, the components can interop-

erate in a coherent manner, so that information

may �ow bidirectionally between components via

probabilities.

Composition of processing steps in intelligent sys-

tems is a key application for Bayesian methods. For

instance, natural language and vision recognition tasks

can sometimes be broken down into a processing

chain (for instance, doing a named entity recogni-

tion step before a dependency parsing step), but these

components rarely work conclusively and unambigu-

ously. By attaching probabilities to the output of compo-

nents, and allowing probabilistic inputs, the uncertainty

inherent in individual steps can be propagated and

managed.

�eoretical justi�cations also exist to support each

of the di�erent components, probabilities, and utilities.

�ese justi�cations are based on the concept of nor-

mative axioms, axioms that do not describe reasoning

but rather prescribe basic principles it should follow.

�e axioms try to capture principles such as coherence

and consistency in a quantitative manner. �ese vari-

ous justi�cations have their reported shortcomings and

a rich literature exists arguing about the details and pos-

tulating new variants.�ese axiomatic justi�cations are

supportive of the Bayesian approach, but they are not

irrefutable.

Justifying probabilities: In the Bayesian approach,

beliefs and proportions are given the same mathemati-

cal treatment.

One set of arguably controversial justi�cations for

this revolve around betting (Bernardo and Smith, ,

Sect. ..). Someone’s subjective beliefs about speci�c

events, such as signi�cant economic and political events

(or horse races), are claimed to be measurable by o�er-

ing them a series of options or bets. Moreover, if their

beliefs do not behave like proportions, then a clever

bookmaker can use a so-called Dutch book to consis-

tently pro�t from them.

An alternative scheme for justifying probability by

Cox is based on normative axioms that beliefs should

follow. For instance, one controversial axiom by Cox is

that belief about a single event should be represented

by a single real number.�ese axioms are presented by

Jaynes as rules for a robot (Jaynes,), and as rules

for intelligent systems by Horvitz et al. ().

Justifying decision theory: Another scheme again

using normative axioms, by von Neumann and

Morgenstern, is used to justify the use of utilities.�is

scheme assumes probabilities are the basis of infer-

ence about uncertainty. A di�erent set of normative

axiomatic schemes have been developed that justify the

use of probabilities and utilities together under MEU,

the best known is by Savage but others exist (Bernardo

and Smith,).

Bayesian Computation

�e �rst part of this article has been devoted to a brief

overview of the Bayesian approach. Computation for

Bayesian inference is an extensive �eld itself. Here we

review the basic aspects as a pointer to the literature.

�is is an active area of research in machine learning,

statistics, and amany applied arti�cial intelligence com-

munities such as natural language processing, image

analysis, and others.

In general, in Bayesian reasoning one wants to esti-

mate posterior average parameter values, or their aver-

age variance, or some other averaged quantity, then

general formulas are given by (in the case of continuous

parameters)

Θ = EΘ∣D,M,C[Θ] = ∫
Θ
Θp(Θ∣D,M,C)dΘ

var(Θ) = EΘ∣D,M,C [(Θ − Θ)]

Marginal likelihood: A useful quantity to assist in

evaluating results, and a worthy score in its own right

is the marginal likelihood, in the continuous parameter

case found from the likelihood p(D∣Θ,M,C) by taking
an average

p(D∣M,C) = ∫
Θ
p(Θ∣M,C)p(D∣Θ,M,C)dΘ.

�is is also called the normalizing constant due to its

occurrence in the posterior formula

p(Θ∣D,M,C) =
p(Θ∣M,C)p(D∣Θ,M,C)

p(D∣M,C)
!.

It is generally di�cult to estimate because of the multi-

dimensional integrals and sums.

Bayesian Methods B

B

Exponential family distributions: Standard probabil-

ity distributions covered inmathematical statistics, such

as the 7Gaussian Distribution, the Poisson, Dirichlet,
Gamma, andWishart, have very convenient mathemat-

ical properties that make Bayesian estimation easier.

With these distributions, one computes statistics, called

su�cient statistics, such as a mean and sum of squares

(for the Gaussian), and then parameter estimation fol-

lows with a function inverse on a concave function.

�is is the basis of7linear regression,7principal com-
ponents analysis, and some 7decision tree learning
methods, for instance. All good texts on mathematical

statistics cover these in detail. Note the marginal likeli-

hood is o�en computable in closed form for exponential

family distributions.

Graphical models: 7Graphical Models are a general
family of of probabilistic models formed by compos-

ing graphs over variables.�ey work particularly well

with exponential family distributions, and allow a rich

variety of popular machine learning and data mining

methods to be represented and manipulated. Graphi-

cal models allow complex models to be composed from

simpler components and provide a family of algorithm

schemes for developing inference and learningmethods

that operate on them. �ey have become the de facto

standard for presenting (suitable decomposed) models

and algorithms in the machine learning community.

Maximum a posterior estimation: known as MAP,

is usually the simplest form of parameter estimation

that could be called Bayesian. It also corresponds to a

penalized or regularized maximum likelihood method.

Given the posterior for a stylized learning problem

of the previous section, one �nds the parameters Θ
that maximizes the posterior p(Θ,M∣D,C), which can
be conveniently done without computing the marginal

likelihood above, so

Θ̂M P = argmax
Θ

log p(Θ,D∣M,C),

where the log probability can be broken down as a prior

and a likelihood term

log p(Θ,D∣M,C) = log p(Θ∣M,C) + log p(D∣Θ,M,C).

�e Laplace approximation: When the posterior is

well behaved, and there is a large amount of data, the

posterior is focused around a vanishing small region in

parameter space of diameterO(/
√

(N)). If this occurs

away from the boundary of the parameter space, then

one can make a second-order Taylor expansion of the

log. posterior at the MAP point and the result is a

Gaussian approximation to the posterior.

log p(D,Θ∣M,C) ≈ log p(D, Θ̂M P∣M,C)+

(Θ̂M P−Θ)

T

d log p(D,Θ∣M,C)
dΘdΘT

∣
Θ=Θ̂M P

(Θ̂M,P − Θ) .

From this, one can approximate integrals such as the

marginal likelihood p(D∣M,C). �is is known as the
Laplace approximation, the name of the correspond-

ing general method used for the asymptotic expansion

of integrals. In general, this is a poor approximation,

but it serves to aid our understanding of parame-

ter estimation (MacKay, Chaps. and), and

is the approximate basis for some model selection

criteria.

Latent variable models: Latent variables are data that

are hidden and thus never observed in the evidence.

However, their existence is postulated as a signi�cant

component of the model. For instance, in 7Clustering
(an unsupervised method) and �nite mixture models

generally, one assumes each data point has a hidden

class label, thus the Bayesian model of clustering is a

simple kind of latent variable model.

7Markov chain Monte Carlo methods: �e most

general form of reasoning and estimation available are

theMarkov chain Monte Carlo (MCMC) methods.�e

MCMC methods couple two processes: �rst, they use

Monte Carlo or simulation methods to estimate the

integral, and second they use a Markov Chain to sam-

ple, so sampling is sequentially (Markovian) based, and

samples are not independent.

Simulation methods generally use the functional

form of p(Θ,D∣M,C) so we do not need to compute
the marginal likelihood. Hence, given a set of I samples

{Θ, . . . ,ΘI} the expected value is approximated with a

weighted average

Θ ≈

I

I

∑
i=

wiΘi.

�e simplest case is where the samples are made inde-

pendently according to the posterior itself and then the

 B Bayesian Methods

weights wi = ,�is is called the ordinary Monte Carlo

(OMC) method, but it is not o�en usable in practice

because e�cient multidimensional posterior samplers

rarely exist. Alternatively, one can sample according to

a Markov Chain, Θi+ ∼ q(Θi+∣Θi), so each Θi+ is

conditionally dependent on Θi. So while samples are

not independent, as long as the long run distribution of

the Markov chain is the same as the posterior, the same

approximation formula holds.�ere are a rich variety

of MCMCmethods, and this forms one of the key areas

of current research.

Gibbs sampling: �e simplest kind of MCMC

method samples each dimension (or sub-vector) in

turn. Suppose the parameter vector has K real com-

ponents, Θ = (θ, . . . , θK). Sampling a complete Θ
in one go is not generally possible given just a func-

tional form of the posterior p(Θ∣D,M,C) but given no
computable form for the normalizing constant. Gibbs

samplingworks in the one-dimensional case where nor-

malizing bounds can be obtained and sampling tricks

used.�e conditional posterior of θk is given by

p(θk∣(θ, . . . , θk−, θk+, . . . , θK),D,M,C),

and this is usually easier to sample from.

�e Gibbs (and MCMC) sample Θi+ can be drawn

given the previous sample Θi by progressively resam-

pling each dimension in turn and so slowly updating the

full vector:

. Sample θ i+, according to p(θ∣θ i,, . . . , θ i,K ,

D,M,C).
. . .

k. Sample θ i+,k according to p(θ∣θ i+,, . . . , θ i+,k−,

θ i,k+, . . . , θ i,K ,D,M,C).
. . .

K. Sample θ i+,k according to p(θK ∣θ i+,, . . . , θ i+,K−,

D,M,C).

In samping terms, this method is no more successful

than coordinate-wise ascent is as a primitive greedy

search method: it is supported by theoretical results but

can be very slow to converge.

Variational approximations: When the function you

seek to optimize or average over presents di�culty,

perhaps it is highly multimodal, then one option is

to change the function itself, and replace it with a

more readily approximated function. Variational meth-

ods provide a general principle for doing this safely.�e

general principle uses variational calculus, which is the

calculus over functions, not just variables. Variational

methods are a very general approach that can be used

to develop a broad range of algorithms (Wainwright and

Jordan,).

Nonparametricmodels:�e above discussion implic-

itly assumed the model has a �xed �nite parameter

vector Θ. If one is attempting to model a regression
function, or a language grammar, or image model of

unknown a priori structural complexity, then one can-

not know the dimension ahead of time. Moreover,

as in the case of functions, the dimension cannot

always be �nite.�e 7Bayesian Nonparametric Mod-
els address this situation, and are perhaps the most

important family of techniques for general machine

learning.

Cross References
7Bayes Rule
7Bayesian Nonparametric Models
7Markov Chain Monte Carlo
7Prior Probability

Recommended Reading
A good introduction to the problems of uncertainty and philosophi-

cal issues behind the Bayesian treatment of probability is in Lindley

(). From the statistical machine learning perspective, a good

introductory text is by MacKay () who carefully covers infor-

mation theory, probability, and inference but not so much statistical

machine learning. Another alternative introduction to probabilities

is the posthumously completed and published work of Jaynes ().

Discussions from the frequentist versus Bayesian battlefront can

be found in works such as (Rosenkrantz and Jaynes,), and in

the approximate artificial intelligence versus probabilistic battle-

front in discussion articles such as Cheeseman’s () and the many

responses and rebuttals. It should be noted that it is the continued

success in applications that have really led these methods into the

mainstream, not the entertaining polemics.

Good mathematical statistics text books, such as Casella and

Berger () cover the breadth of statistical methods and therefore

handle basic Bayesian theory. A more comprehensive treatment is

given in Bayesian texts such as Gelman et al. ().

Most advanced statistical machine learning text books cover

Bayesian methods, but to fully understand the subtleties of prior

beliefs and Bayesian methodology one needs to view more advanced

Bayesian literature. A detailed theoretical reference for Bayesian

methods is Bernardo and Smith ().

Bernardo, J., & Smith, A. (). Bayesian theory. Chichester: Wiley.

Casella, G., & Berger, R. (). Statistical inference (nd ed.). Pacific

Grove: Duxbury.

Bayesian Nonparametric Models B

B

Cheeseman, P. (). An inquiry into computer understanding.

Computational Intelligence, (), –.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (). Bayesian data

analysis (nd ed.). Boca Raton: Chapman & Hall/CRC Press.

Horvitz, E., Heckerman, D., & Langlotz, C. (). A framework for

comparing alternative formalisms for plausible reasoning. Fifth

National Conference on Artificial Intelligence, Philadelphia,

pp. –.

Jaynes, E. (). Probability theory: the logic of science. New York:

Cambridge University Press.

Lindley, D. (). Understanding uncertainty. Hoboken: Wiley.

MacKay, D. (). Information theory, inference, and learning algo-

rithms. Cambridge: Cambridge University Press.

Rosenkrantz, R. (Ed.). (). E.T. Jaynes: papers on probability,

statistics and statistical physics. Dordrecht: D. Reidel.

Wainwright, M. J., & Jordan, M. I. (). Graphical models,

exponential families, and variational inference. Hanover: Now

Publishers.

Bayesian Model Averaging

7Learning Graphical Models

Bayesian Network

Synonyms
Bayes net

Definition
A Bayesian network is a form of directed 7graphical
model for representing multivariate probability

distributions.

�e nodes of the network represent a set of ran-

dom variables, and the directed arcs represent causal

relationships between variables. �e Markov property

is usually required: every direct dependency between

a possible cause and a possible e�ect has to be shown

with an arc. Bayesian networks with the Markov prop-

erty are called I-maps (independence maps). If all arcs

in the network correspond to a direct dependence on

the system being modeled, then the network is said to

be aD-map (dependence-map). Each node is associated

with a conditional probability distribution, that quanti-

�es the e�ects the parents of the node, if any, have on

it. Bayesian support various forms of reasoning: diag-

nosis, to derive causes from symptoms, prediction, to

derive e�ects from causes, and intercausal reasoning, to

discover the mutual causes of a common e�ect.

Cross References
7Graphical Models

Bayesian Nonparametric Models

Peter Orbanz, YeeWhye Teh

Cambridge University, Cambridge, UK
University College London, London, UK

Synonyms
Bayesian methods; Dirichlet process; Gaussian pro-

cesses; Prior probabilities

Definition
A Bayesian nonparametric model is a Bayesian model

on an in�nite-dimensional parameter space.�e param-

eter space is typically chosen as the set of all possible

solutions for a given learning problem. For example,

in a regression problem, the parameter space can be

the set of continuous functions, and in a density esti-

mation problem, the space can consist of all densities.

A Bayesian nonparametric model uses only a �nite sub-

set of the available parameter dimensions to explain a

�nite sample of observations, with the set of dimensions

chosen depending on the sample such that the e�ective

complexity of the model (as measured by the number

of dimensions used) adapts to the data. Classical adap-

tive problems, such as nonparametric estimation and

model selection, can thus be formulated as Bayesian

inference problems. Popular examples of Bayesian non-

parametricmodels includeGaussian process regression,

in which the correlation structure is re�ned with grow-

ing sample size, and Dirichlet process mixture models

for clustering, which adapt the number of clusters to the

complexity of the data. Bayesian nonparametric models

have recently been applied to a variety ofmachine learn-

ing problems, including regression, classi�cation, clus-

tering, latent variable modeling, sequential modeling,

image segmentation, source separation, and grammar

induction.

 B Bayesian Nonparametric Models

Motivation and Background
Most ofmachine learning is concerned with learning an

appropriate set of parameters within a model class from

7training data.�e meta-level problems of determin-
ing appropriate model classes are referred to as model

selection or model adaptation.�ese constitute impor-

tant concerns for machine learning practitioners, not

only for avoidance of over-�tting and under-�tting, but

also for discovery of the causes and structures underly-

ing data. Examples of model selection and adaptation

include selecting the number of clusters in a cluster-

ing problem, the number of hidden states in a hidden

Markovmodel, the number of latent variables in a latent

variable model, or the complexity of features used in

nonlinear regression.

Nonparametric models constitute an approach to

model selection and adaptation where the sizes of mod-

els are allowed to growwith data size.�is is as opposed

to parametric models, which use a �xed number of

parameters. For example, a parametric approach to den-

sity estimation would be to �t a Gaussian or a mixture

of a �xed number of Gaussians by maximum likeli-

hood. A nonparametric approach would be a Parzen

window estimator, which centers a Gaussian at each

observation (and hence uses one mean parameter per

observation). Another example is the support vector

machine with a Gaussian kernel. �e representer the-

orem shows that the decision function is a linear com-

bination of Gaussian radial basis functions centered at

every input vector, and thus has a complexity that grows

with more observations. Nonparametric methods have

long been popular in classical (non-Bayesian) statistics

(Wasserman,). �ey o�en perform impressively

in applications and, though theoretical results for such

models are typically harder to prove than for paramet-

ric models, appealing theoretical properties have been

established for a wide range of models.

Bayesiannonparametricmethods provide aBayesian

framework for model selection and adaptation using

nonparametric models. A Bayesian formulation of non-

parametric problems is nontrivial, since a Bayesian

model de�nes prior and posterior distributions on a

single �xed parameter space, but the dimension of the

parameter space in a nonparametric approach should

change with sample size.�e Bayesian nonparametric

solution to this problem is to use an in�nite-dimensional

parameter space, and to invoke only a �nite subset of

the available parameters on any given �nite data set.

�is subset generally grows with the data set. In the

context of Bayesian nonparametric models, “in�nite-

dimensional” can therefore be interpreted as “of �nite

but unbounded dimension.” More precisely, a Bayesian

nonparametric model is a model that () constitutes a

Bayesian model on an in�nite-dimensional parameter

space and () can be evaluated on a �nite sample in a

manner that uses only a �nite subset of the available

parameters to explain the sample.

We make the above description more concrete in

the next section when we describe a number of stan-

dard machine learning problems and the correspond-

ing Bayesian nonparametric solutions. As we will see,

the parameter space in () typically consists of func-

tions or of measures, while () is usually achieved by

marginalizing out surplus dimensions over the prior.

Random functions and measures and, more gener-

ally, probability distributions on in�nite-dimensional

random objects are called stochastic processes; exam-

ples that we will encounter include Gaussian pro-

cesses, Dirichlet processes, and beta processes. Bayesian

nonparametric models are o�en named a�er the

stochastic processes they contain. �e examples are

then followed by theoretical considerations, includ-

ing formal constructions and representations of the

stochastic processes used in Bayesian nonparametric

models, exchangeability, and issues of consistency and

convergence rate. We conclude this chapter with future

directions and a list of literature available for reading.

Examples
Clustering with mixture models. Bayesian nonparamet-

ric generalizations of �nite mixture models provide an

approach for estimating both the number of compo-

nents in a mixture model and the parameters of the

individual mixture components simultaneously from

data. Finite mixture models de�ne a density function

over data items x of the form p(x) = ∑
K
k= πkp(x∣θk),

where πk is the mixing proportion and θk are param-

eters associated with component k.�e density can be

written in a non-standardmanner as an integral: p(x) =

∫ p(x∣θ)G(θ)dθ, where G = ∑
K
k= πkδθk

is a discrete

mixing distribution encapsulating all the parameters of

the mixture model and δθ is a dirac distribution (atom)

centered at θ. Bayesian nonparametric mixtures use

Bayesian Nonparametric Models B

B

mixing distributions consisting of a countably in�nite

number of atoms instead:

G =
∞

∑
k=

πkδθk
. ()

�is gives rise to mixture models with an in�nite num-

ber of components.When applied to a �nite training set,

only a �nite (but varying) number of components will

be used to model the data, since each data item is asso-

ciated with exactly one component but each component

can be associated with multiple data items. Inference in

themodel then automatically recovers both the number

of components to use and the parameters of the compo-

nents. Being Bayesian, we need a prior over the mixing

distribution G, and the most common prior to use is a

Dirichlet process (DP).�e resulting mixture model is

called a DP mixture.

Formally, aDirichlet processDP(α,H)parametrized

by a concentration paramter α > and a base distri-

bution H is a prior over distributions (probability mea-

sures) G such that, for any �nite partition A, . . . ,Am

of the parameter space, the induced random vec-

tor (G(A), . . . ,G(Am)) is Dirichlet distributed with

parameters (αH(A), . . . , αH(Am)) (see entitled Sec-

tion “�eory” for a discussion of subtleties involved

in this de�nition). It can be shown that draws from a

DP will be discrete distributions as given in (). �e

DP also induces a distribution over partitions of inte-

gers called the Chinese restaurant process (CRP), which

directly describes the prior over howdata items are clus-

tered under the DPmixture. For more details on the DP

and the CRP, see7Dirichlet Process.
Nonlinear regression. �e aim of regression is to infer

a continuous function from a training set consisting of

input–output pairs {(ti, xi)}
n
i=. Parametric approaches

parametrize the function using a �nite number of

parameters and attempt to infer these parameters

from data. �e prototypical Bayesian nonparametric

approach to this problem is to de�ne a prior distri-

bution over continuous functions directly by means of

a Gaussian process (GP). As explained in the Chapter

7Gaussian Process, a GP is a distribution on an in�-
nite collection of random variables Xt , such that the

joint distribution of each �nite subset Xt , . . . ,Xtm is a

multivariate Gaussian. A value xt taken by the variable

Xt can be regarded as the value of a continuous func-

tion f at t, that is, f (t) = xt . Given the training set,

the Gaussian process posterior is again a distribution on

functions, conditional on these functions taking values

f (t) = x, . . . , f (tn) = xn.

Latent feature models. �ese models represent a set of

objects in terms of a set of latent features, each of which

represents an independent degree of variation exhibited

by the data. Such a representation of data is sometimes

referred to as a distributed representation. In analogy to

nonparametricmixturemodels with an unknown num-

ber of clusters, a Bayesian nonparametric approach to

latent feature modeling allows for an unknown number

of latent features.�e stochastic processes involved here

are known as the Indian bu�et process (IBP) and the beta

process (BP). Draws from BPs are random discrete mea-

sures, where each of an in�nite number of atoms has a

mass in (,) but themasses of atoms need not sum to .

Each atom corresponds to a feature, with the mass cor-

responding to the probability that the feature is present

for an object. We can visualize the occurrences of fea-

tures among objects using a binary matrix, where the

(i, k) entry is if object i has feature k and otherwise.

�e distribution over binarymatrices induced by the BP

is called the IBP.

7Hidden Markov models (HMMs). HMMs are popu-

lar models for sequential or temporal data, where each

time step is associated with a state, with state transitions

dependent on the previous state. An in�nite HMM is

a Bayesian nonparametric approach to HMMs, where

the number of states is unbounded and allowed to grow

with the sequence length. It is de�ned using one DP

prior for the transition probabilities going out fromeach

state. To ensure that the set of states reachable from

each outgoing state is the same, the base distributions

of the DPs are shared and given a DP prior recursively.

�e construction is called a hierarchical Dirichlet process

(HDP); see below.

7Density estimation. A nonparametric Bayesian

approach to density estimation requires a prior on den-

sities or distributions. However, the DP is not useful

in this context, since it generates discrete distributions.

A useful density estimator should smooth the empiri-

cal density (such as a Parzen window estimator), which

requires a prior that can generate smooth distribu-

tions. Priors applicable in density estimation problems

include DP mixture models and Pólya trees.

If p(x∣θ) is a smooth density function, the density

∑
∞
k= πk p(x∣θk) induced by a DP mixture model is a

 B Bayesian Nonparametric Models

smooth random density, such that DP mixtures can be

used as prior in density estimation problems.

Pólya trees are priors on probability distributions

that can generate both discrete and piecewise continu-

ous distributions, depending on the choice of parame-

ters. Pólya trees are de�ned by a recursive in�nitely deep

binary subdivision of the domain of the generated ran-

dommeasure. Each subdivision is associatedwith a beta

random variable which describes the relative amount of

mass on each side of the subdivision.�e DP is a spe-

cial case of a Pólya tree corresponding to a particular

parametrization. For other parametrizations the result-

ing random distribution can be smooth, so it is suitable

for density estimation.

Power-law Phenomena.Many naturally occurring phe-

nomena exhibit power-law behavior. Examples include

natural languages, images, and social and genetic net-

works. An interesting generalization of the DP, called

the Pitman-Yor process, PYP(α,d,H), has recently been

successfully used tomodel power-law data.�e Pitman-

Yor process augments the DP by a third parameter d ∈

[,). When d = the PYP is a DP(α,H), while when

α = it is a so called normalized stable process.

Sequential modeling. HMMs model sequential data

using latent variables representing the underlying state

of the system, and assuming that each state only

depends on the previous state (the so called Markov

property). In some applications, for example language

modeling and text compression, we are interested in

directly modeling sequences without using latent vari-

ables, and without making any Markov assumptions,

i.e., modeling each observation conditional on all previ-

ous observations in the sequence. Since the set of poten-

tial sequences of previous observations is unbounded,

this calls for nonparametric models. A hierarchical

Pitman-Yor process can be used to construct a Bayesian

nonparametric solution whereby the conditional prob-

abilities are coupled hierarchically.

Dependent and hierarchicalmodels.Most of theBayesian

nonparametric models described so far are applied

in settings where observations are homogeneous or

exchangeable. In many real world settings observations

are not homogeneous, and in fact are o�en structured

in interesting ways. For example, the data generating

process might change over time thus observations

at di�erent times are not exchangeable, or obser-

vations might come in distinct groups with those

in the same group being more similar than across

groups.

Signi�cant recent e�orts in Bayesian nonparamet-

rics research have been placed in developing extensions

that can handle these non-homogeneous settings.

Dependent Dirichlet processes are stochastic pro-

cesses, typically over a spatial or temporal domain,

which de�ne a Dirichlet process (or a related random

measure) at each point with neighboring DPs being

more dependent. �ese are used for spatial model-

ing, nonparametric regression, as well as for modeling

temporal changes. Alternatively, hierarchical Bayesian

nonparametric models like the hierarchical DP aim

to couple multiple Bayesian nonparametric models

within a hierarchical Bayesian framework. �e idea

is to allow sharing of statistical strength across mul-

tiple groups of observations. Among other applica-

tions, these have been used in the in�nite HMM,

topic modeling, language modeling, word segmenta-

tion, image segmentation, and grammar induction. For

an overview of various dependent Bayesian nonpara-

metric models and their applications in biostatistics

please refer to Dunson (). Teh and Jordan ()

is an overview of hierarchical Bayesian nonparametric

models as well as a variety of applications in machine

learning.

Theory
As we saw in the preceding examples, Bayesian non-

parametric models o�en make use of priors over

functions and measures. Because these spaces typi-

cally have uncountable number of dimensions, extra

care has to be taken to de�ne the priors properly

and to study the asymptotic properties of estimation

in the resulting models. In this section we give an

overview of the basic concepts involved in the the-

ory of Bayesian nonparametric models. We start with

a discussion of the importance of exchangeability in

Bayesian parametric and nonparametric statistics.�is

is followed by representations of the priors and issues of

convergence.

Exchangeability

�e underlying assumption of all Bayesian methods is

that the parameter specifying the observation model

is a random variable. �is assumption is subject to

Bayesian Nonparametric Models B

B

much criticism, and at the heart of the Bayesian versus

non-Bayesian debate that has long divided the statistics

community. However, there is a very general type of

observation for which the existence of such a random

variable can be derived mathematically: For so-called

exchangeable observations, the Bayesian assumption

that a randomly distributed parameter exists is not a

modeling assumption, but a mathematical consequence

of the data’s properties.

Formally, a sequence of variablesX,X, . . . ,Xn over

the same probability space (X , Ω) is exchangeable if

their joint distribution is invariant to permuting the

variables.�at is, if P is the joint distribution and σ any

permutation of {, . . . ,n}, then

P(X=x,X=x . . .Xn=xn)

= P(X=xσ(),X=xσ() . . .Xn=xσ(n)). ()

An in�nite sequence X,X, . . . is in�nitely exchange-

able if X, . . . ,Xn is exchangeable for every n ≥ . In

this chapter, we mean in�nite exchangeability when-

ever we write exchangeability. Exchangeability re�ects

the assumption that the variables do not depend on

their indices although they may be dependent among

themselves. �is is typically a reasonable assumption

in machine learning and statistical applications, even

if the variables are not themselves independently and

identically distributed (iid).

Exchangeability is a much weaker assumption than

iid since iid variables are automatically exchangeable.

If θ parametrizes the underlying distribution, and

one assumes a prior distribution over θ, then the

resulting marginal distribution over X,X, . . . with θ

marginalized out will still be exchangeable. A funda-

mental result credited to de Finetti () states that the

converse is also true.�at is, if X,X, . . . is (in�nitely)

exchangeable, then there is a random θ such that:

P(X, . . . ,Xn) = ∫ P(θ)
n

∏
i=

P(Xi∣θ)dθ ()

for everyn ≥ . In otherwords, the seemingly innocuous

assumption of exchangeability automatically implies the

existence of a hierarchical Bayesian model with θ being

the random latent parameter.�is the crux of the fun-

damental importance of exchangeability to Bayesian

statistics.

In de Finetti’s�eorem it is important to stress that

θ can be in�nite dimensional (it is typically a ran-

dom measure), thus the hierarchical Bayesian model

() is typically a nonparametric one. For an exam-

ple, the Blackwell–MacQueen urn scheme (related to

the CRP) is exchangeable and thus implicitly de�nes

a random measure, namely the DP (see 7Dirichlet
Process for more details). In this sense, we will see

below that de Finetti’s theorem is an alternative route

to Kolmogorov’s extension theorem, which implicitly

de�nes the stochastic processes underlying Bayesian

nonparametric models.

Model Representations

In �nite dimensions, a probability model is usually

de�ned by a density function or probability mass func-

tion. In in�nite dimensional spaces, this approach is

not generally feasible, for reasons explained below. To

de�ne or work with a Bayesian nonparametric model,

we have to choose alternative mathematical representa-

tions.

Weak distributions. A weak distribution is a representa-

tion for the distribution of a stochastic process, that is,

for a probability distribution on an in�nite-dimensional

sample space. If we assume that the dimensions of the

space are indexed by t ∈ T, the stochastic process can

be regarded as the joint distribution P of an in�nite

set of random variables {Xt}t∈T . For any �nite sub-

set S ⊂ T of dimensions, the joint distribution PS

of the corresponding subset {Xt}t∈S of random vari-

ables is a �nite-dimensional marginal of P. �e weak

distribution of a stochastic process is the set of all its

�nite-dimensional marginals, that is, the set {PS : S ⊂

T, ∣S∣ < ∞}. For example, the customary de�nition of

the Gaussian process as an in�nite collection of ran-

dom variables, each �nite subset of which has a joint

Gaussian distribution, is an example of a weak distri-

bution representation. In contrast to the explicit repre-

sentations to be described below, this representation is

generally not generative, because it represents the dis-

tribution rather than a random draw, but is more widely

applicable.

Apparently, just de�ning a weak distribution in this

manner need not imply that it is a valid represen-

tation of a stochastic process. A given collection of

�nite-dimensional distributions represents a stochastic

 B Bayesian Nonparametric Models

process only () if a process with these distributions as

its marginals actually exists, and () if it is uniquely

de�ned by the marginals. �e mathematical result

which guarantees that weak distribution representa-

tions are valid is the Kolmogorov extension theorem

(also known as the Daniell–Kolmogorov theorem or

the Kolmogorov consistency theorem). Suppose that

a collection {PS : S ⊂ T, ∣S∣ < ∞} of distri-

butions is given. If all distributions in the collec-

tion are marginals of each other, that is, if PS is a

marginal of PS whenever S ⊂ S, the set of dis-

tributions is called a projective family.�e Kolmogorov

extension theorem states that, if the set T is count-

able, and if the distributions PS form a projective family,

then there exists a uniquely de�ned stochastic process

with the collection {PS} as its marginal distributions.

In other words, any projective family for a countable set

T of dimensions is the weak distribution of a stochas-

tic process. Conversely, any stochastic process can be

represented in this manner, by computing its set of

�nite-dimensional marginals.

�e weak distribution representation assumes that

all individual random variable Xt of the stochastic pro-

cess take values in the same sample space Ω. �e

stochastic process P de�ned by the weak distribution

is then a probability distribution on the sample space

ΩT , which can be interpreted as the set of all func-

tions f : T → Ω. For example, to construct a GP we

might choose T = Q and Ω = R to obtain real-valued
functions on the countable space of rational numbers.

Since Q is dense in R, the function f can then be

extended to all of R by continuity. To de�ne the DP as
a distribution over probability measures on R, we note
that a probability measure is a set function that maps

“random events,” i.e., elements of the Borel σ-algebra

B(R) of R, into probabilities in [,]. We could there-

fore choose a weak distribution consisting of Dirichlet

distributions, and set T =B(R) and Ω = [,]. How-

ever, this approach raises a new problem because the set

B(R) is not countable. As in the GP, we can �rst de�ne

the DP on a countable “base” for B(R) then extend to

all random events by continuity of measures. More pre-

cise descriptions are unfortunately beyond the scope of

this chapter.

Explicit representations.Explicit representations directly

describe a random draw from a stochastic process,

rather than its distribution. A prominent example of

an explicit representation is the so-called stick-breaking

representation of the Dirichlet process.�e discrete ran-

dom measure G in () is completely determined by the

two in�nite sequences {πk}k∈N and {θk}k∈N.�e stick-

breaking representation of the DP generates these two

sequences by drawing θk ∼ H iid and vk ∼ Beta(, α)

for k = , ,�e coe�cients πk are then computed as

πk = vk∏
k−
j= (− vk).�e measureG so obtained can be

shown to be distributed according to aDP(α,G). Sim-

ilar representations can be derived for the Pitman–Yor

process and the beta process as well. Explicit representa-

tions, if they exist for a givenmodel, are typically of great

practical importance for the derivation of algorithms.

Implicit Representations. A third representation of in�-

nite dimensional models is based on de Finetti’s �e-

orem. Any exchangeable sequence X, . . . ,Xn uniquely

de�nes a stochastic process θ, called the de Finetti mea-

sure, making the Xi’s iid. If the Xi’s are su�cient to

de�ne the rest of the model and their conditional distri-

butions are easily speci�ed, then it is su�cient to work

directly with theXi’s and have the underlying stochastic

process implicitly de�ned. Examples include the Chi-

nese restaurant process (an exchangeable distribution

over partitions) with the DP as the de Finetti measure,

and the Indian bu�et process (an exchangeable distri-

bution over binary matrices) with the BP being the

corresponding de Finetti measure.�ese implicit rep-

resentations are useful in practice as they can lead to

simple and e�cient inference algorithms.

Finite representations. A fourth representation of

Bayesian nonparametric models is as the in�nite limit

of �nite (parametric) Bayesianmodels. For example, DP

mixtures can be derived as the in�nite limit of �nite

mixturemodels with particular Dirichlet priors onmix-

ing proportions, GPs can be derived as the in�nite limit

of particular Bayesian regression models with Gaussian

priors, while BPs can be derived as from the limit of

an in�nite number of independent beta variables.�ese

representations are sometimes more intuitive for prac-

titioners familiar with parametricmodels. However, not

all Bayesian nonparametric models can be expressed in

this fashion, and they do not necessarily make clear the

mathematical subtleties involved.

Consistency and Convergence Rates

A recent series of works in mathematical statis-

tics examines the convergence properties of Bayesian

Bayesian Nonparametric Models B

B

nonparametric models, and in particular the questions

of consistency and convergence rates. In this context, a

Bayesian model is called consistent if, given that an

in�nite amount of data is available, the model pos-

terior will concentrate in a neighborhood of the true

solution (e.g., true function or density). A rate of con-

vergence speci�es, for a �nite sample, how rapidly

the posterior concentrates depending on the sample

size. In their pioneering article Diaconis and Freed-

man () showed, to the great surprise of much

of the Bayesian community, that models such as the

Dirichlet process can be inconsistent, andmay converge

to arbitrary solutions even for an in�nite amount of

data.

More recent results, notably by van der Vaart and

Ghosal, apply modern methods of mathematical statis-

tics to study the convergence properties of Bayesian

nonparametric models (see e.g., Gho, () and ref-

erences therein). Consistency has been shown for a

number of models, including Gaussian processes and

Dirichlet process mixtures. However, a particularly

interesting aspect of this line of work are results on con-

vergence rates, which specify the rate of concentration

of the posterior depending on sample size, on the com-

plexity of themodel, and on howmuch probabilitymass

the prior places around the true solution. To make such

results quantitative requires a measure for the complex-

ity of a Bayesian nonparametric model. �is is done

by means of complexity measures developed in empir-

ical process theory and statistical learning theory, such

as metric entropies, covering numbers and bracketing,

some of which are well-known in theoretical machine

learning.

Inference
�ere are two aspects to inference from Bayesian non-

parametric models: the analytic tractability of posteri-

ors for the stochastic processes embedded in Bayesian

nonparametric models, and practical inference algo-

rithms for the overall models. Bayesian nonparametric

models typically include stochastic processes such as the

Gaussian process and the Dirichlet process.�ese pro-

cesses have an in�nite number of dimensions, hence

naïve algorithmic approaches to computing posteri-

ors are generally infeasible. Fortunately, these processes

typically have analytically tractable posteriors, so all but

�nitely many of the dimensions can be analytically inte-

grated out e�ciently.�e remaining dimensions, along

with the parametric parts of the models, can then be

handled by the usual inference techniques employed in

parametric Bayesianmodeling, includingMarkov chain

Monte Carlo, sequential Monte Carlo, variational infer-

ence, and message-passing algorithms like expectation

propagation. �e precise choice of approximations to

use will depend on the speci�c models under consid-

eration, with speed/accuracy trade-o�s between di�er-

ent techniques generally following those for parametric

models. In the following, we will give two examples to

illustrate the above points, and discuss a few theoret-

ical issues associated with the analytic tractability of

stochastic processes.

Examples

In Gaussian process regression, we model the relation-

ship between an input x and an output y using a func-

tion f , so that y ∼ f (x) + є, where є is iid Gaussian

noise. Given a GP prior over f and a �nite training

data set {(xi, yi)}
n
i= we wish to compute the posterior

over f . Here we can use the weak representation of f

and note that { f (xi)}
n
i= is simply a �nite-dimensional

Gaussian with mean and covariance given by the mean

and covariance functions of the GP. Inference for

{ f (xi)}
n
i= is then straightforward. �e approach can

be thought of equivalently as marginalizing out the

whole function except its values on the training inputs.

Note that although we only have the posterior over

{ f (xi)}
n
i=, this is su�cient to reconstruct the function

evaluated at any other point x (say the test input), since

f (x) is Gaussian and independent of the training data

{(xi, yi)}
n
i= given { f (xi)}

n
i=. In GP regression the pos-

terior over { f (xi)}
n
i= can be computed exactly. In GP

classi�cation or other regression settings with nonlin-

ear likelihood functions, the typical approach is to use

sparse methods based on variational approximations or

expectation propagation; see Chapter 7Gaussian Pro-
cess for details.

Our second example involvesDirichlet processmix-

ture models. Recall that the DP induces a clustering

structure on the data items. If our training set con-

sists of n data items, since each item can only belong to

one cluster, there are at most n clusters represented in

the training set. Even though the DP mixture itself has

an in�nite number of potential clusters, all but �nitely

 B Bayesian Nonparametric Models

many of these are not associated with data, thus the

associated variables need not be explicitly represented at

all.�is can be understood either as marginalizing out

these variables, or as an implicit representation which

can be made explicit whenever required by sampling

from the prior.�is idea is applicable for DP mixtures

using both the Chinese restaurant process and the stick-

breaking representations. In the CRP representation,

each data item xi is associated with a cluster index zi,

and each cluster k with a parameter θ∗k (these parame-

ters can be marginalized out ifH is conjugate to F), and

these are the only latent variables that need be repre-

sented inmemory. In the stick-breaking representation,

clusters are ordered by decreasing prior expected size,

with cluster k associated with a parameter θ∗k and a size

πk. Each data item is again associated with a cluster

index zi, and only the clusters up toK = max(z, . . . , zn)

need to be represented. All clusters with index > K need

not be represented since their posterior conditioning on

{(xi, zi)}
n
i= is just the prior.

On Bayes Equations and Conjugacy

It is worth noting that the posterior of a Bayesianmodel

is, in abstract terms, de�ned as the conditional distri-

bution of the parameter given the data and the hyper-

parameters, and this de�nition does not require the

existence of a Bayes equation. If a Bayes equation exists

for the model, the posterior can equivalently be de�ned

as the le�-hand side of the Bayes equation. However,

for some stochastic processes, notably the DP on an

uncountable space such asR, it is not possible to de�ne
a Bayes equation even though the posterior is still a

well-de�ned mathematical object. Technically speak-

ing, existence of a Bayes equation requires the fam-

ily of all possible posteriors to be dominated by the

prior, but this is not the case for the DP. �at poste-

riors of these stochastic processes can be evaluated at

all is solely due to the fact that they admit an analytic

representation.

�e particular form of tractability exhibited by

many stochastic processes in the literature is that of

a conjugate posterior, that is, the posterior belongs

to the same model family as the prior, and the pos-

terior parameters can be computed as a function of

the prior hyperparameters and the observed data.

For example, the posterior of a DP(α,G) under

observations θ, . . . , θn is again a Dirichlet process,

DP(α + n,

α+n
(αG + ∑ δθ i

)). Similarly the posterior

of a GP under observations of f (x), . . . , f (xn) is still

a GP. It is this conjugacy that allows practical infer-

ence in the examples above. A Bayesian nonparametric

model is conjugate if and only if the elements of its weak

distribution, i.e., its �nite-dimensional marginals, have

a conjugate structure as well (Orbanz,). In par-

ticular, this characterizes a class of conjugate Bayesian

nonparametric models whose weak distributions con-

sist of exponential family models. Note however, that

lack of conjugacy does not imply intractable posteri-

ors. An example is given by the Pitman–Yor process in

which the posterior is given by a sum of a �nite number

of atoms and a Pitman-Yor process independent from

the atoms.

Future Directions
Since MCMC (see 7Markov Chain Monte Carlo)
sampling algorithms for Dirichlet process mixtures

became available in the s and made latent vari-

able models with nonparametric Bayesian components

applicable to practical problems, the development of

Bayesian nonparametrics has experienced explosive

growth (Escobar & West, ; Neal,). Arguably,

though, the results available so far have only scratched

the surface. �e repertoire of available models is

still mostly limited to using the Gaussian process,

the Dirichlet process, the beta process, and gener-

alizations derived from those. In principle, Bayesian

nonparametric models may be de�ned on any in�nite-

dimensional mathematical object of possible interest

to machine learning and statistics. Possible examples

are kernels, in�nite graphs, special classes of functions

(e.g., piece-wise continuous or Sobolev functions), and

permutations.

Aside from the obvious modeling questions, two

major future directions are to make Bayesian non-

parametric methods available to a larger audience of

researchers and practitioners through the development

of so�ware packages, and to understand and quantify

the theoretical properties of available methods.

General-Purpose Software Package

�ere is currently signi�cant growth in the appli-

cation of Bayesian nonparametric models across a

Bayesian Nonparametric Models B

B

variety of application domains both in machine learn-

ing and in statistics. However signi�cant hurdles still

exist, especially the expense and expertise needed to

develop computer programs for inference in these

complex models. One future direction is thus the

development of so�ware packages that can com-

pile e�cient inference algorithms automatically given

model speci�cations, thus allowing a much wider range

of modeler to make use of these models. Current

developments include the R DPpackage (http://cran.r-

project.org/web/packages/DPpackage), the hierarchical

Bayesian compiler (http://www.cs.utah.edu/hal/HBC),

adaptor grammars (http://www.cog.brown.edu/mj/

So�ware.htm), the MIT-Church project (http://

projects.csail.mit.edu/church/wiki/Church), as well as

e�orts to add Bayesian nonparametric models to the

repertoire of current Bayesian modeling environments

like OpenBugs (http://mathstat.helsinki.�/openbugs)

and infer.NET (http://research.microso�.com/en-us/

um/cambridge/projects/infernet).

Statistical Properties of Models

Recent work in mathematical statistics provides some

insight into the quantitative behavior of Bayesian non-

parametric models (cf theory section). �e elegant,

methodical approach underlying these results, which

quanti�esmodel complexity bymeans of empirical pro-

cess theory and then derives convergence rates as a

function of the complexity, should be applicable to a

wide range of models. So far, however, only results for

Gaussian processes andDirichlet processmixtures have

been proven, and it will be of great interest to establish

properties for other priors. Some models developed in

machine learning, such as the in�nite HMM, may pose

new challenges to theoretical methodology, since their

study will probably have to draw on both the theory of

algorithms and mathematical statistics. Once a wider

range of results is available, they may in turn serve to

guide the development of new models, if it is possible

to establish how di�erent methods of model construc-

tion a�ect the statistical properties of the constructed

model.

In addition to the references embedded in the text

above, we recommend the booksHjort, Holmes,Müller,

and Walker (), Ghosh and Ramamoorthi (),

and the review articles Walker, Damien, Laud, and

Smith (), Müller and Quintana () on Bayesian

nonparametrics. Further references can be found in the

chapter by they Teh and Jordan () of the bookHjort

et al. ().

Cross References
7Bayesian Methods
7Dirichlet Processes
7Gaussian Processes
7Mixture Modelling
7Prior Probabilities

Recommended Reading
Diaconis, P., & Freedman, D. () On the consistency of

Bayes estimates (with discussion). Annals of Statistics, (),

–.

Dunson, D. B. (). Nonparametric Bayes applications to biostatis-

tics. In N. Hjort, C. Holmes, P. Müller, & S. Walker (Eds.),

Bayesian nonparametrics. Cambridge: Cambridge University

Press.

Escobar, M. D., & West, M. (). Bayesian density estimation and

inference using mixtures. Journal of the American Statistical

Association, , –.

de Finetti, B. (). Funzione caratteristica di un fenomeno aleato-

rio. Atti della R. Academia Nazionale dei Lincei, Serie . Mem-

orie, Classe di Scienze Fisiche, Mathematice e Naturale, ,

–.

Ghosh, J. K., & Ramamoorthi, R. V. (). Bayesian nonparametrics.

New York: Springer.

Hjort, N., Holmes, C., Müller, P., & Walker, S. (Eds.) (). Bayesian

nonparametrics. In Cambridge series in statistical and proba-

bilistic mathematics (No.). Cambridge: Cambridge Univer-

sity Press.

Müller, P., & Quintana, F. A. (). Nonparametric Bayesian data

analysis. Statistical Science, (), –.

Neal, R. M. (). Markov chain sampling methods for Dirichlet

process mixture models. Journal of Computational and Graphi-

cal Statistics, , –.

Orbanz, P. (). Construction of nonparametric Bayesian models

from parametric Bayes equations. In Y. Bengio, D. Schuurmans,

J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in

neural information processing systems, , –.

Teh, Y. W., & Jordan, M. I. (). Hierarchical Bayesian non-

parametric models with applications. In N. Hjort, C. Holmes,

P. Müller, & S. Walker (Eds.), Bayesian nonparametrics. Cam-

bridge: Cambridge University Press.

Walker, S. G., Damien, P., Laud, P. W., & Smith, A. F. M. ().

Bayesian nonparametric inference for random distributions and

related functions. Journal of the Royal Statistical Society, (),

–.

Wasserman, L. (). All of nonparametric statistics. New York:

Springer.

http://cran.r-project.org/web/packages/DPpackage
http://www.cog.brown.edu/mj/So%EF%BF%BDware.htm
http://projects.csail.mit.edu/church/wiki/Church
http://research.microso%EF%BF%BD.com/en-us/um/cambridge/projects/infernet

 B Bayesian Reinforcement Learning

Bayesian Reinforcement Learning

Pascal Poupart

University of Waterloo, Waterloo, Ontario, Canada

Synonyms
Adaptive control processes; Bayes adaptive Markov

decision processes; Dual control; Optimal learning

Definition
Bayesian reinforcement learning refers to 7reinforce-
ment learning modeled as a Bayesian learning problem

(see 7Bayesian Methods). More speci�cally, follow-
ing Bayesian learning theory, reinforcement learning

is performed by computing a posterior distribution on

the unknowns (e.g., any combination of the transition

probabilities, reward probabilities, value function, value

gradient, or policy) based on the evidence received (e.g.,

history of past state–action pairs).

Motivation and Background
Bayesian reinforcement learning can be traced back

to the s and s in the work of Bellman

(), Fel’Dbaum (), and several of Howard’s stu-

dents (Martin,). Shortly a�er 7Markov deci-
sion processes were formalized, the above researchers

(and several others) in Operations Research consid-

ered the problem of controlling a Markov process with

uncertain transition and reward probabilities, which

is equivalent to reinforcement learning. �ey consid-

ered Bayesian techniques since Bayesian learning is

performed by probabilistic inference, which naturally

combines with decision theory. In general, Bayesian

reinforcement learning distinguishes itself from other

reinforcement learning approaches by the use of prob-

ability distributions (instead of point estimates) to

fully capture the uncertainty. �is enables the learner

to make more informed decisions, with the poten-

tial of learning faster with less data. In particular,

the exploration/exploitation tradeo� can be naturally

optimized. �e use of a prior distribution also facil-

itates the encoding of domain knowledge, which is

exploited in a natural and principledway by the learning

process.

Structure of Learning Approach
A Markov decision process (MDP) (Puterman,)

can be formalized by a tuple ⟨S,A,T⟩ where S is the set

of states s,A is the set of actions a,T(s, a, s′) = Pr(s′∣s, a)

is the transition distribution indicating the probability

of reaching s′ when executing a in s. Let sr denote the

reward feature of a state and Pr (s′r ∣s, a) be the prob-

ability of earning r when executing a in s. A policy

π : S → A consists of a mapping from states to actions.

For a given discount factor ≤ γ ≤ and horizon h,

the value Vπ of a policy π is the expected discounted

total reward earnedwhile executing this policy:Vπ(s) =

∑
h
t=o γtEs∣π [str].�e value functionV

π can be written in

a recursive form as the expected sum of the immediate

reward s′r with the discounted future rewards: V
π(s) =

∑s′ Pr(s
′∣s, π(s)) [s′r + γVπ(s′)]. �e goal is to �nd an

optimal policy π∗, that is, a policy with the highest value

V∗ in all states (i.e., V∗(s) ≥ Vπ(s) ∀π, s). Many algo-

rithms exploit the fact that the optimal value function

V∗ satis�es Bellman’s equation:

V∗
(s) = max

a
∑
s′
Pr(s′∣s, a) [s′r + γV∗

(s)] ()

Reinforcement learning (Sutton & Barto,) is

concerned with the problem of �nding an optimal pol-

icy when the transition (and reward) probabilities T are

unknown (or uncertain). Bayesian learning is a learn-

ing approach in which unknowns are modeled as ran-

dom variables X over which distributions encode the

uncertainty.�e process of learning consists of updating

the prior distribution Pr(X) based on some evidence

e to obtain a posterior distribution Pr(X∣e) according

to Bayes theorem: Pr(X∣e) = kPr(X)Pr(e∣X). (Here

k = /Pr(e) is a normalization constant.) Hence,

Bayesian reinforcement learning consists of using

Bayesian learning for reinforcement learning. �e

unknowns are the transition (and reward) probabili-

ties T, the optimal value function V∗, and the opti-

mal policy π∗. Techniques that maintain a distribution

on T are known as model-based Bayesian reinforce-

ment learning since they explicitly learn the underlying

model T. In contrast, techniques that maintain a distri-

bution on V∗ or π∗ are known as model-free Bayesian

reinforcement learning since they directly learn the

optimal value function or policy without learning

a model.

Bayesian Reinforcement Learning B

B

Model-Based Bayesian Learning

In model-based Bayesian reinforcement learning, the

learner starts with a prior distribution over the param-

eters of T, which we denote by θ. For instance, let

θsas′ = Pr(s′∣s, a, θ) be the unknown probability of

reaching s′ when executing a in s. In general, we denote

by θ the set of all θsas′ .�en, the prior b(θ) represents

the initial belief of the learner regarding the underlying

model.�e learner updates its belief a�er every s, a, s′

triple observed by computing a posterior bsas′(θ) =

b(θ∣s, a, s′) according to Bayes theorem:

bsas′(θ) = kb(θ)Pr(s′∣s, a, θ) = kb(θ)θsas′ . ()

In order to facilitate belief updates, it is convenient to

pick the prior from a family of distributions that is

closed under Bayes updates.�is ensures that beliefs are

always parameterized in the sameway. Such families are

called conjugate priors. In the case of a discrete model

(i.e., Pr(s′∣s, a, θ) is a discrete distribution), Dirichlets

are conjugate priors and form a family of distributions

corresponding to monomials over the simplex of dis-

crete distributions (DeGroot,).�ey are parame-

terized as follows: Dir(θ;n) = k∏i θni−
i . Here θ is an

unknown discrete distribution such that∑i θ i = and n

is a vector of strictly positive real numbers ni (known as

the hyperparameters) such that ni− can be interpreted

as the number of times that the θ i-probability event has

been observed. Since the unknown transition model θ

is made up of one unknown distribution θ s
a per s, a pair,

let the prior be b(θ) =∏s,aDir (θ s
a;n

s
a) such that n

s
a is a

vector of hyperparameters ns,s
′

a .�e posterior obtained

a�er transition ŝ, â, ŝ′ is

bs,s
′

a (θ) = kθ s,s′

a ∏
s,a

Dir (θ s
a;n

s
a)

=∏
s,a

Dir (θ s
a;n

s
a + δŝ,â,ŝ′(s, a, s

′
)) ()

where δŝ,â,ŝ′(s, a, s
′) is a Kronecker delta that returns

 when s = ŝ, a = â, s′ = ŝ′ and otherwise. In

practice, belief monitoring is as simple as increment-

ing the hyperparameter corresponding to the observed

transition.

Belief MDP Equivalence

At any point in time, the belief b provides an explicit

representation of the uncertainty of the learner about

the underlying model. �is information is very use-

ful to decide whether future actions should focus

on exploring or exploiting. Hence, in Bayesian rein-

forcement learning, policies π are mappings from

state-belief pairs ⟨s, b⟩ to actions. Equivalently, the

problem of Bayesian reinforcement learning can be

thought as one of planning with a belief MDP (or

a partially observable MDP). More precisely, every

Bayesian reinforcement learning problem has an equiv-

alent belief MDP formulation ⟨Sbel,Abel,Tbel⟩ where

Sbel = S×B (B is the space of beliefs b), Abel =A, and

Tbel (sbel, abel, b
′
bel) = Pr (b

′
bel∣bbel, abel) = Pr(s

′, b′∣s, b, a)

= Pr(b′∣s, b, a, s′)Pr(s′∣s, b, a). �e decomposition of

the transition dynamics is particularly interesting since

Pr(b′∣s, b, a, s′) equals when b′ = bs,s
′

a (as de�ned in

Eq.) and otherwise. Furthermore, Pr(s′∣s, b, a) =

∫θ b(θ)Pr(s′∣s, θ, a)dθ, which can be computed in

closed formwhen b is a Dirichlet. As a result, the transi-

tion dynamics of the belief MDP are fully known.�is

is a remarkable fact since it means that Bayesian rein-

forcement learning problems, which by de�nition have

unknown/uncertain transition dynamics, can be recast

as belief MDPs with known transition dynamics. While

this doesn’t make the problem any easier since the belief

MDP has a hybrid state space (discrete s with contin-

uous b), it allows us to treat policy optimization as a

problem of planning and in particular to adapt algo-

rithms originally designed for belief MDPs (also known

as partially observable MDPs).

Optimal Value Function Parameterization

Many planning techniques compute the optimal value

function V∗, from which an optimal policy π∗ can eas-

ily be extracted. Despite the hybrid nature of the state

space, the optimal value function (for a �nite hori-

zon) has a simple parameterization corresponding to

the upper envelope of a set of polynomials (Poupart,

Vlassis, Hoey, & Regan,). Recall that the optimal

value function satis�es Bellman’s equation, which can
be adapted as follows for a belief MDP:

V∗
(s, b) = max

a
∑
s′
Pr(s′, b′∣s, b, a) [s′r + γV∗

(s′, b′)] .

()

Using the fact that b′ must be bs,s
′

a (otherwise

Pr(s′, b′∣s, b, a) =) allows us to rewrite Bellman’s

equation as follows:

 B Bayesian Reinforcement Learning

V∗
(s, b) = max

a
∑
s′
Pr(s′∣s, b, a) [s′r + γV∗

(s′, bs,s
′

a)] .

()

Let Γn be a set of polynomials in θ such that

the optimal value function Vn with n steps to go

is Vn(s, b) = ∫θ b(θ)polys,b(θ)dθ where polys,b =

argmaxpoly∈Γns ∫θ b(θ)poly(θ)dθ. It su�ces to replace

Pr(s′∣s, b, a), bs,s
′

a and Vn by their de�nitions in Bell-

man’s equation

Vn+
(s, b) = max

a
∑
s′
∫

θ
b(θ)Pr(s′∣s, θ, a)

[r′s + γ poly
s′ ,bs,s

′

a
(θ)]dθ ()

= max
a
∫

θ
b(θ)∑

s′
θ s,s′

a

[r′s + γ poly
s′ ,bs,s

′

a
(θ)]dθ ()

to obtain a similar set of polynomials Γn+s =

{∑s′ θ s,s′

a [r′s + γ poly′s(θ)] ∣a ∈ A, polys′ ∈ Γ
n
s′} that rep-

resents Vn+.

�e fact that the optimal value function has a closed

form with a simple parameterization is quite useful for

planning algorithms based on value iteration. Instead

of using an arbitrary function approximator to �t the

value function, one can take advantage of the fact that

the value function can be represented by a set of poly-

nomials to choose a good representation. For instance,

the Beetle algorithm (Poupart et al.,) performs

point-based value iteration and approximates the value

function with a bounded set of polynomials that each

consists of a linear combination of monomial basis

functions.

Exploration/Exploitation Tradeoff

Since the underlying model is unknown in reinforce-

ment learning, it is not clear whether actions should

be chosen to explore (gain more information about

the model) or exploit (maximize immediate rewards

based on information gathered so far). Bayesian rein-

forcement learning provides a principled solution to the

exploration/exploitation tradeo�. Despite the appear-

ance of multiple objectives induced by exploration

and exploitation, there is a single objective in rein-

forcement learning:maximize total discounted rewards.

Hence, an optimal policy (which maximizes total

discounted rewards) must naturally optimize the explo-

ration/exploitation tradeo�. In order for a policy to

be optimal, it must use all the information avail-

able. �e information available to the learner con-

sists of the history of past states and actions. One can

show that state–belief pairs ⟨s, b⟩ are su�cient statis-

tics of the history. Hence, by searching for the mapping

from state–belief pairs to actions that maximizes total

discounted rewards, Bayesian reinforcement learning

implicitly seeks an optimal tradeo� between explo-

ration and exploitation. In contrast, traditional rein-

forcement learning approaches search in the space of

mappings from states to actions. As a result, such tech-

niques typically focus on asymptotic convergence (i.e.,

convergence to a policy that is optimal in the limit), but

do not e�ectively balance exploration and exploitation

since they do not use histories or beliefs to quantify the

uncertainty about the underlying model.

Related Work

Michael Du� ’s PhD thesis (Du�,) provides an

excellent survey of Bayesian reinforcement learning up

until . �e above text pertains mostly to model-

based Bayesian reinforcement learning applied to dis-

crete, fully observable, single agent domains. Bayesian

learning has also been explored in model-free rein-

forcement learning (Dearden, Friedman, & Russell,

; Engel, Mannor, & Meir, ; Ghavamzadeh &

Engel,) continuous-valued state spaces (Ross,

Chaib-Draa, & Pineau,), partially observable

domains (Poupart & Vlassis, ; Ross, Chaib-

Draa, & Pineau,), and multi-agent systems

(Chalkiadakis & Boutilier, , ; Gmytrasiewicz

& Doshi,).

Cross References
7Active Learning
7Markov Decision Processes
7Reinforcement Learning

Recommended Reading
Bellman, R. (). Adaptive control processes: A guided tour.

Princeton, NJ: Princeton University Press.

Behavioral Cloning B

B

Chalkiadakis, G., & Boutilier, C. (). Coordination in multi-

agent reinforcement learning: A Bayesian approach. In Inter-

national joint conference on autonomous agents and multiagent

systems (AAMAS), Melbourne, Australia (pp. –).

Chalkiadakis, G., & Boutilier, C. (). Bayesian reinforcement

learning for coalition formation under uncertainty. In Inter-

national joint conference on autonomous agents and multiagent

systems (AAMAS), New York (pp. –).

Dearden, R., Friedman, N., & Russell, S. J. (). Bayesian

Q-learning. In National conference on artificial intelligence

(AAAI), Madison, Wisconsin (pp. –).

DeGroot, M. H. (). Optimal statistical decisions. New York:

McGraw-Hill.

Duff, M. (). Optimal learning: Computational procedures for

Bayes-adaptive Markov decision processes. PhD thesis, Univer-

sity of Massachusetts, Amherst.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learning

with Gaussian processes. In International conference on machine

learning (ICML), Bonn, Germany.

Fel’Dbaum, A. (). Optimal control systems. New York: Academic.

Ghavamzadeh, M., & Engel, Y. (). Bayesian policy gradient algo-

rithms. In Advances in neural information processing systems

(NIPS), (pp. –).

Gmytrasiewicz, P., & Doshi, P. (). A framework for sequential

planning in multi-agent settings. Journal of Artificial Intelli-

gence Research (JAIR), , –.

Martin (). Bayesian decision problems and Markov chains. New

York: Wiley.

Poupart, P., & Vlassis, N. (). Model-based Bayesian reinforce-

ment learning in partially observable domains. In International

symposium on artificial intelligence and mathematics (ISAIM).

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (). An analytic

solution to discrete Bayesian reinforcement learning. In Inter-

national conference on machine learning (ICML), Pittsburgh,

Pennsylvania (pp. –).

Puterman, M. L. ().Markov decision processes. New York: Wiley.

Ross, S., Chaib-Draa, B., & Pineau, J. (). Bayes-adaptive

POMDPs. In Advances in neural information processing systems

(NIPS).

Ross, S., Chaib-Draa, B., & Pineau, J. (). Bayesian reinforce-

ment learning in continuous POMDPs with application to robot

navigation. In IEEE International conference on robotics and

automation (ICRA), (pp. –).

Sutton, R. S., & Barto, A. G. (). Reinforcement Learning.

Cambridge, MA: MIT Press.

Beam Search

Claude Sammut

University of New South Wales, Sydney, Australia

A beam search is a heuristic search technique that com-

bines elements of breadth-�rst and best-�rst searches.

Like a breadth-�rst search, the beam search maintains

a list of nodes that represent a frontier in the search

space. Whereas the breadth-�rst adds all neighbors to

the list, the beam search orders the neighboring nodes

according to some heuristic and only keeps the n best,

where n is the beam size.�is can signi�cantly reduce

the processing and storage requirements for the search.

Inmachine learning, the beam search has been used

in algorithms, such as AQ (Dietterich & Michalski,

).

Cross References
7Learning as Search

Recommended Reading
Dietterich, T. G., & Michalski, R. S. (). Learning and generaliza-

tion of characteristic descriptions: Evaluation criteria and com-

parative review of selected methods. In Fifth international joint

conference on artificial intelligence (pp. –). Cambridge,

MA: William Kaufmann.

Behavioral Cloning

Caude Sammut

�e University of New South Wales, Sydney, Australia

Synonyms
Apprenticeship learning; Behavioral cloning; Learning

by demonstration; Learning by imitation; Learning con-

trol rules

Definition
Behavioral cloning is a method by which human sub-

cognitive skills can be captured and reproduced in a

computer program. As the human subject performs the

skill, his or her actions are recorded along with the situ-

ation that gave rise to the action. A log of these records is

used as input to a learning program.�e learning pro-

gram outputs a set of rules that reproduce the skilled

behavior.�is method can be used to construct auto-

matic control systems for complex tasks for which clas-

sical control theory is inadequate. It can also be used for

training.

 B Behavioral Cloning

Motivation and Background
Behavioral cloning (Michie, Bain, & Hayes-Michie,

) is a form of learning by imitation whose main

motivation is to build a model of the behavior of

a human when performing a complex skill. Prefer-

ably, the model should be in a readable form. It is

related to other forms of learning by imitation, such

as 7inverse reinforcement learning (Abbeel & Ng,
; Amit & Matarić, ; Hayes & Demiris, ;

Kuniyoshi, Inaba, & Inoue, ; Pomerleau,) and

methods that use data from human performances to

model the system being controlled (Atkeson & Schaal,

; Bagnell & Schneider,).

Experts might be de�ned as people who know what

they are doing not what they are talking about. �at

is, once a person becomes highly skilled in some task,

the skill becomes sub-cognitive and is no longer avail-

able to introspection. So when the person is asked to

explain why certain decisions were made, the expla-

nation is a post hoc justi�cation rather than a true

explanation.

Michie et al. () used an induction program to

learn rules for balancing a pole (in simulation) and

earlier work by Donaldson (), Widrow and Smith

(), and Chambers andMichie () demonstrated

the feasibility of learning by imitation, also for pole-

balancing.

Structure of the Learning System
Behavioral cloning assumes that there is a plant of some

kind that is under the control of a human operator.�e

plant may be a physical system or a simulation. In either

case, the plant must be instrumented so that it is pos-

sible to capture the state of the system, including all

the control settings.�us, whenever the operator per-

forms an action, that is, changes a control setting, we

can associate that action with a particular state.

Let us use a simple example of a system that has only

one control action. A pole balancer has four state vari-

ables: the angle of the pole, θ, and its angular velocity,

θ̇ and the position, x, and velocity ẋ, of the cart on the

track. �e only action available to the controller is to

apply a �xed positive of negative force, F, to accelerate

the cart le� or right.

We can create an experimental setupwhere a human

can control a pole and cart system (either real or in

simulation) by applying a le� push or a right push at

Human
trainer

Plant

Controller

Log
file

Learning
program

As the trainer
executes the task

all actions are recorded

An learning program
uses the logged data
to build a controller

Behavioral Cloning. Figure . Structure of learning

system

the appropriate time. Whenever a control action is per-

formed, we record the action as well as values of the four

state variables at the time of the action. Each of these

records can be viewed as an example of a mapping from

state to action.

Michie et al. () demonstrated that it is possi-

ble to construct a controller by learning from these

examples. �e learning task is to predict the appro-

priate action, given the state. �ey used a 7decision
tree learning program to produce a classi�er that, given

the values of the four state variables, would output an

action. A decision tree is easily convertible into an exe-

cutable code as a nested if statement.�e quality of the
controller can be tested by inserting the decision tree

into the simulator, replacing the human operator.

If the goal of learning is simply to produce an oper-

ational controller then any program capable of build-

ing a classi�er could be used. �e reason that Michie

et al. () chose a symbolic learner was their desire

to produce a controller whose decision making was

transparent as well as operational.�at is, it should be

possible to extract an explanation of the behavior that is

meaningful to an expert in the task.

Learning Direct (Situation–Action) Controllers

A controller such as the one described above is referred

to as a direct controller because it maps situations to

actions. Other examples of learning a direct controller

Behavioral Cloning B

B

are building an autopilot from behavioral traces of

human pilots �ying aircra� in a �ight simulator (Sam-

mut, Hurst, Kedzier, & Michie,) and building

a control system for a container crane (Urbančič &

Bratko,).�ese systems extended the earlier work

by operating in domains in which there is more than

one control variable and the task is su�ciently complex

that it must be decomposed into several subtasks.

An operator of a container crane can control the

speed of the cart and the length of the rope. A pilot

of a �xed-wing aircra� can control the ailerons, eleva-

tors, rudder, throttle, and �aps. To build an autopilot,

the learner must build a system that can set each of the

control variables. Sammut et al. (), viewed this as a

multitask learning problem.

Each training example is a feature vector that

includes the position, orientation, and velocities of the

aircra� as well as the values of each of the control set-

tings: ailerons, elevator, throttle, and �aps.�e rudder is

ignored. A separate decision tree is built for each con-

trol variable. For example, the aileron setting is treated

as the dependent variable and all the other variables,

including the other controls, are treated as the attributes

of the training example. A decision tree is built for

ailerons, then the process is repeated for the elevators,

etc. �e result is a decision tree for each control

variable.

�e autopilot code executes each decision tree in

each cycle of the control loop.�is method treats the

setting of each control as a separate task. It may be

surprising that thismethodworks since it is o�en neces-

sary to adjust more than one control simultaneously to

achieve the desired result. For example, to turn, it is nor-

mal to use the ailerons to roll the aircra�while adjusting

the elevators to pull it around.�is kind ofmultivariable

control does result from multiple decision trees. When,

say, the aileron decision tree initiates a roll, the eleva-

tor’s decision tree detects the roll and causes the aircra�

to pitch up and execute a turn.

Limitations Direct controllers work quite well for sys-

tems that have a relatively small state space. How-

ever, for complex systems, behavioral cloning of direct

situation–action rules tends to produce very brittle con-

trollers.�at is, they cannot tolerate large disturbances.

For example, when air turbulence is introduced into the

�ight simulator, the performance of the clone degrades

very rapidly.�is is because the examples provided by

logging the performance of a human only cover a very

small part of the state space of a complex system such

as an aircra� in �ight.�us, the“expertise” of the con-

troller is very limited. If the system strays outside the

controller’s region of expertise, it has no method for

recovering and failure is usually catastrophic.

More robust control is possible but only with a

signi�cant change in approach. �e more successful

methods decompose the learning task into two stages:

learning goals and learning the actions to achieve those

goals.

Learning Indirect (Goal-Directed)
Controllers
�e problem of learning in a large search space can par-

tially be addressed by decomposing the learning into

subtasks. A controller built in this way is said to be

an indirect controller. A control is “indirect” if it does

not compute the next action directly from the system’s

current state but uses, in addition, some intermediate

information. An example of such intermediate informa-

tion is a subgoal to be attained before achieving the �nal

goal.

Subgoals o�en feature in an operator’s control

strategies and can be automatically detected from a

trace of the operator’s behavior (Šuc & Bratko,).

�e problem of subgoal identi�cation can be treated as

the inverse of the usual problem of controller design,

that is, given the actions in an operator’s trace, �nd the

goal that these actions achieve. �e limitation of this

approach is that it only works well for cases in which

there are just a few subgoals, notwhen the operator’s tra-

jectory contains many subgoals. In these cases, a better

approach is to generalize the operator’s trajectory.�e

generalized trajectory can be viewed as de�ning a con-

tinuously changing subgoal (Bratko & Šuc, ; Šuc &

Bratko, a) (see also the use of �ow tubes in dynamic

plan execution (Hofmann &Williams,)).

Subgoals and generalized trajectories are not suf-

�cient to de�ne a controller. A model of the systems

dynamics is also required. �erefore, in addition to

inducing subgoals or a generalized trajectory, this

approach also requires learning approximate system

dynamics, that is a model of the controlled system.

Bratko and Šuc () and Šuc and Bratko (b) use

a combination of the Goldhorn (Križman & Džeroski,

 B Behavioral Cloning

) discovery program and locally weighted regres-

sion to build the model of the system’s dynamics.�e

next action is then computed “indirectly” by () com-

puting the desired next state (e.g., next subgoal) and

() determining an action that brings the system to

the desired next state. Bratko and Šuc also investigated

building qualitative control strategies from operator

traces (Bratko & Šuc,).

An analog to this approach is 7inverse reinforce-
ment learning (Abbeel & Ng, ; Atkeson & Schaal,

; Ng & Russell,) where the reward function is

learned. Here, the learning the reward function corre-

sponds to learning the human operator’s goals.

Isaac and Sammut () uses an approach that

is similar in spirit to Šuc and Bratko but incorpo-

rates classical control theory. Learned skills are repre-

sented by a two-level hierarchical decomposition with

an anticipatory goal level and a reactive control level.

�e goal level models how the operator chooses goal

settings for the control strategy and the control level

models the operator’s reaction to any error between

the goal setting and actual state of the system. For

example, in �ying, the pilot can achieve goal val-

ues for the desired heading, altitude, and airspeed by

choosing appropriate values of turn rate, climb rate,

and acceleration. �e controls can be set to correct

errors between the current state and the desired state

of these goal-directing quantities. Goal models map

system states to a goal setting. Control actions are based

on the error between the output of each of the goal

models and the current system state.

�e control level is modeled as a set of propor-

tional integral derivative (PID) controllers, one for each

control variable. A PID controller determines a control

value as a linear function proportional to the error on a

goal variable, the integral of the error, and the derivative

of the error.

Goal setting and control models are learned sepa-

rately.�e process begins be deciding which variables

are to be used for the goal settings. For example, trainee

pilots will learn to execute a “constant-rate turn,” that

is, their goal is to maintain a given turn rate. A separate

goal rule is constructed for each goal variable using a

7model tree learner (Potts & Sammut,).
A goal rule gives the setting for a goal variable and

therefore, we can �nd the di�erence (error) between the

current state value and the goal setting.�e integral and

derivative of the error can also be calculated. For exam-

ple, if the set turn rate is ○ min, then the error on

the turn rate is calculated as the actual turn rate minus

.�e integral is then the running sum of the error

multiplied by the time interval between time samples,

starting from the �rst time sample of the behavioral

trace, and the derivative is calculated as the di�erence

between the error and previous error all divided by the

time interval.

For each control available to the operator, a model

tree learner is used to predict the appropriate control

setting. 7Linear regression is used in the leaf nodes
of the model tree to produce linear equations whose

coe�cients are the P, I, and D of values of the PID con-

troller. �us the learner produces a collection of PID

controllers that are selected according to the conditions

in the internal nodes of the tree. In control theory, this

is known as piecewise linear control.

Another indirect method is to learn a model of

the dynamics of the system and use this to learn,

in simulation, a controller for the system (Bagnell &

Schneider, ; Ng, Jin Kim, Jordan, & Sastry,).

�is approach does not seek to directly model the

behavior of a human operator. A behavioral trace may

be used to generate data for modeling the system but

then a reinforcement learning algorithm is used to gen-

erate a policy for controlling the simulated system.�e

learned policy can then be transferred to the physical

system. 7Locally weighted regression is typically used
for system modeling, although 7model trees can also
be used.

Cross References
7Apprenticeship Learning
7Inverse Reinforcement Learning
7Learning by Imitation
7Locally Weighted Regression
7Model Trees
7Reinforcement Learning
7System Identi�cation

Recommended Reading
Abbeel, P., & Ng, A. Y. (). Apprenticeship learning via inverse

reinforcement learning. In International conference on machine

learning, Banff, Alberta, Canada. New York: ACM.

Bias B

B

Amit, R., & Matarić, M. (). Learning movement sequences from

demonstration. In Proceedings of the second international con-

ference on development and learning, Cambridge, MA, USA

(pp. –). Washington, D.C.: IEEE.

Atkeson, C. G., & Schaal, S. (). Robot learning from demon-

stration. In D. H. Fisher (Ed.), Proceedings of the fourteenth

international conference on machine learning, Nashville, TN,

USA (pp. –). San Francisco: Morgan Kaufmann.

Bagnell, J. A., & Schneider, J. G. (). Autonomous helicopter

control using reinforcement learning policy search methods.

In International conference on robotics and automation, South

Korea. IEEE Press, New York.

Bratko, I., & Šuc, D. (). Using machine learning to understand

operator’s skill. In Proceedings of the th international con-

ference on industrial and engineering applications of artificial

intelligence and expert systems (pp. –). London: Springer.

AAAI Press, Menlo Park, CA.

Bratko, I., & Šuc, D. (). Learning qualitative models. AI Maga-

zine, (), –.

Chambers, R. A., & Michie, D. (). Man-machine co-operation

on a learning task. In R. Parslow, R. Prowse, & R. Elliott-Green

(Eds.), Computer graphics: techniques and applications. London:

Plenum.

Donaldson, P. E. K. (). Error decorrelation: A technique

for matching a class of functions. In Proceedings of

the third international conference on medical electronics

(pp. –).

Hayes, G., & Demiris, J. (). A robot controller using learn-

ing by imitation. In Proceedings of the international symposium

on intelligent robotic systems, Grenoble, France (pp. –).

Grenoble: LIFTA-IMAG.

Hofmann, A. G., & Williams, B. C. (). Exploiting spatial

and temporal flexiblity for plan execution of hybrid, under-

actuated systems. In Proceedings of the st national con-

ference on artficial intelligence, July , Boston, MA (pp.

–).

Isaac, A., & Sammut, C. (). Goal-directed learning to fly. In

T. Fawcett & N. Mishra (Eds.), Proceedings of the twentieth

international conference on machine learning, Washington, D.C.

(pp. –). Menlo Park: AAAI.

Križman, V., & Džeroski, S. (). Discovering dynamics

from measured data. Electrotechnical Review, (–),

–.

Kuniyoshi, Y., Inaba, M., & Inoue, H. (). Learning by watch-

ing: Extracting reusable task knowledge from visual observa-

tion of human performance. IEEE Transactions on Robotics and

Automation, , –.

Michie, D., Bain, M., & Hayes-Michie, J. E. (). Cognitive models

from subcognitive skills. In M. Grimble, S. McGhee, & P. Mow-

forth (Eds.), Knowledge-based systems in industrial control.

Stevenage: Peter Peregrinus.

Ng, A. Y., Jin Kim, H., Jordan, M. I., & Sastry, S. (). Autonomous

helicopter flight via reinforcement learning. In S. Thrun, L.

Saul, & B. Schölkopf (Eds.), Advances in neural information

processing systems . Cambridge: MIT Press.

Ng, A. Y., & Russell, S. (). Algorithms for inverse reinforce-

ment learning. In Proceedings of th international conference

on machine learning, Stanford, CA, USA (pp. –). San

Francisco: Morgan Kaufmann.

Pomerleau, D. A. (). ALVINN: An autonomous land vehi-

cle in a neural network. In D. S. Touretzky (Ed.), Advances

in neural information processing systems. San Mateo: Morgan

Kaufmann.

Potts, D., & Sammut, C. (November). Incremental learning of

linear model trees. Machine Learning, (–), –.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (). Learning

to fly. In D. Sleeman & P. Edwards (Eds.), Proceedings of the

ninth international conference on machine learning, Aberdeen

(pp. –). San Francisco: Morgan Kaufmann.

Šuc, D., & Bratko, I. (). Skill reconstruction as induction of

LQ controllers with subgoals. In IJCAI-: Proceedings of the

fiftheenth international joint conference on artificial intelligence,

Nagoya, Japan (Vol. , pp. –). San Francisco: Morgan

Kaufmann.

Šuc, D., & Bratko, I. (a). Modelling of control skill by qualitative

constraints. In Thirteenth international workshop on qualitative

reasoning, – June , Lock Awe, Scotland (pp. –).

Aberystwyth: University of Aberystwyth.

Šuc, D., & Bratko, I. (b). Symbolic and qualitative recon-

struction of control skill. Electronic Transactions on Artificial

Intelligence, (B), –.

Urbančič, T., & Bratko, I. (). Reconstructing human skill with

machine learning. In A. Cohn (Ed.), Proceedings of the th

European conference on artificial intelligence. Wiley. Amster-

dam: New York.

Widrow, B., & Smith, F. W. (). Pattern recognising control

systems. In J. T. Tou & R. H. Wilcox (Eds.), Computer and

information sciences. London: Clever Hume.

Belief State Markov Decision
Processes

7Partially Observable Markov Decision Processes

Bellman Equation

�e Bellman Equation is a recursive formula that forms

the basis for 7dynamic programming. It computes the
expected total reward of taking an action from a state

in a 7Markov decision process by breaking it into the
immediate reward and the total future expected reward.

(See7dynamic programming.)

Bias

Bias has two meanings, 7inductive bias, and statistical
bias (see7bias variance decomposition).

 B Bias Specification Language

Bias Specification Language

Hendrik Blockeel

Katholieke Universiteit Leuven, Belgium

�e Netherlands

Definition
A bias speci�cation language is a language in which a

user can specify a 7Language Bias.�e language bias
of a learner is the set of hypotheses (or hypothesis

descriptions) that this learner may return.

In contrast to the 7hypothesis language, the bias
speci�cation language allows us to describe not single

hypotheses but sets (languages) of hypotheses.

Examples
In learning approaches based on 7graphical models or
7arti�cial neural networks, whenever the user provides
the graph structure of the model, he or she is specify-

ing a bias.�e “language” used to specify this bias, in

this case, consists of graphs. Figure shows examples

of such graphs. Not every kind of bias can necessar-

ily be expressed by some bias speci�cation language;

for instance, the bias de�ned by the 7Bayesian net-
work structure in Fig. cannot be expressed using a

A B

C

A B

C

p(A,B,C) = p(A)p(B)p(C |A,B) p(A,B,C) = f1(A,C)f2(B,C)

Bias Specification Language. Figure . Graphs defining a

bias for learning joint distributions. The Bayesian net-

work structure to the left constrains the form of the joint

distribution in a particular way (shown as the equation

below the graph). Notably, it guarantees that only dis-

tributions can be learned in which the variables A and B

are (unconditionally) independent. The Markov network

structure to the right constrains the form of the joint

distribution in a different way: it states that it must be

possible to write the distribution as a product of a func-

tion ofA andC and a function ofB andC. These two biases

are different. In fact, no Markov network structure over

the variables A, B, and C exists that expresses the bias

specified by the Bayesian network structure

7Markov network. Bayesian networks andMarkov net-
works have a di�erent expressiveness, when viewed as

bias speci�cation languages.

Also certain parameters of decision tree learners or

rule set learners e�ectively restrict the hypothesis lan-

guage (for instance, an upper bound on the rule length

or the size of the decision tree).

A combination of parameter values can hardly be

called a language, and even the “language” of graphs is a

relatively simple kind of language. More elaborate types

of bias speci�cation languages are typically found in the

�eld of7inductive logic programming (ILP).

Bias Specification Languages in Inductive
Logic Programming
In ILP, the hypotheses returned by the learning algo-

rithm are typically written as �rst-order logic clauses.

As the set of all possible clauses is too large to handle, a

subset of these clauses is typically de�ned; this subset is

called the language bias. Several formalisms (“bias spec-

i�cation languages”) have been proposed for specifying

such subsets. We here focus on a few representative

ones.

DLAB

In the DLAB bias speci�cation language (Dehaspe &

De Raedt,), the language bias is de�ned in a declar-

ative way, by de�ning a syntax that clauses must ful�ll.

In its simplest form, a DLAB speci�cation simply gives

a set of possible head and body literals out of which the

system can build a clause.

Example �e actual syntax of the DLAB speci�ca-

tion language is relatively complicated (see Dehaspe &

De Raedt,), but in essence, one can write down a

speci�cation such as:

{ parent({X,Y,Z},{X,Y,Z}),
grandparent({X,Y,Z},
{X,Y,Z}) }

:-
{ parent({X,Y,Z},{X,Y,Z}),
parent({X,Y,Z},{X,Y,Z}),
grandparent({X,Y,Z},{X,Y,Z}),
grandparent({X,Y,Z}, {X,Y,Z}) }

which states that the hypothesis language consists of all

clauses that have at most one parent and at most one

Bias Specification Language B

B

grandparent literal in the head, and at most two of

these literals in the body; the arguments of these literals

may be variables X,Y,Z.�us, the following clauses are

in the hypothesis language:

grandparent(X, Y) :- parent(X, Z),
parent(Z,Y)

:- parent(X,Y), parent(Y,X)
:- parent(X,X)

�ese express the usual de�nition of grandparent as well

as the fact that there can be no cycles in the parent

relation.

Note that for each argument of each literal, all the

variables and constants that may occur have to be

enumerated explicitly.�is can make a DLAB speci�-

cation quite complex. While DLAB contains advanced

constructs to alleviate this problem, it remains the case

that o�en very elaborate bias speci�cations are needed

in practical situations.

Type- and Mode-Based Biases

A more �exible bias speci�cation language is used by

Progol (Muggleton,) and many other ILP systems.

It is based on the notions of types andmodes. In Progol,

arguments of a predicate can be typed, and a variable

can never occur in two locations with di�erent types.

Similarly, arguments of a predicate have an input (+) or

output (−) mode; each variable that occurs as an input

argument of some literal must occur elsewhere as an

output argument, or must occur as input argument in

the head literal of a clause.

Example In Progol, the speci�cations

type(parent(human,human)).
type(grandparent(human,human)).
modeh(grandparent(+,+)).
% modeh: specifies a head literal

modeb(grandparent(+,-)).
% modeb: specifies a body literal

modeb(parent(+,-)).

allow the system to construct a clause such as

grandparent(X,Y) :- parent(X,Z),
parent(Z,Y)

but not the following clause:

grandparent(X,Y) :- parent(Z,Y)

because Z occurs as an input parameter for parent
without occurring elsewhere as an output parameter (i.e.,

it is being used without having been given a value �rst).

FLIPPER’s Bias Specification Language

�e FLIPPER system (Cohen,) employs a power-

ful, but somewhat more procedural, bias speci�cation

formalism. �e user does not specify a set of valid

hypotheses directly, but rather, speci�es a7Re�nement
Operator. �e language bias is the set of all clauses

that can be obtained from one or more starting clauses

through repeated application of this re�nement oper-

ator.�e operator itself is de�ned by specifying under

which conditions certain literals can be added to a

clause.

Rules de�ning the operator have one of the follow-

ing forms:

A← B where Pre asserting Post

L where Pre asserting Post

�e �rst form de�nes a set of “starting clauses,” and the

second form de�nes when a literal L can be added to a

clause. Each rule can only be applied when its precon-

ditions Pre are ful�lled, and upon application will assert

a set of literals Post. As an example (Cohen,), the

rules

illegal(A,B,C,D,E,F)←

where true

asserting {linked(A), linked(B), . . .,

linked(F)}

R(X,Y) where rel(R), linked(X), linked(Y)

asserting ∅

state that any clause of the form

illegal(A,B,C,D,E,F)←

can be used as a starting point for the re�nement oper-

ator, and the variables in this clause are all linked. Fur-

ther, any literal of the form R(X,Y) with R a relation

 B Bias Variance Decomposition

symbol (as de�ned by the Rel predicate) and X and Y

linked variables can be added.

Other Approaches

Grammars or term rewriting systems have been pro-

posed several times as a means of de�ning the hypoth-

esis language. A relatively recent approach along these

lines was given by Lloyd, who uses a rewriting system to

de�ne the tests that can occur in the nodes of a decision

tree built by the Alkemy system (Lloyd,).

Boström & Idestam-Almquist () present an

approach where the language bias is implicitly de�ned

through the 7Background Knowledge given to the
learner.

Knobbe et al. () propose the use of UML as a

“common” bias speci�cation language, speci�cations in

which could be translated automatically to languages

speci�c to a particular learner.

Further Reading
An overview of bias speci�cation formalisms in ILP is

given by Nédellec et al. (). �e bias speci�cation

languages discussed above are discussed in more detail

in Dehaspe and De Raedt (), Muggleton (),

and Cohen (). De Raedt () discusses language

bias and the concept of bias shi� (learners weaken-

ing their bias, i.e., extending the set of hypotheses that

can be represented, when a given language bias turns

out to be too restrictive). A more recent approach to

learning declarative bias is presented by Bridewell and

Todorovski ().

Cross References
7Hypothesis Language
7Inductive Logic Programminllg

Recommended Reading
Boström, H., & Idestam-Almquist, P. (). Induction of logic

programs by example-guided unfolding. Journal of Logic Pro-

gramming, (–), –.

Bridewell, W., & Todorovski, L. (). Learning declarative bias.

In Proceedings of the th international conference on inductive

logic programming. Lecture notes in computer science (Vol. ,

pp. –). Berlin: Springer.

Cohen, W. (). Learning to classify English text with ILP meth-

ods. In L. De Raedt (Ed.), Advances in inductive logic program-

ming (pp. –). Amsterdam: IOS Press.

De Raedt, L. (). Interactive theory revision: An inductive logic

programming approach. New York: Academic Press.

Dehaspe, L., & De Raedt, L. (). DLAB: A declarative language

bias formalism. In Proceedings of the international symposium

on methodologies for intelligent systems. Lecture notes in artifi-

cial intelligence (Vol. , pp. –). Berlin: Springer.

Knobbe, A. J., Siebes, A., Blockeel, H., & van der Wallen, D. ().

Multi-relational data mining, using UML for ILP. In Proceedings

of PKDD- – The fourth European conference on principles

and practice of knowledge discovery in databases. Lecture notes in

artificial intelligence (Vol. , pp. –), Lyon, France. Berlin:

Springer.

Lloyd, J. W. (). Logic for learning. Berlin: Springer.

Muggleton, S. (). Inverse entailment and Progol. New Genera-

tion Computing, Special Issue on Inductive Logic Programming,

(–), –.

Nédellec, C., Adé, H., Bergadano, F., & Tausend, B. (). Declara-

tive bias in ILP. In L. De Raedt (Ed.), Advances in inductive logic

programming. Frontiers in artificial intelligence and applications

(Vol. , pp. –). Amsterdam: IOS Press.

Bias Variance Decomposition

Definition
�e bias-variance decomposition is a useful theoreti-

cal tool to understand the performance characteristics

of a learning algorithm. �e following discussion is

restricted to the use of squared loss as the performance

measure, although similar analyses have been under-

taken for other loss functions.�e case receiving most

attention is the zero-one loss (i.e., classi�cation prob-

lems), in which case the decomposition is nonunique

and a topic of active research. See Domingos () for

details.

�e decomposition allows us to see that the mean

squared error of a model (generated by a particular

learning algorithm) is in fact made up of two compo-

nents. �e bias component tells us how accurate the

model is, on average across di�erent possible training

sets.�e variance component tells us how sensitive the

learning algorithm is to small changes in the training set

(Fig.).

Mathematically, this can be quanti�ed as a decom-

position of the mean squared error function. For a

testing example {x,d}, the decomposition is:

ED{(f (x) − d)} = (ED{ f (x)} − d)

+ ED{(f (x) − ED{ f (x)})},

MSE = bias

+ variance,

Bias-Variance Trade-offs: Novel Applications B

B

High bias
High variance

High bias
Low variance

Low bias
High variance

Low bias
Low variance

Bias Variance Decomposition. Figure . The bias-variance decomposition is like trying to hit the bullseye on a dart-

board. Each dart is thrown after training our “dart-throwing” model in a slightly different manner. If the darts vary

wildly, the learner is high variance. If they are far from the bullseye, the learner is high bias. The ideal is clearly to have

both low bias and low variance; however this is often difficult, giving an alternative terminology as the bias-variance

“dilemma” (Dartboard analogy, Moore & McCabe ())

where the expectations are with respect to all possible

training sets. In practice, this can be estimated by cross-

validation over a single �nite training set, enabling

a deeper understanding of the algorithm characteris-

tics. For example, e�orts to reduce variance o�en cause

increases in bias, and vice versa. A large bias and low

variance is an indicator that a learning algorithm is

prone to7over�tting the model.

Cross References
7Bias-Variance Trade-o�s: Novel Applications

Recommended Reading
Domingos, P. (). A unified bias-variance decomposition for

zero-one and squared loss. In Proceedings of national conference

on artificial intelligence. Austin, TX: AAAI Press.

Geman, S. (). Neural networks and the bias/variance dilemma.

Neural Computation, ()

Moore, D. S., & McCabe, G. P. (). Introduction to the practice

of statistics. Michelle Julet

Bias-Variance Trade-offs: Novel
Applications

Dev Rajnarayan, DavidWolpert

NASA Ames Research Center, Mo�ett Field,

CA, USA

Definition
Consider a given random variable F and a random vari-

able that we can modify, F̂. We wish to use a sample of

F̂ as an estimate of a sample of F. �e mean squared

error (MSE) between such a pair of samples is a sum

of four terms.�e �rst term re�ects the statistical cou-

pling between F and F̂ and is conventionally ignored

in bias-variance analysis.�e second term re�ects the

inherent noise in F and is independent of the estimator

F̂. Accordingly, we cannot a�ect this term. In contrast,

the third and fourth terms depend on F̂.�e third term,

called the bias, is independent of the precise samples of

both F and F̂, and re�ects the di�erence between the

means ofF and F̂.�e fourth term, called the variance, is

independent of the precise sample of F, and re�ects the

inherent noise in the estimator as one samples it.�ese

last two terms can bemodi�ed by changing the choice of

the estimator. In particular, on small sample sets, we can

o�en decrease our mean squared error by, for instance,

introducing a small bias that causes a large reduction the

variance.Whilemost commonly used inmachine learn-

ing, this article shows that such bias-variance trade-o�s

are applicable in a much broader context and in a vari-

ety of situations. We also show, using experiments, how

existing bias-variance trade-o�s can be applied in novel

circumstances to improve the performance of a class of

optimization algorithms.

Motivation and Background
In its simplest form, the bias-variance decomposition

is based on the following idea. Say we have a random

variable F taking on values F distributed according to a

density function p(F). We want to estimate the value of

a sample from p(F). To form our estimate, we sample

a di�erent random variable F̂ taking on values F̂ dis-

tributed according to p(F̂). Assuming a quadratic loss

function, the quality of our estimate is measured by its

MSE:

 B Bias-Variance Trade-offs: Novel Applications

MSE(F̂) ≡ ∫ p(F̂,F) (F̂ − F)dF̂ dF.

Inmany situations, F and F̂ are dependent variables.

For example, in supervisedmachine learning,F is a “tar-

get” conditional distribution, stochastically mapping

elements of an input space X into a space Y of output

variables.�e associated distribution p(F) is the “prior”

of F. A random sampleD of F, called “the training set,”

is generated, and D is used in a “learning algorithm” to

produce F̂, which is our estimate of F. Clearly, this F and

F̂ are statistically dependent, via D. Indeed, intuitively

speaking, the goal in designing a learning algorithm is

that the F̂’s it produces are positively correlated with F’s.

In practice this coupling is simply ignored in analy-

ses of bias plus variance, without any justi�cation (one

such justi�cation could be that the coupling has lit-

tle e�ect on the value of the MSE). We shall follow

that practice here. Accordingly, our equation for MSE

reduces to

MSE(F̂) = ∫ p(F̂)p(F) (F̂ − F)dF̂ dF. ()

If we were to account for the coupling of F̂ and F̂ an

additive correction term would need to be added to the

right-hand side. For instance, see Wolpert ().

Using simple algebra, the right hand side of () can

be written as the sum of three terms.�e �rst is the vari-

ance of F. Since this is beyond our control in designing

the estimator F̂, we ignore it for the rest of this arti-

cle. �e second term involves a mean that describes

the deterministic component of the error. �is term

depends on both the distribution of F and that of F̂,

and quanti�es how close the means of those distribu-

tions are. �e third term is a variance that describes

stochastic variations from one sample to the next.�is

term is independent of the random variable being esti-

mated. Formally, up to an overall additive constant, we

can write

MSE(F̂) = ∫ p(F̂)(F̂ − FF̂ + F)dF̂

= ∫ p(F̂)F̂ dF̂ − F∫ p(F̂)F̂ dF̂ + F

=

³¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

V(F̂) + [E(F̂)] −F E(F̂) + F

= V(F̂) + [F −E(F̂)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= variance + bias

. ()

In light of (), one way to try to reduce expected

quadratic error is to modify an estimator to trade-o�

bias and variance. Some of the most famous applica-

tions of such bias-variance trade-o�s occur in para-

metric machine learning, where many techniques have

been developed to exploit the trade-o�. Nonetheless,

the trade-o� also arises in many other �elds, includ-

ing integral estimation and optimization. In the rest

of this paper we present a few novel applications of

bias-variance trade-o�, and describe some interesting

features in each case. A recurring theme is the fol-

lowing: whenever a bias-variance trade-o� arises in

a particular �eld, we can use many techniques from

parametric machine learning that have been devel-

oped for exploiting this trade-o�. See Wolpert and Raj-

narayan () for further details of many of these

applications.

Applications
In this section, we describe some applications of the

bias-variance tradeo�. First, we describe Monte Carlo

(MC) techniques for the estimation of integrals, and

provide a brief analysis of bias-variance trade-o�s in

this context. Next, we introduce the �eld of Monte

Carlo optimization (MCO), and illustrate that there

are more subtleties involved than in simple MC.�en,

we describe the �eld of parametric machine learn-

ing, which, as will show, is formally identical to MCO.

Finally, we describe the application of parametric learn-

ing (PL) techniques to improve the performance of

MCO algorithms. We do this in the context of an MCO

problem that addresses black-box optimization.

Monte Carlo Estimation of Integrals Using Importance

Sampling

MonteCarlomethods are o�en themethod of choice for

estimating di�cult high-dimensional integrals. Con-

sider a function f ∶X → R, which we want to integrate
over some region X ⊆ X, yielding the value F, as given

by

F = ∫
X
dx f (x).

We can view this as a random variable F, with den-

sity function given by a Dirac delta function centered

on F. �erefore, the variance of F is , and () is

exact.

Bias-Variance Trade-offs: Novel Applications B

B

A popular MC method to estimate this integral

is importance sampling (see Robert & Casella,).

�is exploits the law of large numbers as follows: i.i.d.

samples x(i), i= , . . . ,m are generated from a so-called

importance distribution h(x) that we control, and the

associated values of the integrand, f (x(i)) are com-

puted. Denote these “data” by

D = {(x(i), f (x(i)), i = , . . . ,m}. ()

Now,

F = ∫
X
dx h(x)

f (x)

h(x)

= lim
m→∞

m

m

∑
i=

f (x(i))

h(x(i))
with probability .

Denote by F̂ the random variable with value given

by the sample average forD:

F̂ =

m

m

∑
i=

f (x(i))

h(x(i))
.

We use F̂ as our statistical estimator for F, as we

broadly described in the introductory section. Assum-

ing a quadratic loss function, L(F̂,F) = (F − F̂), the

bias-variance decomposition described in () applies

exactly. It can be shown that the estimator F̂ is unbiased,

that is, E(F̂) = F, where the mean is over samples of h.

Consequently, the MSE of this estimator is just its vari-

ance.�e choice of sampling distribution h that min-

imizes this variance is given by (see Robert & Casella,

)

h⋆(x) =
∣f (x)∣

∫X ∣f (x′)∣dx′
.

By itself, this result is not very helpful, since the

equation for the optimal importance distribution con-

tains a similar integral to the one we are trying to

estimate. For non-negative integrands f (x), the VEGAS

algorithm (Lepage,) describes an adaptive method

to �nd successively better importance distributions, by

iteratively estimating F, and then using that estimate

to generate the next importance distribution h. In the

case of these unbiased estimators, there is no trade-

o� between bias and variance, and minimizing MSE is

achieved by minimizing variance.

Monte Carlo Optimization

Instead of a �xed integral to evaluate, consider a para

metrized integral

F(θ) = ∫
X
dx fθ(x).

Further, suppose we are interested in �nding the value

of the parameter θ ∈ Θ that minimizes F(θ):

θ⋆ = argmin
θ∈Θ

F(θ).

In the case where the functional form of fθ is not

explicitly known, one approach to solve this problem

is a technique called MCO (see Ermoliev & Norkin,

), involving repeated MC estimation of the inte-

gral in question with adaptive modi�cation of the

parameter θ.

We proceed by analogy to the case with MC. First,

we introduce the θ-indexed random variable F(θ),

all of whose components have delta-function distri-

butions about the associated values F(θ). Next, we

introduce a θ-indexed vector random variable F̂ with

values

F̂ ≡ {F̂(θ) ∀ θ ∈ Θ}. ()

Each real-valued component F̂(θ) can be sampled and

viewed as an estimate of F(θ).

For example, let D be a data set as described in

(). �en for every θ, any sample of D provides an

associated estimate

F̂(θ) =

m

m

∑
i=

fθ(x
(i))

h(x(i))
.

�at average serves as an estimate of F(θ). Formally,

F̂ is a function of the random variable D, and is given

by such averaging over the elements of D. So, a sam-

ple of D provides a sample of F̂. A priori, we make no

restrictions on F̂, and so, in general, its components

may be statistically coupled with one another. Note that

this coupling arises even though we are, for simplicity,

treating each function F(θ) as having a delta-function

distribution, rather than as having a non-zero variance

that would re�ect our lack of knowledge of the f (θ)

functions.

 B Bias-Variance Trade-offs: Novel Applications

However F̂ is de�ned, given a sample of F̂, one way

to estimate θ⋆ is

θ̂⋆ = argmin
θ∈Θ

F̂(θ).

We call this approach “natural” MCO. As an example,

say thatD is a set ofm samples of h, and let

F̂(θ) ≜

m

m

∑
i=

fθ(x
(i))

h(x(i))
,

as above. Under this choice for F̂,

θ̂⋆ = argmin
θ∈Θ

m

m

∑
i=

fθ(x
(i))

h(x(i))
. ()

We call this approach “naive” MCO.

Consider any algorithm that estimates θ⋆ as a

single-valued function of F̂. �e estimate of θ⋆ pro-

duced by that algorithm is itself a random variable,

since it is a function of the random variable F̂. Call this

random variable θ̂
⋆
, taking on values θ̂⋆. Any MCO

algorithm is de�ned by θ̂
⋆
; that random variable encap-

sulates the output estimate made by the algorithm.

To analyze the error of such an algorithm, con-

sider the associated random variable given by the true

parametrized integral F(θ̂
⋆
).�e di�erence between a

sample of F(θ̂
⋆
) and the true minimal value of the inte-

gral, F(θ⋆) = minθ F(θ), is the error introduced by

our estimating that optimal θ as a sample of θ̂
⋆
. Since

our aim in MCO is to minimize F(θ), we adopt the

loss function L(θ̂
⋆
, θ⋆) ≜ F(θ̂

⋆
) − F(θ⋆). �is is in

contrast to our discussion on MC integration, which

involved quadratic loss.�e current loss function just

equals F(θ̂
⋆
) up to an additive constant F(θ⋆) that

is �xed by the MCO problem at hand and is beyond

our control. Up to that additive constant, the associated

expected loss is

E(L) = ∫ dθ̂⋆p(θ̂⋆)F(θ̂⋆). ()

Now change coordinates in this integral from the val-

ues of the scalar random variable θ̂
⋆
to the values of the

underlying vector random variable F̂.�e expected loss

now becomes

E(L) = ∫ dF̂ p(F̂)F(θ̂⋆(F̂)).

�e natural MCO algorithm provides some insight

into these results. For that algorithm,

E(L) = ∫ dF̂ p(F̂)F (argmin
θ

F̂(θ))

= ∫ dF̂(θ)dF̂(θ) . . . p(F̂(θ), F̂(θ), . . .)

F (argmin
θ

F̂(θ)) . ()

For any �xed θ, there is an error between samples of

F̂(θ) and the true value F(θ). Bias-variance consider-

ations apply to this error, exactly as in the discussion

of MC above. We are not, however, concerned with

F̂ for a single component θ, but rather for a set Θ

of θ’s.

�e simplest such case is where the components

of F̂(Θ) are independent. Even so, argminθ F̂(θ) is

distributed according to the laws for extrema of mul-

tiple independent random variables, and this distri-

bution depends on higher-order moments of each

random variable F̂(θ). �is means that E[L] also

depends on such higher-order moments. Only the �rst

two moments, however, arise in the bias and variance

for any single θ.�us, even in the simplest possible case,

the bias-variance considerations for the individual θ do

not provide a complete analysis.

Inmost cases, the components of F̂ are not indepen-

dent.�erefore, in order to analyze E[L], in addition to

higher moments of the distribution for each θ, we must

now also consider higher-order moments coupling the

estimates F̂(θ) for di�erent θ.

Due to these e�ects, it may be quite acceptable

for all the components F̂(θ) to have both a large

bias and a large variance, as long as they still order

the θ’s correctly with respect to the true F(θ). In

such a situation, large covariances could ensure that

if some F̂(θ) were incorrectly large, then F̂(θ′), θ′≠θ

would also be incorrectly large.�is coupling between

the components of F̂ would preserve the ordering

of θ’s under F. So, even with large bias and vari-

ance for each θ, the estimator as a whole would still

work well.

Nevertheless, it is su�cient to design estimators

F̂(θ) with su�ciently small bias plus variance for each

single θ. More precisely, suppose that those terms are

very small on the scale of di�erences F(θ) − F(θ′)

for any θ and θ′. �en by Chebychev’s inequality,

Bias-Variance Trade-offs: Novel Applications B

B

we know that the density functions of the random

variables F̂(θ) and F̂(θ′) have almost no overlap.

Accordingly, the probability that a sample of F̂(θ) −

F̂(θ′) has the opposite sign of F(θ) − F(θ′) is

almost zero.

Evidently,E[L] is generally determined by a compli-

cated relationship involving bias, variance, covariance,

and higher moments. Natural MCO in general, and

naive MCO in particular, ignore all of these e�ects, and

consequently, o�en perform quite poorly in practice. In

the next sectionwe discuss someways of addressing this

problem.

Parametric Machine Learning

�ere are many versions of the basic MCO prob-

lem described in the previous section. Some of the

best-explored arise in parametric density estimation

and parametric supervised learning, which together

comprise the �eld of parametric machine learning

(PL).

In particular, parametric supervised learning

attempts to solve

argmin
θ∈Θ
∫ dx p(x)∫ dy p(y ∣ x)fθ(x).

Here, the values x represent inputs, and the values y rep-

resent corresponding outputs, generated according to

some stochastic process de�ned by a set of conditional

distributions {p(y ∣ x), x ∈ X}. Typically, one tries to

solve this problem by casting it as anMCOproblem. For

instance, say we adopt a quadratic loss between a pre-

dictor zθ(x) and the true value of y. Using MCO nota-

tion, we can express the associated supervised learning

problem as �nding argminθ F(θ), where

lθ(x) = ∫ dy p(y ∣ x) (zθ(x) − y),

fθ(x) = p(x) lθ(x),

F(θ) = ∫ dx fθ(x). ()

Next, the argmin is estimated by minimizing a

sample-based estimate of the F(θ)’s. More precisely, we

are given a “training set” of samples of p(y ∣ x) p(x),

{(x(i), yi)i = , . . . ,m}.�is training set provides a set of

associated estimates of F(θ):

F̂(θ) =

m

m

∑
i=

lθ(x
(i)

).

�ese are used to estimate argminθ F(θ), exactly as in

MCO. In particular, one could estimate the minimizer

of F(θ) by �nding the minimum of F̂(θ), just as in nat-

ural MCO. As mentioned above, this MCO algorithm

can perform very poorly in practice. In PL, this poor

performance is called “over�tting the data.”

�ere are several formal approaches that have been

explored in PL to try to address this “over�tting the

data.” Interestingly, none are based on direct consider-

ation of the random variable F(θ̂⋆(F̂)) and the rami-

�cations of its distribution for expected loss (cf. ()).

In particular, no work has applied the mathematics of

extrema of multiple random variables to analyze the

bias-variance-covariance trade-o�s encapsulated in ().

�e PL approach that perhaps comes closest to such

direct consideration of the distribution of F(θ̂
⋆
) is uni-

formconvergence theory, which is a central part of com-

putational learning theory (seeAngluin,). Uniform

convergence theory starts by crudely encapsulating the

quadratic loss formula for expected loss under natu-

ral MCO (). It does this by considering the worst-case

bound, over possible p(x) and p(y ∣ x), of the proba-

bility that F(θ
⋆
) exceeds minθ F(θ) by more than κ. It

then examines how that bound varies with κ. In partic-

ular, it relates such variation to characteristics of the set

of functions {fθ : θ ∈ Θ}, e.g., the “VC dimension” of

that set (see Vapnik, ,).

Another, historically earlier approach, is to apply

bias-plus-variance considerations to the entire PL algo-

rithm θ̂
⋆
, rather than to each F̂(θ) separately. �is

approach is applicable for algorithms that do not use

natural MCO, and even for non-parametric supervised

learning. As formulated for parameteric supervised

learning, this approach combines the formulas in () to

write

F(θ) = ∫ dxdy p(x)p(y ∣ x)(zθ(x) − y).

�is is then substituted into (), giving

E[L] = ∫ dθ̂⋆dxdy p(x) p(y ∣ x) p(θ̂⋆)(z
θ̂⋆
(x) − y)

= ∫ dx p(x) [∫ dθ̂⋆dy p(x)p(y ∣ x)p(θ̂⋆)

(z
θ̂⋆
(x) − y)] . ()

�e term in square brackets is an x-parameterized

expected quadratic loss, which can be decomposed into

 B Bias-Variance Trade-offs: Novel Applications

a bias, variance, etc., in the usual way. �is formula-

tion eliminates any direct concern for issues like the

distribution of extrema of multiple random variables,

covariances between F̂(θ) and F̂(θ′) for di�erent values

of θ, and so on.

�ere are numerous other approaches for address-

ing the problems of natural MCO that have been

explored in PL. Particularly important among these

are Bayesian approaches, e.g., Buntine and Weigend

(), Berger (), and Mackay (). Based on

these approaches, as well as on intuition, many pow-

erful techniques for addressing data-over�tting have

been explored in PL, including regularization, cross-

validation, stacking, bagging, etc. Essentially all of

these techniques can be applied to any MCO prob-

lem, not just PL problems. Since many of these tech-

niques can be justi�ed using (), they provide a way

to exploit the bias-variance trade-o� in other domains

besides PL.

PLMCO

In this section, we illustrate how PL techniques that

exploit the bias-variance decomposition of () can be

used to improve an MCO algorithm used in a domain

outside of PL.�is MCO algorithm is a version of adap-

tive importance sampling, somewhat similar to the CE

method (Rubinstein & Kroese,), and is related

to function smoothing on continuous spaces. �e PL

techniques described are applicable to any other MCO

problem, and this particular one is chosen just as an

example.

MCO Problem Description �e problem is to �nd the

θ-parameterized distribution qθ that minimizes the

associated expected value of a function G∶Rn→R,
i.e., �nd

argmin
θ

Eqθ
[G].

We are interested in versions of this problem where we

do not know the functional form of G, but can obtain

its valueG(x) at any x ∈ X . Similarly we cannot assume

that G is smooth, nor can we evaluate its derivatives

directly. �is scenario arises in many �elds, includ-

ing blackbox optimization (see Wolpert, Strauss, &

Rajnarayan,), and riskminimization (see Ermoliev

& Norkin,).

We begin by expressing this minimization problem

as an MCO problem. We know that

Eqθ
[G] = ∫

X
dx qθ(x)G(x)

Using MCO terminology, fθ(x)=qθ(x)G(x) and F(θ)=

Eqθ
[G]. To apply MCO, we must de�ne a vector-

valued random variable F̂ with components indexed

by θ, and then use a sample of F̂ to estimate

argminθ Eqθ
[G]. In particular, to apply naive MCO to

estimate argminθ Eqθ
(G), we �rst i.i.d. sample a den-

sity function h(x). By evaluating the associated values

of G(x) we get a data set

D ≡ (DX ,DG)

= ({x(i) : i = , . . . ,m},{G(x(i)) : i = , . . . ,m}).

�e associated estimates of F(θ) for each θ are

F̂(θ) ≜

m

m

∑
i=

qθ(x
(i))G(x(i))

h(x(i))
. ()

�e associated naive MCO estimate of argminθ Eqθ
[G]

is

θ̂⋆ ≡ argmin
θ

F̂(θ).

Suppose Θ includes all possible density functions

over x’s.�en the qθ minimizing our estimate is a delta

function about the x(i) ∈ DX with the lowest asso-

ciated value of G(x(i))/h(x(i)). �is is clearly a poor

estimate in general; it su�ers from “data-over�tting.”

Proceeding as in PL, one way to address this data-

over�tting is to use regularization. In particular, we can

use the entropic regularizer, given by the negative of the

Shannon entropy S(qθ). So we now want to �nd the

minimizer of Eqθ
[G(x)] − TS(qθ), where T is the reg-

ularization parameter. Equivalently, we can minimize

βEqθ
[G(x)] − S(qθ), where β = /T.�is changes the

de�nition of F̂ from the function given in () to

F̂(θ) ≜

m

m

∑
i=

β qθ(x
(i))G(x(i))

h(x(i))
− S(qθ).

Solution Methodology Unfortunately, it can be di�cult

to �nd the θ globally minimizing this new F̂ for an arbi-

trary D. An alternative is to �nd a close approximation

Bias-Variance Trade-offs: Novel Applications B

B

to that optimal θ. One way to do this is as follows. First,

we �nd minimizer of

m

m

∑
i=

β p(x(i))G(x(i))

h(x(i))
− S(p) ()

over the set of all possible distributions p(x) with

domain X . We then �nd the qθ that has minimal

Kullback–Leibler (KL) divergence from this p, evalu-

ated over DX . �at serves as our approximation to

argminθ F̂(θ), and therefore as our estimate of the θ

that minimizes Eqθ
(G).

�e minimizer p of () can be found in closed form;

over DX it is the Boltzmann distribution pβ(x(i)) ∝

exp(−βG(x(i))). �e KL divergence in DX from this

Boltzmann distribution to qθ is

F(θ) = KL(pβ
∥qθ) = ∫

X
dx pβ

(x) log(
pβ(x)

qθ(x)
) .

�e minimizer of this KL divergence is given by

θ† = argmin
θ
−

m

∑
i=

exp(−βG(x(i)))

h(x(i))
log(qθ(x

(i)
)).

()

�is approach is an approximation to a regularized ver-

sion of the naive MCO estimate of the θ that minimizes

Eqθ
(G).�e application of the technique of regulariza-

tion in this context has the same motivation as it does

in PL: to reduce bias plus variance.

Log-Concave Densities If qθ is log-concave in its

parameters θ, then the minimization problem in () is

a convex optimization problem, and the optimal param-

eters can be found closed-form. Denote the likelihood

ratios by s(i) = exp(−βG(x(i)))/h(x(i)). Di�erentiating

()with respect to the parameters µ and Σ− and setting

them to zero yields

µ⋆ =
∑D s(i)x(i)

∑D s(i)

Σ
⋆
=
∑D s(i)(x(i) − µ⋆)(x(i) − µ⋆)T

∑D s(i)

Mixture Models �e single Gaussian is a fairly restric-

tive class of models. Mixture models (see 7Mixture
Modeling) can signi�cantly improve �exibility, but at

the cost of convexity of the KL distance minimiza-

tion problem. However, a plethora of techniques from

supervised learning, in particular the expectation max-

imization (EM) algorithm, can be applied with minor

modi�cations.

Suppose qθ is a mixture of M Gaussians, that is,

θ = (µ, Σ, ϕ) where ϕ is the mixing p.m.f, we can view

the problem as one where a hidden variable z decides

which mixture component each sample is drawn from.

We then have the optimization problem

minimize −∑
D

p(x(i))

h(x(i))
log (qθ(x

(i)
, z(i))) .

Following the standard EM procedure, we get the algo-

rithm described in (). Since this is a nonconvex prob-

lem, one typically runs the algorithm multiple times

with random initializations of the parameters.

E-step: For each i, set Qi(z
(i)

) = p(z(i)∣x(i)),

that is, w
(i)

j = qµ ,Σ,ϕ(z
(i)

= j∣x(i)), j = , . . . ,M.

M-step: Set µj =
∑D w

(i)

j s(i) x(i)

∑D w
(i)

j s(i)
,

Σj =
∑D w

(i)

j s(i) (x(i) − µj)(x
(i)
− µj)

T

∑D w
(i)

j s(i)
,

ϕj =
∑D w

(i)

j s(i)

∑D s(i)
.

Test Problems To compare the performance of this

algorithm with and without the use of PL techniques,

we use a couple of very simple academic problems in

two and four dimensions – the Rosenbrock function in

two dimensions, given by

GR(x) = (x − x)

+ (− x)

,

and the Woods function in four dimensions, given by

given by

GWoods(x) = (x − x)

+ (− x)

+ (x − x)

+ (− x)

+ .[(− x)

+ (− x)

]

+ .(− x)(− x).

 B Bias-Variance Trade-offs: Novel Applications

For the Rosenbrock, the optimum value of is achieved

at x = (,), and for the Woods problem, the optimum

value of is achieved at x = (, , ,).

Application of PL Techniques As mentioned above,

there are many PL techniques beyond regularization

that are designed to optimize the trade-o� between

bias and variance. So having cast the solution of

argminqθ
E(G) as an MCO problem, we can apply

those other PL techniques instead of (or in addition to)

entropic regularization.�is should improve the perfor-

mance of ourMCOalgorithm, for the exact same reason

that using those techniques to trade o� bias and vari-

ance improves performance in PL. We brie�y mention

some of those alternative techniques here.

�e overall MCO algorithm is broadly described in

Algorithm . For the Woods problem, samples of x

are drawn from the updated qθ at each iteration, and

for the Rosenbrock, samples. For comparing various

methods and plotting purposes, , samples of G(x)

are drawn to evaluate Eqθ
[G(x)]. Note: in an actual

optimization, we will not be drawing these test sam-

ples! All the performance results in Fig. are based on

 runs of the PC algorithm, randomly initialized each

time.�e sample mean performance across these runs

is plotted along with % con�dence intervals for this

sample mean (shaded regions).

7Cross-Validation for Regularization: We note that we

are using regularization to reduce variance, but that reg-

ularization introduces bias. As is done in PL, we use

standard k-fold cross-validation to tradeo� this bias and

Algorithm Overview of pqminimization using
Gaussian mixtures

: Draw uniform random samples on X

: Initialize regularization parameter β

: Compute G(x) values for those samples

: repeat
: Find a mixture distribution qθ to minimize sam-

pled pq KL distance

: Sample from qθ

: Compute G(x) for those samples

: Update β

: until Termination
: Sample �nal qθ to get solution(s).

variance. We do this by partitioning the data into k dis-

joint sets.�e held-out data for the ith fold is just the

ith partition, and the held-in data is the union of all

other partitions. First, we “train” the regularized algo-

rithm on the held-in data Dt to get an optimal set of

parameters θ⋆, then “test” this θ⋆ by considering unreg-

ularized performance on the held-out data Dv. In our

context, “training” refers to �nding optimal parameters

byKLdistanceminimization using the held-in data, and

“testing” refers to estimating Eqθ
[G(x)] on the held-

out data using the following formula (Robert & Casella,

).

ĝ(θ) =

∑
Dv

qθ(x
(i))G(x(i))

h(x(i))

∑
Dv

qθ(x
(i))

h(x(i))

.

We do this for several values of the regularization

parameter β in the interval kβ < β < kβ, and choose

the one that yield the best held-out performance, aver-

aged over all folds. For our experiments, k = ., k = ,

and we use �ve equally-spaced values in this interval.

Having found the best regularization parameter in this

range, we then use all the data to minimize KL dis-

tance using this optimal value of β. Note that all cross-

validation is done without any additional evaluations of

G(x). Cross-validation for β in PC is similar to opti-

mizing the annealing schedule in simulated annealing.

�is “auto-annealing” is seen in Fig. a, which shows the

variation of β with iterations of the Rosenbrock prob-

lem. It can be seen that β value sometimes decreases

from one iteration to the next.�is can never happen

in any kind of “geometric annealing schedule,” β ←

kβ β, kβ > , of the sort that is o�en used in most

algorithms in the literature. In fact, we ran trials of

this algorithm on the Rosenbrock and then computed

a best-�t geometric variation for β, that is, a nonlin-

ear least squares �t to variation of β, and a linear least

squares �t to the variation of log(β).�ese are shown

in Fig. c and d. As can be seen, neither is a very good

�t. We then ran trials of the algorithm with the �xed

update rule obtained by best-�t to log(β), and found

that the adaptive setting of β using cross-validation

performed an order of magnitude better, as shown in

Fig. e.

Bias-Variance Trade-offs: Novel Applications B

B

–4

–2

0

2

4

6

8

5

10
–10

10
–10

10
10

10
10

10
010

0

10

10 20 30 40 50

0

0.5
100

1

2

3

4

4.5

3.5

2.5

1.5

20 30 40 50

0
0

0

5

10

0 10 20 30 40 50

0 10 20 30 40 50

1

2

3

4

20 30 5040

0 10 15 20 25 30 302520151050

0

1

2

3

4

–2

–1

Iteration

Iteration

Iteration

Iteration

Iteration Iteration

Iteration

Iteration

Iteration

lo
g(

β)

Cross-validation for β: log(β) History. Cross-validation for β: log[E(G) History.

Iteration

lo
g(

E
(G

)

x10
9 x10

9Least-squares Fit to β Least-squares Fit to log(β)

βo = 1.809e+00 βo = 1.240e-03

kβ = 1.832kβ = 1.548β β

lo
g(

β)

lo
g(

β)

Cross-validation for Regularization: Woods Problem.

Best-fit β
Cross-validation for β

Cross-validation for Model-selection:2-D Rosenbrock.

Single gaussian
Mixture model

0

0

1

2

3

4

3.5

2.5

–1

–0.5

0.5

1.5

5 10 15 20 25

lo
g[

E
(G

)]
lo

g[
E

(G
)]

lo
g[

E
(G

)]

Bagging: Noisy Rosenbrock.
4

3

2

1

0

0 5 10 15 20 25 0

lo
g[

E
(G

)]

1

0

2

3

4

–2

–1

5 10 15 20 25

–1

–2

Model Selection Methods: Noisy Rosenbrock.

Single gaussian
Cross-validation
Stacking

No bagging
Bagging

ba

c d

e f

hg

Bias-Variance Trade-offs: Novel Applications. Figure . Various PL techniques improve MCO performance

 B Bias-Variance Trade-offs

Cross-Validation for Model Selection: Given a set Θ

(sometimes called a model class) to choose θ from, we

can �nd an optimal θ ∈ Θ. But how dowe choose the set

Θ? In PL, this is done using cross-validation.We choose

that set Θ such that argminθ∈Θ F̂(θ) has the best held-

out performance. As before, we use that model class

Θ that yields the lowest estimate of Eqθ
[G(x)] on the

held-out data. We demonstrate the use of this PL tech-

nique for minimizing the Rosenbrock problem, which

has a long curved valley that is poorly approximated

by a single Gaussian. We use cross-validation to choose

between a Gaussian mixture with up to four compo-

nents. �e improvement in performance is shown in

Fig. d.

Bagging: In bagging (Breiman, a), we generatemul-

tiple data sets by resampling the given data set with

replacement.�ese new data sets will, in general, con-

tain replicates. We “train” the learning algorithm on

each of these resampled data sets, and average the

results. In our case, we average the qθ got by our KL

divergence minimization on each data set. PC works

even on stochastic objective functions, and on the

noisy Rosenbrock, we implemented PCwith bagging by

resampling ten times, and obtained signi�cant perfor-

mance gains, as seen in Fig. g.

Stacking: In bagging, we combine estimates of the same

learning algorithm on di�erent data sets generated

by resampling, whereas in stacking (Breiman, b;

Smyth & Wolpert,), we combine estimates of dif-

ferent learning algorithms on the same data set.�ese

combined estimated are o�en better than any of the sin-

gle estimates. In our case, we combine the qθ obtained

from our KL divergence minimization algorithm using

multiple models Θ. Again, Fig. h shows that cross-

validation for model selection performs better than a

single model, and stacking performs slightly better than

cross-validation.

Conclusions
�e conventional goal of reducing bias plus variance

has interesting applications in a variety of �elds. In

straightforward applications, the bias-variance trade-

o�s can decrease the MSE of estimators, reduce the

generalization error of learning algorithms, and so

on. In this article, we described a novel application

of bias-variance trade-o�s: we placed bias-variance

trade-o�s in the context of MCO, and discussed the

need for higher moments in the trade-o�, such as a

bias-variance-covariance trade-o�. We also showed a

way of applying just a bias-variance trade-o�, as used

in Parametric Learning, to improve the performance of

MCO algorithms.

Recommended Reading
Angluin, D. (). Computational learning theory: Survey and

selected bibliography. In Proceedings of the twenty-fourth

annual ACM symposium on theory of computing. New York:

ACM.

Berger, J. O. (). Statistical decision theory and bayesian analysis.

New York: Springer.

Breiman, L. (a). Bagging predictors. Machine Learning, (),

–.

Breiman, L. (b). Stacked regression. Machine Learning, (),

–.

Buntine, W., & Weigend, A. (). Bayesian back-propagation.

Complex Systems, , –.

Ermoliev, Y. M., & Norkin, V. I. ().Monte carlo optimization and

path dependent nonstationary laws of large numbers. Technical

Report IR--. International Institute for Applied Systems

Analysis, Austria.

Lepage, G. P. (). A new algorithm for adaptive multidi-

mensional integration. Journal of Computational Physics, ,

–.

Mackay, D. (). Information theory, inference, and learning algo-

rithms. Cambridge, UK: Cambridge University Press.

Robert, C. P., & Casella, G. (). Monte Carlo statistical methods.

New York: Springer.

Rubinstein, R., & Kroese, D. (). The cross-entropy method. New

York: Springer.

Smyth, P., & Wolpert, D. (). Linearly combining den-

sity estimators via stacking. Machine Learning, (–),

–.

Vapnik, V. N. (). Estimation of dependences based on empirical

data. New York: Springer.

Vapnik, V. N. (). The nature of statistical learning theory. New

York: Springer.

Wolpert, D. H. (). On bias plus variance. Neural Computation,

, –.

Wolpert, D. H., & Rajnarayan, D. (). Parametric learning and

monte carlo optimization. arXiv:.v [cs.LG].

Wolpert, D. H., Strauss, C. E. M., & Rajnarayan, D. ().

Advances in distributed optimization using proba-

bility collectives. Advances in Complex Systems, (),

–.

Bias-Variance Trade-offs

7Bias-Variance

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity B

B

Bias-Variance-Covariance
Decomposition

�e bias-variance-covarianc delcomposition is a

theoretical result underlying 7ensemble learning
algorithms. It is an extension of the 7bias-variance
decomposition, for linear combinations of models.�e

expected squared error of the ensemble f̄ (x) from a
target d is:

ED{(f̄ (x) − d)} = bias

+

T
var +

⎛

⎝
 −

T

⎞

⎠
covar.

�e error is composed of the average bias of the

models, plus a term involving their average variance,

and a �nal term involving their average pairwise covari-

ance.�is shows that while a single model has a two-

way bias-variance tradeo�, an ensemble is controlled

by a three-way tradeo�.�is ensemble tradeo� is o�en

referred to as the accuracy-diversity dilemma for an

ensemble. See7ensemble learning for more details.

Bilingual Lexicon Extraction

Bilingual lexicon extraction is the task of automatically

identifying a terms in a �rst language and terms in a

second language which are translation f one another. In

this context, a term can be either a single word or an

expression composed of several words the full mean-

ing of which cannot be derived compositionally from

the meaning of the individual words. Bilingual lexi-

con extraction is itself a form of 7cross-lingual text
mining and is an essential preliminary step in many

approaches for performing other 7cross-lingual text
mining tasks.

Binning

7Discretization

Biological Learning: Synaptic
Plasticity, Hebb Rule and Spike
Timing Dependent Plasticity

Wulfram Gerstner

Brain Mind Institute, Lausanne EPFL, Switzerland

Synonyms
Correlation-based learning; Hebb rule; Hebbian

learning

Definition
�e brain of humans and animals consists of a large

number of interconnected neurons. Learning in biolog-

ical neural systems is thought to take place by changes in

the connections between these neurons. Since the con-

tact points between two neurons are called synapses,

the change in the connection strength is called synap-

tic plasticity.�e mathematical description of synaptic

plasticity is called a (biological) learning rule. Most

of these biological learning rules can be categorized

in the context of machine learning as unsupervised

learning rules, and the remaining ones as reward-

based or reinforcement learning. �e Hebb rule is an

example of an unsupervised correlation-based learning

rule formulated on the level of neuronal �ring rates.

Spike-timing-dependent plasticity (STDP) is an unsu-

pervised learning rule formulated on the level of spikes.

Modulation of learning rates in a Hebb rule or STDP

rule by a di�usive signal carrying reward-related infor-

mation yields a biologically plausible form of a rein-

forcement learning rule.

Motivation and Background
Humans and animals can adapt to environmental con-

ditions and learn new tasks. Learning becomes measur-

able by changes in the behavior: humans and animals

get better at seeing and distinguishing visual objects

with experience; animals can learn to go to a target loca-

tion; humans canmemorize a list of words and recall the

items days later. How learning is implemented in the

biological substrate is only partially known.

�e brain consists of billions of neurons. Each neu-

ron has long wire-like extensions and makes contacts

with thousands of other neurons.�is network of neu-

rons is not �xed but constantly changes. Connections

 B Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity

can be formed or can disappear, and existing connec-

tions can be strengthened or weakened. Neuroscientists

have shown in numerous experiments that changes can

be induced by stimulating neuronal activity in an appro-

priate fashion. Moreover, changes in synaptic connec-

tions that have been induced in one or a few seconds

can persist for hours or days, an e�ect called long-term

potentiation (LTP) or long-term depression (LTD) of

synapses.

�e question arises of whether such long-lasting

changes in connections are useful for learning. To

answer this question, research in theoretical and com-

putational neuroscience needs to solve two problems:

First, develop a compact but realistic description of the

phenomenon of synaptic plasticity observed in biol-

ogy, i.e., extract learning rules from the biological data;

and second, study the functional consequences of these

learning rules. An important insight from experiments

on LTP is that the activation of a synaptic connection

alone does not lead to a long-lasting change; however,

if the activation of the synapses by presynaptic signals

is combined with some activation of the postsynaptic

neuron, then a long-lasting change of the synapse may

occur.�e coactivation of presynaptic and postsynaptic

neurons as a condition for learning is the key ingredient

of Hebbian learning rules. Here, activation of the presy-

naptic neuron means that it �res one or several action

potentials; activation of the postsynaptic neuron can be

represented by high �ring rates, a few well-timed action

potentials or input from other neurons that lead to an

increase in the membrane voltage.

Structure of the Learning System
The Hebb Rule

Hebbian learning rules are local, i.e., they depend only

on the state of the presynaptic and postsynaptic neurons

plus possibly the current value of the synaptic weight

itself. Let wij denotes the weight between a presynaptic

neuron j and a postsynaptic neuron i, and let us describe

the activity (e.g., the �ring rate) of each neuron by a con-

tinuous variable νj and νi, respectively. Mathematically,

we may therefore write for a local learning rule

d

dt
wij = F(wij; νi, νj) ()

where F is an unknown function. In addition to locality,

Hebbian learning requires some kind of cooperation or

correlation between the activity of the presynaptic neu-

ron and that of the postsynaptic neuron. At themoment

we restrict ourselves to the requirement of simultaneous

activity of presynaptic and postsynaptic neurons. Since

F is a function of the rates νi and νj, we may expand F

about νi = νj = . An expansion to second order of the

rates yields

d

dt
wij(t) ≈ c(wij) + c

pre

 (wij) νj + c
post

 (wij)νi

+ ccorr (wij) νi νj + c
post

 (wij) νi

+ c
pre

 (wij) νj +O(ν). ()

Here, νi and νj are functions of time, i.e., νi(t) and νj(t)

and so is the weight wij. �e bilinear term νi(t) νj(t)

is sensitive to the instantaneous correlations between

presynaptic and postsynaptic activities. It is this term

that makes Hebbian learning a useful concept.�e sim-

plest implementation of Hebbian plasticity would be to

require ccorr > and set all other parameters in the

expansion () to zero

d

dt
wij = ccorr (wij) νi νj . ()

Equation () with �xed parameter ccorr > is the pro-

totype of Hebbian learning. However, since the activity

variables νi and νj are always positive, such a rule will

lead eventually to an increase of all weights in a network.

Hence, some of the other terms (e.g., c or c
pre

) need

to have a negative coe�cient to make Hebbian learn-

ing stable. In passing we note that a learning rule with

ccorr < is usually called anti-Hebbian.

Oja’s rule. A particular interesting case is a model

with coe�cients ccorr > and c
post

 < , since it guaran-

tees the normalization of the set of weights wi, . . .wiN

converging onto the same postsynaptic neuron i.

BCM rule.�e Bienenstock–Cooper–Munro learn-

ing rule (also called BCM rule) with

d

dt
wij = a(wij)Φ(νi − ϑ) νj ()

where Φ is some nonlinear function with Φ() = is

a special case of ().�e parameter ϑ depends on the

average �ring rate.

Temporally asymmetric Hebbian learning. In the

Taylor expansion () we focused on instantaneous cor-

relations. More generally, we can use a Volterra expan-

sion so as to also include temporal correlations with

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity B

B

nonzero time lag. With the additional assumptions that

changes are instantaneous, a Volterra expansion gener-

ates terms of the form

d

dt
wij ∝ ∫

∞

[W+(s)νi(t) νj(t − s)

+W−(s)νj(t) νi(t − s)]ds ()

with some functionsW+ andW−. For reasons of causal-

ity,W+ andW− must vanish for s < . SinceW+(s) ≠

W−(s), learning is asymmetric in time so that learning

rules of the form () are called temporally asymmetric

Hebbian learning. In the special caseW+(s) = −W−(s),

we have antisymmetric Hebbian learning. �e func-

tions W+ and W− may depend on the present weight

value.

STDP rule. STDP is a form of Hebbian learning

with increased temporal resolution. In contrast to rate-

based Hebb models, neuronal activity is described by

the �ring times of the neuron, i.e., the moments when

the presynaptic and postsynaptic neurons emit action

potentials. Let t
f

j denote the f th spike of the presynaptic

neuron j and tni the nth spike of the postsynaptic neu-

ron i.�e weight change in an STDP rule depends on

the exact timing of presynaptic and postsynaptic spikes

d

dt
wij =∑

n

∑
f

[A(wij; t − t
f

j)δ(t − tni)

+ B(wij; t − t
f

i)δ(t − t
f

j)] ()

where A(x) and B(x) are some real-valued functions

with A(wij, x) = B(wij, x) = for x < .�us, at the

moment of a postsynaptic spike the synaptic weight is

updated by an amount that depends on the time t
f

i −t
f

j

since a previous presynaptic spike t
f

j . Similarly, at the

moment of a presynaptic spike the synaptic weight is

updated by an amount that depends on the time t
f

j −

t
f

i since a previous postsynaptic spike t
f

i . �e depen-

dence on the present value wij can be used to keep

the weight in a desired range <wij <w
max. A standard

choice for the functions A and B is A(wij); t − t
f

j =

A+(wij) exp[−(t − t
f

j)/τ+] for t − t
f

j > and zero oth-

erwise. Similarly, B(wij; t − tni) = B−(wij) exp[−(t −

tni)/τ−] for t − t
f

i > and zero otherwise. Here, τ+
and τ− are time constants in the range of –ms.�e

case A+(x)= (wmax − x) c+ and Bx(x)= − c−x is called

so� bounds. �e choice A+(x)= c+Θ(wmax − x) and

Bx =−c−Θ(x) is called hard bounds. Here, c+ and c− are

positive constants.�e term proportional to A+ causes

potentiation (weight increase), the one proportional to

A− causes depression (weight decrease) of synapses.

Note that the STDP rule () can be interpreted as a

spike-based form of temporally asymmetric Hebbian

learning.

Functional Consequences of Hebbian Learning

Sensitivity to correlations. All Hebbian learning rules are

sensitive to the correlations between the activity of the

presynaptic neuron j and that of the postsynaptic neu-

ron i. If the activity of the postsynaptic neuron is given

by a linear sum of all inputs rates, i.e., νi = γ∑j wijνj,

then correlations between presynaptic and postsynap-

tic activities can be traced back to correlations in the

input. A particular clear example of learning driven by

correlations in the input is Oja’s learning rule applied to

a statistical ensemble of inputs with zero mean. In this

case, the postsynaptic neuron becomes sensitive to the

dominant principal component of the input ensemble.

If the neuron model is nonlinear, Hebbian learning

extracts the independent components of the statistical

input ensemble. �ese two examples show that learn-

ing by a Hebbian learning rule makes neurons adapt

to the statistics of the input. While the condition of

zero-mean input is biologically not realistic (because

neuronal �ring rates are always positive), this condition

can be relaxed so that the same result is also applicable

to biologically plausible learning rules.

Receptive �elds and cortical maps. Neurons in the

primary visual cortex of cats and monkeys respond to

visual stimuli in a localized region of the visual �eld.

�is small sensitive zone is called the receptive �eld of

the neuron. Neighboring neurons normally have very

similar receptive �elds. �e exact location and prop-

erties of the receptive �eld are not �xed, but can be

in�uenced by sensory stimulation. Models of unsuper-

vised Hebbian learning can explain the development of

receptive �elds and the adaptation of cortical maps to

the statistics of the ensemble of stimuli.

Beyond the Hebb rule. Standard models of Hebbian

learning are formulated on the level of neuronal �ring

rates, a graded variable characterizing neuronal activ-

ity.However, real neurons communicate by spikes, short

electrical pulses or “action potentials” with a rather

 B Biomedical Informatics

stereotyped time course. Experiments have shown that

the changes of synaptic e�cacy depend not only on the

mean �ring rate of action potentials but on the rela-

tive timing of presynaptic and postsynaptic spikes on

the level of milliseconds.�is Spike-Timing Dependent

Synaptic Plasticity (STDP) can be considered a tem-

porally more precise form of Hebbian learning. �e

STDP rule indicated above supposes that pairs of spikes

(one presynaptic and one postsynaptic action poten-

tial) within some time window cause a weight change.

However, experimentally it was shown that at least three

spikes are necessary (one presynaptic and two postsy-

naptic spikes).Moreover, the voltage of the postsynaptic

neuron matters even in the absence of spikes.

In most models of Hebbian learning and STDP, the

factors c, c
pre

 ... are constant or depend only on the

synaptic weight. However, in biological context the

speed of learning is o�en gated by neuromodulators.

Since some of these neuromodulators contain reward-

related information, one can think of learning as a

three-factor rule where weight changes depend on

presynaptic activity, postsynaptic activity, and the pres-

ence of a reward-related factor. A prominent neuro-

modulator linked to reward information is dopamine.

�ree factor learning rules fall in the class of reinforce-

ment learning algorithms.

Cross References
7Dimensionality Reduction
7Reinforcement Learning
7Self-Organizing Maps

Recommended Reading
Bliss, T., & Gardner-Medwin, A. (). Long-lasting potentation of

synaptic transmission in the dendate area of unanaesthetized

rabbit following stimulation of the perforant path. The Journal

of Physiology, , –.

Bliss, T., Collingridge, G., & Morris, R. (). Long-term poten-

tiation: Enhancing neuroscience for years - introduction.

Philosophical Transactions of the Royal Society of London. Series

B : Biological Sciences, , –.

Cooper, L., Intrator, N., Blais, B., & Shouval, H. Z. (). Theory of

cortical plasticity. Singapore: World Scientific.

Dayan, P., & Abbott, L. F. (). Theoretical Neuroscience.

Cambridge, MA: MIT Press.

Gerstner, W., & Kistler, W. K. (). Spiking neuron models.

Cambridgess, UK: Cambridge University Press.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. ().

A neuronal learning rule for sub-millisecond temporal coding.

Nature, , –.

Hebb, D. O. (). The organization of behavior. New York:

Wiley.

Lisman, J. (). Long-term potentiation: Outstanding questions

and attempted synthesis. Philosophical Transactions of the

Royal Society of London Series B, Biological Sciences, ,

–.

Malenka, R. C., & Nicoll, R. A. (). Long-term potentiation–a

decade of progress? Science, , –.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (). Reg-

ulation of synaptic efficacy by coincidence of postysnaptic AP

and EPSP. Science, , –.

Schultz, W., Dayan, P., & Montague, R. (). A neural substrate for

prediction and reward. Science, , –.

Biomedical Informatics

C. David Page, Sriraam Natarajan

University of Wisconsin Medical School, Madison,

USA

Introduction
Recent years have witnessed a tremendous increase in

the use of machine learning for biomedical applica-

tions. �is surge in interest has several causes. One

is the successful application of machine learning tech-

nologies in other �elds such as web search, speech and

handwriting recognition, agent design, spatial mod-

eling, etc. Another is the development of technolo-

gies that enable the production of large amounts of

data in the time it used to take to generate a single

data point (run a single experiment). A third most

recent development is the advent of Electronic Medi-

cal/Health Records (EMRs/EHRs).�e drastic increase

in the amount of data generated has led the biologists

and clinical researchers to adopt algorithms that can

construct predictivemodels from large amounts of data.

Naturally, machine learning is emerging as a tool of

choice.

In this article, we will present a few data types and

tasks involving such large-scale biological data, where

machine learning techniques have been applied. For

each of these data types and tasks, we �rst present

the required background, followed by the challenges

involved in addressing the tasks.�en, we present the

machine learning techniques that have been applied

to these data sets. Finally and most importantly, we

Biomedical Informatics B

B

present the lessons learned in these tasks. We hope that

these lessons will be helpful to researchers who aim to

apply machine learning algorithms to biological appli-

cations and equip them with useful knowledge when

they collaborate with biological scientists.

Some of the data types that we present in this

work are:

● Gene expression microarrays

● SNPs and genetic data

● Mass spectrometry and other proteomic data

● High-throughput screening data for drug design

● Electronic Medical Records (EMR) and persona-

lized medicine

Some of the key lessons learned from all these data

types include the following: () We can o�en do sur-

prisingly well with far more features than data points if

there are many highly predictive features (e.g., predict-

ing cancer from microarray data) and if we use meth-

ods that are robust to over�tting such as Voted Deci-

sion Stumps (Hardin et al., ; Waddell et al.,)

(7Ensemble Learning and7Decision Stumps),7Naive
Bayes (Golub et al., ; Listgarten et al.,), or

Linear Support Vector Machines (SVMs) (see 7Support
VectorMachine) (Furey et al., ;Hardin et al.,).

() BayesNet learning (Friedman,) (see7Bayesian
Methods) o�en does not give us causality, but 7Active
Learning and7Time-Series data help if available (Pe’er,
Regev, Elidan, & Friedman, ; Ong, Glassner, &

Page, ; Tucker, Vinciotti, Hoen, Liu, & Famili, ;

Zou & Conzen,). () Multi-relational methods are

useful for EMRs or molecular data as the data in these

cases are very highly relational (see 7Multi-relational
DataMining). ()�ere are more important issues than

just increasing the accuracy of the learned model on

these data sets. Such issues include how data was cre-

ated, its comprehensibility (physicians typically want to

understand the model that has been learned), and its

privacy (some data sets contain private information that

cannot be posted on public web sites and cannot even be

downloaded o� site).

�e rest of the paper is organized as follows: First

we present gene expression microarrays, followed by

SNPs and other genetic data. We then present mass

spectrometry (MS) and related proteomic data. Next,

we present high-throughput screening data for drug

design, followed by EMR data and personalized

medicine. For each of these data types, we motivate

the problem and survey the di�erent machine learning

solutions. Finally, we conclude by outlining the lessons

learned from all these data types and presenting some

interesting and exciting directions for future research.

Gene Expression Microarrays
�is data type was presented in detail in AI Magazine

(Molla et al.,) and hence we will brief it in this sec-

tion.We encourage the reader to readMolla et al. ()

for more details on this data type. Genes are contained

in the DNA of an organism.�e mechanism by which

proteins are produced from their corresponding genes

is a two-step process.�e �rst step is the transcription

of a gene into a messenger RNA (mRNA) and in the

second step called as translation, a protein is built using

mRNA as a blueprint.

One property that DNA and RNA have in common

is that each is a chain of chemicals called as bases. In the

case of DNA, these bases are Adenine, Cytosine, Gua-

nine, and �ymine, commonly referred to as A,C,G,

and T, respectively. RNA has the same set of four bases,

except �ymine; RNA has Uracil, commonly referred

as U. An important characteristic of DNA and RNA is

complementarity, that is, each base only binds well with

its complement: A with T (or U) and G with C. As a

result of complementarity, a strand of either DNA or

RNA has a strong a�nity toward what is known as its

reverse complement, which is a strand of either DNA or

RNA that has bases exactly complementary to the orig-

inal strand. Complementarity is central to the processes

of replication of the DNA and transcription.

In addition, complementarity can be used to detect

speci�c sequences of bases within strands of DNA and

RNA.�is is done by �rst synthesizing a probe, a piece

of DNA that is the complement of a sequence that

one wants to detect, and then introducing this probe

to a solution containing the genetic material (DNA or

RNA) to be searched.�is solution of genetic material

is called the sample. In theory, the probe will bind to

the sample if and only if the probe �nds its complement

in the sample (in reality, this process is o�en imper-

fect). �e act of binding between a sample and probe

is called hybridization. Prior to the experiment, a biol-

ogist labels the probe using a �orescent �ag. A�er the

 B Biomedical Informatics

hybridization experiment, one can easily scan to see if

the probe has hybridized to its reverse complement in

the sample.�is allows themolecular biologist to deter-

mine the presence or absence of the sequence in the

sample.

Gene Chips

DNA probe technology has been adapted for detection

of tens of thousands of sequences simultaneously.�is

has become possible due to the device called amicroar-

ray or gene chip, the working of which is illustrated

in Fig. . When using the chips it is more common to

label (luminescently) the samples than the probe.�ou-

sands of copies of this labeled sample are spread across

the probe, followed by washing away any copies that

do not remain bound. Since the probes are attached

at speci�c locations on the chip, if a labeled sample is

detected at any position in the chip, the probe that is

hybridized to its complement can be easily determined.

�e most common use of these gene chips is to measure

the expression levels of various genes in the organism.

Probes are typically on the order of -bases long,

whereas samples are usually about times, as long,

with a large variation due to the process that breaks up

long sequences of RNA into small samples (Molla et al.,

).

To understand about the biology of an organism,

say to understand human biology to design new drugs

or lower the blood pressure or to cure diabetes, there

is a necessity to understand the degree to which dif-

ferent genes get expressed as proteins under di�erent

conditions and di�erent cell types. It is much eas-

ier to estimate the amount of mRNA for a gene than

the protein-production rate. Microarrays provide the

Gene chip surface

Probes(DNA)

Labeled sample (RNA)

Hybridization

Biomedical Informatics. Figure . Hybridization of sam-

ple to probe

measurement of RNAs corresponding to the given gene

rather than the amounts of protein.

In brief, experiments with the microarrays are per-

formed as follows: As can be seen from the �gure,

probes are DNA strands attached to the gene chip sur-

face. A typical probe length is bases (i.e., letters

from A,C,G,T to represent a gene).�ere may be sev-

eral di�erent subsequences of these bases.�en the

mRNA (which is the labeled sample) is passed over the

microarrays and the mRNA will bind to the comple-

mentary DNA corresponding to the gene better than

the other DNA strings. �en the �orescence levels of

the di�erent gene chips segments are measured, which

in turn measures the amount of mRNA on that surface.

�is mRNA measurement serves as a surrogate to the

expression level of the gene.

Machine Learning for Microarrays
�e data from microarrays (gene chips) have been ana-

lyzed and used by machine learning researchers in two

di�erent ways:

. Data points are genes. �is is the case where

the examples are genes while the features are the

samples (measured expression levels of a single gene

under a variety of conditions).�e goal of this view

is to categorize new genes based on the current set

of examples.

. Data points are samples (e.g., patients).�is is the

case where the examples are patients and the fea-

tures are the measured expression levels of genes

under one condition.

�e problems have been approached in two di�erent

ways. In the 7Unsupervised Learning approach, the
goal is to cluster the genes according to their expression

levels or to cluster the patients (samples) based on their

gene expression levels, or both. Hierarchical clustering

is especially widely applied. As one of many examples,

see Perou et al. (). In the7Supervised Learning set-
ting, the Class labels are the category of the genes or

the samples.�e latter is the more common supervised

task, each sample being mRNA from a di�erent patient

(with the same cell type from each patient) or an organ-

ism under di�erent conditions to learn a model that

accurately predicts the class based on the features.�e

features could be the patient’s expression values for each

Biomedical Informatics B

B

gene, while the class labels might be the patient’s dis-

ease state.We discuss this task further in the subsequent

paragraphs.

Yet another widely studied supervised learning task

is to predict cancer vs. normal for a wide variety of

cancer types. One of the signi�cant lessons learned is

that it is easy to predict cancer vs. normal in patients

based on the gene expression by several machine learn-

ing techniques, largely regardless of the type of cancer.

�emain reason for this is that if cancer is present,many

genes in the cancer cells “go haywire” and hence are

very predictive of the cancer.�e primary challenge in

this prediction problem is the noise in the data (impure

RNA, cross-hybridization, etc.).

Other related tasks that have been addressed include

distinguishing related cancer types and distinguishing

cancer froma related benign condition.An early success

was a work by Golub et al. (), distinguishing acute

myeloid leukemia and acute lymphoblastic leukemia

(ALL). �ey used a weighted voting algorithm simi-

lar to Naive Bayes and achieved a very high accuracy.

�is result has been repeated on this data with many

other machine learning (ML) approaches. Other work

examined multiple myeloma vs. benign condition.�is

task is challenging because the benign condition is very

similar to the cancer, and hence the machine learning

algorithms had a di�cult time predicting accurately.We

refer to Hardin et al. () for more details on the

experiments.

Another important lesson for machine learning

researchers from this data type is that the biologists

o�en do not want one predictive model, but a rank-

ordered list of genes that a biologist can explore further

with additional lab tests on certain genes. Hence, there

is a need to present a small set of highly interesting genes

to perform follow-up experiments on. Toward this end,

statisticians have used mutual information or a t-test to

rank the genes. When using a t-test, they check if the

mean expression levels are di�erent under the two con-

ditions (cancer vs. normal), yielding a p-value. But the

issue is that when working with a large number of genes

(typically in the order of ,), there could be some

geneswith lower p-value by chance.�is is known as the

“multiple comparisons problem.” One solution is to do

a Bonferoni correction (multiply p-values by the num-

ber of genes), but this can be a drastic step and may

eliminate all the genes.�ere are other methods such as

false discovery rate (Storey&Tibshirani,) that uses

the notion of q-values. We do not go into detail of this

method. But the key recommendation we make is that

such amethod should be used alongwith the supervised

learning method, as the biological collaborators might

be interested in the ranking of genes.

One of the most important research directions for

the use of microarray data lies in the prognosis and

treatment.�e features are the same as those of diag-

nosis, but the class value becomes life expectancy for a

given treatment (or a positive response vs. no response

to a given treatment). �e goal is to use the per-

son’s genes to make these predictions. An example of

this is the breast cancer prognosis study (Van’t Veer

et al.,), where the goal is to predict good progno-

sis (no metastastis within years of initial diagnosis)

vs. poor prognosis. �ey used an ensemble of voting

algorithms and obtained very good results. Neverthe-

less, an important lesson learned from this experiment

and others was that when using 7cross-validation,
there is a need to tune parameters and perform fea-

ture selection independently on each fold of the cross-

validation. �ere can be a large number of features,

and it is natural to want to reduce the size of the

data set before working with it. But reducing the num-

ber of features by some measure of correlation with

the class, such as information gain, using the entire

data set means that on each fold of cross-validation,

information has leaked from the labeled test set into

the training process – labels of test cases were used to

eliminate many features from the training set. Hence,

selecting features by looking at the entire data set can

partially negate the e�ect of cross-validation, some-

times yielding accuracy estimates that are more than

% points overly optimistic. Hence the entire train-

ing process of selecting features, tuning parameters, and

learning a model must be repeated for every fold in

cross-validation by looking only at the training data for

that fold.

An important use of microarrays for prognosis

and therapy is in the area of predictive personalized

medicine (PPM). While we present the idea of PPM

later in the paper, it must be mentioned that combining

gene expression data with clinical trials of the patients

to recommend the best treatment for the patients is a

very exciting problemwith promising impact in the area

of PPM.

 B Biomedical Informatics

Gene A

Gene B Gene C

Gene D

A P(B)
0.9
0.1

T
F

P(A)
0.2

A
T
F 0.1

0.8
P(C)

B
T
T
F
F F

T
F
T
C P(D)

0.9
0.2
0.3
0.1

Biomedical Informatics. Figure . A simple Bayes net. The

actual learning task typically involves thousands of vari-

ables

Bayesian Networks for Regulatory Pathways: 7Bayesian
Networks have been one of the successful machine

learning methods used for the analysis of microarray

data. Recall that a Bayes net is a directed acyclic graph,

such as the one shown in Fig. that de�nes a joint

distribution over the variables using a set of condi-

tional distributions. Friedman and Halpern (Friedman

& Halpern,) were the �rst to use Bayes nets for

the microarrays data type. In particular, the problem

that was considered was �nding regulatory pathways

in genes. �is problem can be posed as a supervised

learning task as follows:

● Given: A set of microarray experiments for a single

organism under di�erent conditions.

● Do: Learn a graphical model that accurately predicts

expression of some genes in terms of others.

Friedman and Halpern showed that using statistical

methods, a Bayes net representing the observations

(expression levels of di�erent genes) can be learned

automatically. A main advantage of Bayes nets is that

they can (potentially) provide insight into the interac-

tion networks within cells that regulate the expression

of genes. But one has to exercise caution, interpreting

the arcs of a learned Bayes net as representing causality.

For example in Fig. , one might interpret the net-

work to mean that gene A causes gene B and gene C

to be expressed, in turn in�uencing gene D. Note that

however, the Bayes net in this case just denotes the cor-

relation and not the causality, that is, the direction of an

Problem: Not Causality

A B

A is a good predictor of B. But is A regulating B??

Ground truth might be:

B A A C B

B C A

B

C

A Or a more complicated variant

Biomedical Informatics. Figure . Why a learned Baye-

sian network may not be representing regulation of one

gene by another

arc merely represents the fact that one variable is a good

predictor of the other, as illustrated in Fig. .

One possible method of learning causality is to use

knock-out methods [Pe’er, Regev, Elidan, & Friedman,

], where for of the genes in S. cerevisiae (bak-

ers’ yeast), biologists have created a knock-out mutant

or a genetic mutant lacking that gene. If the parent of a

gene in the Bayes net is knocked out and the child’s sta-

tus remains unchanged, then it is unlikely that the arc

from the parent to the child captures causality. A key

limitation is that the mutants are not available for many

organisms. Some other approaches such as RNAi have

been proposed for more e�ciently doing knock-outs,

but a limitation is that RNAi typically reduces rather

than eliminates expression of a gene.

Ong, Glassner, and Page () used time-series

data (data from the same organism at various time

points) to partially address the issue of causality.�ey

used these data to learn dynamic Bayesian networks in

order to infer temporal direction for gene interactions,

thereby getting a potentially better handle on causal-

ity. DBNs have been employed by other researchers for

time-series gene expression data, and the approach has

been extended to learn DBNs with continuous variables

(Segal, Pe’er, Regev, Koller, & Friedman,).

Single Nucleotide Polymorphisms
Single-Nucleotide Polymorphisms (SNPs) are individ-

ual base positions (i.e., single-nucleotide positions)

Biomedical Informatics B

B

in DNA, where people (or the organism of interest)

vary. Most of the variation in human DNA is due to

SNPs variations. (�ere are other variations such as

copy number, insertions and deletions that we do not

consider in this article.)�ere are well over three mil-

lion known SNPs in humans. Technologies such as Illu-

mina or A�ymetrix whole-genome scan can measure a

million SNPs in short time.�e measurement of these

variations is an order of magnitude faster, easier, and

cheaper than sequencing all the genes of the person.

It is believed that in the next decade, it will be

possible to obtain the entire genome sequence for an

individual human for under $, (Mardis,). If

we had every human’s entire sequence, it could be used

to predict the susceptibility of diseases for humans or

the adverse reactions to drugs for a certain subset of

patients.�e idea is illustrated in Fig. . Suppose the red

dots in the �gure are two copies of nucleotide A, and

the green dots denote a di�erent nucleotide, say C. As

can be seen from the �gure, people who respond to a

treatment T (top half of the �gure) have two copies of

A (for instance, these could be the positive examples),

while the people who do not respond to the treatment

have at most one copy of A (negative examples and are

presented in the bottom half of the �gure). Now, we can

imagine modeling the sequence to predict the suscepti-

bility to a disease or responsiveness to a treatment.

SNP data can serve as a surrogate for the above

problem. SNPs allow us to detect the variations among

humans. An example of SNP data is presented in Fig.

Susceptible to disease D or responds to treatment T

Not susceptible or not responding

Biomedical Informatics. Figure . Example application of

sequencing human genes. The top half is the case, where

patients respond to a treatment and the bottom is

the case, where three patients do not respond to the

treatment

for the prediction of myeloma cancer that is common

with older people (with age >) and is very rare in

younger people (age <). �is data set consists of

 people diagnosed with myeloma at young age and

 people who weren’t diagnosed till they were when

the disease is more common. Most SNP positions rep-

resent a pair of nucleotides and are typically restricted

in the combinations of values they may assume. For

example, in the �gure, SNP can take values from the

three possible combinations < C T, C C, T T > for

its two positions.�e goal is to use the feature values

of the di�erent SNPs to predict the class label which

could be the susceptibility.�at is, the goal is to deter-

mine genetic di�erence between people who got the

disease at a young age vs. people who did not until they

were old.

�ere is also the possibility of two patients having

the same SNP pattern in the data but not the identical

DNA. Patients and may have CT for the SNP and

GA for SNP, where both SNPs are on chromosome .

But, Patient has C on SNP in the same copy of chro-

mosome as the G in SNP, whereas Patient has C on

the same copy as an A. Hence, while they have the same

SNP pattern of CT and GA, they do not have identi-

cal DNA.�e process of converting the data from the

form in the Figure below to the form above is called

Phasing. From a machine learning perspective, there is

a choice of either working with the unphased data or to

use an algorithm for phasing. It turns out that phasing

is very di�cult and is an active research area. If there

are a number of unrelated patients phasing is very hard.

Hencemanymachine learning researchers workmainly

with unphased data. Admittedly, there is a small loss of

information with the unphased data that compensates

for the di�culty of phasing.

Most biologists and statisticians using SNP data per-

form genome-wide associations studies (GWAS). �e

goal in this work is to �nd individual SNPs that are

signi�cantly associated with disease, that is, such that

one of the SNP values, or alleles, raises the risk of dis-

ease.�is is typically measured by “relative risk” or by

“odds ratio,” and signi�cance is typically measured by

statistical tests such as Wald test, Score test, or LRLR

(7logistic regression log likelihood, where each SNP is
used individually to predict disease, and log likelihood

of the predictive model is compared to guessing under

the null hypothesis that the SNP is not associated).

 B Biomedical Informatics

Person 1

Person 2 C C A

Person 3 T T A A C C

Person 1 2 3 . . . Class

C T A G T T . . . Old

G C T . . . Young

. . . Old

Person 4 C T G G T T . . . Young

.

.

.

SNP

Biomedical Informatics. Figure . Example of SNP data

One of many examples is the use of SNPs to predict

susceptibility to breast cancer (Easton et al.,).

�e advantages of SNP data compared to microar-

ray data are the following: () Because SNP analysis is

typically performed on DNA from saliva or peripheral

blood cells, a person’s SNP pattern does not change with

time or disease. If the SNPs are collected from a blood

sample of a person aged years, the SNP patterns are

probably the same as when they were born.�is gives

more insight to the susceptibility of the person to many

diseases. Hence, we do not see the widespread changes

in SNP pattern with cancer, for example, that we see

in microarray data from tumor samples. () It is eas-

ier to collect the samples.�ese can be obtained from

the blood samples as against obtaining say, the biopsy

of other tissue types.

�e challenges of SNP data are as follows: () As

explained earlier, the data is unphased. Algorithms exist

for phasing (haplotyping), but they are error prone and

do not work well with unrelated patient samples.�ey

require the data to consist of related individuals in

order to have a dense coverage. () 7Missing Values
are more common than in microarray data.�e good

news is that the amount of missing values is decreas-

ing substantially (down from –% a few years ago to

–%). () �e sheer volume of measurements –

currently, it is possible tomeasure amillion SNPs out of

over three million SNPs in the human genome. While

this provides a tremendous amount of potential infor-

mation, the resulting high dimensionality causes prob-

lems for machine learning. As with gene expression

microarray data, we have a multiple comparisons prob-

lem, so approaches such as Bonferoni correction or

q-values from False Discovery Rate can again be

applied. But even when a signi�cant SNP is found, it

usually only increases our accuracy at predicting dis-

ease by % or % points, because a single SNP typically

either has a small e�ect or small penetrance (the vari-

ation is fairly rare – one value of the SNP is strongly

predominant). So GWAS are missing a major opportu-

nity to build predictive models by combining multiple

SNPs with small e�ects – this is an exciting opportunity

for machine learning.

�e supervised learning task can be de�ned as

follows:

● Given: A set of SNP pro�les each from a di�erent

patient.

Phased: Nucleotides at each SNP position on

each copy of each chromosome constitute the features

and patient’s disease susceptibility or drug response

constitutes the class.

Unphased: Unordered pair of nucleotides at each

SNP position constitutes the features and patient’s

disease susceptibility or drug response constitutes the

class.

● Do: Learn a model to predict the class based on the

features.

We now brie�y present one example of supervised

learning from SNP data. (Waddell, Page, and Shaugh-

nessy ()) found that there was evidence of a genetic

component in predicting the blood cancer multiple

myeloma as it was possible to distinguish the two cases

signi�cantly better than chance (% accuracy). �e

results fromusing SupportVectorMachines (SVMs) are

Biomedical Informatics B

B

Old

Old

Young

Young

Actual
31

14 26

9

Biomedical Informatics. Figure . Results on predicting

multiple myeloma, young (susceptible) vs. old (less sus-

ceptible), , SNPs

presented in Fig. . Similar results were obtained using

a Naive Bayesmodel as well. Listgarten et al. () also

used the SNP data with the goal of predicting lung can-

cer.�e accuracy of % obtained by themwas remark-

ably similar to the task of predicting multiple myeloma.

�e best models for predicting lung cancer were also

Naive Bayes and SVMs. �ere is a striking similarity

between the two experiments on unrelated tasks using

SNPs. When only the individual SNPs were considered,

the accuracy for both the experiments fell to %.

�e lessons learned from SNP data are the fol-

lowing: () 7Supervised learning algorithms such as
7Naive Bayes and 7SVM that can handle large num-
ber of features in the presence of smaller number of

training examples can predict disease susceptibility at

rates better than chance and better than individual

SNPs. () Accuracies are much lower than the ones with

microarray data. �is is mainly due to the fact that

we are predicting the susceptibility to the diseases (or

the response to a drug) as against predicting whether a

person already has the disease (as with the microarray

data).While we are predicting using the genetic compo-

nent, there are also many environmental components

that are responsible for the diseases and the response.

We are not considering such components in our model

and hence the accuracies are o�en not very high. In

spite of relatively lower accuracies, they give a di�erent

valuable insight to the human gene.

We now brie�y outline a couple of exciting future

directions for the use of SNP data. Pharmacogenetics

is the problem of predicting drug response from SNP

pro�le and has been gaining momentum over the past

few years. �is includes predicting drug e�cacy and

adverse reactions to certain drugs, given a person’s SNP

pro�le. A recent New England Journal of Medicine

article showed that the analysis of SNPs can signi�-

cantly improve the dosing model for the most widely

used orally available blood thinner, Warfarin (IWPC,

). Another exciting direction is the combination

of SNP data with other data types such as clinical data

that includes the history of the patient and the lab

tests and microarray data. �e combination of these

di�erent data sets will not only improve the accuracy

of the learned model but also provide a deeper insight

to the di�erent kinds of interactions that occur within a

human, such as gene interactions with other drugs.

It should be mentioned that other genetic data types

are becoming available andmay be useful for supervised

learning as well.�ese data types can provide additional

information about DNA sequence beyond SNPs but

without the expense of full genome sequencing. �ey

include copy-number variations and exon-sequencing.

Mass Spectrometry and Proteomics
Microarrays are useful primarily because mRNA

concentrations can serve as surrogates for protein con-

centrations and they are easier to measure. �ough

measuring protein concentrations directly is possible, it

cannot be done in the same high-throughput manner

asmeasuringmRNA. Recently, techniques such asMass

Spectrometry (MS or mass spec) have been successful in

high-throughput measuring of proteins. Mass spec still

does not given the complete coverage that microarrays

provide, nor as good a quantitation.

Mass spectometry is improving on many fronts,

using many technologies. As one example, we present

Time-Of-Flight (TOF) Mass Spectometry illustrated in

Fig. . �is measures the time required for an ion-

ized particle starting from the sample plate (bottom of

the �gure) to hit the detector.�e key idea is to place

some proteins (indicated as larger circles) into a matrix

(smaller circles are the matrix molecules). Because of

mass spec limitations, the proteins typically are digested

(broken into smaller peptides), for example, by the

compound trypsin. When struck by a laser, the matrix

molecules release protons that attach themselves to the

peptides or protein fragments (shown in (a)). Note that

the plate where the peptides are present is positively

charged.�is causes the peptides to migrate toward the

detector.

As can be seen in (b) of the �gure, the molecules

with smaller mass move faster toward the detector.�e

idea is to detect the number of molecules that hit the

 B Biomedical Informatics

+10kv

Laser
Detector

The protons from the matrix molecules
get attached to the proteins

+10kv

Laser
Detector

Positively charged proteins are
repelled towards the detector

Smaller mass molecules hit detector
first, while heavier ones detected later

ba

+
+ + ++

+

+

+
+

+
+

Biomedical Informatics. Figure . Time-Of-Flight mass spectrometry

detector at any given time. �is makes it possible to

use time as a surrogate for mass of the protein. �e

experiment is repeated a number of times, counting

frequencies of “�ight-times.” Plotting time vs. the num-

ber of particles hitting the detector yields a spectrum

as presented in Fig. .�e �gure shows three di�erent

fractions from the same sample.�ese kinds of spectra

provide us an insight about the di�erent types of pro-

teins in a given sample. A technical detail is that some-

times molecules receive additional charge (additional

protons) and hence �y faster. �erefore, the horizon-

tal mass axis in a spectrum is actually a mass/charge

ratio.

�e main issues for machine learning researchers

working with mass spectrometry data compared to

microarray data are as follows: () �ere is a lot of

7Noise in the data. �e noise is due to extra peaks
from handling of sample, from machine and environ-

ment (e.g., electrical noise). Also the mass to charge

values may not exactly align across the spectra; the

accuracy of the mass/charge values is the resolution

of the mass spec. () Intensities (peak heights) are not

calibrated across the spectra, making quanti�cation dif-

�cult.�is is to say that if one spectrum is compared to

another, and if one of them has more intensity at a par-

ticular mass/charge, it does not necessarily mean that

the levels of the peptide at that mass/charge are higher

in that spectrum. () Another issue is that the mass

spectrometry data is not as comprehensive as microar-

ray data, in that it is not possible to measure all pep-

tides (typically only several hundred of them can be

obtained). To get the best results, there is a need to frac-

tionate the sample beforehand, getting di�erent groups

of proteins in di�erent subsamples (fractions). () As

already mentioned, the proteins themselves typically

must be broken down (digested) into smaller peptides

in order to get accurate readings from themass spec. But

this means processing is needed a�erward not only to

determine from a spectrum which peptides are present

but also from that determination which proteins are

present. It is worth noting that some of these challenges

are being partially addressed by ongoing improvements

in mass spectrometry technologies, including the use of

“tandem mass spectrometry.”

�is data type opens up a lot of possibilities for

machine learning research. Some of the learning tasks

include:

● Learn to predict proteins from spectra, when the

organism’s proteome (full set of proteins) is known.

● Learn to identify isotopic distributions (combi-

nations of multiple peaks for a given molecule

Biomedical Informatics B

B

7000

6000

5000

4000

3000

2000

1000

0
0 20000 40000 60000 80000 100000 120000 140000 160000

line 1
line 2

line 3

Biomedical Informatics. Figure . Example spectra from a competition by Lin et al.

arising from di�erent isotypes of carbon, nitrogen.

and oxygen).

● Learn to predict disease from either proteins, peaks

or isotopic distributions as features.

● Construct pathway models.

We will now present one case study that was success-

ful and generated a lot of interest – Early Detection of

Ovarian Cancer (Petricoin et al.,). Ovarian cancer

is di�cult to detect early, o�en leading to poor prog-

nosis. �e goal of this work was to predict ovarian

cancer fromblood samples. To this e�ect, the researchers

trained and tested on mass spectra from blood serum.

�ey used training cases (positive) and used

a held-out test set of cases (positive). �e

results were extremely impressive (% sensitivity, %

speci�city).

While the results were extremely impressive and

while the machine learning methodology seemed very

sound, it turns out that the preprocessing stage of the

data may have introduced errors (Baggerly, Morris, &

Combes,). Mass spectrometry is very sensitive

to the external factors as well. For instance, if we run

cancer samples on Monday and normal samples on

Wednesday, it is possible that we could get di�erences

from variations in the machine or nearby electrical

equipment that is running onMonday but notWednes-

day. Hence, one of the important lessons learned from

this data type is the need for careful randomization of

the data samples.�is is to say that we should sample

the positive andnegative samples under identical condi-

tions. It should not be the case that the positive examples

are run through the machine on one day and the neg-

atives on the other day. Any preprocessing of the data

must be performed similarly.

While mass spectrometry is a widely used type of

high-throughput proteomic data, other types of data are

also important and are brie�y covered next.

Protein Structures
X-ray crystallography and nuclear magnetic resonance

are widely used to determine the three-dimensional

structures of proteins. Predicting protein structures has

been a very fertile �eld for machine learning research

for several decades.

While the amino acid sequence of a protein is called

its primary structure, it is more di�cult to determine

secondary structure and tertiary (D) structure. Sec-

ondary structure maps subsequences of the primary

 B Biomedical Informatics

structure in the three classes of alpha helix (helical

structures akin to a telephone cord, o�en denoted byA),

beta strand (which comes together with other strand

sections to form planar structures called beta sheets,

o�en denoted by B), and less descript regions referred

to as coil, or loop regions, o�en denoted by C.

Predicting secondary structure and tertiary struc-

ture has been a popular topic for machine learning for

many years, because training data exists yet it is di�cult

and expensive to experimentally determine structures.

We will not attempt to survey all the work in this area.

Waltz and colleagues (Zhang, Mesirov, & Waltz,)

showed the bene�t of applying neural networks to the

task of secondary structure prediction, and the best sec-

ondary structure predictors (e.g., Rost & Sander,)

have continued to be constructed by machine learning

over the years. Approaches for predicting the tertiary

structure have also relied heavily on machine learn-

ing and include ab initio prediction (e.g., Bonneau &

Baker,), prediction aided by crystallography data

(e.g., DiMaio et al.,), and homology-based predic-

tion (by �nding similar proteins). For over a decade,

there has been a regular competition in the prediction

of protein structures (Critical Assessment of Structure

Prediction [CASP]).

Protein–Protein Interactions
Another proteomics data type is protein–protein inter-

actions.�is is illustrated in Fig. .�e idea is to identify

proteins that interact with the current protein say P.

Generally, this is performed as follows: In the sample,

there are some proteins of type X (shown in pink in the

�gure) and other types of proteins. Proteins that inter-

act with X are bonded to X. �en antibodies (shown

as Y-shaped green objects) are introduced in the sam-

ple.�e idea of antibodies is to collect the proteins of

type X. Once the antibodies have collected all protein

X’s in the sample, they can be analyzed through mass

spectrometry presented earlier.

A particularly high-throughput way of measuring

protein–protein interactions is through “ChIP-chip”

data.�e supervised learning tasks for this task include:

● Learn to predict protein–protein interactions: Pro-

tein three-dimensional structures may be critical.

● Use protein–protein interactions in construction of

pathway models.

● Learn to predict protein function from interaction

data.

Related Data Types
● Metabolomics measures concentration of each low-

molecular-weight molecule in sample. �ese typi-

cally are metabolites, or small molecules produced

or consumed by reactions in biochemical pathways.

�ese reactions are typically catalyzed by proteins

(speci�cally, enzymes).�is data typically uses mass

spectrometry.

Antibody

The pink objects are protein X and
they get attached to other proteins (2 in
this figure). The green Y-shaped objects
are the antibodies

The antibodies get attached only to
protein X and hence collecting the
antibodies will result in collecting X ’s and
the proteins that interact with X

ba

Biomedical Informatics. Figure . Schematic of antibody-based identification of protein–protein interactions

Biomedical Informatics B

B

● ChIP-chip datameasures protein–DNA interactions.

For example, transcription factors are proteins that

interact with DNA in speci�c locations to alter tran-

scription of a nearby gene.

● Lipomics is analogous to metabolomics, but measur-

ing concentrations of Lipids rather thanmetabolites.

�ese potentially help induce biochemical pathway

information or to help disease diagnosis or treat-

ment choice.

High-Throughput Screening Data for Drug
Design
�e typical steps in designing a drug are: () Identify-

ing a target protein – for example, while developing an

antibiotic, it will be useful to �nd a protein that belongs

to the bacteria that we are interested in and �nd a small

molecule that will bind to that protein. In order to per-

form this, we need the knowledge of proteome/genome

and the relevant biological path ways. () Determining

the target site structure once the protein has been identi-

�ed – this is typically performed using crystallography.

() Finding a molecule that will bind to the target site.

�ese steps are presented in Fig. .

�e molecules that bind to the target may have

a number of other problems and hence they cannot

directly be used as a drug. Some common problems are

as follows: ()�ey may bind too tightly or not tightly

enough. ()�eymay be toxic. ()�eymay have unan-

ticipated side e�ects in the body. () �ey may break

down as soon as they get into the body or may not

leave the body soon enough. ()�eymay not get to the

right target in the body (e.g., cross blood–brain barrier).

()�eymay not di�use from gut to bloodstream. Also,

Identify target protein

Determine target
site structure

Synthesize a molecule
that will bind

Biomedical Informatics. Figure . Steps involved in

drug design

since the organisms are di�erent, even if a molecule

works in the test tube and in animal studies, it may fail

in clinical trials. Also while a molecule may work for

some people, it may not work for others. Conversely,

while somemolecules may cause harmful side e�ects in

some people, they may not do so in others.

O�en pharmaceutical companies will use robotic

high-throughput screening assays to test many thou-

sands of molecules to see if they bind to the target

protein, and then computational chemists will work

to determine the commonalities that allow them to

bind to the target as o�en the structure of the tar-

get protein cannot be determined. �e process of

discovering the commonalities across the di�erent

molecules presents a great opportunity for machine

learning research. �e �rst study of this task using

machine learning was by Dietterich, Lathrop, and

Lozano-Perez and led to the formulation of Multi-

Instance Learning. Yet, another machine learning task

could be to predict the reactions of the patients to

the drugs.

High-�roughput Screening: When the target struc-

ture is unknown, it is a common practice to test many

molecules (,,) to �nd some that bind to the tar-

get.�is is called as High-�roughput Screening. Hence,

it is important to infer the shape of the target from three-

dimensional structural similarities. �e shared three-

dimensional structure is called as pharmacophore.�is

is a perfect example of a machine learning task with a

spatial target and is presented in Fig. .

Given: A set of molecules, each labeled by activity

(binding a�nity for a target protein) and a set of low-

energy conformers for each molecule

Do: Learn amodel that accurately predicts the activ-

ity (may be Boolean or real valued).

A
ct

iv
e

In
ac

tiv
e

Biomedical Informatics. Figure . An example of struc-

ture learning

 B Biomedical Informatics

�e common machine learning approaches taken

toward solving this problem are:

. Representing amolecule by thousands tomillions of

features and use standard techniques (KDD,)

. Representing each low-energy conformer by fea-

ture vector and use multiple-instance learning (Jain

et al.,)

. Relational learning – using either Inductive Logic

Programming techniques (Finn, Muggleton, Page,

& Srinivasan,) or Graph Mining

�ermolysin Inhibitors: We present some results of rela-

tional learning algorithms on thermolysin inhibitors

data set (Davis, a). �ermolysin belongs to the

family of metalloproteases and plays roles in physio-

logical processes such as digestion and blood pressure

regulation. �e molecules in the data set are known

inhibitors of thermolysin. Activity for these molecules

is measured in pKi = −log Ki, where Ki is a dissocia-

tion constant, measuring the ratio of the concentrations

of bound product to unbound constituents. A higher

value indicates a stronger a�nity for binding.�e data

set that was used had the ten lowest energy confor-

mations (as computed by the SYBYL so�ware package

[www.tripos.com]) for each of thermolysin inhibitors

along with their activity levels.

�e key results for this data set using the relational

algorithm SAYU (Davis, b) were:

● Ten �ve-point pharmacophore identi�ed, falling

into two groups (/ molecules):

● �ree “acceptors,” one hydrophobe, and one

donor

● Four “acceptors,” and one donor

● Common core of Zn ligands, Arg, and Asn

interactions identi�ed

● Correct assignments of functional groups

● Correct geometry to Å tolerance

● Increasing tolerance to .Å�nds common six-point

pharmacophore including one extra interaction

Antibacterial Peptides:�is is a data set of pentapep-

tides showing activity against Pseudomonas aeruginosa

(Spatola, Page, Vogel, Blondell, & Crozet,).�ere

are six active pharmacophores with < µg/ml of IC

Biomedical Informatics. Table Identified

Pharmacophore

A molecule M is active against Pseudomonas aeruginosa if
it has a conformation B such that

M has a hydrophobic group C

M has a hydrogen acceptor D

The distance between C and D in conformation B is
. Å

M has a positively charged atom E

The distance between C and E in conformation B is Å

The distance between D and E in conformation B is
. Å

M has a positively charged atom F

The distance between C and F in conformation B is
. Å

The distance between D and F in conformation B is
. Å

The distance between E and F in conformation B is
. Å

Tolerance . Å

and �ve inactives. �e pharmacophore that has been

identi�ed is presented in Table .

Dopamine Agonists:�e last data set that we present

here consists of dopamine agonists (Martin et al.,).

Dopamine works as a neurotransmitter in the brain,

where it plays a major role in the movement control.

Dopamine agonists are molecules that function like

dopamine and produce dopamine-like e�ects and can

potentially be used to treat diseases such as Parkinson’s

disease. �e data set had dopamine agonists along

with their activity levels. �e pharmacophore identi-

�ed using Inductive Logic Programming is presented in

Table .

Electronic Medical Records (EMR) and
Personalized Medicine
Predictive personalized medicine (PPM) is a vision of

the future, whose parts are beginning to come into place

now. Under this vision, physicians can construct safer

and more e�ective prevention and treatment plans for

Biomedical Informatics B

B

each patient. �is is rendered possible by predicting

the impact of treatments on patients – their e�ective-

ness for di�erent classes of patients, adverse reactions

of certain drugs that are prescribed to the patients, and

susceptibility of di�erent types of patients to diseases.

PPM can become a reality due to three reasons: �e

Biomedical Informatics. Table Pharmacophore Identi-

fied for Dopamine Agonists

Molecule A has the desired activity if

● In conformation B molecule A contains a hydrogen
acceptor at C

● In conformation B molecule A contains a basic
nitrogen group at D

● The distance between C and D is . ± . Å

● In conformation B molecule A contains a hydrogen
acceptor at E

● The distance between C and E is . ± . Å

● The distance between D and E is . ± . Å

● In conformation B molecule A contains a hydropho-
bic group at F

● The distance between C and F is . ± . Å

● The distance between D and F is . ± . Å

● The distance between E and F is . ± . Å

�rst is the widespread use by many clinics of Electronic

Medical Records (EMR also called as Electronic Health

Records – EHR).�e second is that whole-genome scan

technologymakes it possible in one experiment, for well

under $,, to measure for one patient a half mil-

lion to one million SNPs, or individual positions in the

DNA where humans vary.�e third key reason is the

advancement of statisticalmodeling (machine learning)

methods in the past decade that can handle large rela-

tional longitudinal databases with signi�cant amount of

noise.�e �rst two reasonsmake it possible for the clin-

ics to have a relational database of the form presented

in Fig. .

Given such a database, it is conceivable to use exist-

ing machine learning algorithms for achieving the goal

of PPM. �ese algorithms could focus on predicting

which patients are at risk (pos and neg examples).

Another task is predicting which patients will respond

to a speci�c treatment – a set of patients who have

undergone speci�c treatments in order to learn predic-

tivemodels that could be extended to similar patients of

the population. Similarly, it is possible to focus on cer-

tain drugs and their adverse reactions and use them to

predict the adverse reactions of similar drugs that are

released in the market. In this work, we focus on the

machine learning solutions to predicting adverse drug

reactions for di�erent drugs.

�ere are actually at least three di�erent tasks for

machine learning in predicting Adverse Drug Events

(ADEs).

Patient ID Gender Birthdate Patient ID

Patient ID SNP1 SNP2 … SNP500K

P1 M 3/22/63

Date Physician Diagnosis

P1
P1

1/1/01
2/1/03

Smith
Jones

Palpitations
Fever, Aches

Patient ID Date Lab Test Result

P1
P1

1/1/01
1/9/01

42
45

P1
P2

AA
AB

AB
BB

BB
AA

Patient ID Date Prescribed Date Filled Physician Medication Dose Duration

P1 5/17/98 5/18/98 Jones Prilosec 10 mg 3 months

blood glucose
blood glucose

Hypoglycemic
influenza

Symptoms

Biomedical Informatics. Figure . Electronic Health Records (dramatically simplified) – most data currently do not

include SNP information but are anticipated in the future

 B Biomedical Informatics

Task :

Given: Patient data (from claims databases and/or

EMRs) and a drug D

Do: Construct a model to predict a minimum e�-

cacious dose of drug D, because a minimum dose is less

likely to induce an ADE.

An example of this task is predicting the “stable

dose” of the blood-thinner Warfarin (Coumadin) for

a patient (McCarty, Wilke, Giampietro, Wesbrook, &

Caldwell,). A stable dose of Warfarin yields the

desired degree of anticoagulation, whereas a higher

dose can lead to bleeding ADEs; the stable dose for a

patient is currently found by trial and error, modify-

ing the dose and measuring the degree of anticoagula-

tion.�e cited study shows that a learned dosing model

can predict a signi�cantly better starting dose (signi�-

cantly closer to the �nal “stable dose”) than the mg/day

starting dose currently used in many clinics.

Task :

Given: Patient data (from claims databases and/or

EMRs), a drug D, and an adverse event E

Do: Construct a model to predict which patients are

likely to su�er the adverse event E if they take D.

In this second task, we assume that the association

between D and E already has been hypothesized. We

seek to construct models that can predict who will suf-

fer a given event if they take the drug. Here, whether the

patient will su�er adverse event E is the class variable

to be predicted.�is task is important for personalized

medicine, as accurate models for this task can be used

to identify patients who should not be given a particu-

lar drug. An earlier study has demonstrated the bene�t

of a Statistical Relational Learning (SRL) system called

SAYU (Davis, b) over standard machine learning

approaches with a feature-vector representation of the

EHR, for the task of predicting which users of cox

inhibitors would have an MI.

Task :

Given: Patient data (from claims databases and/or

EMRs) and a drug D

Do: Determine if evidence exists that associates D

with a previously unanticipated adverse event.

�is third task is the most challenging because no

associated event has been hypothesized.�ere is a need

to identify the response variable to be predicted. In

brief, the major approach for this task is to use machine

learning “in reverse.” We seek a model that can pre-

dict which patients are on drug D using the data a�er

they start the drug (le� censored) and also censor-

ing the indications of the drug. If a model can predict

(with accuracy better than chance on held-aside data)

which patients are taking the drug, there must be some

combination of variable settings more common among

patients on the drug. Because we have le� censored, in

theory, this commonality should not consist of common

symptoms, but common e�ects, presumably from the

drug.�e model can then be examined by the experts

to see if it might indicate a possible new adverse event

for the drug.

�e preceding use of machine learning “in reverse”

actually can be viewed as Subgroup Discovery (Wrobel,

; Klösgen,), �nding a subgroup of patients on

drug D who share some subsequent clinical events.�e

learned model – say an IF-THEN rule – need not cor-

rectly identify everyone on the drug but rather merely

a subgroup of those on the drug, while not generating

many false positives (individuals not on the drug).�is

task poses several di�erent challenges that traditional

ML methods will �nd di�cult to handle.

First, the data is multi-relational.�ere are several

objects such as doctors, patients, drugs, diseases, and

labs that are connected through relations such as vis-

its, prescriptions, diagnoses, etc. If traditional machine

learning (ML) techniques are to be employed on this

problem, they require �attening the data into a single

table. All known �attening techniques such as com-

puting a join or summary features result in either

() changes in frequencies on which machine learning

algorithms critically depend or () loss of information.

�ey also typically result in loss of some correlations

between the objects and explosion in database size. Sec-

ond, the data is non-i.i.d., as there are relationships

between the objects and between di�erent rowswithin a

table.�ird, there are arbitrary numbers of patient vis-

its, diagnoses, and prescriptions for di�erent patients.

�is is to say that there is no �xed pattern in the diag-

noses and prescriptions of the patients. It is incorrect to

assume that the patients are diagnosed a �xed number

of times or to assume only the last diagnosis is rele-

vant. To predict the adverse reactions to a drug, it is

important to consider the other drugs that the patient

is prescribed or has been prescribed in the past, as well

as past diagnoses and laboratory results. To capture

Biomedical Informatics B

B

these interactions, it is critical to explicitly model time

since the interactions are highly temporal. Some drugs

taken at the same time can lead to side e�ects while in

some cases, drugs taken a�er one another cause side

e�ects. It is important to capture such interactions to

be able to make useful predictions for the physicians

and the Federal Drug Authority (FDA). In this work, we

focus on this hardest task and present the results on two

data sets.

Cox Inhibitors: Recently, a study was performed to

see if there were any unanticipated adverse events that

occurred when subjects used cox inhibitors (Vioxx,

Celebrex, and Bextra). Cox inhibitors are a nons-

teroidal anti-in�ammatory class of drugs that were used

to reduce joint pain. Vioxx, Celebrex, and Bextra were

approved for use in the late s and were ranked

as one of the top therapeutic drugs in the USA. Sev-

eral clinical trials were conducted, and the APPROVe

trial (focused on Vioxx outcomes) showed an increase

of adverse events from myocardial infarction, stroke,

and vascular thrombosis. �e manufacturer withdrew

Vioxx from the market shortly a�er the results were

published.�e other cox inhibitor drugs were discon-

tinued shortly therea�er.

�is study utilized the Marsh�eld Clinic’s Person-

alized Medicine Research Project (McCarty, Wilke,

Giampietro, Wesbrook, & Caldwell,) (PMRP)

cohort consisting of approximately , + subjects.

�e PMRP cohort included adults aged years and

older, who reside in theMarsh�eld Epidemiology Study

Area (MESA). Marsh�eld has one of the oldest inter-

nally developed Electronic Medical Records (Cattails

MD) in the USA, with coded diagnoses dating back

to the early s. Cattails MD has over , users

throughout central and northern Wisconsin.

Since the data is multi-relational, an Inductive Logic

Programming (Muggleton&Raedt,) system,Aleph

(Srinivasan,) was used to learn the models. Aleph

learns rules in the form of Prolog clauses and scores

rules by positive examples covered (P) minus negative

examples covered (N). Seventy-�ve percent of the data

was used for training and rule development, while the

remaining % was used for testing.�ere were ,

subjects within the PMRP cohort that had medication

records. Within this cohort, almost % of the subjects

indicated use of a cox inhibitor, and more speci�-

cally, .% indicated the use of Vioxx. Approximately,

Biomedical Informatics. Table Cox Inhibitor Test Data

Results

Actual

Rule + −

+

−

 ,

Accuracy .

.% of this cohort had an indicated use of clopidogrel

biosulfate (Plavix).

Aleph generated thousands of rules and selected

a subset of the “best” rules that were based on the

scoring algorithm.�e authors also developed speci�c

hypotheses to test for known adverse events to vali-

date the approach (indicated by # A). �is rule was:

cox(A):- diagnoses(A, _,‘’). It states that if �nd-

ing (A): the subject would have the diagnosis coded as

 (myocardial infarction). Aleph also provided sum-

mary statistics on model performance for identifying

subjects on cox inhibitors, as indicated in Table . If

we assume that the probability of being on the cox

inhibitor is greater than. (the common threshold),

then the model has a predictive probability of % to

predict cox inhibitor use.

OMOP Challenge: Observational Medical Outcomes

Partnership (OMOP) designed and developed an auto-

mated procedure to construct simulated data sets to

identify adverse drug events. �e simulated data sets

are modeled a�er real observational data sources but

are comprised of hypothetical persons with �ctional

drug exposure and health outcomes occurrence. �e

data sets are constructed such that the relationships

between the �ctional drugs and �ctional outcomes are

well characterized as true and false associations. �at

is, hypothetical persons are created and assigned �c-

tional drug exposure periods and instances of health

outcomes based on random sampling from probability

distributions that de�ne the relationships between the

�ctional drugs and outcomes.�e relationships created

within the simulated data sets are contrived but are rep-

resentative of the types of relationships observed within

real observational data sources. OMOP has made a

 B Biomedical Informatics

simulated data set and the simulator itself publicly avail-

able as part of the OMOP Cup Data Mining Competi-

tion (http://omopcup.orwik.com).

Aleph was used to learn rules from a subset of the

data (about , patients). Each patient had a record

of drugs anddiagnoses (conditions)with dates attached.

A few examples of the rules learned byAleph in this data

set are:

on_drug(A):- condition_occurrence(B,C,A,D,

E,,F,G,H)

on_drug(A):- condition_occurrence(B,C,A,D,E,

,F,G,H)

condition_occurrence(I,J,A,K,L,

,M,N,O)

�e �rst rule identi�es drug as interesting, while

the second rule identi�es two other drugs as interest-

ing when predicting the reaction for person A. With

about rules, Aleph was able to achieve a % cov-

erage. �e results were compared against a Statistical

Relational Learning technique (SRL) (Getoor & Taskar,

) that uses a probability distribution on the rules.

�e results are presented in Fig. . As expected, with

a small number of rules, SRL has a better performance

than Aleph, but as the number of rules increase, they

converge on the same performance.

�e leading approaches in the �rst OMOP Cup

include a machine learning approach based on random

forests as well as several approaches based on tech-

niques from epidemiology such as disproportionality

analysis. At the time of this writing further details, as

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 3 5 10

A
cc

ur
ac

y

Number of rules

Aleph SRL

Biomedical Informatics. Figure . Results of OMOP data

well as plans for future competitions, are available at

http://omopcup.orwik.com/.

Identifying previously unanticipatedADEs, predict-

ing who is most at risk for an ADE, and predicting safe

and e�cacious doses of drugs for particular patients are

all important needs for society. With the recent advent

of “paperless” medical record systems, the pieces are in

place formachine learning to helpmeet these important

needs.

Conclusion
In this work, we aim to survey the abundant opportu-

nities in biomedical applications to machine learning

researchers by presenting several data types to which

machine learning techniques have been applied suc-

cessfully or showing tremendous promise. One of the

most important developments in biology and medicine

over the last few years is the availability of technologies

that can produce large volumes of data.�is in turn has

necessitated the need for processing large volumes of

data in a reasonable amount of time, presenting the per-

fect setting for machine learning algorithms to have an

impact. We outlined several data types including gene

expressionmicroarrays (measuringmRNA),mass spec-

trometry (measuring proteins), SNP chips (measur-

ing genetic variation), and Electronic Medical/Health

Records (EMR/EHRs).

�e key lessons learned from all these data types are

as follows: () Even if the number of features is greater

than the number of data points (e.g., predicting can-

cer from microarray data), we can do well provided

the features are highly predictive. () Careful random-

ization of data samples is necessary. () It is very easy

to over�t the data and hence robust techniques such

as voted 7decision stumps, 7naive Bayes or linear
7SVMs are in general very useful tools for such data
sets. ()7Bayes nets do not give us causality and hence
knock-out experiments (7active learning) and7DBNs
with 7time-series data can help. () Multi-relational
methods such as SRL and ILP are helpful for predic-

tive personalized medicine due to the relational nature

of the data. () Mostly, the collaborators are interested

in measures other than just accuracy. Comprehensi-

bility, privacy, and ranking are other criteria that are

important to biologists.

�is chapter is necessarily incomplete because so

many exciting tasks and data types exist within biology

Biomedical Informatics B

B

and medicine. While we have touched on many of the

leading such data types, other related ones also exist.

For example, there are many opportunities in analyz-

ing genomic andprotein sequences (LearningModels of

Biological Sequences). Other opportunities exist within

phylogenetics, for example, see work by Heckerman

and colleagues on HIV (Carlson et al.,). New

technologies such as optical mapping are constantly

being developed and re�ned (Ananiev et al.,).

Machine learning has great potential for developing

models for computer-aided diagnosis (CAD), for exam-

ple, for mammography (Burnside et al.,). Data

types such as metabolomics and auxotropic growth

experiments raise opportunities for active learning and

for automatic revision of biological networkmodels, for

example, as in the Robot Scientist projects (Jones et al.,

; Oliver et al.,). Incorporation ofmultiple data

types can further help in mapping out the regulatory

entities and networks of an organism (Noto & Craven,

). It is our hope that this articlewill encourage some

machine learning researchers to delve deeper into these

and other related opportunities.

Acknowledgment
We would like to thank Elizabeth Burnside, Michael

Caldwell, Mark Craven, Jesse Davis, Lingjun Li, David

Madigan, Sean McIlwain, Michael Molla, Irene Ong,

Peggy Peissig, Patrick Ryan, Jude Shavlik,Michael Suss-

man, Humberto Vidaillet, Michael Waddell and Steve

Wesbrook.

Cross References
7Learning Models of Biological Sequences

Recommended Reading
Ananiev, G. E., Goldstein, S., Runnheim, R., Forrest, D. K., Zhou, S.,

Potamousis, K., Churas, C. P., Bergendah, V., Thomson, J. A., &

David, C. (). Schwartz. Optical mapping discerns genome

wide DNA methylation profiles. BMC Molecular Biology, ,

doi:./---.

Baggerly, K., Morris, J. S., & Combes, K. R. (). Reproducibility

of seldi-tof protein patterns in serum: Comparing datasets from

different experiments. Bioinformatics, , –.

Bonneau, R., & Baker, D. (). Ab initio protein structure predic-

tion: Progress and prospects. Annual Review of Biophysics and

Biomolecular Structure, , –.

Burnside, E. S., Davis, J., Chhatwal, J., Alagoz, O., Lindstrom, M. J.,

Geller, B. M., Littenberg, B., Kahn, C. E., Shaffer, K., &

Page, D. (). Unique features of hla-mediated hiv evolu-

tion in a mexican cohort: A comparative study. Radiology, ,

–.

Carlson, J., Valenzuela-Ponce, H., Blanco-Heredia, J., Garrido-

Rodriguez, D., Garcia-Morales, C., Heckerman, D., et al.

(). Unique features of hla-mediated hiv evolution

in a mexican cohort: A comparative study. Retrovirology,

(), .

Davis, J., Costa, V. S., Ray, S., & Page, D. (a). An integrated

approach to feature construction and model building for drug

activity prediction. In Proceedings of the th international

conference on machine learning (ICML).

Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., & Costa, V. S.

(b). Change of representation for statistical relational

learning. In Proceedings of the th international joint confer-

ence on artificial intelligence (IJCAI).

DiMaio, F., Kondrashov, D., Bitto, E., Soni, A., Bingman, C.,

Phillips, G., & Shavlik, J. (). Creating protein models from

electron-density maps using particle-filtering methods. Bioin-

formatics, , –.

Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., et al.

(). Genome-wide association study identifies novel breast

cancer susceptibility loci. Nature, , –.

Finn, P., Muggleton, S., Page, D., & Srinivasan, A. ().

Discovery of pharmacophores using the inductive logic

programming system progol. Machine Learning, (,),

–.

Friedman, N. (). Being Bayesian about network structure. In

Machine Learning, , –.

Friedman, N., & Halpern, J. (). Modeling beliefs in dynamic sys-

tems. part ii: Revision and update. Journal of AI Research, ,

–.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, B. W., Schummer,

M., & Haussler, D. (). Support vector classification and val-

idation of cancer tissue samples using microarray expression.

Bioinformatics, (), –.

Getoor, L., & Taskar, B. (). Introduction to statistical relational

learning. Cambridge, MA: MIT Press.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J. P., et al. (). Molecular classification of cancer:

Class discovery and class prediction by gene expression moni-

toring. Science, , –.

Hardin, J., Waddell, M., Page, C. D., Zhan, F., Barlogie, B.,

Shaughnessy, J., et al. (). Evaluation of multiple mod-

els to distinguish closely related forms of disease using DNA

microarray data: An application to multiple myeloma. Statisti-

cal Applications in Genetics and Molecular Biology, ().

Jain, A. N., Dietterich, T. G., Lathrop, R. H., Chapman, D., Critchlow,

R. E., Bauer, B. E., et al. (). Compass: A shape-based

machine learning tool for drug design. Aided Molecular Design,

(), –.

Jones, K. E., Reiser, F. M., Bryant, P. G. K., Muggleton, C. H., Kell, S.,

King, D. B., et al. (). Functional genomic hypothesis gen-

eration and experimentation by a robot scientist. Nature, ,

–.

KDD cup (). http://pages.cs.wisc.edu/ dpage/kddcup/.

Klösgen, W. (). Handbook of data mining and knowledge dis-

covery, chapter .: Subgroup discovery. New York: Oxford

University Press.

Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J.,

Driga, A., et al. (). Predictive models for breast cancer

 B Blog Mining

susceptibility from multiple single nucleotide polymorphisms.

Clinical Cancer Research, , –.

Mardis, E. R. (). Anticipating the , dollar genome. Genome

Biology, (), .

Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I. I., &

Pavlik, P. A. (). A fast new approach to pharmacophore

mapping and its application to dopaminergic and benzodi-

azepine agonists. Journal of Computer Aided Molecular Design,

, –.

McCarty, C., Wilke, R. A., Giampietro, P. F, Wesbrook, S. D., &

Caldwell, M. D. (). Personalized Medicine Research

Project (PMRP): Design, methods and recruitment for a large

population-based biobank. Personalized Medicine, , –.

Molla, M., Waddell, M., Page, D., & Shavlik, J. (). Using machine

learning to design and interpret gene expression microarrays.

AI Magazine, (), –.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, (),

–.

Noto, K., & Craven, M. (). A specialized learner for inferring

structured cis-regulatory modules. BMC Bioinformatics, (),

doi:./---.

Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M.,

Markham, M., et al. (). The automation of science. Science,

, –.

Ong, I., Glassner, J., & Page, D. (). Modelling regulatory path-

ways in e.coli from time series expression profiles. Bioinformat-

ics, , S–S.

Pe’er, D., Regev, A., Elidan, G., & Friedman, N. (). Inferring sub-

networks from perturbed expression profiles. Bioinformatics,

, –.

Perou, C., Jeffrey, S., Van De Rijn, M., Rees, C. A., Eisen, M. B.,

Ross, D. T., et al. (). Distinctive gene expression pat-

terns in human mammary epithelial cells and breast cancers.

Proccedings of National Academy of Science, , –.

Petricoin, E. F., III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro,

V. A., Steinberg, S. M., et al. (). Use of proteomic patterns

in serum to identify ovarian cancer. Lancet, , –.

Rost, B., & Sander, C. (). Prediction of protein secondary struc-

ture at better than accuracy. Journal of Molecular Biology,

, –.

Segal, E., Pe’er, D., Regev, A., Koller, D., & Friedman, N. (April

). Learning module networks. Journal of Machine Learning

Research, , –.

Spatola, A., Page, D., Vogel, D., Blondell, S., & Crozet, Y. (). Can

machine learning and combinatorial chemistry co-exist? In Pro-

ceedings of the American Peptide Symposium. Kluwer Academic

Publishers.

Srinivasan, A. (). The aleph manual. http://web.comlab.ox.

ac.uk/oucl/research/areas/machlearn/Aleph/.

Storey, J. D., & Tibshirani, R. (). Statistical significance for

genome-wide studies. Proceedings of the National Academy of

Sciences, , –.

The International Warfarin Pharmacogenetics Consortium (IWPC)

(). Estimation of the Warfarin Dose with Clinical and

Pharmacogenetic Data. The New England Journal of Medicine,

:–.

Tucker, A., Vinciotti, V., Hoen, P. A. C., Liu, X., & Famili,

A. F. (). Bayesian network classifiers for time-series

microarray data. Advances in Intelligent Data Analysis VI, ,

–.

Van’t Veer, L. L., Dai, H., van de Vijver, M. M., He, Y., Hart, A.,

Mao, M., et al. (). Gene expression profiling predicts clin-

ical outcome of breast cancer. Nature, , –.

Waddell, M., Page, D., & Shaughnessy, J., Jr. (). Predicting can-

cer susceptibility from single-nucleotide polymorphism data: A

case study in multiple myeloma. BIOKDD’: Proceedings of the

fifth international workshop on bioinformatics, Chicago, IL.

Wrobel, S. (). An algorithm for multi-relational discovery

of subgroups. In European symposium on principles of kdd

(pp. –). Lecture notes in computer science, Springer,

Norway.

Zhang, X., Mesirov, J. P., & Waltz, D. L. (). Hybrid system for

protein secondary structure prediction. Journal of Molecular

Biology, , –.

Zou, M., & Conzen, S. D. (). A new dynamic Bayesian network

approach for identifying gene regulatory networks from time

course microarray data. Bioinformatics, , –.

Blog Mining

Blog mining is the application of data mining (in par-

ticular, Web mining) techniques on blogs, adapted to

the content, format, and language of the medium blog.

A blog is a (more or less) frequently updated publication

on the Web, sorted in (usually reverse) chronological

order of the constituent blog posts. As in other areas of

the Web, mining is applied to the content of blogs, to

the various types of links between blogs, and to blog-

related behavior. �e latter comprises blog authoring

including link setting, blog reading and commenting,

and querying (o�en in blog search engines). For more

details on blogs and on mining them, see7text mining
for news and blogs analysis.

Boltzmann Machines

GeoffreyHinton

University of Toronto, ON, Canada

Synonyms
Boltzmann machines

Definition
A Boltzmann machine is a network of symmetri-

cally connected, neuron-like units that make stochastic

decisions about whether to be on or o�. Boltzmann

machines have a simple learning algorithm (Hinton &

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

Boltzmann Machines B

B

Sejnowski,) that allows them to discover interest-

ing features that represent complex regularities in the

training data.�e learning algorithm is very slow in net-

works withmany layers of feature detectors, but it is fast

in “restricted Boltzmann machines” that have a single

layer of feature detectors. Many hidden layers can be

learned e�ciently by composing restricted Boltzmann

machines, using the feature activations of one as the

training data for the next.

Boltzmannmachines are used to solve two quite dif-

ferent computational problems. For a search problem,

the weights on the connections are �xed and are used to

represent a cost function.�e stochastic dynamics of a

Boltzmannmachine then allow it to sample binary state

vectors that have low values of the cost function. For a

learning problem, the Boltzmann machine is shown a

set of binary data vectors and it must learn to generate

these vectors with high probability. To do this, it must

�nd weights on the connections so that relative to other

possible binary vectors, the data vectors have low val-

ues of the cost function. To solve a learning problem,

Boltzmannmachines makemany small updates to their

weights, and each update requires them to solve many

di�erent search problems.

Motivation and Background
�e brain is very good at settling on a sensible interpre-

tation of its sensory input within a few hundred mil-

liseconds, and it is also very good, over a much longer

timescale, at learning the code that is used to express

its interpretations. It achieves both the settling and the

learning using spiking neurons which, over a period of

a few milliseconds, have a state of or . �ese neu-

rons have intrinsic noise caused by the quantal release

of vesicles of neurotransmitter at the synapses between

the neurons.

Boltzmann machines were designed to model both

the settling and the learning, and were based on two

seminal ideas that appeared in . Hop�eld ()

showed that a neural network composed of binary units

would settle to aminimumof a simple, quadratic energy

function provided that the units were updated asyn-

chronously and the pairwise connections between units

were symmetrically weighted. Kirkpatrick et al. ()

showed that systems that were settling to energy min-

ima could �nd deeper minima if noise was added to

the update rule so that the system could occasionally

increase its energy to escape from poor local minima.

Adding noise to a Hop�eld net allows it to �nd

deeper minima that represent more probable interpre-

tations of the sensory data. More signi�cantly, by using

the right kind of noise, it is possible to make the log

probability of �nding the system in a particular global

con�guration be a linear function of its energy. �is

makes it possible to manipulate log probabilities by

manipulating energies, and since energies are simple

local functions of the connection weights, this leads to

a simple, local learning rule.

Structure of Learning System
�e learning procedure for updating the connection

weights of a Boltzmann machine is very simple, but to

understand why it works it is �rst necessary to under-

stand how a Boltzmann machine models a probability

distribution over a set of binary vectors and how it

samples from this distribution.

The stochastic Dynamics of a Boltzmann Machine

Whenunit i is given the opportunity to update its binary

state, it �rst computes its total input, xi, which is the

sum of its own bias, bi, and the weights on connections

coming from other active units:

xi = bi +∑
j

sjwij ()

where wij is the weight on the connection between

i and j, and sj is if unit j is on and , otherwise.

Unit i then turns on with a probability given by the

logistic function:

prob(si =) =

 + e−xi
()

If the units are updated sequentially in any order that

does not depend on their total inputs, the network will

eventually reach a Boltzmann distribution (also called

its equilibrium or stationary distribution) in which the

probability of a state vector, v, is determined solely by
the “energy” of that state vector relative to the energies

of all possible binary state vectors:

P(v) = e−E(v)/∑
u
e
−E(u)

()

 B Boltzmann Machines

As in Hop�eld nets, the energy of state vector v is
de�ned as

E(v) = −∑
i

svi bi −∑
i<j

svi s
v
j wij ()

where svi is the binary state assigned to unit i by state

vector v.
If the weights on the connections are chosen so

that the energies of state vectors represent the cost of

those state vectors, then the stochastic dynamics of a

Boltzmann machine can be viewed as a way of escap-

ing from poor local optima while searching for low-cost

solutions.�e total input to unit i, xi, represents the dif-

ference in energy depending on whether the unit is o�

or on, and the fact that unit i occasionally turns on even

if xi is negative means that the energy can occasionally

increase during the search, thus allowing the search to

jump over energy barriers.

�e search can be improved by using simulated

annealing.�is scales down all of the weights and ener-

gies by a factor,T, which is analogous to the temperature

of a physical system. By reducing T from a large ini-

tial value to a small �nal value, it is possible to bene�t

from the fast equilibration at high temperatures and

still have a �nal equilibrium distribution that makes

low-cost solutions much more probable than high-cost

ones. At a temperature of , the update rule becomes

deterministic and a Boltzmann machine turns into a

Hop�eld network.

Learning in Boltzmann Machines Without Hidden Units

Given a training set of state vectors (the data), the

learning consists of �nding weights and biases (the

parameters) that make those state vectors good. More

speci�cally, the aim is to �nd weights and biases that

de�ne a Boltzmann distribution in which the training

vectors have high probability. By di�erentiating () and

using the fact that:

∂E(v)/∂wij = −s
v
i s

v
j ()

it can be shown that:

⟨
∂ logP(v)
∂wij

⟩

data

= ⟨sisj⟩data − ⟨sisj⟩model ()

where ⟨⋅⟩data is an expected value in the data dis-

tribution and ⟨⋅⟩model is an expected value when the

Boltzmannmachine samples state vectors from its equi-

librium distribution at a temperature of . To per-

form gradient ascent in the log probability that the

Boltzmann machine would generate the observed data

when sampling from its equilibrium distribution, wij is

incremented by a small learning rate times the RHS of

().�e learning rule for the bias, bi, is the same as (),

but with sj omitted.

If the observed data speci�es a binary state for every

unit in the Boltzmann machine, the learning prob-

lem is convex: �ere are no nonglobal optima in the

parameter space. However, sampling from ⟨⋅⟩model may

involve overcoming energy barriers in the binary state

space.

Learning with Hidden Units

Learning becomes much more interesting if the

Boltzmann machine consists of some “visible” units

whose states can be observed, and some “hidden” units

whose states are not speci�ed by the observed data.�e

hidden units act as latent variables (features) that allow

the Boltzmannmachine tomodel distributions over vis-

ible state vectors that cannot be modeled by direct pair-

wise interactions between the visible units. A surprising

property of Boltzmann machines is that, even with hid-

den units, the learning rule remains unchanged. �is

makes it possible to learn binary features that capture

higher-order structure in the data. With hidden units,

the expectation ⟨sisj⟩data is the average, over all data vec-

tors, of the expected value of sisj when a data vector is

clamped on the visible units and the hidden units are

repeatedly updated until they reach equilibrium with

the clamped data vector.

It is surprising that the learning rule is so sim-

ple because ∂ logP(v)/∂wij depends on all the other

weights in the network. Fortunately, the locally avail-

able di�erence in the two correlations in () tells wij

everything it needs to know about the other weights.

�is makes it unnecessary to explicitly propagate error

derivatives, as in the backpropagation algorithm.

Different Types of Boltzmann Machine

�e stochastic dynamics and the learning rule can

accommodate more complicated energy functions

(Sejnowski,). For example, the quadratic energy

function in () can be replaced by an energy function

Boltzmann Machines B

B

that has typical term sisjskwijk.�e total input to unit i

that is used in the update rule must then be replaced by

xi = bi +∑
j<k

sjskwijk. ()

�e only change in the learning rule is that sisj is

replaced by sisjsk.

Boltzmann machines model the distribution of the

data vectors, but there is a simple extension, the “con-

ditional Boltzmann machine” for modeling conditional

distributions (Ackley, Hinton, & Sejnowski,).�e

only di�erence between the visible and the hidden units

is that, when sampling ⟨sisj⟩data, the visible units are

clamped and the hidden units are not. If a subset of the

visible units are also clamped when sampling ⟨sisj⟩model
this subset acts as “input” units and the remaining visi-

ble units act as “output” units.�e same learning rule

applies, but now it maximizes the log probabilities of

the observed output vectors conditional on the input

vectors.

Instead of using units that have stochastic binary

states, it is possible to use “mean �eld” units that have

deterministic, real-valued states between and , as in

an analog Hop�eld net. Equation () is used to compute

an “ideal” value for a unit’s state, given the current states

of the other units, and the actual value is moved toward

the ideal value by some fraction of the di�erence. If this

fraction is small, all the units can be updated in parallel.

�e same learning rules can be used by simply replacing

the stochastic, binary values by the deterministic real

values (Peterson & Anderson,), but the learning

algorithm is hard to justify and the mean �eld nets have

problems in modeling multimodal distributions.

�e binary stochastic units used in Boltzmann

machines can be generalized to “so�max” units that

have more than two discrete values, Gaussian units

whose output is simply their total input plus Gaussian

noise, binomial units, Poisson units, and any other type

of unit that falls in the exponential family (Welling,

Rosen-Zvi, & Hinton,). �is family is character-

ized by the fact that the adjustable parameters have lin-

ear e�ects on the log probabilities.�e general form of

the gradient required for learning is simply the change

in the su�cient statistics caused by clamping data on the

visible units.

The speed of Learning

Learning is typically very slow in Boltzmann machines

with many hidden layers because large networks can

take a long time to approach their equilibrium distribu-

tion, especially when the weights are large and the equi-

librium distribution is highly multimodal, as it usually

is when the visible units are unclamped. Even if sam-

ples from the equilibrium distribution can be obtained,

the learning signal is very noisy because it is the di�er-

ence of two sampled expectations.�ese di�culties can

be overcome by restricting the connectivity, simplifying

the learning algorithm, and learning one hidden layer at

a time.

Restricted Boltzmann Machines

A restricted Boltzmann machine (Smolensky,)

consists of a layer of visible units and a layer of hid-

den units with no visible-visible or hidden-hidden con-

nections. With these restrictions, the hidden units are

conditionally independent given a visible vector, so

unbiased samples from ⟨sisj⟩data can be obtained in one

parallel step. To sample from ⟨sisj⟩model still requires

multiple iterations that alternate between updating all

the hidden units in parallel and updating all of the vis-

ible units in parallel. However, learning still works well

if ⟨sisj⟩model is replaced by ⟨sisj⟩reconstruction which is

obtained as follows:

. Starting with a data vector on the visible units,

update all of the hidden units in parallel.

. Update all of the visible units in parallel to get a

“reconstruction.”

. Update all of the hidden units again.

�is e�cient learning procedure approximates gra-

dient descent in a quantity called “contrastive diver-

gence” and works well in practice (Hinton,).

Learning Deep Networks by Composing Restricted

Boltzmann Machines

A�er learning one hidden layer, the activity vectors of

the hidden units, when they are being driven by the

real data, can be treated as “data” for training another

restricted Boltzmann machine.�is can be repeated to

learn as many hidden layers as desired. A�er learning

multiple hidden layers in this way, the whole network

can be viewed as a single, multilayer generative model,

 B Boosting

and each additional hidden layer improves a lower

bound on the probability that the multilayer model

would generate the training data (Hinton, Osindero, &

Teh,).

Learning one hidden layer at a time is a very e�ective

way to learn deep neural networks with many hidden

layers and millions of weights. Even though the learn-

ing is unsupervised, the highest level features are typi-

cally much more useful for classi�cation than the raw

data vectors. �ese deep networks can be �ne-tuned

to be better at classi�cation or dimensionality reduc-

tion using the backpropagation algorithm (Hinton &

Salakhutdinov,). Alternatively, they can be �ne-

tuned to be better generative models using a version of

the “wake-sleep” algorithm Hinton et al. ().

Relationships to Other Models

Boltzmannmachines are a type ofMarkov random �eld

(see 7Graphical Models), but most Markov random
�elds have simple, local interaction weights which are

designed by hand rather than being learned. Boltzmann

machines are also like Ising models, but Ising mod-

els typically use random or hand-designed interaction

weights.�e search procedure for Boltzmannmachines

is an early example ofGibbs sampling, a7Markov chain
Monte Carlo method which was invented indepen-

dently (Geman & Geman,) and was also inspired

by simulated annealing.

Boltzmann machines are a simple type of undi-

rected graphical model. �e learning algorithm for

Boltzmann machines was the �rst learning algorithm

for undirected graphical models with hidden variables

(Jordan,). When restricted Boltzmann machines

are composed to learn a deep network, the top two

layers of the resulting graphical model form an undi-

rected Boltzmann machine, but the lower layers form

a directed acyclic graph with directed connections

from higher layers to lower layers, Hinton et al.

().

Conditional random �elds (La�erty, McCallum, &

Pereira,) can be viewed as simpli�ed versions

of higher-order, conditional Boltzmann machines in

which the hidden units have been eliminated. �is

makes the learning problem convex, but removes the

ability to learn new features.

Recommended Reading
Ackley, D., Hinton, G., & Sejnowski, T. (). A Learning

algorithm for boltzmann machines. Cognitive Science, (),

–.

Geman, S., & Geman, D. (). Stochastic relaxation, Gibbs distri-

butions, and the Bayesian restoration of images. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, (),

–.

Hopfield, J. J. (). Neural networks and physical systems with

emergent collective computational abilities. Proceedings of the

National Academy of Sciences USA, , –.

Hinton, G. E. (). Training products of experts by min-

imizing contrastive divergence. Neural Computation, (),

–.

Hinton, G. E., Osindero, S., & Teh, Y. W. (). A fast learn-

ing algorithm for deep belief nets. Neural Computation, ,

–.

Hinton, G. E., & Salakhutdinov, R. R. (). Reducing the

dimensionality of data with neural networks. Science, ,

–.

Hinton, G. E., & Sejnowski, T. J. (). Optimal perceptual infer-

ence. In Proceedings of the IEEE conference on computer vision

and pattern recognition, Washington, DC (pp. –).

Jordan, M. I. (). Learning in graphical models. Cambridge, MA

MIT press.

Kirkpatrick, S., Gelatt, D. D., & Vecci, M. P. (). Optimization by

simulated annealing. Science, (), –.

Lafferty, J., McCallum, A., & Pereira, F. (). Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of the th international confer-

ence on machine learning (pp. –). San Francisco, Morgan

Kaufmann.

Peterson, C., & Anderson, J. R. (). A mean field theory learning

algorithm for neural networks. Complex Systems, (), –.

Sejnowski, T. J. (). Higher-order boltzmann machines. AIP

Conference Proceedings, (), –.

Smolensky, P. (). Information processing in dynamical sys-

tems: Foundations of harmony theory. In D. E. Rumelhart, &

J. L. McClelland (Eds.), Parallel distributed processing: Vol. :

Foundations (pp. –). Cambridge, MA: MIT Press.

Welling, M., Rosen-Zvi, M., & Hinton, G. E. (). Exponen-

tial family harmoniums with an application to information

retrieval. In Advances in neural information processing systems

(vol. , pp. –). Cambridge, MA: MIT Press.

Boosting

Boosting is a family of 7ensemble learning methods.
�e Boosting framework is an answer to a question

posed on whether two complexity classes of learning

problems are equivalent: strongly learnable, and weakly

learnable. �e Boosting framework is a proof by con-

struction that the answer is positive, they are equivalent.

�e framework allows a “weak” model, only slightly

Breakeven Point B

B

better than random guessing, to be boosted into an

arbitrarily accurate strong model. 7Adaboost is the
most well known and successful of the Boosting family,

though there exist many variants specialized for par-

ticular tasks, such as cost-sensitive and noise-tolerant

versions. See7ensemble learning for full details.

Bootstrap Sampling

Definition
Bootstrap sampling is a process for creating a distribu-

tion of datasets out of a single dataset. It is used in the

7ensemble learning algorithm7Bagging. It can also be
used in 7algorithm evaluation to create a distribution
of training sets from which to estimate properties of an

algorithm.

Recommended Reading
Davison, A. C., & Hinkley, D. (). Bootstrap methods and their

applications (th ed.). Cambridge: Cambridge Series in Statisti-

cal and Probabilistic Mathematics.

Bottom Clause

Synonyms
Saturation; Starting clause

Definition
�e bottom clause is a notion from the �eld of

7inductive logic programming. It is used to refer to the
most speci�c hypothesis covering a particular example

when7learning from entailment. When learning from
entailment, a hypothesisH covers an example e relative

to the background theory B if and only if B∧H ⊧ e, that

is, B together with H 7entails the example e.�e bot-
tom clause is now themost speci�c clause satisfying this

relationship w.r.t the background theory B and a given

example e.

For instance, given the background theory B

bird :- blackbird.
bird :- ostrich.

and the example e:

flies :- blackbird, normal.

the bottom clause is H

flies :- bird, blackbird, normal.

�e bottom clause can be used to constrain the search

for clauses covering the given example because all

clauses covering the example relative to the background

theory should be more general than the bottom clause.

�e bottom clause can be computed using 7inverse
entailment.

Cross References
7Entailment
7Inductive Logic Programming
7Inverse Entailment
7Logic of Generality

Bounded Differences Inequality

7McDiarmid’s Inequality

BP

7Backpropagation

Breakeven Point

More accurately described as precision–recall BEP, it

is an evaluation measure originally introduced in the

�eld of information retrieval to evaluate retrieval sys-

tems that return a list of documents ordered by their

supposed relevance to the user’s information need (see

also 7Document Classi�cation). It can also be used
to evaluate any classi�cation model f that addresses a

two-class classi�cation problem but outputs real-valued

predictions f (x) instead of binary ones. To use such a

classi�er in practice, one would select a threshold θ and

predict an instance x to be positive if f (x) > θ and nega-

tive otherwise.�us, the7precision and7recall of this
system depend on the choice of the threshold θ. A lower

threshold means higher recall, but usually also lower

precision. At some point (when the number of instances

predicted to be positive is the same as the actual number

 B Breakeven Point

of positive instances), precision and recall are equal; this

value of precision and recall is known as the precision–

recall BEP. It is a useful measure of the quality of our

classi�er because it gives us guidance into what sort of

tradeo�s are available to the user of such a classi�er via

the choice of threshold: if we want a precision above the

BEP, we must accept that our recall will be below the

BEP, and vice versa. A di�erent meaning of the term

“breakeven point” is sometimes used in ROC (7ROC
Analysis), where the ROC breakeven is de�ned as the

point where the true positive rate and the false positive

rate sum to ; smaller values of the ROC breakeven are

better than larger ones. Informally, the ROC breakeven

measures how close the ROC curve gets to the “ROC

sweet spot” in the top le� corner (where the 7true
positive rate is and the7false positive rate is).

C

C.

7Decision Tree

Cannot-Link Constraint

Apairwise constraint between two items indicating that

they should be placed into di�erent clusters in the �nal

partition.

Candidate-Elimination
Algorithm

Mitchell’s, (,) candidate-elimination algorithm

performs a bidirectional search in the 7hypothesis
space. It maintains a set, S, of most speci�c hypotheses
that are consistent with the training data and a set, G,
of most general hypotheses consistent with the training

data.�ese two sets form two boundaries on the version

space. See7Learning as Search.

Recommended Reading
Mitchell, T. M. (). Generalization as search. Artificial Intelli-

gence, (), –.
Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Cascade-Correlation

Thomas R. Shultz, Scott E. Fahlman

McGill University, Montréal, QC, Canada
Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Cascor; CC

Definition
Cascade-Correlation (o�en abbreviated as “Cascor”

or “CC”) is a 7supervised learning algorithm for

7arti�cial neural networks. It is related to the 7back-
propagation algorithm (“backprop”). CC di�ers from

backprop in that a CC network begins with no hidden

units, and then adds units one-by-one, as needed during

learning.

Each new hidden unit is trained to correlate with

residual error in the network built so far. When it is

added to the network, the new unit is frozen, in the

sense that its input weights are �xed.�e hidden units

form a cascade: each new unit receives weighted input
fromall the original network inputs and from the output

of every previously created hidden unit. �is cascad-

ing creates a network that is as deep as the number

of hidden units. Stated another way, the CC algorithm

is capable of e�ciently creating complex, higher-order

nonlinear basis functions – the hidden units –which are

then combined to form the desired outputs.

�e result is an algorithm that learns complex

input/outputmappings very fast compared to backprop,

and that builds a multi-layer network structure that is

customized for the problem at hand.

Motivation and Background
Cascade-Correlationwas designed (Fahlman&Lebiere,

) to address two well-known problems with

the popular back-propagation algorithm (“backprop”).

First, a backprop user has to guess what network struc-

ture – the number of hidden layers and the number of

units in each layer – would be best for a given learning

problem. If the network is too small or too shallow, it

won’t solve the problem; if it is too large or too deep,

training is very slow, and the network is prone to over-

�tting the training data. Because there is no reliable way

to choose a good structure before training begins, most

backprop users have to train many di�erent structures

before �nding one that is well-matched to the task.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 C Cascade-Correlation

Second, even if a backprop usermanages to choose a

good network structure, training is generally very slow.

�at is particularly true in networks with many hidden

units or with more than one hidden layer. One cause

of slow learning in backprop is the use of a uniform

learning-rate parameter for updating network weights.

�is problem was addressed with the Quickprop algo-

rithm (Fahlman,), an approximation to Newton’s

method that adapts the learning rate for each weight

parameter depending on the �rst two derivatives of

the local error surface. Quickprop improved learning

speed, sometimes dramatically, but learningwas still too

slow in large or deep networks.

Another cause of slow learning in backprop is the

“herd e�ect” (Fahlman & Lebiere,). If the solution

to a network problem requires, say, hidden units,

each of these units must be trained to do a di�erent

job – that is, to compute a di�erent nonlinear basis

function. Each hidden unit starts with a di�erent and

randomly chosen set of input weights; but if the units

are all trained at once, they all see the same error sig-

nal.�ere is no central authority telling each unit to do

a separate job, so they tend to dri� toward the same part

of parameter space, forming a herd that moves around

together. Eventually, the units may dri� apart and begin

to di�erentiate, but there is nothing to compel this, so

the process is slow and unreliable. Usually, in selecting

an initial topology for a backprop net, it is necessary to

include many extra hidden units to increase the odds

that each job will be done by some unit.

CC addresses this problem by introducing and

training hidden units one by one. Each hidden unit

sees a strong, clear error gradient, not confused by the

simultaneous movement of other hidden units. A new

hidden unit can thus move quickly and decisively to a

position in parameter space where it can perform a use-

ful function, reducing the residual error. One by one,

cascor-hidden units take up distinct jobs, instead of

milling about together competing to do the same job.

Structure of Learning System
The Algorithm

�e CC architecture is illustrated in Fig. . It begins

with some inputs and one or more output units, but

no hidden units. �e numbers of inputs and outputs

are dictated by the problem. As in backprop, the output

units generally have a sigmoid activation function, but

could alternatively have a linear activation function.

Every input is connected to every output unit by a con-

nection with an adjustable weight.�ere is also a bias
input, permanently set to +.
Hidden units are added to the network one by one.

Each new hidden unit receives a weighted connection

from each of the network’s original inputs and also

from every existing hidden unit. Each new unit there-

fore adds a new single-unit layer to the network.�is

makes it possible to create high-order nonlinear feature

detectors, customized for the problem at hand.

As noted, learning begins without hidden units.�e

direct input–output connections are trained as well as

possible over the entire set of training examples, using

Quickprop. At some point, this training approaches an

asymptote. When no signi�cant error reduction has

occurred a�er a certain number of training cycles, this

output phase is terminated and there is a shi� to input

phase to recruit a new hidden unit, using the unit-

creation algorithm to be described. �e new unit is

added to the net, its input weights are frozen, and all the

output weights are once again trained using Quickprop.

�is cycle repeats until the error is acceptably small,

in the sense that all network outputs for all training

patterns are within a speci�ed threshold of their target

values.

To create a new hidden unit, input phase begins

with several candidate units that receive trainable input
connections from all of the network inputs and from

all existing hidden units. �e outputs of these candi-

dates are not yet connected to the network.�ere are a

number of passes over the examples of the training set,

adjusting the candidate unit’s input weights a�er each

pass.�e goal of these adjustments, using Quickprop,

is to maximize the correlation between each candidate’s

output and the residual error.

When these correlation measures show no further

signi�cant improvement, input phase stops, the best-

correlating candidate’s input weights are frozen, and

that unit is installed in the network.�e remaining can-

didates are discarded and the algorithm then retrains

the output weights, making use of this new feature as

well as all the old ones. As the new unit’s output corre-

lates well with some component of the residual error, its

output weights can be quickly adjusted to reduce that

Cascade-Correlation C

C

After adding second
Hidden unit

After adding first
Hidden unit

Initial network
No hidden units

Inputs

Outputs

Outputs

Outputs

+1

Inputs

+1

Inputs

+1

Cascade-Correlation. Figure . The Cascade–Correlation (CC) architecture, as new hidden units are added. Black circles

are frozen connection weights, white circles are weights trained during output-training phase. The vertical lines sum

all incoming activation

 C Cascade-Correlation

component. So a�er adding each new hidden unit, the

network’s residual error should be smaller than before.

Using several candidates, each with di�erently-

initialized input weights, greatly reduces the chances of

installing a bad hidden unit that gets the network stuck

in a local optimum far from the global optimum value.

All candidates receive the same input signals and see the

same residual error for each training pattern. Because

they do not interact with one another or a�ect the net-

work during training, these candidates can be trained

in parallel. In a pool of four to eight candidates, there

are almost always several high-quality candidates with

nearly equal correlation values.

Hidden units continue to be recruited until net-

work error reaches an acceptable level, or until cross-

validation signals a stop. Because only a single layer

of weights is adjusted at a time, rather than back-

propagating an error signal through several layers of

shi�ing units, CC training proceeds very quickly.

Performance

CC is designed to produce a network just large enough

to solve the problem, and to do so much faster than

backprop and related algorithms. In many reported

cases that require hidden units, CC learns the desired

behavior – times faster than standard backprop

(Fahlman & Lebiere,). One striking example of

this is the two-spirals problem, an arti�cial benchmark
designed to be very di�cult for neural networks with

sigmoid units. At the time CC was developed, the best

known backprop solutions for two-spirals required a

network with three hidden layers of �ve units each. CC

typically solves this problem with hidden units, and

has found solutions with as few as nine hidden units.

In terms of runtime, CC training was about times

faster than standard backprop and times faster than

Quickprop used within a static network.

Variants of Cascade-Correlation

Flat Cascade-Correlation In standard CC, each new

hidden unit receives inputs from every existing unit, so

the net becomes one level deeper every time a unit is

added.�is is a powerful mechanism, creating increas-

ingly complex feature detectors as the network learns.

But sometimes this added depth is not required for the

problem, creating a very deep network that performs no

better than a shallow one.�e resulting network might

have more weights than are required for the problem,

raising concern about over-�tting. Another concern

was that the cascaded non-linearity of CC might also

compromise generalization. To address these concerns,

a �at variant of cascor adds new recruited units onto a

single layer (i.e., cascaded connections are eliminated),

limiting the depth of the network and eliminating all

cascaded weights between hidden units.

Comparison of �at to standard CC on gen-

eralization in particular learning problems yielded

inconsistent results, but a more problem–neutral,

student–teacher approach found no generalization dif-

ferences between �at and standard versions of CC

(Dandurand, Berthiaume, & Shultz,). Here, �at

and standard student CC networks learned the input–

output mappings of other, randomly initialized �at and

standard CC teacher networks, where task complex-

ity was systematically manipulated. Both standard and

�at CC student networks learned and generalized well

on problems of varying complexity. In low-complexity

tasks, there were no signi�cant performance di�er-

ences between �at and standard CC student networks.

For high-complexity tasks, �at CC student networks

required fewer connection weights and learned with

less computational cost than did standard CC student

networks.

Sibling-Descendant Cascade-Correlation (SDCC) SDCC

(Baluja & Fahlman,) provides a more general solu-

tion to the problem of network depth. In the candidate

pool there are two kinds of candidate units: descendant
units that receive inputs from all existing hidden units,

and sibling units that receive the same inputs as the
deepest hidden units in the current net. When the time

comes to choose a winning candidate, the candidate

with the best correlation wins, but there is a slight pref-

erence for sibling units. So unless a descendant unit is

clearly superior, a sibling unit will be recruited, making

the active network larger, but not deeper. In problems

where standard CC produces a network with or

hidden units and an equal number of layers, SDCC

o�en produces a network with only two or three hidden

layers.

Recurrent Cascade-Correlation (RCC) Standard CC pro-

duces a network that maps its current inputs to outputs.
�e network has no memory of recent inputs, so this

Cascade-Correlation C

C

architecture is not able to learn to recognize a sequence

of inputs. In the RCC algorithm, each candidate and

hidden unit takes the same inputs as in standardCC, but

it also takes an additional input: the unit’s own previous

output, delayed by one time interval (Fahlman,).

�e weight on this time-delayed input is trained by the

same algorithm as all the other inputs.

�is delayed loop gives RCC networks a way of

remembering past inputs and internal states, so they

can learn to recognize sequences of input patterns. In

e�ect, the architecture builds a �nite-state machine tai-

lored speci�cally to recognize the pattern sequences in

the training set. For example, an RCC net learned to

recognize characters in Morse code.

Knowledge-Based Cascade-Correlation (KBCC) KBCC is

a variant that can recruit previously-learned networks

or indeed any di�erentiable function, in competition

with single hidden units (Shultz & Rivest, ; Shultz,

Rivest, Egri,�ivierge, &Dandurand,).�e recruit

is the candidate whose output correlates best with resid-

ual network error, just as in ordinary CC.�e candidate

pool usually has a number of randomly initialized sig-

moid units and a number of candidate source networks,

i.e., networks previously trained on other tasks. �e

input weights to multiple copies of the source networks

are usually randomly initialized to improve optimiza-

tion. Of these copies, one is typically connected with

an identity matrix with o�-diagonal zeros, to enable

quick learning of the target task when exact knowledge

is available. A hypothetical KBCC network is shown in

Fig. .

Software Most CC algorithms are available in a variety

of formats and languages, including:

CASCOR: Lisp and C implementations of Cascade-

correlation

http://www.cs.cmu.edu/afs/cs/project/ai-repository/

ai/areas/neural/systems/cascor/.html

Free Lisp and C implementations of cascade-

correlation.

Cascade Neural Network Simulator

http://www.cs.cmu.edu/~sef/sefSo�.htm

A public domain C program that implements

cascade-correlation and recurrent cascade-correlation,

Outputs

Unit

Source

Bias Inputs

Cascade-Correlation. Figure . Hypothetical knowledge-

based cascade-correlation (KBCC) network that has

recruited a source network and then a sigmoid unit, each

installed on a separate layer. The dashed line represents

a single connection weight, thin solid lines represent

weight vectors, and thick solid lines represent weight

matrices

plus experimental versions of cascade and recur-

rent cascade .

LNSC Cascade-correlation Simulator Applet

http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/

lnsc_applet.htm

A Java applet allowing direct comparisons of

cascade-correlation andback-propagation algorithms

on some benchmark problems, also permitting entry

of text-edited custom training and test patterns.

LNSC Java Code Library

http://www.lnsclab.org/

Free compiled Java versions of BP, CC, SDCC,

and KBCC neural-network so�ware, along with a

tutorial

Applications
CC

Partly because of its ability to grow its own networks

and build new learning on top of existing knowledge,

CC has been used to simulate many phenomena in cog-

nitive development. �ese characteristics embody the

constructivism that developmental psychologists o�en

discussed but did not formulate precisely. Simulations

are typically evaluated by how well they capture the

various psychological phenomena that characterize a

particular domain.

http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/lnsc_applet.htm

 C Cascade-Correlation

�e balance-scale task involves presenting a child

with a rigid beam balanced on a fulcrum with pegs

spaced at equal intervals to the le� and right of the ful-

crum. A number of identical weights are placed on a

peg on the le� side and a peg on the right side, and

the child is asked to predict which side will descend

when the beam is released from its moorings. CC net-

works passed through the stages observed with children

and captured the so-called torque-di�erence e�ect, the

tendency to do better on problems with large absolute

torque di�erences than on problems with small torque

di�erences (Shultz, Mareschal, & Schmidt, ; Shultz

and Takane,).

�e conservation task presents a child with two

quantities of objects that the child judges to be equal and

then transforms one set in a way that either changes that

relationship or conserves it. CC networks captured four

important conservation regularities (Shultz,):

. A shi� from nonconservation to conservation

beliefs

. A sudden spurt in performance during acquisition

. Emergence of correct conservation judgments for

small quantities before larger quantities

. Young children’s choice of the longer row as having

more items than the shorter row

Analysis of network solutions at various points in devel-

opment revealed a gradual shi� from perceptual (how

the sets of items look) to cognitive (whether or not the

transformation changed a quantity) solutions, similar to

what had been found with children.

�e seriation task requires a child to order a dis-

ordered collection of sticks of di�erent lengths. CC

networks passed through the four stages seen in chil-

dren (total failure, partial sort, trial-and-error sort, and

systematic sort) and captured the tendency for sets

with smaller di�erences to be more di�cult to sort

(Mareschal & Shultz,). Analysis of network solu-

tions revealed early success at the short end of the series

that was gradually extended to the longer end, as in

children.

�e transitivity problem typically also employs

sticks of di�erent length. Here the child is trained on

all pairs of sticks that are adjacent in length and then

is asked to infer the relative length of untrained pairs.

Five psychological regularities were captured when CC

networks were trained to compare the relative sizes of

adjacent pairs (Shultz & Vogel,):

. Learning short or long adjacent pairs before adja-

cent pairs of medium length.

. Faster inferences with pairs farther apart in length

than with pairs close together in length, an e�ect

that diminished with age. A constraint-satisfaction

networkmodule simulated reaction times by input-

ting the output of a CC network and settling over

time cycles into a low-energy solution that satis�ed

the constraints supplied by connection weights and

inputs, e�ectively cleaning up the output of the CC

network.

. Faster inferences with pairs containing the shortest

or longest stick.

. Faster inferences when the expression used in the

question (e.g., shorter) is compatible with an end

stick (e.g., the shortest stick) in the compared

pair than when the question term (e.g., shorter)

is incompatible with an end stick (e.g., the longest

stick) in the compared pair.

. Older children learned adjacent pairs faster and

made inference comparisons faster and more accu-

rately than did young children.

�e computational bases for these e�ects were revealed

by examining the pattern of connection weights within

the CC network module.�e pattern of these weights

formed a cubic shape, symmetrical for the two sticks

being compared, in which discrimination was better at

the ends of the array than in the middle and became

sharper with deeper learning.

Another task calls for integration of cues formoving

objects, governed by the equation velocity = distance/
time. Children were presented with information on two

of those quantities and asked to infer the third.�ree

stages involved �rst using the quantity that varied pos-

itively with the quantity to be inferred, second adding

or subtracting the known quantities, and �nally multi-

plying or dividing the known quantities. Already docu-

mented stages were captured and others were correctly

predicted by CC networks (Buckingham & Shultz,

).

Semantic rules for deictic personal pronouns specify

thatme refers to the person using the pronoun and you
refers to the person who is being addressed. Although

Cascade-Correlation C

C

most children acquire these pronouns without notable

errors, a few reverse these pronouns, persistently call-

ing themselves you and the mother me. Such reversals
in children are produced by lack of opportunity to over-

hear these pronouns used by other people, where the

shi�ing reference can be observed. CC networks cov-

ered these phenomena and generated predictions for

e�ective therapy to correct reversal errors (Oshima-

Takane, Takane, & Shultz,).

Discrimination shi� learning tasks repeatedly present

pairs of stimuli with mutually exclusive attributes on

several binary dimensions, such as color, shape, and

position, and a child learns to select the correct stimulus

in each pair, e.g., square. Feedback is given and learn-
ing continues until the child reaches a success criterion,

e.g., / correct.�en reward contingencies shi�, usu-

ally without warning. A reversal shi� stays within the
initially relevant dimension, e.g., from square to cir-
cle. A nonreversal shi� is to another dimension, such
as from square to blue.�ere are related tasks that use
new stimulus values in the shi� phase.�ese are called

intradimensional shi�s if the shi� remains within the
initial dimension, e.g., square to triangle, or extradimen-
sional if there is a change to another dimension, e.g.,
from square to yellow. �e optional shi� task presents
only two stimulus pairs in the shi� phase, making it

ambiguous whether the shi� is a reversal or nonreversal

shi�.�e pattern of subsequent choices allows determi-

nation of whether the child interprets this as a reversal

or a nonreversal shi�.

Age di�erences in the large literature on these shi�s

indicate that older children learn a reversal shi� faster

than a nonreversal shi�, learn an intradimensional shi�

faster than an extradimensional shi�, make a reversal

shi� in the optional task, and are initially impaired on

unchanged pairs during a nonreversal shi�. Younger

children learn reversal and nonreversal shi�s equally

fast, learn an intra-dimensional shi� faster than an

extra-dimensional shi�, make a nonreversal shi� in the

optional task, and are unimpaired on unchanged pairs

during a nonreversal shi�. �ese �ndings were simu-

lated by CC networks (Sirois & Shultz,), which

also generated predictions that were later con�rmed.

When infants repeatedly experience stimuli from a

particular class, their attention decreases, but it recovers

to stimuli from a di�erent class. �is familiarize-and-

test paradigm is responsible for most of the discoveries

of infant psychological abilities. CC networks simulated

�ndings on infant attention to syntactic patterns in an

arti�cial language (Shultz & Bale,) and age di�er-

ences in infant categorization of visual stimuli (Shultz &

Cohen,), and generated several predictions, some

of which were tested and con�rmed.

SDCC

Because of SDCC’s ability to create a variety of network

topologies, it is beginning to be used in psychology

simulations: infant learning of word-stress patterns

in arti�cial languages (Shultz & Bale,), sylla-

ble boundaries (Shultz & Bale,), visual concepts

(Shultz,), and false-belief tasks; learning the struc-

ture of mathematical groups (Schlimm& Shultz,);

replication of the results of the CC simulation of

conservation acquisition (Shultz,); and concept

acquisition.

CC and SDCC networks capture developmental

stages by growing in computational power and by being

sensitive to statistical patterns in the training envi-

ronment (Shultz,). �e importance of growth

was demonstrated by comparisons with static back-

prop networks, designed with the same �nal topology

as successful CC networks, that learn only by adjust-

ing connection weights (Shultz,). Coupled with

the variety of successful SDCC topologies, this suggests

that the constructive process is more important than

precise network topologies. Capturing stages is chal-

lenging because the system has to not only succeed on

the task but also make the samemistakes on the road to

success that children do. CC and SDCC arguably pro-

duced the best data coverage of any models applied to

the foregoing phenomena. Both static and constructive

networks capture various perceptual e�ects by virtue

of their sensitivity to quantitative variation in stimulus

inputs (Shultz,).

Comparison of the two algorithms in psychologi-

cal modeling indicates that SDCC provides the same

functionality as CC but with fewer connection weights

and shallower and more variable network topologies

(Shultz,).

KBCC

KBCC also has potential for simulating psychological

development, but it has so far been applied mainly

to toy and engineering problems. Exploration of a

 C Cascade-Correlation

variety of toy problems was important in understand-

ing the behavior of this complex algorithm. Some

toy problems involved learning about two-dimensional

geometric shapes under various transformations such

as translation, rotation, and size changes, as well as

compositions of complex shapes from simpler shapes

(Shultz & Rivest,). Networks had to learn to distin-

guish points within a target shape from points outside

the shape. Learning time without relevant knowledge

was up to times longer than with relevant knowl-

edge on these problems. �ere was a strong tendency

to recruit relevant knowledge whenever it was available.

Direct comparison revealed that KBCC learned spa-

tial translation problems faster thanMultitask Learning

networks did.

Parity problems require a network to activate an out-

put unit only when an odd number of binary inputs

are activated.When parity- networks were included in

the candidate source pool, KBCC learned parity- prob-

lems (with eight binary inputs) faster and with fewer

recruits than did CC networks. Parity- networks were

recruited by these KBCC target networks whenever

available.

KBCC also learned complex chessboard shapes

from knowledge of simpler chessboards. As with parity,

networks used simpler previous knowledge to compose

a solution to a more complex problem and learning was

speeded accordingly.

In a more realistic vein, KBCC networks recruit-

ing knowledge of vowels from one sort of speaker (e.g.,

adult females) learned to recognize vowels spoken by

other sets of speakers (e.g., children and adult males)

faster than did knowledge-free networks.

KBCC learned an e�cient algorithm for detect-

ing prime numbers by recruiting previously-learned

knowledge of divisibility (Shultz et al.,).�is well-

known detection algorithm tests the primality of an

integer n by checking if n is divisible by any integers
between and the integer part of

√
n. Starting with

small primes is e�cient because the smaller the prime

divisor, the more composites are detected in a �xed

range of integers. �e candidate pool contained net-

works that had learned whether an integer could be

divided by each of a range of integers, e.g., a divide-

by- network, a divide-by- network, etc., up to a divisor

of . KBCC target networks trained on randomly-

selected integers from to recruited only source

networks involving prime divisors below the square

root of , in order from small to large divisors.

KBCC avoided recruiting single hidden units, source

networks with composite divisors, any divisors greater

than the square root of even if prime, and divisor

networks with randomized connection weights. KBCC

never recruited a divide-by- source network because

it instead learned to check the last binary digit of n to
determine if n was odd or even, an e�ective shortcut to
dividing by . Such KBCC networks learned the train-

ing patterns in about one third the time required by

knowledge-free networks, with fewer recruits on fewer

network layers, and they generalized almost perfectly

to novel test integers. In contrast, even a�er mastering

the training patterns, CC networks generalized less well

than automatic guessing that the integer was compos-

ite, which was true for % of integers in this range.

As predicted by the simulation, adults testing primality

also used mainly prime divisors below
√
n and ordered

divisors from small to large.

�is work underscores the possibility of neural-

network approaches to compositionality because KBCC

e�ectively composed a solution to prime-number detec-

tion by recruiting and organizing previously learned

parts of the problem, in the form of divisibility net-

works.

Future Directions
One new trend is to inject symbolic rules or func-

tions into KBCC source networks. �is is similar to

KBANN, but more �exible because a KBCC target net-

work decides whether and how to recruit these func-

tions.�is provides onemethod of integrating symbolic

andneural computation and allows for simulation of the

e�ects of direct instruction.

Cross References
7Arti�cial Neural Networks
7Backpropagation

Recommended Reading
Baluja, S., & Fahlman, S. E. (). Reducing network depth in

the cascade-correlation learning architecture. Pittsburgh, PA:
School of Computer Science, Carnegie Mellon University.

Buckingham, D., & Shultz, T. R. (). The developmental course

of distance, time, and velocity concepts: A generative con-

nectionist model. Journal of Cognition and Development, ,
–.

Case-Based Reasoning C

Cll

Dandurand, F., Berthiaume, V., & Shultz, T. R. (). A system-

atic comparison of flat and standard cascade-correlation using

a student-teacher network approximation task. Connection Sci-
ence, , –.

Fahlman, S. E. (). Faster-learning variations on back-

propagation: An empirical study. In D. S. Touretzky,

G. E. Hinton, & T. J. Sejnowski (Eds.), Proceedings of the
 connectionist models summer school (pp. –). Los Altos,
CA: Morgan Kaufmann.

Fahlman, S. E. (). The recurrent cascade-correlation architec-

ture. In D. S. Touretzky (Ed.), Advances in neural information
processing systems. (Vol.) Los Altos CA: Morgan Kaufmann.

Fahlman, S. E., & Lebiere, C. (). The cascade-correlation learn-

ing architecture. In D. S. Touretzky (Ed.), Advances in neural
information processing systems (Vol. , pp. –). Los Altos,
CA: Morgan Kaufmann.

Mareschal, D., & Shultz, T. R. (). Development of children’s

seriation: A connectionist approach. Connection Science, ,
–.

Oshima-Takane, Y., Takane, Y., & Shultz, T. R. (). The

learning of first and second pronouns in English: Net-

work models and analysis. Journal of Child Language, ,
–.

Schlimm, D., & Shultz, T. R. (). Learning the structure of

abstract groups. In N. A. Taatgen & H. V. Rijn (Eds.), Proceed-
ings of the st annual conference of the cognitive science society
(pp. –). Austin, TX: Cognitive Science Society.

Shultz, T. R. (). A computational analysis of conservation.

Developmental Science, , –.
Shultz, T. R. (). Computational developmental psychology.

Cambridge, MA: MIT Press.

Shultz, T. R. (). Constructive learning in the modeling of psy-

chological development. In Y. Munakata & M. H. Johnson

(Eds.), Processes of change in brain and cognitive development:
Attention and performance XXI (pp. –). Oxford, UK: Oxford
University Press.

Shultz, T. R., & Bale, A. C. (). Neural networks discover a near-

identity relation to distinguish simple syntactic forms. Minds
and Machines, , –.

Shultz, T. R., & Cohen, L. B. (). Modeling age differences in

infant category learning. Infancy, , –.
Shultz, T. R., Mareschal, D., & Schmidt, W. C. (). Modeling

cognitive development on balance scale phenomena. Machine
Learning, , –.

Shultz, T. R., & Rivest, F. (). Knowledge-based cascade-

correlation: Using knowledge to speed learning. Connection
Science, , –.

Shultz, T. R., Rivest, F., Egri, L., Thivierge, J.-P., & Dandurand, F.

(). Could knowledge-based neural learning be useful in

developmental robotics? The case of KBCC. International Jour-
nal of Humanoid Robotics, , –.

Shultz, T. R., & Takane, Y. (). Rule following and rule use in

simulations of the balance-scale task. Cognition, , –.
Shultz, T. R., & Vogel, A. (). A connectionist model of the devel-

opment of transitivity. In Proceedings of the twenty-sixth annual
conference of the cognitive science society (pp. –).
Mahwah, NJ: Erlbaum.

Sirois, S., & Shultz, T. R. (). Neural network modeling of devel-

opmental effects in discrimination shifts. Journal of Experimen-
tal Child Psychology, , –.

CART

7Decision Tree

Cascor

7Cascade-Correlation

Case

7Instance

Case-Based Learning

7Instance-Based Learning

Case-Based Reasoning

Susan Craw

�e Robert Gordon University, Scotland, UK

Synonyms
CBR; Experience-based reasoning; Lessons-learned

systems; Memory-based learning

Definition
Case-based reasoning solves problems by retrieving

similar, previously solved problems and reusing their

solutions. Experiences are memorized as cases in a case

base. Each experience is learned as a problem or situa-

tion together with its corresponding solution or action.

�e experience need not record how the solution was
reached, simply that the solution was used for the prob-

lem.�e case base acts as a memory, and remembering

is achieved using similarity-based retrieval and reuse of

the retrieved solutions. Newly solved problems may be

retained in the case base and so the memory is able to

grow as problem-solving occurs.

 C Case-Based Reasoning

Motivation and Background
Case-based reasoning (CBR) is inspired by memory-

based human problem-solving in which instances of

earlier problem-solving are remembered and applied

to solve new problems. For example, in Case Law, the

decisions in trials are based on legal precedents from

previous trials. In this way speci�c experiences are

memorized, and remembered and reused when appro-

priate (Leake,).�is contrasts with rule-based or

theory-based problem-solving in which knowledge of

how to solve a problem is applied. A doctor diagnosing
a patient’s symptoms may apply knowledge about how

diseases manifest themselves, or she may remember a

previous patient who demonstrated similar symptoms.

Schank’s7dynamic memorymodel was highly in�uen-
tial in early CBR systems (Kolodner, ; Riesbeck &

Schank,). Its emphasis on the use of speci�c experi-

ences to underpin problem-solving and enable learning

is replicated in CBR.

�e fundamental assumption of CBR is that Similar
problems have similar solutions. For example, a patient
with similar symptoms will have the same diagnosis,

the price of a house with similar accommodation and

location will be similar, the design for a kitchen with a

similar shape and size can be reused, a journey plan for a

nearby destination is similar to the earlier trip. A related

assumption is that the world is a regular place, and what

holds true today will probably hold true tomorrow. A

further assumption relevant to memory is that situa-

tions repeat, because if they do not, there is no point

in remembering them!

CBR is an example of 7Lazy Learning because
there is no learned model to apply to solve new prob-

lems. Instead, the generalization needed to solve unseen

problems happens when a new problem is presented

and the similarity-based retrieval identi�es relevant

previous experiences.�e lack of a learned model and

the reliance on stored experiences mean that CBR is

particularly relevant in domains which are ill-de�ned,

not well understood, or where no underlying theory is

available.

Structure of the Learning System
Figure shows the structure of a CBR system (Aamodt

& Plaza,). A case base of Previous Cases is the

primary knowledge source in a CBR system, with

New
Case

Solved
Case

Tested/
Repaired

Case

Retrieved
Case

RETRIEVE

R
E

U
S

E

REVISE
R

E
T

A
IN

Problem

Suggested
Solution

Confirmed
Solution

Previous
Cases

Learned
Case

New
Case

Case Base

Other
Knowledge
Containers

New
Case

Solved
Case

Tested/
Repaired

Case

Retrieved
Case

RETRIEVE

R
E

U
S

E

REVISE
R

E
T

A
IN

Previous
Cases

Learned
Case

New
Case

Case Base

Other
Knowledge
Containers

Case-Based Reasoning. Figure . CBR system (adapted

from Aamodt and Plaza ())

additional knowledge being used to identify similar

cases in the RETRIEVE stage, and to REUSE and

REVISE the Retrieved Case. A CBR system learns as it

solves new problems when a Learned Case is created

from the New Case and its Con�rmed Solution, and

RETAINed as a new case in the case base.

Knowledge Containers

Case knowledge is the primary source of knowledge in

a CBR system. However, case knowledge is only one

of four knowledge containers identi�ed by Richter and

Aamodt ().

● Vocabulary: �e representation language used to

describe the cases captures the concepts involved in

the problem-solving.

● SimilarityKnowledge:�e similaritymeasure de�nes

how the distances between cases are computed so

that the nearest neighbors are identi�ed for retrieval.

● Adaptation Knowledge: Reusing solutions from

retrieved cases may require some adaptation to

enable them to �t the new problem.

● Case Base: �e stored cases capture the previous

problem-solving experiences.

Case-Based Reasoning C

C

�e content of each knowledge container is not �xed

and knowledge in one container can compensate for

a lack of knowledge in another. It is easy to see that

a more sophisticated knowledge representation could

be less demanding on the content of the case base.

Similarly, vocabulary can make similarity assessment

during retrieval easier, or a more complete case base

could reduce the demands on adaptation during reuse.

Further knowledge containers (e.g., maintenance) are

proposed by others.

Cases may be represented as simple feature vectors

containing nominal or numeric values. A case capturing

a whisky tasting experiencemight contain features such

as sweetness, color, nose, palate, and the7classi�cation
as the distillery where it was made.

Sweetness Peatiness Color Nose Palate Distillery

 amber full medium-dry Dalmore

More structured representations can use frame-

based or object-oriented cases.�e choice of represen-

tation depends on the complexity of the experiences

being remembered and is in�uenced by how similar-

ity should be determined. Hierarchical case representa-

tions allow cases to be remembered at di�erent levels of

abstraction, and retrieval and reuse may occur at these

di�erent levels (Bergmann &Wilke,).

In7classi�cation, the case base can be considered to
contain exemplars of problem-solving. Aha et al.’s ()

family of instance-based learning algorithms IB, IB

and IB apply increasingly informed selection methods

to determine whether a classi�cation experience should

become part of the case base. IB simply remembers all

experiences, IB stores an experience only if it would

be wrongly solved by the existing stored experiences,

and IB keeps a score for the reuse of each experience

and discards those whose classi�cation success is poor.

�is notion of exemplar con�rms a CBR case base as

a source of knowledge; it contains only those experi-

ences that are believed to be useful for problem-solving.

A similar view is taken for non-classi�cation domains;

for example, the case base contains useful designs that

can be used for re-design, and plans for re-planning.

One of the advantages of CBR is that a case base

is composed of independent cases that each captures

some local problem-solving knowledge that has been

experienced. �erefore, the “knowledge acquisition

bottleneck” of many rule-based and model-based sys-

tems is reduced for CBR. However, the Other Knowl-

edge Containers provide additional knowledge acquisi-

tion demands that may lessen the advantage of CBR for

some domains.

CBR Cycle

Aamodt and Plaza () propose a four-stage CBR

cycle for problem-solving and learning (Fig.). It is

commonly referred to as the “Four REs” or “R” cycle

to recognize the following stages.

● RETRIEVE: �e cases that are most similar to

the New Case de�ned by the description of the

new problem are identi�ed and retrieved from the

case base.�e RETRIEVE stage uses the similarity

knowledge container in addition to the case base.

● REUSE:�e solutions in the Retrieved (most simi-

lar) Cases are reused to build a Suggested Solution

to create the Solved Case from the New Case. �e

REUSE stage may use the adaptation knowledge

container to re�ne the retrieved solutions.

● REVISE:�e Suggested Solution in the Solved Case

is evaluated for correctness and is repaired if nec-

essary to provide the Con�rmed Solution in the

Tested/Repaired Case. �e REVISE stage may be

achieved manually or may use adaptation knowl-

edge, but it should be noted that a revision to a

Suggested Solution is likely to be a less demanding

task than solving the problem from scratch.

● RETAIN:�e Repaired Case may be retained in the

case base as a newly Learned Case if it is likely to be

useful for future problem-solving.�us the primary

knowledge source for CBR may be added to dur-

ing problem-solving and is an evolving, self-adaptive

collection of problem-solving experiences.

Retrieval

CBR retrieval compares the problem part of the new

case with each of the cases in the case base to establish

the distance between the new case and the stored cases.

�e cases closest to the new case are retrieved for reuse.

Retrieval is a major focus of López de Mántaras et al.’s

() review of research contributions related to the

CBR cycle.

Similarity- and distance-based neighborhoods are

commonly used interchangeably when discussing CBR

 C Case-Based Reasoning

retrieval. Similarity and distance are inverses: the simi-

larity is highest when the distance is close to , and the

similarity is when the distance is large. Several func-

tions may be applied to de�ne a suitable relationship

between a distance d and a similarity s, including the
following simple versions:

Linear: s = − d (for normalized d)

Inverse: s =
d
(for d ≠) .

It is common to establish the distance between each

pair of feature values and then to use a distance met-

ric, o�en Euclidean or 7Manhattan distance (see also
7SimilarityMeasure), to calculate the distance between
the feature vectors for theNew andRetrievedCases.�e

distance between twonumeric feature values v andw for
a feature F is normally taken to be the distance between
the normalized values:

d(v,w) = ∣ v −w ∣
Fmax − Fmin

where Fmax/Fmin are the maximum/minimum values of
the feature F.
For nominal values v andw the simplest approach is

to apply a binary distance function:

d(v,w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 if v = w

 otherwise

For ordered nominal values amore �ne-grained dis-

tance may be appropriate. �e distance between the

ith value vi and the jth value vj in the ordered values
v, v, . . . , vn may use the separation in the ordering to
de�ne the distance:

d(vi, vj) =
∣ i − j ∣
n −

.

Extending this to arbitrary nominal values, a dis-

tance matrix D may de�ne the distance between each

pair of nominal values by assigning the distance d(vi, vj)
to dij.
Returning to the whisky-tasting example, suppose

Sweetness and Peatiness score values –, Color takes

ordered values {pale, straw, gold, honey, amber}, Palate

uses binary distance, and Nose is de�ned by the follow-

ing distance matrix.

Nose Distance Matrix

Distances peat fresh soft full

peat . .

fresh . . .

soft . .

full . . .

Dalmore whisky above can be compared with

Laphroaig and�e Macallan as follows:

Sweetness Peatiness Color Nose Palate Distillery

 amber peat medium-dry Laphroaig

 gold full big-body The Macallan

�e Manhattan distances are:

d(Dalmore,Laphroaig) = . + . + + . + = .;

d(Dalmore,�e Macallan) = . + . + . + + = ..

Taking all the whisky features with equal importance,

Dalmore is more similar to Laphroaig than to �e

Macallan.

In situations where the relative importance of fea-

tures should be taken into account, a weighted version

of the distance function should be used; for example, the

weighted Manhattan distance between two normalized

vectors x = (x, x, . . . xn) and y = (y, y, . . . yn) with
weight wi for the ith feature is

d(x, y) = ∑
n
i= wi ∣ xi − yi ∣
∑ni= wi

In the example above if Peatiness has weight and

the other features have weight then the weightedMan-

hattan distances are:

d(Dalmore,Laphroaig) = (. + × . +
+ . +)/ = .;

d(Dalmore,�e Macallan) = (. + × . + .
+ +)/ = ..

�erefore, emphasizing the distinctive Peatiness fea-

ture, Dalmore is more similar to�e Macallan than to

Laphroaig.

Case-Based Reasoning C

C

�e similarity knowledge container contains knowl-

edge to calculate similarities. For simple feature vectors

a weighted sum of distances is o�en su�cient, and the

weights are similarity knowledge. However, even our

whisky tasting domain had additional similarity knowl-

edge containing the distance matrix for the Nose fea-

ture. Structured cases require methods to calculate the

similarity of two cases from the similarities of compo-

nents. CBRmay use very knowledge-intensive methods

to decide similarity for the retrieval stage. Ease of reuse

or revision may even be incorporated as part of the

assessment of similarity. Similarity knowledge may also

de�ne how 7missing values are handled: the feature
may be ignored, the similarity may be maximally pes-

simistic, or a default or average value may be used to

calculate the distance.

A CBR case base may be indexed to avoid similarity

matching being applied to all the cases in the case base.

One approach uses kd trees to partition the case base

according to hyper-planes. 7Decision Tree algorithms
may be used to build the kd tree by using the cases as

training data, partitioning the cases according to the

chosen decision nodes, and storing the cases in the

appropriate leaf nodes. Retrieval �rst traverses the deci-

sion tree to select the cases in a leaf node, and similarity

matching is applied to only this partition. Case Retrieval

Nets are designed to speed up retrieval by applying

spreading activation to select relevant cases. In Case

Retrieval Nets the feature value nodes are linked via

similarity to each other and to cases. Indexes can speed

up retrieval but they also pre-select cases according to

some criteria that may di�er from similarity.

Reuse and Revision

Reusemay be as simple as copying the solution from the

Retrieved Case. If k nearest neighbors are retrieved then
a vote of the classes predicted in the retrieved cases may

be used for 7classi�cation, or the average of retrieved
values for 7regression. A weighted vote or weighted
average of the retrieved solutions can take account of

the nearness of the retrieved cases in the calculation.

For more complex solutions, such as designs or plans,

the amalgamation of the solutions from the Retrieved

Cases may be more knowledge intensive.

If the New Case and the Retrieved Case are di�er-

ent in a signi�cant way then it may be that the solu-

tion from the Retrieved Case should be adapted before

being proposed as a Suggested Solution. Adaptation is

designed to recognize signi�cant di�erences between

the New and Retrieved Cases and to take account of

these by adapting the solution in the Retrieved Case.

In classi�cation domains, it is likely that all classes

are represented in the case base. However, di�erent

problem features may alter the classi�cation and so

adaptation may correct for a lack of cases. In construc-

tive problem-solving like design and planning, however,

it is unlikely that all solutions (designs, plans, etc.) will

be represented in the case base.�erefore, a retrieved

case suggests an initial design or plan, and adaptation

alters it to re�ect novel feature values.

�ere are threemain types of adaptation thatmay be

used as part of the reuse step, to re�ne the solution in the

Retrieved Case to match better the new problem, or as

part of the revise stage to repair the Suggested Solution

in the Solved Case.

● Substitution: Replace parts of the retrieved solu-

tion. In Hammond’s () CHEF system to plan

Szechuan recipes, the substitution of ingredients

enables the requirements of the new menu to be

achieved. For example, the beef and broccoli in

a retrieved recipe is substituted with chicken and

snowpeas.

● Transformation: Add, change, or remove parts of the

retrieved solution. CHEF adds a skinning step to the

retrieved recipe that is needed for chicken but not

for beef.

● Generative Adaptation: Replay the method used to

derive the retrieved solution. �us the retrieved

solution is not adapted but a new solution is gener-

ated from reusing the retrieved method for the new

circumstances.�is approach is similar to reasoning

by analogy.

CHEF also had a clear REVISE stage where the Sug-

gested Solution recipe was tested in simulation and any

faults were identi�ed, explained, and repaired. In one

recipe a strawberry sou�é was too liquid. CHEF has a

set of �ematic Organization Packets (TOPs) that are

templates for repairs for di�erent types of explained fail-

ures. (TOPs continue the experience template theme

of 7dynamic memory model MOPs.) One repair for
the sou�é is to drain the strawberry pulp and this

 C Case-Based Reasoning

transformation adaptation is one REVISE operation

that could be applied.

�e adaptation knowledge container is an important

source of knowledge for someCBR systems, particularly

for design and planning, where re�ning an initial design

or plan is expected. Acquiring adaptation knowledge

can be onerous. �e CHEF examples above indicate

that the knowledge must store re�nements to the solu-

tions initially proposed from the retrieved cases. Learn-

ing adaptation knowledge from the implicit re�nement

information captured in the case base has been e�ec-

tive for substitution adaptation in component-based

design (Craw, Wiratunga, & Rowe,).

Retention and Maintenance

Retention of new cases during problem-solving is an

important advantage of CBR systems. However, it is

not always advantageous to retain all new cases. �e

7Utility Problem – that the computational bene�t from
additional knowledge must not outweigh the cost of
applying it – in CBR refers to cases and the added cost of
retrieval.�e case base must be kept “lean and mean,”

and so new cases are not retained automatically, and

cases that are no longer useful are removed. New cases

should be retained if they add to the competence of

the CBR system by providing problem-solving capabil-

ity in an area of the problem space that is currently

sparse. Conversely, existing cases should be reviewed for

the role they play and forgetting cases is an important

maintenance task. Existing cases may contain outdated

experiences and so should be removed, or they may be

superseded by new cases.

Case base maintenance manages the contents of

the case base to achieve high competence. Competence

depends on the domain and may involve

● quality of solution;

● user con�dence in solution; or

● e�ciency of solution prediction (e.g., speed-up

learning).

Case base maintenance systems commonly assume

that the case base contains a representative sample of the

problem-solving experiences.�ey exploit this by using

a leave-one-out approach where repeatedly for each

case in the case base, the one extracted case is used as

a new case to be solved, and the remaining cases become

the case base.�is enables the problem-solving compe-

tence of the cases in the case base to be estimated using

the extracted cases as representative new cases to be

solved. Smyth & McKenna’s () competence model

uses this approach to identify competence groups of

cases with similar problem-solving ability.�is model

is used to underpin maintenance algorithms to priori-

tize cases for deletion and to identify areas where new

cases might be added.�ere are several trade-o�s to be

managed by case base maintenance algorithms: larger

case bases contain more experiences but take longer

for retrieval; smaller case bases are likely to lack some

key problem-solving ability; cases whose solution is

markedly di�erent from their nearest neighbors may be

noisy or may be an important outlier.

CBR Tools

myCBR (mycbr-project.net) and jCOLIBRI (www.

sourceforge.net) are open source CBR tools. Both

provide state-of-the-art CBR functionality, and jCol-

ibri also incorporates a range of facilities for tex-

tual CBR. Several commercial CBR tools are avail-

able including Empolis: Information Access Suite

(www.attensity.com), Kaidara’s Advisor (www.

servigistics.com), and ISo�’s ReCall (www.alice-so�.

com).

Applications

Several successful deployed applications of CBR are

described in Cheetham and Watson (), including

Lockheed’s CLAVIER for designing layouts for auto-

clave ovens, Compaq’s SMART help-desk system, Boe-

ing’s CASSIOPÉE for trouble-shooting aircra� engines

andGeneral Electric’s FormTool for plastic colormatch-

ing (Cheetham,).�e development of the INRECA

methodology for engineering CBR systems was based

on a range of industrial applications (Bergmann et al.,

).

�e wide range of CBR applications is demonstrated

by the following list of application types.

● Classi�cation – Medical diagnosis systems use
patient records as a source of reusable experiences.

Examples include SHRINK for psychiatry, CASEY

for cardiac disease, ICONS for antibiotic therapy for

intensive care, and BOLERO for pneumonia. Other

diagnostic systems include failure prediction of rails

www.sourceforge.net
www.servigistics.com
www.alice-so%EF%BF%BD.com

Case-Based Reasoning C

C

for Dutch railways from ultrasonic NDT, and fail-

ure analysis of semiconductors at National Semicon-

ductor. Classi�cation systems include PROTOS for

audiologic disorders.

● Design – Architectural design was a popular early
domain: CYCLOPS, ARCHIE, FABEL, and CADsyn

are all early case-based design systems. Other design

applications include CADET and KRITIK for engi-

neering design, JULIA for recipes, chemical formu-

lation for tyre rubber and pharmaceutical products,

Déjà Vu for plant control so�ware.

● Planning – PRODIGY is a general purpose

planner that uses analogical reasoning to adapt

retrieved plans. Other planning applications include

PARIS (Bergmann & Wilke,) for manufactur-

ing planning in mechanical engineering, HICAP for

evacuation planning, planning for forest �re man-

agement, mission planning for US navy, and route

planning for DaimlerChrysler cars.

● Conversational CBR – Conversational systems

extract the problem speci�cation from the user

through an interactive case-based dialogue and sug-

gest solutions that match the partial speci�cation.

Examples include help-desk support, CaseAdvisor

and CBR Strategist for fault diagnosis, and Wasabi,

Sermo and ShowMe product recommender systems.

● Personalization – Personalized compilations of

news, stories, music tracks, TV listings reuse pre-

vious experiences of the individual or others who

have similar tastes. Other forms of personalized sys-

tems using CBR include route and travel planning,

SPAM �ltering and email management, and ClixS-

mart Navigator for mobile devices.

● Textual CBR – Legal decision support systems

were an important early application domain for tex-

tual CBR. Examples include HYPO (Ashley & Riss-

land,), CATO, GREBE, and SMILE. Question

answering was another fruitful text-based domain:

FAQ-Finder and FAQ. More recently, textual CBR

is used for decision support systems based on textual

reports; for example, SOPHIA.

Future Directions
�e drivers for Ubiquitous Computing – wireless com-

munication and small devices – also a�ect future devel-

opments in CBR.�e local, independent knowledge of

case bases make them ideal to collect experiences, and

to deliver experience-based knowledge for reuse.

Textual CBR systems are becoming increasingly

important for extracting and representing knowledge

captured in textual documents. �is is particularly

in�uenced by the availability of electronic documents

and the Web as an information source.

Cross References
7Explanation-Based Learning
7Instance-Based Learning
7Lazy Learning
7Nearest Neighbor
7Similarity Metrics

Recommended Reading
Aamodt, A., & Plaza, E. (). Case-based reasoning: Foun-

dational issues, methodological variations, and system

approaches. AI Communications, , –. citeseerx.

ist.psu.edu/viewdoc/summary?doi=.....

Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, (), –. doi:
./A:.

Ashley, K., & Rissland, E. L. (). A case-based approach

to modeling legal expertise. IEEE Expert, (), –. doi:
./..

Bergmann, R., Althoff, K.-D., Breen, S., Göker, M., Manago, M., &

Traphöner, R. (Eds.). (). Developing industrial case-based
reasoning applications. LNCS (Vol.). Berlin/Heidelberg:
Springer. doi:./b.

Bergmann, R., &Wilke, W. (). On the role of abstraction in case-

based reasoning. In I. Smith & B. Faltings (Eds.), Proceedings of
the third European workshop on case-based reasoning, Lausanne,
Switzerland (pp. –), LNCS (Vol.). Berlin/Heidelberg:
Springer.

Cheetham, W. (). Tenth anniversary of the plastics color for-

mulation tool. AI Magazine, (), –. www.aaai.org/Papers/
Magazine/Vol/-/AIMag--.pdf.

Cheetham, W., & Watson, I. (). Fielded applications of case-

based reasoning. Knowledge Engineering Review, (), –.
doi:./S.

Craw, S., Wiratunga, N., & Rowe, R. C. (). Learning adaptation

knowledge to improve case-based reasoning. Artificial Intelli-
gence, (–), –. doi: ./j.artint....

Hammond, K. J. (). Explaining and repairing plans that fail.

Artificial Intelligence, (–), –.
Kolodner, J. L. (). Case-based reasoning. San Mateo, CA: Morgan

Kaufmann.

Leake, D. (). CBR in context: The present and future. In

D. Leake (Ed.), Case-based reasoning: Experiences, lessons, and
future directions (pp. –). Menlo Park, CA: AAAI Press.
citeseerx.ist.psu.edu/viewdoc/summary?doi=.....

López de Mántaras, R., McSherry, D., Bridge, D., Leake, D.,

Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus,

K., Aamodt, A., & Watson, I. (). Retrieval, reuse, revision,

www.aaai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-007.pdf.

 C Categorical Attribute

and retention in case-based reasoning. Knowledge Engineering
Review, (), –. doi: ./S.

Richter, M. M., & Aamodt, A. (). Case-based reasoning

foundations. Knowledge Engineering Review, (), –.
doi:./S.

Riesbeck, C. K., & Schank, R. C. (). Inside case-based reasoning.
Hillsdale, NJ: Lawrence Erlbaum.

Smyth, B., & McKenna, E. (). Competence models and the main-

tenance problem. Computational Intelligence, (), –.
doi:./-..

Categorical Attribute

Synonyms
Qualitative attribute

Categorical attributes are attributes whose values can
be placed into distinct categories. See 7Attribute and
7Measurement Scales.

Categorical Data Clustering

Periklis Andritsos, Panayiotis Tsaparas

Toronto, ON, Canada
Mountain View, CA, USA

Synonyms
Clustering of nonnumerical data; Grouping

Definition
Data clustering is informally de�ned as the problem

of partitioning a set of objects into groups, such that

the objects in the same group are similar, while the

objects in di�erent groups are dissimilar. Categorical

data clustering refers to the case where the data objects

are de�ned over 7categorical attributes. A categorical
attribute is an attribute whose domain is a set of dis-

crete values that are not inherently comparable.�at is,

there is no single ordering or inherent distance func-

tion for the categorical values, and there is no mapping

fromcategorical to numerical values that is semantically

meaningful.

Motivation and Background
Clustering is a problem of great practical importance

that has been the focus of substantial research in several

domains for decades. As storage capacities grow, we

have at hand larger amounts of data available for analy-

sis andmining. Clustering plays an instrumental role in

this process.�is trend has created a surge of research

activity in devising new clustering algorithms that can

handle large amounts of data and produce results of

high quality.

In data clustering, we want to partition objects

into groups such that similar objects are grouped

together while dissimilar objects are grouped separately.

�is objective assumes that there is some well-de�ned

notion of similarity, or distance, between data objects,

and a way to decide if a group of objects is a homoge-

neous cluster. Most of the clustering algorithms in the

literature focus on data sets where objects are de�ned

over numerical attributes. In such cases, the similarity

(or dissimilarity) of objects and the quality of a clus-

ter can be de�ned using well-studied measures that are

derived fromgeometric analogies.�ese de�nitions rely

on the semantics of the data values themselves. For

example, the values $, and $, are more

similar than $, and $,, and intuitivelymore

similar than $, and $.�e existence of a distance

measure allows us to de�ne a quality measure for a clus-

tering such as the mean square distance between each

point and the representative of its cluster. Clustering

then becomes the problem of grouping together points

such that the quality measure is optimized.

However, there are many data sets where the data

objects are de�ned over attributes, which are neither

numerical nor inherently comparable in any way. We

term such data sets categorical, since they represent
values of certain categories. As a concrete example,

consider the toy data set in Table that stores infor-

mation about movies. For the purpose of exposition,

a movie is characterized by the attributes “director,”

“actor/actress,” and “genre.” In this setting, it is not

immediately obvious what the distance, or similarity,

is between the values “Coppola” and “Scorsese,” or the

movies “Vertigo” and “Harvey.”

�ere are plenty of examples of categorical data:

product data, where products are de�ned over attributes

such as brand, model, or color; census data, where

information about individuals includes attributes such

as marital status, education, and occupation; ecological

data where plants and animals can be described with

attributes such as shape of petals or type of habitat.

Categorical Data Clustering C

C

Categorical Data Clustering. Table An instance of a

movie database

Director Actor Genre

t (Godfather II) Coppola De Niro Crime

t (Good fellas) Scorsese De Niro Crime

t (Vertigo) Hitchcock Stewart Thriller

t (N by NW) Hitchcock Grant Thriller

t (Bishop’s wife) Koster Grant Comedy

t (Harvey) Koster Stewart Comedy

�ere is a plethora of such data sets, and there is always

a need for clustering and analyzing them.

�e lack of an inherent distance or similarity mea-

sure between categorical data objects, makes categorical

data clustering a challenging problem. �e challenge

lies in de�ning a quality measure for categorical data

clustering that captures the human intuition of what

it means for categorical data objects to be similar. In

the next sections, we present an overview of the di�er-

ent e�orts at addressing this problem and the resulting

clustering algorithms.

Structure of the Learning System
Generic Data Clustering System

We�rst describe the outline for a generic data clustering

system, not necessarily of categorical data. In the next

section we focus on categorical data speci�c challenges.

Data clustering is not a one-step process. In one of

the seminal texts on Cluster Analysis, Jain and Dubes

divide the clustering process into the following stages

(Jain & Dubes,):

Data collection: Includes the careful extraction of
relevant data objects from the underlying data sources.

In our context, data objects are distinguished by their

individual values for a set of attributes.

Initial screening: Refers to themassaging of data a�er
its extraction from the source or sources. �is stage

is closely related to the process of data cleaning in

databases (Jarke, Lenzerini, Vassiliou, & Vassiliadis,

).

Representation: Includes the proper preparation of
the data in order to become suitable for the clustering

algorithm. In this step, the similarity measure is chosen,

and the characteristics and dimensionality of the data

are examined.

Clustering tendency: Checks whether the data at
hand has a natural tendency to cluster or not.�is stage

is o�en ignored, especially for large data sets.

Clustering strategy: Involves the careful choice of
clustering algorithm and initial parameters, if any.

Validation: Validation is o�en based on manual
examination and visual techniques. However, as the

amount of data and its dimensionality grow, we may

have nomeans to compare the resultswith preconceived

ideas or other clusterings.

Interpretation:�is stage includes the combination
of clustering results with other analyses of the data (e.g.,

classi�cation), in order to draw conclusions and suggest

further analysis.

In this chapter, we are interested in problems relat-

ing to Representation and Clustering Strategy.�ese lie

in the heart of the data clustering problem, and there

has been considerable research e�ort in these areas

within theDataMining andMachine Learning commu-

nities. More speci�cally, we consider the following two

subproblems.

Formal formulation of the clustering problem: In
order to devise algorithms for clustering, we need to

mathematically formulate the intuition captured in the

informal de�nition of the clustering problem that sim-

ilar objects should be grouped together and dissimilar

objects should be grouped separately.�e problem for-

mulation typically requires at least one of the following:

● Ameasure of similarity or distance between two data

objects.

● A measure of similarity or distance between a data

object and a cluster of objects.�is is o�en de�ned

by de�ning a representative for a cluster as a (new)

data object and comparing the data object with the

representative.

● A measure of the quality of a cluster of data objects.

�e result of the formulation step is to de�ne a clus-

tering optimization criterion that guides the grouping

of the objects into clusters.

When the data is de�ned over numerical attributes,

these measures are de�ned using geometric analogies.

For example, if each object is a point in the Euclidean

space, then the distance between two points can be

 C Categorical Data Clustering

de�ned as the Euclidean distance, and the represen-

tative of a cluster as the mean Euclidean vector. �e

quality of a cluster can be de�ned with respect to the

“variance” of the cluster, that is, the sum of squares

of the distances between each object and the mean of

the cluster.�e optimization criterion then becomes to

minimize the variance over all clusters of the clustering.

�e clustering algorithm: Once we have a mathe-
matical formulation of the clustering problem, we need

an algorithm that will �nd the optimal clustering in

an e�cient manner. In most cases, �nding the opti-

mal solution is an NP-hard problem e�cient heuristics

or approximation algorithms are considered. �ere is

a large literature on this subject that approaches the

problem from di�erent angles.

�ere exist a large number of di�erent clustering

techniques and algorithms.We now selectively describe

some broad classes of clustering algorithms and prob-

lems. A thorough categorization of clustering tech-

niques can be found in Han and Kamber (), where

di�erent clustering problems, paradigms, and tech-

niques are discussed.

Hierarchical clustering algorithms:�is is a popular
clustering technique, since it is easy to implement, and

it lends itself well to visualization and interpretation.

Hierarchical algorithms create a hierarchical decom-

position of the objects. �ey are either agglomerative
(bottom-up) or divisive (top-down). Agglomerative algo-
rithms start with each object being a separate cluster

itself, and successively merge groups according to a dis-

tance measure. Divisive algorithms follow the opposite
strategy. �ey start with one group of all objects and

successively split groups into smaller ones, until each

object falls into one cluster, or as desired. �e hierar-

chical dendrogram produced is o�en in itself the output
of the algorithm, since it can be used for visualizing the

data.Most of the times, both approaches su�er from the

fact that once a merge or a split is committed, it cannot

be undone or re�ned.

Partitional clustering algorithms: 7Partitional clus-
tering algorithms de�ne a clustering optimization

criterion and then seek the partition that optimizes

this criterion. Exhaustive search over all partitions is

infeasible, since even for few data objects the num-

ber of possible partitions is huge. Partitional clustering

algorithms o�en start with an initial, usually random,

partition and proceed with its re�nement by locally

improving the optimization criterion. �e majority of

such algorithms could be considered as greedy-like

algorithms.�ey su�er from the fact that they can easily

get stuck to local optima.

Spectral clustering algorithms: Spectral algorithms
view the data set to be clustered as a two dimensional

matrix of data objects and attributes. �e entries in

the matrix may be the raw values or some normalized

form of these values.�e principal eigenvectors of the

matrix have been shown to capture the main clusters in

the data.�ere is a rich literature on di�erent types of

spectral algorithms.

Graph clustering:7Graph clustering de�nes a range
of clustering problems, where the distinctive character-

istic is that the input data is represented as a graph.�e

nodes of the graph are the data objects, and the (possi-

bly weighted) edges capture the similarity or distance

between the data objects. �e data may come natu-

rally in the form of a graph (e.g., a social network),

or the graph may be derived in some way from the

data (e.g., link two products if they appear together in

a transaction). Some of the techniques we described

above are directly applicable to graph data. We can also

use techniques from graph theory for �nding a good

clustering.

Categorical Data Clustering System

In the clustering paradigm we outlined, a step of fun-

damental importance is to formally formulate the clus-

tering problem, by de�ning a clustering optimization

criterion. As we detailed above, for this step we need

a measure of distance or similarity between the data

objects, or a measure of cluster quality for a group of

data objects. For categorical data there exists no inher-

ent ordering or distance measure, and no natural geo-

metric analogies we can explore, causing the clustering

paradigm to break down.Research e�orts on categorical

data clustering have focused on addressing this problem

by imposing distance measures on the categorical data

and de�ning clustering quality criteria. We now outline

some of these approaches.

Overlap-Based Similarity Measures A simple and intu-

itive method for comparing two categorical data objects

is based on counting the overlap between the categorical

values of the objects.�e higher the overlap, the more

similar the two objects are.�is intuition leads to the

Categorical Data Clustering C

C

use of well-known measures such as the (generalized)
Hamming distance (Jain & Dubes,), which mea-
sures the number of attributes that take di�erent values

between two tuples, or the Jaccard similarity measure,
which is de�ned as the intersection over the union of the

values in the two tuples. In the example of Table , tuples

t (Godfather II) and t (Good fellas) have Hamming
distance and Jaccard coe�cient /.

Two algorithms that make use of overlap-based

measures are k-modes (Huang,), and RObust Clus-
tering using linKs (ROCK) (Guha, Rastogi, & Shim,
).�e k-modes algorithm is a partitional algorithm
inspired by the k-means algorithm, a well-known clus-
tering algorithm for numerical data.�e representative

of a categorical data cluster is de�ned to be a data

object where each attribute takes the mode emphasize
themode value of an attribute is themost frequent value

for that attribute in the cluster.

�e ROCK algorithmmakes use of the Jaccard coef-

�cient to de�ne links between data objects.�e data is
then represented in the form of a graph, and the prob-

lem becomes essentially a graph clustering problem.

Given two clusters of categorical data, ROCK measures

the similarity of two clusters by comparing their aggre-
gate interconnectivity against a user-speci�ed model,
thus avoiding the problem of de�ning a cluster repre-

sentative.

Context-Based Similarity Measures One way to de�ne

relationships between categorical values is by compar-

ing the context in which they appear. For two categorical
attribute values we de�ne the context as the values of

the remaining attributes with which they co-occur in

the data set. �e more similar these two contexts are,

the more similar the attribute values are. For exam-

ple, in Table , Scorsese and Coppola are close since

they appear in exactly the same context (“De Niro”,

“Crime”), while Scorsese and Hitchcock are far since

their contexts are completely disjoint. De�ning a dis-

tance between value contexts can be done using over-

lap similarity measures (Das & Mannila,) or by

using information-theoretic measures, i.e., comparing

the distributions de�ned by the two contexts (Andrit-

sos, Tsaparas, Miller, Kenneth, & Sevcik,). Once

we have the relationships between the values we can use

standard clustering techniques for solving the clustering

problem.

�ere are various algorithms that make use of the

idea that similar values should appear in similar con-

texts in order to cluster categorical data.�e Clustering
cAteCorigal daTa Using Summaries (CACTUS) algo-
rithm (Ganti, Gehrke, & Ramakrishnan,) creates

groups of attribute values based on the similarity of their

context. It then uses a hierarchical greedy algorithm for

grouping tuples and attributes.

In a slightly di�erent fashion, the STIRR algo-
rithm (Sieving �rough Iterated Relational Reinforce-
ment) [GKR] uses the idea that similar tuples should
contain co-occurring values and similar values should

appear in tuples with high overlap.�is idea is imple-

mented via a dynamical system, inspired by Informa-

tion Retrieval techniques (Kleinberg Jon,). When

the dynamical system is linear, the algorithm is similar

to spectral clustering algorithms.

CLICKS (Zaki, Peters, Assent, & Seidl,) is

an algorithm that is similar to STIRR. Rather than a

measure of similarity/distance, it uses a graph-theoretic

approach to �nd k disjoint sets of vertices in a graph
constructed for a particular data set. One special char-

acteristic of this algorithm is that it discovers clusters in

a subset of the underlying set of attributes.

Information-Theoretic Clustering Criteria �e informa-

tion content in a data set can be quanti�ed through the

well-studied notions of entropy andmutual information
(Cover &�omas,). Entropy measures the uncer-

tainty in predicting the values of the data when drawn

from the data distribution. If we view each tuple, or

cluster of tuples, as a distribution over the categorical

values, then we can de�ne the conditional entropy of the
attribute values given a set of tuples, as the uncertainty

of predicting the values in this set of tuples. If we have

a single tuple, then the entropy is zero, since we can

accurately predict the values. For tuple t we know the
director, the actor, and the genre with full certainty. As

we group tuples together the uncertainty (and entropy)

increases. Grouping together tuples t and t creates
uncertainty about the director attribute, while grouping

t and t creates uncertainty about all attributes. Hence
the latter grouping has higher entropy than the former.

Information-theoretic criteria for clustering aim at gen-

erating clusters with low entropy, since this would imply

that the clusters are homogeneous, and there is little

 C Categorical Data Clustering

information loss as a result of the clustering. �is for-
mulation allows for de�ning the distance between sets

of tuples, using entropy-based distance measures such

as the Jensen–Shannon divergence (Cover & �omas,

). �e Jensen–Shannon divergence captures the

informational distances in categorical data, in a sim-

ilar way that Euclidean distance captures geometric

distances inherent in numerical data.

Two algorithms that make use of this idea are

COOLCAT (Barbarà, Couto, & Li,) and LIMBO
(scaLable InforMation Bottleneck) [ATMR]. COOL-
CAT is a partitional algorithm that performs a local

search for �nding the partition with k clusters with
the lowest entropy. LIMBO works by constructing a

summary of the data set that preserves as much infor-

mation about the data as possible and then produces a

hierarchical clustering of the summary. It is a scalable

algorithm that can be used in both static and streaming

environments.

A related approach is adopted by the COBWEB

algorithm (Fisher, ; Gluck & Corter,), a divi-

sive hierarchical algorithm that optimizes the category
utility measure, which measures how well particular
values can be predicted given the clustering as opposed

to having them in the original data set unclustered.

Categorical Clustering as Clustering Aggregation A dif-

ferent approach to the categorical data clustering prob-

lem is to view it as a clustering aggregation problem.
Given a collection of clusterings of the data objects,

the clustering aggregation problem looks for the sin-

gle clustering that agrees as much as possible with the

input clusterings. �e problem of clustering aggrega-

tion has been shown to be equivalent to categorical

data clustering (Gionis, Mannila, & Tsaparas,),

where each categorical attribute de�nes a clustering of

the data objects, grouping all the objects with the same

value together. For example, in Table , the attribute

“genre” de�nes three clusters: the Crime cluster, the

�riller cluster, and the Comedy cluster. Similarly, the

attribute “actor” de�nes three clusters, and the attribute

“director” de�nes four clusters.

Various de�nitions have been considered in the

literature for the notion of agreement between the

output clustering and the input clusterings. One

de�nition looks at all pairs of objects, and de�nes a

disagreement between two clusterings if one clustering
places the two objects in the same cluster, while the

other places them in di�erent clusters; an agreement
is de�ned otherwise. �e clustering criterion is then

to minimize the number of disagreements (or maxi-

mize the number of agreements). Other de�nitions are

also possible, which make use of information-theoretic

measures, or mappings between the clusters of the two

clusterings.�ere is a variety of algorithms for �nding

the best aggregate cluster, many of which have also been

studied theoretically.

Cross References
7Clustering
7Data Mining
7Graph clustering
7Instance-Based Learning
7Partitional clustering

Recommended Reading
Andritsos, P., Tsaparas, P., Miller, R. J., Kenneth, C., & Sevcik, K. C.

(). LIMBO: Scalable clustering of categorical data. In

Proceedings of the th international conference on extending
database technology (EDBT) (pp. –). Heraklion, Greece.

Barbarà, D., Couto, J., & Li, Y. (). COOLCAT: An entropy-

based algorithm for categorical clustering. In Proceedings of
the th international conference on information and knowledge
management (CIKM) (pp. –). McLean, VA.

Cover, T. M., & Thomas, J. A. (). Elements of information theory.
New York: Wiley.

Das, G., & Mannila, H. (). Context-based similarity measures

for categorical databases. In Proceedings of the th European
conference on principles of data mining and knowledge discovery
(PKDD) (pp. –). Lyon, France.

Fisher, D. H. (). Knowledge acquisition via incremental concep-

tual clustering. Machine Learning, , –.
Ganti, V., Gehrke, J., & Ramakrishnan, R. (). CACTUS: Cluster-

ing categorical data using summaries. In Proceedings of the th
international conference on knowledge discovery and data mining
(KDD) (pp. –). San Diego, CA.

Gionis, A., Mannila, H., & Tsaparas, P. (). Clustering aggrega-

tion. ACM Transactions on Knowledge Discovery from Data, (),
Article No .

Gluck, M., & Corter, J. (). Information, uncertainty, and the

utility of categories. In Proceedings of the th annual conference
of the cognitive science society (COGSCI) (pp. –). Irvine,
CA.

Guha, S., Rastogi, R., & Shim, K. (). ROCK: A robust cluster-

ing algorithm for categorical attributes. In Proceedings of the
th international conference on data engineering (pp. –).
Sydney, Australia.

Han, J., & Kamber, M. (). Data mining: Concepts and techniques.
San Francisco: Morgan Kaufmann.

Causality C

C

Huang, Z. (). Extensions to the k-means algorithm for cluster-

ing large data sets with categorical values. Data Mining and
Knowledge Discovery, (), –.

Jain, A. K., & Dubes, R. C. (). Algorithms for clustering data.
Englewood Cliffs, NJ: Prentice-Hall.

Jarke, M., Lenzerini, M., Vassiliou, Y., & Vassiliadis, P. ().

Fundamentals of data warehouses. Berlin: Springer.
Kleinberg, Jon (). Authoritative sources in a hyperlinked envi-

ronment”. Journal of the ACM (): –.
Zaki, M. J., Peters, M., Assent, I., & Seidl, T. (). CLICKS: An

effective algorithm for mining subspace clusters in categori-

cal datasets. In Proceeding of the th international conference
on knowledge discovery and data mining (KDD) (pp. –).
Chicago, IL.

Categorization

7Classi�cation
7Concept Learning

Category

7Class

Causal Discovery

7Learning Graphical Models

Causality

Ricardo Silva

University College London, London, UK

Definition
�e main task in causal inference is predicting the

outcome of an intervention. For example, a treatment

assigned by a doctor that will change the patient’s heart

condition is an intervention. Predicting the change in

the patient’s condition is a causal inference task. In gen-

eral, an intervention is an action taken by an external

agent that changes the original values, or the probabil-

ity distributions, of some of the variables in the system.

Besides predicting outcomes of actions, causal inference

is also concerned with explanation: identifying which

were the causes of a particular event that happened in

the past.

Motivation and Background
Many problems in machine learning are prediction

problems.Given a feature vectorX, the task is to provide
an estimate of some output vector Y, or its conditional
probability distribution P(Y∣X).�is typically assumes
that the distribution of Y given X during learning is the
same distribution at prediction time. �ere are many

scenarios where this is not the case.

Epidemiology and several medical sciences provide

counterexamples. Consider two seemingly straightfor-

ward learning problems. In the �rst example, one is

given epidemiological data where smokers are clearly

more propense than nonsmokers to develop lung can-

cer. Can I use this data to learn that smoking causes

cancer? In the second example, consider a group of

patients su�ering from a type of artery disease. In this

group, those that receive a bypass surgery are likely to

survive longer than those that receive a particular set of

drugs with no surgery.

�ere is no fundamental problem on using such

datasets to predict the probability of a smoker develop-

ing lung cancer, or the life expectancy of someone who

went through surgery. Yet, the data does not necessar-

ily tell you if smoking is a cause of lung cancer, or that

nationwide the government should promote surgery as

the treatment of choice for that particular heart disease.

What is going on?

�ere are reasons to be initially suspicious of such

claims. �is is well-known in statistics as the expres-

sion “association is not causation” (Wasserman, ,

p.). �e data-generating mechanism for our out-

come Y (“developing lung cancer,” “getting cured from
artery disease”) given the relevant inputs X (“smok-
ing habit,” “having a surgery”) might change under an

intervention for reasons such as follows.
In the smoking example, the reality might be that

there are several hidden common causes that are respon-
sible for the observed association. A genetic factor, for

instance: the possibility that there is a class of genotypes

on which people are more likely to pick up smoking

and develop lung cancer, without any direct causal con-
nection between the two variables. In the artery disease

 C Causality

example, surgery might not be the best choice to be

made by a doctor. It might have been the case that so

far patients in better shape were more daring in choos-

ing, by themselves, the surgery treatment.�is selection
bias will favor surgery over drug treatment, since from
the outset the patients that are most likely to improve

take that treatment.

When treatment is enforced by an external agent
(the doctor), such selection bias disappears, and the

resulting P(Y∣X) will not be the same. One way of
learning this relationship is through randomized trials
(Rosenbaum,).�e simplest case consists on �ip-

ping a coin for each patient on the training set. Each

face of the coin corresponds to a possible treatment,

and assignment is done accordingly. Since assignment

does not depend on any hidden common cause or

selection bias, this provides a basis for learning causal

e�ects. Machine learning and statistical techniques can

be applied directly in this case (e.g., 7logistic regres-
sion). Data analysis performed with a randomized trial

is sometimes called an interventional study.
�e smoking case ismore complicated: adirect inter-

vention is not possible, since it is not acceptable to force

someone to smoke or not to smoke. �e inquiry asks

only for a hypothetical intervention, that is, if someone
is forced to smoke, will his or her chances of developing

lung cancer increase? Such an intervention will not take

place, but this still has obvious implications in public

policy.�is is the heart of the matter in issues such as

deciding on raising tobacco taxes, or forbidding smok-

ing in public places. However, data that measures this

interventional data-generation mechanism will never

be available for ethical reasons. �e question has to

be addressed through an observational study, that is, a
study for causal predictionswithout interventional data.

Observational studies arise not only under the

impossibility of performing interventions, but also in

the case where performing interventions is too expen-

sive or time consuming. In this case, observational

studies, or a combination of observational and interven-

tional studies, can provide extra information to guide

an experimental analysis (Cooper & Yoo, ; Eaton &

Murphy, ; Eberhardt, Glymour, & Scheines, ;

Sachs, Prez, Pe’er, Lau�enburger, & Nolan,). �e

use of observational data, or the combination of several

interventional datasets, is where the greatest contribu-

tions of machine learning to causal inference rest.

Background
knowledge

Observational
data

Interventional
data

Causal query

Prediction

Causal model

Structure of the Learning System
Structure of Causal Inference

In order to use observational data, a causal inference

system needs a way of linking the state of the world

under an intervention to the natural state of the world.
�e natural state is de�ned as the one to which no

external intervention is applied. In themost general for-

mulation, this link between the natural state and the

manipulated world is de�ned for interventions in any

subset of variables in the system.

A common language for expressing the relationship

between the di�erent states of the world is a causal
graph, as explained in more detail in the next section.
A causal model is composed of the graph and a proba-

bility distribution that factorizes according to the graph,

as in a standard 7graphical model.�e only di�erence
between a standard graphicalmodel and a causal graph-

ical model is that in the latter extra assumptions are

made. �e graphical model can be seen as a way of

encoding such assumptions.

�e combination of assumptions, observational, and

interventional data generates such a causal graphical

model. In the related problem of reinforcement learn-

ing, the agent has tomaximize a speci�c utility function

and typically has full control on which interventions

(actions) can be performed. Here we will focus on the

unsupervised problem of learning a causal model for a

�xed input of observational and interventional data.

Because only some (or no) interventional datamight

be available, the learning system might not be able to

answer some causal queries.�at is, the system will not

provide an answer for some prediction tasks.

Languages and Assumptions for Causal Inference Direc-

ted acyclic graphs (DAGs) are a popular language

in machine learning to encode qualitative statements

about causal relationships. A DAG is composed of a

set of vertices and a set of directed edges.�e notions

Causality C

C

of parents, children, ancestors, and descendants are the

usual ones found in graphical modeling literature.

In terms of causal statements, a directed edgeA→ B
states that A is a direct cause of B: that is, di�erent inter-
ventions on Awill result in di�erent distributions for B,
even if we intervene on all other variables.�e assump-

tion that A is a cause of B is not used in noncausal
7graphical models.
A causal DAG G satis�es the causal Markov con-

dition if and only if a vertex is independent of all of
its nondescendants given its direct causes (parents). In

Fig. (a), A is independent of D, E, and F given its par-
ents, B and C. It may or may not be independent of G
given B and C.

�e causal Markov condition implies several other

conditional independence statements. For instance, in

Fig. (a) we have that H is independent of F given A.
Yet, this is not a statement about the parents of any

vertex. Pearl’s d-separation criterion (Pearl,) is a

sound and complete way of reading o� independencies,

out of a DAG, which are entailed by the causal Markov

condition. We assume that the joint probability distri-

bution over the vertice variables isMarkov with respect
to the graph, that is, any independence statement that is

encoded by the graph should imply the corresponding

independence in the distribution.

Representing Interventions

�e local modularity given by the causal Markov condi-

tion leads to a natural notion of intervention. Random

variable V , represented by a particular vertex in the
graph, is following a local mechanism: its direct causes
determine the distribution of V before its direct e�ects
are generated.�e role of an intervention is to override
the natural local mechanism. An external agent substi-

tutes the natural P(V ∣Parents(V)) by a new distribu-
tion PMan(V ∣Parents(V)) while keeping the rest of the
model unchanged (“Man” here stands for a particular

manipulation).�e notion of intervening by changing a

single local mechanism is sometimes known as an ideal
intervention. Other general types of interventions can
be de�ned (Eaton &Murphy,), but the most com-

mon frameworks for calculating causal e�ects rely on

this notion.

A common type of intervention is the point mass

intervention, which happens when V is set to some
constant v.�is can be represented graphically by “wip-
ing out” all edges into V . Figure (b) represents the
resulting graph in (a) under a point manipulation of A.
Notice that A is now d-separated from its direct causes
under this regime. It is also probabilistically indepen-

dent, sinceA is now constant.�is allows for a graphical
machinery that can read o� independencies out of a

manipulated graph (i.e., the one with removed edges).
It is the idea of representing the natural state of the

world with a single causal graph, and allowing for mod-

i�cations in this graph according to the intervention of

choice, that links the di�erent regimes obtained under

di�erent interventions.

For the general case where a particular variable

V is set to a new distribution, a manipulation node
is added as an extra parent of V : this represents
that an external agent is acting over that particu-

lar variable (Dawid, ; Pearl, ; Spirtes, Gly-

mour, & Scheines,), as illustrated in Fig. (c).

P(V ∣Parents(V)) under intervention I is some new
distribution PMan(V ∣Parents(V), I).

Calculating Distributions under Interventions

�e notion of independence is a key aspect of proba-

bilistic graphical models, where it allows for e�cient

computation of marginal probabilities. In causal graph-

ical models, it also ful�lls another important role: inde-

pendencies indicate that the e�ect of some interventions

can be estimated using observational data.

A G H

F

D

C

BE

a

G H

E B F

D

Cb I

G H

E B F

D

Cc
Causality. Figure . (a) A causal DAG. (b) Structure of the causal graph under some intervention that sets the value of

A to a constant. (c) Structure of the causal graph under some intervention that changes the distribution of A

 C Causality

H

I X Y
a

H

I X Y

Z

b

Causality. Figure . (a) X and Y have a hidden common

cause H. (b) Y is dependent on the intervention node I

given X, but conditioning on Z and marginalizing it out

will allow us to eliminate the “back-door” path that links

X and Y through the hidden common cause H

We will illustrate this concept with a simple exam-

ple. One of the key di�culties in calculating a causal

e�ect is unmeasured confounding, that is, hidden com-
mon causes. Consider Fig. (a), whereX is a direct cause
of Y , H is a hidden common cause of both and I is an
intervention vertex.Without extra assumptions, there is

noway of estimating the e�ect ofX onY using a training
set that is sampled from the observedmarginal P(X,Y).
�is is more easily seen in the case where the model

is multivariate Gaussian with zero mean. In this case,

each variable is a linear combination of its parents with

standard Gaussian additive noise

X = aH + єX

Y = bX + cH + єY

where H is also a standard normal random variable.
�e manipulated distribution PMan(Y ∣X, I), where I is
a point intervention setting X = x, is a Gaussian distri-
bution with mean b ⋅x. Value x is given by construction,
but one needs to learn the unknown value b.
One can verify that the covariance of X and Y in the

natural state is given by a + bc. Observational data, that
is, data sampled from P(X,Y), can be used to estimate
the covariance of X and Y in the natural state, but from
that it is not possible to infer the value of b: there are too
many degrees of freedom.

However, there are several cases where the probabil-
ity of Y given some intervention on X can be estimated
with observational data and a given causal graph. Con-

sider the graph in Fig. (b). �e problem again is to

learn the distribution of Y given X under regime I,
that is, P(Y ∣X, I). It can be read from the graph that

I and Y are not independent given X, which means
P(Y ∣X, I) ≠ P(Y ∣X). How can someone then estimate
P(Y ∣X, I) if no data for this process has been collected?
�e answer lies on reducing the “causal query” to a
“probabilistic query” where the dependence on I disap-
pears (and, hence, the necessity of having datameasured

under the I intervention).�is is done by relying on the
assumptions encoded by the graph:

P(Y ∣X, I) = ∑z P(Y ∣X, I, z)P(Z = z∣X, I)

(Z is discrete in this example)

= ∑z P(Y ∣X, z)P(Z = z∣X, I)

(Y and I are independent given Z)

∝ ∑z P(Y ∣X, z)P(X∣z, I)P(Z = z∣I)

(By Bayes’ rule)

= ∑z P(Y ∣X, z)P(X∣z, I)P(Z = z)

(Z and I are marginally independent)

In the last line, we have P(Y ∣X,Z) and P(Z), which can
be estimatedwith observational data, since no interven-

tion variable I appears on the expression.P(X∣Z, I) is set
by the external agent: its value is known by construc-

tion.�is means that the causal distribution P(Y ∣X, I)
can be learned even in this case where X and Y share a
hidden common cause H.

�ere are several notations for denoting an interven-

tional distribution such as P(Y ∣X, I). One of the earliest
was that of Spirtes et al. (), who used the notation

P(Y ∣set X = x) ()

to represent the distribution under an intervention I
that �xed the value ofX to some constant x. Pearl ()
uses the operator do with a similar meaning.

P(Y ∣do(X = x)) ()

Pearl’s do-calculus is essentially a set of operations
for reducing a probability distribution that is a function

of some intervention to a probability distribution that

does not refer to any intervention. All reductions are

conditioned on the independencies encoded in a given

causal graph.�is is in the same spirit of the example

presented above.

Causality C

C

�e advantage of such notations is that, for point

interventions, they lead to simple yet e�ective trans-

formations (or to a report that no transformation is

possible). Spirtes et al. () and Pearl () provide

a detailed account of such prediction tools. By mak-

ing a clear distinction between P(Y ∣X) (X under the
natural state) and P(Y ∣do(X)) (X under some interven-
tion), much of the confusion that con�ates causal and

noncausal predictions disappears.

It is important to stress that methods such as

the do-calculus are nonparametric, in the sense that
they rely on conditional independence constraints only.

More powerful reductions are possible if one is willing

to provide extra information, such as assuming linear-

ity of causal e�ects. For such cases, other parametric

constraints can be exploited (Pearl, ; Spirtes et al.,

).

Learning Causal Structure

In all of the previous section, we assumed that a causal

graph was available. Since background knowledge is

o�en limited, learning such graph structures becomes

an important task. However, this cannot be accom-

plishedwithout extra assumptions. To see why, consider

again the example in Fig. (a): if a + bc = , it fol-
lows that the X and Y are independent in the natural
state. However, Y is not causally independent of X (if
b ≠): P(Y ∣do(X = x)) and P(Y ∣do(X = x)) will
be two di�erent Gaussians with means b ⋅ x and b ⋅ x,
respectively.

�is example demonstrates that an independence

constraint that is testable by observational data does

not warrant causal independence, at least based on the

causal Markov condition only. However, an indepen-

dence constraint that arises from particular identities

such as a + bc = is not stable, in the sense that it
does not follow from the qualitative causal relations

entailed by the Markov condition: a change in any of

the parameter values will destroy such a constraint.

�e arti�ciality of unstable independencies moti-

vates an extra assumption: the faithfulness condition
(Spirtes et al.,), also known as the stability condi-
tion (Pearl,).We say that a distribution P is faithful
to a causal graph G if P is Markov with respect to G,
and if each conditional independence in P corresponds
to some d-separation in G.�at is, on top of the causal
Markov condition we assume that all independencies in

P are entailed by the causal graph G.

�e faithfulness condition allows us to reconstruct

classes of causal graphs from observational data. In the

simplest case, observing that X and Y are independent
entails that there is no causal connection between X
and Y . Consequently, P(Y ∣do(X)) = P(Y ∣X) = P(Y).
No interventional data was necessary to arrive at this

conclusion, given the faithfulness condition.

In general, the solution is undetermined: more than

one causal graph will be compatible with a set of

observable independence constraints. Consider a sim-

ple example, where data is generated by a causal model

with a causal graph given as in Fig. (a). �is graph

entails some independencies: for instance, that X and Z
are independent givenW, or that X and Y are not inde-
pendent given any subset of {W,Z}. However, several
other graphs entail the same conditional independen-

cies.�e graph in Fig. (b) is one example.�e learning

task is then discovering an equivalence class of graphs,
not necessarily a particular graph. �is is in contrast

with the problem of learning the structure of noncausal

graphical models: the fact that there are other struc-

tures compatible with the data is not important in this

case, since we will not use such graphical models to

predict the e�ect of some hypothetical intervention. An

equivalence class might not be enough information to

reduce a desired causal query to a probabilistic query,

but it might require much less prior knowledge than

specifying a full causal graph.

Assume for now that no hidden common causes

exist in this domain. In particular, the graphical object

in Fig. (c) is a representation of the equivalence class

of graphs that are compatible with the independencies

encoded in Fig. (a) (Pearl, ; Spirtes et al.,).

All members of the equivalence class will have the same

YX

W

Za

X Y

W

Zb

W

YX

Zc

Causality. Figure . (a) A particular causal graph which

entails a few independence constraints, such as X and Z

being independent given W. (b) A different causal graph

that entails exactly the same independence constraints

as (a). (c) A representation for all graphs that entail the

same conditional independencies as (a) and (b)

 C Causality

skeleton of this representation, that is, the same adja-
cencies. An undirected edge indicates that there are two

members in the equivalence class where directionality

of this particular edge goes in opposite directions. Some

di�erent directions are illustrated in Fig. (b). One can

verify from the properties of d-separation that if an

expert or an experiment indicates that X −W should

be directed as X →W, then the edgeW−Z is compelled
to be directed asW → Z: the directionW ← Z is incom-
patible with the simultaneous �ndings that X and Z are
independent givenW, and that X causesW.
More can be discovered if more independence con-

straintsexist.InFig.(a),X isnotacauseofY .Ifweassume
no hidden common causes exist in this domain, then no

other causal graph is compatible with the independence

constraintsofFig. (a): theequivalenceclass is this graph

only. However, the assumption of no hidden common

causes is strong and undesirable. For instance, the graph

in Fig. (b), whereH andH are hidden, is in the same
equivalenceclassof(a).Yet,thegraphinFig.(a)indicates

that P(W∣do(X)) = P(W∣X), which can be arbitrarily
di�erent from the realP(W∣do(X)) if Fig. (b) is the real
graph. Some equivalence class representations, such as

thePartialAncestralGraph representation (Spirtes et al.,

), are robust to hidden common causes: in Fig. (c),

an edge that has a circle as endpoint indicates that is not

known if there is a causal path into both, for example, X
andW (which would be the case for a hidden common
cause of X andW).�e arrow intoW does indicate that
W cannot be a cause of X. A fully directed edge such as
W → Z indicates total information:W is a causeofZ,Z is

W

Z

X Y

a Z

H1 H2

YX

W

b ZZ

X

W

Y

c

Causality. Figure . (a) A particular causal graph with no

other member on its equivalence class (assuming there

are no hidden common causes). (b) Graph under the pres-

ence of two hidden common causesH andH. (c) A repre-

sentation for all graphs that entail the same conditional

independencies as (a), without assuming the nonexis-

tence of hidden common causes

not a cause ofW, andW andZ have no hidden common
causes.

Given equivalence class representations and back-

groundknowledge, di�erent types of algorithms explore

independence constraints to learn an equivalence class.

It is typically assumed that the true graph is acyclic.�e

basic structure is to evaluate how well a set of condi-

tional independence hypotheses are supported by the

data. Depending on which constraints are judged to

hold in the population, we keep, delete, or orient edges

accordingly. Some algorithms, such as the PC algorithm

(Spirtes et al.,), test a single independence hypoth-

esis at a time, and assemble the individual outcomes in

the end into an equivalence class representation. Other

algorithms such as the GES algorithm (Chickering,

; Meek,) start from a prior distribution for

graphs and parameters, and proceed to compare the

marginal likelihood of members of di�erent equiva-

lence classes (which can be seen as a Bayesian joint test

of independence hypotheses). In the end, this reduces to

a search for themaximum a posteriori equivalence class

estimator. Both PC and GES have consistency proper-

ties: in the limit of in�nite data, they return the right

equivalence class under the faithfulness assumption.

However, both PC and GES, and most causal discovery

algorithms, assume that there are no hidden common

causes in the domain. �e fast causal inference (FCI)

algorithm of Spirtes et al. () is able to generate

equivalence class representations as in Fig. (c). As in

the PC algorithm, this is done by testing a single inde-

pendence hypothesis at a time, and therefore is not

very robust given small samples. A GES-like algorithm

with the consistency properties of FCI is not currently

known. An algorithm that allows for cyclic networks is

discussed byRichardson ().More details of the fun-

damentals of structure learning algorithms are given by

Scheines ().

Our examples relied on conditional independence

constraints. In this case, the equivalence class is known

as the Markov equivalence class. Markov equivalence
classes are “nonparametric,” in the sense that they do

not refer to any particular probability family. In practice,

this advantage is limited by our ability on evaluating

independence hypotheses within �exible probability

families. Another shortcoming of Markov equivalence

classes is that they might be poorly informative if few

independence constraints exist in the population.�is

Causality C

C

will happen, for instance, if a single hidden variable is a

common cause of all observed variables. If one is will-

ing to incorporate further assumptions, such as linearity

of causal relationships, parametric constraints can be

used to de�ne other types of equivalence classes that are

more discriminative than theMarkov equivalence class.

Silva, Scheines, Glymour, & Spirtes () describe how

some rank constraints in the covariance matrix of the

observed variables can be used to learn the structure of

linear models, even if no independence constraints are

observable.

Evaluating the success of a structure learning algo-

rithm is di�cult, since ultimately it depends on inter-

ventional data. A promising area of application is

molecular biology, where the large number of vari-

ables makes the use of graphical models a promising

venue for decomposing complex biological systems,

and for combining multiple sources of observational

and interventional data. Sachs et al. () describe a

potential application, with further analysis discussed by

Eaton and Murphy (). Other applications are dis-

cussed in the volume edited by Glymour and Cooper

().

Confidence Intervals Several causal learning algorithms

suchasthePCandFCIalgorithms(Spirtesetal.,)are

consistent, in the sense that they can recover the correct

equivalence class given the faithfulness assumption and

an in�nite amount of data. Although point estimates of

causale�ectsareimportant,it isalsoimportanttoprovide

con�dence intervals. Bayesian con�dence intervals are

readily available by having priors over parameters and

graphs. 7Markov chain Monte Carlo algorithms, how-
ever, might be problematic due to the high-dimensional

anddiscretegraphspace.Apracticalalgorithmthatrelies

onaprioroverorderingsofvariables (suchthat foragiven
ordering, a graph is not allowed to have vertex X as an
ancestor of Y if Y antecedes X in the ordering) is given
by Friedman and Koller ().

Such methods do not necessarily guarantee good

frequentist properties. As a matter of fact, it has been

shown that no such method can exist given the faith-

fulness assumption only (Robins, Scheines, Spirtes,

& Wasserman,). An intuitive explanation is as

follows: consider the model such as the one in Fig. (a).

For any given sample size, there is at least one model

such that the associations due to the paths X ← H → Y

and X → Y nearly cancel each other (faithfulness is still
preserved), making the covariance of X and Y statisti-
cally undistinguishable from zero. In order to achieve

uniform consistency, causal inference algorithms will

need assumptions stronger than faithfulness. Zhang and

Spirtes () provide some directions.

Other Languages and Tasks in Causal Learning

A closely related language for representing causal mod-

els is the potential outcomes framework popularized by
Rubin (). In this case, random variables for a same

variableY are de�ned for each possible state of the inter-
vened variable X. Notice that, by de�nition, only one of
the possibleY outcomes can be observed for any speci�c
data point.�is model is popular in statistics literature

as a type of missing data model.�e relation between

potential outcomes and graphical models is discussed

by Pearl ().

A case where potential outcomes become more

clearly motivated is in causal explanation. In this setup,
the model is asked for the probability that a particular

event in time was the cause of a particular outcome.

�is is o�en cast as a counterfactual question: had A
been false, would B still have happened? Questions in
History and law are of this type: the legal responsibil-

ity of an airplane manufacturer in an accident depends

on technical malfunction being an actual cause of the
accident. Ultimately, such issues of causal explanation,

actual causation and other counterfactual answers, are

untestable. Although machine learning can be a useful

tool to derive the consequences of assumptions com-

bined with data about other events of the same type,

in general the answers will not be robust to changes

in the assumptions, and the proper assumptions ulti-

mately cannot be selected with the available data. Some

advances in generating explanations with causal models

are described by Halpern and Pearl ().

Cross References
7Graphical Models
7Learning Graphical Models

Recommended Reading
Chickering, D. (). Optimal structure identification with greedy

search. Journal of Machine Learning Research, , –.
Cooper, G., & Yoo, C. (). Causal discovery from a mixture of

experimental and observational data. In Uncertainty in Artifi-
cial Intelligence (UAI).

 C CBR

Dawid, A. P. (). Influence diagrams for causal modelling and

inference. International Statistical Review, , –.
Eaton, D., & Murphy, K. (). Exact Bayesian structure learn-

ing from uncertain interventions. In Artificial Intelligence and
Statistics (AISTATS).

Eberhardt, F., Glymour, C., & Scheines, R. (). On the number of

experiments sufficient and in the worst case necessary to iden-

tify all causal relations among N variables. In Uncertainty in
Artificial Intelligence (UAI) (pp. –).

Friedman, N., & Koller, D. (). Being Bayesian about net-

work structure: A Bayesian approach to structure discovery in

Bayesian networks. Machine Learning, , –.
Glymour, C., & Cooper, G. (). Computation, causation and

discovery. Cambridge, MA: MIT Press.
Halpern, J., & Pearl, J. (). Causes and explanations: A structural-

model approach. Part II: Explanations. British Journal for the
Philosophy of Science, , –.

Meek, C. (). Graphical models: Selecting causal and statistical
models. PhD thesis, Carnegie Mellon University.

Pearl, J. (). Causality: Models, reasoning and inference.
Cambridge: Cambridge University Press.

Richardson, T. (). A discovery algorithm for directed cyclic

graphs. In Proceedings of th conference on Uncertainty in
Artificial Intelligence.

Robins, J., Scheines, R., Spirtes, P., &Wasserman, L. (). Uniform

consistency in causal inference. Biometrika, , –.
Rosenbaum, P. (). Observational studies. New York: Springer.
Rubin, D. (). Direct and indirect causal effects via potential

outcomes. Scandinavian Journal of Statistics, , –.
Sachs, K., Prez, O., Pe’er, D., Lauffenburger, D., & Nolan, G. ().

Causal protein-signaling networks derived from multiparame-

ter single-cell data. Science, , –.
Scheines, R. (). An introduction to causal inference. In

V. McKim & S. Turner (Eds.), Causality in Crisis? (pp.
–).

Silva, R., Scheines, R., Glymour, C., & Spirtes, P. (). Learning

the structure of linear latent variable models. Journal of Machine
Learning Research, , –.

Spirtes, P., Glymour, C., & Scheines, R. (). Causation, prediction
and search. Cambridge, MA: Cambridge University Press.

Wasserman, L. (). All of statistics. New York: Springer.
Zhang, J., & Spirtes, P. (). Strong faithfulness and uniform

consistency in causal inference. In Uncertainty in Artificial
Intelligence.

CBR

7Case-Based Reasoning

CC

7Cascade-Correlation

Certainty Equivalence Principle

7Internal Model Control

Characteristic

7Attribute

City Block Distance

7Manhattan Distance

Class

Chris Drummond

National Research Council of Canada

Synonyms
Category; Class; Collection; Kind; Set; Sort; Type

Definition
A class is a collection of things that might reasonably be

grouped together. Classes that we commonly encounter

have simple names so, as humans, we can easily refer to

them.�e class of dogs, for example, allows me to say

“my dog ate my newspaper” without having to describe

a particular dog, or indeed, a particular newspaper. In

machine learning, the name of the class is called the

class label. Exactly what it means to belong to a class, or

category, is a complex philosophical question but o�en

we think of a class in terms of the common properties

of its members. We think particularly of those proper-

ties which seperate them from other things which are in

many ways similar, e.g., cats mieow and dogs bow-wow.

We would be unlikely to form a class from a random

collection of things, as they would share no common

properties. Knowing something belonged to such a col-

lection would be of no particular bene�t. Although

Class Imbalance Problem C

C

many every day classes will have simple names, we may

construct them however we like, e.g., “�e things I like

to eat for breakfast on a Saturday morning.” As there is

no simple name for such a collection, in machine learn-

ingwewould typically refer to it as the positive class, and

all occurences of it are positive examples; the negative

class would be everything else.

Motivation and Background
�e idea of a class is important in learning. If we dis-

cover something belongs to a class, we suddenly know

quite a lot about it even if we have not encountered

that particular example before. In machine learning,

our use of the term accords closely with the math-

ematical de�nition of a class, as a collection of sets

unambiguously de�ned by a property that all its mem-

bers share. It also accords with the idea of equivalence

classes, which group similar things. Sets have an inten-

sion, the description of what it means to be a member,

and an extension, things that belong to the set, use-

ful properties of a class in machine learning. Class is

also a term used extensively in knowledge bases to

denote an important relationship between groups, of

sub-class and super class. Learning is o�en viewed as

a way of solving the knowledge acquisition bottleneck

(Buchanan et al.,) in knowledge bases and the use

of the term class in machine learning highlights this

connection.

Recommended Reading
Buchanan, B., Barstow, D., Bechtel, R., Bennett, J., Clancey, W.,

Kulikowski, C., et al. () Constructing an expert system. In

F. Hayes-Roth, D.A. Waterman, & D.B. Lenat (Eds.), Building
expert systems (pp. –). Reading, MA: Addison-Wesley.

Class Imbalance Problem

Charles X. Ling, Victor S. Sheng

�e University of Western Ontario

Canada

Definition
Data are said to su�er the Class Imbalance Problem
when the class distributions are highly imbalanced. In

this context, many 7classi�cation learning algorithms

have low 7predictive accuracy for the infrequent class.
7Cost-sensitive learning is a common approach to
solve this problem.

Motivation and Background
Class imbalanced datasets occur in many real-world

applications where the class distributions of data are

highly imbalanced. For the two-class case, without loss

of generality, one assumes that theminority or rare class

is the positive class, and themajority class is the negative

class. O�en theminority class is very infrequent, such as

% of the dataset. If one applies most traditional (cost-

insensitive) classi�ers on the dataset, they are likely to

predict everything as negative (the majority class).�is

was o�en regarded as a problem in learning from highly

imbalanced datasets.

However, Provost () describes two fundamen-

tal assumptions that are o�en made by traditional cost-

insensitive classi�ers. �e �rst is that the goal of the

classi�ers is to maximize the accuracy (or minimize the

error rate); the second is that the class distribution of

the training and test datasets is the same. Under these

two assumptions, predicting everything as negative for

a highly imbalanced dataset is o�en the right thing to
do. Drummond and Holte () show that it is usu-
ally very di�cult to outperform this simple classi�er in

this situation.

�us, the imbalanced class problem becomesmean-

ingful only if one or both of the two assumptions above

are not true; that is, if the cost of di�erent types of

error (false positive and false negative in the binary clas-

si�cation) is not the same, or if the class distribution

in the test data is di�erent from that of the training

data. �e �rst case can be dealt with e�ectively using

methods in cost-sensitive meta-learning (see 7Cost-
sensitive learning).

In the case when the misclassi�cation cost is not

equal, it is usually more expensive to misclassify a

minority (positive) example into the majority (nega-

tive) class, than a majority example into the minority

class (otherwise it is more plausible to predict every-

thing as negative).�at is, FNcost > FPcost.�us, given
the values of FNcost and FPcost, a variety of cost-
sensitive meta-learningmethods can be, and have been,

used to solve the class imbalance problem (Japkow-

icz & Stephen, ; Ling & Li,). If the values of

 C Classification

FNcost and FPcost are not unknown explicitly, FNcost
and FPcost can be assigned to be proportional to the
number of positive and negative training cases (Japkow-

icz & Stephen,).

In case the class distributions of training and test

datasets are di�erent (e.g., if the training data is highly

imbalanced but the test data is more balanced), an obvi-

ous approach is to sample the training data such that its

class distribution is the same as the test data.�is can be

achieved by oversampling (creating multiple copies of

examples of) the minority class and/or undersampling

(selecting a subset of) themajority class (Provost,).

Note that sometimes the number of examples of

the minority class is too small for classi�ers to learn

adequately. �is is the problem of insu�cient (small)

training data and di�erent from that of imbalanced

datasets.

Recommended Reading
Drummond, C., & Holte, R. (). Exploiting the cost

(in)sensitivity of decision tree splitting criteria. In Pro-
ceedings of the seventeenth international conference on machine
learning (pp. –).

Drummond, C., & Holte, R. (). Severe class imbalance: Why bet-

ter algorithms aren’t the answer. In Proceedings of the sixteenth
European conference of machine learning, LNAI (Vol. ,
pp. –).

Japkowicz, N., & Stephen, S. (). The class imbalance prob-

lem: A systematic study. Intelligent Data Analysis, (),
–.

Ling, C. X., & Li, C. (). Data mining for direct marketing –

Specific problems and solutions. In Proceedings of fourth inter-
national conference on Knowledge Discovery and Data Mining
(KDD-) (pp. –).

Provost, F. (). Machine learning from imbalanced data sets

. In Proceedings of the AAAI’ workshop on imbalanced
data.

Classification

Chris Drummond

National Research Council of Canada

Synonyms
Categorization; Generalization; Identi�cation; Induc-

tion; Recognition

Definition
In common usage, the word classi�cation means to put

things into categories, group them together in someuse-

ful way. If we are screening for a disease, we would

group people into thosewith the disease and thosewith-

out. We, as humans, usually do this because things in

a group, called a 7class in machine learning, share
common characteristics. If we know the class of some-

thing, we know a lot about it. In machine learning, the

term classi�cation is most commonly associated with

a particular type of learning where examples of one or

more 7classes, labeled with the name of the class, are
given to the learning algorithm.�e algorithmproduces

a classi�er which maps the properties of these exam-

ples, normally expressed as 7attribute-value pairs, to
the class labels. A new example whose class is unknown

is classi�ed when it is given a class label by the clas-

si�er based on its properties. In machine learning, we

use the word classi�cation because we call the group-

ing of things a class. We should note, however, that

other �elds use di�erent terms. In philosophy and statis-

tics, the term categorization is more commonly used. In

many areas, in fact, classi�cation o�en refers to what is

called7clustering in machines learning.

Motivation and Background
Classi�cation is a common, and important, human

activity. Knowing something’s class allows us to pre-

dict many of its properties and so act appropriately.

Telling other people its class allows them to do the same,

making for e�cient communication. �is emphasizes

two commonly held views of the objectives of learn-

ing. First, it is a means of 7generalization, to predict
accurately the values for previously unseen examples.

Second, it is a means of compression, to make transmis-

sion or communication more e�cient. Classi�cation is

certainly not a new idea and has been studied for some

considerable time. From the days of the early Greek

philosophers such as Socrates, we had the idea of cat-

egorization.�ere are essential properties of things that

make them what they are. It embodies the idea that

there are natural kinds, ways of grouping things, that

are inherent in the world. A major goal of learning,

therefore, is recognizing natural kinds, establishing the

necessary and su�cient conditions for belonging to a

category. �is “classical” view of categorization, most

Classification C

C

o�en attributed to Aristotle, is now strongly disputed.

�e main competitor is prototype theory; things are

categorized by their similarity to a prototypical exam-

ple (Lako�,), either real or imagined.�ere is also

much debate in psychology (Ashby & Maddox,),

where many argue that there is no single method of

categorization used by humans.

As much of the inspiration for machine learning

originated in how humans learn, it is unsurprising

that our algorithms re�ect these distinctions.7Nearest
neighbor algorithms would seem to have much in com-

mon with prototype theory. �ese have been part of

pattern recognition for some time (Cover & Hart,)

and have become popular in machine learning, more

recently, as 7instance-based learners (Aha, Kiber, &
Albert,). In machine learning, we measure the dis-

tance to one or more members of a concept rather a

specially constructed prototype. So, this type of learn-

ing is perhaps more a case of the exemplar learning

found in the psychological literature, where multiple

examples represent a category. �e closest we have

to prototype learning occurs in clustering, a type of

7unsupervised learning, rather than classi�cation. For
example, in7k-means clustering group membership is
determined by closeness to a central value.

In the early days of machine learning, our

algorithms (Mitchell, ; Winston,) had much

in common with the classical theory of categorization

in philosophy and psychology. It was assumed that the

data were consistent, there were no examples with the

same attribute values but belonging to di�erent classes.

It was quickly realized that, even if the properties where

necessary and su�cient to capture the class, there was

o�en noise in the attribute and perhaps the class val-

ues. So, complete consistency was seldom attainable in

practice. New7classi�cation algorithmswere designed,
which could tolerate some noise, such as 7decision
trees (Breiman, Friedman,Olshen, & Stone, ; Quin-

lan, ,) and rule-based learners (see 7Rule
Learning) (Clark&Niblett, ;Holte, ;Michalski,

).

Structure of the Learning System
Whether one uses instance-based learning, rule-based

learning, decision trees, or indeed any other classi�cation

algorithm, the end result is the division of the input

space into regions belonging to a single class. �e

input space is de�ned by the Cartesian product of the

attributes, all possible combinations of possible values.

As a simple example, Fig. shows two classes +
and −, each a random sample of a normal distribution.
�e attributes are X and Y of real type.�e values for
each attribute range from ±∞.�e �gure shows a cou-
ple of alternativeways that the spacemay be divided into

regions. �e bold dark lines, construct regions using

lines that are parallel to the axes. New examples that

haveY less than andX less than . with be classi�ed as
+, all others classi�ed as−. Decision trees and rules form
this type of boundary. A7linear discriminant function,
such as the bold dashed line, would divide the space into

half-spaces, with new examples below the line being

classi�ed as + and those above as −. Instance-based
learning will also divide the space into regions but the

boundary is implicit. Classi�cation occurs by choosing

the class of the majority of the nearest neighbors to a

new example. To make the boundary explicit, we could

mark the regions where an example would be classi�ed

as + and those classi�ed as −. We would end up with
regions bounded by polygons.

What di�ers among the algorithms is the shape of

the regions, and how and when they are chosen. Some-

times the regions are implicit as in lazy learners (see

7Lazy Learning) (Aha,), where the boundaries
are not decided until a new example is being classi�ed.

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+
+

+

+
+ +

+

+

+
++

+

+
+

+ +

+

+

+
+

++
+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+
+

+

+

+
+

+ +

+

+

+

+

+

+

+

+
+

+

+

+
+

+

++

+

+

+

+

+ ++

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+ ++

+

++

+

+

+

+
+

+

+

+

+

+
+

+

+

+ ++

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+

+ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

++
+

−

−
−

−

−

− −

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−−

−

− −− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−
−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

− −

−

−

−−

−

−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−−

−

−

−

−

−

−

−

−

−
− −

−−

0 2 4
X

−4

−2

0

2

4

Y

−4 −2

Classification. Figure . Dividing the input space

 C Classification

Sometimes the regions are determined by decision

theory as in generative classi�ers (see 7Generative
Learners) (Rubinstein &Hastie,), whichmodel the

full joint distribution of the classes. For all classi�ers

though, the input space is e�ectively partitioned into

regions representing a single class.

Applications
One of the reasons that classi�cation is an important

part ofmachine learning is that it has proved to be a very

useful technique for solving practical problems. Classi-

�cation has been used to help scientists in the explo-

ration, and comprehension, of their particular domains

of interest. It has also been used to help solve signi�-

cant industrial problems. Over the years a number of

authors have stressed the importance of applications to

machine learning and listed many successful examples

(Brachman, Khabaza, Kloesgen, Piatetsky-Shapiro, &

Simoudis, ; Langley & Simon, ; Michie,).

�ere have also been workshops on applications

(Aha & Riddle, ; Engels, Evans, Herrmann, &

Verdenius, ; Kodrato�,) at major machine

learning conferences and a special issue of Machine

Learning (Kohavi & Provost,), one of the main

journals in the �eld. �ere are now conferences that

are highly focused on applications. Collocated with

major arti�cial intelligence conferences is the Innova-

tive Applications of Arti�cial Intelligence conference.

Since , this conference has highlighted practical

applications of machine learning, including classi�ca-

tion (Schorr & Rappaport,). In addition, there

are now at least two major knowledge discovery and

7data mining conferences (Fayyad & Uthurusamy,
; Komorowski & Zytkow,) with a strong focus

on applications.

Future Directions
In machine learning, there are already a large num-

ber of di�erent classi�cation algorithms, yet new ones

still appear. It seems unlikely that there is an end in

sight.�e “no free lunch theory” (Wolpert &Macready,

) indicates that there will never be a single best

algorithm, better than all others in terms of predictive

power. However, apart from their predictive perfor-

mance, each classi�er has its own attractive properties

which are important to di�erent groups of people. So,

new algorithms are still of value. Further, even if we

are solely concerned about performance, it may be use-

ful to have many di�erent algorithms, all with their

own biases (see 7Inductive Bias). �ey may be com-
bined together to form an ensemble classi�er (Caruana,

Niculescu-Mizil, Crew, & Ksikes,), which outper-

forms single classi�ers of one type (see 7Ensemble
Learning).

Limitations
Classi�cation has been critical part of machine research

for some time. �ere is a concern that the emphasis

on classi�cation, and more generally on 7supervised
learning, is too strong. Certainly much of human learn-

ing does not use, or require, labels supplied by an expert.

Arguably, unsupervised learning should play a more

central role in machine learning research. Although

classi�cation does require a label, it does necessarily

need an expert to provide labeled examples. Many suc-

cessful applications rely on �nding some, easily identi-

�able, property which stands in for the class.

Recommended Reading
Aha, D. W. (). Editorial. Artificial Intelligence Review, (–),

–.

Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, (), –.
Aha, D. W., & Riddle, P. J. (Eds.). (). Workshop on apply-

ing machine learning in practice. In Proceedings of the th
international conference on machine learning.

Ashby, F. G., & Maddox, W. T. (). Human category learning.

Annual Review of Psychology, , –.
Bishop, C. M. (). Pattern recognition and machine learning. New

York: Springer.

Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., &

Simoudis, E. (). Mining business databases. Communica-
tions of the ACM, (), –.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().

Classification and regression trees. Belmont, CA: Wadsworth.
Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. ().

Ensemble selection from libraries of models. In Proceed-
ings of the st international conference on machine learning
(pp. –).

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, , –.
Cover, T., & Hart, P. (). Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, , –.
Dietterich, T., & Shavlik, J. (Eds.). Readings in machine learning. San

Mateo, CA: Morgan Kaufmann.

Engels, R., Evans, B., Herrmann, J., & Verdenius, F. (Eds.). ().

Workshop on machine learning applications in the real world;

Classification Tree C

C

methodological aspects and implications. In Proceedings of the
th international conference on machine learning.

Fayyad, U. M., & Uthurusamy, R. (Eds.). (). Proceedings of the
first international conference on knowledge discovery and data
mining.

Holte, R. C. (). Very simple classification rules perform well on

most commonly used datasets. Machine Learning, (), –.
Kodratoff, Y. (Ed.). (). Proceedings of MLNet workshop on indus-

trial application of machine learning.
Kodratoff, Y., & Michalski, R. S. (). Machine learning: An arti-

ficial intelligence approach, (Vol.). San Mateo, CA: Morgan
Kaufmann.

Kohavi, R., & Provost, F. (). Glossary of terms. Editorial for

the special issue on applications of machine learning and the

knowledge discovery process. Machine Learning, (/).
Komorowski, H. J., & Zytkow, J. M. (Eds.). (). Proceedings of

the first European conference on principles of data mining and
knowledge discovery.

Lakoff, G. (). Women, fire and dangerous things. Chicago, IL:
University of Chicago Press.

Langley, P., & Simon, H. A. (). Applications of machine learn-

ing and rule induction. Communications of the ACM, (),
–.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S. Michalski, T. J. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach
(pp. –). Palo Alto, CA: TIOGA Publishing.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach. Palo Alto,
CA: Tioga Publishing Company.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach, (Vol.).
San Mateo, CA: Morgan Kaufmann.

Michie, D. ().Machine intelligence and related topics. New York:
Gordon and Breach Science Publishers.

Mitchell, T. M. (). Version spaces: A candidate elimination

approach to rule learning. In Proceedings of the fifth interna-
tional joint conferences on artificial intelligence (pp. –).

Mitchell, T. M. ().Machine learning. Boston, MA: McGraw-Hill.
Quinlan, J. R. (). Induction of decision trees.Machine Learning,

, –.
Quinlan, J. R. (). C. programs for machine learning. San Mateo,

CA: Morgan Kaufmann.

Rubinstein, Y. D., & Hastie, T. (). Discriminative vs informative

learning. In Proceedings of the third international conference on
knowledge discovery and data mining (pp. –).

Russell, S., & Norvig, P. (). Artificial intelligence: A modern
approach. Upper Saddle River, NJ: Prentice-Hall.

Schorr, H., & Rappaport, A. (Eds.). (). Proceedings of the first
conference on innovative applications of artificial intelligence.

Winston, P. H. (). Learning structural descriptions from exam-

ples. In P. H. Winston (Ed.), The psychology of computer vision
(pp. –). New York: McGraw-Hill.

Witten, I. H., & Frank, E. (). Data mining: Practical machine
learning tools and techniques. San Fransisco: Morgan Kauf-
mann.

Wolpert, D. H., &Macready, W. G. (). No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation,
(), –.

Classification Algorithms

�ere is a very large number of classi�cation algo-

rithms, including 7decision trees, 7instance-based
learners,7support vectormachines,7rule-based learn-
ers,7neural networks,7Bayesian networks.�ere also
ways of combining them into 7ensemble classi�ers
such as7boosting,7bagging,7stacking, and7forests
of trees.

To delve deeper into classi�ers and their role in

machine learning, a number of books are recommended

covering machine learning (Bishop, ; Mitchell,

; Witten & Frank,) and arti�cial intelli-

gence (Russell & Norvig,) in general. Seminal

papers on classi�ers can be found in collections of

papers onmachine learning (Dietterich& Shavlik, ;

Kodrato� & Michalski, ; Michalski, Carbonell, &

Mitchell, ,).

Recommended Reading
Bishop, C. M. (). Pattern recognition and machine learning. New

York: Springer.

Dietterich, T., & Shavlik, J. (Eds.). Readings in machine learning. San
Mateo, CA: Morgan Kaufmann.

Kodratoff, Y., & Michalski, R. S. (). Machine learning: An arti-
ficial intelligence approach, (Vol.). San Mateo, CA: Morgan
Kaufmann.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach. Palo Alto,
CA: Tioga Publishing Company.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach, (Vol.).
San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. ().Machine learning. Boston, MA: McGraw-Hill.
Russell, S., & Norvig, P. (). Artificial intelligence: A modern

approach. Upper Saddle River, NJ: Prentice-Hall.
Witten, I. H., & Frank, E. (). Data mining: Practical

machine learning tools and techniques. San Fransisco: Morgan
Kaufmann.

Classification Learning

7Concept Learning

Classification Tree

7Decision Tree

 C Classifier Systems

Classifier Systems

Pier Luca Lanzi

Politecnico di Milano, Milano, Italy

Synonyms
Genetics-based machine learning; Learning classi�er

systems

Definition
Classi�er systems are rule-based systems that com-

bine 7temporal di�erence learning or 7supervised
learning with a genetic algorithm to solve classi�ca-

tion and 7reinforcement learning problems. Classi�er
systems come in two �avors: Michigan classi�er sys-

tems, which are designed for online learning, but can

also tackle o�ine problems; and Pittsburgh classi�er

systems, which can only be applied to o�ine learning.

In Michigan classi�er systems (Holland,),

learning is viewed as an online adaptation process to

an unknown environment that represents the problem

and provides feedback in terms of a numerical reward.

Michigan classi�er systems maintain a single candidate

solution consisting of a set of rules, or a population of

classi�ers. Michigan systems apply () temporal di�er-

ence learning to distribute the incoming reward to the

classi�ers that are accountable for it; and () a genetic

algorithm to select, recombine, and mutate individual

classi�ers so as to improve their contribution to the

current solution.

In contrast, in Pittsburgh classi�er systems (Smith,

), learning is viewed as an o�ine optimization pro-

cess in which a genetic algorithm alone is applied to

search for the best solution to a given problem. In addi-

tion, Pittsburgh classi�er systems maintain not one, but

a set of candidate solutions. While in the Michigan

classi�er system each individual classi�er represents a

part of the overall solution, in the Pittsburgh system

each individual is a complete candidate solution (itself

consisting of a set of classi�ers).�e �tness of each Pitts-

burgh individual is computed o�ine by testing it on a

representative sample of problem instances. �e indi-

viduals compete among themselves through selection,

while crossover and mutation recombine solutions to

search for better solutions.

Motivation and Background
Machine learning is usually viewed as a search process

in which a solution space is explored until an appropri-

ate solution to the target problem is found (Mitchell,

) (see 7Learning as Search). Machine learning
methods are characterized by the way they represent

solutions (e.g., using 7decision trees, rules), by the
way they evaluate solutions (e.g., classi�cation accuracy,

information gain) and by the way they explore the solu-

tion space (e.g., using a7general-to-speci�c strategy or
a7speci�c-to-general strategy).
Classi�er systems are methods of genetics-based

machine learning introduced by Holland, the father of

7genetic algorithms.�ey made their �rst appearance
in Holland () where the �rst diagram of a clas-

si�er system, labeled “cognitive system,” was shown.

Subsequently, they were described in detail in the paper

“Cognitive Systems based on Adaptive Algorithms”

(Holland and Reitman,). Classi�er systems are

characterized by a rule-based representation of solu-

tions and a genetics-based exploration of the solution

space. While other 7rule learning methods, such as
CN (Clark & Niblett,) and FOIL (Quinlan &

Cameron-Jones,), generate one rule at a time fol-

lowing a sequential covering strategy (see 7Covering
Algorithm), classi�er systems work on one or more

solutions at once, and they explore the solution space by

applying the principles of natural selection and genetics.

In classi�er systems (Holland, ; Holland and

Reitman, ;Wilson,), machine learning is mod-

eled as an online adaptation process to an unknown

environment, which provides feedback in terms of a
numerical reward. A classi�er system perceives the

environment through its detectors and, based on its

sensations, it selects an action to be performed in the

environment through its e�ectors. Depending on the

e�cacy of its actions, the environment may eventu-

ally reward the system. A classi�er system learns by

trying to maximize the amount of reward it receives

from the environment. To pursue such a goal, it main-

tains a set (a population) of condition-action-prediction
rules, called classi�ers, which represents the current
solution. Each classi�er’s condition identi�es some part

of the problem domain; the classi�er’s action repre-

sents a decision on the subproblem identi�ed by its

condition; and the classi�er’s prediction, or strength,

estimates the value of the action in terms of future

Classifier Systems C

C

rewards on that subproblem. Two separate components,

credit assignment and rule discovery, act on the popu-

lation with di�erent goals. 7Credit assignment, imple-
mented either by methods of temporal di�erence or

supervised learning, exploits the incoming reward to

estimate the action values in each subproblem so as

to identify the best classi�ers in the population. At

the same time, rule discovery, usually implemented by

a genetic algorithm, selects, recombines, and mutates

the classi�ers in the population to improve the current

solution.

Classi�er systems were initially conceived asmodel-

ing tools. Given a real systemwith unknown underlying

dynamics, for instance a �nancial market, a classi�er

system would be used to generate a behavior that

matched the real system.�e evolved rules would pro-

vide a plausible, human readablemodel of the unknown

system – a way to look inside the box. Subsequently,

with the developments in the area of machine learn-

ing and the rise of reinforcement learning, classi�er

systems have been more and more o�en studied and

presented as alternatives to other machine learning

methods. Wilson’s XCS (), the most successful clas-

si�er system to date, has proven to be both a valid

alternative to other reinforcement learning approaches

and an e�ective approach to classi�cation and datamin-

ing (Bull, ; Bull & Kovacs, ; Lanzi, Stolzmann,

&Wilson,).

Kenneth de Jong and his students (de Jong, ;

Smith, ,) took a di�erent perspective on

genetics-based machine learning and modeled learn-

ing as an optimization process rather than an adaptation
process as done in Holland (). In this case, the solu-

tion space is explored by applying a genetic algorithm

to a population of individuals each representing a com-
plete candidate solution – that is, a set of rules (or a
production system, de Jong, ; Smith,). At each

cycle, a critic is applied to each individual (to each set

of rules) to obtain a performance measure that is then

used by the genetic algorithm to guide the exploration

of the solution space.�e individuals in the population

compete among themselves through selection, while

crossover and mutation recombine solutions to search

for better ones.

�e approaches of Holland (Holland, ; Hol-

land and Reitman,) and de Jong (de Jong, ;

Smith, ,) have been extended and improved

in several ways (see Lanzi et al. () for a review).

�e models of classi�er systems that are inspired by

the work of Holland () at the University of Michi-

gan are usually called Michigan classi�er systems; the

ones that are inspired by Smith (,) and de Jong

() at the University of Pittsburgh are usually termed

Pittsburgh classi�er systems – or brie�y, Pitt classi�er

systems.

Pittsburgh classi�er systems separate the evaluation

of candidate solutions, performed by an external critic,

from the genetic search. As they evaluate candidate

solutions as a whole, Pittsburgh classi�er systems can

easily identify and emphasize sequentially cooperat-

ing classi�ers, which is particularly helpful in problems

involving partial observability. In contrast, in Michigan

classi�er systems the credit assignment is focused, due

to identi�cation of the actual classi�ers that produce the

reward, so learning ismuch faster but sequentially coop-
erating classi�ers are more di�cult to spot. As Pitts-

burgh classi�er systems apply the genetic algorithm to a

set of solutions, they only work o�ine, whereas Michi-

gan classi�er systems work online, although they can

also tackle o�ine problems. Finally, the design of Pitts-

burgh classi�er systems involves decisions as to how an

entire solution should be represented and how solutions

should be recombined – a task which can be daunting.

In contrast, the design of Michigan classi�er systems

involves simpler decisions about how a rule should be

represented and how two rules should be recombined.

Accordingly, while the representation of solutions and

its related issues play a key role in Pittsburgh mod-

els, Michigan models easily work with several types of

representations (Lanzi, ; Lanzi & Perrucci, ;

Mellor,).

Structure of the Learning System
Michigan and Pittsburgh classi�er systems were both

inspired by the work of Holland on the broadcast

language (Holland,). However, their structures

re�ect two di�erent ways to model machine learn-

ing: as an adaptation process in the case of Michi-

gan classi�er systems; and as an optimization prob-

lem, in the case of Pittsburgh classi�er systems.�us,

the two models, originating from the same idea (Hol-

land’s broadcast language), have radically di�erent

structures.

 C Classifier Systems

Michigan Classifier Systems
Holland’s classi�er systems de�ne a general paradigm

for genetics-based machine learning. �e description

in Holland and Reitman () provides a list of prin-

ciples for online learning through adaptation. Over

the years, such principles have guided researchers who

developed several models of Michigan classi�er sys-

tems (Butz, ; Wilson, , ,) and applied

them to a large variety of domains (Bull, ; Lanzi &

Riolo, ; Lanzi et al.,).�ese models extended

and improved Holland’s original ideas, but kept all

the ingredients of the original recipe: a population of

classi�ers, which represents the current system knowl-

edge; a performance component, which is responsi-

ble for the short-term behavior of the system; a credit

assignment (or reinforcement) component, which dis-

tributes the incoming reward among the classi�ers; and

a rule discovery component, which applies a genetic

algorithm to the classi�ers to improve the current

knowledge.

Knowledge Representation
In Michigan classi�er systems, knowledge is repre-

sented by a population of classi�ers. Each classi�er is

usually de�ned by four main parameters: the condition,
which identi�es some part of the problem domain; the

action, which represents a decision on the subproblem
identi�ed by its condition; the prediction or strength,
which estimates the amount of reward that the system

will receive if its action is performed; and �nally, the �t-
ness, which estimates how good the classi�er is in terms
of problem solution.

�e knowledge representation of Michigan classi-

�er systems is extremely �exible. Each one of the four

classi�er components can be tailored to �t the need of

a particular application, without modifying the main

structure of the system. In problems involving binary

inputs, classi�er conditions can be simply represented

using strings de�ned over the alphabet {, , #}, as done

in Holland and Reitman (), Goldberg (), and

Wilson (). In problems involving real inputs, con-

ditions can be represented as disjunctions of intervals,

similar to the ones produced by other rule learning

methods (Clark & Niblett,) Conditions can also

be represented as general-purpose symbolic expressions

(Lanzi, ; Lanzi & Perrucci,) or �rst-order

logic expressions (Mellor,). Classi�er actions are

typically encoded by a set of symbols (either binary

strings or simple labels), but continuous real-valued

actions are also available (Wilson,). Classi�er pre-

diction (or strength) is usually encoded by a parame-

ter (Goldberg, ; Holland & Reitman, ; Wilson,

). However, classi�er prediction can also be com-

puted using a parameterized function (Wilson,),

which results in solutions represented as an ensem-

ble of local approximators – similar to the ones pro-

duced in generalized reinforcement learning (Sutton &

Barto,).

Performance Component
A simpli�ed structure of Michigan classi�er systems

is shown in Fig. . We refer the reader to Goldberg

() and Holland and Reitman () for a detailed

description of the original model and to Butz ()

andWilson (, ,) for descriptions of recent

classi�er system models.

A classi�er system learns through trial and error

interactions with an unknown environment. �e sys-

tem and the environment interact continually. At each

time step, the classi�er system perceives the envi-

ronment through its detectors; it builds a match set
containing all the classi�ers in the population whose

conditionmatches the current sensory input.�ematch

set typically contains classi�ers that advocate contrast-

ing actions; accordingly, the classi�er system evaluates

each action in the match set, and selects an action to

be performed balancing exploration and exploitation.

�e selected action is sent to the e�ectors to be exe-

cuted in the environment; depending on the e�ect that

the action has in the environment, the system receives a

scalar reward.

Credit Assignment
�e credit assignment component (also called reinforce-
ment component, Wilson) distributes the incom-

ing reward to the classi�ers that are accountable for it.

In Holland and Reitman (), credit assignment is

implemented by Holland’s bucket brigade algorithm

(Holland,), which was partially inspired by the

credit allocation mechanism used by Samuel in his

Classifier Systems C

C

Rule Discovery Component

Perceptions

Detectors

Reward Action

Effectors

Match Set

Classifiers
matching

the current
sensory inputs

Population

Classifiers
representing
the current
knowledge

Evaluation of
the actions in
the match set

Credit Assignment
Component

1 2

3

Classifier Systems. Figure . Simplified structure of a Michigan classifier system. The system perceives the environment

through its detectors and () it builds the match set containing the classifiers in the population that match the current

sensory inputs; then () all the actions in the match set are evaluated, and () an action is selected to be performed in

the environment through the effectors

pioneering work on learning checkers-playing pro-

grams (Samuel,).

In the early years, classi�er systems and the bucket

brigade algorithm were con�ned to the evolutionary

computation community. �e rise of reinforcement

learning increased the connection between classi�er

systems and temporal di�erence learning (Sutton, ;

Sutton & Barto,): in particular, Sutton ()

showed that the bucket brigade algorithm is a kind

of temporal di�erence learning, and similar connec-

tions were also made in Watkins () and Dorigo

and Bersini (). Later, the connection between

classi�er systems and reinforcement learning became

tighter with the introduction of Wilson’s XCS (),

in which credit assignment is implemented by a mod-

i�cation of Watkins Q-learning (Watkins,). As

a consequence, in recent years, classi�er systems are

o�en presented as methods of reinforcement learn-

ing with genetics-based generalization (Bull & Kovacs,

).

Rule Discovery Component
�e rule discovery component is usually implemented
by a genetic algorithm that selects classi�ers in the

population with probability proportional to their �t-

ness; it copies the selected classi�ers and applies genetic

operators (usually crossover and mutation) to the o�-

spring classi�ers; the new classi�ers are inserted in the

population, while other classi�ers are deleted to keep

the population size constant.

Classi�ers selection plays a central role in rule dis-

covery. Classi�er selection depends on the de�nition

of classi�er �tness and on the subset of classi�ers con-

sidered during the selection process. In Holland and

Reitman (), classi�er �tness coincides with clas-

si�er prediction, while selection is applied to all the

classi�ers in the population. �is approach results in

a pressure toward classi�ers predicting high returns,

but typically tends to produce overly general solutions.

To avoid such solutions, Wilson () introduced the

XCS classi�er system in which accuracy-based �tness is

 C Classifier Systems

coupled with a niched genetic algorithm.�is approach

results in a pressure toward accurate maximally gen-

eral classi�ers, and has made XCS the most successful

classi�er system to date.

Pittsburgh Classifier Systems
�e idea underlying the development of Pittsburgh clas-

si�er systems was to show that interesting behaviors

could be evolved using a simpler model than the one

proposed by Holland with Michigan classi�er systems

(Holland, ; Holland & Reitman,).

In Pittsburgh classi�er systems, each individual is a

set of rules that encodes an entire candidate solution;

each rule has a �xed length, but each rule set (each indi-

vidual) usually contains a variable number of rules.�e

genetic operators, crossover and mutation, are tailored

to the rule-based, variable-length representation. �e

individuals in the population compete among them-

selves, following the selection-recombination-mutation

cycle that is typical of genetic algorithms (Goldberg,

; Holland,). While in Michigan classi�er sys-

tems individuals in the population (the single rules)

cooperate, in Pittsburgh classi�er systems there is no

cooperation among individuals (the rule sets), so that

the genetic algorithm operation is simpler for Pitts-

burghmodels. However, as Pittsburgh classi�er systems

explore a much larger search space, they usually require

more computational resources than Michigan classi�er

systems.

�e pseudo-code of a Pittsburgh classi�er system is

shown in Fig. . At �rst, the individuals in the popu-

lation are randomly initialized (line). At time t, the

individuals are evaluated by an external critic, which

returns a performance measure that the genetic algo-

rithm exploits to compute the �tness of individuals

(lines and). Following this, selection (line),

recombination, and mutation (line) are applied to

the individuals in the population – as done in a typ-

ical genetic algorithm. �e process stops when a ter-

mination criterion is met (line), usually when an

appropriate solution is found.

�e design of Pittsburgh classi�er systems follows

the typical steps of genetic algorithm design, which

means deciding how a rule set should be represented,

what genetic operators should be applied, and how

the �tness of a set of rules should be calculated. In

addition, Pittsburgh classi�er systems need to address

the bloat phenomenon (Tackett,) that arises with
any variable-sized representation, like the rule sets

evolved by Pittsburgh classi�er systems. Bloat can be

de�ned as the growth of individuals without an actual

�tness improvement. In Pittsburgh classi�er systems,

bloat increases the size of candidate solutions by adding

useless rules to individuals, and it is typically limited

by introducing a parsimony pressure that discourages

large rule sets (Bassett & de Jong,). Alterna-

tively, Pittsburgh classi�er systems can be combined

with multi-objective optimization, so as to separate the

maximization of the rule set performance and the min-

imization of the rule set size.

Examples of Pittsburgh classi�er systems include

SAMUEL (Grefenstette, Ramsey, & Schultz,), the

GeneticAlgorithmBatch-Incremental Concept Learner

(GABIL) (de Jong & Spears,), GIL (Janikow,),

GALE (Llorà,), and GAssist (Bacardit,).

1. t := 0
2. Initialize the population P(t)
3. Evaluate the rules sets in P(t)
4. While the termination condition is not satisfied
5. Begin
6. Select the rule sets in P(t) and generate Ps(t)
7. Recombine and mutate the rule sets in Ps(t)
8. P(t+1) := Ps(t)
9. t := t+1
10. Evaluate the rules sets in P(t)
11. End

Classifier Systems. Figure . Pseudo-code of a Pittsburgh classifier system

Classifier Systems C

C

Applications
Classi�er systems have been applied to a large vari-

ety of domains, including computational economics

(e.g., Arthur, Holland, LeBaron, Palmer, & Talyer,

), autonomous robotics (e.g., Dorigo & Colom-

betti,), classi�cation (e.g., Barry, Holmes, & Llora,

), �ghter aircra� maneuvering (Bull, ; Smith,

Dike, Mehra, Ravichandran, & El-Fallah,), and

many others. Reviews of classi�er system applications

are available in Lanzi et al. (), Lanzi and Riolo

(), and Bull ().

Programs and Data
�e major sources of information about classi�er sys-

tems are the LCSWeb maintained by Alwyn Barry,

which can be reached through, and www.learning-

classi�er-systems.org_maintained by Xavier Llorà.

Several implementations of classi�er systems are

freely available online. �e �rst standard implemen-

tation of Holland’s classi�er system in Pascal was

described in Goldberg (), and it is available at

http://www.illigal.org/; a C version of the same imple-

mentation, developed by Robert E. Smith, is available

at http://www.etsimo.uniovi.es/�p/pub/EC/CFS/src/.

Another implementation of an extension of Holland’s

classi�er system in C by Rick L. Riolo is avail-

able at http://www.cscs.umich.edu/So�ware/Contents.

html. Implementations of Wilson’s XCS () are dis-

tributed by Alwyn Barry at the LCSWeb, by Martin

V. Butz (at www.illigal.org), and by Pier Luca Lanzi

(at xcslib.sf.net). Among the implementations of Pitts-

burgh classi�er systems, the Samuel system is avail-

able from Alan C. Schultz at http://www.nrl.navy.mil/;

Xavier Llorà distributes GALE (Genetic and Arti�cial

Life Environment) a �ne-grained parallel genetic algo-

rithm for data mining at www.illigal.org/xllora.

Cross References
7Credit Assignment
7Genetic Algorithms
7Reinforcement Learning
7Rule Learning

Recommended Reading
Arthur, B. W., Holland, J. H., LeBaron, B., Palmer, R., & Talyer, P.

(). Asset pricing under endogenous expectations in an arti-
ficial stock market. Technical Report, Santa Fe Institute.

Bacardit i Peñarroya, J. (). Pittsburgh genetic-based machine
learning in the data mining era: Representations, generaliza-
tion, and run-time. PhD thesis, Computer Science Department,
Enginyeria i Arquitectura La Salle Universitat Ramon Llull,

Barcelona.

Barry, A. M., Holmes, J., & Llora, X. (). Data mining using learn-

ing classifier systems. In L. Bull (Ed.), Applications of learning
classifier systems, studies in fuzziness and soft computing (Vol.
, pp. –). Pagg: Springer.

Bassett, J. K., & de Jong, K. A. (). Evolving behaviors for

cooperating agents. In Proceedings of the twelfth international
symposium on methodologies for intelligent systems, LNAI (Vol.
). Berlin: Springer.

Booker, L. B. (). Triggered rule discovery in classifier systems.

In J. D. Schaffer (Ed.), Proceedings of the rd international con-
ference on genetic algorithms (ICGA). San Francisco: Morgan
Kaufmann.

Bull, L. (Ed.). (). Applications of learning classifier systems, stud-
ies in fuzziness and soft computing (Vol.). Berlin: Springer,
ISBN ----.

Bull, L., & Kovacs, T. (Eds.). (). Foundations of learning classi-
fier systems, studies in fuzziness and soft computing (Vol.).
Berlin: Springer, ISBN ----.

Butz, M. V. (). Anticipatory learning classifier systems. Genetic
algorithms and evolutionary computation. Boston, MA: Kluwer

Academic Publishers.

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, (), –.
de Jong, K. (). Learning with genetic algorithms: An overview.

Machine Learning, (–), –.
de Jong, K. A., & Spears, W. M. (). Learning concept classifica-

tion rules using genetic algorithms. In Proceedings of the inter-
national joint conference on artificial intelligence (pp. –).
San Francisco: Morgan Kaufmann.

Dorigo, M., & Bersini, H. (). A comparison of Q-learning and

classifier systems. In D. Cliff, P. Husbands, J.-A. Meyer, &

S. W. Wilson (Eds.), From animals to animats : Proceedings
of the third international conference on simulation of adaptive
behavior (pp. –). Cambridge, MA: MIT Press.

Dorigo, M., & Colombetti, M. (). Robot shaping: An experiment
in behavior engineering. Cambridge, MA: MIT Press/Bradford
Books.

Goldberg, D. E. (). Genetic algorithms in search, optimization,
and machine learning. Reading, MA: Addison-Wesley.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. () Learning

sequential decision rules using simulation models and compe-

tition. Machine Learning, (), –.
Holland, J. () Escaping brittleness: The possibilities of general-

purpose learning algorithms applied to parallel rule-based sys-

tems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning, an artificial intelligence approach
(Vol. II, Chap.) (pp. –). San Francisco: Morgan

Kaufmann.

Holland, J. H. (). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press (Reprinted by the

MIT Press in).

Holland, J. H. (). Adaptation. Progress in Theoretical Biology, ,
–.

Holland, J. H., & Reitman, J. S. (). Cognitive systems based on

adaptive algorithms. In D. A. Waterman & F. Hayes-Roth (Eds.),

Pattern-directed inference systems. New York: Academic Press.

www.learning-classi�er-systems.org_

 C Clause

(Reprinted from Evolutionary computation. The fossil record.

D. B. Fogel (Ed.), IEEE Press ()).

Janikow, C. Z. (). A knowledge-intensive genetic algo-

rithm for supervised learning. Machine Learning, (–),
–.

Lanzi, P. L. (). Mining interesting knowledge from data with the

XCS classifier system. In L. Spector, E. D. Goodman, A. Wu,

W. B. Langdon, H.-M. Voigt, M. Gen, et al. (Eds.), Proceedings of
the genetic and evolutionary computation conference (GECCO-
) (pp. –). San Francisco: Morgan Kaufmann.

Lanzi, P. L. (). Learning classifier systems: A reinforcement

learning perspective. In L. Bull & T. Kovacs (Eds.), Founda-
tions of learning classifier systems, studies in fuzziness and soft
computing (pp. –). Berlin: Springer.

Lanzi, P. L., & Perrucci, A. (). Extending the representation

of classifier conditions part II: From messy coding to S-

expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,

V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the
genetic and evolutionary computation conference (GECCO)
(pp. –). Orlando, FL: Morgan Kaufmann.

Lanzi, P. L., & Riolo, R. L. (). Recent trends in learning classifier

systems research. In A. Ghosh & S. Tsutsui (Eds.), Advances in
evolutionary computing: Theory and applications (pp. –).
Berlin: Springer.

Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.). (). Learn-
ing classifier systems: From foundations to applications. Lecture
notes in computer science (Vol.). Berlin: Springer.

Llorá, X. (). Genetics-based machine learning using fine-grained
parallelism for data mining. PhD thesis, Enginyeria i Arquitec-
tura La Salle, Ramon Llull University, Barcelona.

Mellor, D. (). A first order logic classifier system. In H. Beyer

(Ed.), Proceedings of the conference on genetic and evolu-
tionary computation (GECCO ’), (pp. –). New York:
ACM Press.

Quinlan, J. R., & Cameron-Jones, R. M. (). Induction of logic

programs: FOIL and related systems. New Generation Comput-
ing, (&), –.

Samuel, A. L. (). Some studies in machine learning using the

game of checkers. In E. A. Feigenbaum & J. Feldman (Eds.),

Computers and thought. New York: McGraw-Hill.
Smith, R. E., Dike, B. A., Niehra, R. K., Ravichandran, B., & El-

Fallah, A. (). Classifier systems in combat: Two-sided

learning of maneuvers for advanced fighter aircraft. Com-
puter Methods in Applied Mechanics and Engineering, (–),
–.

Smith, S. F. () A learning system based on genetic adaptive
algorithms. Doctoral dissertation, Department of Computer
Science, University of Pittsburgh.

Smith, S. F. (). Flexible learning of problem solving heuristics

through adaptive search. In Proceedings of the eighth interna-
tional joint conference on artificial intelligence (pp. –).
Los Altos, CA: Morgan Kaufmann.

Sutton, R. S. (). Learning to predict by the methods of temporal

differences. Machine Learning, , –.
Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An

introduction. Cambridge, MA: MIT Press.
Tackett, W. A. (). Recombination, selection, and the genetic

construction of computer programs. Unpublished doctoral dis-
sertation, University of Southern California.

Watkins, C. (). Learning from delayed rewards. PhD thesis,

King’s College.

Wilson, S. W. (). Classifier fitness based on accuracy. Evolution-
ary Computation, (), –.

Wilson, S. W. (). Classifiers that approximate functions. Natural
Computing, (–), –.

Wilson, S. W. (). “Three architectures for continuous action”

learning classifier systems. International workshops, IWLCS

–, revised selected papers. In T. Kovacs, X. Llorà,

K. Takadama, P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.),

Lecture notes in artificial intelligence Vol. (pp. –).
Berlin: Springer.

Clause

A clause is a logical rule in a7logic program. Formally,
a clause is a disjunction of (possibly negated) literals,

such as

grandfather(x, y) ∨ ¬father(x, z) ∨ ¬parent(z, y).

In the logic programming language7Prolog this clause
is written as

grandfather(X,Y) :- father(X,Z),
parent(Z,Y).

�e part to the le� of :- (“if ”) is the head of the clause,
and the right part is its body. Informally, the clause
asserts the truth of the head given the truth of the body.

A clause with exactly one literal in the head is called

a Horn clause or de�nite clause; logic programs mostly
consist of de�nite clauses. A clause without a body is

also called a fact; a clause without a head is also called
a denial, or a query in a proof by refutation.�e clause
without head or body is called the empty clause: it signi-
�es inconsistency or falsehood and is denoted ◻. Given
a set of clauses, the resolution inference rule can be used
to deduce logical consequences and answer queries (see

7First-Order Logic).
In machine learning, clauses can be used to express

classi�cation rules for structured individuals. For exam-

ple, the following de�nite clause classi�es a molecular

compound as carcinogenic if it contains a hydrogen

atom with charge above a certain threshold.

carcinogenic(M) :- atom(M,A1),
element(A1,h),
charge(A1,C1),
geq(C1,0.168).

Cluster Optimization C

C

Cross References
7First-Order Logic
7Inductive Logic Programming
7Learning from Structured Data
7Logic Program
7Prolog

Clause Learning

In 7speedup learning, clause learning is a 7deductive
learning technique used for the purpose of7intelligent
backtracking in satis�ability solvers.�e approach ana-

lyzes failures at backtracking points and derives clauses

that must be satis�ed by the solution. �e clauses are

added to the set of clauses from the original satis�abil-

ity problem and serve to prune new search nodes that

violate them.

Click-Through Rate (CTR)

CTRmeasures the success of a ranking of search results,

or advertisement placing. Given the number of impres-
sions, the number of times a web result or ad has been
displayed, and the number of clicks, the number of users
who clicked on the result/advertisement, CTR is the

number of clicks divided by the number of impressions.

Clonal Selection

�e clonal selection theory (CST) is the theory used

to explain the basic response of the adaptive immune

system to an antigenic stimulus. It establishes the idea

that only those cells capable of recognizing an antigenic

stimulus will proliferate, thus being selected against

those that do not. Clonal selection operates on both

T-cells and B-cells. When antibodies on a B-cell bind

with an antigen, the B-cell becomes activated and begins

to proliferate. New B-cell clones are produced that are

an exact copy of the parent B-cell, but then they undergo

somatic hypermutation and produce antibodies that are

speci�c to the invading antigen.�e B-cells, in addition

to proliferating or di�erentiating into plasma cells, can
di�erentiate into long-lived Bmemory cells. Plasma cells
produce large amounts of antibody which will attach

themselves to the antigen and act as a type of tag for
T-cells to pick up on and remove from the system.�is

whole process is known as a�nity maturation.�is pro-
cess forms the basis of many arti�cial immune system

algorithms such as AIRS and aiNET.

Closest Point

7Nearest Neighbor

Cluster Editing

�e Cluster Editing problem is almost equivalent to

Correlation Clustering on complete instances.�e idea

is to obtain a graph that consists only of cliques.

Although Cluster Deletion requires us to delete the

smallest number of edges to obtain such a graph, in

Cluster Editing we are permitted to add as well as

remove edges.�e �nal variant is Cluster Completion

in which edges can only be added: each of these prob-

lems can be restricted to building a speci�ed number of

cliques.

Cluster Ensembles

Cluster ensembles are an unsupervised 7ensemble
learning method.�e principle is to create multiple dif-

ferent clusterings of a dataset, possibly using di�erent

algorithms, then aggregate the opinions of the di�erent

clusterings into an ensemble result.�e �nal ensemble

clustering should be in theory more reliable than the

individual clusterings.

Cluster Optimization

7Evolutionary Clustering

 C Clustering

Clustering

Clustering is a type of7unsupervised learning in which
the goal is to partition a set of 7examples into groups
called clusters. Intuitively, the examples within a clus-

ter are more similar to each other than to examples

from other clusters. In order to measure the similar-

ity between examples, clustering algorithms use various

distortion or 7distance measures.�ere are two major
types clustering approaches: generative and discrimi-

native. �e former assumes a parametric form of the

data and tries to �nd the model parameters that max-

imize the probability that the data was generated by

the chosen model.�e latter represents graph-theoretic

approaches that compute a similarity matrix de�ned

over the input data.

Cross References
7Categorical Data Clustering
7Cluster Editing
7Cluster Ensembles
7Clustering from Data Streams
7Constrained Clustering
7Consensus Clustering
7Correlation Clustering
7Cross-Language Document Clustering
7Density-Based Clustering
7Dirichlet Process
7Document Clustering
7Evolutionary Clustering
7Graph Clustering
7k-Means Clustering
7k-Mediods Clustering
7Model-Based Clustering
7Partitional Clustering
7Projective Clustering
7Sublinear Clustering

Clustering Aggregation

7Consensus Clustering

Clustering Ensembles

7Consensus Clustering

Clustering from Data Streams

João Gama

University of Porto, Porto, Portugal

Definition
7Clustering is the process of grouping objects into dif-
ferent groups, such that the common properties of data

in each subset is high, and between di�erent subsets is

low. �e data stream clustering problem is de�ned as

to maintain a consistent good clustering of the sequence
observed so far, using a small amount of memory and
time.�e issues are imposed by the continuous arriv-
ing data points, and the need to analyze them in real

time. �ese characteristics require incremental clus-

tering, maintaining cluster structures that evolve over

time. Moreover, the data stream may evolve over time

and new clusters might appear, others disappear re�ect-

ing the dynamics of the stream.

Main Techniques
Major clustering approaches in data stream cluster anal-

ysis include:

● Partitioning algorithms: construct a partition of a
set of objects into k clusters, that minimize some
objective function (e.g., the sum of squares distances

to the centroid representative). Examples include

k-means (Farnstrom, Lewis, & Elkan,), and
k-medoids (Guha, Meyerson, Mishra, Motwani, &
O’Callaghan,)

● Microclustering algorithms: divide the clustering
process into two phases, where the �rst phase is

online and summarizes the data stream in local

models (microclusters) and the second phase gen-

erates a global cluster model from the micro-

clusters. Examples of these algorithms include

BIRCH (Zhang, Ramakrishnan, & Livny,) and

CluStream (Aggarwal, Han, Wang, & Yu,)

Basic Concepts
A powerful idea in clustering from data streams is the

concept of cluster feature,CF. A cluster feature, ormicro-
cluster, is a compact representation of a set of points.
A CF structure is a triple (N,LS, SS), used to store the
su�cient statistics of a set of points:

Clustering from Data Streams C

C

● N is the number of data points
● LS is a vector, of the same dimension of data points,
that store the linear sum of the N points

● SS is a vector, of the same dimension of data points,
that store the square sum of the N points

�e properties of cluster features are:

● Incrementality
If a point x is added to the cluster, the su�cient
statistics are updated as follows:

LSA ← LSA + x,

SSA ← SSA + x,

NA ← NA + .

● Additivity
If A and A are disjoint sets, merging them is equal
to the sum of their parts. �e additive property

allows us to merge subclusters incrementally.

LSC ← LSA + LSB,
SSC ← SSA + SSB,
NC ← NA +NB.

A CF entry has su�cient information to calculate

the norms

L =
n

∑
i=

∣xai − xbi ∣,

L =

¿
ÁÁÀ

n

∑
i=

(xai − xbi)

and basic measures to characterize a cluster.

● Centroid, de�ned as the gravity center of the cluster:

X⃗ = LS
N
.

● Radius, de�ned as the average distance from mem-
ber points to the centroid:

R =

√
∑N (x⃗i − X⃗)

N
.

Partitioning Clustering
k-means is the most widely used clustering algorithm.
It constructs a partition of a set of objects into k clus-
ters that minimize some objective function, usually a

squared error function, which imply round-shape clus-

ters.�e input parameter k is �xed and must be given
in advance that limits its real applicability to streaming

and evolving data.

Farnstrom et al. () proposed a single pass
k-means algorithm. �e main idea is to use a bu�er
where points of the dataset are kept compressed. �e

data stream is processed in blocks. All available space

on the bu�er is �lled with points from the stream. Using

these points, �nd k centers such that the sum of dis-
tances from data points to their closest center is mini-

mized. Only the k centroids (representing the clustering
results) are retained, with the corresponding k cluster
features. In the following iterations, the bu�er is initial-

ized with the k-centroids, found in previous iteration,
weighted by the k cluster features, and incoming data
points from the stream.�eVery Fast k-means (VFKM)
algorithm (Domingos & Hulten,) uses the Hoe�d-

ing bound to determine the number of examples needed

in each step of a k-means algorithm. VFKM runs as a
sequence of k-means runs, with increasing number of
examples until the Hoe�ding bound is satis�ed.

Guha et al. () present an analytical study on

k-median clustering data streams.�e proposed algo-
rithmmakes a single pass over the data stream and uses

small space. It requires O(nk) time and O(nє) space
where k is the number of centers, n is the number of
points, and є < .�ey have proved that any k-median
algorithm that achieves a constant factor approximation

cannot achieve a better run time than O(nk).

Micro Clustering
�e idea of dividing the clustering process into two lay-

ers, where the �rst layer generates local models (micro-

clusters) and the second layer generates global models

from the local ones, is a powerful idea that has been used

elsewhere.

�e BIRCH system (Zhang et al.,) builds a hier-

archical structure of data, the CF-tree, where each node

contains a set of cluster features.�ese CF’s contain the

su�cient statistics describing a set of points in the data

set, and all information of the cluster features below in

 C Clustering from Data Streams

the tree.�e system requires two user de�ned param-

eters: B the branch factor or the maximum number
of entries in each non-leaf node; and T the maximum
diameter (or radius) of any CF in a leaf node.�e max-

imum diameter T de�nes the examples that can be
absorbed by a CF. Increasing T, more examples can be
absorbed by a micro-cluster and smaller CF-Trees are

generated (Fig.).

When an example is available, it traverses down the

current tree from the root it �nds the appropriate leaf.

At each non-leaf node, the example follow the closest-
CFpath,with respect to normsL orL. If the closest-CF
in the leaf cannot absorb the example, make a new

CF entry. If there is no room for new leaf, split the par-

ent node. A leaf node might be expanded due to the

constraints imposed by B and T.�e process consists
of taking the two farthest CFs and creates two new leaf

nodes. When traversing backup the CFs are updated.

Monitoring the Evolution of the Cluster Structure

�e CluStream Algorithm (Aggarwal et al.,) is
an extension of the BIRCH system designed for data

streams. Here, the CFs include temporal information:

the time-stamp of an example is treated as a feature. CFs

are initialized o�ine, using a standard k-means, with a
large value for k. For each incoming data point, the dis-
tance to the centroids of existing CFs are computed.�e

data point is absorbed by an existing CF if the distance

to the centroid falls within the maximum boundary of
the CF.�e maximum boundary is de�ned as a factor
t of the radius deviation of the CF; otherwise, the data
point starts a new micro-cluster.

CluStream can generate approximate clusters for

any user de�ned time granularity. �is is achieved by

storing the CFT at regular time intervals, referred to as

snapshots. Suppose the user wants to �nd clusters in

the stream based on a history of length h, the o�-line

Root node
CF2

CF2
CF2 CF2

CF3

CF2

CFb

CFb

CFb

CF1

CF1
CF1 CF1

CF1

Noon-root node

Leaf nodes

Clustering from Data Streams. Figure . The clustering feature tree in BIRCH. B is the maximum number of CFs in a level

of the tree

Natural tilted time window

1 Year
12 Months

1 Month
 31 days

1 Day
24 Hours

1Hour
4 Quar

t

Clustering from Data Streams. Figure . The figure presents anatural tilted timewindow. The most recent data is stored

with high-detail, older data is stored in a compressed way. The degree of detail decreases with time

Coevolution C

C

component can analyze the snapshots stored at the

snapshots t, the current time, and (t − h) by using the
addictive property of CFT. An important problem is

when to store the snapshots of the current set of micro-

clusters. For example, the natural time frame (Fig.)

stores snapshots each quarter, four quarters are aggre-

gated in hours, h are aggregated in days, etc. �e

aggregation level is domain-dependent and explores the

addictive property of CFT.

Tracking the Evolution of the Cluster Structure

Promising research lines are tracking change in clus-

ters. Spiliopoulou, Ntoutsi, �eodoridis, and Schult

() present system MONIC, for detecting and track-
ing change in clusters. MONIC assumes that a cluster is

an object in a geometric space. It encompasses changes

that involve more than one cluster, allowing for insights

on cluster change in the whole clustering. �e tran-

sition tracking mechanism is based on the degree of

overlapping between the two clusters. �e concept of

overlap between two clusters, X and Y, is de�ned as the
normed number of common records weighted with the

age of the records. Assume that cluster X was obtained

at time t and cluster Y at time t.�e degree of over-
lapping between the two clusters is given by: overlap
(X,Y) = ∑a∈X∩Y age(a, t)/∑x∈X age(x, t).�e degree
of overlapping allows inferring properties of the under-

lying data stream. Cluster transition at a given time

point is a change in a cluster discovered at an ear-

lier timepoint.MONIC considers transitions as Internal

and external transitions, that re�ect the dynamics of the

stream. Examples of cluster transitions include: the clus-

ter survives, the cluster is absorbed; a cluster disappears;

a new cluster emerges (Fig.).

Recommended Reading
Aggarwal, C., Han, J., Wang, J., & Yu, P. (). A framework for

clustering evolving data streams. In Proceedings of the th
international conference on very large data bases (pp. –). San
Mateo, MA: Morgan Kaufmann.

Domingos, P., & Hulten, G. (). A general method for scaling up

machine learning algorithms and its application to clustering.

In Proceedings of international conference on machine learning
(pp. –). San Mateo, MA: Morgan Kaufmann.

Farnstrom, F., Lewis, J., & Elkan, C. (). Scalability for clustering

algorithms revisited. SIGKDD Explorations, (), –.
Guha, S., Meyerson, A., Mishra, N., Motwani, R., & O’Callaghan, L.

(). Clustering data streams: Theory and practice. IEEE
Transactions on Knowledge and Data Engineering, (),
–.

Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., & Schult, R. ().

Monic: Modeling and monitoring cluster transitions. In Pro-
ceedings of ACM SIGKDD international conference on knowledge
discovery and data mining (pp. –). New York: ACM Press.

Zhang, T., Ramakrishnan, R., & Livny, M. (). Birch: An efficient

data clustering method for very large databases. In Proceedings
of ACM SIGMOD international conference on management of
data (pp. –). New York: ACM Press.

Clustering of Nonnumerical Data

7Categorical Data Clustering

Clustering with Advice

7Correlation Clustering

Clustering with Constraints

7Correlation Clustering

Clustering with Qualitative
Information

7Correlation Clustering

Clustering with Side Information

7Correlation Clustering

CN

7Rule Learning

Co-Training

7Semi-Supervised Learning

Coevolution

7Coevolutionary Learning

 C Coevolutionary Computation

Coevolutionary Computation

7Coevolutionary Learning

Coevolutionary Learning

R. PaulWiegand

University of Central Florida, Orlando, FL, USA

Synonyms
Coevolution; Coevolutionary computation

Definition
Coevolutionary learning is a form of evolutionary

learning (see 7Evolutionary Algorithms) in which the
�tness evaluation is based on interactions between

individuals. Since the evaluation of an individual is

dependent on interactions with other evolving entities,

changes in the set of entities used for evaluation can

a�ect an individual’s ranking in a population. In this

sense, coevolutionary �tness is subjective, while �tness
in traditional evolutionary learning systems typically

uses an objective performance measure.

Motivation and Background
Ideally, coevolutionary learning systems focus on rele-

vant areas of a search space bymaking adaptive changes

between interacting, concurrently evolving parts.�is

can be particularly helpful when problem spaces are

very large – in�nite search spaces in particular. Addi-

tionally, coevolution is useful when applied to problems

when no intrinsic objective measure exists.�e interac-

tive nature of evaluation makes them natural methods

to consider for problems such as the search for game-

playing strategies (Fogel,). Finally, some coevolu-

tionary systems appear natural for search spaces which

contain certain kinds of complex structures (Potter,

; Stanley,), since search on smaller compo-

nents in a larger structure can be emphasized. In fact,

there is reason to believe that coevolutionary systems

may be well suited for uncovering complex structures

within a problem (Bucci & Pollack,).

Still, the dynamics of coevolutionary learning can

be quite complex, and a number of pathologies o�en

plague naïve users. Indeed, because of the subjective

nature of coevolution, it can be easy to apply a par-

ticular coevolutionary learning system without a clear

understanding of what kind of solution one expects a

coevolutionary algorithm to produce. Recent theoreti-

cal analysis suggests that a clear concept of solution and

a careful implementation of an evaluation process con-

sistent with this concept can produce a coevolutionary

system capable of addressing many problems (de Jong

& Pollack, ; Ficici, ; Panait, ; Wiegand,

). Accordingly, a great deal of research in this area

focuses on evaluation and progress measurement.

Structure of Learning System
Coevolutionary learning systems work in much the

same way that an evolutionary learning system works:

individuals encode some aspect of potential solutions

to a problem, those representatives are altered during

search using genetic-like operators such as mutation

and crossover, and the search is directed by select-

ing better individuals as determined by some kind of

�tness assessment. �ese heuristic methods gradually

re�ne solutions by repeatedly cycling through such

steps, using the ideas of heredity and survival of the

�ttest to produce new generations of individuals, with

increased quality of solution. Just as in traditional evo-

lutionary computation, there aremany choices available

to the engineer in designing such systems.�e reader is

referred to the chapters relating to evolutionary learning

for more details.

However, there are some fundamental di�erences

between traditional evolution and coevolution. In

coevolution, measuring �tness requires evaluating the

interaction between multiple individuals. Interacting

individuals may reside in the same population or in

di�erent populations; the interactive nature of coevo-

lution evokes notions of cooperation and competition

in entirely new ways; the choices regarding how to

best conduct evaluation of these interactions for the

purposes of selection are particularly important; and

there are unique coevolutionary issues surrounding

representation. In addition, because of its interactive

nature, the dynamics of coevolution can lead to some

well-known pathological behaviors, and particularly

careful attention to implementation choices to avoid

such conditions is generally necessary.

Multiple Versus Single Population Approaches

Coevolution can typically be broadly classi�ed as to

whether interacting individuals reside in di�erent pop-

ulations or in the same population.

Coevolutionary Learning C

C

In the case of multipopulation coevolution, mea-

suring �tness requires evaluating how individuals in

one population interact with individuals in another.

For example, individuals in each population may rep-

resent potential strategies for particular players of a

game, they may represent roles in a larger ecosystem

(e.g., predators and prey), or they may represent com-

ponents that are �tted into a composite assembly with

other component then applied to a problem. �ough

individuals in di�erent populations interact for the pur-

poses of evaluation, they are typically otherwise inde-

pendent of one another in the coevolutionary search

process.

In single population coevolution, an individual in

the population is evaluated based on his or her inter-

action with other individuals in the same population.

Such individuals may again represent potential strate-

gies in a game, but evaluation may require them to

trade o� roles as to which player they represent in that

game. Here, individuals interact not only for evalua-

tion, but also implicitly compete with one another as

resources used in the coevolutionary search process

itself.

�ere is some controversy in the �eld as to whether

this latter type quali�es as “coevolution.” Evolution-

ary biologists o�en de�ne coevolution exclusively in

terms of multiple populations; however, in biologi-

cal systems, �tness is always subjective, while the vast

majority of computational approaches to evolutionary

learning involve objective �tness assessment – and this

subjective/objective �tness distinction creates a useful

classi�cation.

To be sure, there are fundamental di�erences

between how single population and multipopulation

learning systems behave (Ficici,). Still, single

population systems that employ subjective �tness

assessment behave a lot more like multipopulation

coevolutionary systems than like objective �tness based

evolution. Moreover, historically, the �eld has used the

term coevolution whenever �tness assessment is based

on interactions between individuals, and a large amount

of that research has involved systems with only one

population.

Competition and Cooperation

�e terms cooperative and competitive have been used to
describe aspects of coevolution learning in at least three

ways.

First and less commonly, these adjectives can

describe qualitatively observed behaviors of poten-

tial solutions in coevolutionary systems, the results of

some evolutionary process (e.g., “tit-for-tat” strategies,

Axelrod,).

Second, problems are sometimes considered to be

inherently competitive or cooperative. Indeed, game

theory provides some guidance for making such dis-

tinctions. However, since in many kinds of problems

little may be known about the actual structure of the

payo� functions involved, we may not actually be able

to classify the problem as de�nitively competitive or

cooperative.

�e �nal and by far most common use of the term

is to distinguish algorithms themselves. Cooperative

algorithms are those in which interacting individuals

succeed or fail together, while competitive algorithms

are those in which individuals succeed at the expense of

other individuals.

Because of the ambiguity of the terms, some

researchers advocate abandoning them altogether,

instead focusing distinguishing terminology on the

form a potential solution takes. For example, using the

term 7compositional coevolution to describe an algo-
rithm designed to return a solution composed of mul-

tiple individuals (e.g., a multiagent team) and using the

term7test-based coevolution to describe an algorithm
designed to return an individual who performs well

against an adaptive set of tests (e.g., sorting network).

�is latter pair of terms is a slightly di�erent, though

probably more useful distinction than the cooperative

and competitive terms.

Still, it is instructive to survey the algorithms based

on how they have been historically classi�ed.

Examples of competitive coevolutionary learning

include simultaneously learning sorting networks and

challenging data sets in a predator–prey type relation-

ship (Hillis,). Here, individuals in one population

representing potential sorting networks are awarded a

�tness score based on how well they sort opponent

data sets from the other population. Individuals in the

second population represent potential data sets whose

�tness is based on how well they distinguish opponent

sorting networks.

Competitive coevolution has also been applied to

learning game-playing strategies (Fogel, ; Rosin &

Belew,). Additionally, competition has played a

vital part in the attempts to coevolve complex agent

 C Coevolutionary Learning

behaviors (Sims,). Finally, competitive approaches

have been applied to a variety of more traditional

machine learning problems, for example, learning clas-

si�ers in one population and challenging subsets of

exemplars in the other (Paredis,).

Potter developed a relatively general framework for

cooperative coevolutionary learning, applying it �rst to

static function optimization and later to neural network

learning (Potter,). Here, each population contains

individuals representing a portion of the network, and

evolution of these components occurs almost indepen-

dently, in tandem with one another, interacting only

to be assembled into a complete network in order to

obtain �tness. �e decomposition of the network can

be static and a priori, or dynamic in the sense that com-

ponents may be added or removed during the learning

process.

Moriarty et al. take a di�erent, somewhat more

adaptive approach to cooperative coevolution of neu-

ral networks (Moriarty & Miikkulainen,). In this

case, one population represents potential network plans,
while a second is used to acquire node information.

Plans are evaluated based on how well they solve a

problem with their collaborating nodes, and the nodes

receive a share of this �tness.�us, a node is rewarded

for participating more with successful plans, and thus

receives �tness only indirectly.

Evaluation

Choices surrounding how interacting individuals in

coevolutionary systems are evaluated for the purposes

of selection are perhaps themost important choices fac-

ing an engineer employing these methods. Designing

the evaluation method involves a variety of practical

choices, as well as a broader eye to the ultimate purpose

of the algorithm itself.

Practical concerns in evaluation include determin-

ing the number of individuals with whom to interact,

how those individuals will be chosen for the interaction,

and how the selection will operate on the results of mul-

tiple interactions (Wiegand,). For example, one

might determine the �tness of an individual by pairing

him or her with all other individuals in the other pop-

ulations (or the same population for single population

approaches) and taking the average or maximum value

of such evaluations as the �tness assessment. Alterna-

tively, one may simply use the single best individual as

determined by a previous generation of the algorithm,

or a combination of those approaches. Randompairings

between individuals is also common.�is idea can be

extended to use tournament evaluation where success-

ful individuals from pairwise interactions are promoted

and further paired, assigning �tness based on how far an

individual progresses in the tournament. Many of these

methods have been evaluated empirically on a variety of

types of problems (Angeline & Pollack, ; Bull, ;

Wiegand,).

However, the designing of the evaluation method

also speaks to the broader issue of how to best

implement the desired 7solution concept, (a crite-
rion specifying which locations in the search space

are solutions and which are not) (Ficici,). �e

key to successful application of coevolutionary learn-

ing is to �rst elicit a clear and precise solution con-

cept and then design an algorithm (an evaluation

method in particular) that implements such a concept

explicitly.

A successful coevolutionary learner capable of

achieving reliable progress toward a particular solution

concept o�enmakes use of an archive of individuals and

an update rule for that archive that insists the distance

to a particular solution concept decrease with every

change to the archive. For example, if one is interested

in �nding game strategies that satisfy Nash equilibrium

constraints, one might consider comparing new indi-

viduals to an archive of potential individual strategies

found so far that together represent a potential Nash

mixed strategy (Ficici,). Alternatively, if one is

interested inmaximizing the sum of an individual’s out-

comes over all tests, onemay likewise employ an archive

of discovered tests that candidate solutions are able to

solve (de Jong,).

It is useful to note that many coevolutionary

learning problems are multiobjective in nature. �at

is, 7underlying objectives may exist in such prob-
lems, each creating a di�erent ranking for individuals

depending on the set of tests being considered during

evaluation (Bucci & Pollack,).�e set of all possi-

ble underlying objectives (were it known) is su�cient to

determine the outcomes on all possible tests. A careful

understanding of this can yield approaches that create

Coevolutionary Learning C

C

ideal andminimal evaluation sets for such problems (de

Jong & Pollack,).

By acknowledging the link between multiobjective

optimization and coevolutionary learning, a variety of

evaluation and selection methods based on notions of

multiobjective optimization have been employed. For

example, there are selection methods that use Pareto

dominance between candidate solutions and their tests

as their basis of comparison (Ficici,). Addition-

ally, such methods can be combined with archive-based

approaches to ensuremonotonicity of progress toward a

Pareto dominance solution concept (de Jong & Pollack,

).

Representation

Perhaps the core representational question in coevolu-

tion is the role that an individual plays. In test-based

coevolution, an individual typically represents a poten-

tial solution to the problem or a test for a potential

solution, whereas in compositional coevolution indi-

viduals typically represent a candidate component for

a composite or ensemble solution.

Even in test-based approaches, the true solution to

the problem may be expressed as a population of indi-

viduals, rather than a single individual.�e population

may represent a mixed strategy while individuals rep-

resent potential pure strategies for a game. Engineers

using such approaches should be clear of the form of the

�nal solution produced by the algorithm, and that this

form is consistent with the prescribed solution concept.

In compositional approaches, the key issues tend

to surround about how the problem is decomposed.

In some algorithms, this decomposition is performed

a priori, having di�erent populations represent explicit

components of the problem (Potter,). In other

approaches, the decomposition is intended to be some-

what more dynamic (Moriarty & Miikkulainen, ;

Potter,). Still more recent approaches seek to har-

ness the potential of compositional coevolutionary sys-

tems to search open-ended representational spaces by

gradually complexifying the representational space dur-
ing the search (Stanley,).

In addition, a variety of coevolutionary systems

have successfully dealt with some inherent patholo-

gies by representing populations in spatial topologies,

and restricting selection and interaction using geo-

metric constraints de�ned by those topologies (Pagie,

). Typically, these systems involve overlayingmulti-

ple grids of individuals, applying selection within some

neighborhood in a given grid, and evaluating interac-

tions between individuals in di�erent grids using a simi-

lar type of cross-population neighborhood.�e bene�ts

of these systems are in part due to their ability to natu-

rally regulate loss of diversity and spread of interaction

information by explicit control over the size and shape

of these neighborhoods.

Pathologies and Remedies

Perhaps the most commonly cited pathology is the so-

called loss of gradient problem, in which one population
comes to severely dominate the others, thus creating a

situation in which individuals cannot be distinguished

from one another.�e populations become disengaged

and evolutionary progress may stall or dri� (Watson &
Pollack,). Disengagement most commonly occurs

when distinguishing individuals are lost in the evolu-

tionary process (forgetting), and the solution to this
problem typically involves somehow retaining poten-

tially informative, though possibly inferior quality indi-

viduals (e.g., archives).

Intransitivities in the reward system can cause some
coevolutionary systems to exhibit cycling dynamics
(Watson & Pollack,), where reciprocal changes

force the system to orbit some part of a potential search

space.�e remedy to this problem o�en involves creat-

ing coevolutionary systems that change in response to

traits in several other populations. Mechanisms intro-

duced to produce such e�ects include competitive �tness
sharing (Rosin & Belew,).
Another challenging problem occurs when indi-

viduals in a coevolutionary systems overspecialize on
one underlying objective at the expense of other nec-

essary objectives (Watson & Pollack,). In fact,

overspecialization can be seen as a form of disengage-

ment on some subset of underlying objectives, and

likewise the repair to this problem o�en involves retain-

ing individuals capable of making distinctions in as

many underlying objectives as possible (Bucci & Pol-

lack,).

 C Coevolutionary Learning

Finally, certain kinds of compositional coevolution-

ary learning algorithms can be prone to relative over-
generalization, a pathology in which components that
perform reasonably well in a variety of composite solu-

tions are favored over those that are part of an optimal

solution (Wiegand,). In this case, it is typically

possible to bias the evaluation process toward optimal

values by evaluating an individual in a variety of com-

posite assemblies and assigning the best objective value

found as the �tness (Panait,).

In addition to pathological behaviors in coevolu-

tion, the subjective nature of these learning systems

creates di�culty in measuring progress. Since �tness is

subjective, it is impossible to determine whether these

relative measures indicate progress or stagnation when

the measurement values do not change much. With-

out engaging some kind of external or objective mea-

sure, it is di�cult to understand what the system is

really doing. Obviously, if an objective measure exists

then it can be employed directly to measure progress

(Watson & Pollack,).

A variety of measurement methodologies have been

employed when objective measurement is not possible.

One method is to compare current individuals against

all ancestral opponents (Cli� & Miller,). Another

predator/prey based method holdsmaster tournaments
between all the best predators and all the best prey

found during the search (Nol� & Floreano,).

A similar approach suggests maintaining the best indi-

viduals from each generation in each population in a

hall of fame for comparison purposes (Rosin & Belew,
). Still other approaches seek to record the points

during the coevolutionary search in which a new dom-

inant individual was found (Stanley,). A more

recent approach advises looking at the population dif-
ferential, examining all the information from ances-
tral generations rather than simply selecting a biased

subset (Bader-Natal & Pollack,). Conversely, an

alternative idea is to consider how well the dynamics
of the best individuals in di�erent populations re�ect

the fundamental best response curves de�ned by the
problem (Popovici,).

With a clear solution concept, an appropriate evalu-

ationmechanism implementing that concept, and prac-

tical progress measures in place, coevolution can be an

e�ective and versatile machine learning tool.

Cross References
7Evolutionary Algorithms

Recommended Reading
Angeline, P., & Pollack, J. (). Competitive environments

evolve better solutions for complex tasks. In S. Forest

(Ed.), Proceedings of the fifth international conference on
genetic algorithms (pp. –). San Mateo, CA: Morgan
Kaufmann.

Axelrod, R. (). The evolution of cooperation. New York: Basic
Books.

Bader-Natal, A., & Pollack, J. (). Towards metrics and visual-

izations sensitive to Coevolutionary failures. In AAAI technical
report FS-- coevolutionary and coadaptive systems. AAAI
Fall Symposium, Washington, DC.

Bucci, A., & Pollack, J. B. (). A mathematical framework for

the study of coevolution. In R. Poli, et al. (Eds.), Foundations
of genetic algorithms VII (pp. –). San Francisco: Morgan
Kaufmann.

Bucci, A., & Pollack, J. B. (). Focusing versus intransitivity geo-

metrical aspects of coevolution. In E. Cantú-Paz, et al. (Eds.),

Proceedings of the genetic and evolutionary computation
conference (pp. –). Berlin: Springer.

Bull, L. (). Evolutionary computing in multi-agent environ-

ments: Partners. In T. Bäck (Ed.), Proceedings of the seventh
international conference on genetic algorithms (pp. –).
San Mateo, CA: Morgan Kaufmann.

Cliff, D., & Miller, G. F. (). Tracking the red queen: Measure-

ments of adaptive progress in co-evolutionary simulations. In

Proceedings of the third European conference on artificial life
(pp. –). Berlin: Springer.

de Jong, E. (). The maxsolve algorithm for coevolution. In

H. Beyer, et al. (Eds.), Proceedings of the genetic and evo-
lutionary computation conference (pp. –). New York, NY:
ACM Press.

de Jong, E., & Pollack, J. (). Ideal evaluation from coevolution.

Evolutionary Computation, , –.
Ficici, S. G. (). Solution concepts in coevolutionary algorithms.

PhD thesis, Brandeis University, Boston, MA.

Fogel, D. (). Blondie: Playing at the edge of artificial intelli-
gence. San Francisco: Morgan Kaufmann.

Hillis, D. (). Co-evolving parasites improve simulated evolution

as an optimization procedure. Artificial life II, SFI studies in the
sciences of complexity (Vol. , pp. –).

Moriarty, D., & Miikkulainen, R. (). Forming neural networks

through efficient and adaptive coevolution. Evolutionary Com-
putation, , –.

Nolfi, S., & Floreano, D. (). Co-evolving predator and prey

robots: Do “arm races” arise in artificial evolution? Artificial
Life, , –.

Pagie, L. (). Information integration in evolutionary processes.

PhD thesis, Universiteit Utrecht, the Netherlands.

Panait, L. (). The analysis and design of concurrent learning algo-
rithms for cooperative multiagent systems. PhD thesis, George
Mason University, Fairfax, VA.

Paredis, J. (). Steps towards co-evolutionary classification net-

works. In R. A. Brooks & P. Maes (Eds.), Artificial life IV,

Collective Classification C

C

proceedings of the fourth international workshop on the synthesis
and simulation of living systems (pp. –). Cambridge, MA:
MIT Press.

Popovici, E. (). An analysis of multi-population co-evolution.
PhD thesis, George Mason University, Fairfax, VA.

Potter, M. (). The design and analysis of a computational model of
cooperative co-evolution. PhD thesis, George Mason University,
Fairfax, VA.

Rosin, C., & Belew, R. (). New methods for competitive coevo-

lution. Evolutionary Computation, , –.
Sims, K. (). Evolving D morphology and behavior by com-

petition. In R. A. Brooks & P. Maes (Eds.), Artificial life IV,
proceedings of the fourth international workshop on the synthe-
sis and simulation of living systems (pp. –). Cambridge, MA:
MIT Press.

Stanley, K. (). Efficient evolution of neural networks through
complexification. PhD thesis, The University of Texas at Austin,
Austin, TX.

Watson, R., & Pollack, J. (). Coevolutionary dynamics in a min-

imal substrate. In L. Spector, et al. (Eds.), Proceedings from the
 genetic and evolutionary computation conference (pp. –
). San Francisco: Morgan Kaufmann.

Wiegand, R. P. (). An analysis of cooperative coevolutionary
algorithms. PhD thesis, George Mason University, Fairfax, VA.

Collaborative Filtering

Collaborative Filtering (CF) refers to a class of tech-
niques used in that recommend items to users that

other users with similar tastes have liked in the past. CF

methods are commonly sub-divided into neighborhood-
based and model-based approaches. In neighborhood-
based approaches, a subset of users are chosen based on

their similarity to the active user, and aweighted combi-

nation of their ratings is used to produce predictions for

this user. In contrast, model-based approaches assume

an underlying structure to users’ rating behavior, and

induce predictive models based on the past ratings of

all users.

Collection

7Class

Collective Classification

Prithviraj Sen, Galileo Namata, Mustafa Bilgic,

Lise Getoor

University of Maryland, MD, USA

Synonyms
Iterative classi�cation; Link-based classi�cation

Definition
Many real-world 7classi�cation problems can be best
described as a set of objects interconnected via links

to form a network structure.�e links in the network

denote relationships among the instances such that the

class labels of the instances are o�en correlated.�us,

knowledge of the correct label for one instance improves

our knowledge about the correct assignments to the

other instances it connects to. �e goal of collective

classi�cation is to jointly determine the correct label
assignments of all the objects in the network.

Motivation and Background
Traditionally, a major focus of machine learning is to

solve classi�cation problems: given a corpus of docu-

ments, classify each according to its topic label; given

a collection of e-mails, determine which are spam;

given a sentence, determine the part-of-speech tag for

each word; given a hand-written document, determine

the characters, etc. However, much of the work in

machine learning makes an independent and identically
distributed (IID) assumption, and focuses on predict-
ing the class label of each instance in isolation. In many

cases, however, the class labels whose values need to be

determined can bene�t if we know the correct assign-

ments to related class labels. For example, it is easier to

predict the topic of a webpage if we know the topics of

the webpages that link to it, the chance of a particular

word being a verb increases if we know that the previ-

ous word in the sentence is a noun, knowing the rest

of the characters in a word can make it easier to iden-

tify an unknown character, etc. In the last decade, many

researchers have proposed techniques that attempt to

classify samples in a joint or collective manner instead

of treating each sample in isolation, and reported signif-

icant gains in classi�cation accuracy.

 C Collective Classification

Theory/Solution
Collective classi�cation is a combinatorial optimiza-

tion problem, in which we are given a set of nodes,

V = {v, . . . , vn}, and a neighborhood function N ,
where Ni ⊆ V/{vi}, which describes the underlying
network structure. Each node in V is a random vari-
able that can take a value from an appropriate domain,

L = {l, . . . , lq}. V is further divided into two sets of
nodes: X , the nodes for which we know the correct
values (observed variables) and, Y , the nodes whose
values need to be determined. Our task is to label the

nodes yi ∈ Y with one of a small number of prede�ned
labels in L.
Even though it is only in the last decade that collec-

tive classi�cation has entered the collective conscience

of machine learning researchers, the general idea can be

traced further back (Besag,). As a result, a num-

ber of approaches have been proposed. �e various

approaches to collective classi�cation di�er in the kinds

of information they aim to exploit to arrive at the correct

classi�cation, and their mathematical underpinnings.

We discuss each in turn.

Relational Classification
Traditional classi�cation concentrates on using the

observed attributes of the instance to be classi�ed.

Relational classi�cation (Slattery & Craven,)

attempts to go a step further by classifying the instance

using not only the instance’s own attributes but also

the instance’s neighbors’ attributes. For example, in a

hypertext classi�cation domain where we want to clas-

sify webpages, not only would we use the webpage’s own

words but we would also look at the webpages link-

ing to this webpage using hyperlinks and their words to

arrive at the correct class label. Results obtained using

relational classi�cation have been mixed. For exam-

ple, even though there have been reports of classi�ca-

tion accuracy gains using such techniques, in certain

cases, these techniques can harm classi�cation accuracy

(Chakrabarti, Dom, & Indyk,).

Iterative Collective Classification with
Neighborhood Labels
A second approach to collective classi�cation is to use

the class labels assigned to the neighbor instead of using

the neighbor’s observed attributes. For example, going

back to our hypertext classi�cation example, instead of

using the linking webpage’s words we would, in this

case, use its assigned labels to classify the current web-

page. Chakrabarti et al. () illustrated the use of this

approach and reported impressive classi�cation accu-

racy gains. Neville and Jensen () further developed

the approach, and referred to the approach as iterative

classi�cation, and studied the conditions under which

it improved classi�cation performance (Jensen, Neville,

& Gallagher,). Techniques for feature construc-

tion from the neighboring labels were developed and

studied (Lu & Getoor,), along with methods that

make use of only the label information (Macskassy &
Provost,), as well as a variety of strategies for when

to commit the class labels (McDowell, Gupta, & Aha,

).

Algorithm depicts pseudo-code for a simple ver-

sion of the Iterative Classi�cation Algorithm (ICA).�e

basic premise behind ICA is extremely simple. Con-

sider a node Yi ∈ Y whose value we need to deter-
mine and suppose we know the values of all the other

nodes in its neighborhoodNi (note thatNi can contain
both observed and unobserved variables). �en, ICA

assumes that we are given a local classi�er f that takes
the values ofNi as arguments and returns a label value
for Yi from the class label set L. For local classi�ers f
that do not return a class label but a goodness/likelihood

value given a set of attribute values and a label, we

Algorithm Iterative classi�cation algorithm
IterativeClassi�cationAlgorithm (ICA)

for each node Yi ∈ Y do {bootstrapping}
{compute label using only observed nodes inNi}
compute a⃗i using only X ∩Ni
yi ← f (a⃗i)

end for
repeat {iterative classi�cation}
generate orderingO over nodes in Y
for each node Yi ∈ O do
{compute new estimate of yi}
compute a⃗i using current assignments toNi
yi ← f (a⃗i)

end for
until all class labels have stabilized or a threshold
number of iterations have elapsed

Collective Classification C

C

simply choose the label that corresponds to the max-

imum goodness/likelihood value; in other words, we

replace f with argmaxl∈L f .�is makes the local classi-
�er f extremely �exible andwe canuse anything ranging
from a decision tree to a 7support vector machine
(SVM).Unfortunately, it is rare in practice that we know

all values inNi, which is why we need to repeat the pro-
cess iteratively, in each iteration, labeling each Yi using
the current best estimates of Ni and the local classi�er
f , and continuing to do so until the assignments to the
labels stabilize.

Most local classi�ers are de�ned as functions whose

argument consists of a �xed-length vector of attribute

values. A common approach to circumvent such a

situation is to use an aggregation operator such as

count, mode, or prop, which measures the proportion

of neighbors with a given label. In Algorithm , we

use a⃗i to denote the vector encoding the values in Ni
obtained a�er aggregation. Note that in the �rst ICA

iteration, all labels yi are unde�ned and to initialize
themwe simply apply the local classi�er to the observed

attributes in the neighborhood of Yi, this is referred to
as “bootstrapping” in Algorithm .

Researchers in collective classi�cation (Macskassy&

Provost, ; McDowell et al., ; Neville & Jensen,

) have extended the simple algorithm described

above, and developed a version of Gibbs sampling that

is easy to implement and faster than traditional Gibbs

sampling approaches.�e basic idea behind this algo-

rithm is to assume, just like in the case of ICA, that we

have access to a local classi�er f that can sample for
the best label estimate for Yi given all the values for
the nodes in Ni. We keep doing this repeatedly for a
�xed number of iterations (a period known as “burn-

in”). A�er that, not only dowe sample for labels for each

Yi ∈ Y but we also maintain count statistics as to how
many times we sampled label l for node Yi. A�er col-
lecting a prede�ned number of such samples we output

the best label assignment for node Yi by choosing the
label that was assigned the maximum number of times

to Yi while collecting samples.
One of the bene�ts of both variants of ICA is

fairly simple to make use of any local classi�er. Some

of the classi�ers used included the following: naïve

Bayes (Chakrabarti et al., ; Neville & Jensen,),

7logistic regression (Lu & Getoor,), 7decision
trees, (Jensen et al.,) and weighted-vote relational

neighbor (Macskassy & Provost,).�ere is some

evidence to indicate that discriminately trained local

classi�ers such as logistic regression tend to produce

higher accuracies than others; this is consistent with

results in other areas.

Other aspects of ICA that have been the subject of

investigation include the ordering strategy to determine

in which order to visit the nodes to relabel in each ICA

iteration.�ere is some evidence to suggest that ICA is

fairly robust to a number of simple ordering strategies

such as random ordering, visiting nodes in ascending

order of diversity of its neighborhood class labels, and

labeling nodes in descending order of label con�dences

(Getoor,). However, there is also some evidence

that certain modi�cations to the basic ICA procedure

tend to produce improved classi�cation accuracies. For

example, both (Neville & Jensen,) and (McDowell

et al.,) propose a strategy where only a subset

of the unobserved variables are utilized as inputs for

feature construction. More speci�cally, in each itera-

tion, they choose the top-k most con�dent predicted

labels and use only those unobserved variables in the

following iteration’s predictions, thus ignoring the less

con�dent predicted labels. In each subsequent itera-

tion they increase the value of k so that in the last

iteration all nodes are used for prediction. McDowell

et al. report that such a “cautious” approach leads to

improved accuracies.

Collective Classification with Graphical
Models
In addition to the approaches described above, which

essentially focus on local representations and propaga-

tion methods, another approach to collective classi�ca-

tion is by �rst representing the problem with a high-

level global 7graphical model and then using learning
and inference techniques for the graphical modeling

approach to arrive at the correct classi�cations. �ese

proposals include the use of both directed 7graphical
models (Getoor, Segal, Taskar, &Koller,) and undi-

rected graphicalmodels (La�erty,McCallum,&Pereira,

; Taskar, Abbeel, & Koller,). See 7statistical
relational learning and Getoor and Taskar () for a
survey of various graphical models that are suitable for

collective classi�cation. In general, these techniques can

use both neighborhood labels and observed attributes

 C Collective Classification

of neighbors. On the other hand, due to their general-

ity, these techniques also tend to be less e�cient than

the iterative collective classi�cation techniques.

One common way of de�ning such a global model

uses a pairwise Markov random �eld (pairwise MRF)
(Taskar et al.,). Let G = (V ,E) denote a graph
of random variables as before where V consists of two
types of random variables, the unobserved variables,Y ,
which need to be assigned domain values from label

set L, and observed variables X whose values we know
(see 7Graphical Models). Let Ψ denote a set of clique
potentials. Ψ contains three distinct types of functions:

● For each Yi ∈ Y , ψi ∈ Ψ is a mapping ψi : L → R≥,
where R≥ is the set of nonnegative real numbers.

● For each (Yi,Xj) ∈ E, ψij ∈ Ψ is a mapping ψij : L →
R≥.

● For each (Yi,Yj) ∈ E, ψij ∈ Ψ is a mapping ψij : L ×
L→ R≥.

Let x denote the values assigned to all the observed
variables in V and let xi denote the value assigned
to Xi. Similarly, let y denote any assignment to all
the unobserved variables in V and let yi denote a
value assigned to Yi. For brevity of notation we will
denote by ϕi the clique potential obtained by computing
ϕi(yi) = ψi(yi)∏(Yi ,Xj)∈E ψij(yi). We are now in a
position to de�ne a pairwise MRF.

De�nition A pairwise Markov random �eld (MRF)
is given by a pair ⟨G,Ψ⟩ where G is a graph and Ψ is a
set of clique potentials with ϕi and ψij as de�ned above.
Given an assignment y to all the unobserved variables Y ,
the pairwiseMRF is associatedwith the probability distri-
bution P(y∣x) =

Z(x) ∏Yi∈Y ϕi(yi)∏(Yi ,Yj)∈E ψij(yi, yj)
where x denotes the observed values of X and Z(x) =
∑y′∏Yi∈Y ϕi (y

′
i)∏(Yi ,Yj)∈E ψij (y′i , y′j).

Given a pairwise MRF, it is conceptually simple to

extract the best assignments to each unobserved vari-

able in the network. For example, we may adopt the

criterion that the best label value for Yi is simply the
one corresponding to the highest marginal probabil-

ity obtained by summing over all other variables from

the probability distribution associated with the pair-

wise MRF. Computationally, however, this is di�cult

to achieve since computing one marginal probability

requires summing over an exponentially large number

of terms, which is why we need approximate inference

algorithms. Hence, approximate inference algorithms

are typically employed, the two most common being

loopy belief propagation (LBP) andmean-�eld relaxation
labeling.

Applications
Due to its general applicability, collective classi�ca-

tion has been applied to a number of real-world prob-

lems. Foremost in this list is document classi�cation.

Chakrabarti et al. () was one of the �rst to apply

collective classi�cation to corpora of patents linked

via hyperlinks and reported that considering attributes

of neighboring documents actually hurts classi�cation

performance. Slattery and Craven () also consid-

ered the problem of document classi�cation by con-

structing features from neighboring documents using

an 7inductive logic programming rule learner. Yang,
Slattery, & Ghani () conducted an in-depth inves-

tigation over multiple datasets commonly used for

document classi�cation experiments and identi�ed dif-

ferent patterns. Other applications of collective classi-

�cation include object labeling in images (Hummel &

Zucker,), analysis of spatial statistics (Besag,),

iterative decoding (Berrou, Glavieux, &�itimajshima,

), part-of-speech tagging (La�erty et al.,),

classi�cation of hypertext documents using hyperlinks

(Taskar et al.,), link prediction (Getoor, Friedman,

Koller, & Taskar, ; Taskar, Wong, Abbeel, & Koller,

), optical character recognition (Taskar, Guestrin,

& Koller,), entity resolution in sensor networks

(Chen, Wainwright, Cetin, & Willsky,), predict-

ing disulphide bonds in protein molecules (Taskar,

Chatalbashev, Koller, & Guestrin,), segmentation

of D scan data (Anguelov et al.,), and classi�ca-

tion of e-mail speech acts (Carvalho & Cohen,).

Recently, there have also been attempts to extend col-

lective classi�cation techniques to the semi-supervised

learning scenario (Lu & Getoor, b; Macskassy,

; Xu, Wilkinson, Southey, & Schuurmans,).

Cross References
7Decision Trees
7Inductive Logic Programming
7Learning From Structured Data

Community Detection C

C

7Relational Learning
7Semi-Supervised Learning
7Statistical Relational Learning

Recommended Reading
Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta. D.,

Heitz, G., et al. (). Discriminative learning of Markov ran-

dom fields for segmentation of d scan data. In IEEE computer
society conference on computer vision and pattern recognition.
IEEE Computer Society, Washington D.C.

Berrou, C., Glavieux, A., & Thitimajshima, P. (). Near Shannon

limit error-correcting coding and decoding: Turbo codes. In

Proceedings of IEEE international communications conference,
Geneva, Switzerland, IEEE.

Besag, J. (). On the statistical analysis of dirty pictures. Journal
of the Royal Statistical Society, B-, –.

Carvalho, V., & Cohen, W. W. (). On the collective classification

of email speech acts. In Special interest group on information
retrieval, Salvador, Brazil, ACM.

Chakrabarti, S., Dom, B., & Indyk, P. (). Enhanced hypertext

categorization using hyperlinks. In International conference on
management of data, Seattle, Washington New York: ACM.

Chen, L., Wainwright, M., Cetin, M., & Willsky, A. (). Mul-

titargetmultisensor data association using the tree-reweighted

max-product algorithm. In SPIE Aerosense conference. Orlando,
Florida.

Getoor, L. (). Link-based classification. In Advanced methods
for knowledge discovery from complex data. New York: Springer.

Getoor, L., & Taskar, B. (Eds.). (). Introduction to statistical
relational learning. Cambridge, MA: MIT Press.

Getoor, L., Segal, E., Taskar, B., & Koller, D. (). Probabilistic

models of text and link structure fro hypertext classification.

In Proceedings of the IJCAI workshop on text learning: Beyond
supervision, Seattle, WA.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (). Learn-

ing probabilistic models of link structure. Journal of Machine
Learning Research, , –.

Hummel, R., & Zucker, S. (). On the foundations of relaxation

labeling processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, , –.

Jensen, D., Neville, J., & Gallagher, B. (). Why collective infer-

ence improves relational classification. In Proceedings of the
th ACM SIGKDD international conference on knowledge dis-
covery and data mining, Seattle, WA. ACM.

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (). condi-

tional random fields: Probabilistic models for segmenting and

labeling sequence data. In Proceedings of the international con-
ference on machine learning, Washington DC. San Francisco,
CA: Morgan Kaufmann.

Lu, Q., & Getoor, L. (a). Link based classification. In Proceedings
of the international conference on machine learning. AAAI Press,
Washington, D.C.

Lu, Q., & Getoor, L. (b). Link-based classification using labeled

and unlabeled data. In ICML workshop on the continuum from
labeled to unlabeled data in machine learning and data mining.
Washington, D.C.

Macskassy, S., & Provost, F. (). Classification in networked

data: A toolkit and a univariate case study. Journal of Machine
Learning Research, , –.

Macskassy, S. A. (). Improving learning in networked data

by combining explicit and mined links. In Proceedings of the
twenty-second conference on artificial intelligence. AAAI Press,
Vancouver, Canada.

McDowell, L. K., Gupta, K. M., & Aha, D. W. (). Cautious infer-

ence in collective classification. In Proceedings of AAAI. AAAI
Press, Vancouver, Canada.

Neville, J., & Jensen, D. (). Relational dependency networks.

Journal of Machine Learning Research, , –.
Neville, J., & Jensen, D. (). Iterative classification in relation

data. In Workshop on statistical relational learning, AAAI.
Slattery, S., & Craven, M. (). Combining statistical and rela-

tional methods for learning in hypertext domains. In Inter-
national conferences on inductive logic programming. Springer-
Verlag, London, UK.

Taskar, B., Abbeel, P., & Koller, D. (). Discriminative probabilis-

tic models for relational data. In Proceedings of the annual con-
ference on uncertainty in artificial intelligence. Morgan Kauff-
man, San Francisco, CA.

Taskar, B., Guestrin, C., & Koller, D. (a). Max-margin markov

networks. In Neural information processing systems. MIT Press,
Cambridge, MA.

Taskar, B., Wong, M. F., Abbeel, P., & Koller, D. (b). Link pre-

diction in relational data. In Natural information processing
systems. MIT Press, Cambridge, MA.

Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C. (). Learn-

ing structured prediction models: A large margin approach. In

Proceedings of the international conference on machine learning.
ACM, New York, NY.

Xu, L., Wilkinson, D., Southey, F., & Schuurmans, D. (). Dis-

criminative unsupervised learning of structured predictors. In

Proceedings of the international conference on machine learning.
ACM, New York, NY.

Yang, Y., Slattery, S., & Ghani, R. (). A study of approaches

to hypertext categorization. Journal of Intelligent Information
Systems. (–), –.

Commercial Email Filtering

7Text Mining for Spam Filtering

Committee Machines

7Ensemble Learning

Community Detection

7Group Detection

 C Comparable Corpus

Comparable Corpus

A comparable corpus (pl. corpora) is a document col-

lection composed of two or more disjoint subsets, each

written in a di�erent language, such that documents in

each subset are on a same topic as the documents in the

others.�e prototypical example of a comparable cor-

pora is a collection of newspaper article written in dif-

ferent languages and reporting about the same events:

while they will not be, strictly speaking, the translation

of one another, theywill sharemost of the semantic con-

tent. Some methods for 7cross-language text mining
rely, totally or partially, on the statistical properties of

comparable corpora.

Competitive Coevolution

7Test-Based Coevolution

Competitive Learning

Competitive learning is an 7arti�cial neural network
learning process where di�erent neurons or processing

elements compete on who is allowed to learn to repre-

sent the current input. In its purest form competitive

learning is in the so-called winner-take-all networks

where only the neuron that best represents the input is

allowed to learn. Since all neurons learn to better repre-

sent the kinds of inputs they already are good at repre-

senting, they become specialized to represent di�erent

kinds of inputs. For vector-valued inputs and represen-

tations, the input becomes quantized to the unit having

the closest representation (model), and the representa-

tions are adapted to minimize the representation error

using stochastic gradient descent.

Competitive learning networks have been studied

as models of how receptive �elds and feature detectors,

such as orientation-selective visual neurons, develop

in neural networks. �e same process is at work in

online7K-means clustering, and variants of it in7Self-
OrganizingMaps (SOM) and the EM algorithm of mix-

ture models.

Complex Adaptive System

7Complexity in Adaptive Systems

Complexity in Adaptive Systems

JunHe

Aberystwyth University, Wales, UK

Synonyms
Adaptive system; Complex adaptive system

Definition
An 7adaptive system, or complex adaptive system, is a
special case of complex systems, which is able to adapt

its behavior according to changes in its environment or

in parts of the system itself. In this way, the system can

improve its performance through a continuing interac-

tion with its environment.�e concept of7complexity
in an adaptive system is used to analyze the interactive

relationship between the system and its environment,

which can be classi�ed into two types: 7internal com-
plexity formodel complexity, and7external complexity
for data complexity.�e internal complexity is de�ned

by the amount of input, information, or energy that

the system receives from its environment.�e external

complexity refers to the complexity of how the system

represents these inputs through its internal process.

Motivation and Background
Adaptive systems range from natural systems to arti-

�cial systems (Holland, , ; Waldrop,).

Examples of natural systems include ant colonies,

ecosystem, the brain, neural network and immune

system, cell and developing embryo; examples of arti-

�cial systems include stock market, social system, man-

ufacturing businesses, and human social group-based

Complexity in Adaptive Systems C

C

endeavor in a cultural and social system such as polit-

ical parties or communities. All these systems have a

common feature: they can adapt to their environment.

An adaptive system is adaptive in that way it has

the capacity to change its internal structure for adapt-

ing the environment. It is complex in the sense that

it is interactive with its environment. �e interaction

between an adaptive system and its environment is

dynamic and nonlinear. Complexity emerges from the

interaction between the system and environment, the

elements of the system, where the emergent macro-

scopic patterns are more complex than the sum of the

these low-level (microscopic) elements encompassed in

the system. Understanding the evolution and develop-

ment of adaptive systems still faces many mathematical

challenges (Levin,).

�e concepts of external and internal complexities

are used to analyze the relation between an adaptive sys-

tem and its environment.�e description given below

is based on Jürgen Jost’s () work, which introduced

these two concepts and applied the theoretical frame-

work to the construction of learning models, e.g., to

design neural network architectures. In the following,

the concepts are mainly applied to analyze the inter-

action between the system and its environment. �e

interaction among individual elements of the system is

less discussed however, the concepts can be explored in

that situation too.

Theory
Adaptive System Environment and Regularities

�e environment of an adaptive system ismore complex

than the system itself and its changes cannot be com-

pletely predictable for the system. However, the changes

of the environment are not purely random and noisy;

there exist regularities in the environment. An adaptive

system can recognize these regularities, and depend-

ing on these regularities the system will express them

through its internal process in order to adapt to the

environment.

�e input that an adaptive system receives or

extracts from its environment usually includes two

parts: one is the part with regularities; and another is

that appears random to the system.�e part of regular-

ities is useful and meaningful. An adaptive system will

represent these regularities by internal processes. But

the part of random input is useless, and even at theworst

it will be detrimental for an adaptive system.However, it

will depend on the adaptive system’s internal model of

the external environment for how to determine which

part of input is meaningful and regular, and which part

is random and devoid of meaning and structure.

An adaptive system will translate the external reg-

ularities into its internal ones, and only the regularities

are useful to the system.�e system tries to extract as

many regularities as possible, and to represent these

regularities as e�ciently as possible in order to make

optimal use of its capacity.

�e notions of external complexity and internal

complexity are used to investigate these two comple-

mentary aspects conceptually and quantitatively. In

terms of these notions, an adaptive system aims to

increase its external complexity and reduce its internal

complexity.

�e two processes operate on their own time scale

but are intricately linked and mutually dependent on

each other. For example, the internal complexity will

be only reduced if the external complexity is �xed.

Under �xed inputs received from the external environ-

ment, an adaptive system can represent these inputs

systems more e�ciently and optimize its internal struc-

ture. If the external complexity is increased, e.g., if

additional new input is required to handle by the

system, then it is necessary to increase its internal

complexity.

�e increase of internal complexity may occur

through the creation of redundancy in the existing

adaptive system, e.g., to duplicate some internal struc-

tures, and then enable the system to handle more exter-

nal input. Once the input is �xed, the adaptive system

then will represent the input as e�ciently as possible

and reduce the internal input.�e decrease of internal

complexity can be achieved through discarding some

input as meaningless and irrelevant, e.g., leaving some

regularities out for the purpose.

Since the inputs relevant to the systems are those

which can be re�ected in the internal model, the exter-

nal complexity is not equivalent to the amount of raw

data received from the environment. In fact, it is only

relevant to the inputs which can be processed in the

internal model, or observations in some adaptive sys-

tems.�us the external complexity ultimately is decided

by the internal model constructed by the system.

 C Complexity in Adaptive Systems

External and Internal Complexities

External complexity means data complexity, which is

used to measure the amount of input received from the

environment for the system to handle and process. Such

a complexity can be measured by entropy in the term of

information theory.

Internal complexity is model complexity, which is

used to measure the complexity of a model for repre-

senting the input or information received by the system.

�e aim of the adaptive system is to obtain an e�-

cient model as simple as possible, with the capacity to

handle as much input as possible. On one hand, the

adaptive system will try to maximize its external com-

plexity and then to adapt to its environment in a max-

imal way; on the other hand, to minimize its internal

complexity and then to construct amodel to process the

input in a most e�cient way.

�ese two aims sometimes seem con�icting, but

such a con�ict can be avoided when these two processes

operate on di�erent time scales. If given a model, the

systemwill organize the input data and try to increase its

ability to deal with the input from its environment, and

then increase its external complexity. If given the input,

conversely, it tries to simplify itsmodelwhich represents

that input and thus to decrease the internal complexity.

�e meaning of the input is relevant to the time scale

under investigation. On a short time scale, for example,

the inputmay consist of individual signals, but on a long

time scale, it will be a sequence of signals which satis�es

a probability distribution. A good internal model tries

to express regularities in the input sequence, rather than

several individual signals. And the decrease of internal

complexity will happen on this time scale.

A formal de�nition of the internal and exter-

nal complexities concepts is based on the concept of

entropy from statistical mechanics and information

theory. Given a model θ, the system can model data as
with X(θ) = (X, . . . ,Xk), which is assumed to have
an internal probability distribution P(X(θ)) so that
entropy can be computed. �e external complexity is

de�ned by

−
k

∑
i=
P(Xi(θ)) log

P(Xi(θ)). ()

An adaptive system tries to maximize the above

external complexity.

�e probability distribution P(X(θ)) is for quanti-
fying the information value of the data X(θ).�e value

of information can be described in other approaches,

e.g., the length of the representation of the data in the

internal code of the system (Rissanen,). In this case,

the optimal coding is a consequence of the minimiza-

tion of internal complexity, and then the length of the

representation of data Xi(θ) behaves like log

P(X(θ))

(Rissanen,).

On a short time scale, for a given model θ, the sys-
tem tries to increase the amount of meaningful input

informationX(θ). On a long time scale, when the input
is given, e.g., when the system has gathered a set of

inputs on a time scale with a stationary probability dis-

tribution of input patterns Ξ, then the model should

be improved to handle the input as e�ciently as pos-

sible and reduce the complexity of the model. �is

complexity, or internal complexity, is de�ned by

−
k

∑
i=
P(Ξi ∣ θ) log

P(Ξi ∣ θ) − log

P(θ), ()

with respect to the model θ.
If Rissanen’s () 7minimum description length

principle is applied to the above formula, then the opti-

mal model will satisfy the variation problem

min
θ

(− log

P(Ξ ∣ θ) − log

P(θ)) . ()

Here in the above minimization problem, there are

two objectives to minimize. �e �rst term is to mea-

sure how e�ciently themodel represents or encodes the

data; and the second one is tomeasure how complicated

themodel is. In computer science, this latter term corre-

sponds to the length of the program required to encode

the model.

�e concepts of external and internal complexities

can be applied into a system divided into subsystems.

In this case, some internal part of the original whole

system will become external to a subsystem.�us the

internal input of a subsystem consists of original exter-

nal input and also input from the rest of the system, i.e.,

other subsystems.

Application: Learning
�e discussion of these two concepts, external and

internal complexities, can be put into the background

of learning. In statistical learning theory (Vapnik,),

the criterion for evaluating a learning process is the

expected prediction error of future data by the model

Complexity in Adaptive Systems C

C

based on training data set with partial and incom-

plete information.�e task is to construct a probability

distribution drawn from an a-priori speci�c class for

representing the distribution underlying the input data

received. Usually, if a higher error is produced by a

model on the training data, then a higher error will be

expected on the future data.�e error will depend on

two factors: one is the accuracy of the model on the

training data set, another is the simplicity of the model

itself. �e description of the data set can be split into

two parts, the regular part, which is useful in construct-

ing the model; and the random part, which is a noise to

the model.

�e learning process �ts very well into the theory

framework of internal and external complexities. If the

model is too complicated, it will bring the risk of over-

�tting the training data. In this case, some spurious

or putative regularity is incorporated into the model,

which will not appear in the future data. �e model

should be constrained within some model class with

bounded complexity.�is complexity in this context of

statistical learning theory is measured by the Vapnik-

Chervonenkis dimension (see7VC Dimension) (Vap-
nik,). Under the simplest form of statistical learn-

ing theory, the system aims at �nding a representa-

tion with smallest error in a class with given complex-

ity constraints; and then the model should minimize

the expected error on future data and also over-�tting

error.

�e two concepts of over-�tting and leaving out reg-

ularities can be distinguished in the following sense.�e

former is caused by the noise in the data, i.e., the ran-

dom part of the data, and this leads to putative regulari-

ties, which will not appear in the future data.�e latter,

leaving out regularities, means that the system can forgo

some part of regularities in the data, or it is possible

to make data compression.�us, leaving out regulari-

ties can be used to simplify the model and reduce the

internal complexity. However, a problem is still wait-

ing for answer here, that is, what regularities in the data

set are useful for data compression and also meaningful

for future prediction; and what parts are random to the

model.

�e internal complexity is the model complexity. If

the internal complexity is chosen too small, then the

model does not have enough capacity to represent all

the important features of the data set. If the internal

complexity is too large, on the other hand, then the

model does not represent the data e�ciently.�e inter-

nal complexity is preferablyminimized under appropri-

ate constraints on the adequacy of the representation

of data. �is is consistent with Rissanen’s principle of

Minimum Description Length (Rissanen,) to rep-

resent a given data set in the most e�cient way.�us a

good model is both to simplify the model itself and to

represent the data e�ciently.

�e external complexity is the data complexity

which should be large to represent the input accu-

rately.�is is related to Jaynes’ principle of maximizing

the ignorance (Jaynes,), where a model for repre-

senting data should have the maximal possible entropy

under the constraint that all regularities can be repro-

duced. In this way, putative regularities could be elim-

inated in the model. However, this principle should be

applied with some conditions as argued by Gell-Mann

and Lloyd (); it cannot eliminate the essential reg-

ularities in the data, and an overlying complex model

should be avoided.

For some learning system, only a selection of data

is gathered and observed by the system. �us a mid-

dle term, observation, is added between model and

data. �e concept of observation refers to the extrac-

tion of value of some speci�c quantity from a given

data or data pool. What a system can observe depends

on its internal structure and its general model of the

environment. �e system does not have direct access

to the raw data, but through constructing a model of

the environment solely on the basis of the values of its

observation.

For such kind of learning system, Jaynes’ princi-

ple (Jaynes,) is still applicable for increasing the

external complexity. For the given observationmade on

a data set, the maximum entropy representation should

be selected. However, this principle is still subject to

the modi�cation of Gell-Mann and Lloyd () to a

principle where the model should not lose the essential

regularities observed in the data.

By contrast, the observations should be selected to

reduce the internal complexity. Given a model, if the

observation can be made on a given data set, then these

observations should be selected so as to minimize the

resulting entropy of the model, with the purpose of

minimizing the uncertainty le� about the data.�us it

leads to reduce the complexity.

In most of the cases, the environment is dynamic,

i.e., the data set itself can be varied, then the external

 C Complexity of Inductive Inference

complexity should bemaximized again.�us the obser-

vation should be chosen for maximal information gain

extracted from the data to increase the external com-

plexity. Jaynes’ principle (Jaynes,) can be applied

as the same as in previous discussion. But on a longer

time scale, when the inputs reach some stationary dis-

tribution, the model should be simpli�ed to reduce its

internal complexity.

Recommended Reading
Gell-Mann, M., & Lloyd, S. (). Information measures, effective

complexity, and total information. Complexity, (), –.
Holland, J. (). Adaptation in natural and artificial systems.

Cambridge, MA: MIT Press.

Holland, J. (). Hidden order: How adaptation builds complexity.
Reading, MA: Addison-Wesley.

Jaynes, E. (). Information theory and statistical mechanics.

Physical Review, (), –.
Jost, J. (). External and internal complexity of complex adaptive

systems. Theory in Biosciences, (), –.
Levin, S. (). Complex adaptive systems: Exploring the known,

the unknown and the unknowable. Bulletin of the American
Mathematical Society, (), –.

Rissanen, J. (). Stochastic complexity in statistical inquiry.
Singapore: World Scientific.

Vapnik, V. (). Statistical learning theory. New York: John Wiley
& Sons.

Waldrop, M. (). Complexity: The emerging science at the edge of
order and chaos. New York: Simon & Schuster.

Complexity of Inductive Inference

Sanjay Jain, Frank Stephan

National University of Singapore,

Singapore, Republic of Singapore

Definition
In 7inductive inference, the complexity of learning
can be measured in various ways: by the number of

hypotheses issued in the worst case until the correct

hypothesis is found; by the number of data items to be

consumed or to be memorized in order to learn in the

worst case; by the Turing degree of oracles needed to

learn the class under a certain criterion; by the intrinsic

complexity which is – like the Turing degrees in recur-

sion theory – a way tomeasure the complexity of classes

by using reducibilities between them.

Detail
We refer the reader to the article 7Inductive Infer-
ence for basic de�nitions in inductive inference and the

notations used below. Let N denote the set of nat-

ural numbers. Let φ,φ, . . . denote a �xed accept-
able programming system (Rogers,). Let Wi =
domain(φi).

Mind Changes and Anomalies
�e �rst measure of complexity of learning can be con-

sidered as the number of mind changes needed before

the learner converges to its �nal hypothesis in theTxtEx
model of learning.�e number of mind changes by a

learnerM on a text T can be counted as card ({m : ? ≠
M(T[m]) ≠M(T[m+])}). A learnerMTxtExn learns
a class L of languages i� M TxtEx learns L and for all
L ∈ L, for all texts T for L, M makes at most n mind
changes on T.TxtExn is de�ned as the collection of lan-
guage classes which can be TxtExn identi�ed (see Case
& Smith () for details).

Consider the class of languages Ln ={L : card(L)
≤n}. It can be shown that Ln+ ∈ TxtExn+ − TxtExn.
Now consider anomalous learning. A class C is

TxtExab-learnable i� there is a learner, which makes at
most b mind changes (where b = ∗ denotes that the
number of mind changes is �nite on each text for a

language in the class, but not necessarily bounded by

a constant) and whose �nal hypothesis is allowed to

make up to a errors (where a = ∗ denotes �nitely
many errors). For these learning criteria, we get a two-

dimensional hierarchy on what can be learnt. Let Cn =
{f : φf () =n f }. For a total function f , let Lf =
{⟨x, f (x)⟩ : x ∈ N}, where ⟨⋅, ⋅⟩ denotes a computable
pairing function: a bijective mapping from N × N to
N. Let LC = {Lf : f ∈ C}. �en, one can show that
LCn+ ∈ TxtEx

n+
 −TxtExn. Similarly, if we consider the

class Sn = {f : card({m : f (m) ≠ f (m +)}) ≤ n}, then
one can show that LSn+ ∈ TxtEx

n+ −TxtEx∗n (we refer

the reader to Case and Smith () for a proof of the

above).

Data and Time Complexity
Wiehagen () considered the complexity of number

of data needed for learning. Regarding time complex-

ity, one should note the result by Pitt () that any

TxtEx-learnable class of languages can be TxtEx-learnt
by a learner that has time complexity (with respect to

Complexity of Inductive Inference C

C

the size of the input) bounded by a linear function.�is

result is achieved by a delaying trick, where the learner

just repeats its old hypothesis unless it has enough time

to compute its later hypothesis. �is seriously e�ects

what one can say about time complexity of learning.

One proposal made by Daley and Smith () is to

consider the total time used by the learner until its

sequence of hypotheses converges, resulting in a possi-

bly more reasonable measure of time in the complexity

of learning.

Iterative and Memory-Bounded Learning
Another measure of complexity of learning can be con-

sideredwhen one restricts howmuch past data a learner

can remember. Wiehagen introduced the concept of

iterative learning in which the learner cannot remem-
ber any past data. Its new hypothesis is based only on

its previous conjecture and the new datum it receives.

In other words, there exists a recursive function F such
that M(T[n +]) = F(M(T[n]),T(n)), for all texts T
and for all n. Here, M(T[]) is some �xed value, say the
symbol ‘?’ which is used by the learner to denote the

absence of a reasonable conjecture. It can be shown that

being iterative restricts the learning capacity of learn-

ers. For example, let Le = {x : x ∈ N} and let L =
{Le}∪{{S∪{n+ }} : n ∈ N, S ⊆ Le, and max(S) ≤ n};
then L can be shown to be TxtEx-learnable but not
iteratively learnable.

Memory-bounded learning (see Lange & Zeug-

mann,) is an extension of memory-limited learn-

ing, where the learner is allowed to memorize upto

some�xednumber of elements seen in the past.�us,M

is anm-memory-bounded learner if there exists a func-
tionmem and two computable functionsmF and F such
that, for all texts T and all n:

– mem(T[]) = /;
– M(T[n +]) = F(M(T[n]),mem(T[n]),T(n +));
– mem(T[n +]) = mF(M(T[n]),mem(T[n]),
T(n +));

– mem(T[n +]) −mem(T[n]) ⊆ {T(n +)};
– card(mem(T[n])) ≤ m.

It can be shown that the criteria of inference based on

TxtEx-learning by m-memory-bounded learners form
a proper hierarchy.

Besides memorizing some past elements seen,

another way to address this issue is by giving feed-

back to the learner (see Case, Jain, Lange, & Zeugmann,

) onwhether some element has appeared in the past

data. A feedback learner is an iterative learner, which

is additionally allowed to query whether certain ele-

ments appeared in earlier data. An n-feedback learner
is allowed to make n such queries at each stage (when
it receives the new input datum). �us, M is an m-
feedback learner if there exist computable functions Q
and a F such that, for all texts T and all n:

– Q(M(T[n]),T(n)) is de�ned and is a set of m
elements;

– If Q(M(T[n]),T(n)) = (x, x, . . . , xm) then
M(T[n +]) = F(M(T[n]),T(n), y, y, . . . , ym),
where yi = i� xi ∈ ctnt(T[n]).

Again, it can be shown that allowing more feed-

back gives greater learning power, and thus one can

get a hierarchy based on the amount of feedback

allowed.

Complexity of Final Hypothesis
Another possibility on complexity of learning is to

consider the complexity or size of the �nal grammar

output by the learner. Freivalds () considered the

case when the �nal program/grammar output by the

learner is minimal: that is, there is no smaller index

that accepts/generates the same language. He showed

that this severely restricts the learning capacity of learn-

ers. Not only that, the learning capacity depends on

the acceptable programming system chosen, unlike

the case for most other criteria of learning such as

TxtEx or TxtBc, which are independent of the accept-
able programming system chosen. In particular, there

are acceptable programming systems in which only

classes containing �nitely many in�nite languages can

be learnt using minimal �nal grammars (see Freivalds,

; Jain and Sharma,). Chen () considered a

modi�cation of such a paradigm where one considers

convergence to nearly minimal grammars rather than

minimal. �at is, instead of requiring that the �nal

grammars are minimal, one requires that they are

within a recursive function h of minimal. Here h may
depend on the class being learnt. Chen showed that this

allows one to have the criteria of minimal learnability

 C Complexity of Inductive Inference

to be independent of the acceptable programming sys-

tem chosen. However, one can show that some simple

classes are not minimally learnable. An example of such

a class is the class LC which is derived from C = {f :
∀∞ × [f (x) =]}, the class of all functions which are
almost everywhere .

Intrinsic Complexity
Another way to consider complexity of learning is to

consider relative complexity in a way similar to how one

considers Turing reductions in computability theory.

Such a notion is called intrinsic complexity of the class.

�is was �rst considered by Freivalds et al. () for

function learning. Jain and Sharma () considered

it for language learning, and the following discussion is

from there.

An enumeration operator (see Rogers,), Θ, is an
algorithmic mapping from SEQ into SEQ such that the

following two conditions are satis�ed:

– for all σ , τ ∈ SEQ, if σ ⊆ τ, then Θ(σ) ⊆ Θ(τ);
– for all texts T, limn→∞ ∣Θ(T[n])∣ =∞.

By extension, we think of Θ as also mapping texts to

texts such that Θ(T) = ⋃n Θ(T[n]). Furthermore,
we de�ne Θ(L) = {ctnt(Θ(T)) : T is a text for L}.
Intuitively, Θ(L) denotes the set of languages to whose
texts Θ maps texts of L. �e reader should note the
overloading of this notation because the type of the

argument to Θ could be a sequence, a text or a

language.

One says that a sequence of grammars g, g, . . . is
an acceptable TxtEx-sequence for L if the sequence of
grammars converges to a grammar for L.
L ≤weak L i� there are two operators Θ and Ψ

such that for all L ∈ L, for all texts T for L, Θ(T)
is a text for some L′ ∈ L such that if g, g, . . . is an
acceptable TxtEx-sequence for L′ then Ψ(g, g, . . .) is
an acceptable TxtEx-sequence for L.
Note that di�erent texts for the same language L

may be mapped by Θ to texts for di�erent languages

in L above. If we require that di�erent texts for L are
mapped to texts for the same language L′ inL, then we
get a stronger notion of reduction called strong reduc-

tion: L ≤strong L i� L ≤weak L and for all L ∈ L,
Θ(L) contains only one language, where Θ is as in the
de�nition for ≤weak reduction.

It can be shown that FIN is a complete class for
TxtEx-identi�cation with respect to ≤weak reduction
(see Jain & Sharma,). Interestingly it was shown

that the class of pattern languages (Angluin,), the

class SD = {L : Wmin(L) = L} and the class COINIT =
{{x : x ≥ n} : n ∈ N} are all equivalent under ≤strong . Let
code be a bijective mapping from non-negative ratio-
nal numbers to natural numbers.�en, one can show

that the class RINIT = {{code(x) : ≤ x ≤ r, x is
a rational number} : ≤ r ≤ , r is a rational num-
ber } is ≤strong complete for TxtEx (see Jain, Kinber, &
Wiehagen,).

Interestingly every �nite directed acyclic graph can

be embedded into the ≤strong degree structure (Jain &
Sharma,). On the other hand the degree structure

is non-dense in the sense that there exist classes L and
L such that L <strong L, but for any class L such that
L ≤strong L ≤strong L, either L ≡strong L or L ≡strong
L. Similar result holds for ≤weak reducibility (see Jain
& Sharma,).

Interesting connections between learning of ele-

mentary formal systems (Shinohara,), intrinsic

complexity and ordinal mind changes (Freivalds &

Smith,) were shown in (Jain & Sharma,).

Learning Using Oracles
Another method to measure complexity of learning

is to see how powerful an oracle (given to the learn-

ing machine) has to be to make a class learnable. It

can be shown that an oracle A permits to explanato-
rily learn the class of all recursive functions i� A is
high (Adleman & Blum,). Furthermore, an ora-

cle is trivial, that is, does not give additional learning

power for explanatory learning of function classes i�

the oracle has -generic Turing degree and is Turing

reducible to the halting problem (Slaman & Solovay,

).�e picture is a bit di�erent in the general case of

learning languages. For every oracle A there is an ora-
cle B and a class, which is TxtEx-learnable using the
oracle B but not using the oracle A (Jain & Sharma,
). Note that there are also classes of languages like

Gold’s class of all �nite languages plus the set of natural

numbers which are not TxtEx-learnable using any ora-
cle. Furthermore, for oracles above the halting problem,

TxtEx-learning and TxtBc-learning using these oracles
coincide.

Computational Complexity of Learning C

C

Recommended Reading
Adleman, L., & Blum, M. (). Inductive inference and unsolvabil-

ity. Journal of Symbolic Logic, , –.
Angluin, D. (). Finding patterns common to a set of strings.

Journal of Computer and System Sciences, , –.
Case, J., Jain, S., & Lange, S., & Zeugmann, T. (). Incremen-

tal concept learning for bounded data mining. Information and
Computation, (), –.

Case, J., & Smith, C. H. (). Comparison of identification criteria

for machine inductive inference. Theoretical Computer Science,
, –.

Daley, R. P., & Smith, C. H. (). On the complexity of inductive

inference. Information and Control, , –.
Chen, K.-J. (). Tradeoffs in inductive inference of nearly mini-

mal sized programs. Information and Control, , –.
Freivalds, R. (). Minimal Gödel numbers and their identifi-

cation in the limit. Lecture Notes in Computer Science, ,
–.

Freivalds, R., Kinber, E., & Smith, C. H. (). On the intrin-

sic complexity of learning. Information and Computation, ,
–.

Freivalds, R., & Smith, C. H. (). On the role of procrastina-

tion in machine learning. Information and Computation, (),
–.

Jain, S., Kinber, E., & Wiehagen, R. (). Language learning

from texts: Degrees of intrinsic complexity and their char-

acterizations. Journal of Computer and System Sciences, ,
–.

Jain, S., & Sharma, A. (). On the non-existence of maximal infer-

ence degrees for language identification. Information Processing
Letters, , –.

Jain, S., & Sharma, A. (). Program size restrictions in

computational learning. Theoretical Computer Science, ,
–.

Jain, S., & Sharma, A. (). The intrinsic complexity of language

identification. Journal of Computer and System Sciences, ,
–.

Jain, S., & Sharma, A. (). The structure of intrinsic complexity

of learning. Journal of Symbolic Logic, , –.
Jain, S., & Sharma, A. (). Elementary formal systems, intrinsic

complexity and procrastination. Information and Computation,
, –.

Lange, S., & Zeugmann, T. (). Incremental learning from

positive data. Journal of Computer and System Sciences, ,
–.

Pitt, L. (). Inductive inference, DFAs, and computational com-

plexity. Analogical and inductive inference, second international
workshop, AII , LNAI. (Vol. , pp. –) Heidelberg:
Springer.

Rogers, H. (). Theory of recursive functions and effec-
tive computability. New York: McGraw-Hill (Reprinted, MIT
Press).

Shinohara, T. (). Rich classes inferable from positive data:

Length–bounded elementary formal systems. Information and
Computation, , –.

Slaman, T. A. & Solovay, R. (). When oracles do not help.

Proceedings of the Fourth Annual Workshop on Computational
Learning Theory, (pp. –), Morgan Kaufmann.

Wiehagen, R. (). Limes-Erkennung rekursiver Funktionen

durch spezielle Strategien. Journal of Information Processing and
Cybernetics (EIK), , –.

Wiehagen, R. (). On the complexity of effective program syn-

thesis. In: K. Jantke (Ed.). Analogical and Inductive Inference.

Proceedings of the International Workshop, Springer LNCS, (Vol.
, pp. –).

Compositional Coevolution

Synonyms
Cooperative coevolution

Definition
A coevolutionary system constructed to learn compos-

ite solutions in which individuals represent di�erent

candidate components and must be evaluated together

with other individuals in order to form a complete

solution.�ough not precisely the same as cooperative
coevolution, there is a signi�cant overlap.

Cross References
7Coevolutionary Learning

Computational Complexity of
Learning

Sanjay Jain, Frank Stephan

National University of Singapore, Singapore, Republic

of Singapore

Definition
Measures of the complexity of learning have been devel-

oped for a number of purposes including 7Inductive
Inference, 7PAC Learning, and 7Query-Based Learn-
ing.�e complexity is usually measured by the largest

possible usage of ressources that can occur during the

learning of a member of a class. Depending on the con-

text, onemeasures the complexity of learning either by a

single number/ordinal for the whole class or by a func-

tion in a parameter n describing the complexity of the
target to be learnt.�e actual measure can be the num-

ber of mind changes, the number of queries submitted

to a teacher, the number of wrong conjectures issued,

the number of errors made or the number of exam-

ples processed until learning succeeds. In addition to

this, one can equip the learner with an oracle and deter-

mine the complexity of the oracle needed to perform

 C Computational Discovery of Quantitative Laws

the learning process. Alternatively, in complexity the-

ory, instead of asking for anNP-complete oracle to learn

a certain class, the result can also be turned into the

form “this class is unlearnable unless RP=NP” or some-

thing similar. (Here RP is the class of decision problems

solvable by a randomized polynomial time algorithm

and NP is the class of decision problems solvable by a

nondeterministic polynomial time algorithm and both

algorithms never give “yes” answer for an instance of the

problem with “no” answer.)

Detail
In 7PAC Learning, one usually asks how many exam-
ples are needed to learn the concept, where the num-

ber of examples needed mainly depends on the Vapnik

Chervonenkis dimension of the class to be learnt, the

error permitted, and the con�dence required. Further-

more, for certain classes of �nite Vapnik Chervonenkis

dimension, learnability can still fail when the learner is

required to be computable in polynomial time; hence

there is, besides the dimension, also a restriction stem-

ming from the computational complexity of problems

such as the complexity of �nding concepts consistent

with all data observed so far.

For 7Query-Based Learning, one common crite-
rion to be looked at is the number of queries made

during the learning process. If a class contains n di�er-

ent {, }-valued functions f and one is required to learn
the class using membership-queries, that is, by asking

queries of the form whether f (x) = or f (x) = , then
there is a function f on which the learner needs at least
n queries until it knows which of the given functions f
is; for some classes consisting of n functions the num-

ber of queries needed can be much worse – as much

as n − . A well-known result of Angluin is that one
can learn the class of all regular languages with polyno-

miallymany equivalence andmembership queriesmea-

suredwith respect to the number of states of the smallest

deterministic �nite automaton accepting the language

to be learnt. Further research has been done dealing

with which query algorithms can be implemented by a

polynomial time learner andwhich need for polynomial

time learning, in addition to the teacher informing on

the target concept, also some oracle supplying informa-

tion that cannot be computed in polynomial time. See

the entry 7Query-Based Learning for an overview of
these results.

For 7Inductive Inference, most complexity mea-
sures are measures applying to the overall class and not

just a parameterized version. When learning the class

of all sets with up to n elements, the learner might �rst
issue the conjecture / and then revise (up to n times)
its hypothesis when a new datum is observed; such a

measure is called the mind change complexity of learn-

ing. Mind change complexity has been generalized to

measure the complexity by recursive ordinals or the

notation of these. Furthermore, one can measure the

long termmemory of past data observed either by a cer-

tain number of examples remembered or by the number

of bits stored on a tape describing the long-term mem-

ory of the learner. Besides these quantitative notions,

a further frequently studied question is the following:

Which oracles support the learning process in away that

some classes become learnable using the oracle, but are

unlearnable without using any oracle? An example of

such a type of result is that the class of all recursive func-

tions can be learnt if and only if the learner has access

to a high oracle, that is, an oracle that permits to com-

pute a functionwhich dominates (i.e., grows faster than)

every recursive function. See the entry7Complexity of
Inductive Inference for more information.

Computational Discovery of
Quantitative Laws

7Equation Discovery

Concept Drift

Claude Sammut, MichaelHarries

�e University of New South Wales,

Sydney, Australia
Advanced Products Group, Citrix Labs,

North Ryde, NSW, Australia

Synonyms
Context-sensitive learning; Learning with hidden

context

Definition
Concept dri� occurs when the values of hidden vari-

ables change over time.�at is, there is some unknown

Concept Drift C

C

context for 7concept learning and when that context
changes, the learned conceptmay no longer be valid and

must be updated or relearned.

Motivation and Background
Prediction in real-world domains is complicated by

potentially unstable phenomena that are not known in

advance to the learning system. For example, �nancial

market behavior can change dramatically with changes

in contract prices, interest rates, in�ation rates, bud-

get announcements, and political and world events.

�us, concept de�nitions that may have been learned

in one context become invalid in a new context. �is

concept dri� can be due to changes in context and
is o�en directly re�ected by one or more attributes.

When changes in context are not re�ected by any known

attributes they can be said to be hidden. Hidden changes
in context cause problems for any predictive approach

that assumes concept stability.

Structure of the Learning System
Machine learning approaches can be broadly catego-

rized as either 7batch learning or 7incremental learn-
ing. Batch systems learn o�-line by examining a large

collection of instances en masse and form a single con-
cept. Incremental systems evolve and change a concept

de�nition as new observations are processed (Schlim-

mer&Granger a; Aha et al., ; Koltzer &Maloof,

).

�e most common approach to learning in domains

with hidden changes in context has been to use an incre-

mental learning approach in which the importance of

older items is progressively decayed. A popular imple-

mentation of this, originally presented in Kubet (),

is to use a window of recent instances from which

concept updates are derived. Other examples of this

approach includeWidmer and Kubat (), Kubat and

Widmer (), Kilander and Jansson (), and Sal-

ganiko� (). Swi� adaptation to changes in context

can be achieved by dynamically varying the window

size in response to changes in accuracy and concept

complexity (Widmer & Kubat,).

�ere are many domains in which the context can

be expected not only to change but for earlier con-

texts to hold again at some time in the future.�at is,

contexts can repeat in domains such as �nancial pre-

diction, dynamic control, and underrepresented data

mining tasks. In these domains, prediction accuracy can

be improved by storing knowledge about past contexts

for reuse. FLORA (Widmer & Kubat,) addresses

domains in which contexts recur by storing and retriev-

ing concepts that appear stable as the learner traverses

the series of input data.

In many situations, there is no constraint to learn

incrementally. For example, many organizations main-

tain large data bases of historical data that are suitable

for data mining. �ese data bases may hold instances

that belong to a number of contexts but do not have this

context explicitly recorded. Many of these data bases

may incorporate time as an essential attribute, for exam-

ple, �nancial records and stockmarket price data. Inter-

est in mining datasets of this nature suggests the need

for systems that can learn global concepts and are sen-

sitive to changing and hidden contexts. Systems such as

FLORA also imply that an o�-line recognition of stable

concepts can be useful for7on-line prediction.
An alternative to on-line learning for domains with

hidden changes in context is to examine the data en
masse in an attempt to directly identify concepts associ-
ated with stable, hidden contexts. Some potential bene-

�ts of such an approach are:

. Context speci�c (known as local) concepts could be

used as part of a multiple model on-line predictive

system.

. Local concepts could be veri�ed by experts, or used

to improve domain understanding.

. A model of the hidden context could be induced

using context characteristics such as context dura-

tion, order, and stability.�e model could also use

existing attributes and domain feedback if available.

. Stable contexts identi�ed could be used as tar-

get characteristics for selecting additional attributes

from the outside world as part of an iterative data

mining process.

Splice (Harries, Sammut, & Horn,) is a 7meta-
learning system that implements a context sensitive

batch learning approach. Splice is designed to identify

intervals with stable hidden context, and to induce and

re�ne local concepts associated with hidden contexts.

Identifying Context Change
In many domains with hidden changes in context,

time can be used to di�erentiate hidden contexts. Most

 C Concept Drift

machine learning approaches to these domains do not

explicitly represent time as they assume that current

context can be captured by focusing on recent examples.

�e implication is that hidden context will be re�ected

in contiguous intervals of time. For example, an attempt

to build a system to predict changes in the stock market

could produce the following7decision tree:

Year >
Year <

Attribute A = true : Market Rising
Attribute A = false : Market Falling

Year ≥
Attribute B = true : Market Rising
Attribute B = false : Market Falling

�is tree contains embedded knowledge about two

intervals of time: in one of which, –, attribute

A is predictive; in the other, onward, attribute B is

predictive. As time (in this case, year) is amonotonically

increasing attribute, future classi�cation using this deci-

sion tree will only use attribute B. If this domain can be

expected to have recurring hidden context, information

about the prior interval of time could be valuable.

�e decision tree in the example above contains

information about changes in context. We de�ne con-

text as:

▸ Context is any attribute whose values are largely inde-

pendent but tend to be stable over contiguous inter-

vals of another attribute known as the environmental

attribute.

�e ability of decision trees to capture context is asso-

ciated with the fact that decision tree algorithms use

a form of context-sensitive feature selection (CSFS).

A number of machine learning algorithms can be

regarded as using CSFS including decision tree algo-

rithms (Quinlan,), 7rule induction algorithms
(Clark & Niblett,), and 7ILP systems (Quinlan,
). All of these systems produce concepts containing

local information about context.

When contiguous intervals of time re�ect a hid-

den attribute or context, we call time the environmental

attribute.�e environmental attribute is not restricted

to time alone as it could be any ordinal attribute over

which instances of a hidden context are liable to be con-

tiguous.�ere is also no restriction, in principle, to one

dimension. Some alternatives to time as environmen-

tal attributes are dimensions of space, and space–time

combinations.

Given an environmental attribute, we can utilize

a CSFS machine learning algorithm to gain informa-

tion on likely hidden changes in context.�e accuracy

of the change points found will be dependent upon

at least hidden context duration, the number of dif-

ferent contexts, the complexity of each local concept,

and noise.

�e CSFS identi�ed context change points can be

expected to contain errors of the following types:

. 7Noise or serial correlation errors. �ese would
take the form of additional incorrect change points.

. Errors due to the repetition of tests on time in di�er-

ent parts of the concept.�ese would take the form

of a group of values clustered around the actual

point where the context changed.

. Errors of omission, change points that are missed

altogether.

�e initial set of identi�ed context changes can be

re�ned by contextual7clustering.
�is process combines similar intervals of the

dataset, where the similarity of two intervals is based

upon the degree to which a partial model is accurate on

both intervals.

Recent Advances
With the increasing amount of data being generated

by organizations, recent work on concept dri� has

focused on mining from high volume 7data streams
Hulten, Spencer, & Domingos, ; Wang, Fan, Yu, &

Han, ; Koltzer & Maloof, , Mierswa, Wurst,

Klinkenberg, Scholz, & Euler, ; Chu & Zaniolo,

; Gaber, Zaslavsky, & Krishnaswamy, . Meth-

ods such as Hulten et al’ s, combine decision tree learn-
ingwith incrementalmethods for e�cient updates, thus

avoiding relearning large decision trees. Koltzer and

Maloof also use incremental methods combined in an

7ensemble.

Concept Learning C

C

Cross References
7Decision Trees
7Ensemble Methods
7Incremental Learning
7Inductive Logic Programming
7Lazy Learning

Recommended Reading
Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, , –.
Chu, F., & Zaniolo, C. (). Fast and light boosting for adap-

tive mining of data streams. In Advances in knowledge discovery
and data mining. Lecture notes in computer science (Vol. ,
pp. –). Springer.

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, , –.
Clearwater, S., Cheng, T.-P., & Hirsh, H. (). Incremental batch

learning. In Proceedings of the sixth international workshop on
machine learning (pp. –). Morgan Kaufmann.

Domingos, P. (). Context-sensitive feature selection for lazy

learners. Artificial Intelligence Review, , –. [Aha, D.
(Ed.). Special issue on lazy learning.]

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (). Mining data

streams: A review. SIGMOD Rec., (), –.
Harries, M., & Horn, K. (). Learning stable concepts in domains

with hidden changes in context. In M. Kubat & G. Wid-

mer (Eds.), Learning in context-sensitive domains (workshop
notes). th international conference on machine learning, Bari,
Italy.

Harries, M. B., Sammut, C., & Horn, K. (). Extracting hidden

context. Machine Learning, (), –.
Hulten, G., Spencer, L., & Domingos, P. (). Mining time-

changing data streams. In KDD ’: Proceedings of the seventh
ACM SIGKDD international conference on knowledge discovery
and data mining (pp. –). New York: ACM.

Kilander, F., & Jansson, C. G. (). COBBIT – A control procedure

for COBWEB in the presence of concept drift. In P. B. Brazdil

(Ed.), European conference on machine learning (pp. –).
Berlin: Springer.

Kolter, J. Z., & Maloof, M. A. (). Dynamic weighted majority:

A new ensemble method for tracking concept drift. In Third
IEEE international conference on data mining ICDM- (pp.
–). IEEE CS Press.

Kubat, M. (). Floating approximation in time-varying knowl-

edge bases. Pattern Recognition Letters, , –.
Kubat, M. (). A machine learning based approach to load bal-

ancing in computer networks. Cybernetics and Systems Journal.
Kubat, M. (). Second tier for decision trees. InMachine learning:

Proceedings of the th international conference (pp. –).
California: Morgan Kaufmann.

Kubat, M., & Widmer, G. (). Adapting to drift in continuous

domains. In Proceedings of the eighth European conference on
machine learning (pp. –). Berlin: Springer.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T.

(). Yale: Rapid prototyping for complex data mining tasks.

In KDD ’: Proceedings of the th ACM SIGKDD inter-
national conference on knowledge discovery and data mining
(pp. –). New York: ACM.

Quinlan, J. R. (). Learning logical definitions from relations.

Machine Learning, , –.
Quinlan, J. R. (). C.: Programs for machine learning. Morgan

Kaufmann: San Mateo.

Salganicoff, M. (). Density adaptive learning and forgetting. In

Machine learning: Proceedings of the tenth international confer-
ence (pp. –). San Mateo: Morgan Kaufmann.

Schlimmer, J. C., & Granger, R. I., Jr. (a). Beyond incremen-

tal processing: Tracking concept drift. In Proceedings AAAI-
(pp. –). Los Altos: Morgan Kaufmann.

Schlimmer, J., & Granger, R., Jr. (b). Incremental learning from

noisy data. Machine Learning, (), –.
Turney, P. D. (a). Exploiting context when learning to classify.

In P. B. Brazdil (Ed.), European conference on machine learning

(pp. –). Berlin: Springer.

Turney, P. D. (b). Robust classification with context sensitive

features. In Paper presented at the industrial and engineering
applicatións of artificial intelligence and expert systems.

Turney, P., & Halasz, M. (). Contextual normalization applied

to aircraft gas turbine engine diagnosis. Journal of Applied
Intelligence, , –.

Wang, H., Fan, W., Yu, P. S., & Han, J. (). Mining concept-

drifting data streams using ensemble classifiers. In KDD ’:
Proceedings of the ninth ACM SIGKDD international conference
on knowledge discovery and data mining (pp. –). New
York: ACM.

Widmer, G. (). Recognition and exploitation of contex-

tual clues via incremental meta-learning. In L. Saitta (Ed.),

Machine learning: Proceedings of the th international workshop
(pp. –). San Francisco: Morgan Kaufmann.

Widmer, G., & Kubat, M. (). Effective learning in dynamic envi-

ronments by explicit concept tracking. In P. B. Brazdil (Ed.),

European conference on machine learning (pp. –). Berlin:
Springer.

Widmer, G., & Kubat, M. (). Learning in the presence of

concept drift and hidden contexts. Machine Learning, ,
–.

Concept Learning

Claude Sammut

�e University of New South Wales, Sydney, NSW,

Australia

Synonyms
Categorization; Classi�cation learning

Definition
�e term concept learning is originated in psychology,
where it refers to the human ability to learn categories

for object and to recognize new instances of those cate-

gories. In machine learning, concept is more formally

 C Concept Learning

de�ned as “inferring a boolean-valued function from

training examples of its inputs and outputs” (Mitchell,

).

Background
Bruner, Goodnow, and Austin () published their

book A Study of �inking, which became a landmark
in psychology and would later have a major impact on

machine learning.�e experiments reported by Bruner,

Goodnow, and Austin were directed toward under-

standing a human’s ability to categorize and how cate-

gories are learned.

▸ We begin with what seems a paradox. The world

of experience of any normal man is composed of a

tremendous array of discriminably different objects,

events, people, impressions. . . But were we to uti-

lize fully our capacity for registering the differences in

things and to respond to each event encountered as

unique, we would soon be overwhelmed by the com-

plexity of our environment. . . The resolution of this

seeming paradox. . . is achieved by man’s capacity to

categorize. To categorize is to render discriminably dif-

ferent things equivalent, to group objects and events

and people around us into classes. . . The process of

categorizing involves. . . an act of invention. . . If we

have learned the class “house” as a concept, new exem-

plars can be readily recognised. The category becomes

a tool for further use. The learning and utilization of

categories represents one of the most elementary and

general forms of cognition by which man adjusts to his

environment.

�e �rst question that they had to deal with was that

of representation: what is a concept? �ey assumed

that objects and events could be described by a set

of attributes and were concerned with how inferences

could be drawn from attributes to class membership.

Categories were considered to be of three types: con-

junctive, disjunctive, and relational.

▸ . . .when one learns to categorize a subset of events in a

certain way, one is doing more than simply learning to

recognise instances encountered. One is also learning a

rule that may be applied to new instances. The concept

or category is basically, this “rule of grouping” and it is

such rules that one constructs in forming and attaining

concepts.

�e notion of a rule as an abstract representation of a

concept in�uenced research in machine learning. For

example, 7decision tree learning was used as a means
of creating a cognitivemodel of concept learning (Hunt,

Martin, & Stone,).�is model later inspired Quin-

lan’s development of ID (Quinlan,).

�e learning experiencemay be in the formof exam-

ples from a trainer or the results of trial and error.

In either case, the program must be able to repre-

sent its observations of the world, and it must also be

able to represent hypotheses about the patterns it may

�nd in those observations.�us, we will o�en refer to

the 7observation language and the 7hypothesis lan-
guage. �e observation language describes the inputs

and outputs of the program and the hypothesis language

describes the internal state of the learning program,

which corresponds to its theory of the concepts or

patterns that exist in the data.

�e input to a learning program consists of descrip-

tions of objects from the universe and, in the case of

7supervised learning, an output value associated with
the example.�e universe can be an abstract one, such

as the set of all natural numbers, or the universe may

be a subset of the real world. No matter which method

of representation we choose, descriptions of objects in

the real world must ultimately rely on measurements of

some properties of those objects.�ese may be physical

properties such as size, weight, and color or they may

be de�ned for objects, for example, the length of time a

person has been employed for the purpose of approv-

ing a loan. �e accuracy and reliability of a learned

concept depends on the accuracy and reliability of the

measurements.

A program is limited in the concepts that it can

learn by the representational capabilities of both obser-

vation and hypothesis languages. For example, if an

attribute/value list is used to represent examples for

an induction program, the measurement of certain

attributes and not others clearly places bounds on the

kinds of patterns that the learner can �nd.�e learner

is said to be biased by its observation language (see
7Language Bias).�e hypothesis language also places
constraints on what may and may not be learned. For

Concept Learning C

C

example, in the language of attributes and values, rela-

tionships between objects are di�cult to represent.

Whereas, amore expressive language, such as �rst-order

logic, can easily be used to describe relationships.

Unfortunately, representational power comes at a

price. Learning can be viewed as a search through the

space of all sentences in a language for a sentence that

best describes the data. �e richer the language, the

larger is the search space. When the search space is

small, it is possible to use “brute force” search methods.

If the search space is very large, additional knowledge is

required to reduce the search.

Rules, Relations, and Background
Knowledge
In the early s, there was no discipline called

“machine learning.” Instead, learning was considered to

be part of “pattern recognition,” which had not yet split

from AI. One of the main problems addressed at that

timewas how to represent patterns so that they could be

recognized easily. Symbolic description languages were

developed to be expressive and learnable.

Banerji (,) �rst devised a language, which

he called a “description list,” which utilized an object’s

attributes to perform pattern recognition. Pennypacker,

a masters student of Banerji at the Case Institute of

Technology, implemented the recognition procedure

and also used Bruner, Goodnow, and Austin’s Conser-
vative Focussing Strategy to learn conjunctive concepts
(Pennypacker,). Bruner, Goodnow, and Austin

describe the strategy as follows:

▸ . . . this strategy may be described as finding a positive

instance to serve as a focus, then making a sequence

of choices each of which alters but one attribute value

[of the focus] and testing to see whether the change

yields a positive or negative instance. Those attributes

of the focus which, when changed, still yield positive

instance are not part of the concept. Those attributes of

the focus that yield negative instances when changed

are features of the concept.

�e strategy is only capable of learning conjunctive con-
cepts, that is, the concept description can only consist
of a simple conjunction of tests on attribute values.

Recognizing the limitations of simple attribute/value

representations, Banerji () introduced the use of

predicate logic as a description language.�us, Banerji

was one of the earliest advocates of what would, many

years later, become Inductive Logic Programming.
In the s, a series of algorithms emerged that

developed concept learning further. Winston’s ARCH

program (Winston,) was in�uential as one of

the �rst widely known concept learning programs.

Michalski (,) devised the Aq family of learn-

ing algorithms that set some of the early benchmarks for

learning programs. Early relational learning programs

were developed by Hayes-Roth (), Hayes-Roth and

McDermott (), and Vere (,).

Banerji emphasized the importance of a description

language that could “grow.”�at is, its descriptive power

should increase as new concepts are learned.�ese con-

cepts become background knowledge for future learn-

ing. A simple example from Banerji () illustrates

the use of background knowledge.�ere is a language

for describing instances of a concept and another for

describing concepts. Suppose we wish to represent the

binary number, , by a le�-recursive binary tree of

digits “” and “”:

[head : [head : ; tail : nil]; tail :]

“head” and “tail” are the names of attributes.�eir val-

ues follow the colon.�e concepts of binary digit and

binary number are de�ned as

x ∈ digit ≡ x = ∨ x =
x ∈ num ≡ (tail(x) ∈ digit ∧ head(x) = nil)

∨ (tail(x) ∈ digit ∧ head(x) ∈ num)

�us, an object belongs to a particular class or concept

if it satis�es the logical expression in the body of the

description. Note that the concept above is disjunctive.
Predicates in the expression may test the membership

of an object in a previously learned concept and can

express relations between objects. Cohen and Sammut
() devised a learning systembased onBanerji’s ideas

of a growing concept description language and this was

further extended by Sammut and Banerji ().

Concept Learning and Noise
One of the most severe drawbacks of early concept

learning systems was that they assumed that data sets

 C Conditional Random Field

were not noisy. �at is, all attribute values and class

labels in the training data are assumed to be correct.

�is is unrealistic in most real applications.�us, con-

cept learning systems began incorporating statistical

measures to minimize the e�ects of noise and to esti-

mate error rates (Breiman, Friedman, Olshen, & Stone,

; Cohen, ; Quinlan, ,).

Learning to classify objects from training examples

has gone on to become one of the central themes of

machine learning research. As the robustness of classi-

�cation systems has increased, they have found many

applications, particularly in data mining but in a broad

range of other areas.

Cross References
7Data Mining
7Decision Tree Learning
7Inductive Logic Programming
7Learning as Search
7Relational Learning
7Rule Learning

Recommended Reading
Banerji, R. B. (). An information processing program for object

recognition. General Systems, , –.
Banerji, R. B. (). The description list of concepts. Commu-

nications of the Association for Computing Machinery, (),
–.

Banerji, R. B. (). A Language for the Description of Concepts.

General Systems, , –.
Banerji, R. B. (). Artificial intelligence: A theoretical approach.

New York: North Holland.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().

Classification and regression trees. Belmont, CA: Wadsworth.
Bruner, J. S., Goodnow, J. J., & Austin, G. A. (). A study of

thinking. New York: Wiley.
Cohen, B. L., & Sammut, C. A. (). Object recognition and con-

cept learning with CONFUCIUS. Pattern Recognition Journal,
(), –.

Cohen, W. W. (). In fast effective rule induction. In Proceedings
of the twelfth international conference on machine learning, Lake
Tahoe, California. Menlo Park: Morgan Kaufmann.

Hayes-Roth, F. (). A structural approach to pattern learning

and the acquisition of classificatory power. In First interna-
tional joint conference on pattern recognition (pp. –).
Washington, D.C.

Hayes-Roth, F., &McDermott, J. (). Knowledge acquisition from

structural descriptions. In Fifth international joint conference
on artificial intelligence (pp. –). Cambridge, MA.

Hunt, E. B., Marin, J., & Stone, P. J. (). Experiments in induction.
New York: Academic.

Michalski, R. S. (). Discovering classification rules using

variable valued logic system VL. In Third international
joint conference on artificial intelligence (pp. –).

Stanford, CA.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach.
Palo Alto: Tioga.

Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.
Pennypacker, J. C. (). An elementary information processor

for object recognition. SRC No. -I--. Case Institute of

Technology.

Quinlan, J. R. (). Learning efficient classification procedures

and their application to chess end games. In R. S. Michalski,

J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. Palo Alto: Tioga.

Quinlan, J. R. (). The effect of noise on concept learning. In

R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),Machine
learning: An artificial intelligence approach (Vol.). Los Altos:
Morgan Kaufmann.

Quinlan, J. R. (). C.: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann.

Sammut, C. A., & Banerji, R. B. (). Learning concepts by asking

questions. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach
(Vol. , pp. –). Los Altos, CA: Morgan-Kaufmann.

Vere, S. (). Induction of concepts in the predicate calculus. In

Fourth international joint conference on artificial intelligence
(pp. –). Tbilisi, Georgia, USSR.

Vere, S. A. (). Induction of relational productions in the pres-

ence of background information. In Fifth international joint
conference on artificial intelligence. Cambridge, MA.

Winston, P. H. (). Learning structural descriptions from exam-

ples. Unpublished PhD Thesis, MIT Artificial Intelligence

Laboratory.

Conditional Random Field

A Conditional Random Field is a form of 7Graphical
Model for segmenting and7classifying sequential data.
It is the 7discriminative learning counterpart to the
7generative learning Markov Chain model.

Recommended Reading
Lafferty, J., McCallum, A., & Pereira, F. (). Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of the th international confer-
ence on machine learning (pp. –). San Francisco, Morgan
Kaufmann.

Conjunctive Normal Form C

C

Confirmation Theory

�e branch of philosophy concerned with how (and

indeed whether) evidence can con�rm a hypothesis,

even though typically it does not entail it. A distinc-

tion is sometimes drawn between total con�rmation:
how well con�rmed a hypothesis is, given all avail-

able evidence and weight-of-evidence: the amount of
extra con�rmation added to the total con�rmation of a

hypothesis by a particular piece of evidence. Con�rma-

tion is o�enmeasured by the probability of a hypothesis

conditional on evidence.

Confusion Matrix

KaiMing Ting

Monash University, Australia

Definition
A confusion matrix summarizes the classi�cation per-

formance of a 7classi�er with respect to some 7test
data. It is a two-dimensional matrix, indexed in one

dimension by the true class of an object and in the other

by the class that the classi�er assigns. Table presents an

example of confusion matrix for a three-class classi�ca-

tion task, with the classes A, B, and C.
�e �rst row of the matrix indicates that objects

belong to the class A and that are correctly classi�ed
as belonging to A, two misclassi�ed as belonging to B,
and one as belonging to C.
A special case of the confusion matrix is o�en uti-

lized with two classes, one designated the positive class
and the other the negative class. In this context, the four
cells of thematrix are designated as7true positives (TP),
7false positives (FP), 7true negatives (TN), and 7false
negatives (FN), as indicated in Table .
A number of measures of classi�cation perfor-

mance are de�ned in terms of these four classi�cation

outcomes.

7Speci�city =7True negative rate = TN/(TN + FP)
7Sensitivity = 7True positive rate = 7Recall = TP/

(TP + FN)

Confusion Matrix. Table An example of three-class

confusion matrix

Assigned Class

A B C

A

B

A
ct

ua
lC

la
ss

C

Confusion Matrix. Table The outcomes of classification

into positive and negative classes

Assigned Class

Positive Negative

Positive TP FN

A
ct

ua
l

C
la

ss
Negative FP TN

7Positive predictive value = 7Precision = TP/(TP +
FP)

7Negative predictive value = TN/(TN + FN)

Conjunctive Normal Form

Bernhard Pfahringer

University of Waikato, Hamilton, New Zealand

Conjunctive normal form (CNF) is an important nor-

mal form for propositional logic. A logic formula is in

conjunctive normal form if it is a single conjunction

of disjunctions of (possibly negated) literals. No more

nesting and no other negations are allowed. Examples

are:

a
¬b
a ∧ b
(a ∨ ¬b) ∧ (c ∨ d)
¬a ∧ (b ∨ ¬c ∨ d) ∧ (a ∨ ¬d)

 C Connection Strength

Any arbitrary formula in propositional logic can be

transformed into conjunctive normal form by applica-

tion of the laws of distribution, De Morgan’s laws, and

by removing double negations. It is important to note

that this process can lead to exponentially larger formu-

las which implies that the process in the worst case runs

in exponential time. An example for this behavior is the

following formula given in 7disjunctive normal form
(DNF), which is linear in the number of propositional

variables in this form. When transformed into con-

junctive normal form (CNF), its size is exponentially

larger.

DNF: (a ∧ a) ∨ (a ∧ a) ∨ . . . ∨ (an ∧ an+)

CNF: (a ∨ a ∨ . . . ∨ an) ∧ (a ∨ a ∨ . . . ∨ an)
∧ . . . ∧ (a ∨ a ∨ . . . ∨ an+)

Recommended Reading
Russell, S., & Norvig, P. (). Artificial intelligence: A modern

approach (p.). Prentice Hall

Connection Strength

7Weight

Connections Between Inductive
Inference and Machine Learning

John Case, Sanjay Jain

University of Delaware, Newark, USA
National University of Singapore, Singapore, Republic

of Singapore

Definition
Inductive inference is a theoretical framework to model

learning in the limit. Here we will discuss some results

in inductive inference, which have relevance tomachine

learning community.

�emathematical/theoretical area called7Inductive
Inference, is also known as computability theoretic learn-
ing and learning in the limit (Jain, Osherson, Royer, &

Sharma, ; Odifreddi,) typically but, as will be
seen below, not always involves a situation depicted in ()
just below.

Data d,d,d, . . .
InÐ→M OutÐ→ Programs e, e, e,

()

Let N = the set of nonnegative integers. Strings,
including program strings, computer reals, and other

data structures, inside computers, are �nite bit strings

and, hence, can be coded intoN.�erefore, mathemati-
cally at least, it is without loss ofmathematical generality

that we sometimes use the data type N where standard
practice would use a di�erent type.

In (), d,d,d, . . . can be, e.g., the successive values
of a function f : N → N or the elements of a (for-
mal) language L ⊆ N in some order; M is a machine;
the ei’s are from some hypothesis space of programs;
and, for M’s successful learning, later ei’s exactly or
approximately compute the f or L.
Such learning is o�-line: in successful cases, one

comes away with programs for past and future data.

For the related problem of online extrapolation of
next values for a function f , suitable ei’s may be the
values of f (i)’s based on having seen strictly prior
values of f .

Detail
We will discuss the o�-line case until we say otherwise.

It is typical in applied machine learning to present to a

learner whatever data one has and to obtain one corre-
sponding program hopefully for predicting these data

and future data. In inductive inference the case where

only one program is output is called one-shot learn-
ing. More typically, in inductive inference, one allows

for mind-changes, i.e., for a succession of output pro-
grams, as one receives successively more input data,

with the later programs hopefully eventually being use-

ful for predictions. Typically, one does not get success

on one’s �rst conjecture/output program, but rather, one

may achieve success eventually, or, as it is said, in the
limit a�er some sequence of trial and error. It is help-
ful at this juncture to present a problem for which this

latter approach makes more sense than the one-shot

approach.

Wewill consider some di�erent criteria of successful

learning of f or L by M. For example, Ex-style criteria

Connections Between Inductive Inference and Machine Learning C

C

will require that all but �nitely many of the ei’s are syn-
tactically the same and do a reasonable job of computing
the f or L.Bc-style criteria are more relaxed, more pow-
erful, but less useful (Bārzdiņš, ; Case&Lynes, ;

Case & Smith,): they do not require almost all ei’s
be the same syntactically.

Here is a well-known regression technique from,

e.g., (Hildebrand,), for exactly “curve-�tting” poly-

nomials. It is the method involving calculating forward
di�erences. We express it as a learning machineM and
illustrate with its being fed an example data sequence
generated by a cubic polynomial

x − x + x + . ()

See (Hildebrand,), for how to recover the poly-

nomials themselves.

M, fed a �nite data sequence of natural numbers,
�rst looks for iterated forward di�erences to become

(apparently) constant, then outputs a rule/program,

which uses the (apparent) constant to extrapolate the

data sequence for any desired prediction. For exam-

ple, were M given the data sequence in the top row
of Table , it would calculate to be the apparent con-

stant a�er three di�erencings, so M then outputs the
following informal rule/program.

▸ To generate the level sequence, at level , start with ;

at level , start with ; at level , start with ; add

the apparent constant from level to get succes-

sive level data items; add successive level items to

get successive level data items; finally, add successive

level items to get as many successive level data items

as needed for prediction.

�is program, eventually output by M when its
input the whole top row of Table , correctly predicts

Connections Between Inductive Inference and Machine

Learning. Table Example Sequence and Its Iterated

Forward Differences

Sequence:

st Diffs:

nd Diffs:

rd Diffs:

the elements of the cubic polynomial, on successive val-

ues inN – the whole sequence , , , , , , ,
Along the way, though, just a�er the �rst data point,

M thinks the apparent constant is ; just a�er the sec-
ond that it is ; just a�er the third that it is ; and only

a�er more of the data points does it converge for this

cubic polynomial to the apparent (and, on this exam-
ple, actual) constant . In general,M, on a polynomial
of degree m, changes its mind up to m times until con-
verging to its �nal program (of course on f (x) = x,M
never converges, and each level of forward di�erences is

just the sequence f again.).
Hence, M above Ex-learns, e.g., the integer poly-

nomials f : N → N, but it does not in general one-shot
learn these polynomials – since the data alone do not

disclose the degree of a generating polynomial.

In this entry we survey some results from inductive

inference but with an eye to topics having something to

say regarding or to applied machine learning. In some

cases, the theoretical results lend mathematical support

to preexisting empirical observations about the e�cacy

of known machine learning techniques. In other cases,

the theoretical results provide some, typically abstract,

suggestions for the machine learning practitioner. In

some of these cases, some of the suggestions apparently

pay o� in others, intriguingly, we do not know yet.

Multi-Task or Context Sensitive Learning
In empirical, applied machine learning, multitask or
context sensitive learning involves trying to learn Y by
�rst (de Garis, a, b; Fahlman, ; �run, ;

�run & Sullivan, ; Tsung & Cottrell, ; Waibel,

a, b) or simultaneously (Caruana, , ; Diet-
terich, Hild, & Bakiri, ; Matwin & Kubat, ;

Mitchell, Caruana, Freitag, McDermott, & Zabowski,

; Pratt,Mostow,&Kamm, ; Sejnowski&Rosen-

berg, ; Bartlmae, Gutjahr, & Nakhaeizadeh,)

trying to learn also X – even in cases where there may
be no inherent interest in learningX (see also7Transfer
Learning).�ere is, in many cases, an apparent empiri-
cal advantage in doing this for some X,Y . It can happen
thatY is not apparently or easily learnable by itself, but is
learnable if one learns X �rst or simultaneously in some
case X itself can be a sequence of tasks X, . . . ,Xn. Here
the Xis may need to be learned sequentially or simulta-
neously to learnY . For example, to teach a robot to drive

 C Connections Between Inductive Inference and Machine Learning

a car, it is useful to train it also to predict the center of

the road markings (see, e.g., Baluja & Pomerleau, ;

Caruana,). For another example: an experimental

system to predict the value of German Daimler stock
performed better when it wasmodi�ed to track simulta-

neously the German stock-index DAX (Bartlmae et al.,

).�e value of the Daimler stock here was the pri-

mary or target concept and the value of the DAX – a

related concept – provided useful auxiliary context.

Angluin, Gasarch, and Smith () shows mathe-
matically that, in e�ect, there are (mathematical) learn-
ing scenarios for which it was provable that Y could
not be learned without learning X �rst – and, in other
scenarios (Angluin et al., ; Kinber, Smith, Velau-

thapillai, & Wiehagen,), Y could not be learned
without simultaneously learning X. �ese mathemati-
cal results provide a kind of evidence that the empirical
observations as to the apparent usefulness of multitask
or context sensitive learning may not be illusionary,
luck, or a mere accident of happening to use some data

sets but not others.

For illustration, here is a particularly simple theoret-

ical example needing to be learned simultaneously and
similar to examples in Angluin et al. (). Let R be
the set of all computable functions mappingN toN. We
use numerical names in N for programs. Let

S = {(f , g) ∈R ×R ∣ f () is a program for
g ∧ g() is a program for f }. ()

We say (p, q) is a program for (f , g) ∈ R × R i�
p is a program for f and q is a program for g.
Consider a machine M which, if, as in (), M is

fed d,d, . . ., but where each di is (f (i), g(i)), then
M outputs each ei = (g(), f ()). Clearly, M one-

shot learns S . It can be easily shown that the compo-
nent f ’s and g’s for (f , g) ∈ S are not separately even
Bc-learnable. It is important to note that, perhaps quite
unlike real-world problems, the de�nition of this exam-

ple S employs a simple self-referential coding trick:
useful programs are coded into values of the functions at

argument zero. A number of inductive inference results

have been proved by means of (sometimes more com-

plicated) self-referential coding tricks (see, e.g., Case,

). Bārzdiņš indirectly (see Zeugmann,) pro-

vided a kind of informal robustness idea in his attempt

to be rid of such coding tricks in inductive inference.

More formally, Fulk () considered a learnability

result involving a witnessing class C of (tuples of) func-
tions to be robust i� each computable scrambling of C
also witnesses the learnability result (the allowed com-

putable scramblers are the general recursive operators of
(Rogers,), but we omit the formal details herein.)

Example: A simple shi� scrambler converting each f to
f ′, where f ′(x) = f (x +), would eliminate the cod-
ing tricks just above – since the values of f at argument
zero would be lost in this scrambling. Some inductive

inference results hold robustly and some not (see, e.g.,

Fulk, ; Jain, ; Jain, Smith, & Wiehagen, ;

Jain et al., ; Case, Jain, Ott, Sharma, & Stephan,

). Happily, the S ⊆ R × R above (that is, learn-
able, but its components not) can be replaced by a more

complicated class S ′ that robustly witnesses the same
result.�is is better theoretical evidence that the empir-
ically noticed e�cacy of multitask or context sensitive

learning is not just an accident. It is residually impor-

tant to note that (Jain et al.,) shows, though, that

the computable scramblers can not get rid of more

sophisticated coding tricks they called topological.

S ′ mentioned just above turns out to employ this latter
kind of coding trick. It is hypothesized in (Case et al.,

) that nature likely employs some sophisticated

coding tricks itself. For a separate informal argument

about coding tricks of nature, see (Case,). Ott and

Stephan () introduces a �nite invariance constraint

on top of robustness. �is so-called hyperrobustness

does destroy all coding tricks, and the result about

the theoretical e�cacy of multitask or context sensitive
learning is not hyperrobust. However, hyperrobustness,
perhaps, leaves unrealistically sparse structure.

Final note: Machine learning is an engineering

endeavor. However, philosophers of science as well as

practitioners in classical scienti�c disciplines should

likely be considering the relevance of multitask or con-

text sensitive inductive inference to their endeavors.

Special Cases of Inductive Logic
Programming
In this section we discuss some learning in the limit
results for elementary formal systems (EFSs) (Smullyan,
). Essentially, EFSs are programs in a string rewrit-

ing system. It is well known (Arikawa, Shinohara, &

Yamamoto,) that EFSs are essentially (pure) logic

Connections Between Inductive Inference and Machine Learning C

C

programs over strings. Hence, the results have possi-

ble relevance for 7inductive logic programming (ILP)
(Bratko & Muggleton, ; Lavrač & Džeroski, ;

Mitchell, ; Muggleton & De Raedt,).

First we will discuss some important special cases

based on Angulin’s pattern languages (Angluin,).
A pattern language is (by de�nition) one generated

by all the positive length substitution instances in a

pattern, such as,
abXYcbbZXa ()

— where the variables (for substitutions) are depicted

in upper case and the constants/terminals in lower case

and are from, say, the alphabet {a,b,c}. Just below is an

EFS or logic program based on this example pattern.

abXYcbbZXa← . ()

It must be understood, though, that in () and in the

next example EFS below, only positive length strings are

allowed to be substituted for the variables.

Angluin () showed the Ex-learnability of the
class of pattern languages from positive data. For these

results, in the paradigm of () above d,d,d, . . . is a
listing or presentation of some formal language L over
a �nite nonempty alphabet and the ei’s are programs
that generate languages. In particular, for Angluin’s M,
for L a pattern language, the ei’s are patterns, and, for
each presentation of L, all but �nitely many of the
corresponding ei’s are the same correct pattern for L.
Much work has been done on the learnability

of pattern languages, e.g., Salomaa (a, b); Case,

Jain, Kaufmann, Sharma, and Stephan (), and on

bounded �nite unions thereof, e.g., Shinohara ();

Wright (); Kilpeläinen, Mannila, and Ukkonen

(); Brazma, Ukkonen, and Vilo (); Case, Jain,

Lange, and Zeugmann ().

Regarding bounded �nite unions of pattern lan-

guages: an n-pattern language is the union of the pattern
languages for somenpatternsP, . . . ,Pn. Eachn-pattern
language is also Ex-learnable from positive data (see
Wright ()). An EFS or logic program corresponding

to the n-patterns P, . . . ,Pn and generating the corre-
sponding n-pattern language is just below.

P ← .
⋮

Pn ← .

Pattern language learning algorithms have been suc-

cessfully applied toward some problems in molecular

biology, see, e.g., Shimozono et al. (), Shinohara and

Arikawa ().

Lange and Wiehagen () presents an interest-

ing iterative (Wiehagen,) algorithm learning the
class of pattern languages – from positive data only and

with polynomial time constraints. Iterative learners are
Ex-learners for which each output depends only on its
just prior output (if any) and the input data element

currently seen. �eir algorithm works in polynomial

time (actually quadratic time) in the length of the lat-

est data item and the previous hypothesis. Furthermore,

the algorithm has a linear set of good examples, in the

sense that if the input data contains these good exam-

ples, then the algorithm already converges to the correct

hypothesis.�e number of good examples needed is at

most ∣P∣ + , where P is a pattern generating the data
d,d,d, . . . for the language being learned.�is algo-
rithm may be useful in practice due to its fast run time,

and being able to converge quickly, if enough good data
is available early. Furthermore, due to iterativeness, it

does not need to store previous data!

Zeugmann () considers total learning time up
to convergence of the algorithm just discussed in the

just prior paragraph. Note that, for arbitrary presen-

tations, d,d,d, . . ., of a pattern language, this time
can be unbounded. In the best case it is polynomial in

the length of a generating pattern P, where d,d,d, . . .
is based on using P to get good examples early – in
fact the time taken in the best case is Θ(∣P∣logs(s +
k)), where P is the pattern, s is the alphabet size, and
k is the number of variables in P. Much more inter-
esting is the case of average time taken up to con-
vergence. �e probability distribution (called uniform
by Zeugmann) considered is as follows. A variable

X is replaced by a string w with probability

(s)∣w∣
(i.e., all strings of length r together have probabil-
ity −r, and the distribution is uniform among strings

of length r). Di�erent variables are replaced indepen-
dently of each other. In this case the average total

time up to convergence is O(kks∣P∣logs(ks)). �e
main thing is that for average case on probabilistic data

(as can be expected in real life, though not necessar-

ily with this kind of uniform distribution), the algo-

rithm converges pretty fast and computations are done

e�ciently.

 C Connections Between Inductive Inference and Machine Learning

A number of papers consider Ex-learning of EFSs
(Krishna Rao, ; Krishna Rao, , , ;

Krishna Rao & Sattar,) including with various

bounds on the number of mind-changes until syntactic

convergence to correct programs (Jain & Sharma, ,

). �e EFSs considered are patterns, n-patterns,

those with a constant bound on the length of clauses,

and some with constant bounds on search trees. �e

mind-change bounds are typically more dynamic than

those given by constants: they involve counting down

from�nite representations (called notations) for in�nite
constructive ordinals.An example of this kind of bound:
one can algorithmically, based on some input parame-

ters, decide how many mind-changes will be allowed.

In other examples, the decision as to how many mind-
changes will be allowed can be algorithmically revised

some constant number of times. It is possible that not

yet created special cases of some of these algorithms

could be made feasible enough for practice.

Learning Drifting Concepts
A dri�ing concept to be learned is one which is a

moving target (see 7Concept Dri�). In some machine
learning applications, concept dri� must be dealt with

(Bartlett, Ben-David, & Kulkarni, ; Blum & Cha-

lasani, ; Devaney & Ram, ; Freund &Mansour,

; Helmbold and Long, ; Kubat, ; Widmer

& Kubat, ; Wrobel,). An inductive inference

contribution is (Case et al.,) in which it is shown,

for online extrapolation by computable martingale bet-
ting strategies, upper bounds on the “speed” of the

moving target that permit success at all. Here success

is to make unbounded amounts of “money” betting

on correctness of ones extrapolations. Here is an illus-

trative result from (Case et al.,). For the pattern

languages considered in the previous section, only pos-
itive length strings of terminals can be substituted for
a variable in an associated pattern. �e (di�cult to

learn) pattern languages with erasing are just the lan-
guages obtained by also allowing the substitution of

the empty string for variables in a pattern. For our

example, we restrict the terminal alphabet to be {,}.

With each pattern language with erasing L (over this
terminal alphabet) we associate its characteristic func-

tion χL, which is on terminal strings in L and
on those not in L. For ε denoting the empty string,

and for the terminal strings in length-lexicographical

order, ε, , , , , , , , . . ., we would input a χL
itself to a potential extrapolating machine as the bit

string, χL(ε), χL(), χL(), χL(), χL(), Let E be
the class of these characteristic functions. Pick a posi-

tive integer constant p. To model dri� with permanence
p, we imagine that a potential extrapolator for E receives
successive bits from a member of E but keeps switching
to the next bits of another, etc., but it must see at least p
bits in a row of eachmember of E it sees before it can see
the next bits of another. p is, then, a speed limit on dri�.
�e result is that some suitably clever computable mar-

tingale betting strategy is successful at extrapolating E
with dri� permanence (speed limit on dri�) of p = .

Behavioral Cloning
Kummer and Ott (); Case, Ott, Sharma, and

Stephan () studied learning in the limit of winning

control strategies for closed computable games. �ese
games nicely model reactive process-control problems.
Included are such example process-control games as

regulating temperature of a room to be in a desired

interval, forever a�er no more than some �xed number
ofmoves between the thermostat and processes disturb-

ing the temperature (Roughly, closed computable games
are those so that one can tell algorithmically when one

has lost. A temperature control game that requires sta-

bility forever a�er some undetermined �nite number of
moves is not a closed computable game. For a more for-
mal treatment, see Cenzer and Remmel (); Maler,

Pnueli, and Sifakis ();�omas (); Kummer and

Ott ()).

In machine learning, there are cases where one

wants to teach amachine somemotor skill possessed by

human experts and where these human experts do not

have access to verbalizable knowledge about how they

perform expertly. Piloting an aircra� or expert opera-

tion of a swinging shipyard crane provide examples, and

machine learning employs, in these cases, 7behavioral
cloning, which uses direct performance data from the
experts (Bain & Sammut, ; Bratko, Urbančič, &

Sammut, ; Šuc,).

Case et al. () studies the e�ects on learning in

the limit closed computable games where the learning
procedures also had access to the behavioral perfor-
mance (but not the algorithms) ofmasters/experts at the

Connections Between Inductive Inference and Machine Learning C

C

games. For example, it is showed that, in some cases,

there is better performance cloning n+ disparate mas-
ters over cloning only n. For a while it was not known
in machine learning how to clone multiple experts even
a�er Case et al. () was known to some; however,

independently of Case et al., , and later, Dorian

Šuc (Šuc,) found a way to clone behaviorally more

than one human expert simultaneously (for the free-

swinging shipyard crane problem) – by having more

than one level of feedback control, and he got enhanced
performance from cloning the multiple experts!

Learning To Coordinate
Montagna and Osherson () begins the study of

learning in the limit to coordinate (digital) moves
between at least two agents.

�e machines of Montagna and Osherson ()

are, in e�ect, general extrapolating devices (Montagna

& Osherson, ; Case et al.,). Technically, and

without loss of generality of the results, we restrict the

moves of each coordinator to bits, i.e., zeros and ones.

Coordination is achieved between two coordinators i�
each, reacting to the bit sequence of the other, eventually

(in the limit)matches it bit for bit.Montagna andOsher-

son () gives an example of two people who show up

in a park each day at one of noon (bit) or pm (bit);

each silently watches the other’s past behavior; and each
tries, based on the past behavior of the other, to show
up eventually exactly when the other shows up. If they

manage it, they have learned to coordinate.

A blind coordinator is one that reacts only to the
presence of a bit from another process, not to which bit
the other process has played (Montagna and Osherson,

).

In Case et al. () is developed and studied the

notion of probabilistically correct algorithmic coor-

dinators. Next is a sample of theorems to the e�ect

that just a few random bits can enhance learning to

coordinate.

�eorem (Case et al.,) Suppose ≤ p < .�ere
exists a class of deterministic algorithmic coordinators

C such that

() No deterministic algorithmic coordinator can
coordinate with all of C; and

() For k chosen so that − −k ≥ p, there exists
a blind, probabilistic algorithmic coordinator PM,
such that:

(i) For each member of C, PM can coordinate
with with probability − −k ≥ p; and

(ii) PM is k-memory limited in the sense of
(Osherson, Stob, & Weinstein, , P.);

more speci�cally, PM needs to remember

whether it is outputting one of its �rst

k bits — which are its only random bits (e.g.,
for p =

, a mere k = random bits

su�ce.).

Regarding possible eventual applicability: Maye,

Hsieh, Sugihara, and Brembs () cites �nding deter-

ministic chaos but not randomness in the behavior of
animals. Hence, animals may not be exploiting random
bits in learning anything, including to coordinate. How-

ever, one might build artifactual devices to exploit ran-

domness, say, from radioactive decay, including, then,

for enhancing learning to coordinate.

Learning Geometric Clustering
Case, Jain, Martin, Sharma, and Stephen () showed

that learnability in the limit of 7clustering, with or
without additional information, depends strongly on

geometric constraints on the shape of the clusters. In

this approach the hypothesis space of possible clusters is

pre-given in each setting. It was hoped to obtain thereby

insight into the di�culty of clustering when the clus-

ters are restricted to preassigned geometrically de�ned
classes.

�is is interestingly complementary to the con-
ceptual clustering approach (see, e.g., Mishra, Ron, &
Swaminathan, ; Pitt & Reinke,) where one

restricts the possible clusters to have good “verbal”

descriptions in some language.

Clustering of many of the geometric classes investi-

gated was shown to require information in addition to a
presentation, d,d,d, . . ., of the set of points to be clus-
tered. For example, for clusters as convex hulls of �nitely

many points in a rational vector space, clustering can

be done – but with the number of clusters as additional

information. Let S consist of all polygons including
their interiors – in the rational two-dimensional plane

without intersections and degenerated angles (Attention
was restricted to spaces of rationals since: . computer

 C Connections Between Inductive Inference and Machine Learning

reals are rationals, . this avoids the uncountability

of the set of reals, and . this avoids dealing with

uncomputable real points.) �e class S can be clus-
tered – but with the number of vertices of the polygons

of the clusters involved as additional information.

Correspondingly, then, it was shown that the class

S ′ containingS together with all such polygons but with
one hole (the nondegenerate di�erences of two mem-

bers in S) cannot be clustered with the number of ver-
tices as additional information, yet S ′ can be clustered
with area as additional information – and this even in
higher dimensions and with any number of holes (Case

et al.,).

It remains to be seen if some forms of geometrically

constrained clustering can be usefully complementary

to, say, conceptually/verbally constrained clustering.

Insights for Limitations of Science
We brie�y treat below in some problems regarding par-

simonious, refutable, and consistent hypotheses.

It is common wisdom in science that one should

�t parsimonious explanations, hypotheses, or programs

to data. In machine learning, this has been successfully

applied, e.g., (Wallace, ; Wallace & Dowe,).

Curiously, though, there are many results in induc-

tive inference in which we see sometimes severe

degradations of learning power caused by demanding
parsimonious predictive programs (see, e.g., Freivalds
(); Kinber (); Chen (); Case, Jain, and

Sharma (); Ambainis, Case, Jain, and Suraj ()).

It is an interesting problem to resolve the seeming,

likely not actual contradiction between the just prior

two paragraphs.

Popper’s Refutability (Popper,) asserts that

hypotheses in science should be subject to refutation.

Besides the well-known di�culties of Duhem–Quine

(Harding,) of knowing which component hypoth-

esis to throw out when a compound hypothesis badly

fails to make correct predictions, inductive inference

theorems have provided very di�erent di�culties. Case

and Smith () outlines cases of usefully incomplete
(hence wrong) hypothesis that cannot be refuted, and

Case and Suraj () (see also Case,) provides

cases of inductively inferable higher order hypothesis

not totally subject to refutation in cases where ordi-

nary hypotheses subject to full refutation cannot be

inductively inferred.

While Duhem–Quine may impact machine learn-

ing eventually, it remains to be seen about the inductive

inference results of the just prior paragraph.

Requiring 7inductive inference procedures always
to output an hypothesis in various senses consistent
with (e.g., not ignoring) the data on which that hypoth-

esis is based seems like mere common sense. How-

ever, from Bārzdiņš (a); Blum and Blum ();

Wiehagen (), Case, Jain, Stephan, and Wiehagen

() we see that strict adherence to various con-

sistency principles can severely attenuate the learning

power of inductive inference machines. Furthermore,

interestingly, even when inductive inference is polytime
constrained, we see similar counterintuitive results to
the e�ect that a kind of consistency can strictly attenuate

learning power (Wiehagen & Zeugmann,).

A machine learning analog might be Breiman’s bag-

ging (Breiman,) and random forests (Breiman,

), where data is purposely ignored. However, in

these cases, the purpose of ignoring data is to avoid

over�tting to noise.

It remains to be seen, whether, in applied machine

learning involving cases of practically noiseless data,

one can also obtain some advantage in ignoring some

consistency principles. Again the potential lesson from

inductive inference is abstract and provides only a hint

of something to work out in real machine learning

problems.

Cross References
7Behavioural Cloning
7Clustering
7Concept Dri�
7Inductive Logic Programming
7Transfer Learning

Recommended Reading
Ambainis, A., Case, J., Jain, S., & Suraj, M. (). Parsimony hier-

archies for inductive inference. Journal of Symbolic Logic, ,
–.

Angluin, D., Gasarch, W., & Smith, C. (). Training sequences.

Theoretical Computer Science, (), –.
Angluin, D. (). Finding patterns common to a set of strings.

Journal of Computer and System Sciences, , –.
Arikawa, S., Shinohara, T., & Yamamoto, A. (). Learning ele-

mentary formal systems. Theoretical Computer Science, ,
–.

Bain, M., & Sammut, C. (). A framework for behavioural

cloning. In K. Furakawa, S. Muggleton, & D. Michie (Eds.),

Machine intelligence . Oxford: Oxford University Press.

Connections Between Inductive Inference and Machine Learning C

C

Baluja, S., & Pomerleau, D. (). Using the representation in a neu-

ral network’s hidden layer for task specific focus of attention.

Technical Report CMU-CS--, School of Computer Science,
CMU, May . Appears in Proceedings of the IJCAI.

Bartlett, P., Ben-David, S., & Kulkarni, S. (). Learning changing

concepts by exploiting the structure of change. In Proceedings
of the ninth annual conference on computational learning theory,
Desenzano del Garda, Italy. New York: ACM Press.

Bartlmae, K., Gutjahr, S., & Nakhaeizadeh, G. (). Incorporating

prior knowledge about financial markets through neural multi-

task learning. In Proceedings of the fifth international conference
on neural networks in the capital markets.

Bārzdiņš, J. (a). Inductive inference of automata, functions

and programs. In Proceedings of the international congress of
mathematicians, Vancouver (pp. –).

Bārzdiņš, J. (b). Two theorems on the limiting synthesis of

functions. In Theory of algorithms and programs (Vol. ,
pp. –). Latvian State University, Riga.

Blum, L., & Blum, M. (). Toward a mathematical theory of

inductive inference. Information and Control, , –.
Blum, A., & Chalasani, P. (). Learning switching concepts. In

Proceedings of the fifth annual conference on computational
learning theory, Pittsburgh, Pennsylvania, (pp. –). New
York: ACM Press.

Bratko, I., & Muggleton, S. (). Applications of inductive logic

programming. Communications of the ACM, (), –.
Bratko, I., Urbančič, T., & Sammut, C. (). Behavioural cloning

of control skill. In R. S. Michalski, I. Bratko, & M. Kubat (Eds.),

Machine learning and data mining: Methods and applications,
(pp. –). New York: Wiley.

Brazma, A., Ukkonen, E., & Vilo, J. (). Discovering unbounded

unions of regular pattern languages from positive examples.

In Proceedings of the seventh international symposium on algo-
rithms and computation (ISAAC’), Lecture notes in computer
science, (Vol. , pp. –), Berlin: Springer-Verlag.

Breiman, L. (). Bagging predictors. Machine Learning, (),
–.

Breiman, L. (). Random forests. Machine Learning, (), –.
Caruana, R. (). Multitask connectionist learning. In Proceedings

of the connectionist models summer school (pp. –).
NJ: Lawrence Erlbaum.

Caruana, R. (). Algorithms and applications for multitask

learning. In Proceedings th international conference on
machine learning (pp. –). San Francisco, CA: Morgan
Kaufmann.

Case, J. (). Infinitary self-reference in learning theory. Journal
of Experimental and Theoretical Artificial Intelligence, , –.

Case, J. (). The power of vacillation in language learning. SIAM
Journal on Computing, (), –.

Case, J. (). Directions for computability theory beyond pure

mathematical. In D. Gabbay, S. Goncharov, &M. Zakharyaschev

(Eds.), Mathematical problems from applied logic II. New log-
ics for the XXIst century, International Mathematical Series,
(Vol.). New York: Springer.

Case, J., & Lynes, C. (). Machine inductive inference and lan-

guage identification. In M. Nielsen & E. Schmidt, (Eds.), Pro-
ceedings of the th International Colloquium on Automata, Lan-
guages and Programming, Lecture notes in computer science,
(Vol. , pp. –). Berlin: Springer-Verlag.

Case, J., & Smith, C. (). Comparison of identification criteria for

machine inductive inference. Theoretical Computer Science, ,
–.

Case, J., & Suraj, M. (). Weakened refutability for machine

learning of higher order definitions, . (Working paper for

eventual journal submission).

Case, J., Jain, S., Kaufmann, S., Sharma, A., & Stephan, F. ().

Predictive learning models for concept drift (Special Issue for

ALT’). Theoretical Computer Science, , –.
Case, J., Jain, S., Lange, S., & Zeugmann, T. (). Incremental

concept learning for bounded data mining. Information and
Computation, , –.

Case, J., Jain, S., Montagna, F., Simi, G., & Sorbi, A. (). On learn-

ing to coordinate: Random bits help, insightful normal forms,

and competency isomorphisms (Special issue for selected learn-

ing theory papers from COLT’, FOCS’, and STOC’).

Journal of Computer and System Sciences, (), –.
Case, J., Jain, S., Martin, E., Sharma, A., & Stephan, F. (). Iden-

tifying clusters from positive data. SIAM Journal on Computing,
(), –.

Case, J., Jain, S., Ott, M., Sharma, A., & Stephan, F. (). Robust

learning aided by context (Special Issue for COLT’). Journal
of Computer and System Sciences, , –.

Case, J., Jain, S., & Sharma, A. (). Machine induction with-

out revolutionary changes in hypothesis size. Information and
Computation, , –.

Case, J., Jain, S., Stephan, F., & Wiehagen, R. (). Robust learn-

ing – rich and poor. Journal of Computer and System Sciences,
(), –.

Case, J., Ott, M., Sharma, A., & Stephan, F. (). Learning to win

process-control games watching gamemasters. Information and
Computation, (), –.

Cenzer, D., & Remmel, J. (). Recursively presented games and

strategies. Mathematical Social Sciences, , –.
Chen, K. (). Tradeoffs in the inductive inference of nearly

minimal size programs. Information and Control, , –.
de Garis, H. (a). Genetic programming: Building nanobrains

with genetically programmed neural network modules. In

IJCNN: International Joint Conference on Neural Networks,
(Vol. , pp. –). Piscataway, NJ: IEEE Service Center.

deGaris,H. (b).Geneticprogramming:Modularneuralevolution

for Darwinmachines. InM. Caudill (Ed.), IJCNN--WASHDC;
International joint conference on neural networks (Vol. , pp.
–). Hillsdale, NJ: Lawrence Erlbaum Associates.

de Garis, H. (). Genetic programming: Building artificial ner-

vous systems with genetically programmed neural network

modules. In B. Soušek, & The IRIS group (Eds.), Neural and
intelligenct systems integeration: Fifth and sixth generation inte-
gerated reasoning information systems (Chap. , pp. –).
New York: Wiley.

Devaney, M., & Ram, A. (). Dynamically adjusting concepts

to accommodate changing contexts. In M. Kubat, G. Widmer

(Eds.), Proceedings of the ICML- Pre-conference workshop
on learning in context-sensitive domains, Bari, Italy (Journal
submission).

Dietterich, T., Hild, H., & Bakiri, G. (). A comparison of ID and

backpropogation for English text-tospeech mapping. Machine
Learning, (), –.

Fahlman, S. (). The recurrent cascade-correlation architecture.

In R. Lippmann, J. Moody, and D. Touretzky (Eds.), Advances in
neural information processing systems (Vol. , pp. –). San
Mateo, CA: Morgan Kaufmann Publishers.

Freivalds, R. (). Minimal Gödel numbers and their identification

in the limit. In Lecture notes in computer science (Vol. , pp.
–). Berlin: Springer-Verlag.

 C Connections Between Inductive Inference and Machine Learning

Freund, Y., & Mansour, Y. (). Learning under persistent drift. In

S. Ben-David, (Ed.), Proceedings of the third European confer-
ence on computational learning theory (EuroCOLT’), Lecture
notes in artificial intelligence, (Vol. , pp. –). Berlin:
Springer-Verlag.

Fulk, M. (). Robust separations in inductive inference. In Pro-
ceedings of the st annual symposium on foundations of com-
puter science (pp. –). St. Louis, Missouri. Washington,
DC: IEEE Computer Society.

Harding, S. (Ed.). (). Can theories be refuted? Essays on the
Duhem-Quine thesis. Dordrecht: Kluwer Academic Publishers.

Helmbold, D., & Long, P. (). Tracking drifting concepts by

minimizing disagreements. Machine Learning, , –.
Hildebrand, F. (). Introduction to numerical analysis. New York:

McGraw-Hill.

Jain, S. (). Robust behaviorally correct learning. Information
and Computation, (), –.

Jain, S., & Sharma, A. (). Elementary formal systems, intrinsic

complexity, and procrastination. Information and Computation,
, –.

Jain, S., & Sharma, A. (). Mind change complexity of learning

logic programs. Theoretical Computer Science, (), –.
Jain, S., Osherson, D., Royer, J., & Sharma, A. (). Systems that

learn: An introduction to learning theory (nd ed.). Cambridge,
MA: MIT Press.

Jain, S., Smith, C., & Wiehagen, R. (). Robust learning is rich.

Journal of Computer and System Sciences, (), –.
Kilpeläinen, P., Mannila, H., & Ukkonen, E. (). MDL learning of

unions of simple pattern languages from positive examples. In P.

Vitányi (Ed.), Computational learning theory, second European
conference, EuroCOLT’, Lecture notes in artificial intelligence,
(Vol. , pp. –). Berlin: Springer-Verlag.

Kinber, E. (). On a theory of inductive inference. In Lecture notes
in computer science (Vol. , pp. –). Berlin: Springer-
Verlag.

Kinber, E., Smith, C., Velauthapillai, M., & Wiehagen, R. (). On

learning multiple concepts in parallel. Journal of Computer and
System Sciences, , –.

Krishna Rao, M. (). A class of prolog programs inferable from

positive data. In A. Arikawa & A. Sharma (Eds.), Seventh inter-
national conference on algorithmic learning theory (ALT’),
Lecture notes in artificial intelligence (Vol. , pp. –).
Berlin: Springer-Verlag.

Krishna Rao, M. (). Some classes of prolog programs infer-

able from positive data (Special Issue for ALT’). Theoretical
Computer Science A, , –.

Krishna Rao, M. (). Inductive inference of term rewriting sys-

tems from positive data. In S. Ben-David, J. Case, & A. Maruoka

(Eds.), Algorithmic learning theory: Fifteenth international con-
ference (ALT’), Lecture notes in artificial intelligence (Vol.
, pp. –). Berlin: Springer-Verlag.

Krishna Rao, M. (). A class of prolog programs with non-

linear outputs inferable from positive data. In S. Jain, H. U.

Simon, &E. Tomita (Eds.),Algorithmic learning theory: Sixteenth
international conference (ALT’), Lecture notes in artificial
intelligence, (Vol. , pp. –). Berlin: Springer-Verlag.

Krishna Rao, M., & Sattar, A. (). Learning from entailment of

logic programs with local variables. In M. Richter, C. Smith,

R. Wiehagen, & T. Zeugmann (Eds.), Ninth international confer-
ence on algorithmic learning theory (ALT’), Lecture notes in

artificial intelligence (Vol. , pp. –). Berlin: Springer-
Verlag.

Kubat, M. (). A machine learning based approach to load bal-

ancing in computer networks. Cybernetics and Systems, ,
–.

Kummer, M., & Ott, M. (). Learning branches and learning to

win closed recursive games. In Proceedings of the ninth annual
conference on computational learning theory, Desenzano del
Garda, Italy. New York: ACM Press.

Lange, S., & Wiehagen, R. (). Polynomial time inference of arbi-

trary pattern languages. New Generation Computing, , –.
Lavrač, N., & Džeroski, S. (). Inductive logic programming:

Techniques and applications. New York: Ellis Horwood.
Maler, O., Pnueli, A., & Sifakis, J. (). On the synthesis of discrete

controllers for timed systems. In Proceedings of the annual sym-
posium on the theoretical aspects of computer science, LNCS (Vol.
, pp. –). Berlin: Springer-Verlag.

Matwin, S., & Kubat, M. (). The role of context in concept

learning. In M. Kubat & G. Widmer (Eds.), Proceedings of
the ICML- pre-conference workshop on learning in context-
sensitive domains, Bari, Italy, (pp. –).

Maye, A., Hsieh, C., Sugihara, G., & Brembs, B. (). Order in

spontaneous behavior. PLoS One, May, . See: http://brembs.
net/spontaneous/

Mishra, N., Ron, D., & Swaminathan, R. (). A new conceptual

clustering framework. Machine Learning, (–), –.
Mitchell, T. (). Machine learning. New York: McGraw Hill.
Mitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D.

(). Experience with a learning, personal assistant. Commu-
nications of the ACM, , –.

Montagna, F., & Osherson, D. (). Learning to coordinate: A

recursion theoretic perspective. Synthese, , –.
Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, /, –
.

Odifreddi, P. (). Classical recursion theory (Vol. II). Amsterdam:
Elsivier.

Osherson, D., Stob, M., & Weinstein, S. (). Systems that learn:

An introduction to learning theory for cognitive and computer

scientists. Cambridge, MA: MIT Press.

Ott, M., & Stephan, F. (). Avoiding coding tricks by hyperrobust

learning. Theoretical Computer Science, (), –.
Pitt, L., & Reinke, R. (). Criteria for polynomial-time (concep-

tual) clustering. Machine Learning, , –.
Popper, K. (). Conjectures and refutations: The growth of sci-

entific knowledge. New York: Basic Books.

Pratt, L., Mostow, J., & Kamm, C. (). Direct transfer of learned

information among neural networks. In Proceedings of the th
national conference on artificial intelligence (AAAI-), Ana-
heim, California. Menlo Park, CA: AAAI press.

Rogers, H. (). Theory of recursive functions and effective com-
putability. New York: McGraw Hill (Reprinted, MIT Press,
).

Salomaa, A. (a). Patterns (The formal language theory column).

EATCS Bulletin, , –.
Salomaa, A. (b). Return to patterns (The formal language theory

column). EATCS Bulletin, , –.
Sejnowski, T., & Rosenberg, C. (). NETtalk: A parallel network

that learns to read aloud. Technical Report JHU-EECS--,
Johns Hopkins University.

Consensus Clustering C

C

Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S.,

& Arikawa, S. (). Knowledge acquisition from amino acid

sequences by machine learning system BONSAI. Transactions
of Information Processing Society of Japan, , –.

Shinohara, T. (). Inferring unions of two pattern languages.

Bulletin of Informatics and Cybernetics, , –.
Shinohara, T., & Arikawa, A. (). Pattern inference. In

K. P. Jantke & S. Lange (Eds.), Algorithmic learning for
knowledge-based systems, Lecture notes in artificial intelligence
(Vol. , pp. –). Berlin: Springer-Verlag.

Smullyan, R. (). Theory of formal systems. In Annals of Math-
ematics Studies (Vol.). Princeton, NJ: Princeton University
Press.

Šuc, D. (). Machine reconstruction of human control strate-

gies. Frontiers in artificial intelligence and applications (Vol.).
Amsterdam: IOS Press.

Thomas, W. (). On the synthesis of strategies in infinite games.

In Proceedings of the annual symposium on the theoretical aspects
of computer science, LNCS (Vol. , pp. –). Berlin: Springer-
Verlag.

Thrun, S. (). Is learning the n-th thing any easier than learning

the first? In Advances in neural information processing systems,
. San Mateo, CA: Morgan Kaufmann.

Thrun, S., & Sullivan, J. (). Discovering structure in multi-

ple learning tasks: The TC algorithm. In Proceedings of the
thirteenth international conference on machine learning (ICML-
) (pp. –). San Francisco, CA: Morgan Kaufmann.

Tsung, F., & Cottrell, G. (). A sequential adder using recurrent

networks. In IJCNN--WASHINGTON DC: International joint
conference on neural networks June – (Vol. , pp. –).
Piscataway, NJ: IEEE Service Center.

Waibel, A. (a). Connectionist glue: Modular design of neural

speech systems. In D. Touretzky, G. Hinton, & T. Sejnowski

(Eds.), Proceedings of the connectionist models summer
school (pp. –). San Mateo, CA: Morgan Kaufmann.

Waibel, A. (b). Consonant recognition by modular con-

struction of large phonemic time-delay neural networks. In

D. S. Touretzky (Ed.), Advances in neural information processing
systems I (pp. –). San Mateo, CA: Morgan Kaufmann.

Wallace, C. (). Statistical and inductive inference by minimum
message length. (Information Science and Statistics). New York:
Springer (Posthumously published).

Wallace, C., & Dowe, D. (). Minimum message length and

kolmogorov complexity (Special Issue on Kolmogorov Com-

plexity). Computer Journal, (), –. http://comjnl.
oxfordjournals.org/cgi/reprint///.

Widmer, G., & Kubat, M. (). Learning in the presence of concept

drift and hidden contexts. Machine Learning, , –.
Wiehagen, R. (). Limes-Erkennung rekursiver Funktionen

durch spezielle Strategien. Electronische Informationverar-
beitung und Kybernetik, , –.

Wiehagen, R., & Zeugmann, T. (). Ignoring data may be the only

way to learn efficiently. Journal of Experimental and Theoretical
Artificial Intelligence, , –.

Wright, K. (). Identification of unions of languages drawn from

an identifiable class. In R. Rivest, D. Haussler, & M. Warmuth

(Eds.), Proceedings of the second annual workshop on compu-
tational learning theory, Santa Cruz, California, (pp. –).
San Mateo, CA: Morgan Kaufmann Publishers.

Wrobel, S. (). Concept formation and knowledge revision. Dor-

drecht: Kluwer Academic Publishers.

Zeugmann, T. (). On Bārzdiņš’ conjecture. In K. P. Jantke (Ed.),

Analogical and inductive inference, Proceedings of the interna-
tional workshop, Lecture notes in computer science, (Vol. ,
pp. –). Berlin: Springer-Verlag.

Zeugmann, T. (). Lange and Wiehagen’s pattern language learn-

ing algorithm: An average case analysis with respect to its total

learning time. Annals of Mathematics and Artificial Intelligence,
, –.

Connectivity

7Topology of a Neural Network

Consensus Clustering

Synonyms
Clustering aggregation; Clustering ensembles

Definition
In Consensus Clustering we are given a set of n
objects V , and a set of m clusterings {C,C, . . . ,Cm}
of the objects in V .�e aim is to �nd a single clustering
C that disagrees least with the input clusterings, that is,
Cminimizes

D(C) =∑
Ci
d(C,Ci),

for somemetric d on clusterings ofV . Meilă () pro-
posed the principled variation of informationmetric on
clusterings, but it has been di�cult to analyze theoret-

ically. �e Mirkin metric is the most widely used, in

which d(C,C′) is the number of pairs of objects (u, v)
that are clustered together in C and apart in C′, or vice
versa; it can be calculated in time O(mn).
We can interpret each of the clusterings Ci in Con-

sensusClustering as evidence that pairs ought be put

together or separated.�at is, w+uv is the number of Ci
in which Ci[u] = Ci[v] and w−uv is the number of Ci in
which Ci[u] ≠ Ci[v]. It is clear that w+uv + w−uv = m and

 C Constrained Clustering

that Consensus clustering is an instance of Corre-

lation clustering in which the w−uv weights obey the
triangle inequality.

Constrained Clustering

Kiri L. Wagstaff

Pasadena, CA, USA

Definition
Constrained clustering is a semisupervised approach to
7clustering data while incorporating domain knowl-
edge in the form of constraints. �e constraints are

usually expressed as pairwise statements indicating that

two items must, or cannot, be placed into the same

cluster. Constrained clustering algorithms may enforce

every constraint in the solution, or they may use the

constraints as guidance rather than hard requirements.

Motivation and Background
7Unsupervised learning operates without any domain-
speci�c guidance or preexisting knowledge. Supervised

learning requires that all training examples be associ-

ated with labels. Yet it is o�en the case that existing

knowledge for a problem domain �ts neither of these

extremes. Semisupervised learningmethods �ll this gap

bymaking use of both labeled and unlabeled data. Con-

strained clustering, a form of semisupervised learning,

was developed to extend clustering algorithms to incor-

porate existing domain knowledge, when available.�is

knowledge may arise from labeled data or from more

general rules about the concept to be learned.

One of the original motivating applications was

noun phrase coreference resolution, in which noun

phrases in a text must be clustered together to represent

distinct entities (e.g., “Mr. Obama” and “the President”

and “he”, separate from “Sarah Palin” and “she” and “the

Alaska governor”).�is problem domain contains sev-

eral natural rules for when noun phrases should (such

as appositive phrases) or should not (such as a mis-

match on gender) be clustered together.�ese rules can

be translated into a collection of pairwise constraints on

the data to be clustered.

Constrained clustering algorithms have now been

applied to a rich variety of domain areas, including

hyperspectral image analysis, road lane divisions from

GPS data, gene expression microarray analysis, video

object identi�cation, document clustering, and web

search result grouping.

Structure of the Learning System
Constrained clustering arises out of existing work with

unsupervised clustering algorithms. In this description,

we focus on clustering algorithms that seek a partition

of the data into disjoint clusters, using a distance or

similarity measure to place similar items into the same

cluster. Usually, the desired number of clusters, k, is
speci�ed as an input to the algorithm.�e most com-

mon clustering algorithms are k-means (MacQueen,

) and expectation maximization or EM (Dempster,

Laird, & Rubin,) (Fig.).

A constrained clustering algorithm takes the same

inputs as a regular (unsupervised) clustering algorithm

and also accepts a set of pairwise constraints. Each

constraint is a 7must-link or 7cannot-link constraint.
�e must-link constraints form an equivalence rela-

tion, which permits the inference of additional transi-

tively implied must-links as well as additional entailed

cannot-link constraints between items from distinct

must-link cliques. Specifying a signi�cant number of

pairwise constraintsmight be tedious for large data sets,

so o�en they may be generated from amanually labeled

subset of the data or from domain-speci�c rules.

�e algorithm may interpret the constraints as hard

constraints that must be satis�ed in the output or as

so� preferences that can be violated, if necessary.�e

former approach was used in the �rst constrained clus-

tering algorithms, COP-COBWEB (Wagsta� & Cardie,

Constraints

Output clustersInput data

=

Domain
knowledge

Constrained
clustering

Constrained Clustering. Figure . The constrained clus-

tering algorithm takes in nine items and two pairwise

constraints (one must-link and one cannot-link). The out-

put clusters respect the specified constraints

Constraint-Based Mining C

C

) and COP-kmeans (Wagsta�, Cardie, Rogers, &

Schroedl,). COP-kmeans accommodates the con-

straints by restricting item assignments to exclude any

constraint violations. If a solution that satis�es the con-

straints is not found, COP-kmeans terminates without

a solution. Later, algorithms such as PCK-means and

MPCK-means (Bilenko, Basu, & Mooney,) per-

mitted the violation of constraints when necessary by

introducing a violation penalty. �is is useful when

the constraints may contain noise or internal incon-

sistencies, which are especially relevant in real-world

domains. Constrained versions of other clustering

algorithms such as EM (Shental, Bar-Hillel, Hertz,

& Weinshall,) and spectral clustering (Kam-

var, Klein, & Manning,) also exist. Penalized

probabilistic clustering (PPC) is a modi�ed version

of EM that interprets the constraints as (so�) prob-

abilistic priors on the relationships between items

(Lu & Leen,).

In addition to constraining the assignment of indi-

vidual items, constraints can be used to learn a better

distance metric for the problem at hand (Bar-Hillel,

Hertz, Shental, & Weinshall, ; Klein, Kamvar, &

Manning, ; Xing, Ng, Jordan, & Russell,).

Must-link constraints hint that the e�ective distance

between those items should be low, while cannot-

link constraints suggest that their pairwise distance

should be high. Modifying the metric accordingly per-

mits the subsequent application of a regular cluster-

ing algorithm, which need not explicitly work with the

constraints at all. �e MPCK-means algorithm fuses

these approaches together, providing both constraint

satisfaction and metric learning simultaneously (Basu,

Bilenko, & Mooney, ; Bilenko et al.,).

More information about subsequent advances in

constrained clustering algorithms, theory, and novel

applications can be found in a compilation edited by

Basu, Davidson, and Wagsta� ().

Programs and Data

�e MPCK-means algorithm is available in a modi�ed

version of the Weka machine learning toolkit (Java) at

http://www.cs.utexas.edu/users/ml/risc/code/.

Recommended Reading
Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (). Learn-

ing a Mahalanobis metric from equivalence constraints. Journal
of Machine Learning Research, , –.

Basu, S., Bilenko, M., & Mooney, R. J. (). A probabilistic frame-

work for semi-supervised clustering. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (pp. –). Seattle, WA.

Basu, S., Davidson, I., & Wagstaff, K. (Eds.). (). Constrained
Clustering: Advances in Algorithms, Theory, and Applications.
Boca Raton, FL: CRC Press.

Bilenko, M., Basu, S., & Mooney, R. J. (). Integrating constraints

and metric learning in semi-supervised clustering. In Proceed-
ings of the Twenty-first International Conference on Machine
Learning (pp. –). Banff, AB, Canada.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (). Maximum like-

lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society, (), –.

Kamvar, S., Klein, D., & Manning, C. D. (). Spectral learning.

In Proceedings of the International Joint Conference on Artificial
Intelligence (pp. –). Acapulco, Mexico.

Klein, D., Kamvar, S. D., & Manning, C. D. (). From instance-

level constraints to space-level constraints: Making the most

of prior knowledge in data clustering. In Proceedings of
the Nineteenth International Conference on Machine Learning
(pp. –). Sydney, Australia.

Lu, Z. & Leen, T. (). Semi-supervised learning with penal-

ized probabilistic clustering. In Advances in Neural Information
Processing Systems (Vol. , pp. –). Cambridge, MA: MIT
Press.

MacQueen, J. B. (). Some methods for classification and

analysis of multivariate observations. In Proceedings of the
Fifth Symposium on Math, Statistics, and Probability (Vol. ,
pp. –). California: University of California Press.

Shental, N., Bar-Hillel, A., Hertz, T., & Weinshall, D. (). Com-

puting Gaussian mixture models with EM using equivalence

constraints. In Advances in Neural Information Processing Sys-
tems (Vol. , pp. –). Cambridge, MA: MIT Press.

Wagstaff, K. & Cardie, C. (). Clustering with instance-level

constraints. In Proceedings of the Seventeenth International Con-
ference on Machine Learning (pp. –). San Francisco:
Morgan Kaufmann.

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (). Constrained

k-means clustering with background knowledge. In Proceedings
of the Eighteenth International Conference on Machine Learning
(pp. –). San Francisco: Morgan Kaufmann.

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (). Dis-

tance metric learning, with application to clustering with

side-information. In Advances in Neural Information Processing
Systems (Vol. , pp. –). Cambridge, MA: MIT Press.

Constraint-Based Mining

Siegfried Nijssen

Katholieke Universiteit Leuven, Leuven, Belgium

Definition
Constraint-based mining is the research area studying

the development of data mining algorithms that search

 C Constraint-Based Mining

through a pattern or model space restricted by con-

straints.�e term is usually used to refer to algorithms

that search for patterns only. �e most well-known

instance of constraint-based mining is the mining of

7frequent patterns. Constraints are needed in pattern
mining algorithms to increase the e�ciency of the

search and to reduce the number of patterns that are

presented to the user, thusmaking knowledge discovery

more e�ective and useful.

Motivation and Background
Constraint-based pattern mining is a generalization

of frequent itemset mining. For an introduction to

frequent itemset mining, see 7Frequent Patterns.
A constraint-based mining problem is speci�ed by pro-

viding the following elements:

● A database D, usually consisting of independent
transactions (or instances)

● A7hypothesis space L of patterns
● A constraint q(θ,D) expressing criteria that a pat-
tern θ in the hypothesis space should ful�ll on the
database

�e general constraint-based mining problem is to �nd

the set

�(D,L, q) = {θ ∈ L∣q(θ,D) = true}.

Alternative problem settings are obtained by making

di�erent choices forD, L and q. For instance,

● If the database and hypothesis space consist of item-

sets, and the constraint checks if the support of a

pattern exceeds a prede�ned threshold in data, the

frequent itemset mining problem is obtained (see

7Frequent Patterns)
● If the database and the hypothesis space consist of

graphs or trees instead of itemsets, a graphmining or

a tree mining problem is obtained. For more infor-

mation about these topics, see 7Graph Mining and
7Tree Mining

● Additional syntactic constraints can be imposed

An overview of important types of constraints is given

below.

One can generalize the constraint-based mining

problem beyond pattern mining. Also models, such as

7Decision Trees, could be seen as languages of inter-
est. In the broadest sense, topics such as 7Constrained
Clustering, 7Cost-Sensitive Learning, and even learn-
ing 7Support Vector Machines (SVMs) may be seen
as constraint-based mining problems. However, it is

currently not common to categorize these topics as

constraint-based mining; in practice, the term refers to
constraint-based patternmining.
From the perspective of constraint-based mining,

the knowledge discovery process can be seen as a pro-

cess in which a user repeatedly speci�es constraints

for data mining algorithms; the data mining system is

a solver that �nds patterns or models that satisfy the

constraints.

�is approach to data mining is very similar

to querying relational databases. Whereas relational

databases are usually queried using operations such

as projections, selections, and joins, in the constraint-

based mining framework data is queried to �nd pat-

terns or models that satisfy constraints that cannot be

expressed in these primitives. A database which sup-

ports constraint-based mining queries, stores patterns

and models, and allows later reuse of patterns and

models, is sometimes also called an inductive database
(Imielinski & Mannila,).

Structure of the Learning System
Constraints

Frequent pattern mining algorithms can be generalized

along several dimensions.

One way to generalize pattern mining algorithms

is to allow them to deal with arbitrary 7coverage rela-
tions, which determine when a patternmatches a trans-

action in the data. In the example of mining itemsets,

the subset relation determines the coverage relation.

�e coverage relation is at the basis of constraints such

as minimum support; an alternative coverage relation

would be the superset relation.

From the coverage relation follows a generality rela-

tionship. A pattern θ is de�ned to be more speci�c
than a pattern θ (denoted by θ ≻ θ) if any transac-
tion that is covered by θ is also covered by θ (see
7Generalization). In frequent itemset mining, itemset
I is more general than itemset I if and only I ⊆ I.
Generalization and coverage relationships can be

used to identify the following types of constraints.

Constraint-Based Mining C

C

Monotonic and Anti-Monotonic Constraints An essen-

tial property which is exploited in 7frequent pattern
mining, is that all subsets of a frequent pattern are also

frequent.�is is a property that can be generalized:

● Aconstraint is calledmonotonic if any generalization
of a pattern that satis�es the constraint, also satis�es

the constraint

● A constraint is called anti-monotonic if any special-
ization of a pattern that satis�es the constraint, also

satis�es the constraint

In some publications, the de�nitions of monotonic and

anti-monotonic are used reversely.

�e following are examples of monotonic

constraints:

● Minimum support

● Syntactic constraints, for instance: a constraint that

requires that patterns specializing a given pattern x
are excluded a constraint requiring patterns to be

small given a de�nition of pattern size

● Disjunctions or conjunctions of monotonic con-

straints

● Negations of anti-monotonic constraints

�e following are examples of anti-monotonic

constraints:

● Maximum support

● Syntactic constraints, for instance, a constraint that

requires that patterns generalizing a given pattern x
are excluded

● Disjunctions or conjunctions of anti-monotonic

constraints

● Negations of monotonic constraints

Succinct Constraints Constraints that can be pushed

in the mining process by adapting the pattern space

or data, are called succinct constraints. An example of

a succinct constraint is the monotonic constraint that

an itemset should contain the item A. �is constraint
could be dealt with by deleting all transactions that do

not contain A. For any frequent itemset found in the
new dataset, it is now known that the item A can be
added to it.

Convertible Constraints Some constraints that are not

monotonic, can still be convertible monotonic (Pei &

Han,). A constraint is convertible monotonic if

for every pattern θ one least general generalization
θ′ can be identi�ed such that if θ satis�es the con-
straint, then θ′ also satis�es the constraint. An example
of a convertible constraint is a maximum average cost

constraint. Assume that every item in an itemset has

a cost as de�ned by a function c(i). �e constraint
c(I)= ∑i∈I c(i)/∣I∣≤maxcost is not monotonic. How-
ever, for every itemset I with c(I)≤maxcost, if an item
i is removed with c(i)= maxi∈I c(i), an itemset with
c(I − {i}) ≤ c(I)≤maxcost is obtained.
Maximum average cost has the desirable property

that no access to the data is needed to identify the gen-

eralization that should satisfy the constraints. If it is not

possible to identify the necessary least general general-

ization before accessing the data, the convertible con-

straint is also sometimes called weak (anti-)monotone

(Zhu, Yan, Han, & Yu,).

Boundable Constraints Constraints on non-monotonic

measures for which amonotonic bound exist, are called

boundable. An example of such a constraint is a mini-

mumaccuracy constraint in a databasewith binary class

labels. Assume that every itemset is interpreted as a rule

if I then else (thus, class label is predicted if a trans-
action contains itemset I, or class label otherwise; see
7Supervised Descriptive Rule Discovery). A minimum
accuracy constraint can be formalized by the formula

(fr(I,D) + ∣D∣ − fr(I,D))/∣D∣ ≥ minacc, where Dk is
the database containing only the examples labeled with

class label k. It can be derived from this that

fr(I,D) ≥ ∣D∣minacc−∣D∣+fr(I,D) ≥ ∣D∣minacc−∣D∣.

In other words, if a high accuracy is desirable, a min-

imum number of examples of class is required to be

covered, and a minimum frequency constraint can thus

be derived.�erefore, minimum support can be used as

a bound for minimum accuracy.

�e principle of deriving bounds for non-monotonic

measures can be applied widely (Bayardo, Agrawal, &

Gunopulos, ; Morishita & Sese,).

Borders If constraints are not restrictive enough, the

number of patterns can be huge. Ignoring statistics

about patterns such as their exact frequency, the set of

patterns can be represented more compactly only by

 C Constraint-Based Mining

listing the patterns in the border(s) (Mannila & Toivo-
nen,), similar to the idea of 7version spaces. An
example of a border is the set of maximal frequent

itemsets (see7Frequent Patterns). Borders can be com-
puted for other types of both monotonic and anti-

monotonic constraints as well.�ere are several compli-

cations compared to the simple frequent patternmining

setting:

● If there is an anti-monotonic constraint, such as

maximum support, not only is it needed to compute

a border for the most speci�c elements in the set (S-

Set), but also a border for the least general elements

in the set (G-Set)

● If the formula is a disjunction of conjunctions,

the result of a query becomes a union of version

spaces, which is called a multi-dimensional version

space (see Fig.) (De Raedt, Jaeger, Lee, & Man-

nila,); the G-Set of one version space may

be more general than the G-Set of another version

space

Both the S-Set and the G-Set can be represented by list-

ing elements just within the version space (the positive

border), or elements just outside the version space (the

negative border). For instance, the positive border of

the G-Set consists of those patterns which are part of

the version space, and for which no generalizations exist

which are part of the version space.

Similarly, there may exist several representations of

multi-dimensional version spaces; optimizing the rep-

resentation ofmulti-dimensional version spaces is anal-

ogous to optimizing queries in relational databases (De

Raedt et al.,).

Borders form a condensed representations, that
is, they compactly represent the solution space; see

7Frequent Patterns.

Algorithms For many of the constraints speci�ed in

the previous section specialized algorithms have been

developed in combination with speci�c hypothesis

spaces. It is beyond the scope of this chapter to discuss

all these algorithms; only the most common ideas are

provided here.

�emain idea is that7Apriori can easily be updated
to deal with general monotonic constraints in arbi-

trary hypothesis spaces. �e concept of a specializa-

tion 7re�nement operator is essential to operate on

other hypothesis spaces than itemsets. A specializa-

tion operator ρ(θ) computes a set of specializations in
the hypothesis space for a given input pattern. In pat-

tern mining, this operator should have the following

properties:

● Completeness: every pattern in the hypothesis space

should be reachable by repeated application of the

re�nement operator starting from the most general

pattern in the hypothesis space

● Nonredundancy: every pattern in the hypothesis

space should be reachable in only one way start-

ing from the most general pattern in the hypothesis

space

In itemset mining, optimal re�nement is usually obta-

ined by �rst ordering the items (for instance, alpha-

betically, or by frequency), and then adding items

that are higher in the chosen order to a set than the

items already in the set. For instance, for the itemset

{A,C}, the specialization operator returns ρ({A,C}) =
{{A,C,D},{A,C,E}}, assuming that the domain of
items {A,B,C,D,E} is considered. Other re�nement
operators are needed while dealing with other hypoth-

esis spaces, such as in7graph mining.
�e search in Apriori proceeds7breadth-�rst. Each

level, the specialization operator is applied on pat-

terns satisfying the monotonic constraints to gener-

ate candidates for the next level. For every new can-

didate it is checked whether its generalizations sat-

isfy the monotonic constraints. To create a set of

generalizations, a generalization re�nement operator

can be used. In frequent itemset mining, usually sin-

gle items are removed from the itemset to generate

generalizations.

More changes are required to deal with anti-
monotonic constraints. A simple way of dealing with
both monotonic and anti-monotonic constraints is to

�rst compute all patterns that satisfy the monotonic

constraints, and then to prune the patterns that fail to

satisfy the anti-monotonic constraints. More challeng-

ing is to “push” anti-monotonic constraints in the min-

ing process. An observation which is o�en exploited

is that generalizations of patterns that do not satisfy

the anti-monotonic constraint need not be considered.

Well-known strategies are:

Constructive Induction C

C

Top element of the partial order

Version
Space (1)

G-Border (1)

S-Border (1)

Version Space (2)

G-Border (2)

S-Border (2)

Top element of the partial order

S-Border

G-Border

Version Space

M
ore general

M
ore specific

(b) A 2-dimensional version space(a) A 1-dimensional version space

Constraint-Based Mining. Figure . Version spaces

● In a breadth-�rst setting: traverse the lattice in

reverse order for monotonic constraints, a�er the

patterns have been determined satisfying the anti-

monotonic constraints (De Raedt et al.,)

● In a depth-�rst setting: during the search for pat-

terns, try to guess the largest pattern that can still

be reached, and prune a branch in the search if the

pattern does not satisfy themonotonic constraint on

this pattern (Bucila, Gehrke, Kifer, & White, ;

Kifer, Gehrke, Bucila, & White,)

It is beyond the scope of this chapter to discuss how to

deal with other types of constraints; however, it should

be pointed out that not all combinations of constraints

and hypothesis spaces have been studied; it is not obvi-

ous whether all constraints can be pushed usefully in

a pattern search for any hypothesis space, for instance,

when boundable constraints in more complex hypothe-

sis spaces (such as graphs) are involved. Research in this

area is ongoing.

Cross References
7Constrained Clustering
7Frequent Pattern Mining
7Graph Mining
7Tree Mining

Recommended Reading
Bayardo, R. J., Jr., Agrawal, R., & Gunopulos, D. (). Constraint-

based rule mining in large, dense databases. In Proceedings of
the th international conference on data engineering (ICDE)
(pp. –). Sydney, Australia.

Bucila, C., Gehrke, J., Kifer, D., & White, W. M. (). DualMiner:

A dual-pruning algorithm for itemsets with constraints. Data
Mining and Knowledge Discovery, (), –.

De Raedt, L., Jaeger, M., Lee, S. D., & Mannila, H. (). A theory

of inductive query answering (extended abstract). In Proceed-
ings of the second IEEE international conference on data mining
(ICDM) (pp. –). Los Alamitos, CA: IEEE Press.

Imielinski, T., & Mannila, H. (). A database perspective

on knowledge discovery. Communications of the ACM, ,
–.

Kifer, D., Gehrke, J., Bucila, C., & White, W. M. (). How to

quickly find a witness. In Proceedings of the twenty-second ACM
SIGACT-SIGMOD-SIGART symposium on principles of database
systems (pp. –). San Diego, CA: ACM Press.

Mannila, H., & Toivonen, H. (). Levelwise search and borders of

theories in knowledge discovery. Data Mining and Knowledge
Discovery, (), –.

Morishita, S., & Sese, J. (). Traversing itemset lattices with

statistical metric pruning. In Proceedings of the nineteenth
ACM SIGACT-SIGMOD-SIGART symposium on database sys-
tems (PODS) (pp. –). San Diego, CA: ACM Press.

Pei, J., & Han, J. (). Constrained frequent pattern mining: A

pattern-growth view. SIGKDD Explorations, (), –.
Zhu, F., Yan, X., Han, J., & Yu, P. S. (). gPrune: A constraint

pushing framework for graph pattern mining. In Proceedings
of the sixth Pacific-Asia conference on knowledge discovery and
data mining (PAKDD). Lecture notes in computer science (Vol.
, pp. –). Berlin: Springer.

Constructive Induction

Constructive induction is any form of 7induction that
generates new descriptors not present in the input data

(Dietterich & Michalski,).

Recommended Reading
Dietterich, T. G., & Michalski, R. S. (). A comparative review

of selected methods for learning from examples. In Michalski,

R. S., Carbonell, J. G., &Mitchell, T. M. (Eds.).Machine learning:
An artificial intelligence approach, pp. –. Tioga.

 C Content Match

Content Match

7Text Mining for Advertising

Content-Based Filtering

Synonyms
Content-based recommending

Definition
Content-based �ltering is prevalent in 7Information
Retrieval, where the text and multimedia content of

documents is used to select documents relevant to a

user’s query. In the context this refers to content-based

recommenders, that provide recommendations by com-

paring representations of content describing an item to

representations of content that interests a user.

Content-Based Recommending

7Content-Based Filtering

Context-Sensitive Learning

7Concept Dri�

Contextual Advertising

7Text Mining for Advertising

Continual Learning

Synonyms
Life-Long Learning

Definition
A learning system that can continue adding new data

without the need to ever stop or freeze the updating.

Usually continual learning requires incremental and

7online learning as a component, but not every incre-
mental learning systemhas the ability to achieve contin-

ual learning, i.e., the learning may deterioate a�er some

time.

Cross References
7Cumulative Learning

Continuous Attribute

A continuous attribute can assume all values on the
number line within the value range. See7Attribute and
7Measurement Scales.

Contrast Set Mining

Definition
Contrast set mining is an area of 7supervised descrip-
tive rule induction. �e contrast set mining problem

is de�ned as �nding contrast sets, which are conjunc-

tions of attributes and values that di�er meaningfully

in their distributions across groups (Bay & Pazzani,

). In this context, groups are the properties of

interest.

Recommended Reading
Bay, S.D., & Pazzani, M. J. (). Detecting group differences: Min-

ing contrast sets. Data Mining and Knowledge Discovery, (),
–.

Cooperative Coevolution

7Compositional Coevolution

Co-Reference Resolution

7Entity Resolution

Correlation Clustering C

C

Correlation Clustering

AnthonyWirth

�e University of Melbourne, Victoria, Australia

Synonyms
Clustering with advice; Clustering with constraints;

Clustering with qualitative information; Clustering

with side information

Definition
In its rawest form, correlation clustering is graph opti-
mization problem. Consider a 7clustering C to be a
mapping from the elements to be clustered, V , to the
set {, . . . , ∣V ∣}, so that u and v are in the same cluster if
and only if C[u] = C[v]. Given a collection of items in
which each pair (u, v) has two weights w+uv and w−uv, we
must �nd a clustering C that minimizes

∑
C[u]=C[v]

w−uv + ∑
C[u]≠C[v]

w+uv , ()

or, equivalently, maximizes

∑
C[u]=C[v]

w+uv + ∑
C[u]≠C[v]

w−uv . ()

Note that although w+uv and w−uv may be thought of as
positive and negative evidence towards coassociation,

the actual weights are nonnegative.

Motivation and Background
�e notion of clustering with advice, that is nonmetric-
driven relations between items, had been studied in

other communities (Ferligoj & Batagelj,) prior to

its appearance in theoretical computer science. Tra-

ditional clustering problems, such as k-median and
k-center, assume that there is some type of distance
measure (metric) on the data items, and o�en specify

the number of clusters that should be formed. In the

clustering with advice framework, however, the num-

ber of clusters to be built need not be speci�ed in

advance: it can be an outcome of the objective func-

tion. Furthermore, instead of, or in addition to, a dis-

tance function, we are given advice as to which pairs of

items are similar.�e two weights w+uv and w−uv corre-
spond to external advice about whether the pair should

be clustered together or separately. Bansal, Blum, and

Chawla () introduced the problem to the theoret-

ical computer science and machine-learning commu-

nities. �ey were motivated by database consistency

problems, in which the same entity appeared in di�er-

ent forms in various databases. Given a collection of

such records frommultiple databases, the aim is to clus-

ter together the records that appear to correspond to

the same entity. From this viewpoint, the log odds ratio

from some classi�er,

log(Pr(same)
Pr(di�erent)

) ,

corresponds to a label wuv for the pair. In many appli-
cations only one of the + and − weights for the pair is
nonzero, that is

(w+uv,w−uv) =
⎧⎪⎪⎨⎪⎪⎩

(wuv,) for wuv ≥
(,−wuv) for wuv ≤ .

In addition, if every pair hasweight±, then the instance
is called complete, otherwise it is referred to as general.
Demaine, Emanuel, Fiat, and Immorlica () sug-

gest the following motivation. Suppose we have a set of

guests at a party. Each guest has preferences for whom

they would like to sit with, and for whom they would

like to avoid. We must group the guests into tables in a

way that enhances the amicability of the party.

�e notion of producing good clusterings when

given inconsistent advice �rst appeared in the work

of Ben-Dor, Shamir, and Yakhini (). A canonical

example of inconsistent advice is this: items u and v are
similar, items v and y are similar, but u and y are dis-
similar. It is impossible to �nd a clustering that satis�es

all the advice. Figure shows a very simple example of

inconsistent advice. In addition, although Correlation

clustering is an NP-hard problem, recent algorithms for

clustering with advice guarantee that their solutions are
only a speci�ed factor worse than the optimal: that is,

they are approximation algorithms.

Theory
In setting out the correlation clustering framework,

Bansal et al. () noted that the following algorithm

 C Correlation Clustering

Correlation Clustering. Figure . Top left is a toy cluster-

ingwith advice example showing three similar pairs (solid

edges) and three dissimilar pairs (dashed edges). Bottom

left is a clustering solution for this example with four sin-

gleton clusters, while bottom right has one cluster. Top

right is a partitioning into two clusters that appears to

best respect the advice

produces a -approximation for the maximization

problem:

▸ If the total of the positive weights exceeds the total of

the negative weights then, place all the items in a single

cluster; otherwise, make each item a singleton cluster.

�ey then showed that complete instances are NP-hard

to optimize, and how to minimize the penalty () with

a constant factor approximation.�e constant for this

combinatorial algorithm was rather large. �e algo-

rithm relied heavily on the completeness of the instance;

it iteratively cleans clusters until every cluster is δ-clean.
�at is, for each item at most a fraction δ (< δ <)
of the other items in its cluster have a negative relation

with it, and at most δ outside its cluster a positive rela-
tion. Bansal et al. also demonstrated that the minimiza-

tion problem on general instances is APX-hard: there

is some constant, larger than , below which approxi-

mation is NP-hard. Finally, they provided a polynomial

time approximation scheme (PTAS) for maximizing ()

in complete instances.

�e constant factor for minimizing () on complete

instances was improved to by Charikar, Guruswami,

and Wirth (). �ey employed a region-growing

type procedure to round the solution of a linear pro-

gramming relaxation of the problem:

minimize

∑
ij
w+ij ⋅ xij +w−ij ⋅ (− xij)

subject to ()

xik ≤ xij + xjk for all i, j, k

xij ∈ [,] for all i, j

In this setting, xij = implies i and j’s separation, while
xij = implies coclustering, with values in between
representing partial evidence. In practice solving this

linear program is very slow and has huge memory

demands (Bertolacci&Wirth,). Charikar et al. also

showed that this version of problem is APX-hard.

For the maximization problem (), they showed

that instances with general weights were APX-hard and

provided a rounding of the following semide�nite pro-

gram (SDP) that yields a . factor approximation

algorithm.

maximize

∑
+(ij)

wij(vi ⋅ vj) + ∑
−(ij)

wij(− vi ⋅ vj)

subject to ()

vi ⋅ vi = for all i

vi ⋅ vj ≥ for all i, j

In this case we interpret vi ⋅vj = as evidence that i and j
are in the same cluster, but vi ⋅ vj = as evidence toward
separation.

Emanuel and Fiat () extended the work of

Bansal et al. by drawing a link between Correlation

Clustering and the Minimum Multicut problem. �is

reduction to Multicut provided an O(logn) approxi-
mation algorithm for minimizing general instances of

Correlation Clustering. Interestingly, Emanuel and Fiat

also showed that there was reduction in the opposite

direction: an optimal solution to Correlation Clustering

induced an optimal solution to MinimumMulticut.

Demaine and Immorlica () also drew the link

from Correlation Clustering to Minimum multicut

and its O(logn) approximation algorithm. In addition,
they described an O(r)-approximation algorithm for
graphs that exclude the complete bipartite graph Kr,r as
a minor.

Correlation Clustering C

C

Swamy (), using the same SDP () as Charikar

et al., but di�erent rounding techniques, showed how to

maximize () within factor . in general instances.

�e factor approximation for minimization ()

of complete instances was lowered to . by Ailon,

Charikar, and Newman (). Using the distances
obtained by solving the linear program (), they repeat

the following steps:

▸ form a cluster around random item i by including each

(unclustered) j with probability − xij ; set the cluster

aside.

Since solving the linear program is highly resource hun-

gry, Ailon et al. provided a combinatorial alternative:

add j to i’s cluster if w+ij > w−ij . Not only is this algorithm
very fast, it is actually a factor approximation.

Recently, Tan () has shown that the / + є
inapproximability for maximizing () on general

weighted graphs extends to general unweighted graphs.

A further variant in the Correlation Clustering fam-

ily of problems is the maximization of ()–(), known

as maximizing correlation. Charikar and Wirth ()
proved an Ω(/ logn) approximation for the general
problem of maximizing

n

∑
i=

n

∑
j=
aijxixj, s.t. xi ∈ {−, } for all i, ()

for a matrix A with null diagonal entries, by rounding
the canonical SDP relaxation. �is e�ectively max-

imized correlation with the requirement that two

clusters be formed; it was not hard to extend this to gen-

eral instances.�e gap between the vector SDP solution

and the integral solution to maximizing the quadratic

program () was in fact shown to be Θ(/ logn) in gen-
eral (Alon, Makarychev, Makarychev, & Naor,).

However, in other instances such as those with a

bounded number of nonzero weights for each item,

a constant factor approximation was possible. Arora,

Berger, Hazan, Kindler, and Safra () went further

and showed that it is quasi-NP-hard to approximate
the maximization to a factor better than Ω(/ logγ n)
for some γ > .
Shamir, Sharan, and Tsur () showed that

7Cluster Editing and p-Cluster Editing, in which p
clusters must be formed, are NP-complete (for p ≥).
Gramm, Guo, Hü�ner, and Niedermeier () took

an innovative approach to solving the Clustering Edit-

ing problem exactly.�ey had previously produced an

O(.k + n) time hand-made search tree algorithm,
where k is the number of edges that need to be mod-
i�ed. �is “awkward and error-prone work” was then

replaced with a computer program that itself designed

a search tree algorithm, involving automated case anal-

ysis, that ran in O(.k + n) time.
Kulis, Basu, Dhillon, and Mooney () unify var-

ious forms of clustering, correlation clustering, spec-

tral clustering, and clustering with constraints in their

kernel-based approach to k-means. In this, they have
a general objective function that includes penalties for

violating pairwise constraints and for having points

spread far apart from their cluster centers, where the

spread is measured in some high-dimensional space.

Applications
�e work of Demaine and Immorlica () on Corre-

lation Clustering was closely linked with that of Bejer-

ano et al. on Location Area Planning.�is problem is

concerned with the allocation of cells in a cellular net-

work to clusters known as location areas.�ere are costs
associated with tra�c between the location areas (cuts

between clusters) and with the size of clusters them-

selves (related to paging phones within individual cells).

�ese costs drive the clustering solution in opposite

directions, on top of which there are constraints on

cells that must (or cannot) be in the same cluster.�e

authors show that the same O(logn) region-growing
algorithm for minimizing Correlation Clustering and

Multicut applies to Location Area Planning.

Correlation clustering has been directly applied to

the coreference problem in natural language processing

and other instances in which there are multiple ref-

erences to the same object (Daume, ; McCallum

& Wellner,). Assuming some sort of undirected

graphical model, such as a Conditional Random Field,

algorithms for correlation clustering are used to parti-

tion a graph whose edge weights corresponding to log-

potentials between node pairs. �e machine learning

community has applied some of the algorithms for Cor-

relation clustering to problems such as email clustering

and image segmentation. With similar applications in

mind, Finley and Joachims () explore the idea of

adapting the pairwise input information to �t example

 C Correlation Clustering

clusterings given by a user.�eir objective function is

the same as Correlation Clustering (), but their main

tool is the7Support Vector Machine.
�ere has been considerable interest in the

7consensus clustering problem, which is an excel-
lent application of Correlation clustering techniques.

Gionis, Mannila, and Tsaparas () note several

sources of motivation for the Consensus Clustering;

these include identifying the correct number of clusters

and improving clustering robustness. �ey adapt

Charikar et al.’s region-growing algorithm to create a

three-approximation that performs reasonably well in

practice, though not as well as local search techniques.

Gionis et al. also suggest using sampling as a tool for

handling large data sets. Bertolacci and Wirth ()

extended this study by implementing Ailon et al.’s

algorithms with sampling, and therefore a variety of

ways of developing a full clustering from the clustering

of the sample. �ey noted that LP-based methods

performed best, but placed a signi�cant strain on

resources.

Applications of Clustering with Advice
�e 7k-means clustering algorithm is perhaps the

most-used clustering technique: Wagsta� et al. incor-

porated constraints into a highly cited k-means variant
called COP-KMEANS.�ey applied this algorithm to

the task of identifying lanes of tra�c based on input

GPS data.

In the constrained-clustering framework, the

constraints are usually assumed to be consistent

(noncontradictory) and hard. In addition to the

usual must- and cannot-link constraints, Davidson

and Ravi () added constraints enforcing various

requirements on the distances between points in

particular clusters. �ey analyzed the computational

feasibility of the problem of establishing the (in)

feasibility of a set of constraints, for various constraint

types.�eir constrained k-means algorithms were used
to help a robot discover objects in a scene.

Recommended Reading
Ailon, N., Charikar, M., & Newman, A. (). Aggregating incon-

sistent information: Ranking and clustering. In Proceedings of
the Thirty-Seventh ACM Symposium on the Theory of Computing
(pp. –). New York: ACM Press.

Alon, N., Makarychev, K., Makarychev, Y., & Naor, A. ().

Quadratic forms on graphs. Inventiones Mathematicae, (),
–.

Arora, S., Berger, E., Hazan, E., Kindler, G., & Safra, S. ().

On non-approximability for quadratic programs. In Pro-
ceedings of Forty-Sixth Symposium on Foundations of Com-
puter Science. (pp. –). Washington DC: IEEE Computer
Society.

Bansal, N., Blum, A., & Chawla, S. (). Correlation clustering.

In Correlation clustering (pp. –). Washington, DC: IEEE
Computer Society.

Ben-Dor, A., Shamir, R., & Yakhini, Z. (). Clustering gene

expression patterns. Journal of Computational Biology, ,
–.

Bertolacci, M., & Wirth, A. (). Are approximation algorithms

for consensus clustering worthwhile? In Proceedings of Seventh
SIAM International Conference on Data Mining. (pp. –).
Philadelphia: SIAM.

Charikar, M., Guruswami, V., & Wirth, A. (). Clustering with

qualitative information. In Proceedings of forty fourth FOCS
(pp. –).

Charikar, M., & Wirth, A. (). Maximizing quadratic programs:

Extending Grothendieck’s inequality. In Proceedings of forty
fifth FOCS (pp. –).

Daume, H. (). Practical structured learning techniques for nat-

ural language processing. PhD thesis, University of Southern

California.

Davidson, I., & Ravi, S. (). Clustering with constraints: Feasi-

bility issues and the k-means algorithm. In Proceedings of Fifth
SIAM International Conference on Data Mining.

Demaine, E., Emanuel, D., Fiat, A., & Immorlica, N. (). Corre-

lation clustering in general weighted graphs. Theoretical Com-
puter Science, (), –.

Demaine, E., & Immorlica, N. (). Correlation clustering

with partial information. In Proceedings of Sixth Workshop
on Approximation Algorithms for Combinatorial Optimization
Problems. (pp. –).

Emanuel, D., & Fiat, A. (). Correlation clustering – mini-

mizing disagreements on arbitrary weighted graphs. In Pro-
ceedings of Eleventh European Symposium on Algorithms
(pp. –).

Ferligoj, A., & Batagelj, V. (). Clustering with relational con-

straint. Psychometrika, (), –.
Finley, T., & Joachims, T. (). Supervised clustering with support

vector machines. In Proceedings of Twenty-Second International
Conference on Machine Learning.

Gionis, A., Mannila, H., & Tsaparas, P. (). Clustering aggrega-

tion. In Proceedings of Twenty-First International Conference on
Data Engineering. To appear.

Gramm, J., Guo, J., Hüffner, F., & Niedermeier, R. ().

Automated generation of search tree algorithms for

hard graph modification problems. Algorithmica, (),
–.

Kulis, B., Basu, S., Dhillon, I., & Mooney, R. (). Semi-supervised

graph clustering: A kernel approach. In Proceedings of Twenty-
Second International Conference on Machine Learning (pp.
–).

McCallum, A., & Wellner, B. (). Conditional models of identity

uncertainty with application to noun coreference. In L. Saul,

Cost-Sensitive Learning C

C

Y. Weiss, & L. Bottou, (Eds.), Advances in neural informa-
tion processing systems (pp. –). Cambridge, MA:
MIT Press.

Meilă, M. (). Comparing clusterings by the variation of infor-

mation. In Proceedings of Sixteenth Conference on Learning
Theory (pp. –).

Shamir, R., Sharan, R., & Tsur, D. (). Cluster graph modification

problems. Discrete Applied Mathematics, , –.
Swamy, C. (). Correlation Clustering: Maximizing agreements

via semidefinite programming. In Proceedings of Fifteenth
ACM-SIAM Symposium on Discrete Algorithms (pp. –).

Tan, J. (). A Note on the inapproximability of correlation

clustering. Technical Report ., eprint arXiv, .

Correlation-Based Learning

7Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

Cost

In 7Markov decision processes, negative rewards are
o�en expressed as costs. A reward of −x is expressed as
a cost of x. In 7supervised learning, cost is used as a
synonym for7loss.

Cross References
7Loss

Cost Function

7Loss Function

Cost-Sensitive Classification

7Cost-Sensitive Learning

Cost-Sensitive Learning

Charles X. Ling, Victor S. Sheng

�e University of Western Ontario, Canada

Synonyms
Cost-sensitive classi�cation; Learning with di�erent

classi�cation costs

Definition
Cost-Sensitive Learning is a type of learning that takes
the misclassi�cation costs (and possibly other types of

cost) into consideration.�e goal of this type of learning

is tominimize the total cost.�e key di�erence between

cost-sensitive learning and cost-insensitive learning is

that cost-sensitive learning treats di�erentmisclassi�ca-

tions di�erently.�at is, the cost for labeling a positive

example as negative can be di�erent from the cost for

labeling a negative example as positive. Cost-insensitive

learning does not take misclassi�cation costs into con-

sideration.

Motivation and Background
Classi�cation is an important task in inductive learn-

ing and machine learning. A classi�er, trained from a

set of training examples with class labels, can then be

used to predict the class labels of new examples. �e

class label is usually discrete and �nite. Many e�ective

classi�cation algorithms have been developed, such as

7naïve Bayes, 7decision trees, 7neural networks, and
7support vector machines. However, most classi�ca-
tion algorithms seek to minimize the error rate: the

percentage of the incorrect prediction of class labels.

�ey ignore the di�erence between types of misclassi�-

cation errors. In particular, they implicitly assume that

all misclassi�cation errors have equal cost.

In many real-world applications, this assumption is

not true.�e di�erences between di�erent misclassi�-

cation errors can be quite large. For example, inmedical

diagnosis of a certain cancer (where having cancer is

regarded as the positive class, and non-cancer (healthy)

as negative), misdiagnosing a cancer patient as healthy

(the patient is actually positive but is classi�ed as nega-

tive; thus it is also called “false negative”) is much more

serious (thus expensive) than a false-positive error.�e

patient could lose his/her life because of a delay in cor-

rect diagnosis and treatment. Similarly, if carrying a

bomb is positive, then it is much more expensive to

miss a terrorist who carries a bomb onto a �ight than

searching an innocent person.

Cost-sensitive learning takes costs, such as the mis-

classi�cation cost, into consideration. Turney ()

provides a comprehensive survey of a large variety of

di�erent types of costs in data mining and machine

 C Cost-Sensitive Learning

learning, including misclassi�cation costs, data acqui-

sition cost (instance costs and attribute costs), 7active
learning costs, computation cost, human–computer

interaction cost, and so on. �e misclassi�cation cost

is singled out as the most important cost, and it has

received the most attention in recent years.

Theory
�e theory of cost-sensitive learning (Elkan, ;

Zadrozny and Elkan,) describes how the misclas-

si�cation cost plays its essential role in various cost-

sensitive learning algorithms.

Without loss of generality, binary classi�cation is

assumed (i.e., positive and negative class) in this paper.

In cost-sensitive learning, the costs of false positive

(actual negative but predicted as positive; denoted as

FP), false negative (FN), true positive (TP), and true
negative (TN) can be given in a cost matrix, as shown
in Table . In the table, the notation C(i, j) is also used
to represent the misclassi�cation cost of classifying an

instance from its actual class j into the predicted class i
(is used for positive, and for negative).�esemisclas-

si�cation cost values can be given by domain experts,

or learned via other approaches. In cost-sensitive learn-

ing, it is usually assumed that such a cost matrix is

given and known. For multiple classes, the cost matrix

can be easily extended by adding more rows and more

columns.

Note that C(i, i) (TP and TN) is usually regarded
as the “bene�t” (i.e., negated cost) when an instance is

predicted correctly. In addition, cost-sensitive learning

is o�en used to deal with datasets with very imbal-

anced class distributions (see 7Class Imbalance Prob-
lem) (Japkowicz& Stephen,). Usually (andwithout

loss of generality), the minority or rare class is regarded

as the positive class, and it is o�en more expensive

to misclassify an actual positive example into negative,

Cost-Sensitive Learning. Table An Example of Cost

Matrix for Binary Classification

Actual negative Actual positive

Predict
negative

C(,), or TP C(,), or FN

Predict positive C(,), or FP C(,), or TP

than an actual negative example into positive.�at is,

the value of FN =C(,) is usually larger than that of FP
=C(,).�is is true for the cancer examplementioned
earlier (cancer patients are usually rare in the popula-

tion, but predicting an actual cancer patient as negative

is usually very costly) and the bomb example (terrorists

are rare).

Given the cost matrix, an example should be clas-

si�ed into the class that has the minimum expected

cost.�is is the minimum expected cost principle.�e

expected cost R(i ∣ x) of classifying an instance x into
class i (by a classi�er) can be expressed as:

R (i ∣ x) =∑
j
P (j ∣ x)C (j, i), ()

where P(j ∣ x) is the probability estimation of classifying
an instance into class j.�at is, the classi�er will classify
an instance x into positive class if and only if:

P (∣ x)C (,) + P (∣ x)C (,) ≤ P (∣ x)C (,)
+ P (∣ x)C (,)

�is is equivalent to:

P (∣ x) (C (,) − C (,)) ≤ P (∣ x)
(C (,) − C (,))

�us, the decision (of classifying an example into

positive) will not be changed if a constant is added

into a column of the original cost matrix. �us, the

original cost matrix can always be converted to a

simpler one by subtracting C(,)to the �rst col-
umn, and C(,) to the second column. A�er such
conversion, the simpler cost matrix is shown in

Table .�us, any given cost-matrix can be converted

to one with C(,) = C(,) = . (Here it is

assumed that the misclassi�cation cost is the same for

Cost-Sensitive Learning. Table A Simpler Cost Matrix

with an Equivalent Optimal Classification

True negative True positive

Predict
negative

 C(,) – C(,)

Predict positive C(,) – C(,)

Cost-Sensitive Learning C

C

all examples.�is property is a special case of the one

discussed in Elkan ().) In the rest of the paper, it

will be assumed that C(,) = C(,) = . Under this
assumption, the classi�er will classify an instance x into
positive class if and only if:

P (∣ x)C (,) ≤ P (∣ x)C (,)

As P(∣ x) = − P(∣ x), a threshold p∗ can be obtained
for the classi�er to classify an instance x into positive if
P(∣ x) ≥ p∗, where

p∗ = C(,)
C(,) + C(,)

. ()

�us, if a cost-insensitive classi�er can produce a poste-

rior probability estimation p(∣ x) for each test example
x, one can make the classi�er cost-sensitive by sim-
ply choosing the classi�cation threshold according to

(), and classify any example to be positive whenever

P(∣ x) ≥ p∗. �is is what several cost-sensitive meta-
learning algorithms, such as Relabeling, are based on
(see later for details). However, some cost-insensitive

classi�ers, such as C., may not be able to produce

accurate probability estimation; they return a class label

without a probability estimate. Empirical �resholding
(Sheng & Ling,) does not require accurate estima-

tion of probabilities – an accurate ranking is su�cient.

It simply uses 7cross-validation to search for the best
probability value p∗ to use as a threshold.
Traditional cost-insensitive classi�ers are designed

to predict the class in terms of a default, �xed thresh-

old of .. Elkan () shows that one can “rebalance”

the original training examples by sampling, such that

the classi�ers with the . threshold is equivalent to the

classi�ers with the p* threshold as in (), in order to
achieve cost-sensitivity. �e rebalance is done as fol-

lows. If all positive examples (as they are assumed as the

rare class) are kept, then the number of negative exam-

ples should be multiplied by C(,)/C(,) = FP/FN.
Note that as usually FP < FN, the multiple is less than .
�is is, thus, o�en called “under-sampling the majority

class.”�is is also equivalent to “proportional sampling,”

where positive and negative examples are sampled by

the ratio of:

p ()FN : p ()FP ()

where p() and p() are the prior probability of the
positive and negative examples in the original train-

ing set. �at is, the prior probabilities and the costs

are interchangeable: doubling p() has the same e�ect
as doubling FN, or halving FP (Drummond & Holte,
). Most sampling meta-learning methods, such as

costing (Zadrozny, Langford, & Abe,), are based

on () above (see later for details).

Almost all meta-learning approaches are either

based on () or () for the thresholding- and sampling-

based meta-learning methods, respectively, to be dis-

cussed in the next section.

Structure of Learning System
Broadly speaking, cost-sensitive learning can be catego-

rized into two categories.�e �rst one is to design classi-

�ers that are cost-sensitive in themselves.�ey are called

the direct method. Examples of direct cost-sensitive

learning are ICET (Turney,) and cost-sensitive

decision tree (Drummond & Holte, ; Ling, Yang,

Wang, & Zhang,).�e other category is to design

a “wrapper” that converts any existing cost-insensitive

(or cost-blind) classi�ers into cost-sensitive ones. �e

wrapper method is also called cost-sensitive meta-

learning method, and it can be further categorized into

thresholding and sampling. Here is a hierarchy of the

cost-sensitive learning and some typical methods.�is

paper will focus on cost-sensitive meta-learning that

considers the misclassi�cation cost only.

Cost-Sensitive learning

– Direct methods

● ICET (Turney,)

● Cost-sensitive decision trees (Drummond &

Holte, ; Ling et al.,)

– Meta-learning

● �resholding

� MetaCost (Domingos,)

� CostSensitiveClassi�er (CSC in short) (Wit-

ten & Frank,)

� Cost-sensitive naïve Bayes (Chai, Deng, Yang,

& Ling,)

� Empirical�resholding (ET in short) (Sheng

& Ling,)

● Sampling

� Costing (Zadrozny et al.,)

� Weighting (Ting,)

 C Cost-Sensitive Learning

Direct Cost-Sensitive Learning

�e main idea of building a direct cost-sensitive learn-

ing algorithm is to directly introduce and utilize mis-

classi�cation costs into the learning algorithms.�ere

are several works on direct cost-sensitive learning algo-

rithms, such as ICET (Turney,) and cost-sensitive

decision trees (Ling et al.,).

ICET (Turney,) incorporates misclassi�cation

costs in the �tness function of genetic algorithms. On

the other hand, cost-sensitive decision tree (Ling et al.,

), called CSTree here, uses the misclassi�cation

costs directly in its tree building process.�at is, instead

of minimizing entropy in attribute selection as in C.,

CSTree selects the best attribute by the expected total

cost reduction.�at is, an attribute is selected as a root

of the (sub) tree if it minimizes the total misclassi�ca-

tion cost.

Note that as both ICET and CSTree directly take

costs into model building, they can also take easily

attribute costs (and perhaps other costs) directly into

consideration, while meta cost-sensitive learning algo-

rithms generally cannot.

Drummond and Holte () investigate the cost-

sensitivity of the four commonly used attribute selec-

tion criteria of decision tree learning: accuracy, Gini,

entropy, and DKM. �ey claim that the sensitivity of

cost is highest with the accuracy, followed by Gini,

entropy, and DKM.

Cost-Sensitive Meta-Learning

Cost-sensitive meta-learning converts existing cost-

insensitive classi�ers into cost-sensitive ones without

modifying them. �us, it can be regarded as a mid-

dleware component that preprocesses the training data,

or post-processes the output, from the cost-insensitive

learning algorithms.

Cost-sensitive meta-learning can be further classi-

�ed into twomain categories: thresholding and sampling,
based on () and () respectively, as discussed in the

theory section.

�resholding uses () as a threshold to classify exam-
ples into positive or negative if the cost-insensitive clas-

si�ers can produce probability estimations. MetaCost
(Domingos,) is a thresholdingmethod. It �rst uses
bagging on decision trees to obtain reliable probability

estimations of training examples, relabels the classes of

training examples according to (), and then uses the

relabeled training instances to build a cost-insensitive

classi�er. CSC (Witten & Frank,) also uses () to
predict the class of test instances. More speci�cally,CSC
uses a cost-insensitive algorithm to obtain the proba-

bility estimations P(j ∣ x) of each test instance. (CSC is a
meta-learning method and can be applied to any classi-

�ers.)�en it uses () to predict the class label of the test

examples. Cost-sensitive naïve Bayes (Chai et al.,)

uses () to classify test examples based on the posterior

probability produced by the naïve Bayes.

As seen, all thresholding-based meta-learning meth-
ods rely on accurate probability estimations of p(∣ x) for
the test example x. To achieve this, Zadrozny and Elkan
() propose several methods to improve the cali-

bration of probability estimates. ET (Empirical�resh-
olding) (Sheng and Ling,) is a thresholding-based

meta-learningmethod. It does not require accurate esti-

mation of probabilities – an accurate ranking is su�-

cient. ET simply uses cross-validation to search the best
probability from the training instances as the threshold,

and uses the searched threshold to predict the class label

of test instances.

On the other hand, sampling �rst modi�es the class
distribution of the training data according to (), and

then applies cost-insensitive classi�ers on the sampled

data directly.�ere is no need for the classi�ers to pro-

duce probability estimations, as long as they can clas-

sify positive or negative examples accurately. Zadrozny

et al. () show that proportional sampling with

replacement produces duplicated cases in the training,

which in turn produces over�tting in model building.

Instead, Zadrozny et al. () proposes to use “rejec-

tion sampling” to avoid duplication. More speci�cally,

each instance in the original training set is drawn once,

and accepted into the sample with the accepting prob-

ability C(j, i)/Z, where C(j, i) is the misclassi�cation
cost of class i, and Z is an arbitrary constant such that
Z ≥max C(j,i). When Z =maxijC(j, i), this is equivalent
to keeping all examples of the rare class, and sam-

pling the majority class without replacement accord-

ing to C(,)/C(,) – in accordance with (). Bag-
ging is applied a�er rejection sampling to improve

the results further. �e resulting method is called

Costing.
Weighting (Ting,) can also be viewed as a

sampling method. It assigns a normalized weight to

each instance according to the misclassi�cation costs

Covariance Matrix C

C

speci�ed in ().�at is, examples of the rare class (which

carries a highermisclassi�cation cost) are assigned, pro-

portionally, high weights. Examples with high weights

can be viewed as example duplication – thus over-

sampling. Weighting then induces cost-sensitivity by
integrating the instances’ weights directly into C.,

as C. can take example weights directly in the

entropy calculation. It works whenever the original

cost-insensitive classi�ers can accept example weights

directly. (�us, it can be said that Weighting is a semi
meta-learning method.) In addition, Weighting does
not rely on bagging as Costing does, as it “utilizes” all
examples in the training set.

Recommended Reading
Chai, X., Deng, L., Yang, Q., & Ling, C. X. (). Test-cost sensi-

tive naïve Bayesian classification. In Proceedings of the fourth
IEEE international conference on data mining. Brighton: IEEE
Computer Society Press.

Domingos, P. (). MetaCost: A general method for making clas-

sifiers cost-sensitive. In Proceedings of the fifth international
conference on knowledge discovery and data mining, San Diego
(pp. –). New York: ACM.

Drummond, C., & Holte, R. (). Exploiting the cost

(in)sensitivity of decision tree splitting criteria. In Proceed-
ings of the th international conference on machine learning
(pp. –).

Elkan, C. (). The foundations of cost-sensitive learning. In Pro-
ceedings of the th international joint conference of artificial
intelligence (pp. –). Seattle: Morgan Kaufmann.

Japkowicz, N., & Stephen, S. (). The class imbalance prob-

lem: A systematic study. Intelligent Data Analysis, (),
–.

Ling, C. X., Yang, Q., Wang, J., & Zhang, S. (). Decision trees

with minimal costs. InProceedings of international confer-
ence on machine learning (ICML’).

Sheng, V. S., & Ling, C. X. (). Thresholding for making classi-

fiers cost-sensitive. In Proceedings of the st national conference
on artificial intelligence (pp. –), – July , Boston,
Massachusetts.

Ting, K. M. (). Inducing cost-sensitive trees via instance weight-

ing. In Proceedings of the second European symposium on prin-
ciples of data mining and knowledge discovery (pp. –).
Heidelberg: Springer.

Turney, P. D. (). Cost-sensitive classification: Empirical eval-

uation of a hybrid genetic decision tree induction algorithm.

Journal of Artificial Intelligence Research, , –.
Turney, P. D. (). Types of cost in inductive concept learn-

ing. In Proceedings of the workshop on cost-sensitive learning at
the th international conference on machine learning, Stanford
University, California.

Witten, I. H., & Frank, E. (). Data mining – Practical machine
learning tools and techniques with Java implementations. San
Francisco: Morgan Kaufmann.

Zadrozny, B., & Elkan, C. (). Learning and making decisions

when costs and probabilities are both unknown. In Proceedings

of the seventh international conference on knowledge discovery
and data mining (pp. –).

Zadrozny, B., Langford, J., & Abe, N. (). Cost-sensitive learning

by cost-proportionate instance weighting. In Proceedings of the
third International conference on data mining.

Cost-to-Go Function Approximation

7Value Function Approximation

Covariance Matrix

Xinhua Zhang

Australian National University,

Canberra, Australia

Definition
It is convenient to de�ne a covariance matrix by using

multi-variate randomvariables (mrv):X = (X, . . . ,Xd)⊺.
For univariate random variablesXi andXj, their covari-
ance is de�ned as:

Cov(Xi,Xj) = E [(Xi − µi)(Xj − µj)] ,

where µi is themean ofXi : µi = E[Xi]. As a special case,
when i = j, then we get the variance of Xi, Var(Xi) =
Cov(Xi,Xi). Now in the setting of mrv, assuming that
each component random variable Xi has �nite variance
under its marginal distribution, the covariance matrix

Cov(X,X) can be de�ned as a d-by-d matrix whose
(i, j)-th entry is the covariance:

(Cov(X,X))ij = Cov(Xi,Xj) = E [(Xi − µi)(Xj − µj)] .

And its inverse is also called precision matrix.

Motivation and Background
�e covariance between two univariate random vari-

ables measures how much they change together, and

as a special case, the covariance of a random variable

with itself is exactly its variance. It is important to

note that covariance is an unnormalized measure of the

correlation between the random variables.

As a generalization to multi-variate random vari-

ables X= (X, . . . ,Xd)⊺, the covariance matrix is a

 C Covariance Matrix

d-by-d matrix whose (i, j)-th component is the covari-
ance between Xi and Xj.
In many applications, it is important to character-

ize the relations between a set of factors, hence the

covariance matrix plays an important role in practice,

especially in machine learning.

Theory
It is easy to rewrite the element-wise de�nition into the

matrix form:

Cov(X,X) = E [(X −E[X])(X −E[X])⊺] , ()

which naturally generalizes the variance of univariate

random variables: Var(X) = E[(X −E[X])].
Moreover, it is also straightforward to extend the

covariance of a single mrv X to two mrv ’s X (d
dimensional) and y (s dimensional), under the name
cross-covariance. It quanti�es howmuch the component
random variables inX and y change together.�e cross-
covariance matrix is de�ned as a d× smatrix Cov(X, y)
whose (i, j)-th entry is

(Cov(X, y))ij = Cov(Xi,Yj)
= E [(Xi −E[Xi])(Yj −E[Yj])] .

Cov(X, y) can also be written in the matrix form as

Cov(X, y) = E [(X −E[X])(y −E[y])⊺] ,

where the expectation is with respect to the joint

distribution of (X, y). Obviously, Cov(X, y) becomes
Cov(X,X) when y = X.

Properties

Covariance Cov(X,X) has the following properties:

. Positive semi-de�niteness. It follows from () that

Cov(X,X) is positive semi-de�nite. Cov(X,X) =
if, and only if, X is a constant almost surely, i.e.,
there exists a constant x such that Pr(X ≠ x) = .
Cov(X,X) is not positive de�nite if, and only if,
there exists a constant α such that ⟨α,X⟩ is constant
almost surely.

. Relating cumulant to moments: Cov(X,X) =
E[XX⊺] −E[X]E[X]⊺.

. Linear transform: If y = AX+bwhereA ∈ Rs×d and
b ∈ Rs, then Cov(y, y) = ACov(X,X)A⊺.

Cross-covariance Cov(X, y) has the following pro-
perties.

. Symmetry: Cov(X, y) = Cov(y,X).
. Linearity: Cov(X + X, y) = Cov(X, y) + Cov

(X, y).
. Relating to covariance: If X and y have the same
dimension, then Cov(X + y,X + y) = Cov(X,X) +
Cov(y, y) + Cov(y,X).

. Linear transform: Cov(AX,By) = ACov(X, y)B.

It is highly important to note that Cov(X, y) = is a
necessary but not su�cient condition for X and y to be
independent.

Correlation Coefficient

Entries in the covariance matrix are sometimes pre-

sented in a normalized form by dividing each entry by

its corresponding standard deviations.�is quantity is

called the correlation coe�cient, represented as ρXi ,Xj ,
and de�ned as

ρXi ,Xj =
Cov(Xi,Xj)

Cov(Xi,Xi)/Cov(Xj,Xj)/
.

�e corresponding matrix is called the correlation

matrix, and for ΓX set to Cov(X,X) with all non-
diagonal entries zeroed, and ΓY likewise, then the cor-

relation matrix is given by

Corr(X, y) = Γ−/X Cov(X, y)Γ−/Y .

�e correlation coe�cient takes on values between

[−,].

Parameter Estimation

Given observations x, . . . , xn of a mrv X, an unbiased
estimator of Cov(X,X) is:

S =

n −

n

∑
i=

(xi − x̄)(xi − x̄)⊺,

where x̄ =

n ∑
n
i= xi.�e denominator n − re�ects the

fact that the mean is unknown and the sample mean is

used in place. Note the maximum likelihood estimator

in this case replaces the denominator n − by n.

Covariance Matrix C

C

Conjugate Priors

A covariance matrix is used to de�ne the Gaussian dis-

tribution. In this case, the inverse Wishart distribution

is the conjugate prior for the covariance matrix. Since

the Gamma distribution is a -D version of the Wishart

distribution, in the -D case the Gamma is the conjugate

prior for precision matrix.

Applications
Several key uses of the covariance matrix are reviewed

here.

Correlation and Kernel Methods

In many machine learning problems, we o�en need to

quantify the correlation of two mrv s which may be
from two di�erent spaces. For example, we may want

to study how much the image stream of a movie is cor-

related with the comments it receives. For simplicity, we

consider a r-dimensional mrv X and a s-dimensional
mrv y. To study their correlation, suppose we have n
pairs of observations {(xi, yi)}

n
i= drawn iid from cer-

tain underlying joint distribution of (X, y). Let x̄ =

n ∑
n
i= xi and ȳ =

n ∑
n
i= yi, and stack {xi} and {yi} into

x̃ = (x, . . . , xn)⊺ and Ỹ = (y

, . . . , yn)⊺ respectively.

�en the cross-covariancematrix Cov(X, y) can be esti-
mated by n ∑

n
i=(xi − x̄)(yi − ȳ)⊺. To quantify the cross-

correlation by a real number, we need to apply some

norm of the cross-covariance matrix, and the simplest

one is the Frobenius norm, ∥A∥F = ∑ij Aij.�erefore,
we obtain a measure of cross-correlation,

∥
n

n

∑
i=

(xi − x̄)(yi − ȳ)⊺∥

F
=
n
Hx̃x̃⊺HỸỸ⊺, ()

where Hij = δij −

n , and δij = if i = j and otherwise.
It is important to notice that () in this measure,

inner product is performed only in the space of X
and y separately, i.e., no transformation between X
and y is required, () the data points a�ect the mea-
sure only via inner products x⊺i xj as the (i, j)-th entry
of x̃x̃⊺ (and similarly for yi). Hence we can endow
new inner products on X and y, which eventually
allows us to apply kernels, e.g., Gretton, Herbrich,

Smola, Bousquet, & Schölkopf (). In a nutshell, ker-

nel methods (Schölkopf & Smola,) rede�ne the

inner product x⊺i xj by mapping xi to a richer feature
space via ϕ(xi) and then compute the inner product

there: k(xi, xj) := ϕ(xi)⊺ϕ(xj). Since the measure in
() only needs inner products, one can even directly

de�ne k(,) without explicitly specifying ϕ.�is allows
us to

● Implicitly use a rich feature space whose dimension

can be in�nitely high.

● Apply this measure of cross correlation to non-

Euclidean spaces as long as a kernel k(xi, xj) can be
de�ned on it.

Correlation and Least Squares Approximation

�e measure of () can be equivalently motivated by

least square 7linear regression. �at is, we look for a
linear transform T : Rd → Rs which minimizes

n

n

∑
i=

∥(yi − ȳ) − T(xi − x̄)∥ .

And one can show that its minimum objective value is

exactly equal to () up to a constant, as long as all yi − ȳ
and xi − x̄ have unit length. In practice, this can be
achieved by normalization. Or, the measure in () itself

can be normalized by replacing the covariance matrix

with the correlation matrix.

Principal Component Analysis

�e covariance matrix plays a key role in principal

component analysis (PCA). Assume that we are given

n iid observations x, . . . , xn of a mrv X, and let x̄ =

n ∑i xi. PCA tries to �nd a set of orthogonal directions
w,w, . . ., such that the projection ofX to the direction
w, w⊺ X, has the highest variance among all possible
directions in the d-dimensional space. A�er subtract-
ing from X the projection to w, w is chosen as the
highest variance projection direction for the remain-

der.�is procedure goes on for the required number of

components.

To �ndw := argmax wVar(w⊺X), we need an empi-
rical estimate of Var(w⊺X). Estimating E[(w⊺X)] by
w⊺ (n ∑i xix

⊺
i)w, and E[w⊺X] by n ∑i w

⊺xi, we get

w = argmaxw : ∥w = ∥w⊺Sw,

where S =
n

n

∑
i=

(xi − x̄)(xi − x̄)⊺,

i.e., S is n
n− times the unbias empirical estimate of the

covariance of X, based on samples x, . . . , xn. w turns

 C Covering Algorithm

out to be exactly the eigenvector of S corresponding to
the greatest eigenvalue.

Note that PCA is independent of the distribution of

X. More details on PCA can be found at Jolli�e ().

Gaussian Processes

Gaussian processes are another important framework

in machine learning that rely on the covariance matrix.

It is a distribution over functions f (⋅) from certain space
X to R, such that for any n ∈ N and any n points
{xi ∈ X}ni=, the set of values of f evaluated at {xi}i,
{f (x), . . . , f (xn)}, will have an n-dimensional Gaus-
sian distribution. Di�erent choices of the covariance

matrix of the multi-variate Gaussian lead to di�erent

stochastic processes such as Wiener process, Brown-

ian motion, Ornstein–Uhlenbeck process, etc. In these

cases, it makes more sense to de�ne a covariance func-

tion C : X ×X ↦ R, such that given any set {xi ∈ X}ni=
for any n ∈ N, the n-by-n matrix (C(xi, xj))ij is pos-
itive semi-de�nite and can be used as the covariance

matrix. �is further allows straightforward kerneliza-

tion of a Gaussian process by using the kernel function

as the covariance function.

Although the space of functions is in�nite dimen-

sional, the marginalization property of multi-variate

Gaussian distributions guarantees that the user of the

model only needs to consider the observed xi, and
ignore all the other possible x ∈ X .�is important prop-
erty says that for a mrv X = (X⊺

 ,X
⊺
)⊺ ∼ N (µ, Σ), the

marginal distribution of X is N (µ

, Σ), where Σ is

the submatrix of Σ corresponding to X (and similarly
for µ

). So taking into account the random variable X

will not change the marginal distribution of X.
For a complete treatment of covariance matrix

from a statistical perspective, see Casella and Berger

(), and Mardia, Kent, and Bibby () provides

details for the multi-variate case. PCA is comprehen-

sively discussed in Jolli�e (), and kernel meth-

ods are introduced in Schölkopf and Smola ().

Williams & Rasmussen () gives the state of the art

on how Gaussian processes can be utilized for machine

learning.

Cross References
7Gaussian Distribution
7Gaussian Processes
7Kernel Methods

Recommended Reading
Casella, G., & Berger, R. (). Statistical inference (nd ed.). Pacific

Grove, CA: Duxbury.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., & Schölkopf, B.

(). Kernel methods for measuring independence. Journal
of Machine Learning Research, , –.

Jolliffe, I. T. () Principal component analysis (nd ed.). Springer
series in statistics. New York: Springer.

Mardia, K. V., Kent, J. T., & Bibby, J. M. ().Multivariate analysis.
London: Academic Press.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge,
MA: MIT Press.

Williams, C. K. I., & Rasmussen, C. E. (). Gaussian processes for
regression. Cambridge, MA: MIT Press.

Covering Algorithm

7Rule Learning

Credit Assignment

Claude Sammut

�e University of New South Wales

Synonyms
Structural credit assignment; Temporal credit

assignment

Definition
When a learning system employs a complex decision

process, it must assign credit or blame for the out-

comes to each of its decisions. Where it is not possi-

ble to directly attribute an individual outcome to each

decision, it is necessary to apportion credit and blame

between each of the combinations of decisions that con-

tributed to the outcome. We distinguish two cases in

the credit assignment problem. Temporal credit assign-
ment refers to the assignment of credit for outcomes to
actions. Structural credit assignment refers to the assign-
ment of credit for actions to internal decisions. �e

�rst subproblem involves determining when the actions

that deserve credit were taken and the second involves

assigning credit to the internal structure of actions (Sut-

ton,).

Credit Assignment C

C

Motivation
Consider the problem of learning to balance a pole

that is hinged on a cart (Michie & Chambers, ,

Anderson &Miller,).�e cart is constrained to run

along a track of �nite length and a �xed force can be

applied to push the cart le� or right. A controller for the

pole and cart system must make a decision whether to

push le� or right at frequent, regular time intervals, for

example, times a second. Suppose that this controller

is capable of learning from trial-and-error. If the pole

falls over, then it must determine which actions it took

helped or hurt its performance.Determining that action

is the problem of temporal credit assignment. Although
the actions are directly responsible for the outcome of a

trial, the internal process for choosing the action indi-

rectly a�ects the outcome. Assigning credit or blame

to those internal processes that lead to the choice of

action is the structural credit assignment problem. In the
case of pole balancing, the learning systemwill typically

keep statistics such as how long, on average, the pole

remained balanced a�er taking a particular action in a

particular state, or a�er a failure, it may count back and

determine the average amount of time to failure a�er

taking a particular action in a particular state. Using

these statistics, the learner attempts to determine the

best action for a given state.

�e above example is typical of many problems in

7reinforcement learning (Sutton & Barto,), where
an agent interacts with its environment and through

that interaction, learns to improve its performance in

a task. Although Samuel () was the �rst to use a

form of reinforcement learning in his checkers play-

ing program, Minksy () �rst articulated the credit

assignment, as follows:

▸ Using devices that also learn which events are asso-

ciated with reinforcement, i.e., reward, we can build

more autonomous “secondary reinforcement” systems.

In applying such methods to complex problems, one

encounters a serious difficulty – in distributing credit

for success of a complex strategy among the many

decisions that were involved.

�e BOXES algorithm of Michie and Chambers ()

learned to control a pole balancer and performed credit

assignment but the problem of credit assignment later

became central to reinforcement learning, particularly

following the work of Sutton (). Although credit

assignment has become most strongly identi�ed with

reinforcement learning, it may appear in any learning

system that attempts to assess and revise its decision-

making process.

Structural Credit Assignment
�e setting for our learning system is that we have an

agent that interacts with an environment.�e environ-

ment may be a virtual one, as in game playing, or it may

be physical, as in a robot performing some task. �e

agent receives input, possibly through sensing devices,

that allows it to characterize the state of the world.

Somehow, the agent must map these inputs to appro-

priate responses.�ese responses may change the state

of the world. In reinforcement learning, we assume that

the agent will receive some reward signal a�er an action

or sequence of actions. Its job is to maximize these

rewards over time.

Structural credit assignment is associated with gen-

eralization over the input space of the agent. For exam-

ple, a game player may have to respond to a very large

number of potential board positions or a robot may

have to respond to a streamof camera images. It is infea-

sible to learn a complete mapping from every possible

input to every possible output. �erefore, a learning

agent will typically use some means of grouping input

signals. In the case of the BOXES pole balancer, Michie

and Chambers discretized the state space.�e state is

characterized by the cart’s position and velocity and the

pole’s angle and angular velocity.�ese parameters cre-

ate a four-dimensional space, which was broken into

three regions (le�, center, right) for the pole angle, �ve

for the angular velocity, and three for the cart posi-

tion and velocity.�ese choiceswere arbitrary and other

combinations also worked.

Having divided the input space into non-overlapping

regions, Michie and Chambers associated a push-le�

and push-right action with each region, or box. �e

learning algorithm maintains a score for each action

and chooses the next action based on that score. BOXES

was an early, and simple example, of creating an internal

representation formapping inputs to outputs.�e prob-

lem with this method is that the structure of the

decision-making system is �xed at the start and the

learner is incapable of changing the representation.

�is may be needed if, for example, the subdivisions

 C Credit Assignment

that were chosen do not correspond to a real deci-

sion boundary. A learning system that could adapt its

representation has an advantage, in this case.

�e BOXES representation can be thought of

as a lookup table that implements a function that

maps an input to an output. �e �xed lookup table

can be replaced by a 7function approximator that,
given examples from the desired function, general-

izes from them to construct an approximation of

that function. Di�erent function approximation tech-

niques can be used. For example, Moore’s () func-

tion approximator was a7nearest-neighbor algorithm,
implemented using 7kd-tree to improve e�ciency.
Other function approximation methods may also be

used, e.g., Albus’ CMAC algorithm (), 7locally
weighted regression (Atkeson, Schaal, & Moore,),

7perceptrons (Rosenblatt,), 7multi-layer net-
works (Hinton, Rumelhart, & Williams,), 7radial
basis functions, etc. Structural credit assignment is also

addressed in the creation of hierarchical representa-

tions. See 7hierarchical reinforcement learning. Other
approaches to structural credit assignment include

7Value function approximation (Bertsekas & Tsitsik-
lis,) and automatic basis generation (Mahade-

van,). See the entry on 7Gaussian Processes
for examples of recent Bayesian and kernel method

based approaches to solving the credit assignment

problem.

Temporal Credit Assignment
In the pole balancing example described above, the

learning system receives a signal when the pole has

fallen over. How does it know which actions leading

up to the failure contributed to the fall? �e system

will receive a high-level punishment in the event of a

failure or a reward in tasks where there is a goal to

be achieved. In either case, it makes sense to assign

the greatest credit or blame to the most recent actions

and assign progressively less to the preceding actions.

Each time a learning trial is repeated, the value of an

action is updated so that if it leads to another action of

higher value, its weight is increased.�us, the reward

or punishment propagates back through the sequence

of decisions taken by the system. �e credit assign-

ment problem was addressed by Michie and Cham-

bers, in the BOXES, algorithm butmany other solutions

have subsequently been proposed. See the entries on

7Q-learning (Watkins, ; Watkins & Dayan,)
and 7temporal di�erence learning (Barto, Sutton, &
Anderson, ; Sutton,).

Although temporal credit assignment is usually

associated with reinforcement learning, it also appears

in other forms of learning. In7learning by imitation or
7behavioral cloning, an agent observes the actions of
another agent and tries to learn from traces of behav-

iors. In this case, the learner must judge which actions

of the other agent should receive credit or blame. Plan

learning also encounters the same problem (Benson

& Nilsson, ; Wang, Simon, & Lehman,), as

does 7explanation-based learning (Mitchell, Keller, &
Kedar-Cabelli, ; Dejong & Mooney, ; Laird,

Newell, & Rosenbloom,).

To illustrate the connection with explanation-based

learning, we use one of the earliest examples of this

kind of learning, Mitchell and Utgo� ’s, LEX pro-

gram (Mitchell, Utgo�, & Banerji,).�e program

was intended to learn heuristics for performing sym-

bolic integration. Given a mathematical expression that

included an integral sign, the program tried to trans-

form the expression into one they did not.�e standard

symbolic integration operators were known to the pro-

gram but not when it is best to apply them. �e task

of the learning system was to learn the heuristics for

when to apply the operators.�is was done by exper-

imentation. If no heuristics were available, the program

attempted a brute force search. If the search was suc-

cessful, all the operators applied, leading to the success

were assumed to be positive examples for a heuris-

tic, whereas operators applied during a failed attempt

became negative examples. �us, LEX performed a

simple form of credit assignment, which is typical of

any system that learns how to improve sequences of

decisions.

7Genetic algorithms can also be used to evolve
rules that perform sequences of actions (Holland,).

When situation-action rules are applied in a sequence,

we have a credit assignment problem that is similar to

when we use a reinforcement learning.�at is, how do

we know which rules were responsible for success or

failure and to what extent? Grefenstette () describes

a bucket brigade algorithm in which rules are given
strengths that are adjusted to re�ect credit or blame.

Credit Assignment C

C

�is is similar to temporal di�erence learning except

that in the bucket brigade the strengths apply to rules

rather than states. See Classi�er Systems and for a more

comprehensive survey of bucket brigade methods, see

Goldberg ().

Transfer Learning
A�er a person has learned to perform some task, learn-

ing a new, but related, task is usually easier because

knowledge of the �rst learning episode is transferred to
the new task. Transfer Learning is particularly useful for
acquiring new concepts or behaviors when given only

a small amount for training data. It can be viewed as

a form of credit assignment because successes or fail-

ures in previous learning episodes bias future learning.

Reid (,) identi�es three forms of 7inductive
bias involved in transfer learning for rules: language

bias, which determines what kinds of rules can be con-

structed by the learner; the search bias, which deter-

mines the order in which rules will be searched; and

the evaluation bias, which determines how the qual-

ity of the rules will be assessed. Note that learning

language bias is a form of structural credit assign-

ment. Similarly, where rules are applied sequentially,

evaluation bias becomes temporal credit assignment.

Taylor and Stone () give a comprehensive sur-

vey of transfer in 7reinforcement learning, in which
they describe a variety of techniques for transferring

the structure of an RL task from one case to another.

�ey also survey methods for transferring evaluation

bias.

Transfer learning can be applied in many di�er-

ent settings. Caruana () developed a system for

transferring inductive bias in 7neural networks per-
forming multitask learning and more recent research

has been directed toward transfer learning in7Bayesian
Networks (Niculescu-mizil & Caruana,).

See 7Transfer Learning and Silver et al. () and
Banerjee, Liu, and Youngblood () for recent work

on transfer learning.

Cross References
7Bayesian Network
7Classi�er Systems
7Genetic Algorithms

7Hierarchical Reinforcement Learning
7Inductive Bias
7kd-Trees
7Locally Weighted Regression
7Nearest-Neighbor
7Perceptrons
7Radial Basis Function
7Reinforcement Learning
7Temporal Di�erence Learning
7Transfer Learning

Recommended Reading
Albus, J. S. (). A new approach to manipulator control:

The cerebellar model articulation controller (CMAC). Journal
of Dynamic Systems, Measurement and Control, Transactions
ASME, (), –.

Anderson, C. W., & Miller, W. T. (). A set of challeng-

ing control problems. In W. Miller, R. S. Sutton, & P.

J. Werbos (Eds.), Neural Networks for Control. Cambridge:
MIT Press.

Atkeson, C., Schaal, S., & Moore, A. (). Locally weighted learn-

ing. AI Review, , –.
Banerjee, B., Liu, Y., & Youngblood, G. M. (Eds.), (). Proceed-

ings of the ICML workshop on “Structural knowledge transfer for
machine learning.” Pittsburgh, PA.

Barto, A., Sutton, R., & Anderson, C. (). Neuron-like adap-

tive elements that can solve difficult learning control problems.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-,
–.

Benson, S., & Nilsson, N. J. (). Reacting, planning and learn-

ing in an autonomous agent. In K. Furukawa, D. Michie, &

S. Muggleton (Eds.), Machine Intelligence . Oxford: Oxford
University Press.

Bertsekas, D. P., & Tsitsiklis, J. (). Neuro-dynamic programming.
Nashua, NH: Athena Scientific.

Caruana, R. (). Multitask learning. Machine Learning, ,
–.

Dejong, G., & Mooney, R. (). Explanation-based

learning: An alternative view. Machine Learning, ,
–.

Goldberg, D. E. (). Genetic algorithms in search, optimiza-
tion and machine learning. Boston: Addison-Wesley Longman
Publishing.

Grefenstette, J. J. (). Credit assignment in rule discovery sys-

tems based on genetic algorithms. Machine Learning, (–),
–.

Hinton, G., Rumelhart, D., & Williams, R. (). Learning internal

representation by back-propagating errors. In D. Rumelhart, J.

McClelland, & T. P. R. Group (Eds.), Parallel distributed com-
puting: Explorations in the microstructure of cognition (Vol. .,
pp. –). Cambridge: MIT Press.

 C Cross-Language Document Categorization

Holland, J. (). Escaping brittleness: The possibilities of general-

purpose learning algorithms applied to parallel rule-based

systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach
(Vol.). Los Altos: Morgan Kaufmann.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (). SOAR: An archi-

tecture for general intelligence. Artificial Intelligence, (),
–.

Mahadevan, S. (). Learning representation and control in

Markov decision processes: New frontiers. Foundations and
Trends in Machine Learning, (), –.

Michie, D., & Chambers, R. (). Boxes: An experiment in adaptive

control. In E. Dale & D. Michie (Eds.), Machine Intelligence .
Edinburgh: Oliver and Boyd.

Minsky, M. (). Steps towards artificial intelligence. Proceedings
of the IRE, , –.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (). Explana-

tion based generalisation: A unifying view. Machine Learning,
, –.

Mitchell, T. M., Utgoff, P. E., & Banerji, R. B. (). Learning

by experimentation: Acquiring and refining problem-solving

heuristics. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),

Machine kearning: An artificial intelligence approach. Palo Alto:
Tioga.

Moore, A. W. (). Efficient memory-based learning for robot con-
trol. Ph.D. Thesis, UCAM-CL-TR-, Computer Laboratory,
University of Cambridge, Cambridge.

Niculescu-mizil, A., & Caruana, R. (). Inductive transfer for

Bayesian network structure learning. In Proceedings of the th
International Conference on AI and Statistics (AISTATS).
San Juan, Puerto Rico.

Reid, M. D. (). Improving rule evaluation using multitask

learning. In Proceedings of the th International Confer-
ence on Inductive Logic Programming (pp. –). Porto,
Portugal.

Reid, M. D. (). DEFT guessing: Using inductive transfer to
improve rule evaluation from limited data. Ph.D. thesis, School
of Computer Science and Engineering, The University of New

South Wales, Sydney, Australia.

Rosenblatt, F. (). Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanics. Washington, DC: Spartan
Books.

Samuel, A. (). Some studies in machine learning using the game

of checkers. IBM Journal on Research and Development, (),
–.

Silver, D., Bakir, G., Bennett, K., Caruana, R., Pontil, M., Russell, S.,

et al. (). NIPS workshop on “Inductive transfer: years

later”. Whistler, Canada.

Sutton, R. (). Temporal credit assignment in reinforcement learn-
ing. Ph.D. thesis, Department of Computer and Information
Science, University of Massachusetts, Amherst, MA.

Sutton, R., & Barto, A. (). Reinforcement learning: An introduc-
tion. Cambridge: MIT Press.

Taylor, M. E., & Stone, P. (). Transfer learning for reinforce-

ment learning domains: A survey. Journal of Machine Learning
Research, , –.

Wang, X., Simon, H. A., Lehman, J. F., & Fisher, D. H. (). Learn-

ing planning operators by observation and practice. In Pro-
ceedings of the Second International Conference on AI Planning
Systems, AIPS- (pp. –). Chicago, IL.

Watkins, C. (). Learning with delayed rewards. Ph.D. thesis,
Psychology Department, University of Cambridge, Cambridge.

Watkins, C., & Dayan, P. (). Q-learning. Machine Learning,
(–), –.

Cross-Language Document
Categorization

Document Categorization is the task consisting in

assigning a document to zero, one or more categories

in a prede�ned taxonomy.Cross-language document cat-
egorization describes the speci�c case in which one is
interested in automatically categorize a document in a

same taxonomy regardless of the fact that the docu-

ment is written in one of several languages. For more

details on the methods used to perform this task see

7cross-lingual text mining.

Cross-Language Information
Retrieval

Cross-language information retrieval (CLIR) is the task
consisting in recovering the subset of a document col-

lection D relevant to a query q, in the special case in
which D contains documents written in more than one
language. Generally, it is additionally assumed that the

subset of relevant documents must be returned as an

ordered list, in decreasing order of relevance. For more

details on methods and applications see7cross-lingual
text mining.

Cross-Language Question
Answering

Question answering is the task consisting in �nding in

a document collection the answer to a question. CLCat

is the speci�c case in which the question and the doc-

uments can be in di�erent languages. For more details

on the methods used to perform this task see 7cross-
lingual text mining.

Cross-Lingual Text Mining C

C

Cross-Lingual Text Mining

Nicola Cancedda, Jean-Michel Renders

Xerox Research Centre Europe, Meylan,

France

Definition
Cross-lingual text mining is a general category denot-

ing tasks and methods for accessing the information

in sets of documents written in several languages, or

whenever the language used to express an information

need is di�erent from the language of the documents.

A distinguishing feature of cross-lingual text mining

is the necessity to overcome some language translation

barrier.

Motivation and Background
Advances in mass storage and network connectivity

make enormous amounts of information easily accessi-

ble to an increasingly large fraction of the world popu-

lation. Such information is mostly encoded in the form

of running text which, in most cases, is written in a lan-

guage di�erent from the native language of the user.�is

state of a�airs createsmany situations inwhich themain

barrier to the ful�llment of an information need is not

technological but linguistic. For example, in some cases

the user has some knowledge of the language in which

the text containing a relevant piece of information is

written, but does not have a su�cient control of this

language to express his/her information needs. In other

cases, documents in many di�erent languages must be

categorized in a same categorization schema, but man-

ually categorized examples are available for only one

language.

While the automatic translation of text from a nat-

ural language into another (machine translation) is

one of the oldest problems on which computers have

been used, a palette of other tasks has become relevant

only more recently, due to the technological advances

mentioned above. Most of them were originally moti-

vated by needs of government Intelligence commu-

nities, but received a strong impulse from the di�u-

sion of the World-Wide Web and of the Internet in

general.

Tasks and Methods
A number of speci�c tasks fall under the term of Cross-

lingual text mining (CLTM), including:

● Cross-language information retrieval
● Cross-language document categorization
● Cross-language document clustering
● Cross-language question answering

�ese tasks can in principle be performed using

methods which do not involve any 7Text Mining, but
as a matter of fact all of them have been successfully

approached relying on the statistical analysis of mul-

tilingual document collections, especially parallel cor-
pora. While CLTM tasks di�er in many respect, they
are all characterized by the fact that they require to reli-

ably measure the similarity of two text spans written in

di�erent languages.�ere are essentially two families of

approaches for doing this:

. In translation-based approaches one of the two text
spans is �rst translated into the language of the

other. Similarity is then computed based on any

measure used in mono-lingual cases. As a variant,

both text spans can be translated in a third pivot
language.

. In latent semantics approaches, an abstract vector
space is de�ned based on the statistical properties

of a parallel corpus (or, more rarely, of a compara-
ble corpus). Both text spans are then represented
as vectors in such latent semantic space, where any
similarity measure for vector spaces can be used.

�e rest of this entry is organized as follows: �rst

Translation-related approaches will be introduced, fol-

lowed by Latent-semantic approaches. Finally, each of

the speci�c CLTM tasks will be discussed in turn.

Translation-Based Approaches
�e simplest approach consists in using a manually-

written machine-readable bilingual dictionary: words

from the �rst span are looked up and replaced with

words in the second language (see e.g., Zhang & Vines,

). Since typically dictionaries contain entries for

“citation forms” only (e.g., the singular for nouns, the

in�nitive for verbs etc.), words in both spans are prelim-

inarily lemmatized, i.e., replacedwith the corresponding

 C Cross-Lingual Text Mining

citation form. In all cases when the lexica and morpho-

logical analyzers required to perform lemmatization are

not available, a frequently adopted crude alternative

consists in stemming (i.e., truncating by taking away a
su�x) both the words in the span to be translated and in

the corresponding side in the lexicon. Some languages

(e.g., Germanic languages) are characterized by a very

productive compounding: simpler words are connected
together to form complex words. Compound words are

rarely in dictionaries as such: in order to �nd them it

is �rst necessary to break compounds into their ele-

ments.�is can be done based on additional linguistic

resources or by means of heuristics, but in all cases it

is a challenging operation in itself. If the method used

a�erward to compare the two spans in the target lan-

guage can take weights into account, translations are

“normalized” in such a way that the cumulative weight

of all translations of a word is the same regardless of

the number of alternative translations. Most o�en, the

weight is simply distributed uniformly among all alter-

native translations. Sometimes, only the �rst translation

for each word is kept, or the �rst two or three.

A second approach consists in extracting a bilin-

gual lexicon from a parallel corpus instead of using a
manually-written one. Methods for extracting proba-

bilistic lexica look at the frequencieswithwhich aword s
in one language was translated with a word t to estimate
the translation probability p(t∣s). In order to determine
which word is the translation of which other word in

the available examples, these examples are preliminarily

aligned, �rst at the sentence level (to know what sen-

tence is the translation of what other sentence) and then

at theword level. Severalmethods for aligning sentences

at the word level have been proposed, and this prob-

lem is a lively research topic in itself (see Brown, Della

Pietra, Della Pietra, &Mercer, for a seminal paper).

Once a probabilistic bilingual dictionary is available,

it can be used much in the same way as human-written

dictionaries, with the notable di�erence that the esti-

mated conditional probabilities provide a natural way to

distribute weight across translations.When the example

documents used for extracting the bilingual dictionar-

ies are of the same style and domain as the text spans to

be translated, this can result in a signi�cant increase in

accuracy for the �nal task, whatever this is.

It is o�en the case that a parallel corpus su�ciently

similar in topic and style to the spans to be translated

is unavailable, or it is too small to be used for reliably

estimating translation probabilities. In such cases, it can

be possible to replace or complement the parallel cor-

pus with a “comparable” corpus. A comparable corpus

is a pair of collections of documents, one in each of the

languages of interest, which are known to be similar in

content, although not the translation of one another.

A typical case might be two sets of articles from cor-

responding sections of di�erent newspapers collected

during a same period of time. If some additional bilin-

gual seed dictionary (human-written or extracted from
a parallel corpus) is also available, then the compara-

ble corpus can be leveraged as well: a word t is likely
to be the translation of a word s if it turns out that
the words o�en appearing near s are translations of the
words o�en appearing near t. Using this observation it
is thus possible to estimate the probability that t is a
valid translation of s even though they are not contained
in the original dictionary. Most approaches proceed by

associating with s a context vector.�is vector, with one
component for each word in the source language, can

simply be formed by summing together the count his-

tograms of the words occurring within a �xed window

centered in all occurrences of s in the corpus, but is o�en
constructed using statistically more robust association

measures, such as mutual information. A�er a possible

normalization step, the context vector CV(s) is trans-
lated using the seed dictionary into the target language.

A context vector is also extracted from the corpus for all

target words t. Eventually, a translation score between s
and t is computed as ⟨Tr(CV(s)),CV(t)⟩:

S(s, t) = ⟨CV(s),Tr(CV(t))⟩
= ∑

(s′ ,t′)∈D
a(s, s′)a(t, t′),

where a is the association score used to construct
the context vector. While e�ective in many cases, this

approach can provide inaccurate similarity values when

polysemous words and synonyms appear in the corpus.

To deal with this problem,Gaussier, Renders,Matveeva,

Goutte, and Déjean () propose the following

extension:

S(s, t) = ∑
(s′ ,t′)∈D

(∑
s′
a(s′, s′′)a(s, s′′))

(∑
t′′
a(t′, t′′)a(t, t′′)),

which is more robust in cases when the entries in

the seed bilingual dictionary do not cover all senses

Cross-Lingual Text Mining C

C

actually present in the two sides of the comparable

corpus.

Although these methods for building bilingual dic-

tionaries can be (and o�en are) used in isolation, it can

be more e�ective to combine them.

Using a bilingual dictionary directly is not the

only way for translating a span from one language

into another. A second alternative consists in using a

machine translation (MT) system. While the MT sys-
tem, in turn, relies on a bilingual dictionary of some

sort, it is in general in the position of leveraging con-

textual clues to select the correct words and put them

in the right order in the translation.�is can be more

or less useful depending on the speci�c task. MT sys-

tems fall, broadly speaking, into two classes: rule-based

and statistical. Systems in the �rst class rely on sets of

hand-written rules describing how words and syntactic

structures should be translated. Statistical machine

translation (SMT) systems learn this mapping by per-

forming a statistical analysis of a parallel corpus. Some

authors (e.g., Savoy & Berger,) also experimented

with combining translation from multiple machine

translation systems.

Latent Semantic Approaches
In CLTM, Latent Semantic approaches rely on some
interlingua (language-independent) representation.

Most of the time, this interlingua representation is

obtained by linear or non-linear statistical analysis tech-

niques and more speci�cally 7dimensionality reduc-
tion methods with ad-hoc optimization criterion and

constraints. But, others adopt a more manual approach

by exploiting multilingual thesauri or evenmultilingual

ontologies in order to map textual objects towards a

list – possibly weighted – of interlingua concepts.

For any textual object (typically a document or a

section of document), the interlingua concept represen-
tation is derived from a sequence of operations that

encompass:

. Linguistic preprocessing (as explained in previous

sections, this step amounts to extract the rele-

vant, normalized “terms” of the textual objects, by

tokenisation, word segmentation/decompounding,

lemmatisation/stemming, part-of-speech tagging,

stopword removal, corpus-based term �ltering,

Noun-phrase extractions, etc.).

. Semantic enrichment and/or monolingual dimen-

sionality reduction.

. Interlingua semantic projection.

A typical semantic enrichment method is the gen-
eralized vector space model, that adds related terms –
or neighbour terms – to each term of the textual

object, neighbour terms being de�ned by some co-

occurrence measures (for instance, mutual infor-

mation). Semantic enrichment can alternatively be

achieved by using (monolingual) thesaurus, exploit-

ing relationships such as synonymy, hyperonymy and

hyponymy.Monolingual dimensionality reduction con-

sists typically in performing some latent semantic
analysis (LSA), some form of principal component

analysis on the textual object/term matrix. Dimension-

ality reduction techniques such as LSA or their dis-

crete/probabilistic variants such as probabilistic seman-
tic analysis (PLSA) and latent dirichlet allocation (LDA)
o�er to some extent a semantic robustness to deal with

the e�ects of polysemy/synonymy, adopting a language-

dependent concept representation in a space of dimen-

sion much smaller than the size of the vocabulary in a

language.

Of course, steps () and () are highly language-

dependent. Textual objects written in di�erent lan-

guages will not follow the same linguistic processing

or semantic enrichment/ dimensionality reduction.�e

last step (), however, aims at projecting textual objects

in the same language-independent concept space, for

any source language. �is is done by �rst extracting

these common concepts, typically from a parallel cor-

pus that o�ers a natural multiple-view representation

of the same objects. Starting from these multiple-view

observations, common factors are extracted through

the use of canonical correlation analysis (CCA), cross-

language latent semantic analysis, their kernelized

variants (eg. Kernel-CCA) or their discrete, probabilis-

tic extensions (cross-language latent dirichlet alloca-

tion, multinomial CCA, …). All these methods try to

discover latent factors that simultaneously explain as

much as possible the “intra-language” variance and the

“inter-language” correlation. �ey di�er in the choice

of the underlying distributions and how they precisely

de�ne and combine these two criteria. �e following

subsections will describe them in more details.

As already emphasized, CLTM mainly relies on

de�ning appropriate similarities between textual objects

 C Cross-Lingual Text Mining

expressed in di�erent languages. Numerous catego-

rization, clustering and retrieval algorithms focus on

de�ning e�cient and powerful measures of similar-

ity between objects, as strengthened recently by the

development of kernel methods for textual informa-

tion access. We will see that the (linear) statistical

algorithms used for performing steps () and () can

most of the time be embedded into one valid (Mercer)

kernel, so that we can very easily obtain non-linear vari-

ants of these algorithms, just by adopting some standard

non-linear kernels.

Cross-Language Semantic Analysis

�is amounts to concatenate the vectorial representa-

tion of each view of the objects of the parallel collec-

tion (typically, objects are aligned sentences), and then

to perform standard singular value decomposition of

the global object/term matrix. Equivalently, de�ning

the kernel similarity matrix between all pairs of multi-

view objects as the sum of the mono-lingual textual

similarity matrices, this amounts to perform the eigen-

value decomposition of the corresponding kernel Gram

matrix, if a dual formulation is adopted. �e number

of eigenvalues/eigenvectors that are retained to de�ne

the latent factors and the corresponding projections is

typically from several hundreds of components to sev-

eral thousands, still much fewer than the original sizes

of the vocabulary. Note that this process does not really

control the formation of interlingua concepts: nothing
prevents the method from extracting factors that are

linear combination of terms in one language only.

Cross-Language Latent Dirichlet Allocation

�e extraction of interlingua components is realised by
using LDA tomodel the set of parallel objects, by impos-

ing the same proportion of components (topics) for all

views of the same object.�is is represented in Fig. .

LDA is performing some form of clustering, with

a prede�ned number of components (K) and with the
constraint that the two views of the same object belongs

to the clusters with the same membership values.�is

results in .K component pro�les that are then used for
“folding in” (projecting) new documents by launching

some form of EM to derive their posterior probabilities

to belong to each of the language-independent compo-

nent.�e similarity between two documents written in

di�erent languages is obtained by comparing their pos-

terior distribution over these latent classes. Note that

this approach could easily integrate supervised topic

information and provides a nice framework for semi-

supervised interlingua concept extraction.

Cross-Language Canonical Correlation Analysis

The Primal Formulation CCA is a standard statistical

method to perform multi-block multivariate analysis,

the goal being to �nd linear combinations of variables

for each block (i.e., each language) that are maximally

correlated. In other words, CCA is able to enforce the

commonality of latent concept formations by extract-

ing maximally correlated projections. Starting from a

set of paired views of the same objects (typically, aligned

sentences of a parallel corpus) in languages L and L,

the algebraic formulation of this optimization prob-

lem leads to a generalized eigenvalue problem of size

(n + n), where n and n are the sizes of the vocab-
ularies in L and L respectively. For obvious scalability

reasons, the dual – or kernel – formulation (of size N,
the number of paired objects in the training set) is o�en

preferred.

Kernel Canonical Correlation Analysis Basically, Kernel

Canonical Correlation Analysis amounts to do CCA on

some implicit, but more complex feature space and to

express the projection coe�cients as linear combination

of the training paired objects. �is results in the dual

formulation, which is a generalized eigenvalue/vector

N1 N2

Nseg

W2W1

Z1 Z2

α

β1 β2

θ

Cross-Lingual Text Mining. Figure . Latent dirichlet

allocation of a parallel corpus

Cross-Lingual Text Mining C

C

problem of size N, that involves only the monolingual
kernel gram matrices K and K (matrices of mono-
lingual textual similarities between all pairs of objects

in the training set in language L and L respectively).

Note that it is easy to show that the eigenvalues go by

pairs: we always have two symmetrical eigenvalues +λ
and −λ. �is kernel formulation has the advantage to
include any text speci�c prior properties in the kernel

(e.g., use of N-gram kernels, word-sequence kernels,

and any semantically-smoothed kernel). A�er extrac-

tion of the �rst k generalized eigenvalues/eigenvectors,
the similarity between any pair of test objects in lan-

guages L and L can be computed by using projection

matrices composed of extracted eigenvector as well as

the (monolingual) kernels of the test objects with the

training objects.

Regularization and Partial Least Squares Solution When

the number of training examples (N) is less than n and
n (the dimensions of the monolingual feature spaces),
the eigenvalue spectrum of the KCCA problem has

generally two null eigenvalues (due to data centering),

(N−) eigenvalues in+ and (N−) eigenvalues in−, so
that, as such, the KCCA problem only results in trivial

solutions and is useless. When using kernel methods,

the case (N < n,n) is frequent, so that some regu-
larization scheme is needed. One way of realizing this

regularization is to resort to �nding the directions of

maximum covariance (instead of correlation): this can

be considered as a partial least squares (PLS) problem,

whose formulation is very similar to the CCA prob-

lem. Adopting a mixed criterion CCA/PLS (trying to

maximize a combination of covariance and correla-

tion between projections) turns out to both avoid over-

�tting (or spurious solutions) and to enhance numerical

stability.

Approximate Solutions Both CCA and KCCA su�er

from a lack of scalability, due to the fact the complex-

ity of generalized eigenvalue/vector decomposition is

O(N) forKCCAorO(min(n,n)) forCCA.As it can
be shown that performing a complete KCCA (or KPLS)

analysis amounts to do �rst complete PCA’s, and then a

linear CCA (or PLS) on the resulting new projections,

it is obvious that we could reduce the complexity by

working on a reduced-rank approximation (incomplete

KPCA) of the kernel matrices. However, the implicit

projections derived from incomplete KPCAmay be not

optimal with respect to cross-correlation or covariance

criteria. Another idea to decrease the complexity is to

perform some incomplete Cholesky decomposition of

the (monolingual) kernel matrices K and K (that is
equivalent to partial Gram-Schmit orthogonalisation in

the feature space): K = G.Gt and K = G.Gt, with Gi
of rank k ≪ N. Considering Gi as the new representa-
tion of the training data, KCCA now reduces to solving

a generalized eigenvalue problem of size .k.

Specific Applications
�e previous sections illustrated a number of di�erent

ways of solving the core problem of cross-language text

mining: quantifying the similarity between two spans

of text in di�erent languages. In this section we turn

to describing some actual applications relying on these

methods.

Cross-Language Information Retrieval (CLIR)

Given a collection of documents in several languages

and a single query, the CLIR problem consists in pro-

ducing a single ranking of all documents according to

their relevance to the query. CLIR is in particular useful

whenever a user has some knowledge of the languages

in which documents are written, but not enough to

express his/her information needs in those languages

by means of a precise query. Sometimes CLIR engines

are coupled with translation tools to help the user

access the content of relevant documents written in lan-

guages unknown to him/her. In this case document

collections in an even larger number of languages can

be e�ectively queried.

It is probably fair to say that the vast majority of

the CLIR systems use a translation-based approach. In

most cases it is the query which is translated in all lan-

guages before being sent tomonolingual search engines.

While this limits the amount of translation work that

needs be done, it requires doing it on-line at query

time. Moreover, when queries are short it can be dif-

�cult to translate them correctly, since there is little

context to help identifying the correct sense in which

words are used. For these reasons several groups also

proposed translating all documents at indexing time

instead. Regardless of whether queries or documents

 C Cross-Lingual Text Mining

are translated, whenever similarity scores between (pos-

sibly translated) queries and (possibly translated) doc-

uments are not directly comparable, all methods then

face the problem of merging multiple monolingual

rankings in a single multilingual ranking.

Research in CLIR and cross-language question

answering (see below) has been signi�cantly stimu-

lated by at least three government-sponsored evaluation

campaigns:

● �e NII Test Collection for IR Systems (NTCIR)

(http://research.nii.ac.jp/ntcir/), running yearly since

, focusing on Asian languages (Japanese,

Chinese, Korean) and English.

● �e Cross-Language Evaluation Forum (CLEF)

(http://www.clef-campaign.org), running yearly since

, focusing on European languages.

● A cross-language track at the Text Retrieval Con-

ference (TREC) (http://trec.nist.gov/), which was

run until , focused on querying documents in

Arabic using queries in English.

�e respective websites are ideal starting points for any

further exploration on the subject.

Cross-Language Question Answering (CLQA)

Question answering is the task of automatically �nding

the answer to a speci�c question in a document col-

lection. While in practice this vague description can be

instantiated in many di�erent ways, the sense in which

the term is mostly understood is strongly in�uenced by

the task speci�cation formulated by the National Insti-

tute of Science and Technology (NIST) of the United

States for its TREC evaluation conferences (see above).

In this sense, the task consists in identifying a text snip-
pet, i.e., a substring, of a prede�ned maximal length
(e.g., characters, or characters) within a docu-

ment in the collection containing the answer. Di�erent

classes of questions are considered:

● Questions around facts and events.

● Questions requiring the de�nition of people, things

and organizations.

● Questions requiring as answer lists of people, objects

or data.

Most proposals for solving the QA problem proceed

by �rst identifying promising documents (or document

segments) by using information retrieval techniques

treating the question as a query, and then performing

some �ner-grained analysis to converge to a su�ciently

short snippet. Questions are classi�ed in a hierarchy of

possible “question types.” Also, documents are prelimi-

narily indexed to identify elements (e.g., person names)

that are potential answers to questions of relevant types

(e.g., “Who” questions).

Cross-language question answering (CLQA) is the

extension of this task to the case where the collection

contains documents in a language di�erent than the lan-

guage of the question. In this task a CLIR step replaces

the monolingual IR step to shortlist promising docu-

ments. �e classi�cation of the question is generally

done in the source language.

Both CLEF and NTCIR (see above) organize cross-

language question answering comparative evaluations

on an annual basis.

Cross-Language Categorization (CLCat) and Clustering

(CLCLu)

Cross-language categorization tackles the problem of

categorizing documents in di�erent languages in a same

categorization scheme.

�e vast majority of document categorization sys-

tems rely on machine learning techniques to automat-

ically acquire the necessary knowledge (o�en referred

to as a model) from a possibly large collection of man-
ually categorized documents. Most o�en the model is

based on frequency counts of words, and is thus intrin-

sically language-dependent.�emost direct way to per-

formcategorization in di�erent languageswould consist

in manually categorizing a su�cient amount of docu-

ments in all languages of interest and then train a set

of independent categorizer. In some cases, however, it

is impractical to manually categorize a su�cient num-

ber of documents to ensure accurate categorization in

all languages, while it can be easier to identify bilingual

dictionaries or parallel (or comparable) corpora for the

language pairs and in the application domain of inter-

est. In such cases it is then preferable to obtainmanually

categorized documents only for a single languageA and
use them to train a monolingual categorizer. Any of

the translation-based approaches described above can

then be used to translate a document originally in lan-

guage B – or most o�en its representation as a bag of

Cumulative Learning C

C

words– into language A. Once the document is trans-
lated, it can be categorized using the monolingual A
system.

As an alternative, latent-semantics approaches can

be used as well. An existing parallel corpus can be used

to identify an abstract vector space common toA and B.
�e manually categorized documents in A can then be
represented in this space, and a model can be learned

which operates directly on this latent-semantic repre-

sentation. Whenever a document in B needs be catego-
rized, it is �rst projected in the common semantic space

and then categorized using the same model.

All these considerations carry unchanged to the

cross-language clustering task, which consists in identi-

fying subsets of documents in a multilingual document

collection which are mutually similar to one another

according to some criterion. Again, this task can be

e�ectively solved by either translating all documents

into a single language or by learning a common seman-

tic space and performing the clustering task there.

While CLCat and Clustering are relevant tasks in

many real-world situations, it is probably fair to say that

less e�ort has been devoted to them by the research

community than to CLIR and CLQA.

Recommended Reading
Brown, P. E., Della Pietra, V. J., Della Pietra, S. A., & Mercer, R. L.

(). The mathematics of statistical machine translation:

Parameter estimation. Computational Linguistics, (), –
.

Gaussier, E., Renders, J.-M., Matveeva, I., Goutte, C., & Déjean, H.

(). A geometric view on bilingual lexicon extraction from

comparable corpora. In Proceedings of the nd annual meeting
of the association for computational linguistics, Barcelona, Spain.
Morristown, NJ: Association for Computational Linguistics.

Savoy, J., & Berger, P. Y. (). Report on CLEF- evalua-

tion campaign: Monolingual, bilingual and GIRT information

retrieval. In Proceedings of the cross-language evaluation forum
(CLEF) (pp. –). Heidelberg: Springer.

Zhang, Y., & Vines, P. (). Using the web for translation dis-

ambiguation. In Proceedings of the NTCIR- workshop meeting,
Tokyo, Japan.

Cross-Validation

Definition
Cross-validation is a process for creating a distribu-

tion of pairs of 7training and 7test sets out of a single

7data set. In cross validation the data are partitioned
into k subsets, S…Sk, each called a fold.�e folds are
usually of approximately the same size. �e learning

algorithm is then applied k times, for i = to k, each
time using the union of all subsets other than Si as the
7training set and using Si as the7test set.

Cross References
7Algorithm Evaluation
7Leave-One-Out Cross-Validation

Cumulative Learning

PietroMichelucci, Daniel Oblinger

Strategic Analysis, Inc., Arlington, VA, USA
DARPA/IPTO, Arlington, VA , USA

Synonyms
Continual learning; Lifelong learning; Sequential induc-

tive transfer

Definition
Cumulative learning (CL) exploits knowledge acquired
on prior tasks to improve learning performance on

subsequent related tasks. Consider, for example, a CL

system that is learning to play chess. Here, one might

expect the system to learn from prior games concepts

(e.g., favorable board positions, standard openings, end

games, etc.) that can be used for future learning.�is

is in contrast to base learning (Vilalta & Drissi,)

in which a �xed learning algorithm is applied to a sin-

gle task and performance tends to improve only with

more exemplars. So, in CL there tends to be explicit

reuse of learned knowledge to constrain new learn-

ing, whereas base learning depends entirely upon new

external inputs.

Relevant techniques for CL operate over multiple

tasks, o�en at higher levels of abstraction, such as

new problem space representations, task-based selec-

tion of learning algorithms, dynamic adjustment of

learning parameters, and iterative analysis and modi-

�cation of the learning algorithms themselves.�ough

actual usage of this term is varied and evolving, CL typi-

cally connotes sequential7inductive transfer. It should
be noted that the word “inductive” in this connotation

 C Cumulative Learning

quali�es the transfer of knowledge to new tasks, not the

underlying learning algorithms.

Related Terminology
�e terms “meta-learning” and “learning to learn”

are sometimes used interchangeably with CL. How-

ever each of these concepts has a speci�c relationship

to CL.

7Meta-learning (Brazdil et al., ; Vilalta &
Drissi,) involves the application of learning algo-

rithms to meta-data, which are abstracted represen-

tations of input data or learning system knowledge.

In the case that abstractions of system knowledge are

themselves learning algorithms, meta-learning involves

assessing the suitability of these algorithms for previ-

ous tasks and, on that basis, selecting algorithms for

new tasks (see entry on “meta-learning”). In general,

the sharing of abstracted knowledge across tasks in a

CL system implies the use of meta-learning techniques.

However, the converse is not true. Meta-learning can

and does occur in learning systems that do not accu-

mulate and transfer knowledge across tasks.

Learning to learn is a synonym for inductive trans-

fer. �us, learning to learn is more general than CL.

�ough it speci�es the application of knowledge learned

in one domain to another, it does not stipulate whether

that knowledge is accumulated and applied sequentially

or shared in a parallel learning context.

Motivation and Background
Traditional 7supervised learning approaches require
large datasets and extensive training in order to gener-

alize to new inputs in a single task. Furthermore, tra-

ditional (non-CL)7reinforcement learning approaches
require tightly constrained environments to ensure a

tractable state space. In contrast, humans are able to

generalize across tasks in dynamic environments from

brief exposure to small datasets.�e human advantage

seems to derive from the ability to draw upon prior

task and context knowledge to constrain hypothesis

development for new tasks. Recognition of this dispar-

ity between human learning and traditional machine

learning had led to the pursuit of methods that seek

to emulate the accumulation and exploitation of task-

based knowledge that is observed in humans. A coarse

evolution of this work is depicted in Fig. .

History
Advancements in CL have resulted from two classes

of innovation: the development of techniques for

7inductive transfer and the integration of those tech-
niques into autonomous learning systems.

Alan Turing () was the �rst to propose a cumu-

lative learning system. His paper is best remem-

bered for the imitation game, later known as the Turing

test. However, the �nal sections of the paper address the

question of how a machine could be made su�ciently

complex to be able to pass the test. He posited that

programming it would be too di�cult a task. �ere-

fore, it should be instructed as one might teach a child,

starting with simple concepts and working up to more

complex ones.

Banerji () introduced the use of predicate logic

as a description language for machine learning. �us,

Banerji was one of the earliest advocates of what would

later become 7ILP. His concept description language
allowed the use of background knowledge and there-

fore was an extensible language.�e �rst implementa-

tion of a cumulative learning system based on Baner-

ji’s ideas was Cohen’s CONFUCIUS (Cohen, ;

Sequential/
Hybrid:

CUMULATIVE
LEARNING

Sequential/
Hybrid:

CUMULATIVE
LEARNING

Supervised LearningSupervised Learning

Inductive
Bias

Inductive
Bias

Inductive
Transfer
Inductive
Transfer

Parallel:
MULTI-TASK LEARNING

Reinforcement LearningReinforcement Learning

Supervised LearningSupervised Learning

Parallel:
MULTI-TASK LEARNING

Cumulative Learning. Figure . Evolution of cumulative learning

Cumulative Learning C

C

Cohen & Sammut,). In this work, an instructor

teaches the system concepts that are stored in a long-

term memory. When examples of a new concept are

seen, their descriptions are matched against stored con-

cepts, which allow the system to re-describe the exam-

ples in terms of the background knowledge. �us, as

more concepts are accumulated, the system is capa-

ble of describing complex objects more compactly than

if it had not had the background knowledge. Com-

pact representations generally allow complex concepts

to be learned more e�ciently. In many cases, learning

would be intractable without the prior knowledge. See

the entries on 7Inductive Logic Programming, which
describe the use of background knowledge further.

Independent of the research in symbolic learn-

ing, much of the 7inductive transfer research that
underlies CL took root in 7arti�cial neural network
research, a traditional approach to 7supervised learn-
ing. For example, Abu-Mostafa () introduced the

notion of reducing the hypothesis space of a neural

network by introducing “hints” either as hard-wired

additions to the network or via examples designed

to teach a particular invariance. �e task of a neu-

ral network can be thought of as the determination

of a function that maps exemplars into a classi�cation

space. So, in this context, hints constitute an artic-

ulation of some aspect of the target mapping func-

tion. For example, if a neural network is tasked with

mapping numbers into primes and composites, one

“hint” would be that all even numbers (besides)

are composite. Leveraging such a priori knowledge

about the mapping function may facilitate conver-

gence on a solution. An inherent limitation to neu-

ral networks, however, is their immutable architecture,

which does not lend itself to the continual accumu-

lation of knowledge. Consequently, Ring () intro-

duced a neural network that constructs new nodes on

demand in a reinforcement learning context in order

to support ongoing hierarchical knowledge acquisi-

tion and transfer. In this model, nodes called “bions”

correspond simultaneously to the enactment and per-

ception of a single behavior. If two bions are acti-

vated in sequence repeatedly, a new bion is created to

join the coincident pair and represent their collective

functionality.

Contemporaneously, Pratt, Mostow, and Kamm

() investigated the hypothesis that knowledge

acquired by one neural network could be used to assist

another neural network learn a related task. In the

speech recognition domain, they trained three separate

networks, each corresponding to speech segments of a

di�erent length, such that each network was optimized

to learn certain types of phonemes.�ey then demon-

strated that a direct transfer of information encoded

as network weights from these three specialized net-

works to a single, combined speech recognition net-

work resulted in a tenfold reduction in training epochs

for the combined network compared with the number

of training epochs required when no knowledge was

transferred. �is was one of the �rst empirical results

in neural network-based transfer learning. Caruana

() extended this work to demonstrate the perfor-

mance bene�ts associated with the simultaneous trans-

fer of7inductive bias in a “Multitask Learning” (MTL)
methodology. In this work, Caruana hypothesized that

training the same neural network simultaneously on

related tasks would naturally induce additional con-

straints on learning for each individual task.�e intu-

ition was that converging on a mapping in support of

multiple tasks with shared representations might best

reveal aspects of the input that are invariant across

tasks, thus obviating within-task regularities, which

might be less relevant to classi�cation. �ose empiri-

cal results are supported by Baxter () who proved

that the number of examples required by a representa-

tion learner for learning a single task is an inverse linear

function of the number of simultaneous tasks being

learned.

�ough the innovative underpinnings of induc-

tive transfer that critically underlie CL evolved in a

supervised learning context, it was the integration of

those methods with classical reinforcement learning

that has led to current models of CL. Early integra-

tion of this type comes from�run andMitchell (),

who applied an extension of explanation-based learn-

ing (EBL), called explanation-based neural networks

(EBNN) (Mitchell & �run,), to an agent-based

“lifelong learning framework.”�is framework provides

for the acquisition of di�erent control policies for dif-

ferent environments and reward functions. Since the

robot actuators, sensors, and the environment (largely)

remain invariant, this framework supports the use of

knowledge acquired from one control problem to be

applied to another. By using EBNN to allow learning

 C Cumulative Learning

from previous control problems to constrain learning

on new control problems, learning is accelerated over

the lifetime of the robot.

More recently, Silver and Mercer () introduced

a hybrid model that involves a combination of paral-

lel and sequential inductive transfer in an autonomous

agent framework.�e so-called task rehearsal method

(TRM) uses MTL to combine new training inputs with

relevant exemplars that are generated from prior task

knowledge.�us, inductive bias is achieved by training

the neural networks on new tasks while simultaneously

rehearsing learned task knowledge.

Structure of the Learning System
CL is characterized by systems that use prior knowl-

edge to bias future learning. �e canonical interpre-

tation is that knowledge transfer occurs at the task

level. Although this description encompasses a broad

research space, it is not boundless. In particular, CL sys-

tems must be able to () retain knowledge and () use

that knowledge to restrict the hypothesis space for new

learning. Nonetheless, learning systems can vary widely

across numerous orthogonal dimensions and still meet

these criteria.

Toward a CL Specification
Recognizing the empirical utility of a more speci�c

delineation of CL systems, Silver and Poirier ()

introduced a set of functional requirements, classi�ca-

tion criteria, and performance speci�cations that char-

acterizemore precisely the scope ofmachines capable of

lifelong learning. Any system that meets these require-

ments is considered a machine lifelong learning (ML)

system. A general CL architecture that conforms to the

ML standard is depicted in Fig. .

Two basic memory constructs are typical of CL sys-

tems. Long term memory (LTM) is required for storing

domain knowledge (DK) that can be used to bias new

learning. Short term memory (STM) provides a work-

ing memory for building representations and testing

hypotheses associated with new task learning. Most of

the ML requirements specify the interplay of these

constructs.

LTM and STM are depicted in Fig. , along with

a comparison process, an assessment process, and the

learning environment. In this model, the comparison

process evaluates the training input in the context of

LTM to determine the most relevant domain knowl-

edge that can be used to constrain short term learning.

�e comparison process also determines the weight

assigned to domain knowledge that is used to bias short

term learning. Once the rate of performance improve-

ment on the primary task falls below a threshold the

assessment process compares the state of STM to the

environment to determine which domain knowledge to

extract and store in LTM.

Classification of CL Systems
�e simplicity of the architecture shown in Fig. belies

the richness of the feature space for CL systems. �e

following classi�cation dimensions are derived largely

from theML speci�cation.�is list includes both qual-

itative and quantitative dimensions.�ey are presented

in three overlapping categories: architectural features,

characteristics of the knowledge base, and learning

capabilities.

Architecture

�e following architectural dimensions for a CL sys-

tem range from paradigm choices to low-level interface

considerations.

Learning paradigm –�e learning paradigm(s) may
include supervised learning (e.g., neural network, SVM,

ILP, etc.), unsupervised learning (e.g., clustering), rein-

forcement learning (e.g., automated agent), or some

combination thereof. Figure depicts a general archi-

tecture with processes that are common across these

Assessment EngineAssessment Process

STMSTMLTMLTM EnvironmentEnvironment

State

State

Extracted
DK

Relevant DK

Comparison EngineComparison Process

Cumulative Learning. Figure . Typical CL system

Cumulative Learning C

C

learning paradigms, and which could be elaborated to

re�ect the details of each.

Task order – CL systems may learn tasks sequen-
tially (�run & Mitchell,), in parallel (e.g., MTL

(Caruana,)), or via a hybrid methodology (e.g.,

TRM (Silver & Mercer,)). One hybrid approach is

to engage in practice (i.e., revisiting prior learned tasks).

Transferring knowledge between learned tasks through

practice may serve to improve generalization accuracy.

Task order would be re�ected in the sequence of events

within and among process arrows in the Fig. archi-

tecture. For example, a system may alternate between

processing new exemplars and “practicing” with old,

stored exemplars.

Transfer method – Knowledge transfer can also be
representational or functional. Functional transfer pro-

vides implicit pressure from related training exemplars.

For example, the environmental input in Fig. may take

the form of training exemplars drawn randomly from

data representing two related tasks, such that learning

to classify exemplars from one task implicitly constrains

learning on the other task. Representational knowledge

transfer involves the direct or indirect (Pratt et al.,)

assignment of a hypothesis representation. A direct

inductive transfer entails the assignment of an original

hypothesis representation, such as a vector of trained

neural network activation weights.�is might take the

form of a direct injection to LTM in Fig. . Indirect

transfer implies that some level of abstraction analysis

has been applied to the hypothesis representation prior

to assignment.

Learning stages – A learning system may imple-
ment learning in a single stage or in a series of stages.

An example of a two-stage system is one that waits

to initiate the long-term storage of domain knowledge

until a�er primary task learning in short-termmemory

is complete. Like task order, learning stages would be

re�ected in the sequence of events within and among

process arrows in the Fig. architecture. But in this case,

ordering pertains to the manner in which learning is

staged across encoding processes.

Interface cardinality –�e interface cardinality can
be �xed or variable. Fixing the number of inputs and

outputs has the advantage of providing a consistent

interface without posing restrictions on the growth of

the internal representation.

Data type – �e input and output data types can
be �xed or variable. A type-�exible system can produce

both categorical and scalar predictions.

Scalability – CL systems may or may not scale on a
variety of dimensions including inputs, outputs, train-

ing examples, and tasks.

Knowledge

�is category pertains to the long-term storage of

learned knowledge. �us, the following CL dimen-

sions characterize knowledge representation, storage,

and retrieval.

Knowledge representation – Stored knowledge can
manifest as functional or representational. Functional

knowledge retention involves the storage of speci�c

exemplars or parameter values, which tends to be more

accurate, whereas representational knowledge retention

involves the storage of hypotheses derived from train-

ing on exemplars, which has the advantage of storage

economy.

Retention e�cacy – �e e�cacy of long term

retention varies across CL systems. E�ective retention

implies that only domain knowledge with an accept-

able level of accuracy is retained so that errors aren’t

propagated to future hypotheses. A related considera-

tion is whether or not the consolidation of new domain

knowledge degrades the accuracy of current or prior

hypotheses.

Retention e�ciency –�e retention e�ciency of long
term memory can vary according to both economy of

representation and computationally e�ciency.

Indexingmethod –�e input to the comparison pro-
cess used to select appropriate knowledge for biasing

new learning may simply be exemplars (as provided by

LTM in Fig.) ormay take a representational form (e.g.,

a vector of neural network weights).

Indexing e�ciency – CL systems vary in terms of the
speed and accuracy with which they can identify related

prior knowledge that is suitable for inductive transfer

during short term learning.�e input to this selection

process is the indexing method.

Meta-knowledge – CL systems di�erentially exhibit
the ability to abstract, store, andutilizemeta-knowledge,

such as characteristics of the input space, learning sys-

tem parameter values, etc.

 C Cumulative Learning

Cumulative Learning. Table CL System Dimensions

Category Dimension Values (ML guidance is indicated by ✓)

Architecture Learning paradigm Supervised learning

Reinforcement learning

Unsupervised learning

✓ Hybrid

Task order Sequential

Parallel

✓ Revisit (practice)

Hybrid

Transfer method Functional

Representational – direct

Representational – indirect

Learning stages ✓ Single (computational retention efficiency)

Multiple

Interface cardinality ✓ Fixed

Variable

Data type Fixed

Variable

Scalability ✓ Inputs

✓ Outputs

✓ Exemplars

✓ Tasks

Knowledge Representation Functional

Representational – disjoint

✓ Representational – continuous

Retention efficacy ✓ Improves prior task performance

✓ Improves new task performance

Retention efficiency ✓ Space (memory usage)

✓ Time (computational processing)

Indexing method ✓ Deliberative – functional

✓ Deliberative – representational

Reflexive

Cumulative Learning C

C

Cumulative Learning. Table (Continued)

Category Dimension Values (ML guidance is indicated by ✓)

Indexing efficiency ✓ Time < O(nc
), c > (n = tasks)

Meta-knowledge ✓ Probability distribution of input space

Learning curve

Error rate

Learning Agency Single learning method

Task-based selection of learning method

Utility Single learning method

Task-based selection of learning method

Task awareness Task boundary identification (begin/end)

Bias modulation ✓ Estimated sample complexity

✓ Number of task exemplars

✓ Generalization accuracy of retained
knowledge

✓ Relatedness of retained knowledge

Learning efficacy ✓ Generalization ∣ bias ≥ generalization ∣ no
bias

Learning efficiency ✓ Time ∣ bias ≤ time ∣ no bias

Learning

While all of the dimensions listed herein impact learn-

ing, the following dimensions correspond to speci�c

learning capabilities or learning performance metrics.

Agency – �e agency of a learning system is the
degree of sophistication exhibited by its top-level con-

troller. For example a learning system may be on the

low end of the agency continuum if it always applies

one predetermined learning method to one task or on

the high end if it selects among many learning methods

as a function of the learning task. One might imag-

ine, for example, two process diagrams such as the one

depicted in Fig. , that share the same LTM, but are

otherwise distinct and di�erentially activated by a gov-

erning controller as a function of qualitative aspects of

the input.

Utility – Domain knowledge acquisition can be
deliberative in the sense that the learning system

decides which hypotheses to incorporate based upon

their estimated utility, or re�exive, in which case all

hypotheses are stored irrespective of utility

considerations.

Task awareness – Task awareness characterizes the
system’s ability to identify the beginning and end of a

new task.

Bias modulation – A CL system may have the abil-
ity to determine the extent towhich short-term learning

would bene�t from inductive transfer and, on that basis,

assign a relevant weight.�e depth of this analysis can

vary and might consider factors such as the estimated

sample complexity, number of exemplars, the general-

ization accuracy of retained knowledge, and relatedness

of retained knowledge.

Learning e�cacy – A measure of learning e�cacy
is derived by comparing generalization performance in

the presence and absence of an inductive bias. Learn-

ing is considered e�ective when the application of an

inductive bias results in greater generalization perfor-

mance on the primary task than when the bias is

absent.

 C Cumulative Learning

Learning e�ciency – Similarly, learning e�ciency is
assessed by comparing the computational time needed

to generate a hypothesis in the presence and absence

of an inductive bias. Lower computational time in the

presence of bias signi�es greater learning e�ciency.

The Research Space
Table summarizes the classi�cation dimensions, pro-

viding an overview of the research space, an eval-

uative framework for assessing and contrasting CL

approaches, and a generative framework for identifying

new areas of exploration. In addition, checked items in

the Values column indicate ML guidance. Speci�cally,

an ideal ML system would correspond functionally to

the called-out items and performance criteria. How-

ever, Silver and Poirier () allude to the fact that it

would be nigh impossible to generate a strictly com-

pliant ML system since some of the recommended

criteria do not coexist easily. For example, e�ective and

e�cient learning are mutually incompatible because

they require di�erent forms of knowledge transfer.

Nonetheless, a CL system that falls within scope of the

majority of the ML criteria would be well-positioned

to exhibit lifelong learning behavior.

Future Directions
Emergent work (Oblinger, ; Swarup, Lakkaraju,

Ray, & Gasser,) in instructable computing has

given rise to a new CL paradigm that is largely ML

compliant and involves high degrees of task aware-

ness and agency sophistication. Swarup et al. ()

describe an approach in which domain knowledge is

represented in the form of structured graphs. Short

term (primary task) learning occurs via a genetic algo-

rithm, a�er which domain knowledge is extracted by

mining frequent subgraphs. �e accumulated domain

knowledge forms an ontology towhich the learning sys-

tem grounds symbols as a result of structured interac-

tions with instructional agents. Subsequent interactions

occur using the symbol system as a shared lexicon for

communication between the instructor and the learn-

ing system.Knowledge acquired from these interactions

bootstrap future learning.

�e Bootstrapped Learning framework proposed

by Oblinger () provides for hierarchical, domain-

independent learning that, like the e�ort described

above, is also premised on a model of building concepts

from structured lessons. In this case, however, there is

no a priori knowledge acquisition. Instead, some “com-

mon” knowledge about the world is provided explicitly

to the learning system, and then lessons are taught by

a human teacher using the same natural instruction

methods that would be used to teach another human.

Rather than requiring a speci�c learning algorithm,

this framework provides a context for evaluating and

comparing learning algorithms. It includes a knowledge

representation language that supports syntactic, logical,

procedural, and functional knowledge, an interaction

language for communication among the learning sys-

tem, instructor, and environment, and an integration

architecture that evaluates, processes, and responds to

interaction language communiqués in the context of

existing knowledge and through the selective utilization

of available learning algorithms.

�e learning performance advantages anticipated by

these proposals for instructional computing seem to

stem from the economy of representation a�orded by

hierarchical knowledge combined with the tremendous

learning bias imposed by explicit instruction.

Recommended Reading
Abu-Mostafa, Y. (). Learning from hints in neural networks

(invited). Journal of Complexity, (), –.
Banerji, R. B. (). A Language for the Description of Concepts.

General Systems, , –.
Baxter, J. (). Learning internal representations. In (COLT): Pro-

ceeding of the workshop on computational learning theory, Santa
Cruz, California. Morgan Kaufmann.

Brazdil P., Giraud-Carrier, C., Soares, C., & Vilalta, R. ().

Metalearning – Applications to Data Mining, Springer.
Caruana, R. (). Multitask learning: A knowledge-based source of

inductive bias. In Proceedings of the tenth international confer-
ence on machine learning, University of Massachusetts, Amherst
(pp. –).

Caruana, R. (). Algorithms and applications for multitask

learning. In Machine learning: Proceedings of the th interna-
tional conference on machine learning (ICML), Bari, Italy
(pp. –). Morgan Kauffmann.

Cohen, B. L. (). A Theory of Structural Concept Formation and
Pattern Recognition. Ph.D. Thesis, Department of Computer
Science, The University of New South Wales.

Cohen, B. L., & Sammut, C. A. (). Object Recognition and Con-

cept Learning with CONFUCIUS. Pattern Recognition Journal,
(), –.

Mitchell, T. (). The need for biases in learning generalizations.
Rutgers TR CBM-TR-.

Mitchell, T. M., & Thrun, S. B. (). Explanation-based neu-

ral network learning for robot control. In Hanson, Cowan, &

Curse of Dimensionality C

C

Giles (Eds.), Advances in neural information processing systems
 (pp. –). San Francisco, CA: Morgan-Kaufmann.

Nilsson, N. J. (). Introduction to machine learning: An early draft
of a proposed textbook (p.). Online at http://ai.stanford.edu/
\simnilsson/MLBOOK.pdf. Accessed on July , .

Oblinger, D. (). Bootstrapped learning proposer information
pamphlet for broad agency announcement -. Online
at http://fs.fbo.gov/EPSData/ODA/Synopses//BAA-

/BLPIPfinal.pdf.

Pratt, L. Y., Mostow, J., & Kamm, C. A. (). Direct transfer of

learned information among neural networks. In Proceedings of
the ninth national conference on artificial intelligence (AAAI-),
Anaheim, CA (pp. –).

Ring, M. (). Incremental development of complex behaviors

through automatic construction of sensory-motor hierarchies.

In Proceedings of the eighth international workshop (ML), San
Mateo, California.

Silver, D., & Mercer, R. (). The task rehearsal method of life-

long learning: Overcoming impoverished data. In R. Cohen &

B. Spencer (Eds.), Advances in artificial intelligence, th con-
ference of the Canadian society for computational studies of
intelligence (AI), Calgary, Canada, May –, . Lec-
ture notes in computer science (Vol. , pp. –). London:
Springer.

Silver, D., & Poirier, R. (). Requirements for machine life-

long learning. JSOCS Technical Report TR--, Acadia

University.

Swarup, S., Lakkaraju, K., Ray, S. R., & Gasser, L. (). Symbol

grounding through cumulative learning. In P. Vogt et al. (Eds.),

Symbol grounding and beyond: Proceedings of the third inter-
national workshop on the emergence and evolution of linguistic
communication, Rome, Italy (pp. –). Berlin: Springer.

Swarup, S., Mahmud, M. M. H., Lakkaraju, K., & Ray, S. R. ().

Cumulative learning: Towards designing cognitive architec-

tures for artificial agents that have a lifetime. Tech. Rep.

UIUCDCS-R--.

Thrun, S. (). Lifelong learning algorithms. In S. Thrun & L. Y.

Pratt (Eds.), Learning to learn. Norwell, MA: Kluwer Academic.
Thrun, S., & Mitchell, T. (). Lifelong robot learning. Robotics

and Autonomous Systems, , –.
Turing, A. M. (). Computing Machinery and Intelligence. Mind

Mind, (), –.
Vilalta, R., & Drissi, Y. (). A perspective view and survey of

meta-learning. Artificial Intelligence Review, , –.

Curse of Dimensionality

Eamonn Keogh, AbdullahMueen

University California-Riverside,

Riverside, CA, USA

Definition
�e curse of dimensionality is a term introduced by

Bellman to describe the problem caused by the expo-

nential increase in volume associated with adding extra

dimensions to Euclidean space (Bellman,).

For example, evenly-spaced sample points suf-

�ce to sample a unit interval with no more than .

distance between points; an equivalent sampling of a

-dimensional unit hypercube with a grid with a spac-

ing of . between adjacent points would require

sample points: thus, in some sense, the D hypercube

can be said to be a factor of “larger” than the unit

interval.

Informally, the phrase curse of dimensionality is
o�en used to simply refer to the fact that one’s intu-

itions about how data structures, similarity measures,

and algorithms behave in low dimensions do typically

generalize well to higher dimensions.

Background
Another way to envisage the vastness of high-dimensi-

onal Euclidean space is to compare the size of the unit

sphere with the unit cube as the dimension of the space

increases: as the dimension increases. As we can see in

Fig. , the unit sphere becomes an insigni�cant volume

relative to that of the unit cube. In other words, almost

all of the high-dimensional space is far away from the
center.

In research papers, the phrase curse of dimensional-
ity is o�en used as shorthand for one of its many impli-
cations for machine learning algorithms. Examples of

these implications include:

● 7Nearest neighbor searches can be made signi�-
cantly faster for low-dimensional data by indexing

the data with an R-tree, a KD-tree, or a similar spa-

tial access method. However, for high-dimensional

data all such methods degrade to the performance

of a simple linear scan across the data.

● For machine learning problems, a small increase in

dimensionality generally requires a large increase in

the numerosity of the data, in order to keep the same

level of performance for regression, clustering, etc.

● In high-dimensional spaces, the normally intuitive

concept of proximity or similarity may not be qual-

itatively meaningful. �is is because the ratio of

an object’s nearest neighbor over its farthest neigh-

bor approaches one for high-dimensional spaces

(Aggarwal, Hinneburg, & Keim,). In other

 C Curse of Dimensionality

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Dimension

r =
Volume of the hypersphere
Volume of the hypercube r

Curse of Dimensionality. Figure . The ratio of the volume of the hypersphere enclosed by the unit hypercube. The

most intuitive example, the unit square and unit circle, are shown as an inset. Note that the volume of the hypersphere

quickly becomes irrelevant for higher dimensionality

words, all objects are approximately equidistant

from each other.

�ere are many ways to attempt to mitigate the curse
of dimensionality, including 7feature selection and
7dimensionality reduction. However, there is no single
solution to the many di�culties caused by the e�ect.

Recommended Reading
The major database (SIGMOD, VLDB, PODS), data mining

(SIGKDD, ICDM, SDM), and machine learning (ICML, NIPS)

conferences typically feature several papers which explicitly

address the curse of dimensionality each year.
Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (). On the sur-

prising behavior of distance metrics in high dimensional spaces.

In ICDT (pp. –). London, England.
Bellman, R. E. (). Dynamic programming. Princeton, NJ: Prince-

ton University Press.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E.

(). Querying and mining of time series data: Experimen-

tal comparison of representations and distance measures. In

Proceedings of the VLDB endowment (Vol. , pp. –).
Auckland, NewZealand.

D

Data Mining On Text

7Text Mining

Data Preparation

Geoffrey I. Webb
Monash University, Victoria, Australia

Synonyms
Data preprocessing; Feature construction

Definition
Before data can be analyzed, they must be organized
into an appropriate form. Data preparation is the pro-
cess of manipulating and organizing data prior to
analysis.

Motivation and Background
Data are collected for many purposes, not necessarily
with machine learning in mind. Consequently, there is
o�en a need to identify and extract relevant data for the
given analytic purpose. Every learning system has spe-
ci�c requirements about howdatamust be presented for
analysis and hence, data must be transformed to ful�ll
those requirements. Further, the selection of the speci�c
data to be analyzed can greatly a�ect themodels that are
learned. For these reasons, data preparation is a critical
part of anymachine learning exercise. Data preparation
is o�en the most time-consuming part of any nontrivial
machine learning project.

Processes and Techniques
�e manner in which data are prepared varies greatly
depending upon the analytic objectives for which they

are required and the speci�c learning techniques and
so�ware bywhich they are to be analyzed.�e following
are a number of key processes and techniques.

Sourcing, Selecting, and Auditing Appropriate Data

It is necessary to review the data that are already avail-
able, assess their suitability to the task at hand, and
investigate the feasibility of sourcing new data collected
speci�cally for the desired task.
Much of the theory on which learning systems are

based assumes that the training data are a random sam-
ple of the population about which the user wishes to
learn a model. However, much historical data repre-
sent biased samples, for example, data that have been
easy to collect or that have been considered interest-
ing for some other purpose. It is desirable to consider
whether the available data are su�ciently representa-
tive of the future data to which a learned model is to be
applied.
It is important to assess whether there is su�cient

data to realistically obtain the desired machine learning
outcomes.
Data quality should be investigated. Much data is

of low quality.�ose responsible for manual data col-
lection may have little commitment to assuring data
accuracy and may take shortcuts in data entry. For
example, when default values are provided by a sys-
tem, these tend to be substantially overrepresented in
the collected data. Automated data collection processes
might be faulty, resulting in inaccurate or incorrect data.
�e precision of a measuring instrument may be lower
than desirable. Data may be out of date and no longer
correct.
Where the data contain 7noise, it may be desirable

to identify and remove outliers and other suspect data
points or take other remedial action.
Existing data may be augmented through data

enrichment. �is commonly involves sourcing of

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 D Data Preprocessing

additional information about the data points on which
data are already held. For example, customer datamight
be enriched by purchasing socioeconomic data about
individual customers.

Transforming Representation

It may be necessary to frequently transform data from
one representation to another. Reasons for doing so
include highlighting relevant distinctions and format-
ting data to satisfy the requirements of a speci�c learner.

7Discretization is a process whereby quantitative
data are transformed into qualitative.
Some systems cannot process multi-valued categor-

ical variables. �is limitation can be circumvented by
converting amulti-valued categorical variable intomul-
tiple binary variables, one new variable to represent
the presence or absence of each value of the original
variable. Conversely, multiplemutually exclusive binary
variables might be converted into a single multi-valued
categorical variable.
Some systems require the input to be numeric. Cate-

gorical variables must be converted into numeric form.
Multi-valued categorical variables should usually be
converted into multiple binary variables before conver-
sion to numbers, as projecting unordered values onto a
linear scale can greatly distort analytic outcomes.
It is important to select appropriate levels of gran-

ularity for analysis. For example, when distinguishing
products, should a gallon of low fat milk be described
as a diary product, and hence not distinguished from
any other type of dairy product, be described as low fat
milk, and hence not distinguished from other brands
and quantities, or uniquely distinguished from all other
products. Analysis at the lowest level of granularity
makes possible identi�cation of potentially valuable
�ne-detail regularities in the data, butmaymake itmore
di�cult to identify high-level relationships.
It is o�en desirable to create derived values. For

example, the available data might contain �elds for pur-
chase price, costs, and sale price.�e relevant quantity
for analysis might be pro�t, which must be computed
from the raw data.�e creation of new features is called
feature construction.
As many learning systems have di�culty with high

dimension data, it may be desirable to project the data
onto a lower dimensional space. Popular approaches to

doing so include7Principal Components Analysis and
7Kernel Methods.
Another approach to reducing dimensionality is

to select only a subset of the available features (see
7Feature Selection).
It is important to determine whether the data have

7Missing Values and, if so, to ensure that appropri-
ate measures are taken to allow the learning system to
handle this situation.

7Propositionalization. Somedata sets contain infor-
mation expressed in a relational form, i.e., describing
relationships between objects in the world. While some
learning systems can accept relations directly, most
operate only on attribute-value representations.�ere-
fore, a relational representation must be reexpressed in
attribute-value form. In other words, a representation
equivalent to �rst-order logic must be converted to a
representation equivalent only to propositional logic.

Cross References
7Data Set
7Discretization
7Entity Resolution
7Evolutionary Feature Selection and Construction
7Feature Construction in Text Mining
7Feature Selection
7Feature Selection in Text Mining
7Kernel Methods
7Measurement Scales
7Missing Values
7Noise
7Principal Component Analysis
7Propositionalization

Recommended Reading
Pyle, D. (). Data preparation for data mining. San Francisco,

Morgan Kaufmann.
Witten, I. H., & Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco, Morgan
Kaufmann.

Data Preprocessing

7Data Preparation

Decision Lists and Decision Trees D

D

Data Set

A data set is a collection of data used for some speci�c
machine learning purpose. A7training set is a data set
that is used as input to a 7learning system, which ana-
lyzes it to learn a7model. A7test set or7evaluation set
is a data set containing data that are used to 7evaluate
the model learned by a learning system. A training
set may be divided further into a 7growing set and a
7pruning set. Where the training set and the test set
contain disjoint sets of data, the test set is known as a
7holdout set.

DBN

Dynamic Bayesian Network. See 7Learning Graphical
Models

Decision Epoch

In a 7Markov decision process, decision epochs are
sequences of times at which the decision-maker is
required to make a decision. In a discrete time Markov
decision process, decision epochs occur at regular, �xed
intervals, whereas in a continuous time Markov deci-
sion process (or semi-Markov decision process), they
may occur at randomly distributed intervals.

Decision List

Johannes Fürnkranz
Fachbereich Informatik, Darmstadt, Germany

Synonyms
Ordered rule set

Definition
A decision list (also called an ordered rule set) is
a collection of individual Classi�cation Rules that
collectively formaClassi�er. In contrast to anunordered
Rule Set, decision lists have an inherent order, which

makes classi�cation quite straightforward. For classify-
ing a new instance, the rules are tried in order, and the
class of the �rst rule that covers the instance is predicted.
If no induced rule �res, a default rule is invoked, which
typically predicts the majority class.
Typically, decision lists are learnedwith a7Covering

Algorithm, which learns one rule at a time, appends
it to the list, and removes all covered examples before
learning the next one. Decision lists are popular in
7Inductive Logic Programming, because PROLOG
programs may be considered to be simple decision lists,
where all rules predict the same concept.
A formal de�nition of decision lists, a comparison

of their expressiveness to decision trees and rule sets in
disjunctive and conjunctive normal form, as well as the-
oretical results on the learnability of decision lists can be
found in Rivest ().

Cross References
7Classi�cation Rule
7Disjunctive Normal Form
7Rule Learning

Recommended Reading
Rivest, R.L. (). Learning decision lists. Machine Learning, ,

–.

Decision Lists and Decision Trees

Johannes Fürnkranz
Fachbereich Informatik, Darmstadt, Germany

Definition
7Decision Trees and 7Decision Lists are two popular
7Hypothesis Languages, which share quite a few simi-
larities.�e key di�erence is that decision trees may be
viewed as unordered Rule Sets, where each leaf of the
tree corresponds to a single rule with a condition part
consisting of the conjunction of all edge labels on the
path from the root to this leaf.�e hierarchical struc-
ture of the tree ensures that the rules in the set are
nonoverlapping, that is, each example can only be cov-
ered by a single rule.�is additional constraint makes

 D Decision Rule

classi�cation easier (no con�icts from multiple rules),
but may result in more complex rules. For example, it
has been shown that decision lists (ordered rule sets)
with at most k conditions per rule are strictly more
expressive than decision trees of depth k (Rivest,).
A similar result has been proved in Boström ().
Moreover, the restriction of decision tree learn-

ing algorithms to nonoverlapping rules imposes strong
constraints on learnable rules. One problem resulting
from this constraint is the replicated subtree problem
(Pagallo and Haussler); it o�en happens that iden-
tical subtrees have to be learned at various places in
a decision tree, because of the fragmentation of the
example space imposed by the restriction to nonover-
lapping rules. Rule learners do not make such a restric-
tion and are thus less susceptible to this problem. An
extreme example for this problem has been provided
by Cendrowska (), who showed that the minimal
decision tree for the concept x de�ned as

IF A = 3 AND B = 3 THEN Class = x
IF C = 3 AND D = 3 THEN Class = x

has interior nodes and leafs assuming that each
attribute A . . . D can be instantiated with three di�erent
values.
On the other hand, a key advantage of decision

tree learning is that not only a single rule is opti-
mized, but that conditions are selected in a way that
simultaneously optimizes the example distribution in
all successors of a node. Attempts to adopt this prop-
erty for rule learning have given rise to several hybrid
systems, the best known being PART (Frank & Witten,
), which learns a decision list of rules, each one
being the single best rule of a separate decision tree.
�is rule can be e�ciently found without learning the
full tree, by repeated expansion of its most promising
branch. Similarly, pruning algorithms can be used to
convert decision trees into sets of nonoverlapping rules
(Quinlan,).

Cross References
7Covering Algorithm
7Decision Trees
7Divide-and-Conquer Learning
7Rule Learning

Recommended Reading
Boström, H. (). Covering vs. divide-and-conquer for top-down

induction of logic programs. In Proceedings of the th inter-
national joint conference on artificial intelligence (IJCAI-),
(pp. –). Montreal, Canada.

Cendrowska, J. (). PRISM: An algorithm for inducing mod-
ular rules. International Journal of Man-Machine Studies, ,
–.

Frank, E., & Witten, I. H. (). Generating accurate rule sets with-
out global optimization. In J. Shavlik (Ed.), Proceedings of the
th international conference on machine learning (ICML-),
Madison, Wisconsin (pp. –). San Francisco, CA. Morgan
Kaufmann.

Pagallo, G., & Haussler, D. (). Boolean feature discovery in
empirical learning. Machine Learning, , –.

Quinlan, J. R. (). Generating production rules from decision
trees. In Proceedings of the tenth international joint confer-
ence on artificial intelligence (IJCAI-), (pp. –). Morgan
Kaufmann, Milan, Italy.

Rivest, R. L. (). Learning decision lists. Machine Learning, ,
–.

Decision Rule

A decision rule is an element (piece) of knowledge,
usually in the form of a “if-then statement”:
if < Condition > then < Action >
If its Condition is satis�ed (i.e., matches a fact in

the corresponding database of a given problem) then
its Action (e.g., classi�cation or decision making) is
performed. See also7Markovian Decision Rule.

Decision Stump

Definition
A decision stump is a7Decision Tree, which uses only a
single attribute for splitting. For discrete attributes, this
typically means that the tree consists only of a single
interior node (i.e., the root has only leaves as succes-
sor nodes). If the attribute is numerical, the tree may
be more complex.
Decision stumps perform surprisingly well on some

commonly used benchmark datasets from the 7UCI
repository (Holte,), which illustrates that learn-
ers with a high 7Bias and low 7Variance may per-
form well because they are less prone to 7Over�tting.
Decision stumps are also o�en used as weak learners

Decision Tree D

D

in 7Ensemble Methods such as boosting (Freund &
Schapire,).

Cross References
7Bias and Variance
7Decision Tree
7Over�tting

Recommended Reading
Freund, Y., & Schapire, R. E. (). Experiments with a new boost-

ing algorithm. In L. Saitta (Ed.), Proceedings of the th interna-
tional conference on machine learning; Bari, Italy (pp. –).
San Francisco: Morgan Kaufmann.

Holte, R. C. (). Very simple classification rules perform
well on most commonly used datasets. Machine Learning, ,
–.

Decision Threshold

�e decision threshold of a binary classi�er that out-
puts scores, such as7decision trees or7naive Bayes, is
the value above which scores are interpreted as positive
classi�cations. Decision thresholds can be either �xed
if the classi�er outputs calibrated scores on a known
scale (e.g., . for a probabilistic classi�er), or learned
from data if the scores are uncalibrated. See 7ROC
Analysis.

Decision Tree

Johannes Fürnkranz
Fachbereich Informatik
Darmstadt
Germany

Synonyms
C.; CART; Classi�cation tree

Definition
A decision tree is a tree-structured 7classi�cation
7model, which is easy to understand, even bynonexpert
users, and can be e�ciently induced from data. �e
induction of decision trees is one of the oldest andmost

popular techniques for learning discriminatorymodels,
which has been developed independently in the statisti-
cal (Breiman, Friedman, Olshen, & Stone, ; Kass,
) and machine learning (Hunt, Marin, & Stone,
; Quinlan, ,) communities. An extensive
survey of decision tree learning can be found inMurthy
().

Representation
Figure shows a sample decision tree for a well-known
sample dataset, in which examples are descriptions of
weather conditions (Outlook,Humidity,Windy, Temper-
ature), and the target concept is whether these condi-
tions are suitable for playing golf or not (Quinlan,).
Classi�cation of a new example starts at the top node—
the root—and the value of the attribute that corresponds
to this node is considered (Outlook in the example).�e
example is then moved down the branch that corre-
sponds to a particular value of this attribute, arriving at
a newnodewith a new attribute.�is process is repeated
until one arrives at a terminal node—a so-called leaf—
which is not labeled with an attribute but with a value
of the target attribute (PlayGolf?). For all examples
that arrive at the same leaf, the same target value
will be predicted. Figure shows leaves as rectangular
boxes.
Note that some of the attributes may not occur at

all in the tree. For example, the tree in Fig. does not
contain a test on Temperature because the training data
can be classi�edwithoutmaking a reference to this vari-
able. More generally, one can say that the attributes in

Outlook

rainovercastsunny

yesHumidity Windy

true false

nono yesyes

highnormal

Decision Tree. Figure . A decision tree describing the

Golf dataset (Quinlan,)

 D Decision Tree

the upper parts of the tree (near the root) tend to have
a stronger in�uence on the value of the target variable
than the nodes in the lower parts of the tree (e.g., Out-
lookwill always be tested, whereasHumidity andWindy
will only be tested under certain conditions).

Learning Algorithm
Decision trees are learned in a top-down fashion, with
an algorithm known as Top-Down Induction of Deci-
sion Trees (TDIDT), recursive partitioning, or divide-
and-conquer learning. �e algorithm selects the best
attribute for the root of the tree, splits the set of exam-
ples into disjoint sets, and adds corresponding nodes
and branches to the tree. �e simplest splitting cri-
terion is for discrete attributes, where each test has
the form t ← (A = v) where v is one possible
value of the chosen attribute A. �e corresponding
set St contains all training examples for which the
attribute A has the value v.�is can be easily adapted
to numerical attributes, where one typically uses binary
splits of the form t ← (A < vt), which indicate
whether the attribute’s value is above or below a cer-
tain threshold value vt . Alternatively, one can trans-
form the data before-hand using a 7Discretization
algorithm.

function TDIDT(S)
Input: S, a set of labeled examples.

Tree = new empty node
if all examples have the same class c
or no further splitting is possible

then // new leaf
Label(Tree) = c

else // new decision node(A,T) = FindBestSplit(S)
for each test t ∈ T do
St = all examples that satisfy t
Nodet = TDIDT(St)
AddEdge(Tree t→Nodet)

endfor
endif
return Tree

A�er splitting the dataset according to the selected
attribute, the procedure is recursively applied to each
of the resulting datasets. If a set contains only exam-
ples from the same class, or if no further splitting is
possible (e.g., because all possible splits have already
been exhausted or all remaining splits will have the
same outcome for all examples), the corresponding
node is turned into a leaf node and labeled with the
respective class. For all other sets, an interior node is
added and associated with the best splitting attribute
for the corresponding set as described above. Hence,
the dataset is successively partitioned into nonover-
lapping, smaller datasets until each set only contains
examples of the same class (a so-called pure node).
Eventually, a pure node can always be found via suc-
cessive partitions unless the training data contains two
identical but contradictory examples, that is, exam-
ples with the same feature values but di�erent class
values.

Attribute Selection

�e crucial step in decision tree induction is the choice
of an adequate attribute. In the sample tree of Fig. ,
which has been generated from the same training
examples as the tree of Fig. , most leaves contain only a
single training example, that is, with the selected split-
ting criteria, the termination criterion (all examples of a
node have to be of the same class) could, in many cases,
only trivially be satis�ed (only one example remained
in the node). Although both trees classify the training
data correctly, the former appears to be more trustwor-
thy, and in practice, one can o�en observe that simpler
trees aremore accurate thanmore complex trees. A pos-
sible explanation could be that labels that are based on
a higher number of training examples tend to be more
reliable. However, this preference for simple models is
a heuristic criterion known as 7Occam’s Razor, which
appears to work fairly well in practice, but is still the
subject of ardent debates within the machine learning
community.
Typical attribute selection criteria use a function

that measures the impurity of a node, that is, the degree
to which the node contains only examples of a sin-
gle class. Two well-known impurity measures are the
information-theoretic entropy (Quinlan,), and the

Decision Tree D

D

Temperature

hot mild

OutlookOutlook Outlook

sunnysunny sunnyrainrain rainovercastovercast overcast

yesyes

yesyes

yes

yesyes HumidityHumidityHumidity

cool

no

no ?

high high highnormal normal normal

Windy Windy

true truefalse false

no yesno

?

Decision Tree. Figure . A needlessly complex decision tree describing the same dataset

Gini index (Breiman et al.,) which are de�ned as

Entropy(S) = − c∑
i=

∣Si∣∣S∣ ⋅ log (∣Si∣∣S∣)
Gini(S) = − c∑

i=
(∣Si∣∣S∣)

where S is a set of training examples, and Si is the
set of training examples that belong to class ci. Both
functions have their maximum at the point where the
classes are equally distributed (i.e., where all Si have
the same size, maximum impurity), and their mini-
mum at the point where one Si contains all examples(Si = S) and all other Sj, j ≠ i are empty (minimum
impurity).
A good attribute divides the dataset into subsets that

are as pure as possible, ideally into sets so that each one
only contains examples from the same class.�us, one
wants to select the attribute that provides the highest
decrease in average impurity, the so-called gain:

Gain(S, A) = Impurity(S) −∑
t

∣St ∣∣S∣ ⋅ Impurity(St)
where t is one of the tests on attribute A which parti-
tions the set S is into nonoverlapping disjoint subsets
St , and Impurity can be any impurity measure. As the
�rst term, Impurity(S), is constant for all attributes, one
can also omit it and directlyminimize the average impu-
rity (which is typically done when Gini is used as an
impurity measure).

A commonproblem is that attributes withmany val-
ues have a higher chance of resulting in pure successor
nodes and are, therefore, o�en preferred over attributes
with fewer values. To counter this, the so-called gain
ratio normalizes the gained entropy with the intrinsic
entropy of the split:

GainRatio(S, A) = Gain(S, A)
∑t ∣St ∣∣S∣ ⋅ log (∣St ∣∣S∣)

A similar phenomenon can be observed for numeri-
cal attributes, where the number of possible threshold
values determines the number of possible binary splits
for this attribute. Numerical attributes with many pos-
sible binary splits are o�en preferred over numerical
attributes with fewer splits because they have a higher
chance that one of their possible splits �t the data. A dis-
cussion of this problem and a proposal for a solution can
be found in Quinlan ().
Other attribute selection measures, which do not

conform to the gain framework laid out above, are also
possible, such as CHAID’s evaluation with a χ test
statistic (Kass,). Experimental comparison of dif-
ferent measures can be found in Buntine and Niblett
() and Mingers (a).

�us, the �nal tree is constructed by a sequence
of local choices that each consider only those exam-
ples that end up at the node that is currently split. Of
course, such a procedure can only �nd local optima
for each node, but cannot guarantee convergence to

 D Decision Tree

a global optimum (the smallest tree). One of the key
advantages of this divide-and-conquer approach is its
e�ciency, which results from the exponential decrease
in the quantity of data to be processed at successive
depths in the tree.

Overfitting Avoidance

In principle, a decision treemodel can be �t to any train-
ing set that does not contain contradictions (i.e., there
are no examples with identical attributes but di�erent
class values).�is may lead to7Over�tting in the form
of overly complex trees.
For this reason, state-of-the-art decision tree induc-

tion techniques employ various 7Pruning techniques
for restricting the complexity of the found trees. For
example, C. has a 7pre-pruning parameter m that
is used to prevent further splitting unless at least two
successor nodes have at least m examples. �e cost-
complexity pruning method used in CART may be
viewed as a simple 7Regularization method, where a
good choice for the regularization parameter, which
trades o� the �t of the data with the complexity of the
tree, is determined via7Cross-validation.
More typically,7post-pruning is used for removing

branches and nodes from the learned tree. More pre-
cisely, this procedure replaces someof the interior nodes
of the tree with a new leaf, thereby removing the subtree
that was rooted at this node. An empirical compari-
son of di�erent decision-tree pruning techniques can be
found in Mingers (b).
It is important to note that the leaf nodes of the

new tree are no longer pure nodes, that is, they no
longer need to contain training examples that all belong
to the same class. Typically, this is simply resolved
by predicting the most frequent class at a leaf. �e
class distribution of the training examples within the
leaf may be used as a reliability criterion for this
prediction.

Well-known Decision Tree Learning
Algorithms
�e probably best-known decision tree learning algo-
rithm is C. (Quinlan,) which is based upon

ID (Quinlan,), which, in turn, has been derived
from an earlier concept learning system (Hunt et al.,
). ID realized the basic recursive partitioning algo-
rithm for an arbitrary number of classes and for discrete
attribute values. C. (Quinlan,) incorporates sev-
eral key improvements that were necessary for tackling
real-world problems, including handling of numeric
and 7missing attribute values, 7over�tting avoidance,
and improved scalability. AC-implementation ofC. is
freely available from its author. A re-implementation is
available under the name J. in the Weka data mining
library. C. is a commercial successor of C., dis-
tributed by RuleQuest Research. CART (Breiman et al.,
) is the best-known system in the statistical learn-
ing community. It is integrated into various statistical
so�ware packages, such as R or S.
Decision trees are also o�en used as components in

7Ensemble Methods such as random forests (Breiman,
) or AdaBoost (Freund & Schapire,).�ey can
also be modi�ed for predicting numerical target vari-
ables, in which case they are known as 7Regression
Trees. One can also put more complex prediction mod-
els into the leaves of a tree, resulting in 7Model
Trees.

Cross References
7Decision List
7Decision Lists and Decision Trees
7Decision Stump
7Divide-and-Conquer Learning
7Model Tree
7Pruning
7Regression Tree
7Rule Learning

Recommended Reading
Breiman, L. (). Random forests. Machine Learning, (),

–.
Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. (). Clas-

sification and regression trees. Pacific Grove: Wadsworth &
Brooks.

Buntine, W., & Niblett, T. (). A further comparison of split-
ting rules for decision-tree induction. Machine Learning, ,
–.

Freund, Y., & Schapire, R. E. (). Experiments with a new boost-
ing algorithm. In L. Saitta (Ed), Proceedings of the th interna-
tional conference on machine learning, Bari, Italy (pp. –).
San Francisco: Morgan Kaufmann.

Deep Belief Nets D

D

Hunt, E. B., Marin, J., & Stone, P. J. (). Experiments in induction.
New York: Academic.

Kass, G. V. (). An exploratory technique for investigating
large quantities of categorical data. Applied Statistics, ,
–.

Mingers, J. (a). An empirical comparison of selection mea-
sures for decision-tree induction. Machine Learning, ,
–.

Mingers, J. (b). An empirical comparison of pruning
methods for decision tree induction. Machine Learning, ,
–.

Murthy, S. K. (). Automatic construction of decision trees from
data: A multi-disciplinary survey. Data Mining and Knowledge
Discovery, (), –.

Quinlan, J. R. (). Learning efficient classification procedures
and their application to chess end games. In R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning.
An artificial intelligence approach (pp. –). Palo Alto:
Tioga.

Quinlan, J. R. (). Induction of decision trees.Machine Learning,
, –.

Quinlan, J. R. (). C.: Programs for machine learning. San
Mateo: Morgan Kaufmann.

Quinlan, J. R. (). Improved use of continuous attributes in C..
Journal of Artificial Intelligence Research, , –.

Decision Trees For Regression

7Regression Trees

Deductive Learning

Synonyms
Analytical learning; Explanation-based learning

Definition
Deductive learning is a subclass of machine learning
that studies algorithms for learning provably correct
knowledge. Typically suchmethods are used to speedup
problem solvers by adding knowledge to them that is
deductively entailed by existing knowledge, but that
may result in faster solutions.

Deduplication

7Entity Resolution

Deep Belief Nets

GeoffreyHinton
University of Toronto, Toronto, Canada

Synonyms
Deep belief networks

Definition
Deep belief nets are probabilistic generativemodels that
are composed of multiple layers of stochastic latent
variables (also called “feature detectors” or “hidden
units”).�e top two layers have undirected, symmetric
connections between them and form an associative
memory. �e lower layers receive top-down, directed
connections from the layer above. Deep belief nets have
two important computational properties. First, there is
an e�cient procedure for learning the top-down, gen-
erative weights that specify how the variables in one
layer determine the probabilities of variables in the layer
below.�is procedure learns one layer of latent variables
at a time. Second, a�er learning multiple layers, the val-
ues of the latent variables in every layer can be inferred
by a single, bottom-up pass that starts with an observed
data vector in the bottom layer and uses the generative
weights in the reverse direction.

Motivation and Background
�e perceptual systems of humans and other ani-
mals show that high-quality pattern recognition can
be achieved by using multiple layers of adaptive non-
linear features, and researchers have been trying to
understand how this type of perceptual system could
be learned, since the s (Selfridge,). Perceptrons
(Rosenblatt,) were an early attempt to learn a bio-
logically inspired perceptual system, but they did not
have an e�cient learning procedure for multiple lay-
ers of features. Backpropagation (Rumelhart, Hinton, &
Williams, ; Werbos,) is a supervised learning
procedure that became popular in the s because it
provided a fairly e�cient way of learning multiple lay-
ers of nonlinear features by propagating derivatives of
the error in the output backward through themultilayer
network. Unfortunately, backpropagation has di�culty

 D Deep Belief Nets

optimizing the weights in deep networks that contain
many layers of hidden units and it requires labeled
training data, which is o�en expensive to obtain. Deep
belief nets overcome the limitations of backpropagation
by using unsupervised learning to create layers of feature
detectors thatmodel the statistical structure of the input
data without using any information about the required
output. High-level feature detectors that capture com-
plicated higher-order statistical structure in the input
data can then be used to predict the labels.

Structure of the Learning System
Deep belief nets are learned one layer at a time by
treating the values of the latent variables in one layer,
when they are being inferred from data, as the data for
training the next layer. �is e�cient, greedy learning
can be followed by, or combined with, other learning
procedures that �ne-tune all of the weights to improve
the generative or discriminative performance of the
whole network. Discriminative �ne-tuning can be per-
formed by adding a �nal layer of variables that represent
the desired outputs and backpropagating error deriva-
tives. When networks with many hidden layers are
applied in domains that contain highly structured input
vectors, backpropagation learning works much better if
the feature detectors in the hidden layers are initialized
by learning a deep belief net thatmodels the structure in
the input data (Hinton & Salakhutdinov,). Matlab
code for learning and �ne-tuning deep belief nets can
be found at http://cs.toronto.edu/∼hinton.
Composing Simple Learning Modules

Early deep belief networks could be viewed as a com-
position of simple learning modules, each of which is a
“restricted Boltzmann machine.” Restricted Boltzmann
machines contain a layer of “visible units” that repre-
sent the data and a layer of “hidden units” that learn
to represent features that capture higher-order corre-
lations in the data. �e two layers are connected by a
matrix of symmetrically weighted connections,W, and
there are no connections within a layer. Given a vec-
tor of activities v for the visible units, the hidden units
are all conditionally independent so it is easy to sample
a vector, h, from the posterior distribution over hid-
den vectors, p(h∣v,W). It is also easy to sample from

p(v∣h,W). By starting with an observed data vector on
the visible units and alternating several times between
sampling from p(h∣v,W) and p(v∣h,W), it is easy to get
a learning signal which is simply the di�erence between
the pairwise correlations of the visible and hidden units
at the beginning and end of the sampling (see Chapter
Boltzmann Machines for details).

The Theoretical Justification of the Learning Procedure

�e key idea behind deep belief nets is that the weights,
W, learned by a restricted Boltzmann machine de�ne
both p(v∣h,W) and the prior distribution over hid-
den vectors, p(h∣W), so the probability of generating a
visible vector, v, can be written as:

p(v) =∑
h
p(h∣W)p(v∣h,W) ()

A�er learning W, we keep p(v|h,W) but we replace
p(h∣W) by a better model of the aggregated posterior
distribution over hidden vectors – i.e., the nonfacto-
rial distribution produced by averaging the factorial
posterior distributions produced by the individual data
vectors.�e better model is learned by treating the hid-
den activity vectors produced from the training data as
the training data for the next learning module. Hinton,
Osindero, and Teh () show that this replacement
improves a variational lower bound on the probability
of the training data under the composite model.

Deep Belief Nets with Other Types of Variable

Deep belief nets typically use the logistic function y =
/(+ exp(−x)) of the weighted input, x, received from
above or below to determine the probability that a
binary latent variable has a value of during top-down
generation or bottom-up inference. Other types of vari-
able within the exponential family, such as Gaussian,
Poisson, or multinomial can also be used (Movellan &
Marks, ; Welling, Rosen-Zvi, & Hinton,) and
the variational bound still applies. However, networks
withmultiple layers ofGaussian or Poisson units are dif-
�cult to train and can become unstable. To avoid these
problems, the function log(+ exp(x)) can be used as
a smooth approximation to a recti�ed linear unit. Units
of this type o�en learn features that are easier to inter-
pret than those learned by logistic units. log(+exp(x))

Deep Belief Networks D

D

is not in the exponential family, but it can be approxi-
mated very accurately as a sum of a set of logistic units
that all share the same weight vector and adaptive bias
term, but di�er by having o�sets to the shared bias of−.,−.,−.,
Using Autoencoders as the Learning Module

A closely related approach that is also called a “deep
belief net” uses the same type of greedy, layer-by-layer
learning with a di�erent kind of learning module – an
“autoencoder” that simply tries to reproduce each data
vector from the feature activations that it causes (Ben-
gio, Lamblin, Popovici, & Larochelle, ; Hinton,
; LeCun & Bengio,). However, the variational
bound no longer applies, and an autoencoder module
is less good at ignoring random noise in its training
data (Larochelle, Erhan, Courville, Bergstra, & Bengio,
).

Applications of Deep Belief Nets

Deep belief nets have been used for generating and
recognizing images (Bengio, et al., ; Hinton et al.,
; Ranzato, Huang, Boureau, & LeCun,), video
sequences (Sutskever & Hinton,), and motion-
capture data (Taylor, Hinton, & Roweis,). If the
number of units in the highest layer is small, deep
belief nets perform nonlinear dimensionality reduction
(Hinton & Salakhutdinov,), and by pretraining
each layer separately it is possible to learn very deep
autoencoders that can then be �ne-tuned with back-
propagation (Hinton& Salakhutdinov,). Such net-
works cannot be learned in reasonable time using back-
propagation alone. Deep autoencoders learn compact
representations of their input vectors that aremuch bet-
ter than those found by linearmethods such as Principal
Components Analysis, and if the highest level code is
forced to be binary, they allow extremely fast retrieval of
documents or images (Salakhutdinov & Hinton, ;
Torralba, Fergus, & Weiss,).

Recommended Reading
Bengio, Y., Lamblin, P., Popovici, P., & Larochelle, H. (). Greedy

layer-wise training of deep networks, In Advances in neural
information processing systems (Vol.). Cambridge, MA: MIT
Press.

Hinton, G. E. (). Connectionist learning procedures. Artificial
Intelligence, (–), –.

Hinton, G. E., Osindero, S., & Teh, Y. W. (). A fast learn-
ing algorithm for deep belief nets. Neural Computation, ,
–.

Hinton, G. E., & Salakhutdinov, R. R. (). Reducing the
dimensionality of data with neural networks. Science, ,
–.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio,
Y. (). An empirical evaluation of deep architectures on
problems with many factors of variation. In Proceedings of the
th international conference on machine learning. New York:
ACM.

LeCun, Y., & Bengio, Y. (). Scaling learning algorithms towards
AI. In L. Bottou et al. (Eds.), Large-scale kernel machines. MA:
MIT Press.

Movellan, J. R., & Marks, T. K. (). Diffusion networks, product
of experts, and factor analysis.

Ranzato, M., Huang, F. J., Boureau, Y., & LeCun, Y. () Unsuper-
vised learning of invariant feature hierarchies with applications
to object recognition. In Proceedings of computer vision and
pattern recognition conference (CVPR). Minneapolis, MN.

Rosenblatt, F. (). Principles of neurodynamics. Washington, DC:
Spartan Books.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (). Learning
representations by back-propagating errors. Nature, , -
.

Salakhutdinov, R. R., & Hinton, G. E. (). Semantic hashing. In
Proceedings of the SIGIR workshop on information retrieval and
applications of graphical models. Amsterdam, the Netherlands.

Selfridge, O. G. () Pandemonium: A paradigm for learning. In
Mechanisation of though processes: Proceedings of a symposium
held at the National Physical Laboratory. London: HMSO.

Sutskever, I., & Hinton, G. E. (). Learning multilevel distributed
representations for high-dimensional sequences. In Proceedings
of the eleventh international conference on artificial intelligence
and statistics, San Juan, Puerto Rico.

Taylor, G. W., Hinton, G. E., & Roweis, S. (). Modeling human
motion using binary latent variables. In Advances in neural
information processing systems (Vol.). Cambridge, MA: MIT
Press.

Torralba, A., Fergus, R., & Weiss, Y. (). Small codes and large
image databases for recognition. In IEEE conference on com-
puter vision and pattern recognition (pp. –). Anchorage, AK.

Welling, M., Rosen-Zvi, M., & Hinton, G. E. (). Exponen-
tial family harmoniums with an application to information
retrieval. In Advances in neural information processing systems
(Vol. , pp. –). Cambridge, MA: MIT Press.

Werbos, P. (). Beyond Regression: new tools for prediction and
analysis in the behavioral sciences. PhD thesis, Harvard Univer-
sity, Cambridge, MA.

Deep Belief Networks

7Deep Belief Nets

 D Density Estimation

Density Estimation

Claude Sammut
University of New South Wales, Sydney, Australia

Synonyms
Kernel density estimation

Definition
Given a set of observations, x, . . . , xN , which is a ran-
dom sample from a probability density function fX (x),
density estimation attempts to approximate fX (x) by
f̂X (x).
A simple way of estimating a probability density

function is to plot a histogram from a random sample
drawn from the population. Usually, the range of data
values is subdivided into equally sized intervals or bins.
Howwell the histogram estimates the function depends
on the bin width and the placement of the boundaries of
the bins.�e latter can be somewhat improved by mod-
ifying the histogram so that �xed boundaries are not
used for the estimate.�at is, the estimate of the prob-
ability density function at a point uses that point as the
centre of a neighborhood. Following Hastie, Tibshirani
and Friedman (), the estimate can be expressed as:

f̂X (x) = #xi ∈ N (x)
Nλ

()

where x, . . . , xN is a random sample drawn from a
probability density function fX(x) and f̂X(x) is the esti-
mate of fX at point x. N(x) is a neighborhood of
width λ, around x.�at is, the estimate is the normal-
ized count of the number of values that fall within the
neighborhood of x.

�e estimate above is still bumpy, like the histogram.
A smoother approximation can be obtained by using
a kernel function. Each xi in the sample is associated
with a kernel function, usually Gaussian.�e count in
formula () above is replaced by the sum of the ker-
nel function applied to the points in the neighborhood
of x:

f̂X(x) =
Nλ

N∑
i=
Kλ (x, xi) ()

whereK is the kernel function associatedwith sample xi
near x.�is is called theParzen estimate (Parzen,).
�e bandwidth, λ, a�ects the roughness or smoothness
of the kernel histogram. �e kernel density estimate

is said to be under-smoothed if the bandwidth is too
small.�e estimate is over-smoothed if the bandwidth
is too large.
Density estimation is most o�en used in association

with memory-based classi�cation methods, which can
be thought of as weighted7nearest neighbor classi�ers.

7Mixture models and 7Locally weighted regres-
sion are forms of kernel density estimation.

Cross References
7Kernel Methods
7Locally Weighted Regression for Control
7Mixture Models
7Nearest Neighbor
7Support Vector Machine

Recommended Reading
Kernel Density estimation is well covered in texts including Hastie,

Tibshirani and Friedman (), Duda, Hart and Stork ()
and Ripley (Ripley,).

Duda, R. O., Hart, P. E., & Stork, D. G. (). Pattern classification
(nd ed.). New York: Wiley.

Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of sta-
tistical learning: data mining, inference and perception (nd ed.).
New York: Springer.

Parzen, E. (). On the estimation of a probability density function
and the mode. Annals of Mathematics and Statistics, , –
.

Ripley, B. D. (). Pattern recognition and neural networks.
Cambridge: Cambridge University Press.

Density-Based Clustering

Joerg Sander
University of Alberta
Edmonton, AB, Canada

Synonyms
Estimation of density level sets; Mode analysis; Non-
parametric cluster analysis

Definition
Density-BasedClustering refers to7unsupervised learn-
ing methods that identify distinctive groups/clusters
in the data, based on the idea that a cluster in a data
space is a contiguous region of high point density, sep-
arated from other such clusters by contiguous regions

Density-Based Clustering D

D

of low point density. �e data points in the separat-
ing regions of low point density are typically considered
noise/outliers.

Motivation and Background
Clustering in general is an unsupervised learning task
that aims at �nding distinct groups in data, called
clusters. �e minimum requirements for this task are
that the data is given as some set of objects O for
which a dissimilarity-distance function d :O×O→R+
is given. O�en, O is a set of d-dimensional real valued
points, O⊂Rd, which can be viewed as a sample from
some unknown probability density p(x), with d as the
Euclidean or some other form of distance.

�ere are di�erent approaches to classifying what
characterizes distinct groups in the data.
From a procedural point of view, many cluster-

ing methods try to �nd a partition of the data into
k groups, so that within-cluster dissimilarities are min-
imized while the between-cluster dissimilarities are
maximized. �e notions of within-cluster dissimilar-
ity and between-cluster dissimilarity are de�ned using
the given distance function d. From a statistical point
of view, such methods correspond to a parametric
approach, where the unknown density p(x) of the data
is assumed to be a mixture of k densities pi(x), each
corresponding to one of the k groups in the data; the
pi(x) are assumed to come from some parametric fam-
ily (e.g., Gaussian distributions) with unknown param-
eters, which are then estimated from the data.
In contrast, density-based clustering is a non-

parametric approach, where the groups in the data are
considered to be the high density areas of the density
p(x). Density-based clustering methods do not require
the number of clusters as input parameters, nor do they
make assumptions about the underlying density p(x) or
the variancewithin the groups thatmay exist in the data.
Consequently, density-based clusters are not necessar-
ily groups of points with high within-cluster similarity
as measured by the distance function d, but can have
an “arbitrary shape” in the feature space; they are some-
times also referred to as “natural clusters.”�is property
makes density-based clustering particularly suitable for
applications where clusters cannot be well described as
distinct groups of low within-cluster dissimilarity, as,
for instance, in spatial data, where clusters of points
in the space may form along natural structures such

Density-Based Clustering. Figure . Illustration of a

density-based clustering, showing three distinguishable

groups

as rivers, roads, and seismic faults. Figure illustrates
density-based clusters using a two-dimensional exam-
ple, where the assumed dissimilarity function between
the points is the Euclidean distance: there are three
clusters indicated by triangles, points, and rectangles, as
well as some noise points, indicated by diamond shapes.
Note that the distance between some points within the
clusters is much larger than the distance between some
points fromdi�erent clusters, yet the regions containing
the clusters clearly have a higher point density than the
region between them, and they can easily be separated.
Density-based clustering is one of the prominent

paradigms for clustering large data sets in the data
mining community. It has been extensively studied and
successfully used in many applications.

Structure of Learning System
Assuming that the data setO⊂Rd is a sample from some
unknown probability density p(x), there are di�erent
ways of determining high density areas of the density
p(x). Commonly, the notion of a high density area is
(implicitly or explicitly) based on a local density esti-
mate at each point (typically, some kernel or nearest
neighbor density estimate), and a notion of connec-
tion between objects (typically, points are connected if
they are within a certain distance ε from each other);
clusters are essentially constructed as maximal sets of
objects that are directly or transitively connected to
objects whose density exceeds some threshold λ.�e set{x∣p(x) > λ} of all high density objects is called the den-
sity level set of p at λ. Objects that are not part of such
clusters are called noise or outliers.

 D Density-Based Clustering

Di�erent proposed density-based methods distin-
guish themselvesmainly by how the density p(x) is esti-
mated, how the notion of connectivity is de�ned, and
how the algorithm for �nding connected components
of the induced graph is implemented and supported by
suitable data structures to achieve scalability for large
data sets. Somemethods include in a cluster only objects
whose density exceeds the threshold λ, while others also
include objects with lower density if they are connected
to an object with density above the threshold λ.
Density-based clustering was probably introduced

for the �rst time by Wishart (). His algorithm for
one level mode analysis consists of six steps: “() Select
a distance threshold r, and a frequency (or density)
threshold k, () Compute the triangular similarity
matrix of all inter-point distances, () Evaluate the fre-
quency ki of each data point, de�ned as the number
of points which lie within a distance r of point i (. . .),
() Remove the “noise” or non-dense points, those for
which ki < k, () Cluster the remaining dense points
(ki > k) by single linkage, forming the mode nuclei,
() Reallocate each non-dense point to a suitable cluster
according to some criterion (. . .) (Wishart,).
Hartigan () suggested a more general de�ni-

tion of a density-based cluster, a density contour cluster
at level λ, as a maximally connected set of points x
for which p(x)> λ, given a density p(x) at each point
x, a density threshold λ, and links speci�ed for some
pairs of objects. For instance, given a particular dis-
tance function, points can be de�ned as linked if the
distance between them is no greater than some thresh-
old r, or, if only direct links are available, one can de�ne
a “distance” for pairs of objects x and y in the following
way:

d(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−min[p(x), p(y)], x and y are linked,

 otherwise.

To compute the density-contour clusters, Harti-
gan, like Wishart, suggest a version of single link-
age clustering, which will construct the maximal con-
nected sets of objects of density greater than the given
threshold λ.

�e DBSCAN algorithm (Ester et al.,) intro-
duced density-based clustering independently to the
Computer Science Community, also proposing the use

of spatial index structures to achieve a scalable cluster-
ing algorithm. Assuming a distance threshold r and a
density threshold k, DBSCAN, like Wishart’s method,
estimates the density for each point xi as the number ki
of points that lie inside a radius r around x. Core points
are de�ned as data points for which ki > k. Points are
considered directly connected if the distance between
them is no greater than r. Density-based clusters are
de�ned as maximally connected components of the set
of points that lie within distance r from some core object
(i.e., a cluster may contain points xi with ki < k, called
border objects, if they are within distance r of a core
object of that cluster). Objects not part of a cluster are
considered noise. �e algorithm DBSCAN constructs
clusters iteratively, starting a new cluster C with a non-
assigned core object x, and assigning all points to C
that are directly or transitively connected to x. To deter-
mine directly and transitively connected points for a
given point, a spatial index structure is used to per-
form range queries with radius r for each object that is
newly added to a current cluster, resulting in an e�cient
runtime complexity for moderately dimensional data of
O(N log N), where N is the total number of points in
the data set, and a worst case runtime of O(N), e.g., for
high-dimensional data when the performance of spatial
index structures deteriorates.
DENCLUE (Hinneburg and Keim,) proposed

a notion of density-based clusters using a kernel den-
sity estimation. Each data point x is associated with
(“attracted by”) a local maximum (“density attractor”)
of the overall density function that lies in the direction
of maximum increase in density from x. Density-based
clusters are de�ned as connected components of density
attractors with their associated points, whose density
estimate is above a given threshold λ. In this formu-
lation, DBSCAN and Wishart’s method can be seen
as special cases of DENCLUE, using a uniform spher-
ical kernel and, for Wishart’s method, not including
attracted points whose density is below λ. DENCLUE
essentially uses a Gaussian kernel for the implemen-
tation, which is based on a clever data structure to
speed up local density estimation. �e data space is
partitioned into d-dimensional cells. Non-empty cells
are mapped to one-dimensional keys, which are stored,
together with some su�cient statistics about the cell
(number of points, pointers to points, and linear sum
of the points belonging to the cell), in a search tree for

Density-Based Clustering D

D

e�cient retrieval of neighboring cells, and local density
estimation (Hinneburg and Keim () reports that
in an experimental comparison on -dimensional data
sets of di�erent sizes, DENCLUE runs up to times
faster than DBSCAN).
A large number of related methods and exten-

sions have been proposed, particularly in computer
science and application-oriented domains, some moti-
vated by algorithmic considerations that could improve
e�ciency of the computation of density-based clus-
ters, othersmotivated by special applications, proposing
essentially density based clustering algorithms using
speci�c density measures and notions of connectivity.
An algorithmic framework, called GDBSCAN, which
generalizes the topological properties of density-based
clusters, can be found in Sander et al. (). GDBSCAN
generalizes the notion of a density-based clustering
to that of a density-connected decomposition, assuming
only a re�exive and symmetric neighborhood relation
for pairs of objects (direct links between some objects),
and an arbitrary predicate, called “MinWeight,” that
evaluates to true for some neighborhood sets of objects
and false on others, so that a core object can be de�ned
as an object whose neighborhood satis�es the Min-
Weight predicate.�en, a density-connected decompo-
sition consists of the maximally connected components
of the set of objects that are in the neighborhood of
some core object, and they can be computed with the
same algorithmic scheme as density-based clusters by
DBSCAN.
One of the principal problems of �nding the

density-based clusters of a density level set for a sin-
gle level λ is how to determine a suitable level λ. �e
result of a density-based clustering method depends
critically on the choice of λ, which may be di�cult
to determine even in situations when a meaningful
level exists, depending on how well the clusters are
separated in the given sample. In other situations, it
may not even be possible to characterize the cluster
structure appropriately using a single density thresh-
old, when modes exist in di�erent regions of the data
space that have very di�erent local densities, or clus-
ters are nested within clusters.�e problem of selecting
suitable density threshold parameters has been already
observed by Wishart () who also proposed a hier-
archical algorithm to represent the clusters at di�er-
ent density levels. Hartigan () also observed that

density-based clusters at di�erent density levels have a
hierarchical structure, a density contour tree, based on
the fact that two clusters (i.e., connected components)
of di�erent density levels are either disjoint, or the clus-
ter of higher density is completely contained in the
cluster of lower density. Recent proposals for hierarchi-
cal clustering methods based on a density estimate and
a notion of linkage are, e.g., Ankerst et al. () and
Stuetzle ().�ese hierarchical methods are closely
related, and are essentially processing and rendering
a Minimum Spanning Tree of the data (with pairwise
distances or reachability distances as de�ned in Stuet-
zle () as edge weights), and are thus also closely
related to single linkage clustering. Hierarchical meth-
ods do not, in a strict sense, compute a partition of
the data, but compute a representation of the overall
hierarchical density structure of the data from which
particular density-based clusters at di�erent density lev-
els or a global density threshold (a “cut level”) could be
determined.

Cross References
7Clustering
7Density Estimation

Recommended Reading
Ankerst, M., Breunig, M. M., Kriegel, H.-P., Sander, J. ().

OPTICS: Ordering Points to Identify the Clustering Structure.
In A. Delis, C. Faloutsos, S. Ghandeharizadeh (Eds.), Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data. Philadelphia: ACM.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (). A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In E. Simoudis, J. Han, & U.M. Fayyad (Eds.), Pro-
ceedings of the second International Conference on Knowledge
Discovery and Data Mining. Portland: AAAI Press.

Hartigan, J. A. (). Clustering Algorithms. New York: Wiley.
Hinneburg, A., Keim, D. A. (). En Efficient Approach to Cluster-

ing in Large Multimedia Databases with Noise. In R. Agrawal, &
P. Stolorz (Eds.), Proceedings of the fourth International Confer-
ence on Knowledge Discovery and Data Mining. New York City:
AAAI Press.

Sander, J., Ester, M., Kriegel, H.-P., Xu, X. (). Density-Based
Clustering in Spatial Databases: The Algorithm GDBSCAN and
Its Applications. Data Mining and Knowledge Discovery, (),
–.

Stuetzle, W. (). Estimating the Cluster Tree of a Density by
Analyzing the Minimal Spanning Tree of a Sample. Journal of
Classification, (), –.

Wishart, D. (). Mode analysis: A generalization of nearest neigh-
bor which reduces chaining effects. In A. J. Cole (Ed.), Pro-
ceedings of the Colloquium in Numerical Taxonomy. Scotland:
St. Andrews.

 D Dependency Directed Backtracking

Dependency Directed Backtracking

7Intelligent Backtracking

Detail

In 7Minimum Message Length, detail is the code or
language shared between sender and receiver that is
used to describe the data conditional on the asserted
model.

Deterministic Decision Rule

7Decision Rule

Digraphs

Synonyms
Directed graphs

Definition
A digraph D consists of a (�nite) set of vertices V(D)
and a set A(D) of ordered pairs, called arcs, of distinct
vertices. An arc (u, v) has tail u and head v, and it is said
to leave u and enter v.
Figure shows a digraph D with vertex set

V(D)={u, v,w, x, y, z} and arc setA(D)={(u, v), (u,w),(v,w), (w, x), (x,w), (x, z), (y, x), (z, x)}. Digraphs can
be viewed as generalizations of7graphs.

“EML-runon-D” — // — : — page — #

D

Digraphs

Synonyms
Directed graphs

Definition
A digraph D consists of a (�nite) set of vertices V(D)
and a set A(D) of ordered pairs, called arcs, of distinct
vertices. An arc (u, v) has tail u and head v, and it is said
to leave u and enter v.

u

v

w x

y

z
Digraphs. Figure . A digraph

Figure ?? shows a digraph D with vertex set
V(D)={u, v,w, x, y, z} and arc setA(D)={(u, v), (u,w),(v,w), (w, x), (x,w), (x, z), (y, x), (z, x)}. Digraphs can
be viewed as generalizations of7graphs.

Digraphs. Figure . A digraph

Dimensionality Reduction

Michail Vlachos
IBM Zürich Research Laboratory
Rüschlikon
Switzerland

Synonyms
Feature extraction

Definition
Every data object in a computer is represented and
stored as a set of features, for example, color, price,
dimensions, and so on. Instead of the term features one
can use interchangeably the term dimensions, because
an object with n features can also be represented as
a multidimensional point in an n-dimensional space.
�erefore, dimensionality reduction refers to the pro-
cess of mapping an n-dimensional point, into a lower
k-dimensional space.�is operation reduces the size for
representing and storing an object or a dataset gener-
ally; hence, dimensionality reduction can be seen as a
method for data compression. Additionally, this process
promotes data visualization, particularly when objects
aremapped onto twoor three dimensions. Finally, in the
context of classi�cation, dimensionality reduction can
be a useful tool for the following: (a) making tractable
classi�cation schemes that are super-linear with respect
to dimensionality, (b) reducing the variance of classi-
�ers that are plagued by large variance in higher dimen-
sionalities, and (c) removing the noise that may be
present, thus boosting classi�cation accuracy.

Motivation and Background
�ere are many techniques for dimensionality reduc-
tion. �e objective of dimensionality reduction tech-
niques is to appropriately select the k dimensions (and
also the number k) that would retain the important
characteristics of the original object. For example, when
performing dimensionality reduction on an image,
using a wavelet technique, then the desirable outcome is
for the di�erence between the original and �nal images
to be almost imperceptible.
When performing dimensionality reduction not on

a single object, but on a dataset, an additional require-
ment is for the method to preserve the relationship

Dimensionality Reduction D

D

between the objects in the original space.�is is partic-
ularly important for reasons of classi�cation and visual-
ization in the new space.

�ere exist two important categories of dimension-
ality reduction techniques:

● Feature selection techniques, where only the most
important or descriptive features/dimensions are
retained and the remaining are discarded. More
details on such techniques can be found under the
entry7Feature Selection.

● Feature projectionmethodologies, which project the
existing features onto di�erent dimensions or axes.
�e aim here is again, to �nd these new data axes
that retain the dataset structure and its variance as
closely as possible.

Feature projection techniques typically exploit the
correlations between the various data dimensions, with
the goal of creating dimensions/axes that are uncorre-
lated and su�ciently describe the data.
One of the most popular dimensionality reduction

techniques is Principal Components Analysis or PCA. It
attempts to discover those axes (or components) onto
which the data can be projected, while maintaining the
original correlation between the dimensions. Consider,
for example, a dataset that contains records of envi-
ronmental measurements over a period of time, such
as humidity and temperature. �e two attributes can

Temperature

H
um

id
ity

First principal component

Dimensionality Reduction. Figure . Principal

components analysis (PCA)

be highly correlated, as shown in Fig. . By deploying
PCA this trend will be discovered and the original two-
dimensional points can be reduced to one-dimensional,
by projecting the original points on the �rst principal
component. In that way the derived dataset can be stored
in less space.
PCA uses the Euclidean distance as the measure

of dissimilarity among the objects. �e �rst principal
component (or axis) indicates the direction of maxi-
mum variance in the original dimensions.�e second
component shows the direction of next highest variance
(and is uncorrelated to the �rst component), etc.
Other dimensionality reduction techniques opti-

mize or preserve di�erent criteria than PCA. Mani-
fold inspired methods like ISOMAP (Tenenbaum et al.,
) preserve the geodesic distances between objects.
�e notion here is to approximate the distance between
objects “through” the remaining ones. �e result of
such dimensionality reduction techniques, is that when
the data lie on a manifold, the projected dimensions
e�ectively ‘unfold’ the underlying high-dimensional
manifold. An example of this mapping is portrayed in
Fig. , where it is also compared with the respective
PCA mapping.
Other recent dimensionality reduction techniques

include locally linear embeddings (LLE) (Roweis and
Saul,) and Laplacian Eigenmaps (Belkin and
Niyogi,). We also refer the interested practitioners
to (van der Maaten et al.,), for a detailed compar-
ison of various techniques and also for Matlab imple-
mentations on a variety of dimensionality reduction
algorithms.
In general, dimensionality reduction is a commonly

practiced and useful operation in database andmachine
learning systems because it generally o�ers the follow-
ing desirable properties:

● Data compression: the dataset objects are repre-
sented in fewer dimensions, hence saving important
disk storage space and o�ering faster loading of the
compressed data from the disk.

● Better data visualization: the relationships between
the original high-dimensional objects can be visual-
ized in two- or three-dimensional projections.

● Improved classi�cation accuracy: this can be attri-
buted to both variance reduction and noise removal
from the original high-dimensional dataset.

 D Dimensionality Reduction

cba

Original data on 3D PCA mapping on 2D ISOMAP mapping on 2D

Dimensionality Reduction. Figure . Nonlinear dimensionality reduction techniques produce a better

low-dimensional data mapping, when the original data lie on a high-dimensional manifold

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of dimensions

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
ne

ig
hb

or
 w

ith
in

 r
an

ge
 w

w = 0.99
w = 0.97
w = 0.9

Dimensionality Reduction. Figure . Probability Pw(d)

against dimensionality d. The data becomes sparse in

higher dimensions

● More e�cient data retrieval: dimensionality reduc-
tion techniques can also assist in making faster
and more e�cient the retrieval of the original
uncompressed data, by o�ering very fast pre-
�ltering with the help of the compressed data rep-
resentation.

● Boosting index performance: more e�ective use of
indexing structures can be achieved by utilizing the
compressed data, since indexing techniques only
work e�ciently with lower-dimensional data (e.g.,
from to dimensions, depending on the type of
the index).

�e fact that indexing structures do not perform
e�ciently for higher-dimensional data is also known
as 7“curse of dimensionality.” Suppose that we are
interested in performing search operations on a set of
high-dimensional data. For simplicity let us assume that

the data lie in a unit hypercube C = [,]d, where d is
the data dimensionality. Given a query point, the prob-
ability Pw that a match (neighbor) exists within radius
w in the data space of dimensionality d is given by
Pw(d) = wd.
Figure illustrates this probability for various val-

ues of w. Evidently, at higher dimensionalities the data
becomes very sparse and even at large radii, only a
small portion of the entire space is covered. �is fact
is coined under the term ‘curse of dimensionality,’
which in simple terms translates into the following fact:
for large dimensionalities existing indexing structures
outperform sequential scan only when the dataset size
(number of objects) grows exponentially with respect to
dimensionality.

Dimensionality Reduction for Time-Series
Data
In this section we provide more detailed examples on
dimensionality reduction techniques for 7time-series
data. We chose time-series in order to convey more
visually the e�ect of dimensionality reduction particu-
larly for high-dimensional data such as time-series.
Later, we also show how dimensionality reduction

on large datasets can help speed up the search opera-
tions over the original uncompressed data.
Dimensionality reduction for one- and two-

dimensional signals is commonly accomplished using
the Fourier decomposition. Fourier decomposition was
�rst presented in the beginning of the nineteenth cen-
tury by Jean Baptiste Fourier (–), in his seminal
workOn the Propagation of Heat in Solid Bodies. Fourier
reached the conclusion that every function could be
expressed as a sum of trigonometrical series (i.e., sines
and cosines). �is original work was initially faced

Dimensionality Reduction D

D

with doubt (even by famous mathematicians such as
Lagrange and Laplace), because of its unexpected result
and because the solution was considered impractical
due of the complex integration functions.
However, in the twentieth century no one can deny

the importance of Fourier’s �ndings.With the introduc-
tion of fast ways to compute the Fourier decomposi-
tion in the s (Fast Fourier Transform or FFT), the
barrier of the high computational complexity has been
li�ed. What the Fourier transform attempts to achieve
is, represent the original signal as a linear combination
of sinusoids. �erefore, each Fourier coe�cient is a
complex number that essentially encodes the amplitude
and phase of each of these sinusoids, a�er the original
signal is projected on them.
Formost signals, utilizing just few of the coe�cients

we can reconstruct with high accuracy the original
sequence.�is is where the great power of the Fourier
transformation lies; by neglecting the majority of the
coe�cients, we can essentially compress the signal or
describe it with fewer numbers. For stock market data
or other time-series that follow the pattern of a random
walk, the �rst few coe�cients, which capture the low
frequencies of the signal, are adequate to describe accu-
rately the signal (or capturemost of its energy). Figure
depicts a signal of , points and its reconstruction
using seven Fourier coe�cients (i.e., using × =
numbers).

Time series

 Fourier components

a0

a1

a2

a3

a4

a5

a6

Dimensionality Reduction. Figure . Decomposition of a

signal into the first seven Fourier coefficients. We can see

that using only of few of the Fourier coefficients we can

achieve a good reconstruction of the original signal

Other popular dimensionality reduction techniques
for time-series data are the various wavelet transforms,
piecewise linear approximations, piecewise aggregate
approximation (PAA), which can be regarded as a
projection in time of the wavelet coe�cients, adap-
tive piecewise constant approximation (APCA (Keogh
et al.,)), that utilizes the highest energy wavelet
coe�cients, Chebyshev Polynomial Approximation and
Symbolic Approximation of time-series (such as the
SAX representation (Lin et al.,)).
No dimensionality reduction technique is univer-

sally better than all the rest. According to the dataset
characteristics, one methodmay provide better approx-
imation of a dataset compared to other techniques.
�erefore, the key is to carefully pick the representation
that better suits the speci�c application or the task at
hand. In Fig. we demonstrate various dimensionality
reduction techniques and the quality of the time-series
approximation. For all of the methods, the same stor-
age space is allocated for the compressed sequences.�e
time-series reconstruction is shown in darker color, and
the approximation error to the original sequence is also
reported. In general, we can notice that dimensionality
reduction techniques based on the selection of the high-
est energy coe�cients can consistently provide a high
quality sequence approximation.

Dimensionality Reduction and Lower-Bounding

Dimensionality reduction can be a useful tool for speed-
ing up search operations. Figure elucidates dimen-
sionality reduction for high-dimensional time-series
data. A�er dimensionality reduction, each object is rep-
resented using fewer dimensions (attributes), so it is
represented in a lower-dimensional space. Suppose that
a user poses another high-dimensional object as a query
and wishes to �nd all the objects closest to this query.
In order to avoid the search on the original high-

dimensional space, the query is also transformed into
a point in the low-dimensional space and its closest
matches can be discovered in the vicinity of the pro-
jected query point. However, when searching using the
compressed objects, one needs to provide an estimate
of the distance between the original objects. Typically,
it is preferable that the distance in the new space under-
estimates (or lower bounds) the distance in the original
high-dimensional space.�e reason for this is explained
as follows.

 D Dimensionality Reduction

PAA
e = 48.3, coeffs =10

APCA
e = 46, coeffs = 5

Chebyshev
e = 47.7, coeffs =10

Fourier (first coeffs)
e = 47.4, coeffs = 5

Fourier (best coeffs)
e = 29.3, coeffs = 5

PAA
e = 22.5, coeffs =10

APCA
e = 23.1, coeffs = 5

Chebyshev
e = 19.2, coeffs = 10

Fourier (first coeffs)
e = 19.5, coeffs= 5

Fourier (best coeffs)
e = 15.4, coeffs = 5

Dimensionality Reduction. Figure . Comparison of various dimensionality reduction techniques for time-series data.

The darker series indicates the approximation using the indicated number of coefficients. Each figure also reports

the error e introduced by the dimensionality reduction technique. Lower errors indicate better low-dimensional

approximation of the original object

X

Query

Dimensionality Reduction. Figure . Search and dimen-

sionality reduction. Every object (time-series in this

case) is tranformed into a lower-dimensional point. User

queries are also projected into the new space. Similarity

search consists in finding the closest points to the query

projection

Suppose thatwe are seeking for the -NN (7Nearest-
Neighbor) of a query Q in a database D. By exam-
ining all the objects (linear scan) one can guarantee
that the best match will be found. Can one provide
the same guarantee (i.e., that the same best match will

be returned) when examining the compressed objects
(a�er dimensionality reduction)?

�e answer is positive, as long as the distance on
the compressed data underestimates or lower bounds the
distance on the rawdata. In otherwords, the dimension-
ality reduction (dR) that is performed on the raw data
must have the following property:

Having A ⊂ D dRÐ→ a and Q dRÐ→ q
then

∆(q, a) ≤ ∆(Q,A)
Since the computed distance ∆ between any two

compressed objects is underestimated, false alarmsmay
arise. Suppose, for example, that our database consists
of six two-dimensional point (Fig.). If the user query
is “Find everything that lies within a radius of around
A,” then B is the only result.
Let us assume for a minute that the dimensionality

reduction that is performed on the data is simply a pro-
jection on the x-axis (Fig.). In this new space, seeking
for points within a range of fromA, would also retrieve
pointC, which is called a false alarm.�is does not con-
stitute a problem, because in a post-processing phase,
the calculation of the exact distance will eliminate any
false alarms. Suppose now, that another dimensional-
ity reduction results in the projection of Fig. . Here, we
have a case of a false dismissal, since object B lies outside
the range of search.

�is generic framework for similarity search using
dimensionality reduction and lower-bounding distance

Directed Graphs D

D

1 2 3 4 5

1

2

3

4

5

Query
A

F

D

C

E

B

Dimensionality Reduction. Figure . Range search in the

original space, returns only object B

1 2 3 4 5
Query

FA D EC B

False alarm

Dimensionality Reduction. Figure . Because of the

dimensionality reduction, false alarms may arise

1 2 3 4 5
Query

FA D EC B

False dismissal

Dimensionality Reduction. Figure . False dismissals

may happen when the lower bounding lemma is not

obeyed

functions was proposed in (Agrawal et al.,) and
is called GEMINI (GEneric Multimedia INdexIng).
One can show that orthonormal dimensionality reduc-
tion techniques (PCA, Fourier, Wavelets) satisfy the
lower bounding lemma when the distance used is the
Euclidean distance.
In conclusion, for search operations, by using

dimensionality reduction one can examine �rst the
compressed objects and eliminate many of the uncom-
pressed objects from examination using a lower-
bounding approximation of the distance function.�is

initial search will return a superset of the correct
answers (no false dismissals). False alarms can be �l-
tered out by computing the original distance between
the remaining uncompressed objects and the query.
�erefore, a signi�cant speedup is achieved by exam-
ining only a small subset of the original raw data.

Cross References
7Curse of Dimensionality
7Feature Selection

Recommended Reading
Agrawal, R., Faloutsos, C., & Swami, A. (). Efficient similar-

ity search in sequence databases. Proceedings of Foundations
of Data Organization and Algorithms, Chicago, Illinois. (pp.
–).

Belkin, M., & Niyogi, P. (). Laplacian Eigenmaps and spectral
techniques for embedding and clustering. Advances in Neural
Information Processing Systems. (Vol. , pp. –). Canada:
Vancouver.

Jolliffee, I. T. (). Principal component analysis (nd ed.). New
York: Springer.

Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S. ().
Locally adaptive dimensionality reduction for indexing large
time series databases. Proceedings of ACM SIGMOD, (pp. –
). Santa Barbara, CA.

Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (). A symbolic
representation of time series, with implications for streaming
algorithms. Proceedings of the th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery. San
Diego, CA.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (). A global
geometric framework for nonlinear dimensionality reduction.
Science, (), –.

Roweis, S., & Saul, L. (). Nonlinear dimensionality reduction by
locally linear embedding. Science, (), –.

van der Maaten, L. J. P., Postma, E. O., and van den Herik, H. J.
(). Dimensionality reduction: a comparative review (TiCC-
TR -), Tilburg University Technical Report.

Dimensionality Reduction on Text
via Feature Selection

7Feature Selection in Text Mining

Directed Graphs

7Digraphs

 D Dirichlet Process

Dirichlet Process

YeeWhye Teh
University College London,
London, UK

Definition
�e Dirichlet process (DP) is a stochastic process used
in 7Bayesian nonparametric models of data, particu-
larly in Dirichlet process mixture models (also known
as in�nite mixture models). It is a distribution over dis-
tributions, that is, each draw from a Dirichlet process
is itself a distribution. It is called a Dirichlet pro-
cess because it has Dirichlet distributed �nite dimen-
sional marginal distributions, just as the 7Gaussian
process, another popular stochastic process used for
Bayesian nonparametric regression, has Gaussian dis-
tributed �nite dimensional marginal distributions. Dis-
tributions drawn from a Dirichlet process are dis-
crete, but cannot be described using a �nite number of
parameters, thus the classi�cation as a nonparametric
model.

Motivation and Background
Probabilistic models are used throughout machine
learning to model distributions over observed data.
Traditional parametric models using a �xed and �nite
number of parameters can su�er from over- or under-
�tting of data when there is a mis�t between the com-
plexity of the model (o�en expressed in terms of the
number of parameters) and the amount of data avail-
able. As a result, model selection, or the choice of a
model with the right complexity, is o�en an important
issue in parametric modeling. Unfortunately, model
selection is an operation that is fraught with di�cul-
ties, whether we use 7cross validation or marginal
probabilities as the basis for selection. �e Bayesian
nonparametric approach is an alternative to paramet-
ric modeling and selection. By using a model with an
unbounded complexity, under�tting is mitigated, while
the Bayesian approach of computing or approximating
the full posterior over parameters mitigates over�tting.
For a general overview of Bayesian nonparametrics, see
7Bayesian Nonparametrics.

Nonparametric models are also motivated philo-
sophically by Bayesian modeling. Typically we assume
that we have an underlying and unknown distribu-
tion which we wish to infer given some observed data.
Say we observe x, . . . , xn, with xi ∼ F independent
and identical draws from the unknown distribution F.
A Bayesian would approach this problem by placing a
prior over F then computing the posterior over F given
data. Traditionally, this prior over distributions is given
by a parametric family. But constraining distributions
to lie within parametric families limits the scope and
type of inferences that can be made.�e nonparamet-
ric approach instead uses a prior over distributions with
wide support, typically the support being the space of
all distributions. Given such a large space over which
we make our inferences, it is important that posterior
computations are tractable.

�e Dirichlet process is currently one of the most
popular Bayesian nonparametric models. It was �rst
formalized in Ferguson () for general Bayesian sta-
tistical modeling, as a prior over distributions with
wide support yet tractable posteriors. (Note however
that related models in population genetics date back
to Ewens ()). Unfortunately the Dirichlet process
is limited by the fact that draws from it are discrete
distributions, and generalizations to more general pri-
ors did not have tractable posterior inference until the
development of MCMC (7Markov chain Monte Carlo)
techniques (Escobar & West, ; Neal,). Since
then there has been signi�cant developments in terms
of inference algorithms, extensions, theory and appli-
cations. In the machine learning, community work on
Dirichlet processes date back to Neal () and Ras-
mussen ().

Theory
�eDirichlet process (DP) is a stochastic process whose
sample paths are probability measures with probability
one. Stochastic processes are distributions over func-
tion spaces, with sample paths being random functions
drawn from the distribution. In the case of the DP, it is a
distribution over probability measures, which are func-
tions with certain special properties, which allow them
to be interpreted as distributions over some probability
space Θ.�us draws from a DP can be interpreted as

Dirichlet Process D

D

random distributions. For a distribution over probabil-
ity measures to be a DP, its marginal distributions have
to take on a speci�c form which we shall give below.
We assume that the user is familiar with a modicum of
measure theory and Dirichlet distributions.
Before we proceed to the formal de�nition, we will

�rst give an intuitive explanation of theDP as an in�nite
dimensional generalization of Dirichlet distributions.
Consider a Bayesian mixture model consisting of K
components:

π∣α ∼ Dir (α
K , . . . ,

α
K) θ∗k ∣H ∼ H

zi∣π ∼ Mult (π) xi∣zi,{θ∗k} ∼ F (θ∗zi) ()

where π is the mixing proportion, α is the pseudo-
count hyperparameter of the Dirichlet prior, H is the
prior distribution over component parameters θ∗k , and
F(θ) is the component distribution parametrized by θ.
It can be shown that for large K, because of the particu-
lar way we parametrized the Dirichlet prior over π, the
number of components typically used to model n data
items becomes independent of K and is approximately
O(α logn). �is implies that the mixture model stays
well de�ned as K →∞, leading to what is known as an
in�nite mixture model (Neal, ; Rasmussen,).
�is model was �rst proposed as a way to sidestep the
di�cult problem of determining the number of compo-
nents in a mixture, and as a nonparametric alternative
to �nite mixtures whose size can grow naturally with
the number of data items.�e more modern de�nition
of this model uses a DP and with the resulting model
called a DP mixture model.�e DP itself appears as the
K → ∞ limit of the random discrete probability mea-
sure∑Kk= πkδθ∗k , where δθ is a point mass centered at θ.
We will return to the DPmixture toward the end of this
entry.

Dirichlet Process

For a randomdistributionG to be distributed according
to a DP, its marginal distributions have to be Dirichlet
distributed (Ferguson,). Speci�cally, letH be a dis-
tribution over Θ and α be a positive real number.�en
for any �nite measurable partition A, . . . ,Ar of Θ the
vector (G(A), . . . ,G(Ar)) is random since G is ran-
dom.We sayG is Dirichlet process distributedwith base
distribution H and concentration parameter α, written

G ∼ DP (α,H), if
(G(A), . . . ,G(Ar)) ∼ Dir (αH(A), . . . , αH(Ar))

()

for every �nite measurable partition A, . . . ,Ar of Θ.
�e parameters H and α play intuitive roles in

the de�nition of the DP.�e base distribution is basi-
cally the mean of the DP: for any measurable set
A ⊂ Θ, we have E[G(A)] = H(A). On the other hand,
the concentration parameter can be understood as an
inverse variance: V[G(A)] = H(A)(−H(A))/(α +).
�e larger α is, the smaller the variance, and the DPwill
concentratemore of itsmass around themean.�e con-
centration parameter is also called the strength param-
eter, referring to the strength of the prior when using
the DP as a nonparametric prior over distributions in
a Bayesian nonparametric model, and the mass param-
eter, as this prior strength can be measured in units of
sample size (or mass) of observations. Also, notice that
α and H only appear as their product in the de�nition
() of the DP. Some authors thus treat H̃ = αH, as the
single (positive measure) parameter of the DP, writing
DP (H̃) instead of DP (α,H).�is parametrization can
be notationally convenient, but loses the distinct roles α
and H play in describing the DP.
Since α describes the concentration of mass around

the mean of the DP, as α → ∞, we will have G(A) →
H(A) for any measurable A, that is G → H weakly or
pointwise. However this not equivalent to saying that
G → H. As we shall see later, draws from a DP will be
discrete distributions with probability one, even if H is
smooth.�usG andH need not even be absolutely con-
tinuous with respect to each other.�is has not stopped
some authors from using the DP as a nonparametric
relaxation of a parametric model given by H. However,
if smoothness is a concern, it is possible to extend the
DP by convolving G with kernels so that the resulting
random distribution has a density.
A related issue to the above is the coverage of the DP

within the class of all distributions over Θ. We already
noted that samples from the DP are discrete, thus the
set of distributions with positive probability under the
DP is small. However it turns out that this set is also
large in a di�erent sense: if the topological support of
H (the smallest closed set S in Θ with H(S) =) is all
of Θ, then any distribution over Θ can be approximated

 D Dirichlet Process

arbitrarily accurately in the weak or pointwise sense by
a sequence of draws from DP (α,H).�is property has
consequence in the consistency of DPs discussed later.
For all but the simplest probability spaces, the num-

ber of measurable partitions in the de�nition () of the
DP can be uncountably large.�e natural question to
ask here is whether objects satisfying such a large num-
ber of conditions as () can exist.�ere are a number
of approaches to establish existence. Ferguson ()
noted that the conditions () are consistent with each
other, and made use of Kolmogorov’s consistency the-
orem to show that a distribution over functions from
the measurable subsets of Θ to [,] exists satisfying
() for all �nite measurable partitions of Θ. However
it turns out that this construction does not necessar-
ily guarantee a distribution over probability measures.
Ferguson () also provided a construction of the
DP by normalizing a gamma process. In a later sec-
tion we will see that the predictive distributions of the
DP are related to the Blackwell–MacQueen urn scheme.
Blackwell andMacQueen () made use of this, along
with de Finetti’s theorem on exchangeable sequences, to
prove existence of the DP. All the above methods made
use of powerful and general mathematical machinery to
establish existence, and o�en require regularity assump-
tions on H and Θ to apply these machinery. In a later
section,we describe a stick-breaking construction of the
DP due to Sethuraman (), which is a direct and ele-
gant construction of the DP, which need not impose
such regularity assumptions.

Posterior Distribution

Let G ∼ DP (α,H). Since G is a (random) distribution,
we can in turn draw samples fromG itself. Let θ, . . . , θn
be a sequence of independent draws from G. Note that
the θ i’s take values in Θ sinceG is a distribution over Θ.
We are interested in the posterior distribution ofG given
observed values of θ, . . . , θn. Let A, . . . ,Ar be a �nite
measurable partition of Θ, and let nk = #{i : θ i ∈ Ak}
be the number of observed values in Ak. By () and the
conjugacy between the Dirichlet and the multinomial
distributions, we have

(G(A), . . . ,G(Ar))∣θ, . . . , θn∼ Dir(αH(A) + n, . . . , αH(Ar) + nr) ()

Since the above is true for all �nite measurable
partitions, the posterior distribution over G must be a

DP as well. A little algebra shows that the posterior DP
has updated concentration parameter α+n and base dis-
tribution αH+∑ni= δθ i

α+n , where δi is a point mass located at
θ i and nk = ∑ni= δi(Ak). In other words, the DP pro-
vides a conjugate family of priors over distributions that
is closed under posterior updates given observations.
Rewriting the posterior DP, we have

G∣θ, . . . , θn ∼ DP (α + n, α
α+nH + n

α+n
∑
n
i= δθ i
n) ()

Notice that the posterior base distribution is a weighted
average between the prior base distribution H and the
empirical distribution ∑

n
i= δθ i
n . �e weight associated

with the prior base distribution is proportional to α,
while the empirical distribution has weight propor-
tional to the number of observations n. �us we can
interpret α as the strength or mass associated with the
prior. In the next section we will see that the posterior
base distribution is also the predictive distribution of
θn+ given θ, . . . , θn. Taking α → , the prior becomes
non-informative in the sense that the predictive distri-
bution is just given by the empirical distribution. On the
other hand, as the amount of observations grows large,
n≫ α, the posterior is simply dominated by the empir-
ical distribution, which is in turn a close approximation
of the true underlying distribution.�is gives a consis-
tency property of the DP: the posterior DP approaches
the true underlying distribution.

Predictive Distribution and the Blackwell–MacQueen

Urn Scheme

Consider again drawing G ∼ DP (α,H), and draw-
ing an i.i.d. (independently and identically distributed)
sequence θ, θ, . . . ∼ G. Consider the predictive dis-
tribution for θn+, conditioned on θ, . . . , θn and with
G marginalized out. Since θn+∣G, θ, . . . , θn ∼ G, for a
measurable A ⊂ Θ, we have

P(θn+ ∈ A∣θ, . . . , θn) = E[G(A)∣θ, . . . , θn]
=

α + n (αH(A) + n∑
i=

δθ i(A)) ()

where the last step follows from the posterior base dis-
tribution of G given the �rst n observations.�us with
Gmarginalized out:

θn+∣θ, . . . , θn ∼
α + n (αH + n∑

i=
δθ i) ()

Dirichlet Process D

D

�erefore the posterior base distribution given θ, . . . , θn
is also the predictive distribution of θn+.

�e sequence of predictive distributions () for
θ, θ, . . . is called theBlackwell–MacQueenurn scheme
(Blackwell & MacQueen,).�e name stems from
a metaphor useful in interpreting (). Speci�cally, each
value in Θ is a unique color, and draws θ ∼ G are
balls with the drawn value being the color of the ball.
In addition we have an urn containing previously seen
balls. In the beginning there are no balls in the urn, and
we pick a color drawn from H, that is, draw θ ∼ H,
paint a ball with that color, and drop it into the urn.
In subsequent steps, say the n + st, we will either, with
probability α

α+n , pick a new color (draw θn+ ∼ H), paint
a ball with that color and drop the ball into the urn,
or, with probability n

α+n , reach into the urn to pick a
random ball out (draw θn+ from the empirical distri-
bution), paint a new ball with the same color, and drop
both balls back into the urn.

�e Blackwell–MacQueen urn scheme has been
used to show the existence of the DP (Blackwell &Mac-
Queen,). Starting from (), which are perfectly well
de�ned conditional distributions regardless of the ques-
tion of the existence of DPs, we can construct a distri-
bution over sequences θ, θ, . . . by iteratively drawing
each θ i given θ, . . . , θ i−. For n ≥ let

P(θ, . . . , θn) = n∏
i=
P(θ i∣θ, . . . , θ i−) ()

be the joint distribution over the �rst n observations,
where the conditional distributions are given by (). It
is straightforward to verify that this random sequence is
in�nitely exchangeable.�at is, for every n, the proba-
bility of generating θ, . . . , θn using (), in that order, is
equal to the probability of drawing them in any alterna-
tive order. More precisely, given any permutation σ on
, . . . ,n, we have

P(θ, . . . , θn) = P(θσ(), . . . , θσ(n)) ()

Now de Finetti’s theorem states that for any in�nitely
exchangeable sequence θ, θ, . . . there is a random dis-
tribution G such that the sequence is composed of i.i.d.
draws from it:

P(θ, . . . , θn) = ∫ n∏
i=
G(θ i)dP(G) ()

In our setting, the prior over the random distribution
P(G) is precisely the Dirichlet process DP (α,H), thus
establishing existence.
A salient property of the predictive distribution

() is that it has point masses located at the previous
draws θ, . . . , θn. A �rst observation is that with positive
probability draws from G will take on the same value,
regardless of smoothness of H. �is implies that the
distribution G itself has point masses. A further obser-
vation is that for a long enough sequence of draws from
G, the value of any draw will be repeated by another
draw, implying that G is composed only of a weighted
sum of point masses, that is, it is a discrete distribu-
tion. We will see two sections below that this is indeed
the case, and give a simple construction for G called
the stick-breaking construction. Before that, we shall
investigate the clustering property of the DP.

Clustering, Partitions, and the Chinese Restaurant

Process

In addition to the discreteness property of draws from
a DP, () also implies a 7clustering property.�e dis-
creteness and clustering properties of the DP play cru-
cial roles in the use of DPs for clustering via DPmixture
models, described in the application section. For now
we assume that H is smooth, so that all repeated val-
ues are due to the discreteness property of the DP and
not due to H itself. (Similar conclusions can be drawn
when H has atoms, there is just more bookkeeping.)
Since the values of draws are repeated, let θ∗ , . . . , θ∗m be
the unique values among θ, . . . , θn, and nk be the num-
ber of repeats of θ∗k .�e predictive distribution can be
equivalently written as

θn+ ∣θ, . . . , θn ∼
α + n (αH + m∑

k=
nkδθ∗k) ()

Notice that value θ∗k will be repeated by θn+ with prob-
ability proportional to nk, the number of times it has
already been observed.�e larger nk is, the higher the
probability that it will grow. �is is a rich-gets-richer
phenomenon, where large clusters (a set of θ i’s with
identical values θ∗k being considered a cluster) grow
larger faster.

 D Dirichlet Process

We can delve further into the clustering property of
the DP by looking at partitions induced by the cluster-
ing.�e unique values of θ, . . . , θn induce a partition-
ing of the set [n] = {, . . . ,n} into clusters such that
within each cluster, say cluster k, the θ i’s take on the
same value θ∗k . Given that θ, . . . , θn are random, this
induces a random partition of [n].�is random parti-
tion in fact encapsulates all the properties of the DP, and
is a very well-studied mathematical object in its own
right, predating even theDP itself (Aldous, ; Ewens,
; Pitman,). To see how it encapsulates the DP,
we simply invert the generative process. Starting from
the distribution over random partitions, we can recon-
struct the joint distribution () over θ, . . . , θn, by �rst
drawing a random partition on [n], then for each clus-
ter k in the partition draw a θ∗k ∼ H, and �nally assign
θ i = θ∗k for each i in cluster k. From the joint distribu-
tion () we can obtain theDP by appealing to de Finetti’s
theorem.

�e distribution over partitions is called theChinese
restaurant process (CRP) due to a di�erent metaphor.
(�e name was coined by Lester Dubins and Jim Pit-
man in the early s (Aldous,)) In this metaphor
we have a Chinese restaurant with an in�nite number
of tables, each of which can seat an in�nite number of
customers.�e �rst customer enters the restaurant and
sits at the �rst table. �e second customer enters and
decides either to sit with the �rst customer, or by her-
self at a new table. In general, the n+ st customer either
joins an already occupied table k with probability pro-
portional to the number nk of customers already sitting
there, or sits at a new table with probability propor-
tional to α. Identifying customers with integers , , . . .
and tables as clusters, a�er n customers have sat down
the tables de�ne a partition of [n] with the distribution
over partitions being the same as the one above. �e
fact that most Chinese restaurants have round tables
is an important aspect of the CRP. �is is because it
does not just de�ne a distribution over partitions of [n],
it also de�nes a distribution over permutations of [n],
with each table corresponding to a cycle of the permu-
tation.We do not need to explore this aspect further and
refer the interested reader to Aldous () and Pitman
().

�is distribution over partitions �rst appeared in
population genetics, where it was found to be a robust
distribution over alleles (clusters) among gametes

(observations) under simplifying assumptions on the
population, and is known under the name of Ewens
sampling formula (Ewens,). Before moving on we
shall consider just one illuminating aspect, speci�cally
the distribution of the number of clusters among n
observations. Notice that for i ≥ , the observation θ i
takes on a new value (thus incrementingm by one) with
probability α

α+i− independently of the number of clus-
ters among previous θ’s.�us the number of cluster m
has mean and variance:

E[m∣n] = n∑
i=

α
α + i − = α(ψ(α + n) − ψ(α))

≃ α log(+ n
α
) for N, α ≫ , ()

V[m∣n] = α(ψ(α + n) − ψ(α))
+ α(ψ′(α + n) − ψ′(α))

≃ α log(+ n
α
) for n > α ≫ , ()

whereψ(⋅) is the digamma function.Note that the num-
ber of clusters grows only logarithmically in the number
of observations.�is slow growth of the number of clus-
ters makes sense because of the rich-gets-richer phe-
nomenon: we expect there to be large clusters thus the
number of clusters m has to be smaller than the num-
ber of observations n. Notice that α controls the number
of clusters in a direct manner, with larger α implying
a larger number of clusters a priori.�is intuition will
help in the application of DPs to mixture models.

Stick-Breaking Construction

Wehave already intuited that draws from aDP are com-
posed of a weighted sum of point masses. Sethuraman
() made this precise by providing a constructive
de�nition of the DP as such, called the stick-breaking
construction. �is construction is also signi�cantly
more straightforward and general than previous proofs
of the existence of DPs. It is simply given as follows:

βk ∼ Beta (, α) θ∗k ∼ H
πk = βk

k−∏
l=

(− βk) G = ∞∑
k=

πkδθ∗k ()

�en G∼ DP (α,H). �e construction of π can be
understood metaphorically as follows. Starting with a
stick of length , we break it at β, assigning π to be the

Dirichlet Process D

D

length of stick we just broke o�. Now recursively break
the other portion to obtain π, π, and so forth. �e
stick-breaking distribution over π is sometimes writ-
ten π ∼ GEM (α), where the letters stand for Gri�ths,
Engen, and McCloskey (Pitman,). Because of its
simplicity, the stick-breaking construction has lead to
a variety of extensions as well as novel inference tech-
niques for the Dirichlet process (Ishwaran & James,
).

Applications
Because of its simplicity, DPs are used across a wide
variety of applications of Bayesian analysis in both
statistics and machine learning.�e simplest and most
prevalent applications include Bayesian model valida-
tion, density estimation, and clustering via mixture
models. We shall brie�y describe the �rst two classes
before detailing DP mixture models.
How does one validate that a model gives a good �t

to some observed data?�e Bayesian approach would
usually involve computing the marginal probability of
the observed data under the model, and comparing
this marginal probability to that for other models. If
the marginal probability of the model of interest is
highest we may conclude that we have a good �t.�e
choice of models to compare against is an issue in this
approach, since it is desirable to compare against as
large a class of models as possible.�e Bayesian non-
parametric approach gives an answer to this question:
use the space of all possible distributions as our com-
parison class, with a prior over distributions. �e DP
is a popular choice for this prior, due to its simplicity,
wide coverage of the class of all distributions, and recent
advances in computationally e�cient inference in DP
models.�e approach is usually to use the given para-
metricmodel as the base distribution of theDP, with the
DP serving as a nonparametric relaxation around this
parametric model. If the parametric model performs
as well or better than the DP relaxed model, we have
convincing evidence of the validity of the model.
Another application of DPs is in 7density estima-

tion (Escobar & West, ; Lo, ; Neal, ; Ras-
mussen,). Here we are interested in modeling the
density fromwhich a given set of observations is drawn.
To avoid limiting ourselves to any parametric class, we
may again use a nonparametric prior over all densities.

Here again DPs are a popular. However note that distri-
butions drawn from a DP are discrete, thus do not have
densities.�e solution is to smooth out draws from the
DP with a kernel. Let G ∼ DP (α,H) and let f (x∣θ) be
a family of densities (kernels) indexed by θ. We use the
following as our nonparametric density of x:

p(x) = ∫ f (x∣θ)G(θ)dθ ()

Similarly, smoothing out DPs in this way is also useful
in the nonparametric relaxation setting above. Aswe see
below, this way of smoothing out DPs is equivalent to
DPmixturemodels, if the data distributions F(θ) below
are smooth with densities given by f (x∣θ).
Dirichlet Process Mixture Models

�e most common application of the Dirichlet process
is in clustering data using mixture models (Escobar &
West, ; Lo, ; Neal, ; Rasmussen,).
Here the nonparametric nature of the Dirichlet pro-
cess translates to mixture models with a countably
in�nite number of components. We model a set of
observations {x, . . . , xn} using a set of latent parame-
ters {θ, . . . , θn}. Each θ i is drawn independently and
identically from G, while each xi has distribution F(θ i)
parametrized by θ i:

xi∣θ i ∼ F(θ i)
θ i∣G ∼ G

G∣α,H ∼ DP (α,H) ()

BecauseG is discrete, multiple θ i’s can take on the same
value simultaneously, and the above model can be seen
as a mixture model, where xi’s with the same value of
θ i belong to the same cluster.�e mixture perspective
can be made more in agreement with the usual repre-
sentation of mixture models using the stick-breaking
construction (). Let zi be a cluster assignment vari-
able, which takes on value k with probability πk.�en
() can be equivalently expressed as

π∣α ∼ GEM (α) θ∗k ∣H ∼ H
zi∣π ∼ Mult (π) xi∣zi,{θ∗k} ∼ F (θ∗zi) ()

with G = ∑∞k= πkδθ∗k and θ i = θ∗zi . In mixture model-
ing terminology, π is the mixing proportion, θ∗k are the

 D Dirichlet Process

cluster parameters, F (θ∗k) is the distribution over data
in cluster k, and H the prior over cluster parameters.

�eDPmixturemodel is an in�nitemixturemodel –
a mixture model with a countably in�nite number of
clusters. However, because the πk’s decrease exponen-
tially quickly, only a small number of clusters will be
used to model the data a priori (in fact, as we saw previ-
ously, the expected number of components used a priori
is logarithmic in the number of observations). �is is
di�erent than a �nite mixture model, which uses a �xed
number of clusters tomodel the data. In the DPmixture
model, the actual number of clusters used tomodel data
is not �xed, and can be automatically inferred from data
using the usual Bayesian posterior inference framework
(seeNeal () for a survey ofMCMC inference proce-
dures forDPmixturemodels).�e equivalent operation
for �nite mixture models would be model averaging or
model selection for the appropriate number of com-
ponents, an approach that is fraught with di�culties.
�us in�nitemixturemodels as exempli�ed byDPmix-
ture models provide a compelling alternative to the
traditional �nite mixture model paradigm.

Generalizations and Extensions
�e DP is the canonical distribution over probability
measures and a wide range of generalizations have been
proposed in the literature. First and foremost is the
Pitman–Yor process (Ishwaran & James, ; Pitman
& Yor,), which has recently seen successful appli-
cations modeling data exhibiting power-law properties
(Goldwater, Gri�ths, & Johnson, ; Teh,).�e
Pitman–Yor process includes a third parameter d ∈[,), with d= reducing to the DP. �e various rep-
resentations of the DP, including the Chinese restau-
rant process and the stick-breaking construction, have
analogues for the Pitman–Yor process. Other gener-
alizations of the DP are obtained by generalizing one
of its representations. �ese include Pólya trees, nor-
malized random measure, Poisson–Kingman models,
species sampling models and stick-breaking priors.

�e DP has also been used in more complex models
involving more than one random probability measure.
For example, in nonparametric regression we might
have one probability measure for each value of a covari-
ate, and in multitask settings each task might be asso-
ciated with a probability measure with dependence

across tasks implemented using a hierarchical Bayesian
model. In the �rst situation, the class of models is typ-
ically called dependent Dirichlet processes (MacEach-
ern,), while in the second the appropriate model
is a hierarchical Dirichlet process (Teh, Jordan, Beal, &
Blei,).

Future Directions
�e Dirichlet process, and Bayesian nonparametrics
in general, is an active area of research within both
machine learning and statistics. Current research trends
span a number of directions. Firstly, there is the issue
of e�cient inference in DP models. Reference Neal
() is an excellent survey of the state-of-the-art in
, with all algorithms based on Gibbs sampling
or small-step Metropolis–Hastings MCMC sampling.
Since then there has been much work, including split-
and-merge and large-step auxiliary variable MCMC
sampling, sequential Monte Carlo, expectation prop-
agation, and variational methods. Secondly, there has
been interest in extending the DP, both in terms of
new random distributions, as well as novel classes of
nonparametric objects inspired by the DP.�irdly, the-
oretical issues of convergence and consistency are being
explored to provide frequentist guarantees for Bayesian
nonparametricmodels. Finally, there are applications of
such models, to clustering, transfer learning, relational
learning, models of cognition, sequence learning, and
regression and classi�cation among others. We believe
DPs and Bayesian nonparametrics will prove to be rich
and fertile grounds for research for years to come.

Cross References
7Bayesian Methods
7Bayesian Nonparametrics
7Clustering
7Density Estimation
7Gaussian Process
7Prior Probabilities

Further Reading
In addition to the references embedded in the text
above, we recommend the book (Hjort, Holmes,Müller,
& Walker,) on Bayesian nonparametrics.

Discretization D

D

Recommended Reading
Aldous, D. (). Exchangeability and related topics. In École d’Été

de Probabilités de Saint-Flour XIII- (pp. –). Berlin:
Springer.

Antoniak, C. E. (). Mixtures of Dirichlet processes with applica-
tions to Bayesian nonparametric problems. Annals of Statistics,
(), –.

Blackwell, D., & MacQueen, J. B. (). Ferguson distributions via
Pólya urn schemes. Annals of Statistics, , –.

Escobar, M. D., & West, M. (). Bayesian density estimation and
inference using mixtures. Journal of the American Statistical
Association, , –.

Ewens, W. J. (). The sampling theory of selectively neutral
alleles. Theoretical Population Biology, , –.

Ferguson, T. S. (). A Bayesian analysis of some nonparametric
problems. Annals of Statistics, (), –.

Goldwater, S., Griffiths, T. L., & Johnson, M. (). Interpolat-
ing between types and tokens by estimating power-law gen-
erators. In Advances in neural information processing systems
(Vol.).

Hjort, N., Holmes, C., Müller, P., &Walker, S. (Eds.). (). Bayesian
nonparametrics. Cambridge series in statistical and probabilistic
mathematics (Vol.). Cambridge University Press.

Ishwaran, H., & James, L. F. (). Gibbs sampling methods for
stick-breaking priors. Journal of the American Statistical Asso-
ciation, (), –.

Lo, A. Y. (). On a class of Bayesian nonparametric esti-
mates: I. Density estimates. Annals of Statistics, (),
–.

MacEachern, S. (). Dependent nonparametric processes. In Pro-
ceedings of the section on Bayesian statistical science. American
Statistical Association. Alexandria, VA, USA.

Neal, R. M. (). Bayesian mixture modeling. In Proceedings of the
workshop on maximum entropy and Bayesian methods of statisti-
cal analysis (Vol. , pp. –). Neal (): Kluwer Academic
Publishers, The Netherlands.

Neal, R. M. (). Markov chain sampling methods for Dirichlet
process mixture models. Journal of Computational and Graphi-
cal Statistics, , –.

Pitman, J. (). Combinatorial stochastic processes (Tech. Rep.
). Department of Statistics, University of California at
Berkeley. Lecture notes for St. Flour Summer School.

Pitman, J., & Yor, M. (). The two-parameter Poisson–Dirichlet
distribution derived from a stable subordinator. Annals of Prob-
ability, , –.

Rasmussen, C. E. (). The infinite Gaussian mixture model. In
Advances in neural information processing systems (Vol.).

Sethuraman, J. (). A constructive definition of Dirichlet priors.
Statistica Sinica, , –.

Teh, Y. W. (). A hierarchical Bayesian language model based
on Pitman–Yor processes. In Proceedings of the st inter-
national conference on computational linguistics and th
annual meeting of the association for computational linguistics
(pp. –).

Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (). Hierar-
chical Dirichlet processes. Journal of the American Statistical
Association, (), –.

Discrete Attribute

A discrete attribute assumes values that can be
counted.�e attribute cannot assume all values on the
number line within its value range. See 7Attribute and
7Measurement Scales.

Discretization

Ying Yang
Australian Taxation O�ce, Australia

Synonyms
Binning

Definition
Discretization is a process that transforms a 7numeric
attribute into a7categorical attribute. Under discretiza-
tion, a new categorical attribute X′ is formed from and
replaces an existing numeric attribute X. Each value x′

of X′ corresponds to an interval (a,b] of X. Any original
numeric value x of X that belongs to (a,b] is replaced by
x′. �e boundary values of formed intervals are o�en
called “cut points.”

Motivation and Background
Many learning systems require categorical data, while
many data are numeric. Discretization allows numeric
data to be transformed into categorical form suited
to processing by such systems. Further, in some cases
e�ective discretization can improve either computa-
tional or prediction performance relative to learning
from the original numeric data.

Taxonomy

�e following taxonomy identi�es many key dimen-
sions along which alternative discretization techniques
can be distinguished.

7Supervised vs. 7Unsupervised (Dougherty, Kohavi,
& Sahami,). Supervised methods use the class
information of the training instances to select dis-
cretization cut points. Methods that do not use the class
information are unsupervised.

 D Discriminative Learning

Global vs. Local (Dougherty et al.,). Global meth-
ods discretize with respect to the whole training data
space. �ey perform discretization only once, using a
single set of intervals throughout a single classi�cation
task. Local methods allow di�erent sets of intervals to
be formed for a single attribute, each set being applied
in a di�erent classi�cation context. For example, di�er-
ent discretizations of a single attribute might be applied
at di�erent nodes of a decision tree (Quinlan,).

Eager vs. Lazy (Hsu, Huang, & Wong,). Eager
methods perform discretization prior to classi�cation
time. Lazy methods perform discretization during the
process of classi�cation.

Disjoint vs. Nondisjoint (Yang & Webb,). Dis-
joint methods discretize the value range of a numeric
attribute into disjoint intervals. No intervals overlap.
Nondisjoint methods discretize the value range into
intervals that can overlap.

Parameterized vs. Unparameterized. Parameterized
discretization requires input from the user, such as the
maximum number of discretized intervals. Unparame-
terized discretization uses information only from data
and does not need input from the user, for instance, the
entropy minimization discretization (Fayyad & Irani,
).

Univariate vs.Multivariate (Bay,). Methods that
discretize each attribute in isolation are univariate.
Methods that take into consideration relationships
among attributes during discretization are multivariate.

Split vs.Merge (Kerber,) vs. Single-scan (Yang &
Webb,). Split discretization initially has the whole
value range as an interval and then continues split-
ting it into subintervals until some threshold is met.
Merge discretization initially puts each value into an
interval and then continues merging adjacent intervals
until some threshold is met. Single-scan discretization
uses neither split nor merge process. Instead, it scans
the ordered values only once, sequentially forming the
intervals.

Recommended Reading
Bay, S. D. (). Multivariate discretization of continuous vari-

ables for set mining. In Proceedings of the sixth ACM SIGKDD
international conference on knowledge discovery and data mining
(pp. –).

Dougherty, J., Kohavi, R., & Sahami, M. (). Supervised and
unsupervised discretization of continuous features. In Proceed-
ings of the twelfth international conference on machine learning
(pp. –).

Fayyad, U. M. & Irani, K. B. (). Multi-interval discretization
of continuous-valued attributes for classification learning. In
Proceedings of the thirteenth international joint conference on
artificial intelligence (pp. –).

Hsu, C. N., Huang, H. J., & Wong, T. T. (). Why discretiza-
tion works for naïve Bayesian classifiers. In Proceedings of the
seventeenth international conference on machine learning (pp.
–).

Kerber, R. (). ChiMerge: Discretization for numeric attributes.
In AAAI national conference on artificial intelligence (pp. –
).

Kononenko, I. (). Naive Bayesian classifier and continuous
Attributes. Informatica, (), –.

Quinlan, J. R. (). C.: Programs for machine learning. San
Francisco: Morgan Kaufmann Publishers.

Yang, Y., & Webb, G. (). Proportional k-interval dis-
cretization for naive-Bayes classifiers. In Proceedings of
the twelfth european conference on machine learning (pp.
–).

Yang, Y. & Webb, G. (). Non-disjoint discretization for naive-
Bayes classifiers. In Proceedings of the nineteenth international
conference on machine learning (pp. –).

Discriminative Learning

Definition
Discriminative learning refers to any 7classi�cation
learning process that classi�es by using a 7model or
estimate of the probability P(y ∣ x) without reference
to an explicit estimate of any of P(x), P(y, x), or P(x∣ y), where y is a class and x is a description of an
object to be classi�ed. Discriminative learning con-
trasts to 7generative learning which classi�es by using
an estimate of the joint probability P(y, x) or of the
prior probability P(y) and the conditional probability
P(x ∣ y).
It is also common to categorize as discriminative

any approaches that are directly based on a decision
risk function (such as 7Support Vector Machines,
7Arti�cial Neural Networks, and 7Decision Trees),
where the decision risk is minimized without estima-
tion of P(x), P(y, x), or P(x ∣ y).
Cross References
7Generative and Discriminative Learning

Document Classification D

D

Disjunctive Normal Form

Bernhard Pfahringer
University of Waikato, Hamilton, New Zealand

Disjunctive normal form is an important normal form
for propositional logic. A logic formula is in disjunctive
normal form if it is a single disjunction of conjunctions
of (possibly negated) literals. No more nesting and no
other negations are allowed. Examples are:

a¬b
a ∨ b(a ∧ ¬b) ∨ (c ∧ d)¬a ∨ (b ∧ ¬c ∧ d) ∨ (a ∧ ¬d)
Any arbitrary formula in propositional logic can be

transformed into disjunctive normal form by applica-
tion of the laws of distribution, De Morgan’s laws, and
by removing double negations. It is important to note
that this process can lead to exponentially larger for-
mulas which implies that the process in the worst case
runs in exponential time. An example for this behavior
is the following formula given in 7conjunctive normal
form (CNF), which is linear in the number of propo-
sitional variables in this form. When transformed into
disjunctive normal form (DNF), its size is exponentially
larger.

CNF: (a ∨ a) ∧ (a ∨ a) ∧ ⋅ ⋅ ⋅ ∧ (an ∨ an+)
DNF: (a ∧ a ∧ ⋅ ⋅ ⋅ ∧ an) ∨ (a ∧ a ∧ ⋅ ⋅ ⋅ ∧ an)∨ ⋅ ⋅ ⋅ ∨ (a ∧ a ∧ ⋅ ⋅ ⋅ ∧ an+)

Recommended Reading
Mendelson, E. (). Introduction to mathematical logic (th ed.)

(p.). Chapma & Hall.

Distance

7Similarity Measures

Distance Functions

7Similarity Measures

Distance Measures

7Similarity Measures

Distance Metrics

7Similarity Measures

Distribution-Free Learning

7PAC Learning

Divide-and-Conquer Learning

Synonyms
Recursive partitioning; TDIDT strategy

Definition
�e divide-and-conquer strategy is a learning algorithm
for inducing 7Decision Trees. Its name re�ects its key
idea, which is to successively partition the dataset into
smaller sets (the divide part), and recursively call itself
on each subset (the conquer part). It should not be con-
fused with the separate-and-conquer strategy which is
used in the7Covering Algorithm for rule learning.

Cross References
7Covering Algorithm
7Decision Tree

Document Classification

DunjaMladeni, Janez Brank, Marko Grobelnik
Jožef Stefan Institute, Ljubljana, Slovenia

Synonyms
Document categorization; Supervised learning on text
data

Definition
Document classi�cation refers to a process of assigning
one or more7labels for a document from a prede�ned

 D Document Classification

set of labels.�e main issues in document classi�cation
are connected to classi�cation of free text giving docu-
ment content. For instance, classifying Web documents
as being about arts, education, science, etc. or classifying
news articles by their topic. In general, one can con-
sider di�erent properties of a document in document
classi�cation and combine them, such as document
type, authors, links to other documents, content, etc.
Machine learning methods applied to document clas-
si�cation are based on general classi�cation methods
adjusted to handle some speci�cs of text data.

Motivation and Background
Documents and text data provide for valuable sources
of information and their growing availability in elec-
tronic form naturally led to application of di�erent
analytic methods. One of the common ways is to take
a whole vocabulary of the natural language in which
the text is written as a feature set, resulting in several
tens of thousands of features. In a simple setting, each
feature gives a count of the word occurrences in a doc-
ument. In this way, text of a document is represented
as a vector of numbers. �e representation of a par-
ticular document contains many zeros, as most of the
words from the vocabulary do not occur in a partic-
ular document. In addition to the already mentioned
two common speci�cs of text data, having a large num-
ber of features and a sparse data representation, it was
observed that frequency of words in text generally fol-
lows Zipf ’s law – a small subset of words occur very
frequently in texts while a large number of words occur
only rarely. Document classi�cation takes these and
some other data speci�cs into account when developing
the appropriate classi�cation methods.

Structure of Learning System
Document classi�cation is usually performed by repre-
senting documents as word-vectors, usually referred to
as the “bag-of-words” or “vector spacemodel” represen-
tation, and using documents that have been manually
classi�ed to generate a model for document classi�-
cation (Cohen & Singer, , Mladenić & Grobelnik,
; Sebastiani, ; Yang,).

Data Representation

In the word-vector representation of a document, a
vector of word weights is formed taking all the words

occurring in all the documents. Most researchers have
used single words when representing text, but there is
also research that proposes using additional information
to improve classi�cation results. For instance, the
feature set might be extended with various multi-
word features, e.g., n-grams (sequences of n adjacent
words), loose phrases (n-grams in which word order
is ignored), or phrases based on grammatical analysis
(noun phrases, verb phrases, etc.). Information exter-
nal to the documentsmight also be used if it is available;
for example, when dealing with Web pages, their graph
organization can be a source of additional features (e.g.,
features corresponding to the adjacency matrix; fea-
tures based on graph vertex statistics such as degree or
PageRank; or features taken from the documents that
are adjacent to the current document in theWeb graph).

�e commonly used approach to weighting words
is based on TF–IDF weights where the number of
occurrences of the word in the document, referred to
as term frequency (TF), is multiplied by the importance
of the word with regards to the whole corpus (IDF –
inverse document frequency).�e IDF weight for the
ith word is de�ned as IDFi= log(N/DFi), where N is
total number of documents and DFi is the document
frequency of the ith word (the number of documents
from the whole corpus in which the ith word appears).
�e IDF weight decreases the in�uence of common
words (which are not as likely to be useful for dis-
criminating between classes of documents) and favors
the less common words. However, the least frequently
occurring words are o�en deleted from the documents
as a preprocessing step, based on the notion that if a
word that does not occur o�en enough in the train-
ing set cannot be useful for learning and generaliza-
tion, and would e�ectively be perceived as noise by the
learning algorithm. A stopword list is also o�en used
to delete some of the most common and low-content
words (such as “the,” “of,” “in,” etc.) during preprocess-
ing. For many purposes, the vectors used to represent
documents should be normalized to unit length so that
the vector re�ects the contents and themes of the docu-
ment but not its length (which is typically not relevant
for the purposes of document categorization).
Even in a corpus of just a few thousand docu-

ments, this approach to document representation can
easily lead to a feature space of thousands, possibly tens
of thousands, of features. �erefore, feature selection

Document Classification D

D

is sometimes used to reduce the feature set before
training. Such questions as whether feature selection is
needed and/or bene�cial, and which feature selection
method should be used, depend considerably on the
learning algorithm used; the number of features to be
retained depends both on the learning algorithm and on
the feature selection method used. For example, naive
Bayes tends to bene�t, indeed require, heavy feature
selection while support vector machines (SVMs) tend
to bene�t little or nothing from it. Similarly, odds ratio
tends to value (some) rare features highly and therefore
requires a lot of features to be kept, while information
gain tends to score some of the more frequent features
highly and thus o�en works better if a smaller number
of features is kept (see also 7Feature Selection in Text
Mining).
Due to the large number of features in the original

data representation, some of the more computationally
expensive feature selection methods from traditional
machine learning cannot be usedwith textual data. Typ-
ically, simple feature scoringmeasures, such as informa-
tion gain, odds ratio, and chi-squared are used to rank
the features and the features whose score falls below
a certain threshold are discarded. A better, but com-
putationally more expensive feature scoring method is
to train a linear classi�er on the full feature set �rst
(e.g., using linear SVM, see below) and rank the features
by the absolute value of their weights in the resulting
linear model (see also 7Feature Construction in Text
Mining).

Classification

Di�erent classi�cation algorithms have been adjusted
and applied on text data. A few more popular are
described here.

7Naive Bayes based on the multinomial model,
where the predicted class for document d is the one
that maximizes the posterior probability P(c ∣d) ∝
P(c)ΠtP(t ∣ c) TF(t,d), where P(c) is the prior proba-
bility that a document belongs to class c, P(t ∣ c) is the
probability that a word chosen randomly in a docu-
ment from class c equals t, and TF(t, d) is the “term
frequency,” or the number of occurrences of word t in
a document d. Where there are only two classes, say c+
and c−, maximizing P(c ∣d) is equivalent to taking the
sign of ln P(c+ ∣d)/P(ct ∣d), which is a linear combina-
tion of TF(w, d).�us, the naive Bayes classi�er can be

seen as a linear classi�er as well.�e training consists
simply of estimating the probabilities P(t ∣ c) and P(c)
from the training documents.

7Perceptron trains a linear classi�er in an incre-
mental way as a neural unit using an additive update
rule. �e prediction for a document represented by
the vector x is sgn(wTx), where w is a vector of
weights obtained during training. Computation starts
with w = , then considers each training example xi in
turn. If the present w classi�es document xi correctly
it is le� unchanged, otherwise it is updated according
to the additive rule: w ← w + yixi, where yi is the cor-
rect class label of the document xi, namely yi = + for a
positive document, yi = for a negative one.

7SVM trains a linear classi�er of the form sgn
(wTx + b). Learning is posed as an optimization prob-
lem with the goal of maximizing the margin, i.e., the
distance between the separating hyperplanewTx+b =
and the nearest training vectors. An extension of this
formulation, known as the so� margin, also allows for
a wider margin at the cost of misclassifying some of
the training examples.�e dual form of this optimiza-
tion task is a quadratic programing problem and can be
solved numerically.
Results of numerous experiments reported in

research papers suggest that among the classi�cation
algorithms that have been adjusted to text data SVM,
Naive Bayes and k-Nearest Neighbor are among the
best performing (Lewis, Schapire, Callan, & Ron Papka,
). Moreover, experimental evaluation on some
standard Reuters news datasets shows that SVM tends
to outperform other classi�ers including Naive Bayes
and Perceptron (Mladenic, Brank, Grobelnik, & Milic-
Frayling,).

Evaluation Measures

A characteristic property of machine learning problems
arising in document classi�cation is a very unbalanced
class distribution. In a typical dataset there may be tens
(or sometimes hundreds or thousands) of categories,
most of which are very small. When we train a binary
(two-class) classi�cation model for a particular cate-
gory, documents belonging to that category are treated
as the positive class while all other documents are
treated as the negative class.�us, the negative class is
typically vastly larger as the positive one.�ese circum-
stances are not well suited to some traditional machine

 D Document Classification

learning evaluation measures, such as 7accuracy (if
almost all documents are negative, then a useless clas-
si�er that always predicts the negative class will have
very high accuracy). Instead, evaluation measures from
information retrieval are more commonly used, such
as 7precision, 7recall, the F-measure, the breakeven
point (BEP), and the area under the receiver operating
characteristic (ROC) curve (see also7ROC Analysis).

�e evaluation of a binary classi�er for a given cat-
egory c on a given test set can be conveniently summa-
rized in a contingency table. We can divide documents
into four groups depending on whether they belong to
c and whether our classi�er predicted them as positive
(i.e., supposedly belonging to c) or not:

Belongs to c Not in c

Predicted
negative

TP (true positives) FP (false positives)

Predicted
negative

FN (false negatives) TN (true negatives)

Given the number of documents in each of the four
groups (TP, FP, TN, and FN), we can compute various
evaluation measures as follows:

Precision = TP/(TP + FP)
Recall = TPrate = TP/(TP + FN)
FPrate = FP/(TN + FP)
F = •precision •recall/(precision + recall)

�us, precision is the proportion of documents pre-
dicted positive that are really positive, while recall is the
proportion of positive documents that have been cor-
rectly predicted as positive.�eF is the harmonicmean
of precision and recall; thus, it lies between precision
and recall, but is closer to the lower of these two values.
�is means that a classi�er with high F has both good
precision and good recall. In practice, there is usually
a tradeo� between precision and recall; by making the
classi�er more liberal (i.e., more likely to predict posi-
tive), we can increase recall at the expense of precision,
while by making it more conservative (less likely to pre-
dict positive) we can usually increase precision at the
expense of recall. O�en the classi�cationmodel involves
a threshold which can be varied at will to obtain various⟨precision, recall⟩ pairs.�ese can be plotted on a chart,

resulting in the precision–recall curve. As we decrease
the threshold (thus making the classi�er more liberal),
precision decreases and recall increases until at some
point precision and recall are equal; this value is known
as the (precision–recall) BEP (Lewis,). Instead of⟨precision, recall⟩ pairs, one canmeasure ⟨TPrate, FPrate⟩
pairs, resulting in a ROC curve (see ROC analysis).�e
area under the ROC curve is another valuable measure
of the classi�er quality.
Document classi�cation problems are typically

multi-class, multi-label problems, which are treated by
regarding each category as a separate two-class clas-
si�cation problem. A�er training a two-class classi�er
for each category and evaluating it, the question arises
how to combine these evaluation measures into an
overall evaluation measure. One way is macroaverag-
ing, which means that the values of precision, recall,
F, or whatever other measure we are interested in are
simply averaged over all the categories. Since small cate-
gories tend to be muchmore numerous than large ones,
macroaveraging tends to emphasize the performance of
our learning algorithm on small categories. An alter-
native approach is microaveraging, in which the con-
tingency tables for individual two-class classi�ers are
summed up and measures such as precision, recall, and
F computed from the resulting aggregated table.�is
approach emphasizes the performance of our learning
algorithm on larger categories.

Cross References
7Classi�cation
7Document Clustering
7Feature Selection
7Perceptron
7Semi-Supervised Text Processing
7Support Vector Machine
7Text Visualization

Recommended Reading
Cohen, W. W., & Singer, Y. (). Context sensitive learning meth-

ods for text categorization. In Proceedings of the th annual
international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. –). Zurich: ACM.

Lewis, D. D. (). Representation and learning in informa-
tion retrieval. PhD thesis, Department of Computer Science,
University of Massachusetts, Amherst, MA.

Document Clustering D

D

Lewis, D. D., Schapire, R. E., Callan, J. P., & Ron Papka, R. ()
Training algorithms for linear text classifiers. In Proceedings
of the th annual international ACM SIGIR conference on
research and development in information retrieval SIGIR-
(pp. –). New York: ACM.

Mladenic, D., Brank, J., Grobelnik, M., & Milic-Frayling, N. ().
Feature selection using linear classifier weights: Interaction
with classification models. In Proceedings of the twenty-seventh
annual international ACM SIGIR conference on research and
development in information retrieval SIGIR- (pp. –).
New York: ACM.

Mladenić, D., & Grobelnik, M. (). Feature selection on hierar-
chy of web documents. Journal of Decision Support Systems, ,
–.

Sebastiani, F. (). Machine learning for automated text catego-
rization. ACM Computing Surveys, (), –.

Yang, Y. (). An evaluation of statistical approaches to text
categorization. Journal of Information Retrieval, , –.

Document Clustering

Ying Zhao, George Karypis
Tsinghua University, Beijing, China
University of Minnesota, Minneapolis, USA

Synonyms
High-dimensional clustering; Text clustering; Unsuper-
vised learning on document datasets

Definition
At a high-level, the problem of document clustering
is de�ned as follows. Given a set S of n documents,
we would like to partition them into a predetermined
number of k subsets S, S, . . . , Sk, such that the doc-
uments assigned to each subset are more similar to
each other than the documents assigned to di�erent
subsets. Document clustering is an essential part of
text mining and has many applications in information
retrieval and knowledge management. Document clus-
tering faces twobig challenges: the dimensionality of the
feature space tends to be high (i.e., a document collec-
tion o�en consists of thousands or tens of thousands
unique words) and the size of a document collection
tends to be large.

Motivation and Background
7Clustering is an essential component of data mining
and a fundamental means of knowledge discovery in

data exploration. Fast and high-quality document clus-
tering algorithms play an important role in providing
intuitive navigation and browsing mechanisms as well
as in facilitating knowledge management. In recent
years, we have witnessed a tremendous growth in
the volume of text documents available on the Inter-
net, digital libraries, news sources, and company-wide
intranets.�is has led to an increased interest in devel-
oping methods that can help users e�ectively navi-
gate, summarize, and organize this information with
the ultimate goal of helping them �nd what they are
looking for. Fast and high-quality document cluster-
ing algorithms play an important role toward this goal
as they have been shown to provide both an intuitive
navigation/browsing mechanism by organizing large
amounts of information into a small number of mean-
ingful clusters as well as to greatly improve the retrieval
performance either via cluster-driven dimensionality
reduction, term-weighting, or query expansion.

Structure of Learning System
Figure shows the three procedures of transferring
a document collection to clustering results that are
valuable to users. Original documents are o�en plain
text �les, html �les, xml �les, or a mixture of them.
However, most clustering algorithms cannot operate

Text
Documents

Document
Representation

Clustering Results and
Evaluation

......
Partitional
Clustering

Aggemorative
Clustering

Model-based
Clustering

Document Clustering. Figure . Structure of document

clustering learning system

 D Document Clustering

on such textual �les directly. Hence, document rep-
resentation is needed to prepare original documents
into the data model on which clustering algorithms
can operate. �e actual clustering process can choose
clustering algorithms of various kinds: partitional clus-
tering, agglomerative clustering, model-based cluster-
ing, etc., depending on the characteristics of the dataset
and requirements of the application. We focus on two
kinds of clustering algorithms that have been widely
used in document clustering: partitional clustering and
agglomerative clustering. Finally, clustering results need
to be presented with proper quality evaluation to users.

Structure of Document Clustering
In the section, we describe document representation,
partitional document clustering, agglomerative docu-
ment clustering, and clustering evaluation in details.

Document Representation

We introduce here the most widely used document
model for clustering and information retrieval: term
frequency-inverse document frequency (tf-idf) vector-
space model (Salton,). In this model, each docu-
ment d is considered to be a vector in the term-space
and is represented by the vector

dtfidf = (tf log(n/df), tf log(n/df), . . . ,× tfm log(n/dfm)),
where tfi is the frequency of the ith term (i.e., term fre-
quency), n is the total number of documents, and dfi
is the number of documents that contain the ith term
(i.e., document frequency). To account for documents
of di�erent lengths, the length of each document vector
is normalized so that it is of unit length.

Similarity Measures

We need to de�ne similarity between two documents
under tf-idf model, which is essential to a clustering
algorithm. Two prominent ways have been proposed to
compute the similarity between two documents di and
dj. �e �rst method is based on the commonly-used
(Salton,) cosine function

cos(di,dj) = dtidj/(∥di∥ ∥dj∥),
and since the document vectors are of unit length, it
simpli�es to dtidj. �e second method computes the

similarity between the documents using the Euclidean
distance dis(di,dj) = ∥di − dj∥. Note that besides the
fact that onemeasures similarity and the othermeasures
distance, these measures are quite similar to each other
because the document vectors are of unit length.

Partitional Document Clustering

Partitional algorithms, such as K-means (MacQueen,
), K-medoids (Jain & Dubes,), probabilistic
(Dempster, Laird, & Rubin,), graph-partitioning-
based (Zahn,), or spectral-based (Boley,), �nd
the clusters by partitioning the entire dataset into either
a predetermined or an automatically derived number of
clusters. A key characteristic of many partitional clus-
tering algorithms is that they use a global criterion
function whose optimization drives the entire cluster-
ing process. For some of these algorithms the criterion
function is implicit (e.g., PDDP, Boley,), whereas
for other algorithms (e.g., K-means, MacQueen,)
the criterion function is explicit and can be easily stated.
�is latter class of algorithms can be thought of as
consisting of two key components. First is the crite-
rion function that the clustering solution optimizes,
and second is the actual algorithm that achieves this
optimization.

Criterion Function Criterion functions used in the par-
titional clustering re�ect the underlying de�nition of
the “goodness” of clusters.�e partitional clustering can
be considered as an optimization procedure that tries
to create high quality clusters according to a particu-
lar criterion function. Many criterion functions have
been proposed and analyzed (Duda,Hart, & Stork, ;
Jain & Dubes, ; Zhao & Karypis,). We list
in Table a total of seven di�erent clustering criterion
functions.�ese functions optimize various aspects of
intra-cluster similarity, inter-cluster dissimilarity, and
their combinations, and represent some of the most
widely used criterion functions for document cluster-
ing. �ese criterion functions utilize di�erent views
of the underlying collection, by modeling either the
objects as vectors in a high-dimensional space, or the
collection as a graph.

�e I criterion function () maximizes the sum
of the average pairwise similarities (as measured by
the cosine function) between the documents assigned
to each cluster weighted according to the size of each

Document Clustering D

D

Document Clustering. Table The mathematical

definition of various clustering criterion functions

Criterion
function

Optimization function

I maximize
k

∑

i=

ni

⎛

⎝
∑

v,u∈Si

sim(v,u)
⎞

⎠

()

I
maximize

k

∑

i=

√

∑

v,u∈Si

sim(v,u) ()

E minimize
k

∑

i=

ni
∑v∈Si ,u∈S sim(v,u)
√

∑v,u∈Si sim(v,u)
()

G minimize
k

∑

i=

∑v∈Si ,u∈S sim(v,u)

∑v,u∈Si sim(v,u)
()

G minimize
k

∑

r=

cut(Vr ,V − Vr)
W(Vr)

()

H maximize
I

E
()

H maximize
I

E
()

The notation in these equations are as follows: k is the total number
of clusters, S is the total objects to be clustered, Si is the set of objects
assigned to the ith cluster, ni is the number of objects in the ith
cluster, v and u represent two objects, and sim(v, u) is the similarity
between two objects

cluster. �e I criterion function () is used by the
popular vector-space variant of the K-means algorithm
(Cutting, Pedersen, Karger, & Tukey,). In this algo-
rithm each cluster is represented by its centroid vector
and the goal is to �nd the solution that maximizes the
similarity between each document and the centroid of
the cluster that is assigned to. Comparing I and I, we
see that the essential di�erence between them is that I
scales the within-cluster similarity by the ∥Dr∥ term as
opposed to the nr term used by I. ∥Dr∥ is the square-
root of the pairwise similarity between all the document
in Sr and will tend to emphasize clusters whose docu-
ments have smaller pairwise similarities compared to
clusters with higher pairwise similarities.

�eE criterion function () computes the clustering
by �nding a solution that separates the documents of

each cluster from the entire collection. Speci�cally, it
tries to minimize the cosine between the centroid vec-
tor of each cluster and the centroid vector of the entire
collection.�e contribution of each cluster is weighted
proportionally to its size so that larger clusters will be
weighted higher in the overall clustering solution. E
was motivated by multiple discriminant analysis and is
similar to minimizing the trace of the between-cluster
scatter matrix (Duda et al.,).

�e H and H criterion functions () and () are
obtained by combining criterion I with E, and I withE, respectively. Since E is minimized, bothH andH
need to bemaximized as they are inversely related to E.

�e criterion functions that we described so far view
each document as a multidimensional vector. An alter-
nate way of modeling the relations between documents
is to use graphs. Two types of graphs are commonly
used in the context of clustering.�e �rst corresponds
to the document-to-document similarity graph Gs and
the second to the document-to-term bipartite graphGb
(Dhillon, ; Zha, He, Ding, Simon, & Gu,). Gs
is obtained by treating the pairwise similarity matrix of
the dataset as the adjacency matrix of Gs, whereas Gb is
obtained by viewing the documents and the terms as the
two sets of vertices (Vd and Vt) of a bipartite graph. In
this bipartite graph, if the ith document contains the jth
term, then there is an edge connecting the correspond-
ing ith vertex of Vd to the jth vertex of Vt .�e weights
of these edges are set using the tf-idfmodel.
Viewing the documents in this fashion, edge-cut-

based criterion functions can be used to cluster doc-
ument datasets. G and G (() and ()) are two such
criterion functions that are de�ned on the similarity and
bipartite graphs, respectively. �e G function (Ding,
He, Zha, Gu, & Simon,) views the clustering pro-
cess as that of partitioning the documents into groups
that minimize the edge-cut of each partition. How-
ever, because this edge-cut-based criterion function
may have trivial solutions the edge-cut of each cluster is
scaled by the sum of the cluster’s internal edges (Ding et
al.,). Note that, cut(Sr, S−Sr) in () is the edge-cut
between the vertices in Sr and the rest of the vertices S−
Sr and can be re-written asDtr(D −Dr) because the sim-
ilarity between documents is measured using the cosine
function.�e G criterion function (Dhillon, ; Zha
et al.,) views the clustering problem as a simultane-
ous partitioning of the documents and the terms so that

 D Document Clustering

it minimizes the normalized edge-cut of the partition-
ing. Note that, Vr is the set of vertices assigned to the
rth cluster andW(Vr) is the sum of the weights of the
adjacency lists of the vertices assigned to the rth cluster.

Optimization Method �ere are many techniques that
can be used to optimize the criterion functions
described above.�ey include relatively simple greedy
schemes, iterative schemes with varying degree of hill-
climbing capabilities, and powerful but computation-
ally expensive spectral-based optimizers (Boley, ;
Dhillon, ; Fisher, ; MacQueen, ; Zha et
al.,). We introduce here a simple yet very pow-
erful greedy strategy that has been shown to produce
comparable results to those produced bymore sophisti-
cated optimization algorithms. In this greedy straggly, a
k-way clustering of a set of documents can be computed
either directly or via a sequence of repeated bisections.
A direct k-way clustering is computed as follows. Ini-
tially, a set of k objects is selected from the datasets to
act as the seeds of the k clusters.�en, for each object, its
similarity to these k seeds is computed, and it is assigned
to the cluster corresponding to its most similar seed.
�is forms the initial k-way clustering.�is clustering
is then repeatedly re�ned so that it optimizes a desired
clustering criterion function. A k-way partitioning via
repeated bisections is obtained by recursively applying
the above algorithm to compute -way clustering (i.e.,
bisections). Initially, the objects are partitioned into two
clusters, then one of these clusters is selected and is fur-
ther bisected, and so on. �is process continues k −
times, leading to k clusters. Each of these bisections
is performed so that the resulting two-way clustering
solution optimizes a particular criterion function.

Agglomerative Document Clustering

Hierarchical agglomerative algorithms �nd the clusters
by initially assigning each object to its own cluster and
then repeatedly merging pairs of clusters until a certain
stopping criterion is met. Consider an n-object dataset
and the clustering solution that has been computed a�er
performing l merging steps.�is solution will contain
exactly n − l clusters as each merging step reduces the
number of clusters by one. Now, given this (n − l)-way
clustering solution, the pair of clusters that is selected
to be merged next is the one that leads to an (n− l −)-
way solution that optimizes a particular criterion func-
tion. �at is, each one of the (n − l) × (n − l −)/

pairs of possible merges is evaluated, and the one that
leads to a clustering solution that has the maximum
(or minimum) value of the particular criterion func-
tion is selected. �us, the criterion function is locally
optimized within each particular stage of agglomera-
tive algorithms. Depending on the desired solution, this
process continues until either there are only k clus-
ters le� or when the entire agglomerative tree has been
obtained.

�e three basic criteria to determine which pair of
clusters to be merged next are single-link (Sneath &
Sokal,), complete-link (King,), and group
average (i.e., unweighed pair group method with arith-
meticmean, UPGMA) (Jain&Dubes,).�e single-
link criterion function measures the similarity of two
clusters by the maximum similarity between any pair
of objects from each cluster, whereas the complete-
link uses the minimum similarity. In general, both the
single- and the complete-link approaches do not work
very well because they either base their decisions to a
limited amount of information (single-link), or assume
that all the objects in the cluster are very similar to each
other (complete-link). On the other hand, the group
average approachmeasures the similarity of two clusters
by the average of the pairwise similarity of the objects
from each cluster and does not su�er from the problems
arising with single- and complete-link.

Evaluation of Document Clustering

Clustering results are hard to be evaluated, especially
for high dimensional data and without a priori knowl-
edge of the objects’ distribution, which is quite com-
mon in practical cases. However, assessing the quality
of the resulting clusters is as important as generating
the clusters. Given the same dataset, di�erent clustering
algorithmswith various parameters or initial conditions
will give very di�erent clusters. It is essential to know
whether the resulting clusters are valid and how to com-
pare the quality of the clustering results, so that the
right clustering algorithm can be chosen and the best
clustering results can be used for further analysis.
In general, there are two types of metrics for

assessing clustering results: metrics that only utilize
the information provided to the clustering algorithms
(i.e., internal metrics) and metrics that utilize a pri-
ori knowledge of the classi�cation information of the
dataset (i.e., external metrics).

Document Clustering D

D

�e basic idea behind internal quality measures is
rooted from the de�nition of clusters. A meaningful
clustering solution should group objects into various
clusters, so that the objects within each cluster are more
similar to each other than the objects from di�erent
clusters. �erefore, most of the internal quality mea-
sures evaluate the clustering solution by looking at how
similar the objects are within each cluster and how well
the objects of di�erent clusters are separated. In partic-
ular, the internal similarity measure, ISim, is de�ned as
the average similarity between the objects of each clus-
ter, and the external similaritymeasure, ESim, is de�ned
as the average similarity of the objects of each cluster
and the rest of the objects in the data set. �e ratio
between the internal and external similarity measure is
also a good indicator of the quality of the resultant clus-
ters.�e higher the ratio values, the better the clustering
solution is. One of the limitations of the internal qual-
ity measures is that they o�en use the same information
both in discovering and in evaluating the clusters.

�e approaches based on external quality measures
require a priori knowledge of the natural clusters that
exist in the dataset, and validate a clustering result by
measuring the agreement between the discovered clus-
ters and the known information. For instance, when
clustering document datasets, the known categorization
of the documents can be treated as the natural clusters,
and the resulting clustering solution will be considered
correct if it leads to clusters that preserve this catego-
rization. A key aspect of the external qualitymeasures is
that they utilize information other than that used by the
clustering algorithms.�e entropy measure is one such
metric that looks how the various classes of documents
are distributed within each cluster.
Given a particular cluster, Sr, of size nr, the entropy

of this cluster is de�ned to be

E(Sr) = −
log q

q∑
i=

nir
nr
log
nir
nr
, ()

where q is the number of classes in the data set, and nir
is the number of documents of the ith class that were
assigned to the rth cluster. �e entropy of the entire
clustering solution is then de�ned to be the sum of the
individual cluster entropies weighted according to the
cluster size.�at is,

Entropy = k∑
r=

nr
n
E(Sr). ()

A perfect clustering solution will be the one that leads
to clusters that contain documents from only a single
class, in which case the entropy will be zero. In general,
the smaller the entropy values, the better the clustering
solution is.

Programs and Data
An illustrative example of a so�ware package for clus-
tering low- and high-dimensional datasets and for
analyzing the characteristics of the various clusters is
Cluto(Karypis,). Cluto has implementations of
the various clustering algorithms and evaluation met-
rics described in previous sections. It was designed
by the University of Minnesota’s data mining’s group
and is available at www.cs.umn.edu/~karypis/cluto.
Cluto has been developed as a general purpose
clustering toolkit. Cluto’s distribution consists of
both stand-alone programs (vcluster and scluster)
for clustering and analyzing these clusters, as well
as a library through which an application program
can access directly the various clustering and anal-
ysis algorithms implemented in Cluto. Utility tools
for preprocessing documents into vector matrices and
some sample document datasets are also available at
www.cs.umn.edu/~karypis/cluto.

Cross References
7Clustering
7Information Retrieval
7Text Mining
7Unsupervised Learning

Recommended Reading
Boley, D. (). Principal direction divisive partitioning. Data

Mining and Knowledge Discovery, (), –.
Cutting, D. R., Pedersen, J. O., Karger, D. R., & Tukey, J. W.

(). Scatter/gather: A cluster-based approach to browsing
large document collections. In Proceedings of the ACM SIGIR
(pp. –). Copenhagen, Denmark.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society, (), –.

Dhillon, I. S. (). Co-clustering documents and words using
bipartite spectral graph partitioning. In Knowledge discov-
ery and data mining (pp. –). San Francisco: Morgan
Kaufmann.

Ding, C., He, X., Zha, H., Gu, M., & Simon, H. (). Spectral min-
max cut for graph partitioning and data clustering. Technical
report TR--XX, Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA.

Duda, R. O., Hart, P. E., & Stork, D. G. (). Pattern classification.
New York: Wiley.

 D Dual Control

Fisher, D. (). Iterative optimization and simplification of hier-
archical clusterings. Journal of Artificial Intelligence Research,
, –.

Jain, A. K., & Dubes, R. C. (). Algorithms for clustering data.
Englewood Cliffs, NJ: Prentice-Hall.

Karypis, G. (). Cluto: A clustering toolkit. Technical report -
, Department of Computer Science, University of Minnesota.
Available at http://www.cs.umn.edu/~cluto.

King, B. (). Step-wise clustering procedures. Journal of the
American Statistical Association, , –.

MacQueen, J. (). Some methods for classification and analysis
of multivariate observations. In Proceedings of the th sympo-
sium on mathematical statistics and probability (pp. –).
Berkeley, CA: University of California Press.

Salton, G. (). Automatic text processing: The transformation,
analysis, and retrieval of information by computer. Reading, MA:
Addison-Wesley.

Sneath, P. H., & Sokal, R. R. (). Numerical taxonomy. San
Francisco: Freeman.

Zahn, K. (). Graph-theoretical methods for detecting and
describing gestalt clusters. IEEE Transactions on Computers,
(C-), –.

Zha H., He X., Ding C., Simon H., and Gu M. Bipartite graph
partitioning and data clustering. In Proceedings of the Interna-
tional Conference on Information and Knowledge Management,
.

Zhao, Y., & Karypis, G. (). Criterion functions for document
clustering: Experiments and analysis. Machine Learning, ,
–.

Dual Control

7Bayesian Reinforcement Learning
7Partially Observable Markov Decision Process

Duplicate Detection

7Entity Resolution

Dynamic Bayesian Network

7Learning Graphical Models

Dynamic Decision Networks

7Partially Observable Markov Decision Processes

Dynamic Memory Model

Susan Craw
�e Robert Gordon University, Scotland, UK

Synonyms
Dynamic memory model; Memory organization
packets

Definition
Schank’s dynamic memory model (Schank,) was
designed to capture knowledge of speci�c experiences.
Schank’s memory organization packets (MOPs) and
Kolodner’s E-MOPs (episodic MOPS) (Kolodner,)
provide templates about typical scenes. For a restaurant
scene these might identify “being seated,” “ordering,”
and “paying.”

Cross References
7Case-Based Reasoning

Recommended Reading
Kolodner, J. (). Reconstructive memory. A computer model.

Cognitive Science, (), –.
Schank, R. S. (). Dynamic Memory : A theory of reminding

and learning in computers and people. New York: Cambridge
University Press.

Dynamic Programming

Martin L. Puterman, Jonathan Patrick
University of British Columbia, Vancouver, Canada
University of Ottawa, Ottawa, Canada

Definition
Dynamic programming is a method for modeling a
sequential decision process in which past decisions
impact future possibilities. Decisions can be made at
�xed discrete time intervals or at random time intervals
triggered by some change in the system.�e decision
process can last for a �nite period of time or run indef-
initely – depending on the application. Each time a
decision needs to bemade, the decision-maker (referred

Dynamic Programming D

D

to as “he” in this chapter with no sexist connotation
intended) views the current 7state of the system and
chooses from a known set of possible 7actions. As a
result of the state of the system and the action cho-
sen, the decision-maker receives a 7reward (or pays
a 7cost) and the system evolves to a new state based
on known probabilities. �e challenge faced by the
decision-maker is to choose a sequence of actions that
will lead to the greatest reward over the length of the
decision-making horizon. To do this, he needs to con-
sider not only the current reward (or cost) for taking a
given action but the impact such an action might have
on future rewards. A 7policy is a complete sequence
of decisions that dictates what action to take in any
given state and at any given time. Dynamic program-
ming �nds the optimal policy by developing mathe-
matical recursions that decompose the multi-decision
problem into a series of single-decision problems that
are analytically or computationally more tractable.

Background and Motivation
�e earliest concepts that later developed into dynamic
programming can be traced back to the calculus of vari-
ations problems in the seventeenth century. However,
the modern investigation of stochastic sequential deci-
sion problems arguably dates back to work by Wald
in on sequential statistical analysis. At much the
same time, Pierre Masse was analyzing similar prob-
lems applied to water resource management in France.
However, themajor name associated with dynamic pro-
gramming is that of Richard Bellman who established
the optimality equations that form the basis of dynamic
programming.
It is not hard to demonstrate the potential scope

of dynamic programming. Table gives a sense of
the breadth of application as well as highlighting the
stochastic nature of most instances.

Structure of the Learning System
A dynamic program is a general representation of a
sequential decision problem under uncertainty about
the future and is one of the main methods for solv-
ingMarkov Decision Problems (see7Markov Decision
Process). Like a decision tree, it models a process where
the decision we make “today” impacts where we end up
tomorrow and therefore what decisions are available to

us tomorrow. It has distinct advantages over a decision
tree in that:

● It is a more compact representation of a decision
process

● It enables e�cient calculation
● It allows exploration of the structural properties of
optimal decisions

● It can analyze and solve problems with in�nite or
inde�nite time horizons

The Finite Horizon Setting
A �nite horizon MDP, is a decision process with a
known end date.�us, the decision-maker is faced with
the task of making a �nite sequence of decisions at �xed
intervals.�e MDP model is based on �ve elements:
7Decision epochs: Sequences of decision times
n = , . . . ,N (in the in�nite horizon we set N =∞). In a
discrete time MDP, these decision times happen at reg-
ular, �xed intervals while in a continuous time model
they occur at random times triggered by a change in
the system.�e time between decision epochs is called
a period.
7State space: States represent the possible system con-
�gurations facing the decision-maker at each decision
epoch. �ey contain all information available to the
decision-maker at each decision epoch.�e state space,
S, is the set of all such states (o�en assumed to be �nite).
In choosing the state space, it is important to include all
the information that may be relevant in determining a
decision and that may change from decision epoch to
decision epoch.
7Actions: Actions are the available choices for the
decision-maker at any given decision epoch, in any
given state.A(s) is the set of all actions available in state
s (usually assumed to be �nite for all s). No action is
taken in the �nal decision epoch N.
7Transition probabilities: �e probability of being in
state s′ at time t+, given you take action a from state s at
time t, is written as pt(s′∣s, a). It clearly makes sense to
allow the transition probabilities to be conditional upon
the current state and the action taken.
7Rewards/costs: In most MDP applications, the deci-
sion-maker receives a reward each period.�is reward
can depend on the current state, the action taken, and
the next state and is denoted by rt(s, a, s′). Since a deci-
sionmust be made before knowing the next state, s′, the

 D Dynamic Programming

Dynamic Programming. Table Dynamic programming applications

Application System state Actions Rewards Stochastic aspect

Capacity Size of plant Maintain or add
capacity

Costs of expansion
and production at
current capacity

Demand for a product

Cash mgt Cash available Borrow or invest Transaction costs and
less interest

External demand for
cash

Catalog mailing Customer purchase
record

Type of catalog to
send, if any

Purchases in current
period less mailing
costs

Customer purchase
amount

Clinical trials Number of successes
with each treatment

Stop or continue the
trial

Costs of treatment
and incorrect
decisions

Response of a subject
to treatment

Economic
growth

State of the economy Investment or
consumption

Utility of consumption Effect of investment

Fisheries mgt Fish stock in each age
class

Number of fish to to
harvest

Value of the catch Population size

Forest mgt Size and condition of
stand

Harvesting and
reforestation activities

Revenues and less
harvesting costs

Stand growth and
price fluctuation

Gambling Current wealth Stop or continue
playing

Cost of playing Outcome of the game

Inventory
control

Stock on hand Order additional stock Revenue per item sold
and less ordering,
holding, and penalty
costs

Demand for items

Project
selection

Status of each project Project to invest in at
present

Return from investing
in project

Change in project
status

Queueing con-
trol

Number in the queue Accept/reject new
customers or control
service rate

Revenue from serving
customers and less
delay costs

Interarrival times and
service times

Reliability Age or status of
equipment

Inspect and repair or
replace if necessary

Inspection, repair, and
failure costs

Failure and
deterioration

Reservations Number of confirmed
reservations

Accept, wait-list, or
reject new reservation

Profit from satisfied
reservations and less
overbooking
penalties

Number of arrivals
and the demand for
reservations

Scheduling Activities completed Next activity to
schedule

Cost of activity Length of time to
complete activity

Selling an asset Current offer Accept or reject the
offer

The offer is less than
the cost of holding the
asset for one period

Size of the offer

Water resource
management

Level of water in each
reservoir

Quantity of water to
release

Value of power
generated

Rainfall and run-off

Dynamic Programming D

D

MDP formulation deals with the expected reward:

rt(s, a) =∑
s′∈S
rt(s, a, s′)pt(s′∣s, a).

We also de�ne the terminal rewards as rN(s) for being in
state s at the �nal decision epoch.�ese are independent
of the action since no action is taken at that point.

�e objective in the �nite horizon model is to max-
imize total expected reward:

max{E[N∑
t=
rt(st , at , st+) + rN(sN)∣s = s]}. ()

At any given time t, the decision-maker has
observed the history up to time t, represented by
ht = (s, a, s, a, . . . , at−, st), and needs to choose at in
such a way as to maximize (). A 7decision rule, dt ,
determines what action to take, based on the history
to date at a given decision epoch and for any possible
state. It is 7deterministic if it selects a single member
of A(s) with probability for each s ∈ S and for a given
ht , and it is7randomized (7randomized decision rule)
if it selects a member of A(s) at random with prob-
ability qdt(ht)(a). It is Markovian (7Markovian deci-
sion rule) if it depends on ht only through st .�at is,
dt(ht) = dt(st).
A 7policy, π = (d, . . . ,dN−), denotes a complete

sequence of decision rules over the whole horizon. It
can be viewed as a “contingency plan” that determines
the action for each possible state at each decision epoch.
One of the major results in MDP theory is that, under
reasonable conditions, it is possible to prove that there
exists a Markovian, deterministic policy that attains the
maximum total expected reward.�us, for the purposes
of this chapter we will concentrate on this subset of all
policies.
If we de�ne, vt(s) as the expected total reward from

time t to the end of the planning horizon, given that
at time t the system occupies state s, then a recursion
formula can be built that represents vt in terms of vt+.
Speci�cally,

vt(s) = max
a∈A(s)

{rt(s, a) +∑
s′∈S
p(s′∣s, a)vt+(s′)} ()

�is is o�en referred to as the 7Bellman equation,
named a�er Richard Bellman who was responsible for

the seminal work in this area. It breaks the total reward
at time t, into the immediate reward rt(s, a) and the total
future expected reward, ∑s′∈S p(s′∣s, a)vt+(s′). De�ne
A∗s,t as the set of actions that attain the maximum in ()
for a given state s and decision epoch t.�en the �nite
horizon discrete time MDP can be solved through the
following backward induction algorithm.

Backward Induction Algorithm

● Set t = N and vt(s) = rN(s) ∀s ∈ S (since there is
no decision at epoch N and no future epochs, it fol-
lows that the optimal reward-to-go function is just
the terminal reward).

● Let t = t − and compute for each s ∈ St
vt(s) = max

a∈A(s)
{rt(s, a) +∑

s′∈S
p(s′∣s, a)vt+(s′)} .

● For each s ∈ St , compute A∗s,t by solving
argmaxa∈A(s) {rt(s, a) +∑

s′∈S
p(s′∣s, a)vt+(s′)} .

● If t = then stop else return to step .
�e function v(s) is themaximum expected reward

over the entire planning horizon given the system starts
in state s.�e optimal policy is constructed by choos-
ing a member of A∗s,t for each s ∈ S and t ∈ {, . . . ,N}.
In essence, the algorithm solves a complex N-period
decision problem by solvingN simple -period decision
problems.
Example – inventory control: Periodically (daily,

weekly, or monthly), an inventory manager must deter-
mine howmuch of a product to stock in order to satisfy
random external demand for the product. If too lit-
tle is in stock, potential sales are lost. Conversely, if
too much is on hand, a cost for carrying inventory is
incurred. �e objective is to choose an ordering rule
that maximizes expected total pro�t (sales minus hold-
ing and ordering costs) over the planning horizon. To
formulate anMDPmodel of this system requires precise
assumptions such as:

● �e decision regarding the quantity to order is made
at the beginning of each period and delivery occurs
instantaneously.

 D Dynamic Programming

● Demand for the product arrives throughout the
period, but all orders are �lled on the last day of the
period.

● If demand exceeds the stock on hand, potential sales
are lost.

● �e revenues, costs and demand distribution are the
same each period.

● �e product can only be sold in whole units.
● �e warehouse has a capacity forM units.

(�ese assumptions are not strictly necessary but
removing them leads to a di�erent formulation.) Deci-
sions epochs correspond to the start of a period.
�e state, st ∈{, . . . ,M}, represents the inventory on
hand at the start of period t and the action, at ∈{, , , . . . ,M − s}, is the number of units to order
that period; the action corresponds to not placing an
order. LetDt represent the random demand throughout
period t and assume that the distribution of demand is
given by pt(d) = P(Dt = d),d = , , ,�e cost
of ordering u units is O(u) = K + c(u) (a �xed cost
plus variable cost) and the cost of storing u units is h(u),
where c(u) and h(u) are increasing functions in u. We
will assume that le�-over inventory at the end of the
planning horizon has value g(u) and that the sale of u
units yields a revenue of f (u).�us, if there are u units
on hand at decision epoch t, the expected revenue is

Ft(u) = u−∑
j=
f (j)pt(j) + f (u)P(Dt ≥ u).

�e expected reward is therefore

rt(s, a) = F(s + a) −O(a) − h(s + a)
and the terminal rewards are rN(s, a) = g(s). Finally, the
transition probabilities depend on whether or not there
is enough stock on hand, s + a, to meet the demand for
that month, Dt . Speci�cally,

pt(j∣s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

 if j > s + a,

pt(j) if j = s + a −Dt , s + a ≤M,

s + a > Dt ,

∑
∞

d=s+a pt(d) if j = , s + a ≤M, s + a ≤ Dt .

Solving the �nite horizon version of this problem
through backward induction reveals a simple form to

the optimal policy referred to as an (s, S) policy. Specif-
ically, if at time t, the inventory is below some number
st then it is optimal to order a quantity that raises the
inventory level to St . It has been shown that a struc-
tured policy of this type is optimal for several variants
of the inventory management problem with a �xed
ordering cost. Many variants of this problem have been
studied; these models underly the �eld of supply chain
management.

The Infinite Horizon Setting
In the in�nite (or inde�nite) horizon setting, the back-
ward induction algorithm described above no longer
su�ces as there are no terminal rewards with which to
begin the process.
In most �nite horizon problems, the optimal policy

begins to look the same at each decision epoch as the
horizon is pushed further and further into the future.
For instance, in the inventory example above, st = st+
and St = St+ if t is su�ciently removed from the end
of the horizon. �e form of the optimal policy only
changes as the end of the time horizon approaches.
�us, if there is no �xed time horizon, we should expect
the optimal policy to be stationary inmost cases.We call
a policy stationary if the same decision rule is applied
at each decision epoch (i.e., dt =d∀ t). One necessary
assumption for this to be true is that the rewards and
transition probabilities are independent of time (i.e.,
rt(s, a)= r(s, a) and pt(s′∣s, a)= p(s′∣s, a)∀ s,′ s ∈ S and
a ∈ A(s)). For the in�nite horizon MDP, the theory
again proves that under mild assumptions there exists
an optimal policy that is stationary, deterministic, and
Markovian. �is fact greatly simpli�es the process of
�nding the optimal policy as we can concentrate on a
small subset of all potential policies.

�e set up for the in�nite horizon MDP is entirely
analogous to the �nite horizon setting with the same
7decision epochs, 7states, 7actions, 7rewards, and
7transition probabilities (with the last two assumed to
be independent of time).

�e most obvious objective is to extend the �nite
horizon objective to in�nity and seek to �nd the policy,
π, that maximizes the total expected reward:

vπ(s) = lim
N→∞

{Eπ
s [N∑

t=
r(st , at)]} . ()

Dynamic Programming D

D

�is, however, is problematic since

. �e sum may be in�nite for some or all policies
. �e sum may not even exist, or
. Even if the sum exists, there may be no maximizing
policy

In the �rst case, just because all (or a subset of all) poli-
cies lead to in�nite reward in the long run does not
mean that they are all equally bene�cial. For instance,
one may give a reward of $ each epoch and the
other $ per epoch. Alternatively, one may give large
rewards earlier on while another gives large rewards
only much later. Generally speaking, the �rst is more
appealing but the above objective function will not dif-
ferentiate between them. Secondly, the limit may not
exist if, for instance, the reward each decision epoch
oscillates between and −. �irdly, there may be no
maximizing policy simply because there is an in�nite
number of policies and thus there may be an in�nite
sequence of policies that converges to a maximum limit
but never reaches it. �us, instead we look to maxi-
mize either the total expected discounted reward or the
expected long run average reward depending on the
application.
Let λ ∈ (,) be a discount factor. Assuming the

rewards are bounded (i.e., there exists an M such that∣r(s, a)∣ < M ∀(s, a) ∈ S × A(s)), the total expected
discounted reward for a given policy π is de�ned as

vπ
λ(s) = limN→∞Eπ

s { N∑
t=

λt−r(st ,dt(st))}
= Eπ

s {∞∑
t=

λt−r(st ,dt(st))} .
Since, λ < and the rewards are bounded, this

limit always exists.�e second objective is the expected
average reward which, for a given policy π, is de�ned as

gπ(s) = lim
N→∞

N
Eπ
s { N∑

t=
r(st ,dt(st))}.

Once again, we are dealing with a limit that may or may
not exist. As we will see later, whether the above limit
exists depends on the structure of the Markov chain
induced by the policy.

Let us, at this point, formalize what we mean by
an optimal policy. Clearly, that will depend on which
objective function we choose to use. We say that

● π∗ is total reward optimal if vπ∗(s) ≥ vπ(s) ∀s ∈ S
and ∀π.

● π∗ is discount optimal if vπ∗
λ (s) ≥ vπ

λ(s) ∀s ∈ S
and ∀π.

● π∗ is average optimal if gπ∗(s) ≥ gπ(s)∀s ∈ S and∀π.

For simplicity, we introducematrix and vector notation.
Let rd(s) = r(s,d(s)) and pd(j∣s) = p(j∣s,d(s)).�us rd
is the vector of rewards for each state under decision
rule d, and Pd is the transition matrix of states under
decision rule d. We will now take a more in-depth look
at the in�nite horizon model with the total expected
discounted reward as the optimality criterion.

Solving the Infinite Horizon Discounted MDP

Given a Markovian, deterministic policy π = (d,d,
d, . . .) and de�ning πk = (dk,dk+, . . .) we can
compute

vπ
λ(s) = E

π
s [

∞

∑

t=
λt−r(st ,dt(st))]

= Eπ
s [r(s,d(s)) + λ

∞

∑

t=
λt−r(st ,dt(st))]

= r(s,d(s)) + λ∑
j∈S
pd(j∣s)E

π
j [

∞

∑

t=
λt−r(st ,dt(st))]

= r(s,d(s)) + λ∑
j∈S
pd(j∣s)v

π
λ (j).

In matrix notation,

vπ
λ = rd + λPdv

π
λ .

If we follow our supposition that we need to only con-
sider stationary policies (so that the same decision rule
is applied to every decision epoch), π =d∞ = (d,d, . . .),
then this results in

vd
∞

λ = rd + λPdvd
∞

λ .

�is implies that the value function generated by a
stationary policy satis�es the equation:

v = rd + λPdv⇒ v = (I − λPd)−rd.

 D Dynamic Programming

�e inverse above always exists since Pd is a probability
matrix (so that its spectral radius is less than or equal
to) and λ ∈ (,). Moving to the maximization prob-
lem of �nding the optimal policy, we get the recursion
formula

v(s) = max
a∈A(s)

{r(s, a) + λ∑
j∈S
p(s∣s, a)v(j)}. ()

Note that the right hand side can be viewed as a function
of a vector v (given r, p, λ). We de�ne a vector-valued
function

Lv = max
d∈DMD

{rd + λPdv},
where DMD is the set of all Markovian, 7deterministic
decision rules.�ere are three methods for solving the
above optimization problem in order to determine the
optimal policy.�e �rst method, called value iteration,
creates a sequence of approximations to the value func-
tion that eventually converges to the value function
associated with the optimal policy.

Value Iteration

. Start with an arbitrary ∣S∣-vector v. Let n = and
choose є > to be small.

. For every s ∈ S, compute vn+(s) as
vn+(s) = max

a∈A(s)
{r(s, a) +∑

j∈S
λp(j∣s, a)vn(j)}.

. If maxs∈S ∣vn+(s)−vn(s)∣ ≥ є(− λ)/λ let n→ n+
and return to step .

. For each s ∈ S, choose
dє(s) ∈ argmaxa∈A(s){r(s, a)+∑

j∈S
λp(j∣s, a)vn+(j)}.

It has been shown that value iteration identi�es a policy
with expected total discounted reward within є of opti-
mality in a �nite number of iterations. Many variants
of value iteration are available such as using di�erent
stopping criteria to accelerate convergence or combin-
ing value iteration with the policy iteration algorithm
described below.
A second algorithm, called policy iteration, iterates

through a sequence of policies eventually converging to
the optimal policy.

Policy Iteration

. Set d ∈ D to be an arbitrary policy. Let n = .
. (Policy evaluation) Obtain vn by solving

vn = (I − λPdn)−rdn .
. (Policy improvement) Choose dn+ to satisfy

dn+ ∈ argmaxd∈D{rd + λPdvn}
componentwise. If dn is in this set, then choose
dn+ = dn.

. If dn+ = dn, set d∗ = dn and stop. Otherwise, let
n→ n + and return to ().
Note that value iteration and policy iteration have

di�erent conceptual underpinnings. Value iteration
seeks a �xed point of the operator L using successive
approximations while policy iteration can be viewed as
using Newton’s Method to solve Lv − v = .
Finally, a third method for solving the discounted

in�nite horizon MDP takes advantage of the fact that,
because L is monotone, if Lv ≤ v then Lv ≤ Lv and
more generally, Lkv ≤ v. �us, induction implies that
the value function of the optimal policy, v∗λ is less than
or equal to v for any v, where Lv ≤ v. We de�ne the set
U := {v ∈ V ∣Lv ≤ v}.�en, not only is v∗λ in the set U,
it is also the smallest element of U.�erefore, we can
solve for v∗λ by solving the following linear program:

min
v
∑
s∈S

α(s)v(s)
subject to

v(s) ≥ r(s, a) + λ∑
j∈S
p(j∣s, a)v(j) ∀s ∈ S, a ∈ As.

(Note that the above set of constraints is equivalent to
Lv ≤ v.) We call this the primal LP. �e coe�cients
α(s) are arbitrarily chosen. �e surprising fact is that
the solution to the above LP will be v∗λ for any strictly
positive α.
We can construct the dual to the above primal to get

max
X
∑
s∈S
∑
a∈As
r(s, a)X(s, a)

Dynamic Programming D

D

subject to

∑
a∈Aj
X(j, a) −∑

s∈S
∑
a∈As

λp(j∣s, a)X(s, a) = α(j) ∀j ∈ S
X(s, a) ≥ ∀s ∈ S, a ∈ As.

Let (X(s, a) : s ∈ S, a ∈ As) be a feasible solu-
tion for the dual (i.e., satis�es the constraints but not
necessarily optimal). Every such feasible solution cor-
responds to a randomized Markov policy d∞ and vice
versa. Furthermore, for a given feasible solution, X,
and the corresponding policy d∞,X(s, a) represents the
expected total number of times you will be in state s and
take action a following policy d∞ before stopping in the
inde�nite horizon problem.�us, the objective in the
dual can be interpreted as the total expected reward over
the length of the inde�nite horizon.�e strong law of
duality states that at the optimal solution the objective
functions in the primal and dual will be equal. But we
already know that at the optimal, the primal objective
will correspond to a weighted sum of v∗λ(s), s ∈ S, which
is the total expected discounted reward over the in�nite
(or inde�nite) horizon given you start in state s.�us
our interpretations for the primal and dual variables
coincide.

Solving the Infinite Horizon Average Reward MDP

Recall that in the average reward model, the objective
is to �nd the policy that has the maximum average
reward, o�en called the gain.�e gain of a policy can
be written as

gπ(s) = lim
n→∞

N
vπ
N+ = limn→∞

N

N∑
n=

[Pn−π rds](s). ()

As mentioned earlier, the major drawback is that for
a given policy π, the gainmay not even exist. An impor-
tant result, however, states that if we con�ne ourselves
to stationary policies, we can in fact be assured that the
gain is well de�ned. Our ability to solve a given in�-
nite horizon average reward problem depends on the
form of the Markov chains induced by the determin-
istic, stationary policies available in the problem.�us,
we divide the set of average reward MDPs according to
the structure of the underlying Markov chains. We say
that an MDP is

● Unichain if the transition matrix corresponding to
every deterministic stationary policy is unichain,
that is, it consists of a single recurrent class plus a
possibly empty set of transient states, or

● Multichain if the transition matrix corresponding to
at least one stationary policy contains two or more
closed irreducible recurrent classes

If an MDP is unichain, then the gain for any given
stationary, deterministic policy can be de�ned by a sin-
gle number (independent of starting state).�is makes
intuitive sense since if we assume that it is possible to
visit every state from every other one (possibly minus
some set of transient states that may be visited ini-
tially but will eventually be abandoned) then it would
seem reasonable to assume that over the in�nite horizon
the initial starting state would not impact the average
reward. However, if the initial state impacts what set of
states can be visited in the future (i.e., the MDP is mul-
tichain) then clearly it is likely that the expected average
reward will be dependent on the initial state.
If the average rewardMDP is unichain then the gain

can be uniquely determined by solving

v(s) = max
a∈A(s)

{r(s, a) − g +∑
s′∈S
p(s′∣s, a)v(s′)}. ()

Notice that the above equation has ∣S∣+ unknowns but
only ∣S∣ equations.�us, v is not uniquely determined.
To specify v uniquely, it is su�cient to set v(s′) = for
some s′ ∈ S. If this is done, then v(s) is called the rela-
tive value function and v(j) − v(k) is the di�erence in
expected total reward obtained in using an optimal pol-
icy and starting in state j as opposed to state k. It is also
o�en represented by the letter h and called the bias.
As in the discounted in�nite horizonMDP, there are

three potential methods for solving the average reward
case. We present only policy iteration here and refer the
reader to the recommended readings for value iteration
and linear programming.

Policy Iteration

. Set n = , and choose an arbitrary decision dn.
. (Policy evaluation) Solve for gn, vn:

 = rdn − ge + (Pdn − I)v.

 D Dynamic Programming

. Choose dn+ to satisfy

dn+ ∈ argmaxd∈D{rd + Pdvn}.
Setting dn+ = dn if possible.

. If dn+ = dn, stop, set d∗ = dn. Else, increment n by
 and return to step .

As mentioned earlier, the equation in step fails to
provide a unique vn since we have ∣S∣ + unknowns
and only ∣S∣ equations. We therefore need an addi-
tional equation. Any one of the following three will
su�ce:

. Set vn(s) = for some �xed s ∈ S.
. Choose vn to satisfy P∗dnvn = .
. Choose vn to satisfy −vn + (Pd − I)w = for some
w ∈ V .

Continuous Time Models
So far, we have assumed that decision epochs occur at
regular intervals but clearly in many applications this
is not the case. Consider, for instance, a queueing con-
trol model where the service rate can be adjusted in
response to the size of the queue. It is reasonable to
assume, however, that changing the service rate is only
possible following the completion of a service.�us, if
the service time is random then the decision epochs will
occur at random time intervals. We will therefore turn
our attention now to systems in which the state changes
and decision epochs occur at random times. At themost
general level, decisions can bemade at any point in time
but we will focus on the subset of models for which
decision epochs only occur at state transitions. It turns
out that this is usually su�cient as the added bene-
�t of being able to change decisions apart from state
changes does not generally improve performance.�us,
the models we study generalize the discrete time MDP
models by:

. Allowing, or requiring, the decision-maker to
choose actions whenever the system changes state

. Modeling the evolution of the system in continuous
time, and

. Allowing the time spent in a particular state to
follow an arbitrary probability distribution

Semi-Markov decision processes (SMDP) are continuous
time models where decisions are made at some but
not necessarily all state transitions. �e most com-
mon subset of these, called exponential SMDPs, are
SMDPs where the intertransition times are exponen-
tially distributed.
We distinguish between two processes:

. �e natural process that monitors the state of the
system as if it were observed continually through
time and

. �e embeddedMarkov chain thatmonitors the evo-
lution of the system at the decision epochs only

For instance, in a queueing control model one may
decide only to change the rate of service every time there
is an arrival.�en the embedded Markov chain would
only keep track of the system at each arrival while the
natural process would keep track of all state changes –
including both arrivals and departures.
While the actions are generally only going to depend

on the state of the system at each decision epoch, it
is possible that the rewards/costs to the system may
depend on the natural process. Certainly, in the queue-
ing control model the cost to the systemwould go down
as soon as a departure occurs. In discrete models it
was su�cient to let the reward depend on the current
state s and the current action a and possibly the next
state s′. However, in an SMDP, the natural process may
change between now and the next decision epoch and
moreover, the time the process stays in a given state is
no longer �xed. �us we need to consider two types
of rewards/costs. First, a lump sum reward, k(s, a), for
taking action a when in state s. Second, a reward rate,
c(j, s, a), paid out for each time unit that the natural
process spends in state j until the next decision epoch
when the state at the last decision epoch was s and the
action taken was a. Note that if we insist that every state
transition triggers a decision epoch, we can reduce this
to c(s, a) since the system remains in s until the next
decision epoch.
Before we can state our objective we need to deter-

mine what we mean by discounting. Again, because
we are dealing with continuous time so that decision
epochs are not evenly spaced, it is not su�cient to have a
�xed discount factor λ. Instead, we will discount future
rewards at rate e−αt , for some α > . If we let λ = e−α

Dynamic Programming D

D

(the discount rate for one time unit) then α = . cor-
responds to λ = ..�us an α around . is commonly
used.
We can now state our objective. We look to �nd

a policy that maximizes the total expected discounted
reward over the in�nite horizon. �ere is an average
reward model for continuous time models as well but
we will not discuss that here. Given a policy π we can
write its total expected discounted reward as:

vπ
α(s) = Eπ

s [∞∑
n=
e−ασn(K(Xn,Yn)

+ ∫ σn+

σn
e−α(t−σn)c(Wt ,Xn,Yn)dt)], ()

where Xn and Yn are the random variables that repre-
sent the state and action at time n respectively,Wt is the
random variable that represents the state of the natu-
ral process at time t, and σn is the random time of the
nth decision epoch. Again, if we assume that each state
transition triggers a decision epoch, Xn = Wt for all
t ∈ [σn, σn+). We seek to �nd a policy π such that

vπ
α(s) = v∗α(s) = max

π∈ΠHR
vπ

α(s) ()

for all s ∈ S. Perhaps surprisingly, () can be reduced
to one that has the same form as in the discrete time
case for any SMDP. As a consequence, all the theory and
the algorithms that worked in the discrete version can
be transferred to the continuous model! Again, we refer
the reader to the recommended readings for the details.

Extensions
7Partially Observed MDPs

In some instances, the state of the system may not
be directly observable but instead, the decision-maker
receives a signal from the system that provides infor-
mation about the state. For example, in medical deci-
sion making, the health care provider will not know
the patient’s true health status but will have on hand
some diagnostic information that may be related to the
patient’s true health.�ese problems are modeled from
aBayesian perspective.�e decision-maker uses the sig-
nal to update his estimate of the probability distribution
of the system state. He then bases his decision on this
probability distribution. �e computational methods
for solving partially observed MDPs are signi�cantly

more complex than in the fully observable case and only
small problems have been solved numerically.

Parameter-Adaptive Dynamic Programming

O�en the transition probabilities in anMDP are derived
from a system model, which is determined by a few
parameters. Examples include demand distributions in
inventory control and arrival and/or service distribu-
tions in queueing systems. In these cases the forms of
the distributions are known (for example, Poisson for
demand models and exponential for arrival or service
models) but their parameter values are not. Herein, the
decision-maker seeks a policy that combines learning
with control. A Bayesian approach is used.�e param-
eter is related to the system state through a likelihood
function and a�er observing the system state, the prob-
ability distribution on the parameter is updated. �is
updated probability distribution provides the basis for
choosing a policy.

Approximate Dynamic Programming

Arguably the greatest challenge to implementing MDP
theory in practice is “the curse of dimensionality.”
As the complexity of a problem grows, the amount
of information that needs to be stored in the state
space quickly reaches a point where the MDP is no
longer computationally tractable.�ere now exist sev-
eral methods for dealing with this problem, all of which
are grouped under the title of approximate dynamic
programming or neuro-dynamic programming.�ese
potential methods begin by restricting the value func-
tion to a certain class of functions and then seeking
to �nd the optimal value function within this class. A
typical approximation scheme is based on the linear
architecture:

v∗(s) ≈ ṽ(s, r) = k∑
i=
riϕi(s),

where ϕi(s), i = , . . . , k are pre-de�ned basis func-
tions that attempt to characterize the state space and
r is a set of weights applied to the basis functions.
�is reduces the problem from one with ∣S∣-dimensions
to one with ∣k∣-dimensions.�e questions are () how
do you determine what class of functions (determined
by ϕ) to choose and () how to �nd the best approx-
imate value function within the chosen class (i.e., the

 D Dynamic Programming For Relational Domains

best values for r)?�e �rst question is still very much
wide open.
Answers to the second question fall into two main

camps. On the one hand, there are a number of meth-
ods that seek to iteratively improve the approximation
through the simulation of sample paths of the decision
process.�e second method uses linear programming
but restricts the value function to the approximate form.
�is reduces the number of variables in the primal to
a reasonable number (equal to the number of basis
functions chosen). One can then determine the opti-
mal set of weights, r, through column generation. One
of the major challenges facing approximate dynamic
programming is that it is di�cult to determine how
close the approximate value function is to its true value.
In other words, how much more reward might have
been accumulated had the original MDP been solved
directly? �ough there are some attempts in the liter-
ature to answer this question, it remains a signi�cant
challenge.

Cross References
7Markov Decision Processes
7Partially Observable Markov Decision Processes

Recommended Reading
Bertsekas, D. (). Dynamic programming and optimal control.

Belmont: Athena Scientific.
Bertsekas, D., & Tsitsiklis, J. (). Neuro-dynamic programming.

Belmont: Athena Scientific.
Feinberg, E., & Shwartz, A. (). Handbook of Markov decision

processes. Boston, MA: Kluwer Academic Publishers.
Puterman, M. (). Markov decision processes. New York: Wiley.
Sutton, R., & Barto, A. (). Reinforcement learning. Cambridge,

MA: MIT Press.

Dynamic Programming For
Relational Domains

7Symbolic Dynamic Programming

Dynamic Systems

�e dynamic systems approach emphasizes the human,
and animal, interaction with the environment. Inter-
actions are described by partial di�erential equa-
tions. Attractors and limit cycles represent stable states
which may be analogous to attribute-values.

E

EBL

7Explanation-Based Learning

Echo State Network

7Reservoir Computing

ECOC

7Error Correcting Output Codes

Edge Prediction

7Link Prediction

Efficient Exploration in
Reinforcement Learning

John Langford

Synonyms
PAC-MDP learning

Definition
An agent acting in a world makes observations, takes
actions, and receives rewards for the actions taken.
Given a history of such interactions, the agent must
make the next choice of action so as to maximize
the long-term sum of rewards. To do this well, an
agent may take suboptimal actions which allow it to
gather the information necessary to later take optimal
or near-optimal actions with respect to maximizing the
long-term sumof rewards.�ese information gathering
actions are generally considered exploration actions.

Motivation
Since gathering information about the world generally
involves taking suboptimal actions compared with a
later learned policy, minimizing the number of infor-
mation gathering actions helps optimize the standard
goal in reinforcement learning. In addition, under-
standing exploration well is key to understanding rein-
forcement learning well, since exploration is a key
aspect of reinforcement learning which is missing from
standard supervised learning settings (Fig.).

Efficient Exploration in Markov Decision
Processes
One simpli�cation of reinforcement learning is the
7Markov decision process setting. In this setting, an
agent repeatedly takes an action a, resulting in a tran-
sition to a state according to a conditional probability
transition matrix P(s′∣s, a), and a (possibly probabilis-
tic) reward R(s′, a, s) ∈ [,].�e goal is to e�ciently
output a policy π which is є-optimal over T timesteps.
�e value of policy π in a start state s is de�ned as

η(π, s) = E(a,s,r)T∼(π ,P,R)T
T

∑
t=

rt ,

which should be read as the expectation over T-length
sequences drawn from the interaction of the policy π
with the world as represented by P and R. An є-optimal
policy π therefore satis�es:

max
π′

η(π′, s) − η(π, s) ≤ є.

�ere are several notable results in this setting, typically
expressed in terms of the dependence on the number
of actions A, and the number of states S. �e �rst is
for the β-greedy strategy commonly appliedwhen using
7Q-learning (Watkins & Dayan,) which explores
randomly with probability β.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 E Efficient Exploration in Reinforcement Learning

A Key Lock Structure MDP

Efficient Exploration in Reinforcement Learning. Figure .

An example of a keylock MDP. The state are arranged in

a chain. In each state, one of the two actions leads to the

next state while the other leads back to the beginning.

The only reward is in the transition to the last state in

the chain. Keylock MDPs defeat simple greedy strategies,

because the probability of randomly reaching the last

transition is exponentially small in the length of the

chain

�eorem �ere exists MDPs such that with probabil-
ity at least /, β-greedy requires Θ(AS

) explorations to
�nd an є-optimal policy.

�is is essentially a negative result, saying that a
greedy exploration strategy cannot quickly discover a
good policy in some settings.�e proof uses an MDP
with a key-lock like structure where for each state
all actions but one take the agent back to the begin-
ning state, and the reward is at the end of a chain of
states.
It turns out that there exists algorithms capa-

ble of �nding a near-optimal policy in an MDP
with only a polynomial number of exploratory tran-
sitions.

�eorem For all MDPs, for any δ > , with probabil-
ity − δ, the algorithm Explicit-Explore-or-Exploit �nds
an є-optimal policy a�er Õ(SA) explorations.

In other words, E (Kearns & Singh,) requires
exploration steps at most proportional to the size of
the probability table driving the dynamics of the agent’s
world. �e algorithm works in precisely the manner
which might be expected: it builds a model of the world

based on its observations and solves the model to deter-
mine whether to explore or exploit.�e basic approach
was generalized to stochastic games and reformulated
as an “optimistic initialization” style algorithm named
R-MAX (Brafman & Tennenholtz,).
It turns out that an even better dependence is possi-

ble using the delayed Q-learning (Strehl, Li, Wiewiora,
Langford, & Littman,) algorithm.

�eorem For all MDPs, for any δ > , with prob-
ability − δ, the algorithm delayed Q-learning �nds an
є-optimal policy a�er Õ(SA) explorations.

�e delayed Q-learning algorithm requires explo-
rations proportional to the size of the solution pol-
icy rather than proportional to the size of world
dynamics. At a high level, delayed Q-learning oper-
ates by keeping values for exploration and exploita-
tion of observed state-actions, uses these values to
decide between exploration and exploitation, and care-
fully updates these values. Delayed Q-learning does not
obsolete E, because the (nonvisible) dependence on є
and T are worse (Strehl,).

�is is a best possible result in terms of the depen-
dence on S and A (up to log factors), as the following
theorem (Kakade,) states:

�eorem For all algorithms, there exists an MDP
such that with Ω(SA) explorations are required to �nd
an є optimal policy with probability at least .

Since even representing a policy requires a lookup
table of size SA, this algorithm-independent lower
bound is relatively unsurprising.

Variations on MDP Learning

�ere are several minor variations in the setting and
goal de�nitions which do not qualitatively impact the
set of provable results. For example, if rewards are in a
bounded range, they can be o�set and rescaled to the
interval [,].
It’s also common to use a so� horizon (or discount-

ing) where the policy evaluation is changed to:

ηγ(π, s) = E(a,s,r)∞∼(π ,P,R)∞
∞
∑
t=

γtrt

Embodied Evolutionary Learning E

E

for some value γ < . �is setting is not precisely
equivalent to the hard horizon, but since

sum∞
t=(ln(/є)+ln(/−γ))/−γγtrt ≤ є

similar results are provablewith /(− γ) taking the role
of T and slightly altered algorithms.
One last variation changes the goal. Instead of out-

putting an є-optimal policy for the next T timesteps, we
could have an algorithm to handle both the exploration
and exploitation, then retrospectively go back over a
trace of experience and mark a subset of the actions
as “exploration actions,” with a guarantee that the
remainder of the actions are according to an є-optimal
policy (Kakade,). Again, minor alterations to
known algorithms in the above setting appear to
work here.

Alternative Settings

�ere are several known analyzed variants of the basic
setting formed bymaking additional assumptions about
the world. �is includes Factored MDPs (Kearns &
Koller,), Metric MDPs (Kakade, Kearns, & Lang-
ford,), Continuous MDPs (Brunskill, Le�er, Li,
Littman, & Roy,), MDPs with a Bayesian prior
(Poupart, Vlassis, Hoey, & Regan,), and appren-
ticeship learningwhere there is access to a teacher for an
MDP (Abbeel&Ng,).�e structure of these results
are all similar at a high level: with some additional
information, it is possible to greatly ease the di�culty
of exploration allowing tractable application to much
larger problems.

Cross References
7k Armed Bandit
7Reinforcement Learning

Recommended Reading
Abbeel, P., & Ng, A. (). Exploration and apprenticeship learning

in reinforcement learning. In ICML , Bonn, Germany.
Brafman, R. I., & Tennenholtz, M. (). R-MAX – A general poly-

nomial time algorithm for near-optimal reinforcement learn-
ing. Journal of Machine Learning Research, , –.

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy, N.
(). CORL: A continuous-state offset-dynamics reinforce-
ment learner. In UAI-, Helsinki, Finland, July .

Kakade, S. (). Thesis at Gatsby Computational Neuroscience
Unit.

Kakade, S., Kearns, M., & Langford, J. (). Exploration in metric
state spaces. In ICML .

Kearns, M., & Koller, D. (). Efficient reinforcement learning in
factored MDPs. In Proceedings of the th international joint
conference on artificial intelligence (pp. –). San Francisco:
Morgan Kaufmann.

Kearns, M., & Singh, S. (). Near-optimal reinforcement learning
in polynomial time. In ICML (pp. –). San Francisco:
Morgan Kaufmann.

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (). An analytic
solution to discrete Bayesian reinforcement learning. In ICML
 (pp. –). New York: ACM Press.

Strehl, A. (). Thesis at Rutgers University.
Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L.

(). PAC model-free reinforcement learning. In Proceedings
of the rd international conference on machine learning (ICML
) (pp. –).

Watkins, C., & Dayan, P. (). Q-learning. Machine Learning
Journal, , –.

EFSC

7Evolutionary Feature Selection and Construction

Elman Network

7Simple Recurrent Network

EM Algorithm

7Expectation–Maximization Algorithm

EM Clustering

7Expectation Maximization Clustering

Embodied Evolutionary Learning

7Evolutionary Robotics

 E Emerging Patterns

Emerging Patterns

Definition
Emerging pattern mining is an area of 7supervised
descriptive rule induction. Emerging patterns are
de�ned as itemsets whose support increases signi�-
cantly from one data set to another (Dong & Li,).
Emerging patterns are said to capture emerging trends
in time-stamped databases, or to capture di�erentiating
characteristics between classes of data.

Recommended Reading
Dong, G., & Li, J. (). Efficient mining of emerging patterns: Dis-

covering trends and differences. In Proceedings of the th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-) (pp. –).

Empirical Risk Minimization

Xinhua Zhang
Australian National University
NICTA London Circuit
Canberra, Australia

Definition
�e goal of learning is usually to �nd a model
which delivers good generalization performance over
an underlying distribution of the data. Consider an
input space X and output space Y . Assume the pairs
(X×Y) ∈ X×Y are randomvariables whose (unknown)
joint distribution is PXY . It is our goal to �nd a predictor
f : X ↦ Y which minimizes the expected risk:

P(f (X) ≠ Y) = E(X,Y)∼PXY [δ(f (X) ≠ Y)] ,

where δ(z) = if z is true, and otherwise.
However, in practice we only have n pairs of training

examples (Xi,Yi) drawn identically and independently
from PXY . Since PXY is unknown, we o�en use the risk
on the training set (called empirical risk) as a surrogate
of the expected risk on the underlying distribution:

n

n

∑
i=

δ(f (Xi) ≠ Yi).

Empirical risk minimization (ERM) refers to the idea
of choosing a function f by minimizing the empir-
ical risk. Although it is o�en e�ective and e�cient,
ERM is subject to 7over�tting, i.e., �nding a model
which �ts the training data well but predicts poorly
on unseen data. �erefore, 7regularization is o�en
required.
More details about ERM can be found in Vapnik

().

Recommended Reading
Vapnik, V. (). Statistical learning theory. New York: Wiley.

Ensemble Learning

Gavin Brown
�e University of Manchester
Manchester, UK

Synonyms
Committee machines; Multiple classi�er systems

Definition
Ensemble learning refers to the procedures employed
to train multiple learning machines and combine
their outputs, treating them as a “committee” of deci-
sion makers. �e principle is that the decision of
the committee, with individual predictions combined
appropriately, should have better overall 7accuracy,
on average, than any individual committee mem-
ber. Numerous empirical and theoretical studies have
demonstrated that ensemble7models very o�en attain
higher accuracy than single models.

�e members of the ensemble might be predict-
ing real-valued numbers, class labels, posterior prob-
abilities, rankings, clusterings, or any other quantity.
�erefore, their decisions can be combined by many
methods, including averaging, voting, and probabilistic
methods. �e majority of ensemble learning methods
are generic, applicable across broad classes of model
types and learning tasks.

Ensemble Learning E

E

Motivation and Background
If we could build the “perfect” machine learning device,
one which would give us the best possible answer
every time, there would be no need for ensemble learn-
ing methods – indeed, there would be no need for
this encyclopedia either. �e underlying principle of
ensemble learning is a recognition that in real-world
situations, every model has limitations and will make
errors. Given that each model has these “limitations,”
the aim of ensemble learning is to manage their
strengths and weaknesses, leading to the best possi-
ble decision being taken overall. Several theoretical and
empirical results have shown that the accuracy of an
ensemble can signi�cantly exceed that of a singlemodel.

�e principle of combining predictions has been
of interest to several �elds over many years. Over
years ago, a controversial question had arisen, on how
best to estimate the mean of a probability distribution
given a small number of sample observations. Laplace
() demonstrated that the sample mean was not
always optimal: under a simple condition, the sam-
ple median was a better combined predictor of the
population mean.�e �nancial forecasting community
has analyzed model combination for several decades,
in the context of stock portfolios.�e contribution of
the machine learning (ML) community emerged in the
s – automatic construction (from data) of both
the models and the method to combine them. While
the majority of the ML literature on this topic is from
 onward, the principle has been explored brie�y
by several independent authors since the s. See
Kuncheva (b) for historical accounts.

�e study of ensemble methods, with model out-
puts considered for their abstract properties rather than
the speci�cs of the algorithm which produced them,
allows for a wide impact across many �elds of study. If
we can understand precisely why, when, and how par-
ticular ensemble methods can be applied successfully,
we would have made progress toward a powerful new
tool for Machine Learning: the ability to automatically
exploit the strengths and weaknesses of di�erent learning
systems.

Methods and Algorithms
An ensemble consists of a set of models and a method
to combine them. We begin this section by assuming

that we have a set of models, generated by any of the
learning algorithms in this encyclopedia; we explore
popular methods of combining their outputs, for clas-
si�cation and regression problems. Following this, we
review some of the most popular ensemble algorithms,
for learning a set of models given the knowledge that
they will be combined, including extensive pointers for
further reading. Finally, we take a theoretical perspective,
and review the concept of ensemble diversity, the funda-
mental property which governs how well an ensemble
can perform.

Methods for Combining a Set of Models

�ere exist numerous methods for model combination,
far too many to fully detail here.�e linear combiner,
the product combiner, and the voting combiner are by
far themost commonly used in practice.�ough a com-
biner could be speci�cally chosen to optimize perfor-
mance in a particular application, these three rules have
shown consistently good behavior across many prob-
lems, and are simple enough that they are amenable to
theoretical analysis.

�e linear combiner is used for models that output
real-valued numbers, so is applicable for 7regression
ensembles, or for 7classi�cation ensembles producing
class probability estimates. Here, notation for the latter
case is only shown.We have amodel ft(y∣x), an estimate
of the probability of class y given input x. For a set of
these, t = {, . . . ,T}, the ensemble probability estimate
is,

f̄ (y∣x) =
T

∑
t=

wtft(y∣x). ()

If theweightswt = /T,∀t, this is a simple uniform aver-
aging of the probability estimates.�e notation clearly
allows for the possibility of a nonuniformly weighted
average. If the classi�ers have di�erent accuracies on the
data, a nonuniform combination could in theory give
a lower error than a uniform combination. However,
in practice, the di�culty of estimating the w param-
eters without over�tting, and the relatively small gain
that is available (see Kuncheva, b, p.), have
meant that in practice the uniformly weighted average
is by far the most commonly used. A notable exception,
to be discussed later in this article, is the mixture of
experts paradigm – in MoE, weights are nonuniform,

 E Ensemble Learning

but are learnt and dependent on the input value x. An
alternative combiner is the product rule:

f̄ (y∣x) =

Z

T

∏
t=

ft(y∣x)wt , ()

where Z is a normalization factor to ensure f̄ is a
valid distribution. Note that Z is not required to make
a valid decision, as the order of posterior estimates
remain unchanged before/a�er normalization. Under
the assumption that the class-conditional probability
estimates are independent, this is the theoretically opti-
mal combination strategy. However, this assumption is
highly unlikely to hold in practice, and again theweights
w are di�cult to reliably determine. Interestingly, the
linear and product combiners are in fact special cases of
the generalized mean (Kuncheva, b) allowing for a
continuum of possible combining strategies.

�e linear and product combiners are applicable
when our models output real-valued numbers. When
the models instead output class labels, a majority (or
plurality) vote can be used. Here, each classi�er votes
for a particular class, and the class with the most votes
is chosen as the ensemble output. For a two-class prob-
lem the models produce labels, ht(x) ∈ {−,+}. In this
case, the ensemble output for the voting combiner can
be written as

H(x) = sign
⎛

⎝

T

∑
t=

wtht(x)
⎞

⎠
. ()

�e weights w can be uniform for a simple majority
vote, or nonuniform for a weighted vote.
We have discussed only a small fraction of the possi-

ble combiner rules. Numerous other rules exist, includ-
ing methods for combining rankings of classes, and
unsupervised methods to combine clustering results.
For details of the wider literature, see Kuncheva (b)
or Polikar ().

Algorithms for Learning a Set of Models

If we had a committee of people taking decisions, it is
self-evident that we would not want them all to make
the same bad judgments at the same time. With a com-
mittee of learning models, the same intuition applies:
we will have no gain from combining a set of identi-
cal models. We wish the models to exhibit a certain
element of “diversity” in their group behavior, though
still retaining good performance individually.

We therefore make a distinction between two types
of ensemble learning algorithms, those which encour-
age diversity implicitly, and those which encourage it
explicitly. �e vast majority of ensemble methods are
implicit, in that they provide di�erent random sub-
sets of the training data to each learner. Diversity is
encouraged “implicitly” by random sampling of the
data space: at no point is a measurement taken to
ensure diversity will emerge. �e random di�erences
between the datasets might be in the selection of exam-
ples (the7Bagging algorithm), the selection of features
(7Random Subspace Method, Ho, or 7Rotation
Forests, Rodriguez, Kuncheva, & Alonso,), or
combinations of the two (the Random Forests algo-
rithm, Breiman,). Many other “randomization”
schemes are of course possible.
An alternative is to explicitly encourage diversity,

constructing each ensemble member with some mea-
surement ensuring that it is substantially di�erent from
the other members. 7Boosting algorithms achieve this
by altering the distribution of training examples for
each learner such that it is encouraged to make more
accurate predictions where previous predictors have
made errors. �e DECORATE algorithm (Melville &
Mooney,) explicitly alters the distribution of class
labels, such that successive models are forced to learn
di�erent answers to the same problem. 7Negative
correlation learning (see Brown, ; Brown, Wyatt,
Harris, & Yao,), includes a penalty term when
learning each ensemble member, explicitly managing
the accuracy-diversity trade-o�.
In general, ensemblemethods constitute a large class

of algorithms – some based on heuristics, and some
on sound learning-theoretic principles.�e three algo-
rithms that have received the most attention in the
literature are reviewed here. It should be noted that we
present only the most basic form of each; numerous
modi�cations have been proposed for a variety of learn-
ing scenarios. As further study the reader is referred to
the many comprehensive surveys of the �eld (Brown et
al., ; Kuncheva, b; Polikar,).

Bagging

In the Bagging algorithm (Breiman,), each mem-
ber of the ensemble is constructed from a di�erent
training dataset, and the predictions combined either

Ensemble Learning E

E

by uniform averaging or voting over class labels. Each
dataset is generated by sampling from the total N
data examples, choosing N items uniformly at random
with replacement. Each sample is known as a boot-
strap; the name Bagging is an acronym derived from
Bootstrap AGGregatING. Since a bootstrap samples N
items uniformly at randomwith replacement, the prob-
ability of any individual data item not being selected is
p = (− /N)N . �erefore with large N, a single boot-
strap is expected to contain approximately .% of
the original set, while .% of the originals are not
selected.
Like many ensemble methods, Bagging works best

with unstable models, that is those that produce dif-
fering generalization behavior with small changes to
the training data. �ese are also known as high vari-
ancemodels, examples of which are7decision trees and
7neural networks. Bagging therefore tends not to work
well with very simplemodels. In e�ect, Bagging samples
randomly from the space of possible models tomake up
the ensemble – with very simple models the sampling
produces almost identical (low diversity) predictions.
Despite its apparent capability for variance reduc-

tion, situations have been demonstrated where Bag-
ging can convergewithout a�ecting variance (see Brown
et al.,). Several other explanations have been pro-
posed for Bagging’s success, including links to Bayesian
model averaging. In summary, it seems that several
years from its introduction, despite its apparent simplic-
ity, Bagging is still not fully understood.

Algorithm Bagging
Input: Required ensemble size T
Input: Training set S={(x, y), (x, y), . . . ,
(xN , yN)}
for t = to T do
Build a dataset St , by sampling N items, randomly
with replacement from S.
Train a model ht using St , and add it to the ensem-
ble.

end for
For a new testing point (x′, y′),
If model outputs are continuous, combine them by
averaging.
If model outputs are class labels, combine them by
voting.

Adaboost

Adaboost (Freund & Schapire,) is the most well
known of the Boosting family of algorithms (Schapire,
).�e algorithm trains models sequentially, with a
new model trained at each round. At the end of each
round, mis-classi�ed examples are identi�ed and have
their emphasis increased in a new training set which is
then fed back into the start of the next round, and a new
model is trained. �e idea is that subsequent models
should be able to compensate for errors made by earlier
models.
Adaboost occupies somewhat of a special place in

the history of ensemble methods. �ough the proce-
dure seems heuristic, the algorithm is in fact grounded
in a rich learning-theoretic body of literature. Schapire
() addressed a question posed by Kearns and
Valiant () on the nature of two complexity classes
of learning problems.�e two classes are strongly learn-
able and weakly learnable problems. Schapire showed
that these classes were equivalent; this had the corollary
that a weak model, performing only slightly better than
random guessing, could be “boosted” into an arbitrarily
accurate strongmodel.�e original Boosting algorithm
was a proof by construction of this equivalence, though
had a number of impractical assumptions built-in.�e
Adaboost algorithm (Freund & Schapire,) was the
�rst practical Boosting method.�e authoritative his-
torical account of the development can be found in
Schapire (), including discussion of numerous vari-
ants and interpretations of the algorithm.�e procedure
is shown in Algorithm . Some similarities with Bag-
ging are evident; a key di�erences is that at each round t,
Bagging has a uniform distribution Dt , while Adaboost
adapts a nonuniform distribution.

�e ensemble is constructed by iteratively adding
models. Each time a model is learnt, it is checked to
ensure it has at least єt < ., that is, it has performance
better than random guessing on the data it was sup-
plied with. If it does not, either an alternative model is
constructed, or the loop is terminated.
A�er each round, the distribution Dt is updated to

emphasize incorrectly classi�ed examples. �e update
causes half the distribution mass of Dt+ to be over the
examples incorrectly classi�ed by the previous model.
More precisely,∑ht(xi)≠yi Dt+(i) = ..�us, ifht has an
error rate of %, then examples from that small %will
be allocated % of the next model’s training “e�ort,”

 E Ensemble Learning

Algorithm Adaboost
Input: Required ensemble size T
Input: Training set S = {(x, y), (x, y), . . . ,
(xN , yN)}, where yi ∈ {−,+}
De�ne a uniform distribution D(i) over elements
of S.
for t = to T do
Train a model ht using distribution Dt .
Calculate єt = PDt(ht(x) ≠ y)
If єt ≥ . break
Set αt =

 ln (

−єt
єt

)

Update Dt+(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor so that Dt+ is a
valid distribution.

end for
For a new testing point (x′, y′),
H(x′) = sign(∑T

t= αtht(x′))

while the remaining examples (those correctly classi-
�ed) are underemphasized. An equivalent (and simpler)
writing of the distribution update scheme is to multi-
ply Dt(i) by /(− єt) if ht(xi) is correct, and by /єt
otherwise.

�e updates cause the models to sequentially min-
imize an exponential bound on the error rate. �e
training error rate on a data sample S drawn from the
true distributionD obeys the bound,

Px,y∼S(yH(x) <) ≤
T

∏
t=

√
єt(− єt). ()

�is upper bound on the training error (though not the
actual training error) is guaranteed to decrease mono-
tonically with T, given єt < ..
In an attempt to further explain the performance of

Boosting algorithms, Schapire also developed bounds
on the generalization error of voting systems, in terms
of the voting margin, the de�nition of which was given
in (). Note that, this is not the same as the geomet-
ric margin, optimized by 7support vector machines.
�e di�erence is that the voting margin is de�ned using
the one-norm ∣∣w∣∣ in the denominator, while the geo-
metric margin uses the two-norm ∣∣w∣∣. While this
is a subtle di�erence, it is an important one, form-
ing links between SVMs and Boosting algorithms –
see Rätsch, Mika, Schölkopf, and Müller () for

details. �e following bound holds with probability
 − δ,

Px,y∼D(H(x) ≠ y) ≤ Px,y∼S(yH(x) < θ)+Õ
⎛
⎝

√
d

Nθ
− ln δ

⎞
⎠
, ()

where the Õ notation hides constants and logarith-
mic terms, and d is the 7VC-dimension of the model
used. Roughly, this states that the generalization error
is less than or equal to the training error plus a term
dependent on the voting margin.�e larger the mini-
mum margin in the training data, the lower the testing
error.�e original bounds have since been signi�cantly
improved, see Koltchinskii and Panchenko () as a
comprehensive recent work. We note that this bound
holds generally for any voting system, and is not speci�c
to the Boosting framework.

�e margin-based theory is only one explanation of
the success of Boosting algorithms. Mease and Wyner
() present a discussion of several questions on why
and how Adaboost succeeds.�e subsequent pages
of discussion demonstrate that the story is by no means
simple. �e conclusion is, while no single theory can
fully explain Boosting, each provides a di�erent part of
the still unfolding story.

Mixtures of Experts

�e mixtures of experts architecture is a widely inves-
tigated paradigm for creating a combination of mod-
els (Jacobs, Jordan, Nowlan, & Hinton,).�e prin-
ciple underlying the architecture is that certain models
will be able to “specialize” to particular parts of the
input space. It is commonly implemented with a neu-
ral network as the base model, or some other model
capable of estimating probabilities. A Gating network
receives the same inputs as the component models,
but its outputs are used as the weights for a linear
combiner.�e Gating network is responsible for learn-
ing the appropriate weighted combination of the spe-
cialized models (“experts”) for any given input. �us,
the input space is “carved-up” between the experts,
increasing and decreasing their weights for particu-
lar examples. In e�ect, a mixture of experts explic-
itly learns how to create expert ensemble members in
di�erent portions of the input space, and select the
most appropriate subset for a new testing example
(Fig.).

Ensemble Learning E

E

Expert 1

Expert 2

Expert 3

Input
Output

Gating net

Ensemble Learning. Figure . The mixtures of experts architecture

�e architecture has received wide attention, and
has a strong following in the probabilistic modeling
community, where it may go under the pseudonym of
a “mixture model.” A common training method is the
7expectation-maximization algorithm.

Theoretical Perspectives: Ensemble
Diversity
We have seen that all ensemble algorithms in some way
attempt to encourage “diversity.” In this section, we take
a more formalized perspective, to understand what is
meant by this term.

What is Diversity?

�e optimal “diversity” is fundamentally a credit assign-
ment problem. If the committee as a whole makes an
erroneous prediction, howmuch of this error should be
attributed to each member? More precisely, how much
of the committee prediction is due to the accuracies of
the individual models, and how much is due to their
interactions when they were combined? We would ide-
ally like to reexpress the ensemble error as two distinct
components: a term for the accuracies of the individ-
ual models, plus a term for their interactions, i.e., their
diversity.

It turns out that this so-called accuracy-diversity
breakdown of the ensemble error is not always possi-
ble, depending on the type of error function, and choice
of combiner rule. It should be noted that when “diver-
sity” is referred to in the literature, it is most o�en
meant to indicate classi�cation with a majority vote
combiner, but for completeness we address the general
case here. In the following sections, the existing work to
understand diversity in three distinct cases is described:
for regression tasks (a linear combiner), and classi�-
cation tasks, with either a linear combiner or a voting
combiner.

Regression Error with a Linear Combination Rule

In a regression problem, it is common to use the squared
error criterion. �e accuracy-diversity breakdown for
this case (using a linear combiner) is called the ambigu-
ity decomposition (Krogh & Vedelsby,).�e result
states that the squared error of the linearly combined
ensemble, f̄ (x), can be broken into a sum of two
components:

(f̄ (x) − d) =

T

T

∑
t=

(ft(x) − d) −

T

T

∑
t=

(ft(x) − f̄ (x)).

()

 E Ensemble Learning

�e �rst term on the right hand side is the average
squared error of the individual models, while the sec-
ond term quanti�es the interactions between the pre-
dictions. Note that this second term, the “ambiguity,”
is always positive.�is guarantees that, for an arbitrary
data point, the ensemble squared error is always less
than or equal to the average of the individual squared
errors.

�e intuition here can be understood as follows.
Imagine �ve friends, playing “guess the weight of the
cake” (an old English fairground game): if a player’s
guess is close enough to the true weight, they win the
cake. Just as they are about to play, the fairground man-
ager states that they can only submit one guess. �e
dilemma seems to be in whose guess they should sub-
mit – however, the ambiguity decomposition shows us
that taking the average of their guesses, and submitting
that, will always be closer (on average) than choosing
a person at random and submitting their guess. Note
that this is quali�ed with “on average” – it may well be
that one of the predictions will in fact be closer than
the average prediction, but we presume that we have
no way of identifying which prediction to choose, other
than random. It can be seen that greater diversity in
the predictions (i.e., a larger ambiguity term) results in
a larger gain over the average individual performance.
However, it is also clear that there is a trade-o� to be had:
too much diversity and the average error is extremely
large.

�e idea of a trade-o� between these two terms
is reminiscent of the 7bias-variance decomposition
(Geman, Bienenstock, & Doursat,); in fact, there
is a deep connection between these results. Taking the
expected value of () over all possible training sets gives
us the ensemble analogy to the bias-variance decom-
position, called the 7bias-variance-covariance decom-
position (Ueda & Nakano,). �is shows that the
expected squared error of an ensemble f̄ (x) from a
target d is:

ED{(f̄ (x)−d)} = bias

+

T
var +

⎛

⎝
−

T
⎞

⎠
covar, ()

where the expectation is with respect to all possible
training datasets D. While the bias and variance terms
are constrained to be positive, the covariance between

models can become negative – thus the de�nition of
diversity emerges as an extra degree of freedom in the
bias-variance dilemma. �is extra degree of freedom
allows an ensemble to approximate functions that are
di�cult (if not impossible) to �nd with a single model.
See Brown et al. () for extensive further discussion
of this concept.

Classification Error with a Linear Combination Rule

In a classi�cation problem, our error criterion is the
misclassi�cation rate, also known as the zero-one loss
function. For this type of loss, it is well known there
is no unique de�nition of bias-variance; instead there
exist multiple decompositions each with advantages
and disadvantages (see Kuncheva, b, p.).�is
gives us a clue as to the situation with an ensemble –
there is also no simple accuracy-diversity separation of
the ensemble classi�cation error. Classi�cation prob-
lems can of course be addressed either by a model
producing class probabilities (where we linearly com-
bine), or directly producing class labels (where we use
majority vote). Partial theory has been developed for
each case.
For linear combiners, there exist theoretical results

that relate the correlation of the probability estimates
to the ensemble classi�cation error. Tumer and Ghosh
() showed that the reducible classi�cation error
(i.e., above the Bayes rate) of a simple averaging ensem-
ble, eave, can be written as

eave = eadd
⎛

⎝

 + δ(T −)
T

⎞

⎠
, ()

where eadd is the classi�cation error of an individual
model. �e δ is a correlation coe�cient between the
model outputs. When the individual models are iden-
tical, the correlation is δ = . In this case, the ensem-
ble error is equal to the individual error, eave = eadd.
When the models are statistically independent, δ = ,
and the ensemble error is a fraction /T of the individual
error, eave = /T × eadd. When δ is negative, the mod-
els are negatively correlated, and the ensemble error is
lower than the average individual error. However, ()

Ensemble Learning E

E

is derived under quite strict assumptions, holding only
for a local area around the decision boundary, and ulti-
mately resting on the bias-variance-covariance theory
from regression problems. Further details, includ-
ing recent work to li� some of the assumptions
(Kuncheva, b).

Classification Error with a Voting Combination Rule

�e case of a classi�cation problem with a majority
vote combiner is the most challenging of all. In general,
there is no known breakdown of the ensemble clas-
si�cation error into neat accuracy and diversity com-
ponents. �e simplest intuition to show that correla-
tion between models does a�ect performance is given
by the Binomial theorem. If we have T models each
with identical error probability p = P(ht(x) ≠ y),
assuming theymake statistically independent errors, the
following error probability of the majority voting com-
mittee holds,

P(H(x) ≠ y) =
T

∑
k>(T/)

(
T
k
)pk(− p)(T−k). ()

For example, in the case of T = ensemble mem-
bers, each with error p = ., the majority voting error
will be ., an order of magnitude improvement over
the individual error. However, this only holds for sta-
tistically independent errors.�e correlated case is an
open problem. Instead, various authors have proposed
their own heuristic de�nitions of diversity in majority
voting ensembles. Kuncheva (b) conducted exten-
sive studies of several suggested diversity measures; the
conclusion was that “no measure consistently correlates
well with the majority vote accuracy.” In spite of this,
some were found useful as an approximate guide to
characterize performance of ensemblemethods, though
should not be relied upon as the “�nal word” on diver-
sity. Kuncheva’s recommendation in this case is the
Q-statistic (Kuncheva, b, p.), due to its simplic-
ity and ease of computation.
Breiman () took an alternative approach, deriv-

ing not a separation of error components, but a bound
on the generalization error of a voting ensemble,
expressed in terms of the correlations of the models. To
understand this, we must introduce concept of voting

margin.�e votingmargin for a two-class problem,with
y ∈ {−,+}, is de�ned,

m =
yt∑T

t= wtht(x)
∑

T
t= ∣wt ∣

= yH(x). ()

If the margin is positive, the example is correctly classi-
�ed, if it is negative, the example is incorrectly classi�ed.
�e expectedmargin s = ED{m}measures the extent to
which the average number of votes for the correct class
exceeds the average vote for any other class, with respect
to the data distribution D.�e larger the voting mar-
gin, the more con�dence in the classi�cation. Breiman’s
bound shows,

PD(H(x) ≠ y) = PD(yH(x) <) ≤
ρ̄(− s)

s
. ()

Here ρ̄ is the average pairwise correlation between the
errors of the individual models. �us, the generaliza-
tion error is minimized by a small ρ̄, and an s as close
to as possible. �e balance between a high accu-
racy (large s) and a high diversity (low ρ̄) constitutes
the tradeo� in this case, although the bound is quite
loose.

Summary

In summary, the de�nition of diversity depends on the
problem. In a regression problem, the optimal diversity
is the trade-o� between the bias, variance and covari-
ance components of the squared error. In a classi�cation
problem, with a linear combiner, there exists partial
theory to relate the classi�er correlations to the ensem-
ble error rate. In a classi�cation problem with a voting
combiner, there is no single theoretical framework or
de�nition of diversity. However, the lack of an agreed
de�nition of diversity has not discouraged researchers
from trying to achieve it, nor has it stalled the progress
of e�ective algorithms in the �eld.

Conclusions & Current Directions
in the Field
Ensemble methods constitute some of the most robust
and accurate learning algorithms of the past decade
(Caruana & Niculescu-Mizil,). A multitude of
heuristics have been developed for randomizing the
ensemble parameters, to generate diverse models. It

 E Entailment

is arguable that this line of investigation is nowa-
days rather oversubscribed, and the more interesting
research is now in methods for nonstandard data.
7Cluster ensembles (Strehl & Ghosh,) are ensem-
ble techniques applied to unsupervised learning prob-
lems. Problems with nonstationary data, also known
as concept dri�, are receiving much recent attention
(Kuncheva, a).�emost up to date innovations are
to be found in the biennial International Workshop on
Multiple Classi�er Systems (Roli et al.,).

Recommended Reading
Kuncheva (b) is the standard reference in the field, which

includes references to many further recommended readings.
In addition, Brown et al. () and Polikar () provide
extensive literature surveys. Roli et al. () is an international
workshop series dedicated to ensemble learning.

Breiman, L. (). Bagging predictors. Machine Learning (),
–.

Breiman, L. (). Random forests. Machine Learning (), –.
Brown, G. (). Diversity in neural network ensembles. PhD thesis,

University of Birmingham.
Brown, G., Wyatt, J. L., Harris, R., & Yao, X. (). Diversity

creation methods: A survey and categorisation. Journal of Infor-
mation Fusion (), –.

Caruana, R., & Niculescu-Mizil, A. (). An empirical compari-
son of supervised learning algorithms. In Proceedings of the rd
international conference on machine learning (pp. –). New
York: ACM.

Freund, Y., & Schapire, R. (). Experiments with a new boost-
ing algorithm. In Proceedings of the thirteenth international
conference on machine learning (ICML’) (pp. –). San
Francisco: Morgan Kauffman Publishers.

Geman, S., Bienenstock, E., & Doursat, R. (). Neural networks
and the bias/variance dilemma. Neural computation (), –.

Ho, T. K. (). The random subspace method for constructing
decision forests. IEEE Transactions on Pattern Analysis and
Machine Intelligence (), –.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. ().
Adaptive mixtures of local experts. Neural Computation (),
–.

Kearns, M., & Valiant, L. G. (). Learning Boolean formulae or
finite automata is as hard as factoring. Technical report TR--
, Harvard University Aiken Computation Laboratory.

Koltchinskii, V., & Panchenko, D. (). Complexities of con-
vex combinations and bounding the generalization error in
classification. Annals of Statistics (), .

Krogh, A., & Vedelsby, J. (). Neural network ensembles, cross-
validation and active learning. In Advances in neural informa-
tion processing systems (pp. –). Cambridge, MA: MIT
Press.

Kuncheva, L. I. (a). Classifier ensembles for changing environ-
ments. In International workshop on multiple classifier systems.
Lecture Notes in Computer Science . Berlin: Springer.

Kuncheva, L. I. (b). Combining pattern classifiers: Methods and
algorithms. New York: Wiley.

Laplace, P. S. (). Deuxieme supplement a la theorie analytique des
probabilites. Paris: Gauthier-Villars.

Mease, D., & Wyner, A. (). Evidence contrary to the statisti-
cal view of Boosting. Journal of Machine Learning Research ,
–.

Melville, P., & Mooney, R. J. (). Creating diversity in ensembles
using artificial data. Information Fusion (), –.

Polikar, R. (). Ensemble based systems in decision making. IEEE
Circuits and Systems Magazine, (), –.

Rätsch, G., Mika, S., Schölkopf, B., & Müller, K. R. (). Con-
structing Boosting algorithms from SVMs: An application to
one-class classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence (), –.

Rodriguez, J., Kuncheva, L., & Alonso, C. (). Rotation forest: A
new classifier ensemble method. IEEE Transactions on Pattern
Analysis and Machine Intelligence (), –.

Roli, F., Kittler, J., Windridge, D., Oza, N., Polikar, R., Haindl,
M., et al. (Eds.). Proceedings of the international workshop
on multiple classifier systems –. Lecture notes in
computer science. Berlin: Springer. Available at: http://www.
informatik.uni- trier.de/ley/db/conf/mcs/index.html

Schapire, R. E. (). The strength of weak learnability. Machine
Learning , –.

Schapire, R. E. (). A brief introduction to Boosting. In Pro-
ceedings of the th international joint conference on artificial
intelligence (pp. –). San Francisco, CA: Morgan Kauf-
mann.

Schapire, R. E. (). The boosting approach to machine learning:
An overview. In D. D. Denison, M. H. Hansen, C. Holmes, B.
Mallick, & B. Yu (Eds.), Nonlinear estimation & classification
Lecture notes in statistics (pp. –). Berlin: Springer.

Strehl, A., & Ghosh, J. (). Cluster ensembles – A knowledge
reuse framework for combining multiple partitions. The Journal
of Machine Learning Research , –.

Tumer, K., & Ghosh, J. (). Error correlation and error reduction
in ensemble classifiers. Connection Science (–), –.

Ueda, N., & Nakano, R. (). Generalization error of ensemble
estimators. In Proceedings of IEEE international conference on
neural networks (Vol. , pp. –). ISBN: ---

Entailment

Synonyms
Implication; Logical consequence

Definition
�e term entailment is used in the context of logical rea-
soning. Formally, a logical formula T entails a formula c
if and only if all models ofT are also amodel of c.�is is
usually denoted as T ⊧ c and means that c is a logical
consequence of T or that c is implied by T.

http://www.informatik.uni-trier.de/ley/db/conf/mcs/index.html

Entity Resolution E

E

Let us elaborate this de�nition for propositional
clausal logic, where the formulae T could be the follow-
ing expression:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

Here, the �rst clause or rule can be read as �ies if nor-
mal and bird, that is, normal birds �y, the second and
third one as stating that blackbirds, resp. ostriches, are
birds. An interpretation is then an assignment of truth-
values to the propositional variables. For instance, for
the above domain

{ostrich, bird}
{blackbird, bird, normal}

are interpretations, speci�ed through the set of proposi-
tional variables that are true.�is means that in the �rst
interpretation, the only true propositions areostrich
andbird. An interpretation speci�es a kind of possible
world. An interpretation I is then a model for a clause
h : −b, ..., bn if and only if {b, ..., bn} ⊆ I → h ∈ I
and it is model for a clausal theory if and only if it is
a model for all clauses in the theory.�erefore, the �rst
interpretation above is a model for the theory, but the
second one is not because the interpretation is not a
model for the �rst clause (as {bird, normal} ⊆ I
but flies /∈ I). Using these notions, it can now be ver-
i�ed that the clausal theory T above logically entails the
clause

flies :- ostrich, normal.

because allmodels of the theory are also amodel for this
clause.
In machine learning, the notion of entailment is

used as a covers relation in 7inductive logic program-
ming, where hypotheses are clausal theories, instances
are clauses, and an example is covered by the hypothesis
when it is entailed by the hypothesis.

Cross References
7Inverse Entailment
7Learning from Entailment
7Logic of Generality

Recommended Reading
Russell, S., & Norvig, P. Artificial intelligence: A modern approach

(nd ed.). Prentice Hall.

Entity Resolution

Indrajit Bhattacharya, Lise Getoor
IBM India Research Laboratory, New Delhi, India
University of Maryland, College Park, MD, USA

Synonyms
Co-reference resolution; Deduplication; Duplicate
detection; Identity uncertainty; Merge-purge; Object
consolidation; Record linkage; Reference reconcili-
ation

Definition
A fundamental problem in data cleaning and integra-
tion (see 7Data Preparation) is dealing with uncertain
and imprecise references to real-world entities.�e goal
of entity resolution is a take a collection of uncertain
entity references (or references, in short) from a sin-
gle data source or multiple data sources, discover the
unique set of underlying entities, and map each refer-
ence to its corresponding entity.�is typically involves
two subproblems – identi�cation of references with dif-
ferent attributes to the same entity, and disambiguation
of references with identical attributes by assigning them
to di�erent entities.

Motivation and Background
Entity resolution is a common problem that comes
up in di�erent guises (and is given di�erent names)
in many computer science domains. Examples include
computer vision, where we need to �gure out when
regions in two di�erent images refer to the same under-
lying object (the correspondence problem); natural lan-
guage processing when we would like to determine
which noun phrases refer to the same underlying entity
(co-reference resolution); and databases, where, when
merging two databases or cleaning a database, wewould

 E Entity Resolution

like to determine when two tuple records are referring
to the same real-world object (deduplication and data
integration). Deduplication is important for remov-
ing redundancy and for accurate analysis. In infor-
mation integration, determining approximate joins is
important for consolidating information from multiple
sources; most o�en there will not be a unique key that
can be used to join tables across databases.
Such ambiguities in entity references can occur due

to multiple reasons. O�en times, data may have data
entry errors, such as typographical errors. Multiple rep-
resentations, such as abbreviations, are also possible.
Di�erent databases typically have di�erent keys – one
person database may use social security numbers while
another uses name and address.
Traditional entity resolution approaches focus on

matching attributes of di�erent references for resolv-
ing entities. However, many data sources have explicit
or implicit relationships present among the entity
references. �ese relations are indicative of relation-
ships between the underlying entities themselves. For
example, person records in census data are linked by
family relationships such as sibling, parent, and spouse.
Researchers collaborate mostly within their organiza-
tion, or their research community, as a result of which
references to related researchers tend to occur closely
together. Recent entity resolution approaches in sta-
tistical relational learning make use of relationships
between references to improve entity resolution accu-
racy, and additionally to discover relationships between
the underlying entities.

Theory/Solution
As an illustration of the entity resolution problem, con-
sider the task of resolving the author references in

a database of academic publications similar to DBLP,
CiteSeer or PubMed. Let us take as an example the
following set of four papers:

. W. Wang, C. Chen, A. Ansari, “A mouse immunity
model”

. W. Wang, A. Ansari, “A better mouse immunity
model”

. L. Li, C. Chen,W.Wang, “Measuring protein-bound
�uxetine”

. W. W. Wang, A. Ansari, “Autoimmunity in biliary
cirrhosis”

Now imagine that we would like to �nd out, given
these four papers, which of these author names refer
to the same author entities.�is process involves deter-
mining whether paper and paper are written by the
same author namedWang, or whether they are di�erent
authors. We need to answer similar questions about all
such similar author names in the database.
In this example, it turns out there are six under-

lying author entities, which we will call Wang and
Wang, Chen and Chen, Ansari and Li. �e three
references with the name “A. Ansari” correspond to
author Ansari and the reference with name “L. Li” to
author Li. However, the two references with name “C.
Chen” map to two di�erent authors Chen and Chen.
Similarly, the four references with name “W. Wang” or
“W.W.Wang”map to two di�erent authors.�e “Wang”
references from the �rst, second, and fourth papers cor-
respond to author Wang, while that from the third
paper maps to a di�erent author Wang. �is infer-
ence illustrates the twin problems of identifying “W.
Wang” and “W. W. Wang” as the same author, and
disambiguating two references with name “W. Wang”
as di�erent authors.�is is shown pictorially in Fig. ,

W Wang A Ansari W Wang A Ansari

A AnsariW W Wang

A mouse immunity model A better mouse immunity model

Autoimmunity in biliary cirrhosisMeasuring protien−bound fluxetine

C ChenL Li

C Chen

Paper 2

Paper 4Paper 3

Paper 1

W Wang

Entity Resolution. Figure . The references in different papers in the bibliographic example. References to the same

entity are identically shaded

Entity Resolution E

E

where references that correspond to the same authors
are shaded identically. In the entity resolution pro-
cess, all those and only those author references that are
shaded identically should be resolved as corresponding
to the same underlying entity.
Formally, in the entity resolution problem, we are

given a set of referencesR = {ri}, where each reference
r has attributes r.A, r.A, . . . , r.Ak, such as observed
names and a�liations for author references, as in our
example above.�e references correspond to some set
of unknown entities E = {ei}. We introduce the nota-
tion r.E to refer to the entity to which reference r corre-
sponds.�e goal is to recover the hidden set of entities
E = {ei} and the entity labels r.E for individual refer-
ences given the observed attributes of the references.
In addition to the attributes, in some data sources we
have information in the form of relationships between
the references, such as coauthor relationships between
author references in publication databases. We can
capture the relationships with a set of hyper-edges
H = {hi}. Each hyper-edge h may have attributes as
well to capture the attributes of relationships, which we
denote h.A,h.A, . . . ,h.Al, and we use h.R to denote
the set of references that it connects. In our exam-
ple, each rectangle denotes one hyper-edge correspond-
ing to one paper in the database.�e �rst hyper-edge
corresponding to Paper has as its attribute the title
“A mouse immunity model” and connects the three ref-
erences having name attributes “W. Wang,” “C. Chen,”
and “A.Ansari.” A reference r can belong to zero ormore
hyper-edges and we use r.H to denote the set of hyper-
edges in which r participates. For example, if we have
paper, author, and venue references, then a paper ref-
erence may be connected to multiple author references
and also to a venue reference. In general, the under-
lying references can refer to entities of di�erent types,
as in a publication database, or in newspaper articles,
which contain references to people, places, organiza-
tions, etc.When the type information is known for each
reference, resolution decisions are restricted within ref-
erences of the same type. Otherwise, the typesmay need
to be discovered as well as part of the entity resolution
process.
Traditional entity resolution approaches pose entity

resolution as a pair-wise decision problem over refer-
ences based on their attribute similarity. It can also be
posed as a7graph clustering problem, where references

are clustered together based on their attribute similari-
ties and each cluster is taken to represent one underlying
entity. Entity resolution approaches di�er in how the
similarities between references are de�ned and com-
puted and how the resolution decisions are made based
on these similarities. Traditionally, each pair-wise deci-
sion is made independently of the others. For example,
the decision to resolve the two Wang references from
papers and would be made independently of the
decision to resolve the two Chen references from the
same papers.

�e �rst improvement is to account for the simi-
larity of the coauthor names when such relationships
are available. However, this still does not consider the
“entities” of the related references. For the two “Wang”
references in the earlier example, the two “C. Chen”
coauthors match regardless of whether they refer to
Chen or Chen. �e correct evidence to use here is
that the “Chen’s” are not co-referent. In such a setting,
in order to resolve the “W. Wang” references, it is nec-
essary to resolve the “C Chen” references as well, and
not just consider their name similarity. In the collec-
tive relational entity resolution approach, resolutions
are not made independently, but instead one resolution
decision a�ects other resolutions via hyper-edges.
Below, we discuss the di�erent entity resolution

approaches in greater detail.

Attribute-Based Entity Resolution
As discussed earlier, exact matching of attributes does
not su�ce for entity resolution. Several sophisticated
similarity measures have been developed for tex-
tual strings (Cohen, Ravikumar, & Fienberg, ;
Chaudhuri, Ganjam, Ganti, &Motwani,) that may
be used for unsupervised entity resolution. Finally, a
weighted combination of the similarities over the di�er-
ent attributes for each reference is used to compute the
attribute similarity between two references. An alterna-
tive is to use adaptive supervised algorithms that learn
string 7similarity metrics from labeled data (Bilenko
& Mooney,). In the traditional entity resolution
approach (Fellegi & Sunter, ; Cohen et al.,),
similarity is computed for each pair of references ri, rj
based on their attributes and only those pairs that
have similarity above some threshold are considered
co-referent.

 E Entity Resolution

Efficiency
Even the attribute-only approach to entity resolution
is known to be a hard problem computationally, since
it is infeasible to compare all pairs of references using
expensive similarity measures. �erefore, e�ciency
issues have long been a focus for data cleaning, the
goal being the development of inexpensive algorithms
for �nding approximate solutions.�e key mechanisms
for doing this involve computing the matches e�ciently
and employing techniques commonly called “block-
ing” to quickly �nd potential duplicates (Hernández &
Stolfo, ; Monge & Elkan,), using cheap and
index-based similarity computations to rule out non-
duplicate pairs. Sampling approaches can quickly com-
pute cosine similarity between tuples for fast text-joins
within an SQL framework (Gravano, Ipeirotis, Koudas,
& Srivastava,). Error-tolerant indexes can also
be used in data warehousing applications to e�ciently
look up a small but “probabilistically safe” set of refer-
ence tuples as candidates for matching for an incoming
tuple (Chaudhuri et al.,). Generic entity reso-
lution frameworks also exist for resolving and merg-
ing duplicates as a database operator and minimize
the number of record-level and feature-level operations
(Menestrina, Benjelloun, & Garcia-Molina,).

Probabilistic Models for Pairwise
Resolution
�e groundwork for posing entity resolution as a prob-
abilistic 7classi�cation problem was done by Fellegi
and Sunter (), who studied the problem of labeling
pairs of records from two di�erent �les to be merged
as “match” (M) or “non-match” (U) on the basis of
agreement γ among their di�erent �elds or attributes.
Given an agreement pattern γ, the conditional prob-
abilities P(γ∣M) and P(γ∣U) of γ given matches and
non-matches are computed and compared to decide
whether the two references are duplicates or not. Fellegi
and Sunter showed that the probabilities P(γ∣M) and
P(γ∣U) of �eld agreements can be estimated without
requiring labeled training data if the di�erent �elds
agreements are assumed to be independent. Winkler
() used the EM algorithm to estimate the proba-
bilities without making the independence assumption.

Probabilistic Models for Relational Entity
Resolution
Probabilistic models that take into account inter-
action between di�erent entity resolution decisions
through hyper-edges have been proposed for named-
entity recognition in natural language processing and
for citation matching (McCallum & Wellner, ;
Singla & Domingos,). Such 7relational learn-
ing approaches introduce a decision variable yij for
every pair of references ri and rj, but instead of infer-
ring the yij’s independently, use conditional random
�elds for joint reasoning. For example, the decision
variables for the “Wang” references and the “Chen”
references in papers and would be connected to
each other features functions would be de�ned to
ensure that they are more likely to take up identical
values.
Such relational models are supervised and require

labeled data to train the parameters. One of the
di�culties in using a supervised method for resolu-
tion is constructing a good training set that includes a
representative collection of positive and negative exam-
ples. Accordingly, unsupervised relational models have
also been developed (Bhattacharya & Getoor, ; Li,
Morie, & Roth, ; Pasula, Marthi, Milch, Russell, &
Shpitser,). Instead of introducing pairwise deci-
sion variables, this category of approaches use genera-
tivemodels for references using latent entity labels. Note
that, here, the number of entities is unknown and needs
to be discovered automatically from the available ref-
erences. Relationships between the references, such as
co-mentions or co-occurrences, are captured using joint
distributions over the entity labels.
All of these probabilistic models have been shown

to perform well in practice and have the advantage
that the match/non-match decisions do not depend
on any user-speci�ed similarity measures and thresh-
olds but are learned directly from data. However, this
bene�t comes at a price. Inference in relational prob-
abilistic models is an expensive process. Exact infer-
ence is mostly intractable and approximate strategies
such as loopy belief propagation andMonte Carlo sam-
pling strategies are employed. Even these approximate
strategies take several iterations to converge and extend-
ing such approaches to large datasets is still an open
problem.

Entity Resolution E

E

Other Approaches for Relational Entity
Resolution
Alternative approaches (Dong, Halevy, & Madha-
van, ; Bhattacharya & Getoor, ; Kalashnikov,
Mehrotra, & Chen,) consider relational structure
of the entities for data integration but avoid the com-
plexity of probabilistic inference. By avoiding a formal
probabilistic model, these approaches can handle com-
plex and longer-range relationships between di�erent
entity references and the resolution process is signi�-
cantly faster as well. Such approaches also create pair-
wise decision nodes between references and create a
dependency graph over them to capture the relation-
ships in the data. But instead of performing probabilistic
inference, they keep updating the value associated with
each decision node by propagating relational evidence
fromone decision node to another over the dependency
graph.
When the relationships between the references and

the entities can be captured in a single graph, thematch-
ing entity for a speci�c referencemay be identi�ed using
path-based similarities between their corresponding
nodes in the graph. �e connection strength associ-
ated with each edge in the graph can be determined
in the unsupervised fashion given all the references,
their candidate entity choices, and the relationships
between them, by solving a set of nonlinear equations
(Kalashnikov et al.,). �is approach is useful for
incremental data cleaning when the set of entities cur-
rently in the database is known and an incoming refer-
ence needs to be matched with one of these entities.
An alternative approach to performing collective

entity resolution using relational evidence is to perform
collective relational clustering (Bhattacharya & Getoor,
).�e goal here is to cluster the references into enti-
ties by taking into account the relationships between
the references. �is is achieved by de�ning a similar-
ity measure between two clusters of references that take
into account not only the attribute similarity of the ref-
erences in the two clusters, but also the neighboring
clusters of each cluster.�e neighboring clusters of any
reference cluster c are de�ned by considering the ref-
erences r′ connected to references r belonging to c via
hyper-edges, and the clusters to which these related ref-
erences belong. If the r.C represents the current cluster
for reference c, then N(c) = ⋃ r′.C, where r.H = r′.H

and r.C = c. For instance, the neighboring clusters for a
Wang cluster in our example containing theWang ref-
erences from papers , and are the Ansari cluster and
the Chen clusters containing the other references from
the same papers.�e relational similarity between two
clusters is then computed by comparing their neighbor-
hoods.�is relational similarity complements attribute
similarity in the combined similarity between two clus-
ters. Intuitively, two entities are likely to be the same if
they are similar in attributes and are additionally con-
nected to the same other entities. Collective relational
clustering can be e�ciently implemented by maintain-
ing a priority queue for merge-able cluster pairs and
updating the “neighboring” queue elements with every
merge operation.

Applications
Data cleaning and reference disambiguation approaches
have been applied and evaluated in a number of
domains.�e earliest applicationswere onmedical data.
Census data is an area where detection of duplicates
poses a signi�cant challenge and Winkler (Winkler,
) has successfully applied his research and other
baselines to this domain. A great deal of work has
been done making use of bibliographic data (Pasula
et al., ; Singla & Domingos, ; Bhattacharya
& Getoor,). Almost without exception, the focus
has been on the matching of citations. Work in coref-
erence resolution and disambiguating entity mentions
in natural language processing (McCallum & Wellner,
) has been applied to text corpora and newswire
articles like the TREC corpus. �ere have also been
signi�cant applications in information integration in
data-warehouses (Chaudhuri et al.,).

Cross References
7Classi�cation
7Data Preparation
7Graph Clustering
7Similarity Metrics
7Statistical Relational Learning

Recommended Reading
Bhattacharya, I., & Getoor, L. (). A latent dirichlet model

for unsupervised entity resolution. In The SIAM international
conference on data mining (SIAM-SDM), Bethesda, MD, USA.

 E EP

Bhattacharya, I., & Getoor, L. (). Collective entity resolution in
relational data. ACM transactions on knowledge discovery from
data, (), .

Bilenko, M., & Mooney, R. J. (). Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of
the ninth ACM SIGKDD international conference on knowledge
discovery and data mining (KDD-), Washington, DC.

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (). Robust
and efficient fuzzy match for online data cleaning. In Pro-
ceedings of the ACM SIGMOD international conference on
management of data (pp. –). San Diego, CA.

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (). A comparison
of string distance metrics for name-matching tasks. In Proceed-
ings of the IJCAI- workshop on information integration on
the web (pp. –). Acapulco, Mexico.

Dong,X.,Halevy,A.,&Madhavan,J.().Referencereconciliationin
complexinformationspaces.InTheACMinternationalconference
on management of data (SIGMOD), Baltimore, MD, USA.

Fellegi, I. P., & Sunter, A. B. (). A theory for record linkage.
Journal of the American Statistical Association, , –.

Gravano, L., Ipeirotis, P., Koudas, N., & Srivastava, D. (). Text
joins for data cleansing and integration in an rdbms. In th
IEEE international conference on data engineering.

Hernández, M. A., & Stolfo, S. J. (). The merge/purge problem
for large databases. In Proceedings of the ACM SIGMOD
international conference on management of data (SIGMOD-)
(pp. –). San Jose, CA.

Kalashnikov, D. V., Mehrotra, S., & Chen, Z. (). Exploiting
relationships for domain-independent data cleaning. In SIAM
international conference on data mining (SIAM SDM), April
– , Newport Beach, CA, USA.

Li, X., Morie, P., & Roth, D. (). Semantic integration in text:
From ambiguous names to identifiable entities. AI Magazine.
Special issue on semantic integration, ().

McCallum, A., & Wellner, B. (). Conditional models of iden-
tity uncertainty with application to noun coreference. In NIPS,
Vancouver, BC.

Menestrina, D., Benjelloun, O., & Garcia-Molina, H. (). Generic
entity resolution with data confidences. In First Int’l VLDB
workshop on clean databases, Seoul, Korea.

Monge, A. E., & Elkan, C. P. (). An efficient domain-
independent algorithm for detecting approximately duplicate
database records. In Proceedings of the SIGMOD workshop
on research issues on data mining and knowledge discovery (pp.
–). Tuscon, AZ.

Pasula, H., Marthi, B., Milch, B., Russell, S., & Shpitser, I. ().
Identity uncertainty and citationmatching. InAdvances inneural
information processing systems . Cambridge, MA: MIT Press.

Singla, P., & Domingos, P. (). Multi-relational record linkage.
In Proceedings of rd workshop on multi-relational data mining
at ACM SI GKDD, Seattle, WA.

Winkler, W. E. (). Methods for record linkage and Bayesian
networks. Technical Report, Statistical Research Division, U.S.
Census Bureau, Washington, DC.

EP

7Expectation Propagation

Epsilon Covers

Thomas Zeugmann
Hokkaido University
Sapparo, Japan

Definition
Let (M, ρ) be a metric space, let S⊆M, and let ε > .
A set E⊆M is an ε-cover for S, if for every s ∈ S there is
an e ∈ E such that ρ(s, e) ≤ ε.
An ε-cover E is said to be proper, if E⊆S.

Application
�e notion of an ε-cover is frequently used in kernel-
based learning methods.
For further information, we refer the reader to

Herbrich ().

Cross References
7Statistical Machine Learning
7Support Vector Machines

Recommended Reading
Herbrich, R. (). Learning kernel classifiers: Theory and algo-

rithms. Cambridge, MA: MIT Press.

Epsilon Nets

Thomas Zeugmann
Hokkaido University
Sapparo, Japan

Definition
Epsilon nets were introduced by Haussler and Welz
() and their usefulness for computational learning
theory has been discovered by Blumer, Ehrenfeucht,
Haussler, & Warmuth ().
Let X ≠ ∅ be any learning domain and let C⊆℘(X)

be any nonempty concept class. For the sake of sim-
plicity, we also use C here as hypothesis space. In order
to guarantee that all probabilities considered below
do exist, we restrict ourselves to well-behaved concept
classes (7PAC Learning).

Equation Discovery E

E

Furthermore, letD be any arbitrarily �xed probabil-
ity distribution over the learning domainX and let c ∈ C
be any �xed concept.
A hypothesis h ∈ C is said to be bad for c i�

d(c,h) = ∑
x ∈ c△h

D(x) > ε.

Furthermore, we use

∆(c) =df {h △ c ∣ h ∈ C}

to denote the set of all possible error regions of c with
respect to C and D. Moreover, let

∆ε(c) =df {h △ c ∣ h ∈ C, d(c,h) > ε}

denote the set of all bad error regions of c with respect
to C and D.
Now we are ready to formally de�ne the notion of

an ε-net.

Definition

Let ε ∈ (,) and let S⊆X.�e set S is said to be an ε-net
for ∆(c) i� S ∩ r ≠ ∅ for all r ∈ ∆ε(c).

Remarks

Conceptually, a set S constitutes an ε-net for ∆(c) i�
every bad error region is hit by at least one point in S.

Example

Consider the one-dimensional Euclidean space E and
let X = [,]⊆E. Furthermore, let C be the set of all
closed intervals [a, b]⊆[,]. Consider any �xed c ∈ C
and let D be the uniform distribution, i.e., D([a, b]) =

/(b − a) for all [a, b] ∈ C. Furthermore, let h ∈ C; then
wemaywrite c△ h = I∪I, where I, I ∈ C. Let ε ∈ (,)
be arbitrarily �xed and let

S = {kε/ ∣ ≤ k ≤ ⌈/ε⌉, k ∈ N}.

�en, S forms an ε-net for ∆(c). �is can be seen as
follows. Assume r ∈ ∆ε(c). �en, D(I) > ε/ or
D(I) > ε/. Now, by the de�nition of S it is obvious
that D(Ii) > ε/ implies Ii ∩ S ≠ ∅, i = , .

Application
Recall that in 7PAC Learning, the general strategy to
design a learner has been to draw a su�ciently large
�nite sample and then to �nd a hypothesis that is con-
sistent with it. For showing that this strategy is always
successful, the notion of an ε-net plays an important
role.�is can be expressed by the following observation.

Observation. Let S = {x, . . . , xm} be an ε-net
for ∆(c), and let h ∈ C be any hypothesis such that
h(xi) = c(xi) for all ≤ i ≤ m, i.e., h is consistent.�en
we have d(c,h) ≤ ε.
It then remains to show that the7VCDimension of

C and of ∆(c) are the same and to apply Sauer’s Lemma
to complete the proof.
For further information, we refer the reader to

Blumer, Ehrenfeucht, Haussler, & Warmuth () as
well as to Kearns and Vazirani ().

Cross References
7PAC Learning
7VC Dimension

Recommended Reading
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().

Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM, (), –.

Haussler, D., & Welz, E. (). Epsilon nets and simplex range
queries. Discrete & Computational Geometry, , –.

Kearns, M. J., & Vazirani, U. V. (). An introduction to computa-
tional learning theory. Cambridge, MA: MIT Press.

Equation Discovery

Ljupčo Todorovski
University of Ljubljana
Ljubljana, Slovenia

Synonyms
Computational discovery of quantitative laws; Symbolic
regression

Definition
Equation discovery is a machine learning task that
deals with the problem of learning quantitative laws
and models, expressed in the form of equations, in

 E Equation Discovery

collections of measured numeric data. Equation dis-
covery methods take at input a 7data set consisting
of measured values of a set of numeric variables of
an observed system or phenomenon. At output, equa-
tion discovery methods provide a set of equations,
such that, when used to calculate the values of sys-
tem variables, the calculated values closely match the
measured ones.

Motivation and Background
Equation discovery methods can be used to solve
complex modeling tasks, i.e., establishing a mathe-
matical model of an observed system. Modeling tasks
are omnipresent in many scienti�c and engineering
domains.
Equation discovery is strongly related to system

identi�cation, another approach to mathematical mod-
eling. System identi�cation methods work under the
assumption that the structure of the model (the form
of the model equations) is known or comes from a
well-de�ned class of model structures, such as polyno-
mials or neural networks. �erefore, they are mainly
concerned with the parameter estimation task, that
is, the task of determining the values of the model
parameters that minimize the discrepancy between
measured data and data obtained by simulating the
model. Equation discoverymethods, on the other hand,
aim at identifying both, an adequate structure of the
model equations and appropriate values of the model
parameters.

7Regression also deals with building predictive
models from numeric data. �e focus of regression
methods is on building descriptive black-box models
that can reconstruct the training data with high accu-
racy. In contrast, equation discovery methods focus on
establishing explanatory models that, beside accurate
predictions, provide explanations of the mechanisms
that govern the behavior of the modeled system.
Early equation discovery methods dealt with redis-

covering empirical laws from the history of science
(this is where the synonym “computational discov-
ery of quantitative laws” comes from). �rough the
years, the focus of the equation discovery methods has
shi�ed from discovering quantitative laws to modeling
real-world systems.

Structure of the Learning System

�e task of equation discovery can be decomposed into
two closely coupled subtasks of structural identi�cation
and parameter estimation. �e �rst task of structural
identi�cation deals with the problem of �nding the
optimal structure of an equation. �e second task of
parameter estimation deals with the problem of �nd-
ing the optimal values of the constant parameters in the
equation. General approaches to and speci�c methods
for equation discovery use di�erent techniques to solve
these two subtasks.

Approaches and Methods

�ere are two general and fundamentally di�erent
approaches to equation discovery. �e �rst approach
relies on a de�nition of a space of candidate equa-
tion structures. Following this de�nition, a generate-
and-test (or 7learning as search) approach is used to
generate di�erent equation structures, solve the param-
eter estimation task for each of them, and report those
equations that most closely approximate the data.�e
second approach relies on heuristics, used by scientists
and engineers in the discovery or modeling processes,
to establish an appropriate equation structure.

�e �rst equation discovery system, Bacon (Langley,
), follows the second approach described above.
It incorporates a set of data-driven heuristics for
detecting regularities (constancies and trends) in mea-
sured data and for formulating hypotheses based on
them. An example heuristic would, when faced with
a situation where the values of two observed vari-
ables increase/decrease simultaneously, introduce a
new equation term by multiplying them. Furthermore,
Bacon builds equation structure at di�erent levels of
description. At each level of description, all but two
variables are held constant and hypotheses connecting
the two changing variables are considered. Using a rela-
tively small set of data-driven heuristics, Bacon is able to
rediscover a number of physical laws including the ideal
gas law, the law of gravitation, the law of refraction, and
Black’s speci�c heat law.
An alternative set of heuristics for equation discov-

ery can be derived from dimensional analysis that is
routinely used to check the plausibility of equations by
using rules that specify the proper ways to combine
variables and terms with di�erent measurements units,

Equation Discovery E

E

di�erent measurement scales, or types thereof. Fol-
lowing these rules, equation discovery method Coper
(Kokar,) considers only equation structures that
properly combine variables and constants, given the
knowledge about their exact measurement units. Equa-
tion discovery method SDS (Takashi & Hiroshi,)
extends Coper to cases, where the exact measurement
units of the variables and constants involved in the
equation are not known, but only knowledge about the
types of the7measurement scales is available.
Finally, the heuristics and design of the equation

discovery method E* (Scha�er,) is based on a
systematic survey of more than a hundred laws and
models published in the Physical Review journal.�e
review shows that many of the published laws andmod-
els follow one of �ve di�erent equation structures. By
including only these �ve structures as its main heuristic
for solving the structure identi�cation task (implement-
ing it as a 7language bias), E* was able to reconstruct
the correct laws and models in about a third of the test
cases collected from the same journal.
Abacus (Falkenhainer & Michalski,) was the

�rst equation discovery method that followed the
generate-and-test (or 7learning as search) approach,
mentioned above. Abacus experimented with di�erent
search strategies within a �xed space of candidate equa-
tion structures. Othermethods that follow the generate-
and-test approach di�er in the ways they de�ne the
space of candidate equation structures and solve the
parameter estimation task.
Equation discovery methods EF (Zembowitz &

Zytkow,) and Lagrange (Džeroski & Todorovski,
) explore the space of polynomial equation struc-
tures that are linear in the constant parameters, so they
apply 7linear regression to estimate parameters. �e
user can shape the space of candidate structures by
specifying parameters, such as, themaximal polynomial
degree, the maximal number of multiplicative terms
included in a polynomial, and a set of functions that
can be used to transform the original variables before
combining them into multiplicative terms.
While all of the above methods assume a �xed pre-

de�ned 7language bias (via speci�cation of the class
of candidate equation structures or via heuristics for
establishing appropriate structure), equation discov-
ery method Lagramge (Todorovski & Džeroski,)
employs dynamic declarative 7language bias, that is,

let the user of the equation discovery method choose
or specify the space of candidate equation structures.
In its �rst version, Lagramge uses the formalism of
context-free grammars for specifying the space of equa-
tion structures. �e formalism has been shown to be
general enough to allow users to build their speci�-
cation upon many di�erent types of modeling knowl-
edge, from measurement units to very speci�c knowl-
edge about building models in a particular domain of
interest (Todorovski & Džeroski,). For solving the
structure identi�cation task, Lagramge de�nes a re�ne-
ment operator that orders the search space of candi-
date equation structures, de�ned by the user-speci�ed
grammar, from the simplest ones to more complex.
Exhaustive and7beam search strategies are then being
employed to the search space and for each structure
considered during the search, Lagramge uses gradient-
descentmethods for nonlinear optimization to solve the
parameter estimation task.�e heuristic function that
guides the search is based on the7mean squared error
that measures the discrepancy between the measured
and simulated values of the observed system variables.
Alternatively, Lagramge can use heuristic function that
takes into account the complexity of the equation and is
based on the7minimum description length principle.
Successors of Lagramge, equation discovery meth-

ods, Lagramge (Todorovski & Džeroski,),
IPM (Bridewell, Langley, Todorovski, & Džeroski,
), and HIPM (Todorovski, Bridewell, Shiran, &
Langley,), primarily focus on the improvement of
the knowledge representation formalism used to for-
malize the modeling knowledge and transform it to
7language bias for equation discovery. All of them
follow the paradigm of7inductive process modeling.

Types of Equations

At �rst, equation discovery methods dealt with the
problem of learning algebraic equations from data.
Equation discovery method Lagrange (Džeroski &
Todorovski,) extended the scope of equation dis-
covery to modeling dynamics from 7time series data
with ordinary di�erential equations. It took a naïve
approach based on transforming the task of discover-
ing ordinary di�erential equations to the simpler task
of discovering algebraic equations, by extending the set
of observed system variables with numerically calcu-
lated time derivatives thereof. By doing so, any of the

 E Error

existing equation discovery methods could be, in prin-
ciple, used to discover di�erential equations. However,
the naïve approach has a major drawback of introduc-
ing large numerical errors, due to instability of meth-
ods for numerical di�erentiation. Equation discovery
method GoldHorn (Križman, Džeroski, & Kompare,
) replaced the instable numerical di�erentiation
with the stable numerical methods for the inverse prob-
lem of integration. Goldhorn also upgrades Lagrange
with �lteringmethods to copewithmeasurement errors
and noisy data.
While ordinary di�erential equations can model

systems that change their state along a single dimen-
sion, time, partial di�erential equations can be used to
model systems that change along many (temporal and
spatial) dimensions. �e naïve approach of introduc-
ing numerically calculated partial derivatives has been
used in the Paddles (Todorovski, Džeroski, Srinivasan,
Whiteley, & Gavaghan,) method for discovery of
partial di�erential equations.�emethod �rst slices the
measurement data into narrow spatial subsets, induces
ordinary di�erential equations in each of them, and uses
most frequently obtained equation structures to extend
them with partial derivatives and to obtain a relatively
small class of partial di�erential equation structures to
explore. All the equation discovery tasks in Paddles are
solved using Lagramge (Todorovski & Džeroski,).

Applications
Equation discovery methods have been applied to
various tasks of discovering equation-based laws and
models from measured and/or simulation data. Appli-
cation domains range from physics (mechanical and
electrical engineering, �uid dynamics) (Takashi &
Hiroshi, ; Todorovski & Džeroski, ,),
through ecology (population dynamics) (Todorovski &
Džeroski, ; Todorovski et al.,) to biochemistry
(chemical kinetics) (Džeroski & Todorovski, ; Lan-
gley, Shiran, Shrager, Todorovski, & Pohorille,).

Cross References
7Inductive Process Modeling
7Language Bias
7Learning as Search
7Linear Regression
7Measurement Scales

7Regression
7System Identi�cation

Recommended Reading
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. ().

Inductive process modeling. Machine Learning, (), –.
Džeroski, S., & Todorovski, L. (). Discovering dynamics: From

inductive logic programming to machine discovery. Journal of
Intelligent Information Systems, (), –.

Džeroski, S., & Todorovski, L. (). Equation discovery for sys-
tems biology: Finding the structure and dynamics of biological
networks from time course data. Current Opinion in Biotechnol-
ogy, , –.

Falkenhainer, B., & Michalski, R. (). Integrating quantita-
tive and qualitative discovery in the ABACUS system. In
Y. Kodratoff & R. Michalski (Eds.),Machine learning: An artifi-
cial intelligence approach. San Mateo: Morgan Kaufmann.

Kokar, M. M. (). Determining arguments of invariant functional
descriptions. Machine Learning, (), –.

Križman, V., Džeroski, S., & Kompare, B. (). Discover-
ing dynamics from measured data. Electrotechnical Review,
(–), –.

Langley, P. (). Data-driven discovery of physical laws. Cognitive
Science, (), –.

Langley, P., Shiran, O., Shrager, J., Todorovski, L., & Pohorille, A.
(). Constructing explanatory process models from biologi-
cal data and knowledge. Artificial Intelligence in Medicine, (),
–.

Schaffer, C. (). Bivariate scientific function finding in a sampled,
real-data testbed. Machine Learning, (–), –.

Takashi, W., & Hiroshi, M. (). Discovery of first-principle equa-
tions based on scale-type-based and data-driven reasoning.
Knowledge-Based Systems, (), –.

Todorovski, L., Bridewell, W., Shiran, O., & Langley, P. ().
Inducing hierarchical process models in dynamic domains. In
M.M. Veloso & S. Kambhampati (Eds.), Proceedings of the twen-
tieth national conference on artificial intelligence, Pittsburgh,
PA, USA.

Todorovski, L., & Džeroski, S. (). Declarative bias in equation
discovery. In D.H. Fisher (Ed.), Proceedings of the fourteenth
international conference on machine learning, Nashville, TN,
USA.

Todorovski, L., & Džeroski, S. (). Integrating domain knowl-
edge in equation discovery. In S. Džeroski & L. Todorovski
(Eds.), Computational discovery of scientific knowledge. LNCS
(Vol.). Berlin: Springer.

Todorovski, L., Džeroski, S., Srinivasan, A., Whiteley, J., & Gav-
aghan, D. (). Discovering the structure of partial differen-
tial equations from example behaviour. In P. Langley (Ed.), Pro-
ceedings of the seventeenth international conference on machine
learning, Stanford, CA, USA.

Zembowitz, R., & Zytkow, J. (). Discovery of equations: Experi-
mental evaluation of convergence. In W. R. Swartout (Ed.), Pro-
ceedings of the tenth national conference on artificial intelligence,
San Jose, CA, USA.

Error

7Error Rate

Evaluation E

E

Error Correcting Output Codes

Synonyms
ECOC

Definition
Error correcting output codes are an7ensemble learn-
ing technique. It is applied to a problem with multiple
classes, decomposing it into several binary problems.
Each class is �rst encoded as a binary string of length
T, assuming we have T models in the ensemble. Each
model then tries to separate a subset of the original
classes from all the others. For example, one model
might learn to distinguish “class A” from “not class A.”
A�er the predictions, with T models we have a binary
string of length T.�e class encoding that is closest to
this binary string (using Hamming distance) is the �nal
decision of the ensemble.

Recommended Reading
Kong, E. B., & Dietterich, T. G. (). Error-correcting output cod-

ing corrects bias and variance. In International conference on
machine learning.

Error Curve

7Learning Curves in Machine Learning

Error Rate

KaiMing Ting

Synonyms
Error

Definition
Error rate refers to a measure of the degree of predic-
tion error of a 7model made with respect to the true
model.

�e term error rate is o�en applied in the context
of 7classi�cation models. In this context, error rate =
P(λ(X) ≠ Y), where XY is a joint distribution and the
classi�cation model λ is a function X → Y . Sometimes

this quantity is expressed as a percentage rather than a
value between . and ..
Two commonmeasures of error rate for7regression

models are 7mean squared error and 7mean absolute
error.

�e error rate of a model is o�en assessed or esti-
mated by applying it to test data for which the 7class
labels (Y values) are known.�e error rate of a classi�er
on test data may be calculated as number of incorrectly
classi�ed objects/total number of objects. Alternatively, a
smoothing functionmay be applied, such as a7Laplace
estimate or an7m-estimate.
Error rate is directly related to7accuracy, such that

error rate = . − accuracy (or when expressed as a
percentage, error rate = − accuracy).

Cross References
7Accuracy
7Confusion matrix
7Mean absolute error
7Mean squared error

Error Squared

Synonyms
Squared error

Definition
Error squared is a common 7loss function used with
7regression.�is is the square of the di�erence between
the predicted and true values.

Estimation of Density Level Sets

7Density-Based Clustering

Evaluation

Evaluation is a process that assesses some property
of an artifact. In machine learning, two types of
artifacts are most commonly evaluated, 7models and
algorithms. 7Model evaluation o�en focuses on the
predictive e�cacy of themodel, but may also assess fac-
tors such as its complexity, the ease with which it can

 E Evaluation Data

be understood, or the computational requirements for
its application.7Algorithm evaluation o�en focuses on
evaluation of the models an algorithm produces, but
may also appraise its computational e�ciency.

Evaluation Data

7Test Data
7Test Set

Evaluation Set

7Test Set

Evolution of Agent Behaviors

7Evolutionary Robotics

Evolution of Robot Control

7Evolutionary Robotics

Evolutionary Algorithms

Synonyms
Evolutionary computation; Evolutionary computing;
Genetic and evolutionary algorithms

Definition
Generic term subsuming all machine learning and opti-
mization methods inspired by neo-Darwinian evolu-
tion theory.

Cross References
7Coevolutionary Learning
7Compositional Coevolution
7Evolutionary Clustering
7Evolutionary Computation in Economics
7Evolutionary Computation in Finance
7Evolutionary Computational Techniques in
Marketing

7Evolutionary Feature Selection and Construction
7Evolutionary Fuzzy Systems
7Evolutionary Games
7Evolutionary Kernel Learning
7Evolutionary Robotics
7Neuroevolution
7Nonstandard Criteria in Evolutionary Learning
7Test-Based Coevolution

Evolutionary Clustering

David Corne, JuliaHandl,
Joshua Knowles
Heriot-Watt University, Edinburgh, UK
University of Manchester

Synonyms
Cluster optimization; Evolutionary grouping; Genetic
clustering; Genetic grouping

Definition
Evolutionary clustering refers to the application of
7evolutionary algorithms (also known as genetic
algorithms) to data 7clustering (or cluster analy-
sis), a general class of problems in machine learning,
with numerous applications throughout science and
industry. Di�erent de�nitions of data clustering exist,
but it generally concerns the identi�cation of homo-
geneous groups of data (clusters) within a given data
set. �at is, data items that are similar to each other
should be grouped together in the same cluster or group,
while (usually) dissimilar items should be placed in sep-
arate clusters. �e output of any clustering method is
therefore a speci�c collection of clusters. If we have
a speci�c way to evaluate (calculate the quality of) a
given grouping into clusters, then we can consider the
clustering task as an optimization problem. In gen-
eral, this optimization problem is NP hard, and it is
common to address it with advanced heuristic or meta-
heuristic methods. Evolutionary algorithms are promi-
nent among such methods, and have led to a vari-
ety of promising and successful techniques for cluster
optimization.

Evolutionary Clustering E

E

Motivation and Background
In many problem-solving scenarios, we have large
amounts of data. We need to cluster those data sensibly
into groups in order to help us understand the problem
and decide how to proceed further (see 7clustering).
It is common, in fact, for this initial “cluster analy-
sis” stage to be the most important (or only) stage in
the investigation. In bioinformatics, for example, a fre-
quent activity is the clustering of gene expression data
(data that indicate, for a speci�c cell, how active each
of several thousands of genes are at di�erent points
in time, or under di�erent experimental conditions).
A very important current challenge is to understand
the role of each gene; by clustering such data, which
means arranging genes into groups such that genes in
the same group have similar patterns of activity, we
�nd important clues about genes whose role is cur-
rently unknown, simply by assigning their putative role
as being related to that of genes (whose role is known)
that are in the same cluster. Meanwhile, a ubiquitous
situation in industry and commerce is the clustering of
data about customers or clients. Here, the role of clus-
tering is all about identifying what types of clients (for
example, based on age, income, postcode, and many
other attributes that may make up a customer’s pro-
�le) buy or use certain kinds of products and services.
E�ective ways to identify groups enable companies to
better target their products and their direct marketing
campaigns, and/or make more e�ective decisions about
loans, credit and overdra�s. Many machine learning
techniques can be used to predict things about cus-
tomers, or predict things about genes, and so forth.
However, the value of clustering (in a similar way
to visualization of the data) is that it can lead to a
much deeper understanding of the data, which in turn
informs the continuing process of applying machine
learning methods to it. In this general context, there are
many well-known and well-used clustering methods,
such as k-means, hierarchical agglomerative clustering,
neighbor-joining, and so forth. However, there are also
well-known di�culties with thesemethods; speci�cally,
there is o�en a need to choose in advance the number of
clusters to �nd in the data, and: they tend to be strongly
biased towards �nding certain types of groupings. For
these reasons, methods that are more �exible have been
recently investigated, and evolutionary clustering tech-
niques are prominent among these.�ey are �exible in

that (unlike k-means, for example), the choice of the
number of clusters does not have to be made a priori,
and the method is not tied to any particular way of
identifying the distance between two items of data, nor
is there any a priori 7inductive bias concerning what
counts as a good clustering. �at is, in broad terms,
an evolutionary clustering algorithm allows a user to
decide in advance on a de�nition of cluster quality that
is suitable for the problem at hand, and to decide in
advance how many clusters are sought, or to leave that
decision open; these decisions are then “plugged in to”
the algorithm which then proceeds to search for good
clusterings.

Structure of Learning System
Evolving Clusters and Evolving Clustering Algorithms

Given a dataset to be clustered, the concept of evolu-
tionary clustering covers two distinct ways in which
we can address the problem of �nding the best clus-
tering. Each of these approaches is under continuing
research, and has proven successful under di�erent con-
ditions. �e �rst approach is to use an evolutionary
algorithm to search the space of candidate groupings of
the data; this is the most straightforward approach, and
perhaps the most �exible in the sense discussed above.
�e second approach is to “wrap” an evolutionary algo-
rithm around a simpler clustering algorithm (such as
k-means), and either use the evolutionary algorithm to
search the space of features for input to the cluster-
ing algorithm (i.e., the evolutionary algorithm is doing
7feature selection in this case), or to search a space
of parameters, such as the number of clusters, feature
weights, and/or other parameters of the clustering algo-
rithm in use. Central in all of these approaches is a way
to measure the quality of a clustering, which in turn
depends on some given metric that provides a distance
between any pair of data items. Although some applica-
tions o�en come with pre-identi�ed ways to measure
distance and cluster quality, in the following we will
assume the most common approach, in which distance
is the Euclidean distance between the data items (per-
haps Hamming distance, in cases where the data are not
numeric), and the measure of quality for a given clus-
tering is the ratio of within-cluster and between-cluster,
wherewithin-cluster is the mean distance between pairs
of items that are in the same cluster, and between-cluster

 E Evolutionary Clustering

Direct evolutionary clustering

Initialise a population of clusters

Evaluate the quality of each
clusters in the population

Initialise a population of
parameter vectors for a specific
clustering algorithm C

Evaluate the quality of each
vector, by running C on the data,
and evaluating the quality of the
resulting clustering

Has a termination condition
been reached?

Via, selection and variation,
generate a new population of
parameter vectors.

Has a termination condition
been reached?

Via, selection and variation,
generate a new population of
clusters

No

Indirect evolutionary clustering
Start

Yes

Stop

Yes

No

Evolutionary Clustering. Figure . The two main approaches to evolutionary clustering; direct (left) and indirect (right)

is the mean distance between pairs of items that are in
di�erent clusters.
We illustrate the two main approaches to evolution-

ary clustering in Fig. .
On the le� in Fig. , we see the direct approach, in

which the evolutionary algorithm searches the space of
clusterings of the data.�e key features in this approach
are the encoding and 7genetic operators. A�er evalu-
ating the quality of each of a population of clusterings,
a new population is generated from the old one via
selection and variation. Essentially, some individuals
from the current population are treated as “parents,”
and new ones are produced from these by using genetic
operators.�e encoding speci�es precisely how a spe-
ci�c data clustering is represented; while the operators
specify how new clusterings are derived from the old
ones. To take a simple example, suppose we needed to
cluster items (A, B, C,…, J) into an arbitrary number
of groups. In a simple encoding, we might represent a
clustering as a vector of labels, independently chosen
from to , in which the ith element gives the group
label of the ith item. Hence, the following individual in
our population of clusterings:

represents the following grouping:

(A, I) (B, H) (C, D, F) (E) (G, I)

Given such a representation, a typical genetic operator
might be to randomly change a single label in a single
parent. For example, we may choose the ��h element
in the above vector and change it randomly to , e�ec-
tively placing item E in the same group as items G and I.
Further notes about operators for this and other encod-
ings are given in a special subsection below.

�ere are several examples of the second type of
approach, called “indirect” evolutionary clustering in
the Fig. (right).�is approach is o�en used where the
“internal” clustering method (“C,” in the �gure) is very
sensitive to initialization conditions and/or parameters
of the metric in use to measure distance between items.
For example, if C is the k-means algorithm, then, for
each application of C, we need choices for the parame-
ter k, and for each of k initial cluster center positions in
the data space.�e parameter vectors referred to in the
�gure would be precisely these; the evolutionary algo-
rithm searches this parameter space, �nding those that
lead to an optimized clustering from k-means.
Figure illustrates why this will o�en be a more

e�ective approach than k-means alone. In this case, it
is entirely unclear whether these data form two, four,
or even �ve clusters. �ere are two widely separated
groups of points, and this two-cluster solution may be

Evolutionary Clustering E

E

Evolutionary Clustering. Figure . An example with many potential interpretations of the number of clusters

easily found by a -means algorithm. However, to the
human eye there is also a clear four-cluster solution,
further analysis of whichmay lead to better understand-
ing of these data.�is four-cluster solution is di�cult
for a -means algorithm to �nd, depending on very
fortunate initial settings for the cluster centers. Mean-
while, it is worth noting that there are potentially �ve
clusters, as the group on the right can be perceived as
a central group of two items, surrounded by a single
backward-C-shaped group.�e “backward-C” cluster is
an example that simply cannot be reliably detected (as
a distinct cluster from the group of two items contained
within it), with most standard cluster analysis meth-
ods. Traditional approaches invariably incorporate the
assumption that clusters will be centered around a par-
ticular position, with the likelihood of a point belonging
to that cluster depending monotonically on distance
from that position. However, on of the strengths of evo-
lutionary clustering is that it provides the �exibility to
work e�ectively with arbitrary de�nitions of what may
constitute a valid cluster.

Encodings and Operators for Evolutionary Clustering

�e more frequently researched style of evolutionary
clustering is the direct approach, and the development
of this approach in recent years is essentially charac-
terized by certain key ideas for the encoding method.
Encodings range from the straightforward representa-
tion noted above (with the ith gene coding for the clus-
ter membership of the ith data item), to more complex
representations, such as matrix-based or permutation-
based representations.

Before providing a brief description of other encod-
ings it is worth brie�y examining a well-known disad-
vantage of the simple encoding. Given that they have
a population, evolutionary algorithms o�er the oppor-
tunity to use multi-parent genetic operators – that is,
we can design operators that produce a new candidate
clustering given two or more “parent” clusterings. Such
operators are neither mandatory nor necessarily bene�-
cial in evolutionary algorithms, and there ismuch litera-
ture discussing theirmerits andhow this depends on the
problem at hand. However, they are o�en found help-
ful, especially in cases where we can see some intuitive
merit in combining di�erent aspects of parent solutions,
resulting in a new solution that seems to have a chance at
being good, but which we would have been immensely
unlikely to obtain from single-parent operators given
the current population. In this context, we can see, as
follows, that the opposite seems to be the case when
we use standard multi-parent operators with the sim-
ple encoding. Suppose the following are both very good
clusterings of ten items:

Clustering :

Clustering :

Clearly, a good clustering of these items places items –
together, and items – together, in separate groups. It
is also clear, however, that using a standard crossover
operator between these two parents (e.g., producing
a child by randomly choosing between clusterings for
each item in turn) will lead to a clustering that mixes
items from these two groups, perhaps even combining

 E Evolutionary Clustering

them all into one group. �e main point is that a
crossover operation destroys the very relationships
between the items that underpinned the �tness of the
parents.
One of the more prominent and in�uential rep-

resentations for clustering, incorporating a design for
far more e�ective multi-parent operators, was that of
Falkenauer’s “Grouping Genetic Algorithm,” which also
provides a general template for the implementation of
evolutionary algorithms for grouping problems. �e
essential element of Falkenauer’s method is that multi-
parent operators recombine entire groups rather than
item labels. For example, suppose we encode two clus-
terings explicitly as follows:

Clustering : (A, I, B, H) (C, G) (D, E, F, J)

Clustering : (A, I, B, H) (C, D, J) (E, F, G)

A Falkenauer-style crossover operator works as follows.
First, we randomly choose some entire groups from the
�rst parent and some entire groups from the second
parent; the child in this case might then be:

(A, I, B, H) (C, G) (E, F, G)

in which the groups that come from the �rst parent are
underlined. Typically, we will now have some repeated
items; we remove the entire groups that contain these
items and came from the �rst parent, in this case leaving
us with:

(A, I, B, H) (E, F, G)

�e �nal step is to add back the missing items, plac-
ing them one by one into one of the existing groups, or
perhaps forming one or more new groups.�e applica-
tion in hand will o�en suggest heuristics to use for this
step. In clustering, for example, we could make use of
the mean Euclidean distance from items in the groups
so far. Whatever the end result in this case, note that the
fact that A, I, B, and H were grouped together in both
parents will be preserved in the child. Similarly, the E,
F, G grouping is inherited directly from a parent.
A more recent and e�ective approach, speci�-

cally for clustering, is one �rst proposed in Park
and Song () called a link-based encoding. In this
approach, the encoding is simply a list of item indices,
and is interpreted as follows. If the ith element in the
permutation is j, then items i and jare in the same group.
So, for example,

B C E E A E G C B G

represents the following grouping:

(A, B, C, D, E, H, I) (F, G, J)

Standard crossover operators may be used with this
encoding, causing (intuitively) a reasonable degree of
exploration of the space of possible clusterings, yet pre-
serving much of the essential “same-group” relation-
ships between items that were present in the parents.
In Handl and Knowles () it is shown why this
encoding is e�ective compared with some alternatives.
We also brie�y note other encodings that have been

prominent in the history of this sub�eld. An early
approach was that of Jones and Beltramo, who intro-
duced a “permutationwith separators” encoding. In this
approach, a clustering is encoded by a permutation of
the items to be clustered, with a number of separators
indicating cluster boundaries. For example, if we have
ten items to cluster (A–J) and use S as the separator, the
following is a candidate clustering:

A I B H S C G S D E F J

representing the same grouping as that of “Clustering
” above. Jones and Beltramo o�ered a variant of this
encoding that is a cross between the direct and indi-
rect approaches. In their greedy permutation encoding,
a clustering is represented by a permutation (with no
separator characters), with the following interpretation:
the �rst k items in the permutation become the centers
of the �rst kclusters.�e remaining items, in the order
they appear, are added to whichever cluster is best for
that item according to the objective function (clustering
quality metric) in use.

Evolutionary Multiobjective Clustering

It can be strongly argued that the clustering problem
is inherently multiobjective, yet most methods employ
only a single performance criterion to optimize. In fact,
there are at least three groups of criteria commonly
used (but usually one at a time) in clustering (both
evolutionary clustering and other methods).�ese are:
compactness, connectedness, and spatial separation.
When an algorithmoptimizes for compactness, the idea
is that clusters should consist of highly homogeneous
data items only – that is, the distance (or other measure
of variation) between items in the same cluster should

Evolutionary Computation in Economics E

E

be small. In contrast, if we optimize the degree of con-
nectedness, then we are increasing the extent to which
neighboring data items should share the same cluster.
�is can deal with arbitrarily-shaped clusters, but can
lack robustness when there is little spatial separation
between clusters. Finally, spatial separation is usually
used as a criterion in combination with compactness,
or with a measure of the balance of cluster sizes.
In multiobjective clustering, the idea is to explicitly

explore the solutions that are trade-o�s between the
con�icting criteria, exploiting the fact that these trade-
o� solutions are o�en the ones that most appeal as
intuitively “correct” solutions to a clustering problem.
Handl and Knowles make use of Park and Song’s link-
based encoding in their multiobjective evolutionary
algorithm,MOCK, which treats a clustering problem as
a two-objective problem, using measures of compact-
ness and connectedness for the two objectives. MOCK’s
multiobjective search process is based on the PESA-II
evolutionary multiobjective optimizer (Corne, Jerram,
Knowles & Oates,). Following use of MOCK for
a clustering problem, an intermediate result (inherent
in multiobjective optimization methods) is a (possi-
bly large) collection of di�erent clusterings.�ese will
range from clusterings that score very well on compact-
ness but poorly on connectedness, through to cluster-
ings that achieve excellent connectedness at the expense
of poor compactness. It is useful to note that the number
of clusters tends to increase as we go from poor con-
nectedness to high-connectedness clusters. Arguably, in
many applications such a collection of alternative solu-
tions is useful for the decision-maker. Nevertheless, the
MOCK approach incorporates an automated model-
selection process that attempts to choose an ideal
clustering from the discovered approximate Pareto
front. �is process is oriented around the notion of
determining the “right” number of clusters, and makes
use of Tibshirani,Walther, and Hastie () gap statis-
tic (full details are inHandl&Knowles,). Extensive
comparison studies, using a wide variety of clustering
problems and comparing with many alternative cluster-
ing methods, show consistent performance advantages
for the MOCK’s approach.

Cross References
7Clustering
7Feature Selection
7Semi-Supervised Learning

7Supervised Learning
7Unsupervised Learning

Recommended Reading
Cole, R. M. (). Clustering with genetic algorithms. Masters

dissertation, Department of Computer Science, University of
Western Australia.

Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. ().
PESA-II: Region-based selection in evolutionary multiobjective
optimization. In Proceedings of the GECCO (pp. –).

Delattre, M., & Hansen, P. (). Bicriterion cluster analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, (),
–.

Falkenauer, E. (). Genetic algorithms and grouping problems.
New York: Wiley.

Handl, J., & Knowles, J. (). An evolutionary approach to mul-
tiobjective clustering. IEEE Transactions on Evolutionary Com-
putation, (), –.

Jain, A. K., Murty, M. N., & Flynn, P. J. (). Data clustering: A
review. ACM Computing Surveys, (), –.

Jones, D. R., & Beltramo, M. A. (). Solving partitioning problems
with genetic algorithms. In R. K. Belew & L. B. Booker (Eds.),
Proceedings of the fourth international conference on genetic
algorithms (pp. –). Morgan Kaufmann.

Park, Y.-J., & Song, M.-S. (). A genetic algorithm for cluster-
ing problems. In Proceedings of the third annual conference on
genetic programming (pp. –). Morgan Kaufman.

Tibshirani, R., Walther, G., & Hastie, T. (). Estimating the num-
ber of clusters in a dataset via the Gap statistic. Journal of
the Royal Statistical Society: Series B (Statistical Methodology),
(), –.

Evolutionary Computation

7Evolutionary Algorithms

Evolutionary Computation in
Economics

SerafínMartínez-Jaramillo, Biliana
Alexandrova-Kabadjova,
Alma Lilia García-Almanza,
Tonatiuh Peña Centeno
Bank of Mexico,
Mexico, D.F.

Definition
Evolutionary computation (EC) in economics is an area
of knowledge which involves the use of any of the
EC techniques, also known as evolutionary algorithms
(EAs), in order to approach the topics within the eco-
nomic sciences.�is area of knowledge is di�erent from

 E Evolutionary Computation in Economics

the Evolutionary Economics �eldwhich does not neces-
sarily apply EC techniques to study economic problems.
�e use of EC in economics pursues di�erent purposes
mainly to overcome some of the limitations of the clas-
sical economic models and to relax some of the strong
assumptions made in such models.

Motivation and Background
Evolutionary computation (EC) is a branch of Machine
Learning which is inspired in many forms by the prin-
ciple of evolution. EC techniques, among many other
machine learning techniques, have proven to be quite
�exible and powerful tools in many di�erent �elds and
disciplines. Economics-a�ne �elds are by nomeans the
exception for this widespread use of these evolutionary
inspired techniques.
In addition to the undeniable necessity of com-

puting in almost every aspect of our modern lives,
numerous problems in economics possess algorithmic
nature.�erefore, economists must consider computa-
tional complexity as an important analysis tool due to
the fact that some of such problems belong to the dislik-
able class of NP-complete (�e NP-complete computa-
tional complexity class is a subset of “harder” problems
from the NP computational class, which is the set of
all the decision problems which can be solved using a
Nondeterministic TuringMachine in polynomial time).
problems. Having said so, EC has been intensively used
as an alternative approach to analytical methods in
order to tackle numerous NP-complete problems with
relative good success.

�e �rst work in economics (Clarifying: such �rst
work approached a classic game known as the Pris-
oners’ Dilemma), which involved the use of EC dates
back to the s, in Axelrod and Hamilton ()
and Axelrod () the authors used Genetic Algo-
rithms (GAs) to derive strategies for the Iterated Pris-
oner’s Dilemma (IPD). From then, EC techniques in
economics had been used in areas such as macroe-
conomics, econometrics, game theory, auctions, learn-
ing and agent-based models. �ere is even a school
of thought in economics known as “Evolutionary
Economics” (See for example Witt () for an
introduction), whose approach to the study of eco-
nomics involves concepts in evolution but does not
necessarily rely on EC techniques.

Rationality and Learning

One of the most relevant concepts in the economics
science is the concept of rationality.�is concept is at
the core of most of the economic models, since it is
frequently assumed that economic agents behave in a
fully rational way. Unfortunately, it is not clear if such
assumption holds a�er the irrational behavior observed
during the recurrent �nancial crises.
Herbert A. Simon is probably the best known scien-

tist to claim that “decision-making” under uncertainty
is not a fully rational process. He developed his theory
based on the concept of “bounded rationality” (Simon,
), andhewas one of the pioneers in the �eld of arti�-
cial intelligence (AI) as well as a highly reputed psychol-
ogist and economist. Later, in Arthur (), the author
made important contributions to the development of
agents with bounded rationality, using computational
tools. In addition, recent ideas about rationality from
a computer scientist’s point of view are found in Tsang
(). In this context to be more precise about the
meaning of bounded rationality, let us quote Herbert A.
Simon:

▸ ... boundedly rational agents experience limits in formu-

lating and solving complex problems and in process-

ing (receiving, storing, retrieving, transmitting) informa-

tion...

Some other common assumptions behind the clas-
sical economic theory are that the participants of the
model have homogeneous preferences and they interact
globally (Axtell,). In other words, having limited
number of participants in the model, the theorists
assume that those individuals exhibit the same prefer-
ences and all of them interact with each other. �ese
agents are called “representative agents.” Moreover, the
analysis is focused only at the point of equilibrium,
and aspects such as asymmetric information, imper-
fect competition and network externalities are not
considered.
Departing from the assumption of full rational-

ity and homogeneous expectations, the horizon (and
the design issues) opens widely. �e modeling of the
learning behavior of the agents is a central part of the
research agenda in computational economics. Regard-
ing the agents’ learning process, in Lucas (), the
author provided an interpretation of adaptive behavior
from the economics point of view:

Evolutionary Computation in Economics E

E

▸ In general terms, we view or model an individual as a

collection of decision rules (rules that dictate the action

to be taken in given situations) and a set of preferences

used to evaluate the outcomes arising from particular

situation-action combinations. These decision rules are

continuously under review and revision; new decision

rules are tried and tested against experience, and rules

that produce desirable outcomes supplant those that

do not.

�ere are many useful techniques to implement
what Lucas de�ned as adaptive learning, like 7genetic
algorithms (GAs), as has been done in Bullard and
Du�y (), and 7genetic programming (GP) as has
been done in Martinez-Jaramillo and Tsang (b).
GP has been previously described as a suitable way to
model economic learning in Edmonds (). In Bren-
ner (), the author provides us a summary of the
available options to model agent behavior and learning
in economics.
Nevertheless, the more traditional economists are

still reluctant to accept an approach in which there is
not a rational expectations type of agent, where instead
there are inductive, boundedly rational heterogeneous
agents (Arthur,).

Economic and Econometric Models

Two of the most relevant areas in economics are
macroeconomics and econometrics. Macroeconomics
is the branch of economics which analyzes the national
economy and its relations with the international econ-
omy. Macroeconomic analysis tries to understand the
relationships between the broad sectors of the economy
by making use of aggregated economic variables such
as in�ation, unemployment, interest rates, total output,
etc. EC has been used in order to analyze some of such
macroeconomic variables, a �eldwhich is dominated by
econometric analysis. Econometrics is a �eld within the
wider area of economicswhich involves the use of statis-
tics and its tools for the measurement of relationships
postulated by economic theory (Greene,).
Many methods in econometrics involve an opti-

mization process, and it is well known that EC is
particularly suitable for optimization problems. Prob-
ably one of the �rst applications of GP in econo-
metrics was done by the creator of GP himself in
Koza (). Additionally, in Agapie and Agapie ()

the authors use GAs and simulated annealing (SA)
for econometric modeling. �ey found that the per-
formance of the evolutionary algorithms (EAs) is
better than the performance of traditional gradient
techniques on the speci�c models in which they per-
formed the comparison. Finally, Östermark () uses
a Hybrid GA in several ill-conditioned econometric
and mathematical optimization problems with good
results.
In addition to the usage of EC in econometrics, some

classical economic models such as the Cobweb model
and exchange rate models had been also approached
with EC techniques. For instance, in Arifovic () and
Chen and Yeh () to approach the Cobweb model,
in the former work the author uses GAs, whereas in
the latter the authors use GP. Furthermore, Arifovic
explores the use of GAs in foreign exchange markets in
Arifovic ().�e GA mechanism developed in such
works evolved decision rules that were used to deter-
mine the composition of the agents’ portfolios in a for-
eign exchange market. Arifovic made two observations
rarely seen in the standard overlapping generations
(OLG) model with two currencies. First, she evidenced
that the returns and exchanges rates were gener-
ated endogenously, and second, she observed that the
model’s equilibrium dynamics is not stable and shows
bounded oscillations (the theoretical model implies a
constant exchange rate).

�e use of GAs in economic modeling is not
restricted to the above mentioned works. In Bullard,
Arifovic, and Du�y (), the authors studied a ver-
sion of the growth model in which the physical capital
is accumulated in a standard form, but the human cap-
ital accumulation is subject to increasing returns. In
their model, the agents take two decisions when they
are young: howmuch to save by renting physical capital
to the companies and how much to invest in training.
Returns on training depend on the average level of the
human capital of the economy.�e authors introduce
the agents’ learning by means of GAs. In Marimon,
McGrattan, and Sargent (), Marimon develops
an economic model in which the agents adapt by
means of a GA.

Game Theory

Game�eory is a branch of applied mathematics that
attempts to model the individual’s strategic behavior.

 E Evolutionary Computation in Economics

�e �rst study considered to establish the fundamentals
of the �eld is the book “�eory of Games and Economic
Behavior” (von Neumann & Morgenstern,). �e
idea behind this theory is that the success of the indi-
vidual’s decisions depends on the decisions of others.
While originally, the aim of the theory was to study the
competition in which the agent does better at another’s
expense (zero sum games), now it has been extended
to study a wider class of interactions among individu-
als. Furthermore, it is extensively used in economics,
biology, and political science among some other
disciplines.
A well-de�ned mathematical object, the game con-

sists of a set of players and a set of strategies (decisions)
available to those players. In addition, for each combi-
nation of strategies a speci�cation of payo�s is provided.
�e aim of the traditional applications of the game
theory was to �nd a Nash equilibrium, a solution con-
cept, in which each player of the game adopts a strategy
that is unlikely to be changed. �is solution concept
was named a�er John Nash, whose work was published
in the early s (Nash,). Nevertheless, it took
almost years to fully realize what a powerful tool
Nash has created. Nowadays, Game�eory is one of the
best established theories in economics and it has been
extensively used to model the interactions between the
economic agents. However, games typically have many
Nash equilibria and one of the main assumptions is
that the agents behave in a rational way. In more real-
istic games, the equilibrium selection problem does not
have an easy solution though, and the human behavior
observed in real life is frequently irrational.
Given the above mentioned constraints, in order to

go further, the Evolutionary Game �eory was orig-
inated as an application of the mathematical theory
of games to biological contexts (see 7Evolutionary
Games). In this �eld, Maynard Smith is considered
to be the �rst one to de�ne the concept of Evolu-
tionary Stable Strategy in Maynard Smith (). Fur-
thermore, the possibility of using computer modeling
as an extension of the theory of games was �rst explored
in Axelrod and Hamilton (). Since then, computer
science has been used in traditional game theory prob-
lems, like the strategic behavior of agents in auctions,
auction mechanism design, etc. By providing approxi-
mate solutions in such complex problems this approach
can be useful where analytical solutions have not been

found. For instance, the iterative prisoners’ dilemma is
one of the most studied games by researchers in com-
puter science (Axelrod,).�e prisoners’ dilemma
is a classic game that consists of the decision-making
process by two prisoners who can choose to cooperate
or to defect. In the case that the two prisoners choose to
cooperate they get a payo� of three each, in the case that
both choose to defect they get a payo� of one each, and
in the case that any of them decides to defect and the
other to cooperate, the former gets a payo� of �ve and
the latter a payo� of zero. In equilibrium, both players
decide to defect despite the fact that would be better for
them to cooperate.
Axelrod organized a tournament on the iterated

prisoners’ dilemma inwhich he asked people fromgame
theory and amateurs to provide him with strategies.
�e surprising result was that a very simple strategy
(Tit for Tat) won the tournament (Axelrod,). A�er
the reporting of the results from such tournament,
Axelrod was able to provide some mathematical results
on how cooperation can emerge in a population of
egoists. �e previous example clearly illustrates how
bene�cial was the use of computer science to obtain the-
oretical results in a problem where analytical methods
alone have not delivered the desired outcomes.
Game theory is one of the most important areas in

economics because it has applications to many �elds,
such as corporate decision making, microeconomics,
market modeling, public policy analysis, environmen-
tal systems, etc. We can �nd more applications of EC to
game theory than the IPD. For example, another work
related to game theory and EC is the one done by Du�y
and Engle-Warnick (), which deals with the well-
known two-player, repeated ultimatum game. In this
work they used GP as a means of inferring the strate-
gies that were played by subjects in economic decision-
making experiments. Other works, within the �eld of
EC and game theory, are the duopoly and oligopoly
games (Chen & Ni,). References regarding coop-
eration, coalition, and coordination are also made o�en
and usually driven by EC techniques, Vriend (). In
Jin and Tsang (), the authors applied GP to �nd
strategies for sequential bargaining procedure and con-
�rmed that equilibria can be approximated by GP.�is
gives opportunity to �nd approximate solutions tomore
complex situations for which theoretical solutions are
yet to be found.

Evolutionary Computation in Economics E

E

�e interesting research by Riechmann () pro-
poses to study the foundations of the GAs by means
of game theory. Riechmann interprets the GA as an
N-players repeated game in which an individual of the
GA represents a player with a di�erent strategy. Once
the author achieves the interpretation of the learning
process of a GA as an evolutionary game, he attempts
to shed some light on the fundamentals of GAs.

Auction Theory

Auction theory studies the behavior of the participants
in auction markets. �e study of auctions is relevant
because they de�ne the protocol which is followed by
the participants in some important markets; for exam-
ple, some stock markets, such as the New York Stock
Exchange, operate under a double auction-like mech-
anism.�ere are many di�erent types of auctions: the
English auction, the Dutch auction, the Vickrey auc-
tions, etc. In Klemperer (), there is a good intro-
duction to the �eld.
EC techniques, particularly GAs, have been inten-

sively used in auctions to derive bidding strategies in
simulated auctions. In Andreoni and Miller (), the
author uses adaptive learning, modelled with a GA, in
order to capture patterns which arise in experimental
auctions with humans. Such bidding patterns cannot
be explained by the theoretical models, something that
allowed the exploration of alternative methods such as
adaptive behavior by means of EC. Some other relevant
examples of the study of auctions using EC techniques
are Anthony and Jennings (), Byde (), Cli�
(), Dawid (), Mochon, Quintana, Sáez, and
Isasi (), and Saez, Quintana, Isasi, and Mochon
().

Agent-Based Models

Agent-based computational economics (ACE) can be
thought of as a branch of a wider area: Agent-based
Modeling (ABM) (Wooldridge,). �e �eld of
agent-based modeling is not restricted to economics,
it has been applied in social sciences in general (Axel-
rod,), in some classical and not so classical prob-
lems in computer science, and in some other disci-
plines. Axelrod provides an account of his experience
using the agent-based methodology for several prob-
lems and he suggests that the ABM can be seen as
a bridge between disciplines. Axelrod and Tesfatsion

provide a good guide to the relevant literature of the
ABM inAxelrod and Tesfatsion (). In Chen (),
there is a good introduction to agents in economics and
�nance; in such work, Chen conceives the agents not
just as economic agents but as computational intelligent
units.
Most of the economic and �nance theory is based on

what is known as investor homogeneity or the represen-
tative agent. In ACE the researchers can depart from the
assumptions of homogeneous expectations and perfect
rationality by means of computational-based economic
agents. In , Tesfatsion surveys some of the most
important works and topics on this area of research.
In ACE one of the main goals is to explain

the macrodynamics of the economy by means of
the microinteractions of the economic agents. �is
approach to the study of the economy has been called
a “bottom-up” approach in opposition to the more tra-
ditional approaches in economics. An additional pur-
pose of ACE is to handle real-world issues, which has
become possible due to the technological advances in
computational tools. With the use of programming lan-
guages, the agent-based approach allows us to represent
explicitly agents with bounded rationality and hetero-
geneous preferences. Given a speci�c social structure,
the simulation of the interaction among agents is the
strength and the heart of the ABM. Even in its early
stage of development, ABM is a promising area of
research, which has opened the opportunity to social
scientists to look for new insights in resolving rele-
vant real-world issues. Considered “the third way of
doing science” (Axelrod,), modeling the behav-
ior of the autonomous decision-making entities allows
researchers to simulate the emergence of certain phe-
nomena in order to gain better understanding of the
object of study (Axtell,). In this senseACE, de�ned
as “the computational study of economic processes
modelled as dynamic systems of interacting agents”
(Tesfatsion,), is a growing area in the �eld of ABM.
ACE research is developing rapidly, by using machine
learning techniques, the researchersmodel the agents as
so�ware programs able to take autonomous decisions.
Consequently, the interactions among the individuals at
the microlevel give rise to regularities at the macrolevel
(globally).�e intention is to observe the emerging self-
organizing process for a certain period of time, in order
to study the presence of patterns or the lack of them.

 E Evolutionary Computation in Economics

Currently, the study of this self-organizing capability is
one of the most active areas of ACE research.
One of the most crucial tasks in representing explic-

itly the market participants is the simulation of their
autonomous decisions. Nowadays, advances in AI have
opened possibilities of tackling this issue. In particu-
lar, techniques such as neural networks (NNs), genetic
algorithms (GAs), genetic programming (GP), and
other population-based algorithms are widely used in
the �eld.

�ere are some interesting works in which the
agent-based methodology is compared with experi-
ments performed with human beings (Chan, LeBaron,
Lo, & Poggio, ; Du�y,). In both the works,
the bene�ts that each type of research has on each
other are identi�ed. For instance, experimental research
can be used as an important method to calibrate an
agent-based model. On the other hand, agent-based
simulations can be used to explain certain phenomena
present in human experiments. To summarize, there are
many bene�cial ways in which both types of research
in�uence each other.
According to Tesfatsion, the economic research

being done with the ACE methodology can pursue
one of two main objectives: the �rst one is the con-
structive explanation of macrophenomena and the
second is the design of new economic mechanisms.
In Tesfatsion (), Tesfatsion updates the classi�ca-
tion of the research being made in ACE into four main
categories: empirical understanding, normative under-
standing, methodological advancement, and �nally,
qualitative insight and theory generation.
EAs have been used for the modeling of the agents’

learning in multiagent simulations. In multiagent sim-
ulations of economics systems, it is possible to �nd very
di�erent approaches and topics, just to illustrate some
few examples of the immense amount of works, let us
take a look at the following list:

● Electricity markets (Amin,) (Learning Classi-
�er System).

● Payment card markets (Alexandrova-Kabadjova,
) (Population Based Incremental Learning).

● Retail petrol markets (Heppenstall, Evans, & Birkin,
) (Genetic Algorithms).

● Stock markets (Arthur et al.,) (Learning Clas-
si�er Systems) and (Martinez-Jaramillo & Tsang,
b) (GP).

● Foreign exchange markets (Arifovic, ; Izumi &
Ueda,) (Genetic Algorithms).

Related to payment methods and systems, another
economic phenomena characterized with complex
social interaction suitable for ABM is the mar-
ket dynamics of some electronic payment instru-
ments, such as payment cards. In this �eld, the �rst
evolutionary computation model was introduced in
Alexandrova-Kabadjova ().�is paper studies the
competition among payment card scheme.�e authors
apply a Generalized Population Based Incremental
Learning Algorithm (GPBIL), an extended version of
the PBIL algorithm, in order to �nd an optimal price
strategy for the electronic payment instrument.

Cross References
7Evolutionary Algorithms
7Evolutionary Computation in Finance
7Evolutionary Computational Techniques in
Marketing
7Genetic Algorithms
7Genetic Programming

Recommended Reading
Agapie, A., & Agapie, A. (). Evolutionary computation for

econometric modeling. Advanced Modeling and Optimization,
, –.

Alexandrova-Kabadjova, B. (). Evolutionary learning of the opti-
mal pricing strategy in an artificial payment card market, Studies
in computational intelligence (Vol.). Berlin: Springer.

Amin, M. (). Restructuring the electric enterprise: Simulating
the evolution of the electric power industry with intelligent
adaptive agents. In A. Faruqui, & K. Eakin, (Eds.), Market
analysis and resource management (Chap.). Boston: Kluwer
Publishers.

Andreoni, J., & Miller, J. H. (). Auctions with artificial adaptive
agents. Games and Economic Behavior, , –.

Anthony, P., & Jennings, N. R. (). Developing a bidding agent for
multiple heterogeneous auctions. ACM Transactions on Internet
Technology, , –.

Arifovic, J. (). Genetic algorithm learning and the cobweb
model. Journal of Economic Dynamics and Control, , –.

Arifovic, J. (). The behavior of the exchange rate in the genetic
algorithm and experimental economics. Journal of Political
Economy, , –.

Evolutionary Computation in Economics E

E

Arthur, W. B. (). Learning and adaptiver economic behavior.
Designing economic agents that act like human agents: A behav-
ioral approach to bounded rationality. American Economic
Review, , –.

Arthur, W. B. (). Inductive reasoning and bounded rationality:
The El Farol problem. American Economic Review, , –.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P.
(). Asset pricing under endogenous expectations in an arti-
ficial stock market. In W. Brian Arthur, S. Durlauf, & D. Lane,
(Eds.), The economy as an evolving complex system II. Menlo
Park: Addison-Wesley.

Axelrod, R. (). The evolution of strategies in the iterated pris-
oner’s dilemma. In L. Davis (Ed.), Genetic algorithms and sim-
ulated annealing, Research notes in AI (Chap. , pp. –). Los
Altos, CA: Morgan Kaufmann.

Axelrod, R. (). Advancing the art of simulation in the social
sciences. Japanese Journal for Management Information System,
Special Issue on Agent-Based Modeling, ().

Axelrod, R., & Hamilton, W. D. (). The evolution of cooperation.
Science, , –.

Axelrod, R., & Tesfatsion, L. (). A guide for newcomers to
agent-based modeling in the social sciences. In K. L. Judd, &
L. Tesfatsion, (Eds.), Handbook of computational economics,
Volume : Agent-based computational economics, Handbooks
in economics (Appendix A, pp. –). Amsterdam:
North-Holland.

Axtell, R. (). Why agents? on the varied motivations for agent
computing in the social sciences. Working Paper , Center on
Social and Economic Dynamics.

Brenner, T. (). Agent learning representation – advice in mod-
elling economic learning. In K. L. Judd, & L. Tesfatsion, (Eds.),
Handbook of computational economics, Volume : Agent-based
computational economics, Handbooks in economics (Chap. ,
pp. –). Amsterdam: North-Holland.

Bullard, J., Arifovic, J., & Duffy, J. (). Learning in a model of
economic growth and development. Working Paper -A,
Federal Reserve Bank Of St. Louis.

Bullard, J., & Duffy, J. (). Using genetic algorithms to model the
evolution of heterogeneous beliefs. Computational Economics,
, –.

Byde, A. (). Applying evolutionary game theory to auction
mechanism design. In ACM conference on electronic commerce
(pp. –). New York: ACM.

Chan, N. T., LeBaron, B., Lo, A. W., & Poggio, T. (). Agent-based
models of financial markets: A comparison with experimen-
tal markets. MIT Sloan Working Paper -, Massachusetts
Institute of Technology.

Chen, S.-H. (). Editorial: Computationally intelligent agents
in economics and finance. Information Science, (),
–.

Chen, S.-H., & Ni, C. C. (). Simulating the ecology of oligopolis-
tic competition with genetic algorithms. Knowledge Information
Systems, (), –.

Chen, S.-H., & Yeh, C.-H. (). Genetic programming learning
in the cobweb model with speculators. In International com-
puter symposium (ICS’). Proceedings of international confer-
ence on artificial intelligence (pp. –), National Sun Yat-Sen
University, Kaohsiung, Taiwan, R.O.C.

Cliff, D. (). Explorations in evolutionary design of online auc-
tion market mechanisms. Electronic Commerce Research and
Applications, , –.

Dawid, H. (). On the convergence of genetic learning in a double
auction market. Journal of Economic Dynamics and Control, ,
–.

Duffy, J. (). Agent-based models and human subject exper-
iments. In K. L. Judd, & L. Tesfatsion, (Eds.), Handbook of
computational economics, Volume : Agent-based computational
economics, Handbooks in economics (Chap. , pp. –).
Amsterdam: North-Holland.

Duffy, J., & Engle-Warnick, J. (). Using symbolic regression to
infer strategies from experimental data. In S.-H. Chen (Ed.),
Evolutionary computation in economics and finance (pp. –).
New York: Physica-Verlag.

Edmonds, B. (). Modelling bounded rationality in agent-based
simulations using the evolution of mental models. In T. Brenner
(Ed.), Computational techniques for modelling learning in eco-
nomics (pp. –). Dordrecht: Kluwer.

Greene, W. H. (). Econometric analysis (th ed.). Upper Saddle
River, NJ: Prentice Hall.

Heppenstall, A., Evans, A., & Birkin, M. (). Using hybrid agent-
based systems to model spatially-influenced retail markets.
Journal of Artificial Societies and Social Simulation, , .

Izumi, K., & Ueda, K. (). Phase transition in a for-
eign exchange market-analysis based on an artificial market
approach. IEEE Transactions of Evolutionary Computation, (),
–.

Jin, N., & Tsang, E. P. K. (). Co-adaptive strategies for sequential
bargaining problems with discount factors and outside options.
In Proceedings of the IEEE congress on evolutionary computation
(pp. –). Washington, DC: IEEE Press.

Klemperer, P. (). Auctions: Theory and practice. The Toulouse
lectures in economics. Princeton, NJ: Princeton University Press.

Koza, J. (). A genetic approach to econometric modelling. In
P. Bourgine, & B. Walliser, (Eds.), Economics and cognitive
science (pp. –). Oxford: Pergamon Press.

Lucas, R. E. (). Adaptive behavior and economic theory. In
R. M. Hogarth, & M. W. Reder, (Eds.), Rational choice: The con-
trast between economics and psychology (pp. –). Chicago:
University of Chicago Press.

Marimon, R., McGrattan, E., & Sargent, T. J. (). Money as a
medium of exchange in an economy with artificially intelli-
gent agents. Journal of Economic Dynamics and Control, ,
–.

Martinez-Jaramillo, S., & Tsang, E. P. K. (). An hetero-
geneous, endogenous and coevolutionary gp-based financial
market. IEEE Transactions on Evolutionary Computation, ,
–.

Mochon, A., Quintana, D., Sáez, Y., & Isasi, P. (). Analy-
sis of ausubel auctions by means of evolutionary computa-
tion. In IEEE congress on evolutionary computation (CEC)
(pp. –). Edinburgh, Scotland.

Nash, J. (). The barganing problem. Econometrica, ,
–.

Östermark, R. (). Solving irregular econometric and mathemat-
ical optimization problems with a genetic hybrid algorithm.
Computational Economics, (), –.

 E Evolutionary Computation in Finance

Riechmann, T. (). Genetic algorithm learning and economic evo-
lution. Studies in fuzziness and soft computing (pp. –).
Heidelberg: Physica-Verlag.

Saez, Y., Quintana, D., Isasi, P., & Mochon, A. (). Effects
of a rationing rule on the ausubel auction: A genetic
algorithm implementation. Computational Intelligence, (),
–.

Simon, H. A. (). Models of man: Social and rational. New York:
John Wiley.

Maynard Smith, J. (). Game theory and the evolution of fighting
(pp. –). Edinburgh: Edinburgh University Press.

Tesfatsion, L. (). Agent-based computational economics: A
constructive approach to economic theory. In K. L. Judd &
L. Tesfatsion, (Eds.), Handbook of computational economics,
Volume : Agent-based computational economics, Handbooks in
economics (Chap. , pp. –). Amsterdam: North-Holland.

Tsang, E. P. K. (). Computational intelligence determines effec-
tive rationality. International Journal of Automation and Com-
puting, , –.

von Neumann, J., & Morgenstern, O. (). Theory of games
and economic behavior. Princeton, NJ: Princeton University
Press.

Vriend, N. J. (). Self-organization of markets: An example
of a computational approach. Computational Economics, ,
–.

Witt, U. (). Evolutionary economics (nd ed.). Basingstoke, UK:
Palgrave Macmillan.

Wooldridge, M. (). An Introduction to multiagent systems.
Chichester: Wiley.

Evolutionary Computation in
Finance

SerafínMartínez-Jaramillo, Alma Lilia
García-Almanza,
Biliana Alexandrova-Kabadjova,
Tonatiuh Peña Centeno
Bank of Mexico,
Mexico, D.F

Definition
Evolutionary computation (EC) in �nance is an area
of research and knowledge which involves the use of
techniques, known as evolutionary algorithms (EAs), to
approach topics in �nance. �is area of knowledge is
similar to EC in economics, in fact such areas frequently
overlap regarding some of the topics approached.�e
application of EC in �nance pursues two main goals:
�rst, to overcome the limitations of some theoretical
models (and the strong assumptions being made by

such models) and second, to innovate in this extremely
competitive area of research.

Motivation and Background
Evolutionary computation is a �eld in Machine Learn-
ing in which the developed techniques apply the
principle of Evolution in several di�erent ways. �e
application of EC in �nance includes portfolio opti-
mization, �nancial forecasting, asset pricing, just to
mention some examples.
In �nance, competition is at the center of the

everyday activities by the individuals and compa-
nies that participate in this �eld. For example, in the
stock markets everybody is trying to beat the mar-
ket in order to make more pro�ts than the other
participants.
As a result of this �erce competition, there is

a constant need to innovate and machine learning
has provided novel and competitive tools in �nancial
research.�erefore, it is natural to �nd numerous prob-
lems in �nance being approached by any of the exis-
tent EC techniques like 7Genetic Programming (GP),
7Genetic Algorithms (GAs), Evolutionary Strategies
(EAs), etc.�is �eld has been called in many di�erent
ways like computational �nance, computational intel-
ligence in �nance, etc. Research in this area is still
evolving; therefore, it is di�cult to de�ne it clearly or
to establish its limits. Moreover, nowadays it is almost
impossible to provide a full account of all the rele-
vant work that involves any form of EC in �nance. It
is also hard to organize this vast amount of human
knowledge.
Nowadays, computing in �nance is an almost

unavoidable tool, from Monte Carlo simulation and
optimization to computer intensive methods to valuate
complex derivatives; in fact, some of the most criti-
cal processes in �nance make heavy use of computers.
Moreover, this research and professional practices have
been known as computational �nance and the appli-
cation of evolutionary techniques in �nance �t within
such de�nition. Computational �nance is now a fre-
quently mentioned term and is frequently associated
with �nancial engineering. However, in this context we
refer to computational �nance as the use of noncon-
ventional computational techniques, like EC or other
machine learning techniques, to tackle problems in

Evolutionary Computation in Finance E

E

�nance. See for example, Tsang andMartinez-Jaramillo
() for a good introduction to the �eld.

Financial Forecasting

Financial forecasting is one of the most important
�elds in the computational �nance area (Tsang &
Martinez-Jaramillo,) and EC has been used to
solve a great variety of �nancial forecasting problems,
such as, detection of stock price movements, volatil-
ity prediction, forecasting of foreign exchange markets,
and so on.
Machine learning classi�ers, like other forecasting

techniques, extend past experience into the future.�e
aim is to analyze past data in order to identify patterns in
the interest of creating a model to predict future events.
In this section we will introduce some important works
in the �nancial forecasting area, which take advantage
of some of the EC distinctive features. First, the rel-
evance of the interpreatability of the solution is illus-
trated; a�er that, some examples about the usefulness of
genetating multiple solutions for the same problem are
given.�en, some works that use EC as an optimization
approach to solve forecasting problems are presented.
Finally, the use of a great variety of representations is
highlighted. Evolutionary techniques are able to pro-
duce interpretable solutions, this property is especially
important for predictions, since themain goals of classi-
�cation are: to generate an accurate classi�cationmodel
that is be able to predict unseen cases and to discover
the predictive structure of the problem (Breiman, Fried-
man, Olshen, & Stone,). Models for understand-
ing provide information about the structural patterns
in data that can be useful to recognize the variables’
interactions. �ere are classi�cation models that have
good predictive power, however, these provide a poor
representation of the solution; for example, 7Arti�cial
Neural Networks (ANNs). Since EC techniques pro-
vide not just a good prediction but an interpretable
solution, these have been used in �nancial problems to
acquire knowledge of the event to predict. For exam-
ple, Tsang, Yung, and Li () trained a GP using past
data from the �nancial stock markets to predict price
movements of at least r% in a period of at most n times.
�e attributes used to train the GPwere indicators from
technical analysis. Due to the interpretability of the
solution, the authors were able to analyze the most suc-
cessful indicators in the result. In fact, some researchers

have used EC in order to discover new �nancial indica-
tors such asAllen andKarjalainen (), whomade use
of aGP system to infer technical trading rules frompast.
In the same vein, Bhattacharyya, Pictet, and Zumbach
() used GP to discover trading decision models
from high-frequency foreign exchange (FX) markets
data. In other research, Bhattacharyya et al. ()
used GA for mining �nancial 7time-series to iden-
tify patterns, with the aim to discover trading decision
models. In a di�erent approach, Potvin, Soriano, and
Vallée () applied GP to automatically generate
short-term trading rules on the stock markets, the
authors used historical pricing and transaction vol-
ume data reported for Canadian companies from the
Toronto stock exchange market. Other approach called
grammatical evolution (GE) (Brabazon & O’Neill,
) was applied to discover new technical trading
rules, which can be used to trade foreign exchangemar-
kets. In that approach, each of the evolved programs
represents a market trading system.
As it was mentioned earlier, EC techniques are able

to generate a set of solutions for a single problem, this
quality has been used to collect a set of results, with the
aim of applying the most suitable solution according
to the situation, for instance Lipinski () analyzed
high-frequency data, from the Paris Stock Exchange
Market. In that model, stock market trading rules were
combined into stock market trading experts, which
de�ned the trading expertise. �e author used a sim-
ple GA, a population-based incremental learning, the
compact genetic algorithm, and the extended compact
genetic algorithm to discover optimal trading experts in
a speci�c situation, the author argues that the optimal
solution depends on the speci�c situation on the stock
market, which varies with time. EC plays an impor-
tant role in the learning and continual adaptation to the
changing environment.
Taking advantage of the EC’s ability to generate

multiple solutions, Garcia-Almanza and Tsang ()
proposed an approach, called evolving comprehensible
rules (ECR), to discover patterns in �nancial data sets
to detect investment opportunities. ECR was designed
to classify the minority class in imbalanced environ-
ments, which is particularly useful in �nancial forecast-
ing because the number of pro�table chances is scarce.
�e approach o�ers a range of solutions to suit the
investor’s risk guidelines and so, the user can choose

 E Evolutionary Computation in Finance

the best trade-o� between miss-classi�cation and false
alarm costs according to the investor’s requirements.
Another approach proposed by Ghandar et al. ()
was designed to generate trading rules, the authors
implemented an adaptive computational intelligent sys-
tem by using an evolutionary algorithm and a fuzzy
logic rule base representation. �e data to train the
system was composed just by volume and price. �e
authors’ objective was to create a system to generate
rules for buy recommendations in dynamicmarket con-
ditions. An analysis of the results was provided by
applying the system for portfolio construction in his-
torical data for companies listed as part of the MSCI
Europe Index from to . �e results showed
that their approach was able to generate trading rules
that beat traditional, �xed rule-based strategies, as the
pricemomentum and alpha portfolios, but this also beat
the market index.
Given that EC can be used as an optimization tech-

nique, it has been combined with other approaches.
As an instance, Chen, Wang, and Zhang () used
a genetic algorithm to determine the number of input
variables and the number of hidden layers in an ANN
for forecasting foreign exchange rates of the Dollar/
Deutsche mark. Chen and Lu () used GP to opti-
mize an ANN, this approach is called evolutionary
neural trees (ENT). �e objective was to forecast the
high-frequency stock returns of the Heng–Sheng stock
index. Schoreels, Logan, and Garibaldi () investi-
gated the e�ectiveness of an agent based trading system.
�e system employs a simple GA to optimize the trad-
ing decisions for every agent, the knowledge was based
on a range of technical indicators generating trading
signals. In Dempster, Payne, Romahi, and �ompson
() the authors aim to detect buy and sell signals
in the exchange (FX) markets. �e authors analyzed
and compare the performance of a GP combined with
a reinforcement learning system to a simple linear pro-
gram characterizing a7Markov decision process and a
heuristic in high-frequency (intraday) foreign exchange
trading.�e authors considered eight popular techni-
cal indicators used by intraday FX traders, Based on
simple trend-indicators such as moving averages as well
as more complex rules. From experimental results the
authors found that all methods were able to create
signi�cant in-sample and out-of-sample pro�ts when
transaction costs are zero.�e GP approach generated

pro�ts for nonzero transaction costs, although none
of the methods produce signi�cant pro�ts at realistic
transaction costs.
As it can be seen from the previous paragraphs,

EC techniques allow representing the solutions using
di�erent structures, such as, decision trees (Potvin et
al. ()), �nite states automats, graphs, grammar
(Brabazon & O’Neill,), networks, binary vectors
(Lipinski,) amongmay others. In fact, this charac-
teristic lets us to choose the best representation for the
problem.

Portfolio Optimization

Portfolio optimization is probably the most important
task in �nance. �e most relevant aspects in �nance
are involved in such task: the determination of the
price, the estimation of the volatility, the correlation
among stocks, etc.�e portfolio selection problem can
be described in a simple way as the problem of choos-
ing the assets and the proportion of such assets in an
investor’s portfolio that wants to maximize his pro�ts
and minimize the risk.
As its name suggest, Portfolio Optimization is an

optimization problem and EC has proven to be very
useful in di�cult (sometimes intractable) optimiza-
tion problems. In (Maringer,), the author explains
extensively the portfolio optimization problem and the
possible heuristic approaches, including ant systems
(AS), memetic algorithms (MAs), GAs, and ESs.
Multi-objective evolutionary optimization is an

important �eld within EC and the portfolio optimiza-
tion problem is one its more important applications
in �nance. Being a multi-objective optimization prob-
lem, EC provides plenty of opportunities and di�erent
approaches can be used for the portfolio optimization
problem. For example, Hassan and Clack () use a
multi-objective GP to approach this problem. InDiosan
(), the author compares di�erent multi-objective
evolutionary algorithms for the portfolio optimization
problem.

�e number of papers on portfolio optimization
using any form of EC techniques is huge and still grow-
ing. For example, in (Loraschi et al.,) the authors
use distributed genetic algorithms to approach the port-
folio optimization problem, whereas in (Loraschi and
Tettamanzi,) and (Streichert, Ulmer, and Zell,
) the authors use EAs.

Evolutionary Computation in Finance E

E

Financial Markets

Financial markets are mechanisms where buyers and
sellers exchange goods like bonds, gold, options,
currencies, etc. Some examples of such markets are
the New York Stock Exchange, the Chicago Mercantil
Exchange, and the NASDAQ Stock Market.
Financial markets are essential for �nancial systems

and for the overall economy. Such markets represent
one of the most e�cient ways to allocate �nancial
resources into companies, due to the low transaction
costs and the public information available for buyers
and sellers. However, bubbles and crashes are recur-
rent phenomena which have enormous repercussions
to global economy. In fact, nowadays we can see as
never before that one single crash in one market could
lead to a worldwide slump on most of the remain-
ing stock markets. Crises in �nancial markets could
a�ect other aspects of the (real) economy; for exam-
ple, interest rates, in�ation, unemployment, etc. �is,
in turn could cause even more instability on the �nan-
cial markets as we have witnessed recently. Moreover,
market crashes occur with an unpleasant higher fre-
quency than is predicted by the standard economic
theory.
One of the most important research issues in �nan-

cial markets is the explanation of the process that
determines the asset prices and as a result the rate of
return. �ere are many models that can be used to
explain such process, like the capital asset pricingmodel
(CAPM), the arbitrage pricing theory (APT) or the
black-scholes option pricing. Unfortunately, such mod-
els do not explain, as one would expect, the behavior of
prices in real markets.�e contradictions between the
existing theory and the empirical properties of the stock
market returns are one of the motivations for some
researchers to develop and use di�erent approaches to
study �nancial markets. An additional aspect on the
study of �nancial markets is the complexity of the ana-
lytical models of such markets. Financial markets are
also very complex to analyze the wide variety of partic-
ipants and their ever-changing nature. Previous to the
development of some new simulation techniques, very
important simplifying (unrealistic) assumptions had to
be made in order to allow tractability of the theoretical
models.
Behavioral �nance, agent-based computational eco-

nomics (ACE) (Tesfatsion,) and computational

�nance (Tsang & Martinez-Jaramillo,) have risen
as alternative ways to overcome some of the problems
of the analytical models. AI and in particular EC have
been used in the past to study some �nancial and eco-
nomic problems. However, the development of a well
established community, known as the ACE community,
facilitates the study of phenomena in �nancial markets
that was not possible in the past. Within such commu-
nity, a vast number of works and a di�erent number
of approaches are being produced by numbers in order
to solve or gain more understanding of some economic
and �nancial problems.

�e in�uential work of Arthur, Holland, LeBaron,
Palmer, & Talyer, () and previously the develop-
ment of the concept of bounded rationality (Arthur,
; Simon,) changed the way in which we con-
ceive and model the economic agents. �is change in
conception, modi�ed dramatically the possibilities to
study some economic phenomena and in particular
the Financial Markets. �e new models of economic
agents have changed, there is no need any more of
fully rational representative agents, there is no need of
homogeneous expectations and information symmetry.
Furthermore, the development of arti�cially adapted
agents (Holland & Miller,) gives to the economics
science a way forward into the study of economic
systems.
Agent-based �nancial markets of di�erent charac-

teristics have been developed for the study of such mar-
kets in the last decade since the in�uential Santa Fe
Arti�cial Market. (�e Santa Fe Arti�cial Stock Market
is a simulated stock market developed at the Santa Fe
Institute. Such market was developed by team of highly
reputed researchers, among them John Holland, the
inventor of genetic algorithms (Holland,).) (Arthur
et al.,). Some of them di�er from the original
Santa Fe market on the type of agents used like Chen
and Yeh (), Gode and Sunder (), Martinez-
Jaramillo and Tsang (b); on market mechanism
like Bak, Paczuski, and Shubik (), Gode and Sun-
der (). Other markets borrow ideas from statistical
mechanics like Levy, M., Levy, H., and Solomon ()
and Lux (). Some important research has been done
modelling stockmarkets inspired on theminority game.
(�e Minority Game was �rst proposed by Yi-Cheng
Zhang and Damien Challet () inspired by El Farol
bar problem introduced by Brian Arthur ().) like

 E Evolutionary Computation in Finance

Challet, Marsili, and Zhang ().�ere are �nancial
simulated markets in which several stocks are traded
like in Cincotti, Ponta, and Raberto (). However,
there are some criticisms to this approach like the prob-
lem of calibration, the numerous parameters needed for
the simulation program, the complexity of the simula-
tion, etc.
Although they all di�er in the sort of assumptions

made, methodology and tools; these markets share the
same essence: the macro behavior of such market (usu-
ally the price) should emerge endogenously as a result
of the micro-interactions of the (heterogeneous) mar-
ket participants. �is approach is in opposition with
the traditional techniques being used in Economics and
Finance.
One of the most crucial aspects on the modelling

of �nancial markets is the modelling of the market
participants also known as “agents”. Unfortunatelly, for
the sake ofmathematical tractability, theoretical models
assume that all the market participants can bemodelled
by a representative agent.�e representative agent is a
common, yet very strong, assumption in the modeling
of �nancial markets.�is concept has been the source
of controversy and strong criticisms. For example, in
Kirman (), the author criticizes the representative
individual approach in economics. Moreover, Lux and
Ausloos () declare:

▸ Unfortunately, standard modelling practices in eco-

nomics have rather tried to avoid heterogeneity and

interaction of agents as far as possible. Instead, one

often restricted attention to the thorough theoretical

analysis of the decisions of one (or few) representative

agents

In order to overcome the limitations of such an
assumption, some researchers has opted for less ortho-
dox techniques like GAs and GPs to model the
participants in �nancial markets. Such evolutionary
techniques have been widely used to model the agents’
behaviour and adaptation in �nancial markets. In order
to understand the di�erent approaches of the variety
of arti�cial (simulated) �nancial markets, it is useful
to describe the di�erent types of markets on the basis
of the framework proposed in LeBaron (). In such
work, LeBaron identi�es the key design issues present in
every arti�cial �nancial market and describes some of

the most important works until then.�e main design
issues identi�ed in LeBaron () are:

● Agents
● Market mechanism
● Assets
● Learning
● Calibration
● Time

In addition to the description of the di�erent
approaches in arti�cial �nancial markets by using the
above described framework, there is a fairly detailed
extension of it in Grothmann () that is worth look-
ing at. In such work the basic design issues proposed in
LeBaron () are extended and detailed. For a more
complete and detailed guide to the application of EC
techniques in arti�cial �nancial markets, see Martinez-
Jaramillo and Tsang ().

Option Pricing

Derivatives (See Hull, for an introduction.) are
�nancial instruments whose main purpose is to hedge
risk; however, they can also be used with specula-
tion purposes with potentially negative e�ects on the
�nancial health of the companies. Derivatives markets
are having an important expansion in recent years;
futures, forwards, swaps, and options are the best
known types of derivatives. Having said so, option
pricing is an extremely important task in �nance.�e
Black–Scholes model for option pricing is the refer-
ence analytical model as it has an important theoretical
framework behind it. However, in practice prices show
that there is a departure from the prices obtained with
such model. One possible reason that could explain
such departure is the assumptions being made in such
model (the assumption of constant volatility and the
assumption that prices follow a geometric Brownian
motion).�is is why GP has been used as an alterna-
tive to perform option pricing in Chen, Yeh, and Lee
(), Fan, Brabazon, O’Sullivan, and O’Neill (),
Yin, Brabazon, and O’Sullivan (). Interestingly,
not only GP has been used to perform option pric-
ing but also ACO has been explored to approach this
important problem in �nance (Kumar, �ulasiram, &
�ulasiraman,).

Evolutionary Computation in Finance E

E

Credit Scoring, Credit Rating, and Bankruptcy

Prediction

Credit rating and credit scoring are two examples
of �nancial problems that have been traditionally
approached through statistical analyzes. Credit rating is
an estimate of a corporation’s worthiness to be given a
credit and is generally expressed in terms of an ordinal
value; whereas credit scoring is a technique used express
the potential risk of lendingmoney to a given consumer
in terms of a probability measure. Both techniques are
therefore similar in their ends but applied to di�erent
domains.

�e seminal work in the �eld of credit scoring is
that of Altman (), who proposed the application
of linear discriminant analysis (Fisher,) to a set
of measurements known as �nancial ratios, i.e., indica-
tors of a corporation’s �nancial health, that are obtained
from the corporation’s �nancial statements. One of the
main applications of Altmans’ method, also known as
Z-score, is bankruptcy prediction. Understandably, a
series of improvements have been achieved by means
of applying more powerful classi�ers, such as deci-
sion trees, genetic programming, neural networks and
support vector machines, among others. References
that apply such techniques or that make a literature
review of their application are Atiya (), Huang,
Chen, and Wang (), Ong, Huang, and Tzeng
(), Shin and Lee (), and Martens, Baesens,
Gestel, and Vanthienen ().
Another method to evaluate credit worthiness is

the one provided by specialized agencies.�e so-called
credit ratings are nothing more than ordinal values
expressing the �nancial history, current assets, and lia-
bilities of entities such as individuals, organizations,
or even sovereign countries, such that they represent
their risk of defaulting a loan. Although each rat-
ing agency uses its own methodology and scale these
are usually not disclosed, nevertheless, on the aca-
demic realm, several superseding techniques to ordi-
nal regression have been applied. For example, Huang,
Chen, H., Hsu, Chen, W. H., and Wu () and
Paleologo, Elissee�, and Antonini () have pro-
posed computationally oriented methods to solve this
problem.
Related to bankruptcy prediction, NNs have been

the standard selection apart from the traditional
statistical methods (discriminant analysis, logit and

probit models). Quintana, Saez, Mochon, and Isasi
() explore the feasibility of using the evolutionary
nearest neighbor classi�er algorithm (ENPC) suggested
by (Fernández & Isasi,) in the domain of early
bankruptcy prediction. �ey assess its performance
comparing it to six other alternatives, their results sug-
gest that this algorithm might be considered as a good
choice. Another relevant work is Turku, Back, Laitinen,
Sere, and Wezel () in which the authors compare
discriminant analysis, logit analysis, and GAs for the
selection of the independent variables used for the pre-
dictionmodel. Finally, in Lensberg, Eilifsen, andMcKee
(), the authors use GP to study bankruptcy in
Norwegian companies and �nd acceptable accuracy in
addition to information about the usefulness of the
variables used for the prediction task.

Cross References
7Evolutionary Algorithms
7Evolutionary Computation in Economics
7Evolutionary Computational Techniques in
Marketing
7Genetic Algorithms
7Genetic Programming

Recommended Reading
Allen, F., & Karjalainen, R. (). Using genetic algorithms to

find technical trading rules. Journal of Financial Economics, ,
–.

Altman, E. I. (). Financial ratios, discriminant analysis and the
prediction of corporate bankruptcy. Journal of Finance, (),
–.

Arthur, W. B. (). Learning and adaptive economic behavior.
Designing economic agents that act like human agents: A behav-
ioral approach to bounded rationality. American Economic
Review, , –.

Arthur, W. B. (). Inductive reasoning and bounded rationality:
The El Farol problem. American Economic Review, , –.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P.
(). Asset pricing under endogenous expectations in an arti-
ficial stock market. InW. B. Arthur, S. Durlauf, & D. Lane (Eds.),
The economy as an evolving complex system II. Reading, MA:
Addison-Wesley.

Atiya, A. F. (). Bankruptcy prediction for credit risk using neu-
ral networks: A survey and new results. IEEE Transactions on
Neural Networks, (), –.

Bak, P., Paczuski, M., & Shubik, M. (). Price variations in a stock
market with many agents. Physica A, , –.

Bhattacharyya, S., Pictet, O. V., & Zumbach, G. (). Knowledge-
intensive genetic discovery in foreign exchange markets. IEEE
Transactions on evolutionary computation, (), –.

 E Evolutionary Computation in Finance

Brabazon, A., & O’Neill, M. (). Evolving technical trading rules
for spot foreign-exchange markets using grammatical evolu-
tion. Computational Management Science, (), –.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().
Classification and regression trees. Wadsworth, CA: Wadsworth
International Group.

Challet, D., Marsili, M., & Zhang, Y. C. (). Modeling market
mechanism with minority game. Physica A, , –.

Challet, D., & Zhang, Y. C. (). Emergence of cooperation and
organization in an evolutionary game. Physica A, , .

Chen, S. H., & Lu, C. F. (). Would evolutionary computation
help in designs of artificial neural nets in forecasting financial
time series? In IEEE Proceedings of congress on evolutionary
computation, (pp. –). New Jersey: IEEE Press.

Chen, S. H., Wang, H. S., & Zhang, B. T. (). Forecasting high-
frequency financial time series with evolutionary neural trees:
The case of hang-seng stock index. In H. R. Arabnia (Ed.),
Proceedings of the international conference on artificial intelli-
gence, IC-AI ́ (Vol. , pp. –). Las Vegas, NV: CSREA
Press.

Chen, S. H., & Yeh, C. H. (). Evolving traders and the busi-
ness school with genetic programming: A new architecture of
the agent-based artificial stock market. Journal of Economic
Dynamics and Control, (–), –.

Chen, S. H., Yeh, C. H., & Lee, W. C. (). Option pricing with
genetic programming. In J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, et al. (Eds.), Proceedings of the
third annual conference, genetic programming : (pp. –).
San Francisco: Morgan Kaufmann.

Cincotti, S., Ponta, L., & Raberto, M. (). A multi-assets artifcial
stock market with zero-intelligence traders. In WEHIA ,
Essex, UK.

Dempster, M. A. H., Payne, T. W., Romahi, Y., & Thompson, G. W. P.
(). Computational learning techniques for intraday fx trad-
ing using popular technical indicators. IEEE Transactions on
Neural Networks, , –.

Diosan, L. (). A multi-objective evolutionary approach to the
portfolio optimization problem. In CIMCA ’: Proceedings of
the international conference on computational intelligence for
modelling, control and automation and international conference
on intelligent agents, web technologies and internet commerce
Vol. (CIMCA-IAWTIC’) (pp. –). Washington DC:
IEEE Computer Society.

Fan, K., Brabazon, A., O’Sullivan, C., & O’Neill, M. (). Option
pricing model calibration using a real-valued quantum-inspired
evolutionary algorithm. In GECCO ’: Proceedings of the th
annual conference on genetic and evolutionary computation
(pp. –). New York: ACM.

Fernández, F., & Isasi, P. (). Evolutionary design of nearest
prototype classifiers. Journal of Heuristics, (), –.

Fisher, R. A. (). The use of multiple measurements in taxonomic
problems. Annals of Eugenics, , .

Garcia-Almanza, A. L., & Tsang, E. P. K. (). Evolving decision
rules to predict investment opportunities. International Journal
of Automation and Computing, (), –.

Ghandar, A., Michalewicz, Z., Schmidt, M., To, T. D., & Zurbrugg,
R. (). Computational intelligence for evolving trading
rules. IEEE Transactions on Evolutionary Computation, (),
–.

Gode, D. K., & Sunder, S. (). Allocative efficiency of markets
with zero intelligence (z) traders: Market as a partial substi-
tute forindividual rationality. GSIA working papers -,
Carnegie Mellon University, Tepper School of Business.

Grothmann, R. ().Multi-agent market modeling based on neural
networks. PhD thesis, University of Bremen, Germany.

Hassan, G., & Clack, C. D. (). Multiobjective robustness for
portfolio optimization in volatile environments. In GECCO
’: Proceedings of the th annual conference on Genetic
and evolutionary computation (pp. –). New York:
ACM.

Holland, J. H. (). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press.

Holland, J. H., & Miller, J. H. (). Artificial adaptive agents
in economic theory. The American Economic Review, ,
–.

Huang, C. L., Chen, M. C., & Wang, C. J. (). Credit scoring
with a data mining approach based on support vector machines.
Expert Systems with Applications, (), –.

Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (). Credit
rating analysis with support vector machines and neural net-
works: A market comparative study. Decision Support Systems,
(), –.

Hull, J. (). Options, futures and other derivatives. Prentice Hall
Series in Finance. New Jersey: Prentice Hall. th Edition.

Kirman, A. P. (). Whom or what does the representative indi-
vidual represents? The Journal of Economic Perspectives, ,
–.

Kumar, S., Thulasiram, R. K., & Thulasiraman, P. (). A bioin-
spired algorithm to price options. In CSE ’: Proceedings of
the CSE conference (pp. –). New York: ACM.

LeBaron, B. (). A builder’s guide to agent based financial mar-
kets. Quantitative Finance, , –.

Lensberg, T., Eilifsen, A., & McKee, T. E. (). Bankruptcy theory
development and classification via genetic programming. Euro-
pean Journal of Operational Research, (), –; Feature
cluster on scatter search methods for optimization.

Levy, M., Levy, H., & Solomon, S. (). A microscopic model of
the stock market: cycles, booms and crashes. Economics Letters,
, –.

Lipinski, P. (). Evolutionary data-mining methods in discover-
ing stock market expertise from financial time series. PhD thesis,
University of Wroclaw, Wroclaw, Poland.

Loraschi, A., & Tettamanzi, A. (). An evolutionary algorithm for
portfolio selection in a downside risk framework. The European
Journal of Finance, .

Loraschi, A., Tettamanzi, A., Tomassini, M., Svizzero, C., Scientifico,
C., & Verda, P. (). Distributed genetic algorithms with an
application to portfolio selection. In Artificial neural nets and
genetic (pp. –). Berlin: Springer.

Lux, T. (). The socio-economic dynamics of speculative markets:
Interacting agents, chaos, and the fat tails of return distri-
butions. Journal of Economic Behavior and Organization, ,
–.

Lux, T., & Ausloos, M. (). Market fluctuations I: Scaling, multi-
scaling and their possible origins. In A. Bunde, J. Kropp, & H. J.
Schellnhuber (Eds.), Theories of disaster – scaling laws governing
weather, body, and stock market dynamics (pp. –). Berlin:
Springer.

Evolutionary Computational Techniques in Marketing E

E

Maringer, D. (). Portfolio management with heuristic optimiza-
tion. Advances in computational management science (Vol.).
Berlin: Springer.

Martens, D., Baesens, B., Gestel, T. V., & Vanthienen, J. ().
Comprehensible credit scoring models using rule extraction
from support vector machines. European Journal of Operational
Research, (), –.

Martinez-Jaramillo, S., & Tsang, E. P. K. (a). Evolutionary com-
putation and artificial financial markets. Studies in computa-
tional intelligence (Vol. , pp. –). Berlin: Springer.

Martinez-Jaramillo, S., & Tsang, E. P. K. (b). An heterogeneous,
endogenous and coevolutionary gp-based financial market.
IEEE Transactions on Evolutionary Computation, , –.

Ong, C. S., Huang, J. J., & Tzeng, G. H. (). Building credit scor-
ing models using genetic programming. Expert Systems with
Applications, (), –.

Paleologo, G., Elisseeff, A., & Antonini, G. (). Subagging
for credit scoring models. European Journal of Operational
Research. (), –.

Potvin, J. Y., Soriano, P., & Vallée, M. (). Generating trad-
ing rules on the stock markets with genetic programming.
Computers and Operations Research, (), –.

Quintana, D., Saez, Y., Mochon, A., & Isasi, P. (). Early
bankruptcy prediction using enpc. Applied Intelligence, (),
–.

Schoreels, C., Logan, B., & Garibaldi, J. M. (). Agent based
genetic algorithm employing financial technical analysis for
making trading decisions using historical equity market data.
In IAT ’: Proceedings of the intelligent agent technol-
ogy, IEEE/WIC/ACM international conference (pp. –).
Washington, DC: IEEE Computer Society.

Shin, K. S., & Lee, Y. J. (). A genetic algorithm application in
bankruptcy prediction modeling. Expert Systems with Applica-
tions, (), –.

Simon, H. A. (). Models of bounded rationality (Vol.). Cam-
bridge, MA: MIT Press.

Streichert, F., Ulmer, H., & Zell, A. (). Evaluating a hybrid
encoding and three crossover operators on the constrained
portfolio selection problem. In Proceedings of the congress
on evolutionary computation (pp. –). New Jersey: IEEE
Press.

Tesfatsion, L. (). Agent-based computational economics: Grow-
ing economies from the bottom up. Artificial Life, , –.

Tsang, E. P. K., & Martinez-Jaramillo, S. (). Computational
finance. In IEEE computational intelligence society newsletter
(pp. –). New Jersey: IEEE Press.

Tsang, E. P. K., Yung, P., & Li, J. (). Eddie-automation, a decision
support tool for financial forecasting. Journal of Decision Sup-
port Systems, Special Issue on Data Mining for Financial Decision
Making, (), –.

Turku, B. B., Back, B., Laitinen, T., Sere, K., & Wezel, M. V. ().
Choosing bankruptcy predictors using discriminant analysis,
logit analysis, and genetic algorithms. In Proceedings of the
first international meeting on artificial intelligence in accounting,
finance and tax (pp. –). Huelva: Spain.

Yin, Z., Brabazon, A., & O’Sullivan, C. (). Adaptive genetic pro-
gramming for option pricing. In GECCO ’: Proceedings of the
 GECCO conference companion on genetic and evolutionary
computation (pp. –). New York: ACM.

Evolutionary Computational
Techniques in Marketing

Alma Lilia García-Almanza, Biliana
Alexandrova-Kabadjova,
SerafínMartínez-Jaramillo
Bank of Mexico, Mexico, D.F.

Definition
Evolutionary Computation (EC) in marketing is a
�eld that uses evolutionary techniques to extract and
gather useful patterns with the objective of designing
marketing strategies and discovering products and ser-
vices of superior value which satisfy the customers’
necessities. Due to the �erce competition by some
companies for attracting more customers and the
necessity of innovation, it is common to �nd numer-
ous marketing problems being approached by EC
techniques.

Motivation and Background
�e objective of marketing is to identify the customers’
needs and desires in order to guide the entire orga-
nization to serve best by designing products, services,
and programs which satisfy customers (Kotler & Arm-
strong,). Nowadays, the market competition is
very strong, since customers can choose from several
alternatives. For that reason,marketing teams are facing
the necessity of creating intelligent business strategies.
�us, new arti�cial intelligent approaches for market-
ing have emerged; especially, evolutionary algorithms
have been used to solve a variety of marketing problems
such as the design of more attractive products and ser-
vices for consumers, the analysis of populations to target
potential clients, the design of newmarketing strategies,
and more.

Applications
Nowadays, it is very easy to capture and store large sets
of data. However, such data must be processed and ana-
lyzed in order to obtain useful information to make
marketing decisions. Since EC techniques can be used
to extract patterns from data, these have been used in
marketing for multiple purposes. In order to illustrate

 E Evolutionary Computational Techniques in Marketing

the application of EC in marketing, let us introduce
some important works in this �eld.

Target potential clients

Bhattacharyya () proposed a Genetic Algorithm
(GA) in combination with a case-based reasoning sys-
tem to predict customer purchasing behavior. �e
objective was to identify potential customers for a spe-
ci�c product or service.�is approach was developed
and tested with real cases from a worldwide insurance
direct marketing company. An optimization mecha-
nism was integrated into the classi�cation system to
select those customers who were most likely to acquire
an insurance.

New Products design

As it was mentioned previously, one of the goals of
marketing is to discover products of superior value
and quality. To achieve this goal, Fruchter et al. ()
resolved to design a product line rather than a single
product. �e authors argued that by o�ering a prod-
uct line, the manufacturer can customize the products
according to the necessities of di�erent segments of the
population, which would satisfy more customers. Since
the amount of data about customer preferences was
large, the optimization of the product line became very
di�cult.�e authors used a GA to optimize the prob-
lem and the performance of the solutions was valued
by measuring the manufacturer’s pro�ts. In the same
vein, Liu and Ong () used a GA to solve a prob-
lem of marketing segmentation, this approach was used
to make strategy decisions for reaching e�ectively all
customers. In other approach proposed by Balakrish-
nan and Jacob (), a GA was used to optimize the
customer’s preferences in new products’ design. �e
authors explained that, to design a new product it is
important to determine its attributes, such as color or
shape. A study to gather the customers’ preferences had
to be carried out. Finally, a GA was used to select those
attributes that satis�ed a bigger number of customers.

Advertisement

Advertising is an important area of marketing; this is
de�ned as the activity of attracting public attention to a
product or business. Since personalized advertisement
improves marketing e�ciency, Kwon and Moon ()
proposed a personalized prediction model to be used

in email marketing. A circuit model combined with
Genetic Programming (GP) was proposed to analyze
customers’ information. �e result was a set of rec-
ommendation rules, which was tested over a general
mass marketing. According to the authors, the model
achieved a signi�cant improvement in sales. In Naik,
Mantrala, and Sawyer (), the authors used a GA
combined with a Kalman �lter procedure to determine
the best media schedule for advertisement, which was
constrained by a budget.�is approach evaluated a large
number of alternative media schedules to decide the
best media planning solution.
Internet has become a very popular and conve-

nient media to make businesses. Many products and
services can be found easily in a very short time, increas-
ing the competition between those providers. Since
this kind of sales does not involve human interac-
tion directly, it is essential to design new and better
strategies to personalize the Web pages in order to
contend in this media. As an instance, Abraham and
Ramos () proposed an ant clustering algorithm
to discover Web usage patterns and a linear genetic
program to analyze the visitor trends. �e objective
was to discover useful knowledge from interactions
of the users with the Web. �e knowledge was used
to design adaptive Web sites, business and support
services, personalization, network tra�c �ow analysis,
and more.
According to Scanlon (), the company Sta-

ples used a so�ware called IDDEA to redesign and
relaunch its paper brand.�is so�ware was developed
by A�nova Inc, and uses a GA to simulate the evolu-
tion of consumer markets where strong products sur-
vive and weak ones die out. �e strongest possible
design emerges a�er several generations. A panel of
consumers select their favorite options from each
generation. �e so�ware analyze customers choices
over multiple generations to identify preference pat-
terns. Surveys include consumer pro�les that comprised
basic demographic information, customer beliefs and
consumer habits. �is allow them to understand
how di�erent designs attract di�erent consumers. In
another project, IDDEA was used to identify imagery
and messaging that would be of interest to con-
sumers. As can be seen from previous paragraphs,
EC has been used to solve a variety of marketing
problems.

Evolutionary Feature Selection and Construction E

E

Since EC is able to dcal with optimization, forecast-
ing and data mining problems, among others, there is a
great potential of usage in the �eld of marketing to opti-
mize processes, to extract patterns of customers from
large amount of data, to forecast purchasing tendencies,
and many others.

Cross References
7Evolutionary Algorithms
7Evolutionary Computation in Economics
7Evolutionary Computation in Finance
7Genetic Algorithms
7Genetic Programming

Recommended Reading
Abraham, A., & Ramos, V. (). Web Usage mining using arti-

ficial ant colony clustering and linear genetic programming,
Genetic programming, Congress on Evolutionary Computation
(CEC), IEEE, , –.

Balakrishnan, P. V. S., & Jacob, V. S. (). Genetic algorithms for
product design. Management Science, (), –.

Bhattacharyya, S. (). Evolutionary algorithms in data mining:
Multi-objective performance modeling for direct marketing. In
KDD ’: Proceedings of the sixth ACM SIGKDD international
conference on knowledge discovery and data mining (pp. –
). New York: ACM.

Fruchter, G.E., Fligler, A., Winer, R. S. (). Optimal product line
design: A genetic algorithm approach to mitigate cannibaliza-
tion. Journal of Optimization Theory and Applications, (),
(pp. -), Springer Netherlands.

Kotler, P., & Armstrong, G. (), Principles of marketing, ed.,
Prentice Hall, Englewood Cliffs NJ.

Kwon, Y.-K., & Moon, B.-R. (). Personalized email marketing
with a genetic programming circuit model. In L. Spector, E. D.
Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen (Eds.),
Proceedings of the genetic and evolutionary computation con-
ference (GECCO-) (pp. –). San Francisco: Morgan
Kaufmann.

Liu, H.-H., & Ong, C.-S. (). Variable selection in clustering
for marketing segmentation using genetic algorithms. Expert
Systems Applications, (), –.

Naik, P. A., Mantrala, M. K., & Sawyer, A. G. (). Planning
media schedules in the presence of dynamic advertising quality.
Marketing Science, (), –.

Scanlon, Jessie. “Staples’ Evolution.” BusinessWeek Dec. :
-. Web, http://www.businessweek.com/innovate/content/
dec/id_.htm

Evolutionary Computing

7Evolutionary Algorithms

Evolutionary Constructive Induction

7Evolutionary Feature Selection and Construction

Evolutionary Feature Selection

7Evolutionary Feature Selection and Construction

Evolutionary Feature Selection and
Construction

Krzysztof Krawiec
Poznan University of Technology
Poznan, Poland

Synonyms
EFSC; Evolutionary constructive induction; Evolu-
tionary feature selection; Evolutionary feature syn-
thesis; Genetic attribute construction; Genetic feature
selection

Definition
Evolutionary feature selection and construction (EFSC)
is a bio-inspired methodology for explicit modi�cation
of input data of a learning system. It uses evolutionary
computation (EC) to �nd a mapping from the original
data representation space onto a secondary represen-
tation space. In evolutionary feature selection (EFS),
that mapping consists in dropping o� some of the fea-
tures (7attributes) from the original representation,
so the dimensionality of the resulting representation
space is not greater than that of the original space. In
evolutionary feature construction (EFC), evolutionary
algorithm creates (synthesizes) new features (derived
attributes) that complement and/or replace the original
ones.�erefore, EFS may be considered as special case
of EFC.
A typical EFSC algorithm maintains a population

of solutions, each of them encoding a speci�c map-
ping. �e best mapping found in evolutionary search
becomes the data preprocessor for the classi�er. Usu-
ally, EFSC takes place in training phase only, and the
evolved mapping does not undergo further changes in
the testing phase.

http://www.businessweek.com/innovate/content/dec2008/id20081229_162381.htm

 E Evolutionary Feature Selection and Construction

�ough EFSC is technically a form of data pre-
processing (see 7Data Preparation), some of its vari-
ants may as well involve an internal inductive pro-
cess in the �tness function. Also, EFS and EFC
may be considered as special cases of 7Feature
Selection and 7Feature Construction, respectively.
EFC is also partially inspired by 7Constructive
Induction.

Motivation and Background
Real-world machine learning problems o�en involve
a multitude of attributes, which individually have low
informative content and cannot provide satisfactory
performance of the learning system. �is applies in
particular to data-abundant domains like image anal-
ysis and signal processing. When faced with many
low-quality attributes, induction algorithms tend to
build classi�ers that perform poorly in terms of clas-
si�cation accuracy. �is problem may be alleviated
by removing some features from the original rep-
resentation space (feature selection) or introducing
new features de�ned as informative expressions (arith-
metic, logical, etc.) built of multiple attributes (feature
construction).
Unfortunately, many learning algorithms lack the

ability of discovering intricate dependencies between
attributes, which is a necessary precondition for suc-
cessful feature selection and construction. �is gap is
�lled out by EFSC, which uses EC to get rid of super-
�uous attributes and to construct new features. To this
extent, anticipated bene�ts from EFSC are similar to
those of general7Feature Selection and7Feature Con-
struction, and include reduced dimensionality of the
input space, better predictive accuracy of the learn-
ing system, faster training and querying, and better
readability of the acquired knowledge.
In general, both feature selection and feature con-

struction may be conveniently formulated as an opti-
mization problem with each solution corresponding to
a particular feature subset (for feature selection) or to
a particular de�nition of new features (for feature con-
struction).�e number of such solutions grows expo-
nentially with the number of original features, which
renders the exact search methods infeasible. �ere-
fore, EC techniques with their ability of performing
global parallel search with low risk of being trapped in

local optima are particularly predisposed to solve these
types of problems. Moreover, EC algorithms can opti-
mize arbitrary function without demanding assump-
tions concerning solution space and objective function
(like, for instance, the branch-and-bound algorithm).
�is is extremely important in the context of EFSC,
where the so-called �tness landscape (the objective
function spanned over the space of solutions) heavily
depends on the training data, and it is therefore di�cult
to predict its properties.

�e other strength of EC is the ease of adapta-
tion to a speci�c task that usually boils down to the
choice of solution representation and implementation
of the �tness function. For instance, a subset of fea-
tures in EFS may be directly encoded as a bit string
solution in genetic algorithm (GA), where a bit at a
particular position determines the selection or exclu-
sion of the corresponding feature (Vafaie & Imam,
; Yang & Honavar,). In EFC, de�nitions of
constructed features may be conveniently represented
as genetic programming (GP) expressions/procedures
(Rizki, Zmuda, & Tamburino, ; Teller & Veloso,
). Also, unlike many other search algorithms, evo-
lutionary algorithm can easily produce many solu-
tions. �is makes it a natural tool for, e.g., a parallel
construction of multiple representations (feature sub-
sets) that may be subsequently used in a compound
classi�er.

Structure of Learning System
Typically, EFSC uses a variant of evolutionary algorithm
(usually GA for EFS or genetic programming for EFC)
tomaintain a population of solutions (individuals), each
of them encoding a particular subset of features (for
EFS) or de�nition of new features (for EFC). Solutions
undergo mutations, crossing-over, and selective pres-
sure that promotes the well-performing ones. Selective
pressure is exerted by �tness function, which estimates
solution’s quality by measuring some properties of the
secondary representation space (see Fig.).�is usually
involves three steps:

. Decoding of solution (retrieving mapping from the
encoded solution).

. Transforming the training set into the secondary
representation space according to the mapping.

Evolutionary Feature Selection and Construction E

E

Evolutionary Feature Selection and Construction. Figure . Evolutionary feature selection and construction

. Estimating the quality of the secondary representa-
tion space which, a�er appropriate conversion (e.g.,
scaling), becomes solution’s �tness.

Technically, step usually boils down to one of two
methods.Filter approach relies onmeasures that charac-
terize the desired properties of training data in the sec-
ondary space (e.g., class separability), abstracting from
any particular induction algorithm. Wrapper approach
estimates the predictive ability that may be attained in
the secondary representation space by a speci�c induc-
tion algorithm, usually by partitioning the training set
into several subsets and performingmultiple train-and-
test experiment (e.g., cross-validation). In both cases,
the particular implementation depends on the type of
task being solved (classi�cation or regression, predom-
inantly the former one). Wrapper approach, though
computationally more expensive, takes into account
inductive and representational biases speci�c for induc-
tion algorithm, and o�en prove superior in terms of
classi�cation accuracy.

�e result of a typical EFSC procedure is the best
solution found in the evolutionary run, i.e., the superior
representationmappingwith respect to �tness function.
�is mapping serves as a preprocessor of input data and
is subsequently used to induce the �nal classi�er from
the training set.�e trained classi�er together with the
preprocessing provided by the mapping is the �nal out-
come of the EFSC-enriched training process and may
be used for classi�cation of new examples.

EFS and EFC are predominantly applied to super-
vised learning from examples and attribute-value rep-
resentation of training data.�e above scheme remains
relatively unchanged across various EFS and EFC app-
roaches reported in literature, with main di�erences
discussed in following.

Evolutionary Feature Selection

EFS is the simplest variant of EFSC. In this case, a
solution encodes the indices of attributes that should
be removed from the original representation (or, alter-
natively, which should be le� in the resulting sec-
ondary representation). �is leads to straightforward
encoding characteristic for GA, with each solution
being a bit string as long as the number of original
attributes. EFS may be thus easily implemented using
o�-shelf generic so�ware packages and involves rela-
tively straightforward �tness function. However, more
sophisticated approaches have been also considered,
like evolving GP individuals to asses the quality of and
rank feature subsets (Neshatian & Zhang,).

Evolutionary feature weighting (EFW) is a direct
generalization of EFS, where the evolutionary search
weighs features instead of selecting them. Solutions in
EFW are real-valued vectors evolved by evolutionary
algorithm or evolutionary strategy. EFW requires use of
a special wrapper �tness function that can take attribute
weights into account. In (Komosiński &Krawiec,),
EFW has been used with a nearest neighbor-based
wrapper �tness function to weigh features for a medical
diagnosing problem.

 E Evolutionary Feature Selection and Construction

Evolutionary Feature Construction

EFC requires sophisticated evolutionary representation
of solutions to encode de�nitions of new features, and
usually employs genetic programming for that purpose.
Each GP solution encodes an expression tree that uses
the original attributes and numeric constants as leaves
(terminals), and functions from a prede�ned vocabu-
lary as internal tree nodes (nonterminals). �e value
returned by such an expression when applied to an
example is interpreted as the new feature. Function
set usually encompasses simple arithmetics (typically
+, −, ∗, /) and elementary functions (like sin, cos, log,
exp).�e evolved features replace or extend the original
ones. As a single new feature is usually insu�cient to
provide satisfactory discriminative ability, it is common
to encode several GP trees within each solution.
EFC may be conveniently adopted to image anal-

ysis or computer vision problems, or any other type
of machine learning task that involves a large num-
bers of attributes. Commonly, an EFC algorithm evolves
GP solutions that construct higher-level features from
low-level image attributes (Krawiec & Bhanu,)
or implement advanced feature detectors (Howard,
Roberts, & Ryan, ; Puente, ; Quintana, Poli,
& Claridge,). Alternatively, solutions encode
chains of operations that process the entire image
globally according to the goal speci�ed by the �t-
ness function. Many other variants of this approach
have been studied in literature, involving, e.g., solu-
tions represented as graphs (Teller & Veloso,) or
sequences of operations (linear genetic programming,
(Bhanu et al.,)).

Applications
Real-world applications of EFSC are numerous and
include medical and technical diagnosing, computer
network intrusion detection, genetics, air quality fore-
casting, brain-computer interfaces, seismography,
robotics, face recognition, handwriting recognition,
vehicle detection in visual, infrared, and radarmodality,
image segmentation, satellite imaging, and stereovision.
�e conceptually simpler EFS has been implemented in
several machine learning and neural-network so�ware
packages (WEKA, Statistica Neural Networks). EFC
usually requires a more sophisticated and application-
speci�c implementation. However, for standard

learning-from-example tasks, it may be conveniently
implemented by extending o�-shelf libraries, like
WEKA (Waikato Environment for Knowledge Anal-
ysis, http://www.cs.waikato.ac.nz/ml/weka/) and ECJ
(Evolutionary Computation in Java, http://cs.gmu.edu/
~eclab/projects/ecj/). More examples of real-world
applications of EFSC may be found in (Langdon,
Gustafson, & Koza,).

Future Directions
Recent work on EFC employs various extensions of
EC. It has been demonstrated that an EFC task may
be decomposed into several semi-independent subtasks
using cooperative coevolution, a variant of evolution-
ary algorithm that maintains several populations with
solutions encoding partial solutions to the problem
(Krawiec & Bhanu,). Other recent work demon-
strates that fragments of GP expressions encoding fea-
ture de�nitions may help to discover good features in
other learning tasks (Jaśkowski, Krawiec, & Wieloch,
). With time, EFC becomes more and more uni-
�ed with GP-based classi�cation, where solutions are
expected to perform the complete classi�cation or
regression task rather than to implement only feature
de�nitions.

�e online genetic programming bibliography
(Langdon et al.,) provides quite complete cover-
age of state of the art in evolutionary feature selection
and construction. A concise review of contemporary
genetic programming research involving feature con-
struction for image analysis and object detection may
be found in (Krawiec, Howard, & Zhang,). Amore
extensive and systematic study of di�erent evolution-
ary approaches to feature construction is presented in
(Bhanu et al.,).

Cross References
7Constructive Induction
7Data Preparation
7Feature Selection

Recommended Reading
Bhanu, B., Lin, Y., & Krawiec, K. (). Evolutionary synthesis of

pattern recognition systems. New York: Springer-Verlag.
Howard, D., Roberts, S. C., & Ryan, C. (). Pragmatic genetic

programming strategy for the problem of vehicle detection in

Evolutionary Fuzzy Systems E

E

airborne reconnaissance. Pattern Recognition Letters, (),
–.

Jaśkowski, W., Krawiec, K., & Wieloch, B. (). Knowledge
reuse in genetic programming applied to visual learning.
In Dirk Thierens et al. (eds.), GECCO ’: In Proceed-
ings of the th annual conference on Genetic and evolu-
tionary computation, (Vol , pp. –), London, .
ACM Press.

Komosiński, M., & Krawiec, K. (). Evolutionary weighting of
image features for diagnosing of CNS tumors. Artificial Intelli-
gence in Medicine, (), –.

Krawiec, K., & Bhanu, B. (). Visual learning by coevolution-
ary feature synthesis. IEEE Transactions on System, Man, and
Cybernetics – Part B, (), –.

Krawiec, K., Howard, D., & Zhang, M. (). Overview of object
detection and image analysis by means of genetic program-
ming techniques. In Proceedings of frontiers in the convergence
of bioscience and information technologies (fbit), Jeju,
Korea, october –, (pp. –). IEEE CS Press.

Langdon, W., Gustafson, S., & Koza, J. (). The genetic
programming bibliography. ([online] http://www.cs.bham.ac.
uk/ wbl/biblio/)

Neshatian, K., & Zhang, M. (). Genetic programming for
feature subset ranking in binary classification problems. In
L. Vanneschi, S. Gustafson, A. Moraglio, I. vanoe De Falco,
& M. Ebner (Eds.), Genetic programming (pp. –).
Springer.

Puente, C., Olague, G., Smith, S. V., Bullock, S. H., González-Botello,
M. A., & Hinojosa-Corona, A. (). A novel GP approach to
synthesize vegetation indices for soil eros ion assessment. In
M. Giacobini et al. (Eds.), Applications of evolutionary comput-
ing (pp. –). Springer.

Quintana, M. I., Poli, R., & Claridge, E. () Morphologi-
cal algorithm design for binary images using genetic pro-
gramming. Genetic Programming and Evolvable Machines, (),
–.

Rizki, M. M., Zmuda, M. A., & Tamburino, L. A. (). Evolving
pattern recognition systems. IEEE Transactions on Evolutionary
Computation, (), –.

Teller, A., & Veloso, M. (). PADO: A new learning archi-
tecture for object recognition. In K. Ikeuchi & M. Veloso
(Eds.), Symbolic visual learning (pp. –). New York: Oxford
Press.

Vafaie, H., & Imam, I. F. (). Feature selection methods:
genetic algorithms vs. greedy-like search. In Proceedings
of international conference on fuzzy and intelligent control
systems.

Yang, J., & Honavar, V. (). Feature subset selection using a
genetic algorithm. IEEE Transactions on Intelligent Systems,
(), –.

Evolutionary Feature Synthesis

7Evolutionary Feature Selection and Construction

Evolutionary Fuzzy Systems

Carlos Kavka
University of Trieste
Trieste
Italy

Definition
An evolutionary fuzzy system is a hybrid automatic
learning approximation that integrates 7fuzzy systems
with 7evolutionary algorithms, with the objective of
combining the optimization and learning abilities of
evolutionary algorithms together with the capabilities
of fuzzy systems to deal with approximate knowledge.
Evolutionary fuzzy systems allow the optimization of
the knowledge provided by the expert in terms of lin-
guistic variables and fuzzy rules, the generation of some
of the components of fuzzy systems based on the partial
information provided by the expert, and in some cases
even the generation of fuzzy systems without expert
information. Sincemany evolutionary fuzzy systems are
based on the use of genetic algorithms, they are also
known as genetic fuzzy systems. However, many models
presented in the scienti�c literature also use genetic pro-
gramming, evolutionary programming, or evolution
strategies, making the term evolutionary fuzzy systems
more adequate. Highly related is the concept of evolu-
tionary neuro-fuzzy systems, where the main di�erence
is that the representation is based on neural networks.
Recently, the related concept of evolving fuzzy systems
has been introduced, where the main objective is to
apply evolutionary techniques to the design of fuzzy sys-
tems that are adequate to the control of nonstationary
processes, mainly on real-time applications.

Motivation and Background
One of the most interesting properties of a fuzzy sys-
tem is its ability to represent expert knowledge by using
linguistic terms of everyday common use, allowing the
description of uncertainty, vagueness, and imprecision
in the expert knowledge. �e linguistic terms, which
are imprecise by their own nature, are, however, de�ned
very precisely by using fuzzy theory concepts.

http://www.cs.bham.ac.uk/wbl/biblio/

 E Evolutionary Fuzzy Systems

�e usual approach to build a fuzzy system consists
in the de�nition of the membership functions and the
rule base in terms of expert knowledge. Compared with
other rule-based approaches, the process of extracting
knowledge from experts and representing it formally is
simpler, since linguistic terms can be de�ned to match
the terms used by the experts. In this way, rules are
de�ned establishing relations between the input and
output variables using these linguistic terms. However,
even if there is a clear advantage of using the terms
de�ned as 7fuzzy sets, the knowledge extraction pro-
cess is still di�cult and time consuming, usually requir-
ing a very di�cult manual �ne tuning process. It should
be noted that no automatic framework to determine
the parameters of the components of the fuzzy system
exists yet, generating the need for methods that provide
adaptability and learning ability for the design of fuzzy
systems.
Since it is very easy to map a fuzzy system into

a feedforward neural network structure, it is not
surprising that many methods based on neural net-
work learning have been proposed to automate the
fuzzy system building process (Ho�mann, ; Karr &
Gentry,)�e combined approach provides advan-
tages from both worlds: the low level learning and com-
putational power of neural networks is joined together
with the high level human-like thinking and reasoning
of fuzzy systems. However, this approach can still face
some problems, such as the potential risk of its learning
algorithms to get trapped in local minimum, the pos-
sible need for restriction of the membership functions
to follow some mathematical properties (like di�eren-
tiability), and the di�culties of inserting or extracting
knowledge in some approaches, where the obtained lin-
guistic terms can exhibit a poor semantic due to the
usual black-box processing of many neural networks
models.
Evolutionary algorithms provide a set of properties

that make them ideal candidates for the optimization
and design of fuzzy systems, and in fact, there are many
methods that have been proposed in the literature to
design or tune the di�erent components of fuzzy sys-
tems. Evolutionary systems exhibit robust performance
and global search characteristics, while requiring only a
simple quality measure from the environment.�ere is
no need for gradient information or input/output pat-
terns. Other strengths come from its parallel nature:

instead of selecting a single solution and re�ning it, in
most evolutionary methods, a set of alternative solu-
tions is considered and evolved in parallel.

Structure of the Learning System
�e learning process de�ned by an evolutionary fuzzy
system starts from the knowledge provided by the
expert, which can include all or just some of the com-
ponents of the knowledge base of a fuzzy system.
�e evolutionary algorithm that is behind this learn-
ing approach can perform the optimization of all the
parameters that are provided by the expert, plus the
generation of the missing components of the fuzzy
system based on the partial speci�cations provided by
the expert.

�e model shown in Fig. presents a general archi-
tecture of the learning and optimization process in
evolutionary fuzzy systems. An initial knowledge base
KBi is built based on the knowledge provided by the
expert. Note thatKBi could be (and usually is) a incom-
pletely speci�ed knowledge base. Based on this initial
expert knowledge, the evolutionary algorithm creates
a population of individuals, which can represent com-
plete fuzzy systems or just a few components of them.
�e evaluation of the individuals is performed by creat-
ing a temporary knowledge base KBt , which can also be
complete or not. By using the information in KBt , com-
bined with the initial knowledge baseKBi, the individu-
als are evaluated by determining the error in the approx-
imation of patterns if there are examples available, com-
puting the reinforcement signal (typical situation in
control problems), or in any other way depending on
the problem characteristics (Babuska, ; Cordon,
Gomide, Herrera, Ho�mann, & Magdalena,).�e

evolutionary algorithm

Expert
knowledge

Operators

Population

Fitness Evaluation

FS

final product

KBi

KBt

Evolutionary Fuzzy Systems. Figure . The general mo-

del of the evolutionary fuzzy systems learning and opti-

mization

Evolutionary Fuzzy Systems E

E

result of the evaluation is typically a single �tness mea-
sure, which provides the necessary information for the
selection and the variational operators of the evolution-
ary algorithm.�ese operators, which can be standard
or de�ned speci�cally for the problem, combine and
mute the individuals based on the �tness value and their
speci�c parameters.�e process is repeated till a prede-
�ned criterion is ful�lled, obtaining as a �nal result the
fuzzy system FS.
Depending on the information provided by the

expert, the learning or optimization process performed
by the evolutionary fuzzy system can be applied to the
database, the fuzzy rule base or both of them. �ese
three approaches are described below.

Optimization and Learning of the Fuzzy Database

In this case, it is assumed that the fuzzy rule base is
known and provided by the expert.�e initial knowl-
edge base KBi contains the fuzzy rule base, and if pro-
vided, the initial approximation of the parameters of
antecedents and/or consequents. Since the expert has
to de�ne the rule base, and in order to do that, he/she
needs to know the labels of the linguistic terms used
for the antecedents and consequents, it is usual that the
number of fuzzy sets is prede�ned and kept constant
during the evolution.

�e representation of the individuals contains only
the parameters of the fuzzy sets associated to the input
linguistic variables, and the fuzzy sets associated to the
output variables in the case of a Mamdani fuzzy system,
or the associated lineal approximators in the case of a
Takagi-Sugeno fuzzy system. Other parameters could
also be speci�ed if necessary (scale factors, etc.). Usu-
ally, individuals are represented as a �xed length string
that is de�ned as the concatenation of all parameters of
the input and output fuzzy sets or approximators. Of
course, the representation for the fuzzy sets depends
on their particular class: for example, three values are
required to represent triangular fuzzy sets, four values
to represent trapezoidal fuzzy sets, and two for sig-
moidal fuzzy sets. As an example, Fig. shows that three
values are necessary to represent a triangular fuzzy set:
the center, the le� width, and the right width, labeled as
c, ol, and od, respectively. From this example, it can be
seen that values are required in order to represent the
 fuzzy sets associated to this single linguistic variable.

0

1

L1 L2 L3

C
oroI

L4 L5

D1 D2 D3 D4 D5

Evolutionary Fuzzy Systems. Figure . A linguistic vari-

able represented with five fuzzy sets

However, it is usual to apply fuzzy logic concepts
(Zadeh,) to simplify the representation, with the
implied reduction in the search space, and also, to en-
hance the interpretability (Casillas, Cordon, Herrera, &
Magdalena,) of the resulting fuzzy system. As an
example, it is desirable that the partition associated
to a linguistic variable ful�lls the completeness prop-
erty, which establishes that for each point in the input
domain, the summation of the membership values of
all membership functions must be equal to . It is also
desirable that the position of the fuzzy sets remains
always the same during the evolution, for example in
Fig. , it means that it is expected that the fuzzy set L
will be always at the le� of L, L always at the le� of
L, and so on. A representation that considers these
two requirements can be de�ned by representing the
whole partition specifying the distance from the center
of a fuzzy set to the center of the next one (Ho�mann,
).�e representation of �ve fuzzy sets then requires
only �ve values (labeled in the �gure as ∆i), which
reduces largely the search space and keeps the order of
fuzzy sets, while ful�lling the completeness property.
Most implementations use real values to represent the
parameters.

�e operators of the evolutionary algorithm can be
standard operators or can be de�ned speci�cally based
on the selected representation. As an example, opera-
tors thatmodify thewidth of fuzzy sets, shi� the centers,
or perform other operations on the fuzzy set represen-
tations, linear approximators, or other parameters have
been de�ned in the scienti�c literature.

Optimization and Learning of the Fuzzy Rule Base

In this case, the fuzzy rule base is not known, or
only an initial approximation to it is provided. �e
other parameters of the knowledge base are known and

 E Evolutionary Fuzzy Systems

provided by the expert.�e three most usual approxi-
mations are

. Michigan approximation: Each individual of the
population codi�es a single rule (Bonarini,),
which means that each individual by itself cannot
represent a complete solution to the problem.�e
knowledge base for evaluation KBt is built based on
the informationde�ned inKBi and the rules de�ned
by all the individuals from the population com-
bined together (see Fig. a). Rules are penalized or
rewarded based on its performance during the eval-
uation.�e fuzzy system is then built through the
competition of a set of independent rules that have
to be learned to collaborate during the evolution.

. Pittsburgh approximation: Each individual repre-
sents the complete rule base. If dynamic creation
and removal of rules is allowed, it is necessary to
de�ne special variational operators to deal with
variable length individuals. Compared with the
Michigan approach the evaluation is simpler, since
by just combining each individual with KBi it is
possible to build KBt for evaluation (see Fig. b).
However, usually, the search space is larger when
compared with the Michigan approach.

. Iterative approximation: Each individual codi�es a
single rule (Cordon, Herrera, & Ho�mann,)
like in the Michigan approach. However, in each
iteration of the algorithm, only the best rule is
selected discarding all the others.�is selection is
based by considering the properties of the rule,
such as for example, its covering degree on a set
of examples.�e algorithm is then competitive and
not cooperative. It is usually necessary to apply

Population

KBi

ba
Population

KBi

Evolutionary Fuzzy Systems. Figure . The evaluation of

individuals in the (a) Michigan and (b) Pittsburgh

approaches

algorithms to re�ne the fuzzy rule set obtained
at the end of the evolutionary process, which can
include operations, such as for example, the removal
of similar rules.

�e representation in all of these approximations
usually consists of individuals that contain references to
the fuzzy sets already de�ned inKBi.�e representation
of each individual can be a sequence of integers where
each one is an index to the fuzzy sets associated to the
corresponding linguistic variable. As an example, the
fuzzy rule base could be represented as a matrix where
each cell corresponds to the intersection of the input
fuzzy sets, containing the index of the output fuzzy set
associated to the rule. It is also possible to represent the
fuzzy rule base as a decision table or simply as a list
of rules. In these last two cases, the representation can
have variable length, allowing to represent fuzzy rule
sets with variable size.

�e �tness calculation depends on the selected
approximation. On a Pittsburgh approximation, the �t-
ness corresponds to the evaluation of the complete fuzzy
system on the corresponding problem. It is also pos-
sible to include in the �tness calculation other factors,
such as for example, penalization for fuzzy rule bases
that containsmany rules or fuzzy rules with superposed
application areas, etc. On aMichigan or Iterativemodel,
the �tness indicates the degree of adequacy of the
rule measured independently, considering also in the
Michigan model its degree of cooperation with the
other rules in the population.

�e de�nition of the variational operators depends
of course on the selected approximation. If the repre-
sentation allows it, standard operators of crossover and
mutation can be used. However, it can be convenient
(or necessary) to de�ne speci�c operators. As an exam-
ple, variational operators can consider factors such as
the time period since the rule has been used for the
last time, its overall contribution to the �nal result, its
performancewhen evaluated on the set of examples, etc.

Optimization and Learning of the Complete

Knowledge Base

�is case is a combination of the two models described
before. �e knowledge base KBi contains the initial
approximation to the de�nition of the antecedents and
consequents, and the initial approximation to the fuzzy

Evolutionary Fuzzy Systems E

E

rule base as provided by the expert. Note that KBi can
also be empty if it is expected that the algorithm must
generate all the parameters of the fuzzy system by itself.

�e representation of the individuals contains all the
parameters that de�ne a knowledge base in order to
allow its learning or optimization.�e three most used
representation schemes are shown in Fig. . In the �rst
scheme, each individual contains the representation of
all fuzzy sets, and the representation of all fuzzy rules
using indexes to refer to the corresponding fuzzy sets.
In the second scheme, each individual is structured as a
set of rules, where each one speci�es its own input and
output fuzzy sets by directly including the parameters
that de�ne them.�e representation (a) is adequate for
descriptive fuzzy systems, since the rules contain ref-
erences to the fuzzy sets used in their de�nition and
can be shared by all of them.�e representation (b) is
adequate for approximative fuzzy systems, where each
rule de�nes its own fuzzy sets. �ese two representa-
tions are adequate for the Pittsburgh approximation,
while the third one (c) is adequate for the Michigan
and the Iterative approximation. Of course, there can
bemany variations of this representations. For example,
the input space partition can be prede�ned or obtained
through fuzzy clustering algorithms, and if this parti-
tion is not expected to go under optimization, then it
is not necessary to include the parameters of the input
fuzzy sets in the representation.
Since this model is a combination of the two

previous models, everything that was mentioned before
concerning the �tness function and the variational
operators also applies in this context. However, the fact
that all parameters of the knowledge base are included
in the representation allows to de�ne more power-
ful variational operators. As an example, it is possible
to de�ne operators that decide the creation of new

fuzzy sets, the elimination of some of them, and at
the same time, the adaptation of the associated fuzzy
rules, when for example, it is detected that there are
areas in the input space that are not well covered, many
rules with superimposed areas, etc. It is also possible to
apply genetic programming techniques (Pedrycz,),
which are usually used to modify the structure of the
fuzzy system, adding, removing, or combining sections
of the fuzzy system with the objective of generating the
most adequate structure.

Final Remarks

Clearly, the integration of fuzzy systems with evolu-
tionary algorithms allows to overcome the limitations
of each model considered independently, obtaining a
powerful hybrid approach, which allows to learn and
optimize fuzzy systems based on expert knowledge.
Previous sections have discussed in general terms the
evolutionary learning model. However, in order to get
more details about particular implementations, it is rec-
ommended to read the publications referenced in the
next section. �e presentation from Karr & Gentry
() is interesting, not only because it provides a nice
introduction and application of evolutionary fuzzy sys-
tems, but it has the additional value of being one of
the �rst publications in the area. �e presentation of
Ho�mann () is an excellent introduction to evo-
lutionary fuzzy systems used for control applications.
�e other publications present details on evolutionary
fuzzy systems (Babuska ; Bonarini ; Cordon
et al., ; Juang Lin & Lin ; Lee & Takagi),
including representations based on neural networks
(Ho�mann, ; Karr & Gentry,), evolution
strategies (Alpaydtn, Dundar, & Balktr,), genetic
programming (Pedrycz,) and applications of evo-
lutionary fuzzy systems to the domain of recurrent

cba

ant con

DB RB

Rules

KB

ant con ant con

Rule Rule

ant

Rule

con

Evolutionary Fuzzy Systems. Figure . Representations for the complete knowledge base adequate for (a) descriptive

and (b) approximative fuzzy systems in the Pittsburgh approximation, and (c) representation of a single independent

rule adequate for Michigan and Iterative approximations

 E Evolutionary Games

fuzzy systems (Kavka, Roggero, & Schoenauer,).
�e paper by Cordon et al. () provides a very com-
prehensive reference list about the main developments
on evolutionary fuzzy systems.
It should be stressed that a very important aspect

to consider in the de�nition of evolutionary fuzzy sys-
tems is the interpretability of the resulting fuzzy systems
(Casillas et al.,). Even if it has been mentioned
that it is possible to design an evolutionary fuzzy system
without expert information, by allowing the evolution-
ary algorithm tode�ne all the components of the knowl-
edge base by itself, it must always be considered that
the interpretability of the results is essential. Designing
a system that solves the problem, but that works as a
black box, can be adequate in other contexts, but it is
not desirable at all in the context of evolutionary fuzzy
systems. An evolutionary fuzzy system algorithm must
provide themeans so that the expert knowledge de�ned
in fuzzy terms can be considered and used appropri-
ately during the evolution, and also, itmust guarantee an
adequate interpretability degree of the resulting fuzzy
system.

Recommended Reading
Alpaydtn, G., Dundar, G., & Balktr, S. (). Evolution-based

design of neural fuzzy networks using self-adapting genetic
parameters. IEEE Transactions of Fuzzy Systems, (), –.

Babuska, R. (). Fuzzy modeling for control. Norwell, MA: Kluwer
Academic Press.

Bonarini, A. (). Evolutionary learning of fuzzy rules: Compe-
tition and cooperation. In W. Pedrycz (Ed.), Fuzzy modeling:
Paradigms and practice. Norwell, MA: Kluwer Academic Press.

Casillas, J., Cordon, O., Herrera, F., & Magdalena, L. (Eds.). ().
Interpretability issues in fuzzy modeling. Series: Studies in fuzzi-
ness and soft computing (Vol.)

Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., & Magdalena, L.
(). Ten years of genetic fuzzy systems: Current framework
and new trends. Fuzzy Sets and Systems, , –.

Cordon, O., Herrera, F., & Hoffmann, F. (). Genetic fuzzy sys-
tems. Singapore: World Scientific Publishing.

Hoffmann, F. (). Evolutionary algorithms for fuzzy control
system design. Proceedings of the IEEE, (), –.

Juang C. F., Lin, J. Y., & Lin, C. T. (). Genetic reinforce-
ment learning through symbiotic evolution for fuzzy controller
design. IEEE Transactions on Systems, Man and Cybernetics,
(), –.

Karr, C. L., & Gentry, E. J. (). Fuzzy control of PH using genetic
algorithms. IEEE Transactions on Fuzzy Systems, (), –.

Kavka, C., Roggero, P., & Schoenauer, M. (). Evolution of
Voronoi based fuzzy recurrent controllers. In Proceedings of
GECCO (pp. –). NeW York: ACM Press.

Lee, M., & Takagi, H. (). Integrating design stages of fuzzy sys-
tems using genetic algorithms. In Proceedings of the second IEEE
international conference on fuzzy systems (pp. –).

Pedrycz, W. (). Evolutionary fuzzy modeling. IEEE Transactions
of Fuzzy Systems, (), –.

Zadeh, L. (). Fuzzy logic. IEEE Computer, (), –.

Evolutionary Games

Moshe Sipper
Ben-Gurion University
Beer-Sheva, Israel

Definition
Evolutionary algorithms are a family of algorithms
inspired by the workings of evolution by natural selec-
tion, whose basic structure is to

. Produce an initial population of individuals, these
latter being candidate solutions to the problem at
hand

. Evaluate the �tness of each individual in accordance
with the problem whose solution is sought

. While termination condition not met do
a. Select �tter individuals for reproduction
b. Recombine (crossover) individuals
c. Mutate individuals
d. Evaluate �tness of modi�ed individuals

. End while

Evolutionary games is the application of evolu-
tionary algorithms to the evolution of game-playing
strategies for various games, including chess, backgam-
mon, and Robocode.

Motivation and Background
Ever since the dawn of arti�cial intelligence in the s,
games have been part and parcel of this lively �eld.
In , a year a�er the Dartmouth Conference that
marked the o�cial birth of AI, Alex Bernstein designed
a program for the IBM that played two amateur
games of chess. In , Allen Newell, J.C. Shaw, and
Herbert Simon introduced a more sophisticated chess
program (beaten in thirty-�ve moves by a ten-year-
old beginner in its last o�cial game played in).

Evolutionary Games E

E

Arthur L. Samuel of IBM spentmuch of the s work-
ing on game-playing AI programs, and by he had a
checkers program that could play at the master’s level.
In and , Donald Michie described a simple
trial-and-error learning system for learning how to play
Tic-Tac-Toe (or Noughts and Crosses) called MENACE
(for Matchbox Educable Noughts and Crosses Engine).
�ese are but examples of highly popular games that
have been treated by AI researchers since the �eld’s
inception.
Why study games?�is question was answered by

Susan L. Epstein, who wrote:

▸ There are two principal reasons to continue to do

research on games... First, human fascination with game

playing is long-standing and pervasive. Anthropolo-

gists have cataloged popular games in almost every cul-

ture... Games intrigue us because they address impor-

tant cognitive functions... The second reason to con-

tinue game-playing research is that some difficult

games remain to be won, games that people play very

well but computers do not. These games clarify what

our current approach lacks. They set challenges for us to

meet, and they promise ample rewards (Epstein,).

Studying games may thus advance our knowledge
in both cognition and arti�cial intelligence, and, last
but not least, games possess a competitive angle which
coincides with our human nature, thus motivating both
researcher and student alike.
Even more strongly, Laird and van Lent proclaimed

that,

▸ ...interactive computer games are the killer application

for human-level AI. They are the application that will

soon need human-level AI, and they can provide the

environments for research on the right kinds of prob-

lems that lead to the type of the incremental and

integrative research needed to achieve human-level AI

(Laird & van Lent,).

Recently, evolutionary algorithms have proven a
powerful tool that can automatically “design” successful
game-playing strategies for complex games (Azaria &
Sipper, a,b; Hauptman & Sipper, b, a,b;
Shichel et al., ; Sipper et al.,).

Structure of the Learning System
Genetic Programming

Genetic Programming is a subclass of evolutionary
algorithms, wherein a population of individual pro-
grams is evolved, each program comprising functions
and terminals.�e functions are usually arithmetic and
logic operators that receive a number of arguments as
input and compute a result as output; the terminals are
zero-argument functions that serve both as constants
and as sensors, the latter being a special type of function
that queries the domain environment.

�e main mechanism behind genetic programming
is precisely that of a generic evolutionary algorithm
(Sipper, ; Tettamanzi & Tomassini,), namely,
the repeated cycling through four operations applied to
the entire population: evaluate-select-crossover-mutate.
Starting with an initial population of randomly gen-
erated programs, each individual is evaluated in the
domain environment and assigned a �tness value rep-
resenting how well the individual solves the problem
at hand. Being randomly generated, the �rst-generation
individuals usually exhibit poor performance. However,
some individuals are better than others, that is, (as in
nature) variability exists, and through the mechanism
of natural (or, in our case, arti�cial) selection, these
have a higher probability of being selected to parent the
next generation.�e size of the population is �nite and
usually constant.
Speci�cally, �rst a genetic operator is chosen at ran-

dom; then, depending on the operator, one or two indi-
viduals are selected from the current population using
a selection operator, one example of which is tourna-
ment selection: Randomly choose a small subset of indi-
viduals, and then select the one with the best �tness.
A�er the probabilistic selection of better individuals the
chosen genetic operator is used to construct the next
generation.�e most common operators are

● Reproduction (unary): Copy one individual to the
next generation with no modi�cations. �e main
purpose of this operator is to preserve a small num-
ber of good individuals.

● Crossover (binary): Randomly select an internal
node in each of the two individuals and swap the
subtrees rooted at these nodes. An example is shown
in Fig. .

 E Evolutionary Games

Before After

Crossover

Mutation

Evolutionary Games. Figure . Genetic operators in gen-

etic programming. LISP programs are depicted as trees.

Crossover (top): Two subtrees (marked in bold) are

selected from the parents and swapped. Mutation (bot-

tom): A subtree (marked in bold) is selected from the

parent individual and removed. A new subtree is grown

instead

● Mutation (unary): Randomly select a node from the
tree, delete the subtree rooted at that node, and
then “grow” a new subtree in its stead. An exam-
ple is shown in Fig. (the growth operator as well
as crossover and mutation are described in detail in
Koza,).

�e generic genetic programming �owchart is
shown in Fig. . When one wishes to employ genetic
programming, one needs to de�ne the following six
desiderata:

. Program architecture
. Set of terminals
. Set of functions
. Fitness measure
. Control parameters
. Manner of designating result and terminating run

Evolving Game-Playing Strategies

Recently, we have shown that complex and success-
ful game-playing strategies can be attained via genetic

programming. We focused on three games (Azaria &
Sipper, a,b; Hauptman & Sipper, b, a,b;
Shichel et al., ; Sipper et al.,):

. Backgammon. Evolves a full-�edged player for the
non-doubling-cube version of the game (Azaria &
Sipper, a,b; Sipper et al.,).

. Chess (endgames). Evolves a player able to play
endgames (Hauptman & Sipper, b, a,b;
Sipper et al.,). While endgames typically con-
tain but a few pieces, the problem of evaluation is
still hard, as the pieces are usually free to move all
over the board, resulting in complex game trees –
both deep and with high branching factors. Indeed,
in the chess lore much has been said and written
about endgames.

. Robocode. A simulation-based game in which
robotic tanks �ght to destruction in a closed
arena (robocode.alphaworks.ibm.com). �e pro-
grammers implement their robots in the Java
programming language, and can test their cre-
ations either by using a graphical environment in
which battles are held, or by submitting them to a
central Web site where online tournaments regu-
larly take place. Our goal here has been to evolve
Robocode players able to rank high in the inter-
national league (Shichel et al., ; Sipper et al.,
).

A strategy for a given player in a game is a way of
specifying which choice the player is to make at every
point in the game from the set of allowable choices at
that point, given all the information that is available
to the player at that point (Koza,). �e problem
of discovering a strategy for playing a game can be
viewed as one of seeking a computer program. Depend-
ing on the game, the program might take as input the
entire history of past moves or just the current state of
the game.�e desired program then produces the next
move as output. For some games one might evolve a
complete strategy that addresses every situation tack-
led.�is proved to work well with Robocode, which is a
dynamic game, with relatively few parameters and little
need for past history.
In a two-player game, such as chess or backgammon,

players move in turn, each trying to win against the
opponent according to speci�c rules (Hong, Huang, &

Evolutionary Games E

EEND

Select genetic
operation

probabilistically

Select two
individuals based

on fitness

Perform crossover Perform mutation

Insert mutant into
new population

Perform reproduction

Copy into new
population

Individuals =
individuals + 1

Individuals =
individuals + 1

Insert two offspring
into new population

Individuals =
individuals + 2

Crossover

MutationReproduction

Gen=0

Termination
criterion

satisfied?

Individuals
=

M?

Yes

No

Yes

No

Designate
results

Create initial
random population

Evaluate fitness of
each individual
in population

Individuals = 0

Gen = Gen + 1

Select one
individuals based

on fitness

Select one
individuals based

on fitness

Evolutionary Games. Figure . Generic genetic programming flowchart (based on Koza,). M is the population size,

and Gen is the generation counter. The termination criterion can be the completion of a fixed number of generations

or the discovery of a good-enough individual

Lin,). �e course of the game may be modeled
using a structure known as an adversarial game tree (or
simply game tree), in which nodes are the positions in
the game and edges are the moves. By convention, the
two players are denoted asMAX andMIN, whereMAX
is the player who moves �rst. �us, all nodes at odd-
numbered tree levels are game positions where MAX

moves next (labeled MAX nodes). Similarly, nodes on
even levels are called MIN nodes, and represent posi-
tions in which MIN (opponent) moves next.

�e complete game tree for a given game is the tree
starting at the initial position (the root) and containing
all possible moves (edges) from each position. Terminal
nodes represent positions where the rules of the game

 E Evolutionary Games

determine whether the result is a win, a draw, or a loss.
Although the game tree for the initial position is an
explicit representation of all possible paths of the game,
therefore theoretically containing all the information
needed to play perfectly, for most (nontrivial) games it
is extremely large, and constructing it is not feasible.
For example, the complete chess game tree consists of
roughly nodes (Shannon,).
When the game tree is too large to be generated

completely, only a partial tree (called a search tree)
is generated instead. �is is accomplished by invok-
ing a search algorithm, deciding which nodes are to be
developed at any given time and when to terminate the
search (typically at nonterminal nodes due to time con-
straints). During the search, some nodes are evaluated
by means of an evaluation function according to given
heuristics.�is is done mostly at the leaves of the tree.
Furthermore, search can start fromany position andnot
just at the beginning of the game.
Because we are searching for a winning strategy, we

need to �nd a good next move for the current player,
such that no matter what the opponent does therea�er,
the player’s chances of winning the game are as high
as possible. A well-known method called the minimax
search (Campbell & Marsland, ; Kaindl,) has
traditionally been used, and it forms the basis for most
methods still in use today. �is algorithm performs a
depth-�rst search (the depth is usually predetermined),
applying the evaluation function to the leaves of the tree,
and propagating these values upward according to the
minimax principal: at MAX nodes, select the maximal
value, and atMIN nodes – theminimal value.�e value
is ultimately propagated to the position from which the
search had started.
With games such as backgammon and chess

one can couple a current-state evaluator (e.g., board
evaluator) with a next-move generator. One can then
go on to create a minimax tree, which consists of
all possible moves, counter moves, counter counter-
moves, and so on; for real-life games, such a tree’s size
quickly becomes prohibitive. �e approach we used
with backgammon and chess is to derive a very shallow,
single-level tree, and evolve “smart” evaluation func-
tions. Our arti�cial player is thus created by combin-
ing an evolved board evaluator with a simple program
that generates all next-move boards (such programs can
easily be written for backgammon and chess).

In what follows, we describe the de�nition of the six
items necessary in order to employ genetic program-
ming, as delineated in the previous section: program
architecture, set of terminals, set of functions, �tness
measure, control parameters, and manner of designat-
ing result and terminating run. Due to lack of space
we shall elaborate upon one game – Robocode – and
only summarize the major results for backgammon and
chess.

Example: Robocode

Program Architecture A Robocode player is written as
an event-driven Java program. A main loop controls
the tank activities, which can be interrupted on various
occasions, called events.�e program is limited to four
lines of code, as we were aiming for the HaikuBot cat-
egory, one of the divisions of the international league
with a four-line code limit.�e main loop contains one
line of code that directs the robot to start turning the
gun (and the mounted radar) to the right.�is insures
that within the �rst gun cycle, an enemy tank will be
spotted by the radar, triggering a ScannedRobotEvent.
Within the code for this event, three additional lines
of code were added, each controlling a single actuator
and using a single numerical input that was supplied by
a genetic programming-evolved subprogram.�e �rst
line instructs the tank to move to a distance speci�ed
by the �rst evolved argument.�e second line instructs
the tank to turn to an azimuth speci�ed by the sec-
ond evolved argument.�e third line instructs the gun
(and radar) to turn to an azimuth speci�ed by the third
evolved argument (Fig.).

Terminal and Function Sets We divided the termi-
nals into three groups according to their functional-
ity (Shichel et al.,) (Fig.):

. Game-status indicators: A set of terminals that pro-
vide real-time information on the game status, such
as last enemy azimuth, current tank position, and
energy levels.

. Numerical constants: Two terminals, one providing
the constant and the other being an ephemeral
random constant (ERC).�is latter terminal is ini-
tialized to a random real numerical value in the
range [-,], and does not change during evolution.

Evolutionary Games E

E

Robocode Player’s Code Layout

while (true)
TurnGunRight(INFINITY); //main code loop

...
OnScannedRobot(){

MoveTank(<GP#1>);
TurnTankRight(<GP#2>);
TurnGunRight(<GP#3>);

}

Evolutionary Games. Figure . Robocode player’s code layout (HaikuBot division)

Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the range [-1,1]
Random() Returns a random real number in the range [-1,1]
Zero() Returns the constant 0

a

b

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero, otherwise

return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return value of third argument,

else return value of fourth argument
IfPositive(F, F, F) If first argument is positive, return value of second argument, else return

value of third argument
Fire(F) If argument is positive, execute fire command with argument as fire-

power and return 1; otherwise, do nothing and return 0

Evolutionary Games. Figure . Robocode representation. (a) Terminal set (b) Function set (F: Float)

. Fire command:�is special function is used to cur-
tail one line of code by not implementing the �re
actuator in a dedicated line.

Fitness Measure We explored two di�erent modes of
learning: using a �xed external opponent as teacher,

and coevolution – letting the individuals play against
each other; the former proved better. However, not just
one but three external opponents were used to measure
performance; these adversaries were downloaded from
theHaikuBot league (robocode.yajags.com).�e �tness
value of an individual equals its average fractional score
(over three battles).

 E Evolutionary Games

Control Parameters and Run Termination �e major
evolutionary parameters (Koza,) were population
size – , generation count – between and ,
selection method – tournament, reproduction prob-
ability – , crossover probability – ., and muta-
tion probability – .. An evolutionary run terminates
when �tness is observed to level o�. Since the game
is highly nondeterministic a “lucky” individual might
attain a higher �tness value than better overall individ-
uals. In order to obtain a more accurate measure for the
evolved players, we let each of them do battle for
rounds against di�erent adversaries (one at a time).
�e results were used to extract the top player – to be
submitted to the international league.

Results We submitted our top player to the HaikuBot
division of the international league. At its very �rst tour-
nament it came in third, later climbing to �rst place
of (robocode.yajags.com//haiku-v.html).
All other programs, defeated by our evolved
strategy, were written by humans. For more details on
GP-Robocode see Shichel et al., () and Azaria,
Hauptman, and Shichel ().

Backgammon and Chess: Major Results

Backgammon We pitted our top evolved backgammon
players against Pubeval, a free, public-domain board
evaluation function written by Tesauro.�e program –
which plays well – has become the de facto yardstick
used by the growing community of backgammon-
playing program developers. Our top evolved player
was able to attain a win percentage of .% in a tour-
nament against Pubeval, about % higher (!) than the
previous top method. Moreover, several evolved strate-
gies were able to surpass the % mark, and most of
them outdid all previous works. For more details on
GP-Gammon, see Azaria and Sipper (a) andAzaria
et al. ().

Chess (endgames) We pitted our top evolved chess-
endgame players against two very strong external oppo-
nents: () A program we wrote (“Master”) based upon
consultation with several high-ranking chess players
(the highest being Boris Gutkin, ELO , Inter-
national Master); () CRAFTY – a world-class chess
program, which �nished second in the World
Computer Speed Chess Championship (www.cs.biu.ac.

Evolutionary Games. Table Percent of wins, advan-

tages, and draws for the best GP-EndChess player in the

tournament against two top competitors

%Wins %Advs %Draws

Master . . .

CRAFTY . . .

il/games/). Speed chess (“blitz”) involves a time-limit
per move, which we imposed both on CRAFTY and on
our players. Not only did we thus seek to evolve good
players, but ones who play well and fast. Results are
shown in Table . As can be seen, GP-EndChess man-
ages to hold its own, and even win, against these top
players. For more details on GP-EndChess see Azaria
et al., () and Hauptman and Sipper (b).
Deeper analysis of the strategies developed

(Hauptman & Sipper, a) revealed several impor-
tant shortcomings, most of which stemmed from the
fact that they used deep knowledge and little search
(typically, they developed only one level of the search
tree). Simply increasing the search depth would not
solve the problem, since the evolved programs exam-
ine each board very thoroughly, and scanning many
boards would increase time requirements prohibitively.
And so we turned to evolution to �nd an optimal way
to overcome this problem: How to add more search
at the expense of less knowledgeable (and thus less
time-consuming) node evaluators, while attaining bet-
ter performance. In Hauptman and Sipper (b)
we evolved the search algorithm itself, focusing on the
Mate-In-N problem: �nd a keymove such that evenwith
the best possible counterplays, the opponent cannot
avoid being mated in (or before) move N. We showed
that our evolved search algorithms successfully solve
several instances of the Mate-In-N problem, for the
hardest ones developing % less game-tree nodes than
CRAFTY. Improvement is thus not over the basic alpha-
beta algorithm, but over a world-class program using all
standard enhancements (Hauptman & Sipper, b).
Finally, in Hauptman and Sipper (a), we exam-

ined a strong evolved chess-endgame player, focusing
on the player’s emergent capabilities and tactics in the
context of a chess match. Using a number of meth-
ods we analyzed the evolved player’s building blocks

Evolutionary Kernel Learning E

E

and their e�ect on play level. We concluded that evo-
lution has found combinations of building blocks that
are far from trivial and cannot be explained through
simple combination – thereby indicating the possible
emergence of complex strategies.

Cross References
7Evolutionary Computation
7Genetic Algorithms
7Genetic Programming

Recommended Reading
Azaria, Y., & Sipper, M. (a). GP-Gammon: Genetically program-

ming backgammon players. Genetic Programming and Evolvable
Machines, (), –.

Azaria, Y., & Sipper, M. (b). GP-Gammon: Using genetic
programming to evolve backgammon players. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.),
Proceedings of th European conference on genetic program-
ming (EuroGP), LNCS (Vol. , pp. –). Heidelberg:
Springer.

Campbell, M. S., & Marsland, T. A. (). A comparison of minimax
tree search algorithms. Artificial Intelligence, , –.

Epstein, S. L. (). Game playing: The next moves. In Proceed-
ings of the sixteenth National conference on artificial intelligence
(pp. –). Menlo Park, CA: AAAI Press.

Hauptman, A., & Sipper, M. (a). Analyzing the intelligence of a
genetically programmed chess player. In Late breaking papers
at the genetic and evolutionary computation conference,
GECCO .

Hauptman, A., & Sipper, M. (b). GP-EndChess: Using genetic
programming to evolve chess endgame players. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.),
Proceedings of th European conference on genetic program-
ming (EuroGP), LNCS (Vol. , pp. –). Heidelberg:
Springer.

Hauptman, A., & Sipper, M. (a). Emergence of complex strate-
gies in the evolution of chess endgame players. Advances in
Complex Systems, (Suppl.), –.

Hauptman, A., & Sipper, M. (b). Evolution of an efficient search
algorithm for the mate-in-N problem in chess. In M. Ebner,
M. O’Neill, A. Ekárt, L. Vanneschi, & A. I. Esparcia-Alcázar
(Eds.), Proceedings of th European conference on genetic pro-
gramming (EuroGP), LNCS (Vol. , pp. –). Heidel-
berg: Springer.

Hong, T.-P., Huang, K.-Y., & Lin, W.-Y. (). Adversarial search
by evolutionary computation. Evolutionary Computation, (),
–.

Kaindl, H. (). Minimaxing: Theory and practice. AI-Magazine,
(), –.

Koza, J. R. (). Genetic programming: On the programming of
computers by means of natural selection. Cambridge, MA: MIT
Press.

Laird, J. E., & van Lent, M. (). Human-level AI’s killer appli-
cation: Interactive computer games. In AAAI-: Proceed-
ings of the th National conference on artificial intelligence
(pp. –). Cambridge, MA: MIT Press.

Shannon, C. E. (). Automatic chess player. Scientific American,
, .

Shichel, Y., Ziserman, E., & Sipper, M. (). GP-Robocode: Using
genetic programming to evolve robocode players. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.),
Proceedings of th European conference on genetic program-
ming (EuroGP), LNCS (Vol. , pp. –). Heidelberg:
Springer.

Sipper, M. (). Machine nature: The coming age of bio-inspired
computing. New York: McGraw-Hill.

Sipper, M., Azaria, Y., Hauptman, A., & Shichel, Y. (). Design-
ing an evolutionary strategizing machine for game playing and
beyond. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, (), –.

Tettamanzi, A., & Tomassini, M. (). Soft computing: Inte-
grating evolutionary, neural, and fuzzy systems. Berlin:
Springer.

Evolutionary Grouping

7Evolutionary Clustering

Evolutionary Kernel Learning

Christian Igel
Ruhr-Universität Bochum
Bochum, Institute für Neuroinformatik Germany

Definition
Evolutionary kernel learning stands for using
7evolutionary algorithms to optimize the 7kernel
function for a kernel-based learning machine.

Motivation and Background
In kernel-based learning algorithms the kernel function
determines the scalar product and thereby themetric in
the feature space in which the learning algorithm oper-
ates.�e kernel is usually not adapted by the 7kernel
method itself. Choosing the right kernel function is cru-
cial for the training accuracy and generalization capa-
bilities of the learning machine. It may also in�uence
the runtime and storage complexity during learning and
application.
Finding an appropriate kernel is a 7model selec-

tion problem.�e kernel function is selected from an a

 E Evolutionary Kernel Learning

priori �xed class. When a parameterized family of ker-
nel functions is considered, kernel adaptation reduces
to �nding an appropriate parameter vector. In prac-
tice, the most frequently used method to determine
these values is grid search. In simple grid search the
parameters are varied independently with a �xed step-
size through a range of values and the performance of
every combination is measured. Because of its compu-
tational complexity, grid search is only suitable for the
adjustment of a few parameters. Further, the choice of
the discretization of the search space may be crucial.
Gradient-based approaches are perhaps themost elabo-
rate techniques for adapting real-valued kernel param-
eters, see the articles by Chapelle, Vapnik, Bousquet,
andMukherjee () andGlasmachers and Igel ()
and references therein. To use these methods, however,
the class of kernel functions must have a di�erentiable
structure. �ey are also not directly applicable if the
score function for assessing the parameter performance
is not di�erentiable.�is excludes some reasonable per-
formance measures. Evolutionary kernel learning does
not su�er from these limitations. Additionally, it allows
for7multi-objective optimization (MOO).

Structure of Learning System
Canonical evolutionary kernel learning can be descr-
ibed as an evolutionary algorithm (EA) in which the
individuals encode kernel functions, see Fig. . �ese
individuals are evaluated by determining the task-
speci�c performance of the kernel they represent. Two
special aspects must be considered when designing an
EA for kernel learning. First, one must decide how to
assess the performance (i.e., the �tness) of a particu-
lar kernel. �at is, model selection criteria have to be
de�ned depending on the problem at hand. Second, one
must also specify the subset of possible kernel func-
tions in which the EA should search.�is leads to the

questions of how to encode these kernels and which
variation operators to employ.

Assessing Fitness: Model Selection Criteria

�e following presents some performance indices that
have been considered for kernel selection.�ey can be
used alone or in linear combination for single-objective
optimization. In MOO a subset of these criteria can be
used as di�erent objectives.
It is important to note that, although many of these

measures are designed to improve7generalization, ker-
nel learning can lead to7over�tting if only limited data
is used in the model selection process (e.g., in every
generation the same small data sets are used to assess
performance). Regularization (e.g., in a Bayesian frame-
work) can be used to prevent over�tting. If enough
data are available, it is advisable to monitor the gener-
alization behavior of kernel learning using independent
data. For example, external data can be used for the early
stopping of evolutionary kernel learning.

Accuracy on Sample Data �e most straightforward
way to evaluate a model is to consider its performance
on sample data. �e empirical risk given by the error
on the training data could be considered, but it does
not measure generalization. To estimate the generaliza-
tion performance, the accuracy on data not used for
training is evaluated. In the simplest case, the avail-
able data is split into a training and validation set, with
the �rst used for learning and the second for subse-
quent performance assessment. A theoretically sound
and simple method is 7cross-validation (CV). Cross-
validation makes better use of the data, but it is more
computationally demanding. In practice, it yields very
good results.
If 7classi�cation is considered, it may be reason-

able to split the classi�cation error into false negative

initialize parent population of individuals,
each encoding kernel and perhaps additional parameters

while termination criterion is not met
create off spring individuals from parents
using variation operators

train and evaluate kernel machine encoded by individuals
using sample data

select new parent population based on evaluation

Evolutionary Kernel Learning. Figure . Canonical evolutionary kernel learning algorithm

Evolutionary Kernel Learning E

E

and false positive rates and to view 7sensitivity and
7speci�city as two separate objectives (Suttorp & Igel,
).

Measures Derived from Bounds on the Generalization

Performance Statistical learning theory allows one to
compute estimates of and bounds on the expected gen-
eralization error of learningmachines.�ese values can
be utilized as criteria for model selection, although then
the assumptions of the underlying theorems from statis-
tical learning theory are typically violated and the terms
“bound” and “unbiased estimate” become misleading.
For example, radius-margin bounds were used to

evolve kernels for 7support vector machines (SVMs)
for classi�cation (Igel,). Furthermore, the number
of support vectors (SVs) was optimized in combina-
tion with the empirical risk (Igel,). �e fraction
of SVs is an upper bound on the leave-one-out error
(e.g., Chapelle et al.,).

Number of Input Variables Variable selection refers to
the 7feature selection problem of choosing input vari-
ables that are best suited for the learning task.Masking a
subset of variables can be viewed as modifying the ker-
nel. By considering only a subset of feature dimensions
the computational complexity of the learning machine
decreases. When deteriorating feature dimensions are
removed, the overall performancemay increase. Reduc-
ing the number of input variables is therefore a common
objective, which can be achieved using single-objective
(Eads et al., ; Fröhlich, Chapelle, & Schölkopf,
; Jong, Marchiori, & van der Vaart, ; Miller,
Jerebko, Malley, & Summers,) or multi-objective
(Pang & Kasabov, ; Shi, Suganthan, & Deb,)
evolutionary kernel learning.

Space and Time Complexity of the Classifier In some
applications, it can be desirable to have fast kernelmeth-
ods (e.g., for meeting real-time constraints).�us, the
execution time may be considered in the performance
assessment during evolutionary kernel learning.

�e space and time complexity of SVMs scales with
the number of SVs.�is is an additional reason to con-
siderminimization of the number of SVs as an objective
in evolutionary model selection for SVMs (Igel, ;
Suttorp & Igel,).

Multi-Objective Optimization �e design of a learning
machine is usually aMOOproblem. For example, accu-
racy and complexity can be viewed as multiple, and
probably con�icting, objectives.�e goal of MOO is to
approximate a diverse set of Pareto-optimal solutions
(i.e., solutions that cannot be improved in one objec-
tive without getting worse in another one), which pro-
vide insights into the trade-o�s between the objectives.
Evolutionary multi-objective algorithms have become
popular for MOO. Applications of multi-objective evo-
lutionary kernel learning combining some of these per-
formance measures listed above can be found in the
work of Igel (), Pang and Kasabov (), and Shi
et al. ().

Encoding and Variation Operators

�e sheer complexity of the space of possible kernel
functions makes it necessary to restrict the search to
a particular class of kernel functions. �is restriction
essentially determines the representation and the oper-
ators used in evolutionary kernel learning.
When a parameterized family of mappings is con-

sidered, the kernel parameters can be encoded more or
less directly in a real-valued EA. �is is a frequently
used representation, for example for Gaussian kernel
functions.
For variable selection a binary encoding can be

appropriate. One can �x a kernel k : X × X → R,
where k(x⃗, z⃗) solely depends on some distance measure
between x⃗, z⃗ ∈ X. In the binary encoding each bit then
indicates whether a particular input variable is consid-
ered when computing the distance (Pang and Kasabov,
; Shi et al.,).
Kernels can be built from other kernels. For exam-

ple, if k and k are kernel functions onX then ak(x⃗, z⃗)+
bk(x⃗, z⃗) and a exp(−bk(x⃗, z⃗)) for x⃗, z⃗ ∈ X, a, b ∈ R+

are also kernels on X.�is suggests a representation in
which the individuals encode expressions that evaluate
to kernel functions.
Given these di�erent search spaces, it is not surpris-

ing that the aspects of allmajor branches of evolutionary
computation have been used in evolutionary kernel
learning: genetic algorithms (Fröhlich et al.,),
genetic programming (Howley & Madden,), evo-
lution strategies (Igel,), and evolutionary pro-
gramming (Runarsson & Sigurdsson,).

 E Evolutionary Kernel Learning

In general, kernel methods assume that the kernel
(or at least the 7Gram matrix 7(kernel matrix) in the
training process) is7positive semide�nite (psd).�ere-
fore, it is advisable to restrict the search space such
that only psd functions evolve. Other ways of dealing
with the problem of ensuring positive semide�niteness
are to ignore it (Howley & Madden,) or to con-
struct a psd Gram matrix from the matrix M⃗ induced
by the training data and a non-psd “kernel” function.
�e latter can be achieved by subtracting the smallest
eigenvalue of M⃗ from its diagonal entries.

Gaussian Kernels Gaussian kernel functions are
prevalent. �eir general form is k(x⃗, z⃗) :=
exp (−(x⃗ − z⃗)TA⃗(x⃗ − z⃗)) for x⃗, z⃗ ∈ Rn and sym-
metric positive de�nite (pd) matrix A⃗ ∈ Rn×n. When
adapting A⃗, the issue of ensuring that the optimization
algorithm generates only pd matrices A⃗ arises. �is
can be achieved by an appropriate parametrization
of A⃗. O�en the search is restricted to matrices of the
form γI⃗, where I⃗ is the unit matrix and γ ∈ R+ is the
only adjustable parameter. However, allowing more
�exibility has proven to be bene�cial in certain appli-
cations (e.g., see Chapelle et al., ; Friedrichs & Igel,
; Glasmachers & Igel,). It is straightforward
to consider diagonal matrices with positive elements
to allow for independent scaling factors weighting the
input components. However, only by dropping this
restriction one can achieve invariance against both
rotation and scaling of the input space. A real-valued
encoding that maps onto the set of all symmetric
pd matrices can be used such that all modi�cations
of the parameters result in feasible kernels, see the
articles by Friedrichs and Igel (), Glasmachers and
Igel (), and Suttorp and Igel () for di�erent
parametrizations.

Optimizing Additional Hyperparameters One of the
advantages of evolutionary kernel learning is that it
can be easily augmented with an optimization of addi-
tional hyperparameters of the kernel method.�e most
prominent example is to encode not only the kernel but
also the regularization parameter when doing model
selection for SVMs.

Application Example
Notable applications of evolutionary kernel learning
include the design of classi�ers in bioinformatics
(Mersch, Glasmachers, Meinicke, & Igel, ; Pang
& Kasabov, ; Shi et al.,). Let us consider
the work by Mersch et al. () as an instructive
example. Here, the parameters of a sequence kernel
are evolved to improve the prediction of gene starts
in DNA sequences. �e kernel can be viewed as a
weighted sum of kernels, each measuring similarity
with respect to a particular tri-nucleotide sequence
(codon). �e weights w, . . . ,w are optimized
together with an additional global kernel parameter σ
and a regularization parameter C for the SVM. Each
individual stores x⃗ ∈ R, where (w, . . . ,w, σ ,C)T =
(exp(x), . . . , exp(x), ∣x∣, ∣x∣)T. An evolution
strategy is applied, using additive multi-variate Gaus-
sian mutation and weighted global recombination
for variation and rank-based selection. �e �tness is
determined by a -fold cross-validation. �e evolved
kernels lead to higher classi�cation rates and the
adapted weights reveal the importance of particular
codons for the task at hand.

Cross References
7Neuroevolution

Recommended Reading
Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. ().

Choosing multiple parameters for support vector machines.
Machine Learning, (), –.

Eads, D. R., Hill, D., Davis, S., Perkins, S. J., Ma, J., Porter, R. B.,
et al. (). Genetic algorithms and support vector machines
for time series classification. In B. Bosacchi, D. B. Fogel, &
J. C. Bezdek (Eds.), Applications and science of neural networks,
fuzzy systems, and evolutionary computation V, Proceedings
of the SPIE (Vol.) (pp. –). SPIE–The International
Society for Optical Engineering. Bellington, WA

Friedrichs, F., & Igel, C. (). Evolutionary tuning of multiple
SVM parameters. Neurocomputing, (C), –.

Fröhlich, H., Chapelle, O., & Schölkopf, B. (). Feature selec-
tion for support vector machines using genetic algorithms.
International Journal on Artificial Intelligence Tools, (),
–.

Glasmachers, T., & Igel, C. (). Gradient-based adaptation
of general gaussian kernels. Neural Computation, (),
–.

Howley, T., & Madden, M. (). The genetic kernel support vec-
tor machine: Description and evaluation. Artificial Intelligence
Review, (), –.

Igel, C. (). Multi-objective model selection for support vector
machines. In C. A. Coello Coello, E. Zitzler, & A. Hernandez

Evolutionary Robotics E

E

Aguirre (Eds.), Proceedings of the third international conference
on evolutionary multi-criterion optimization (EMO), LNCS
(Vol.) (pp. –). Berlin: Springer.

Jong, K., Marchiori, E., & van der Vaart, A. (). Analysis of
proteomic pattern data for cancer detection. In G. R. Raidl,
S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, et al.
(Eds.), Applications of evolutionary computing, LNCS (Vol.
, pp. –). Berlin: Springer.

Mersch, B., Glasmachers, T., Meinicke, P., & Igel, C. (). Evo-
lutionary optimization of sequence kernels for detection of
bacterial gene starts. International Journal of Neural Systems,
(), –.

Miller, M. T., Jerebko, A. K., Malley, J. D., & Summers, R. M.
(). Feature selection for computer-aided polyp detection
using genetic algorithms. In A. V. Clough & A. A. Amini (Eds.),
Medical imaging : Physiology and function: Methods, sys-
tems, and applications, Proceedings of the SPIE (Vol.)
(pp. –).

Pang, S., & Kasabov, N. (). Inductive vs. transductive infer-
ence, global vs. local models: SVM, TSVM, and SVMT for gene
expression classification problems. In International joint con-
ference on neural networks (IJCNN) (Vol. , pp. –).
Washington, DC: IEEE Press.

Runarsson, T. P., & Sigurdsson, S. (). Asynchronous parallel
evolutionary model selection for support vector machines.Neu-
ral Information Processing – Letters and Reviews, (), –.

Shi, S. Y. M., Suganthan, P. N., & Deb, K. (). Multi-class protein
fold recognition using multi-objective evolutionary algorithms.
In IEEE symposium on computational intelligence in bioinfor-
matics and computational biology (pp. –). Washington, DC:
IEEE Press.

Suttorp, T., & Igel, C. (). Multi-objective optimization of
support vector machines. In Y. Jin (Ed.), Multi-objective
machine learning. Studies in computational intelligence (Vol. ,
pp. –). Berlin: Springer.

Evolutionary Robotics

PhilHusbands
University of Sussex
Brighton, UK

Synonyms
Embodied evolutionary learning; Evolution of agent
behaviors; Evolution of robot control

Definition
Evolutionary robotics involves the use of7evolutionary
computing techniques to automatically develop some or
all of the following properties of a robot: the control sys-
tem, the body morphology, and the sensor and motor

properties and layout. Populations of arti�cial genomes
(usually lists of characters and numbers) encode prop-
erties of autonomous mobile robots required to carry
out a particular task or to exhibit some set of behav-
iors.�e genomes are mutated and interbred creating
new generations of robots according to a Darwinian
scheme in which the �ttest individuals are most likely
to produce o�spring. Fitness is measured in terms of
how good a robot’s behavior is according to some evalu-
ation criteria; this is usually automaticallymeasured but
may, in the manner of eighteenth century pig breeders,
be based on the experimenters’ judgment.

Motivation and Background
Turing’s () paper, Computing Machinery and Intel-
ligence, is widely regarded as one of the seminal works
in arti�cial intelligence. It is best known for what came
to be called the Turing test – a proposal for decid-
ing whether or not a machine is intelligent. However,
tucked away toward the end of Turing’s wide rang-
ing discussion of issues arising from the test is a far
more interesting proposal. He suggests that worthwhile
intelligent machines should be adaptive, should learn
and develop, but concedes that designing, building, and
programming such machines by hand is probably com-
pletely infeasible. He goes on to sketch an alternative
way of creatingmachines based on an arti�cial analog of
biological evolution. Each machine would have hered-
itary material encoding its structure, mutated copies
of which would form o�spring machines. A selec-
tion mechanism would be used to favor better adapted
machines – in this case, those that learned to behave
most intelligently. Turing proposed that the selection
mechanism should largely consist of the experimenter’s
judgment.
It was not until more than years a�er their

publication that Turing’s long forgotten suggestions
became reality. Building on the development of princi-
pled evolutionary search algorithm by, among others,
Holland (), researchers at CNR, Rome, Case West-
ern University, the University of Sussex, EPFL, and
elsewhere independently demonstrated methodologies
and practical techniques to evolve, rather than design,
the control systems for primitive autonomous intelli-
gent machines (Beer & Gallagher, ; Cli�, Harvey, &
Husbands, ; de Garis, ; Floreano & Mondada,

 E Evolutionary Robotics

Create initial population
of robot genotypes;

evaluate their fitnesses

Population of
robot genotypes

Breed

Create mutated offspring

Evaluate new
offspring

Select parents
according to fitnessReplace members

of population

Evolutionary Robotics. Figure . General scheme employed in evolutionary robotics

; Husbands & Harvey, ; Parisi & Nol�,).
�us, the �eld of Evolutionary Robotics was born in
the early s. Initial motivations were similar to Tur-
ing’s: the hand design of intelligent adaptive machines
intended for operation in natural environments is
extremely di�cult, would it be possible to wholly or
partly automate the process?
Today, the �eld of evolutionary robotics has expa-

nded in scope to take in a wide range of applications,
including promising new work on autonomous �y-
ing machines (Floreano, Husbands, & Nol�,), as
well as research aimed at exploring speci�c scienti�c
issues – for instance, principles from neuroscience or
questions in cognitive science (Harvey, Di Paolo,Wood,
Quinn, & Tuci, ; Philippides, Husbands, Smith, &
O’Shea,). Such work is able to exploit the fact
that evolutionary robotics operates with fewer assump-
tions about neural architectures and behavior generat-
ing mechanisms than other methods; this means that
whole general classes of designs and processes can be
explored.

Structure of the Learning System
�e key elements of the evolutionary robotics approach are

● An arti�cial genetic encoding specifying the robot
control systems/body plan/sensor properties etc.,
along with a mapping to the target system

● A method for measuring the �tness of the robot
behaviors generated from these genotypes

● A way of applying selection and a set of “genetic”
operators to produce the next generation from the
current

�e structure of the overall evolutionary process is cap-
tured in Fig. . �e general scheme is like that of any
application of an evolutionary search algorithm. How-
ever,many details of speci�c parts of the process, partic-
ularly the evaluation step, are peculiar to evolutionary
robotics.

�e more general parts of the evolutionary process
(selection, breeding, genetic operators such asmutation
and crossover, replacement, and population structure)

Evolutionary Robotics E

E

0
12

13

14

4

5 6

3 11

1

1

2

Visual morphology

V1

V2

Left motor

+ve

-ve

+ve

Right motor

Visual
inputs

Evolutionary Robotics. Figure . Evolved neurocontrollers. On the left a simple fixed architecture feedforward net-

work is illustrated. The connection weights, and sometimes the neuron properties, are put under evolutionary control.

On the right a more complex architecture is illustrated. In this case, the whole architecture, including the number

of neurons and connections, is under evolutionary control, along with connection and neuron properties and the

morphology of a visual sensor that feeds into the network

are also found in most other applications of evolution-
ary computing and, just as in those other applications,
there are many well-documented ways of implemented
each (De Jong, ; Eiben & Smith,). Hence, this
section focuses on genetic encoding and evaluation as
a route to more evolutionary robotics speci�c issues.
For a much fuller treatment of the subject, see Floreano
et al. () and Nol� and Floreano ().

Genetic Encoding

While, as already mentioned, many aspects of the robot
design can potentially be under genetic control, at least
the control system always is. By far the most popular
form of controller is some sort of neural network.�ese
range from straightforward feedforward networks of
simple elements (Floreano & Mondada,) to rel-
atively complex, dynamic and plastic recurrent net-
works (Beer &Gallagher ; Floreano&Urzelai ;
Philippides, Husbands, Smith, &O’Shea,), as illus-
trated in Fig. . In the simplest case, a �xed architecture
network is used to control a robot whose sensors feed
into the network which in turn feeds out to the robot
motors. In this scenario, the parameters of the network
(connectionweights and relevant properties of the units
such as thresholds or biases) are coded as a �xed length
string of numerical values.
Amore complex case, which has been explored since

the very early days of evolutionary robotics (Cli� et al.,
), involves the evolution of the network architecture
as well as the properties of the connections and units.
Typically, the size of the network (number of units and
connections) and its architecture (wiring diagram) are

unconstrained and free to evolve. �is involves more
complex encodings which can grow and shrink, as units
and connections are added or lost, while allowing a
coherent decoding of connections between units.�ese
range from relatively simple strings employing blocks
of symbols that encode a unit’s properties and connec-
tions relative to other units (Cli� et al.) to more indirect
schemes thatmake use of growth processes in some geo-
metric space (Philippides et al.,) or employ genetic
programming-like tree representations in which whole
subbranches can be added, deleted, or swapped over
(Gruau,).

�e most general case involves the encoding of con-
trol network and body and sensor properties. Various
kinds of developmental schemes have been used to
encode the construction of body morphologies from
basic building blocks, both in simulation and in the
real world. �e position and properties of sensors
can also be put under evolutionary control. Some-
times one complex encoding scheme is used for all
aspects of the robot under evolutionary control, and
sometimes the di�erent aspects are put on separate
genotypes.

Fitness Evaluation

�e �tness of members of the population is measured,
via an evaluation mechanism, in terms of the robot
behaviors produced by the control system, or control
system plus robot morphology that it encodes. Fitness
evaluation, therefore, consists of translating the genome
in question into a robot instantiation and then measur-
ing the aspects of the resulting behavior. In the earliest

 E Evolutionary Robotics

work aimed at using evolutionary techniques to develop
neurocontrollers for particular physical robots, mem-
bers of a population were downloaded in turn onto
the robot and their behavior was monitored and mea-
sured either automatically by clever experimental setups
(Floreano&Mondada, ; Harvey, Husbands, &Cli�,
) or manually by an observer (Gruau & Quatrama-
ran,). �e machinery of the evolutionary search
algorithm was managed on a host computer while the
�tness evaluations were undertaken on the target robot.
One drawback of evaluating �tness on the robot is

that this cannot be done any quicker than in real time,
making the whole evolutionary process rather slow.
However, in the early work in the �eld this approach
was taken because it was felt that it was unlikely that
simulations could be made accurate enough to allow
proper transfer of evolved behavior onto the real robot.
However, a careful study of accurate physics-based
simulations of a Khepera robot, with various degrees
of noise added, proved this assumption false (Jakobi,
Husbands, & Harvey,). �is led to the devel-
opment of Jakobi’s minimal simulation methodology
(Jakobi, a), whereby computationally very e�cient
simulations are built by modeling only those aspects of
the robot–environment interaction deemed important
to the desired behavior and masking everything else
with carefully structured noise (so that evolution could
not come to rely on any of those features).�ese ultra-
fast, ultralean simulations have successfully been used
with many di�erent forms of robot and sensing, with
very accurate transfer of behavior from simulation to
reality. An alternative approach uses plastic controllers
that further adapt through self-organization to help
smooth out the di�erences between an inaccurate sim-
ulation and the real world (Urzelai & Floreano,).
Instead of evolving connectionweights, in this approach
“learning rules” for adapting connection strengths are
evolved – this results in controllers that continually
adapt to changes in their environment. For details of
further approaches, see Floreano et al. (). Much
evolutionary robotics work now makes use of simula-
tions; without them it would be impossible to do the
most ambitious work on the concurrent evolution of
controllers and body morphology (Lipson & Pollack,
) (to be brie�y described later). However, although
simulation packages and techniques have developed
rapidly in the past few years, there will still inevitably

be discrepancies between simulation and reality, and the
lessons and insights of the work outlined above should
not be forgotten.
An interesting distinction can be made between

implicit and explicit �tness functions in evolutionary
robotics (Nol� & Floreano,). In this context, an
explicit �tness function rewards speci�c behavioral ele-
ments – such as traveling in a straight line – and hence
shapes the overall behavior from a set of speci�c behav-
ioral primitives. Implicit �tness functions operate at a
more indirect, abstract level – �tness points are given for
completing some task but they are not tied to speci�c
behavioral elements. Implicit �tness functions might
involve components such as maintaining energy levels
or covering as much ground as possible, components
that can be achieved in many di�erent ways. In prac-
tice, it is quite possible to de�ne a �tness function that
has both explicit and implicit elements.

Advantages

Potential advantages of this methodology include

● �e ability to explore potentially unconstrained
designs that have large numbers of free variables.
A class of robot systems (to be searched) is de�ned
rather than speci�c, fully de�ned robot designs.�is
means fewer assumptions and constraints are neces-
sary in specifying a viable solution.

● �e ability to use the methodology to �ne-tune the
parameters of an already successful design.

● �e ability, through the careful design of �tness cri-
teria and selection techniques, to take into account
multiple, and potentially con�icting, design criteria
and constraints (e.g., e�ciency, cost, weight, power
consumption, etc.).

● �e possibility of developing highly unconventional
and minimal designs.

● �e ability to explicitly take into account robustness
and reliability as major driving force behind the �t-
ness measure, factors that are particularly important
for certain applications.

Applications
For a detailed survey of applications of evolutionary
robotics, see Floreano et al. (); this section gives a

Evolutionary Robotics E

E

brief overview of some areas covered by the methodol-
ogy to give a better idea of the techniques involved and
to indicate the scope of the �eld.
Prominent early centers for research in this area

were EPFL and Sussex University, both of which are still
very active in the �eld. Much of the early EPFL work
used the miniature Khepera robot (Mondada, Franzi,
& Ienne,), which became a popular tool in many
areas of robotics research. In its simplest form, it is a
two-wheeled cylindrical robot with a ring of IR sen-
sors around its body.�e �rst successful evolutionary
robotics experiments at EPFL employed the setup illus-
trated in Figs. and . A population of bit strings
encoded the connection weights and node thresholds
for a simple �xed architecture feedforward neural net-
work. Eachmember of the populationwas decoded into
a particular instantiation of a neural network controller
whichwas then downloaded onto the robot (Floreano&
Mondada,). �is controlled the robot for a �xed
period of time as it moved around the environment
shown in Fig. .

�e following simple �tness function was used to
evolve obstacle avoidance behaviors:

F = V + (−
√
DV) + (− I)

where V is the average rotation speed of opposing
wheels, DV is the di�erence between signed speed val-
ues of opposing wheels, and I is the activation value of
the IR sensor with the highest input (readings are high if
an obstacle is close to a sensor). Maximizing this func-
tion ensures high speed, a tendency to move in straight
lines, and avoidance of walls and obstacles in the envi-
ronment. A�er about h of real-world evolution using
this setup, controllers were evolved that successfully
generated e�cient motion around the course, avoiding
collisions with the walls.
At the same time as this work was going on at EPFL,

a series of pioneering experiments on evolving visu-
ally guided behaviors were being performed at Sussex
University (Cli� et al., ; Harvey et al.,) in
which discrete-time dynamical recurrent neural net-
works and visual sampling morphologies were concur-
rently evolved to allow a gantry robot (as well as other
more standard mobile robots) to perform various visu-
ally guided tasks. An early instantiation of the Sussex
gantry robot is shown in Fig. .

Population manager

Mutation

Crossover

Selective reproduction

Evaluation

Evolutionary Robotics. Figure . Setup for early EPFL

evolutionary robotics experiments with the Khepera

robot (see text for details). Used with permission

Evolutionary Robotics. Figure . The simple environ-

ment used for evolving obstacle avoidance behaviors

with a Khepera robot. Used with permission

ACCD camera points down toward amirror angled
at ○. �e mirror can rotate around an axis perpen-
dicular to the camera’s image plane.�e camera is sus-
pended from the gantry allowing motion in the X, Y ,
and Z dimensions.�is e�ectively provides an equiva-
lent to a wheeled robot with a forward facing camera
when only the X and Y dimensions of translation are
used (see Fig.).

�e apparatus was initially used in a manner sim-
ilar to the real-world EPFL evolutionary robots setup
illustrated in Fig. . A population of strings encod-
ing robot controllers and visual sensing morphologies
are stored on a computer to be downloaded one at a
time onto the robot. �e exact position and orienta-
tion of the camera head can be accurately tracked and
used in the �tness evaluations. A number of visually

 E Evolutionary Robotics

Evolutionary Robotics. Figure . An early version of the

Sussex gantry robot (right) was a “hardware simulation”

of a robot such as that shown on the left. It allowed real-

world evolution of visually guided behaviors in an eas-

ily controllable experimental setup (see text for further

details)

guided navigation behaviorswere successfully achieved,
including navigating around obstacles and discriminat-
ing between di�erent objects. In the experiment illus-
trated in Fig. , starting from a random position and
orientation the robot has to move to the triangle rather
than the rectangle. �is has to be achieved irrespec-
tive of the relative positions of the shapes and under
very noisy lighting conditions. �e architecture and
all parameters of recurrent neural network controllers
were evolved in conjunction with visual sampling
morphologies – only genetically speci�ed patches from
the camera image were used (by being fed to input neu-
rons according to a genetic speci�cation), the rest of
the image is thrown away. �is resulted in extremely
minimal systems only using or pixels of visual infor-
mation, yet still able to very robustly perform the task
under highly variable lighting conditions. Behaviors
were evolved in an incremental way, withmore complex
capabilities being evolved from populations of robots
that were successful at some simpler task (for details
see Harvey et al. () and Harvey, Husbands, Cli�,
�ompson, & Jakobi ()). �e highly minimal yet
very robust systems developed highlighted the poten-
tial for evolutionary robotics techniques in areas such as
space explorationwhere there is a great pressure tomin-
imize resources while maintaining reliability (Hobbs,
Husbands, & Harvey,).
Since this early work, many di�erent behaviors have

been successfully evolved on a wide range of robots
(Floreano et al., ; Nol� & Floreano,)�ere is
not enough room to give an adequate summary of the

C

P

P P

P

P

BS

BS

BS

BAS

BAS

FAS

BAS

BAS

BAS

BAS

FT

FS FS

FS

FS

FAS

FAS

FASFAS

FAS

FS

FS

BS

BS

BS

FT

FT

FT

FTFT P

Evolutionary Robotics. Figure . Schematic diagram of a

distributed neural network for the control of locomo-

tion as used by Beer et al. Excitatory connections are

denoted by open triangles, and inhibitory connections

are denoted by filled circles. C, command neuron; P, pace-

maker neuron; FT, foot motor neuron; FS and BS, forward

swing and backward swing motor neurons; FAS and BAS,

forward and backward angle sensors. Reproduced with

permission

whole �eld, so a few interesting subareas are highlighted
below.
Over the past years or so, there has been a grow-

ing body of work on evolving controllers for various
kinds of walking robots – a nontrivial sensorimotor
coordination task. Early work in this area concentrated
on evolving dynamical network controllers for simple
simulated insects (o�en inspired by cockroach studies),
which were required to walk in uncomplicated envi-
ronments (e.g., de Garis, ; Beer & Gallagher,).

Evolutionary Robotics E

E

�e promise of this work soon led to versions of this
methodology being used on real robots. Probably, the
�rst success in this direction was by Lewis, Fagg, and
Solidum () who evolved a neural controller for a
simple hexapod robot, using coupled oscillators built
from continuous-time, leaky-integrator, arti�cial neu-
rons.�e robot was able to execute an e�cient tripod
gait on �at surfaces. All evaluations were done on the
actual robot with each leg connected to its own pair of
coupled neurons, leg swing being driven by one neuron
and leg elevation by the other.�ese pairs of neurons
were cross-connected, in a manner similar to that used
in the neural architecture shown in Fig. , to allow coor-
dination between the legs. �is architecture for loco-
motion, introduced by Beer, Chiel, and Sterling (),
was based on the studies of cockroaches and has been
much used ever since. Gallagher, Beer, Espenschiel, and
Quinn () used a generalization of it to evolve con-
trollers for generating locomotion in a hexapod robot.
�is machine was more complex than Lewis et al.’s,
with a greater number of degrees of freedom per leg. In
this work, each leg was controlled by a fully connected
network of �ve continuous-time, leaky-integrator neu-
rons, each receiving a weighted sensory input from that
leg’s angle sensor.�e connection weights and neuron
time constants and biases were under genetic control.
�is produced e�cient tripod gaits for walking on �at
surfaces. In order to produce a wider range of gaits
operating at a number of speeds such that rougher ter-
rain could be successfully negotiated, a slightly di�erent
distributed architecture, more inspired by stick insect
studies, was found to be more e�ective (Beer, Quinn,
Chiel, & Ritzmann,).
Jakobi (b) successfully used his minimal simu-

lation techniques to evolve controllers for an -legged
robot. Evolution in simulation took less than h on
what would today be regarded as a very slow com-
puter, and then transferred successfully to the real robot.
Jakobi evolvedmodular controllers based onBeer’s con-
tinuous recurrent network architecture to control the
robot as it engaged in walking about its environment,
avoiding obstacles and seeking out goals. �e robot
could smoothly change gait, move backward and for-
ward, and even turn on the spot. More recently, related
approaches have been successfully used to evolve con-
trollers formoremechanically sophisticated robots such
as the Sony Aibo (Tllez, Angulo, & Pardo,). In the

last few years, there has also been successful work on
evolving coupled oscillator style neural controllers for
the highly unstable dynamic problem of biped walk-
ing. Reil and Husbands () showed that accurate
physics-based simulations using physics-engine so�-
ware could be used to develop controllers able to
generate successful bipedal gaits. Reil and colleagues
have now signi�cantly developed this technology to
exploits its commercial possibilities in the animation
and games industries (see www.naturalmotion.com for
further details). Vaughan has taken related work in
another direction. He has successfully applied evolu-
tionary robotics techniques to evolve a simulation of a
D ten-degree of freedom bipedal robot.�is machine
demonstratesmany of the properties of human locomo-
tion. By using passive dynamics and compliant tendons,
it conserves energy while walking on a �at surface. Its
speed and gait can be dynamically adjusted and it is
capable of adapting to discrepancies in both its environ-
ment and its body’s construction (Vaughan, Di Paolo &
Harvey,). In general, the evolutionary develop-
ment of neural network walking controllers, with their
intricate dynamics, produces a wider range of gaits and
generates smoother,more adaptive locomotion than the
more standard use of �nite state machine based systems
employing parameterized rules governing the timing
and coordination of individual leg movements.
Early single robot research was soon expanded

to handle interactions between multiple robots. Flo-
reano and Nol� did pioneering work on the coevo-
lution of predator–prey behaviors in physical robots
(Floreano & Nol�,).�e �tness of the prey robot
was measured by how quickly it could catch the prey;
the �tness of the prey was determined by how long
it could escape the predator. Two Khepera robots
were used in this experiment, each had the standard
set of proximity sensors but the predator also has a
vision system and the prey was able to move twice
as fast as the predator. A series of interesting chasing
and evasion strategies emerged. Later Quinn, Smith,
Mayley, and Husbands () demonstrated the evo-
lution of coordinated cooperative behavior in a group
of robots. A group of robots equipped only with IR
proximity sensors were required to move as far as
possible as a coordinated group starting from a ran-
dom con�guration.�e task was solved by the robots
adopting and then maintaining a speci�c formation.

 E Evolutionary Robotics

Analysis of the best evolved solution showed that it
involved the robots adopting di�erent roles, with the
identical robots collectively “deciding” which robot
would perform each role. Given the minimal sens-
ing constraints, the evolved system would have proved
extremely di�cult to have designed by hand. For dis-
cussion of other multiple robot behaviors, see Floreano
et al. ().
In the work described so far, control systems have

been evolved for pre-existing robots: the brain is con-
strained to �t a particular body and set of sensors. Of
course in nature, the nervous system evolved simulta-
neously with the rest of the organism. As a result, the
nervous system is highly integrated with the sensory
apparatus and the rest of the body: thewhole operates in
a harmonious and balanced way – there are no distinct
boundaries between the control system, the sensors,
and the body.
Karl Sims started to explore the concurrent evolu-

tion of the brain and the body in his highly imaginative
work involving simulated D “creatures” (Sims,).
In this work, the creatures coevolved under a compet-
itive scenario in which they were required to try and
gain control of a resource (a cube) placed in the cen-
tre of an arena. Both the morphology of the creatures
and the neural system controlling their actuators were
under evolutionary control.
Lipson and Pollack (), working at Brandeis

University, pushed the idea of fully evolvable robot
hardware about as far as is reasonably technologi-
cally feasible at present. In an important piece of

Evolutionary Robotics. Figure . A fully automatically

evolved robot developed on the Golem project (see text

for details). Used with permission

research, directly inspired by Sims’ earlier simulation
work, autonomous “creatures” were evolved in simu-
lation out of basic building blocks (neurons, plastic
bars, and actuators). �e bars could connect together
to form arbitrary truss structures with the possibility
of both rigid and articulated substructures. Neurons
could be connected to each other and to the bars whose
length they would then control via a linear actuator.
Machines de�ned in this way were required to move as
far as possible in a limited time.�e �ttest individuals
were then fabricated robotically using rapid manufac-
turing technology (plastic extrusion D printing) to
produce results such as that shown in Fig. .�ey thus
achieved autonomy of design and construction using
evolution in a “limited universe” physical simulation
coupled to automatic fabrication.�e highly unconven-
tional designs thus realized performed as well in reality
as in simulation.�e success of this work points the way
to new possibilities in developing energy e�cient fault
tolerant machines.
Pfeifer and colleagues at Zurich University have

explored issues central to the key motivation for
fully evolvable robot hardware: the balanced inter-
play between body morphology, neural processing, and
generation of adaptive behavior and have developed
a set of design principles for intelligent systems in
which these issues take centre stage (Pfeifer & Bongard,
).

Future Directions
Major ongoing challenges – methodological, theoreti-
cal, and technological – include �nding the best way to
incorporate development and lifetime plasticity within
the evolutionary framework (this involves trends com-
ing from the emerging �eld of epigenetic robotics),
understanding better what the most useful building
blocks are for evolved neurocontrollers, and �nding
e�cient ways to scale work on concurrently evolving
bodies and brains.

�ere are very interesting developments in the
evolution of group behaviors and the emergence
of communication (Di Paolo, ; Floreano, Mitri,
Magnenat, & Keller, ; Quinn,), the use of evo-
lutionary robotics as a tool to illuminate problems in
cognitive science (Beer, ; Harvey et al.,) and
neuroscience (Di Paolo, ; Philippides et al., ;

Evolutionary Robotics E

E

Seth,), in developing �ying behaviors (Floreano,
Hauert, Leven, & Zu�erey, ; Shim & Husbands,
), and in robots that have some form of self-
model (Bongard, Zykov, & Lipson,), to name but
a few.

Cross References
7Co-Evolutionary Learning
7Evolutionary Arti�cial Neural Networks
7Genetic Algorithms
7Robot Learning

Recommended Reading
Beer, R. D. (). The dynamics of active categorical perception

in an evolved model agent (with commentary and response).
Adaptive Behavior, (), –.

Beer, R. D., Chiel, H. J., & Sterling, L. S. (). Heterogeneous
neural networks for adaptive behavior in dynamic environ-
ments. In D. Touretzky (Ed.), Neural information process-
ing systems (vol., pp. –). San Francisco, CA: Morgan
Kauffman.

Beer, R. D., & Gallagher, J. C. (). Evolving dynamical neu-
ral networks for adaptive behaviour. Adaptive Behaviour, ,
–.

Beer, R. D., Quinn, R. D., Chiel, H. J., & Ritzmann, R. E. ().
Biologically-inspired approaches to robotics. Communications
of the ACM, (), –.

Bongard, J., Zykov, V., & Lipson, H. (). Resilient machines
through continuous self-modeling. Science, , –.

Cliff, D., Harvey, I., & Husbands, P. (). Explorations in evolu-
tionary robotics. Adaptive Behavior, , –.

de Garis, H. (). Genetic programming: Evolution of time depen-
dent neural network modules which teach a pair of stick legs to
walk. In Proceedings of the th European conference on artificial
intelligence (pp. –). Stockholm, Sweden.

De Jong, K. A. (). Evolutionary computation: A unified approach.
Cambridge, MA: MIT Press.

Di Paolo, E. (). An investigation into the evolution of commu-
nication. Adaptive Behavior, (), –.

Di Paolo, E. A. (). Evolving spike-timing dependent plasticity
for single-trial learning in robots. Philosophical Transactions of
the Royal Society A, , –.

Eiben, A. E., & Smith, J. E. (). Introduction to evolutionary
computing. Berlin: Springer.

Floreano, D., Hauert, S., Leven, S., & Zufferey, J. C. (). Evolu-
tionary swarms of flying robots. In D. Floreano (Ed.), Proceed-
ings of the international symposium on flying insects and robots,
(pp. –). Monte Verita, Switzerland: EPFL.

Floreano, D., Husbands, P., & Nolfi, S. (). Evolutionary robotics.
In B. Siciliano, & O. Khatib (Eds.), Springer handbook of robotics
(Chap.). (pp.–). Berlin: Springer.

Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (). Evolution-
ary conditions for the emergence of communication in robots.
Current Biology, , –.

Floreano, D., & Mondada, F. (). Automatic creation of an
autonomous agent: Genetic evolution of a neural-network
driven robot. In D. Cliff, P. Husbands, J. Meyer, & S. W. Wilson
(Eds.), From animals to animats III: Proceedings of the third
international conference on simulation of adaptive behavior
(pp. –). Cambridge, MA: MIT Press-Bradford Books.

Floreano, D., & Nolfi, S. (). Adaptive behavior in competing co-
evolving species. In P. Husbands, & I. Harvey (Eds.), Proceedings
of the th European conference on artificial life (pp. –).
Cambridge, MA: MIT Press.

Floreano, D., & Urzelai, J. (). Evolutionary robots with on-
line self-organization and behavioral fitness. Neural Networks,
(–), –.

Gallagher, J., Beer, R., Espenschiel, M., & Quinn, R. (). Appli-
cation of evolved locomotion controllers to a hexapod robot.
Robotics and Autonomous Systems, (), –.

Gruau, F. (). Automatic definition of modular neural networks.
Adaptive Behavior, (), –.

Gruau, F., & Quatramaran, K. (). Cellular encoding for interac-
tive evolutionary robotics. In P. Husbands, & I. Harvey (Eds.),
Proceedings of the th European conference on artificial life.
Cambridge, MA: The MIT Press/Bradford Books

Harvey, I., Di Paolo, E., Wood, R., Quinn, M., & Tuci, E. (). Evo-
lutionary robotics: A new scientific tool for studying cognition.
Artificial Life, (–), –.

Harvey, I., Husbands, P., & Cliff, D. T. (). Seeing the light:
Artificial evolution, real vision. In D. T. Cliff, P. Husbands,
J. A. Meyer, & S. Wilson (Eds.), From animals to animats : Pro-
ceedings of the third international conference on simulation of
adaptive behaviour, SAB (pp. –). Cambridge, MA: MIT
Press.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., & Jakobi, N.
(). Evolutionary robotics: The Sussex approach. Robotics
and Autonomous Systems, , –.

Hobbs, J., Husbands, P., & Harvey, I. (). Achieving improved
mission robustness. In th European Space Agency workshop on
advanced space technologies for robot applications – ASTRA’,
Noordwijk, The Netherlands ESTEC.

Holland, J. H. (). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press.

Husbands, P., & Harvey, I. (). Evolution versus design: Control-
ling autonomous mobile robots. In Proceedings of rd annual
conf. on artificial intelligence, simulation and planning in high
autonomy systems (pp. –) Los Alimitos, CA: IEEE Com-
puter Society Press.

Jakobi, N. (a). Evolutionary robotics and the radical envelope of
noise hypothesis. Adaptive Behaviour, , –.

Jakobi, N. (b). Running across the reality gap: Octopod locomo-
tion evolved in a minimal simulation. In P. Husbands, & J. A.
Meyer, (Eds.), Evolutionary robotics: First European workshop,
EvoRobot (pp. –). Berlin: Springer.

Jakobi, N., Husbands, P., & Harvey, I. (). Noise and the real-
ity gap: The use of simulations in evolutionary robotics. In
F. Moran et al. (Eds.), Proceedings of rd European conference
on artificial life (pp. –). Berlin: Springer.

Lewis, M. A., Fagg, A. H., & Solidum, A. (). Genetic program-
ming approach to the construction of a neural network for a
walking robot. In Proceedings of IEEE international conference
on robotics and automation (pp. –). Washington, DC:
IEEE Press.

 E Evolving Neural Networks

Lipson, H., & Pollack, J. (). Automatic design and manufacture
of robotic lifeforms. Nature, , –.

Mondada, F., Franzi, E., & Ienne, P. (). Mobile robot minia-
turization: A tool for investigation in control algorithms. In
T. Yoshikawa, & F. Miyazaki (Eds.), Proceedings of the third
international symposium on experimental robotics (pp. –).
Berlin: Springer.

Nolfi, S., & Floreano, D. (). Evolutionary robotics: The biol-
ogy, Intelligence, and technology of self-organizing machines.
Cambridge, MA: MIT Press/Bradford Books.

Parisi, D., & Nolfi, S. (). Neural network learning in an ecolog-
ical and evolutionary context. In V. Roberto (Ed.), Intelligent
perceptual systems (pp. –). Berlin: Springer.

Pfeifer, R., & Bongard, J. (). How the body shapes the way we
think: A new view of intelligence. Cambridge, MA: MIT Press.

Philippides, A., Husbands, P., Smith, T., & O’Shea, M. ().
Flexible couplings: Diffusing neuromodulators and adaptive
robotics. Artificial Life, (&), –.

Quinn, M. (). Evolving communication without dedicated com-
munication channels. In J. Kelemen, & P. Sosik. (Eds.), Proceed-
ings of the th European conference on artificial life, ECAL’
(pp. –). Berlin: Springer.

Quinn, M., Smith, L., Mayley, G., & Husbands, P. ().
Evolving controllers for a homogeneous system of physi-
cal robots: Structured cooperation with minimal sensors.
Philosophical Transactions of the Royal Society of London,
Series A: Mathematical, Physical and Engineering Sciences, ,
–.

Reil, T., & Husbands, P. (). Evolution of central pattern
generators for bipedal walking in real-time physics environ-
ments. IEEE Transactions of Evolutionary Computation, (),
–.

Seth, A. K. (). Causal connectivity analysis of evolved neu-
ral networks during behavior. Network: Computation in Neural
Systems, (), –.

Shim, Y. S., & Husbands, P. (). Feathered flyer: Integrating mor-
phological computation and sensory reflexes into a physically
simulated flapping-wing robot for robust flight Manoeuvre. In
Proceedings of ECAL LNCS (Vol. , pp. –). Berlin:
Springer.

Sims, K. (). Evolving D morphology and behavior by compe-
tition. In R. Brooks, & P. Maes, (Eds.), Proceedings of artificial
life IV (pp. –). Cambridge, MA: MIT Press.

Tllez, R., Angulo, C., & Pardo, D. (). Evolving the walk-
ing behaviour of a DOF quadruped using a distributed
neural architecture. In nd International workshop on bio-
logically inspired approaches to advanced information tech-
nology (Bio-ADIT’) LNCS (Vol. , pp. –). Berlin:
Springer.

Turing, A. M. (). Computing machinery and intelligence.Mind,
, –.

Urzelai, J., & Floreano, D. (). Evolution of adaptive synapses:
Robots with fast adaptive behavior in new environments. Evo-
lution Computing, , –.

Vaughan, E., Di Paolo, E. A., & Harvey, I. (). The evolution of
control and adaptation in a D powered passive dynamic walker.
In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, & R. Wat-
son, (Eds.), Proceedings of the ninth international conference on
the simulation and synthesis of living systems artificial life IX,
(pp. –). Cambridge, MA: MIT Press.

Evolving Neural Networks

7Neuroevolution

Example

7Instance

Example-Based Programming

7Inductive Programming

Expectation Maximization
Algorithm

7Expectation-Maximization Algorithm

Expectation Maximization
Clustering

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Synonyms
EM Clustering

�e EM algorithm (Dempster, Laird, & Rubin)
�nds maximum likelihood estimates of parameters in
probabilistic models. EM is an iterative method which
alternates between two steps, expectation (E) and max-
imization (M). For clustering, EM makes use of the
�nite Gaussian mixtures model and estimates a set of
parameters iteratively until a desired convergence value
is achieved.�e mixture is de�ned as a set of K proba-
bility distributions and each distribution corresponds to
one cluster. An instance is assigned with a membership
probability for each cluster.

�e EM algorithm for partitional clustering works
as follows:

. Guess initial parameters: mean and standard devia-
tion (if using normal distribution model).

Expectation Propagation E

E

. Iteratively re�ne the parameters with E andM steps.
In the E step: compute the membership possibility
for each instance based on the initial parameter val-
ues. In theM step: recompute the parameters based
on the new membership possibilities.

. Assign each instance to the cluster with which it has
the highest membership possibility.

Cross References
7Expectation-Maximization Algorithm

Recommended Reading
Dempster, A. P., Laird, N. M., & Rubin, D. B. (). Maximum likeli-

hood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), (), –.

Expectation Propagation

TomHeskes
Radboud University Nijmegen
Nijmegen,�e Netherlands

Synonyms
EP

Definition
Expectation propagation is an algorithm for Bayesian
machine learning (see7BayesianMethods). It tunes the
parameters of a simpler approximate distribution (e.g.,
a Gaussian) to match the exact posterior distribution of
themodel parameters given the data. Expectation prop-
agation operates by propagatingmessages, similar to the
messages in (loopy) belief propagation (see7Graphical
Models). Whereas messages in belief propagation cor-
respond to exact belief states, messages in expectation
propagation correspond to approximations of the belief
states in terms of expectations, such as means and vari-
ances. It is a deterministicmethod especially well-suited
to large databases and dynamic systems, where exact
methods for Bayesian inference fail and 7Monte Carlo
methods are far too slow.

Motivation and Background
One of the main problems for 7Bayesian methods are
their computational expense: computation of the exact
posterior, given the observed data, typically requires

the solution of high-dimensional integrals that have no
analytical expressions. Approximation algorithms are
needed to approximate this posterior as accurately as
possible. �ese techniques for approximate inference
can be subdivided in two categories: deterministic
approaches and stochastic sampling (Monte Carlo)
methods. Having the important advantage that (under
certain conditions) they give exact results in the limit
of an in�nite number of samples,Monte Carlo methods
are the method of choice in Bayesian statistics. How-
ever, in particular when dealing with large databases,
the time needed for stochastic sampling to obtain a rea-
sonably accurate approximation of the exact posterior
can be prohibitive. �is explains the need for faster,
deterministic approaches, such as the Laplace approx-
imation, variational approximations, and expectation
propagation.
Expectation propagation was �rst described by

�omas Minka in his thesis (Minka,). It can be
viewed as a generalization and reformulation of the
earlier ADATAP algorithm of Manfred Opper and
Ole Winther (). Expectation propagation quickly
became one of the most popular deterministic appro-
aches for approximate Bayesian inference. Expectation
propagation improves upon assumed density �ltering,
a classical method from stochastic control, by itera-
tively re�ning local approximations instead of comput-
ing them just once. Furthermore, it encompasses loopy
belief propagation, a popular method for approximate
inference in probabilistic 7graphical models, as a spe-
cial case. Where loopy belief propagation is restricted
to models of discrete variables only, expectation prop-
agation applies to a much wider class of probabilistic
graphicalmodelswith discrete and continuous variables
and complex interactions between them.

Structure of Learning System
Bayesian Machine Learning

In the Bayesian framework for machine learning, you
should enumerate all reasonable models of the data and
assign a prior belief P(w) to each of these models w.
In the discrete case, the w are the di�erent models, in
the continuous case, the w are the continuous valued
parameters (usually vectors).�en, upon observing the
data D, you compute the likelihood P(D∣w) to evaluate
how probable the data was under each of these models.

 E Expectation Propagation

0 1 n

w

0 1 n

w

Expectation Propagation. Figure . (left-hand side) A so-called factor graph corresponding to the i.i.d. assumption in

Bayesian machine learning. Each box corresponds to a factor or term. A circle corresponds to a variable. Factors are

connected to the variables that they contain. Ψ corresponds to the prior, Ψ . . . Ψn are the likelihood terms for the n

data points. (right-hand side) Factor graph of the approximating distribution. The original terms have been replaced

by term approximations

�e product of the prior and the likelihood gives you, up
to a normalization constant, the posterior probability
P(w∣D) over models given the data:

P(w∣D) =
P(D∣w)P(w)

P(D)
,

where the normalization term P(D) is called the prob-
ability of the data or “evidence.”�is posterior proba-
bility incorporates all you have learned from the data D
regarding the models w under consideration. As indi-
cated above, exact calculation of this posterior proba-
bility is o�en infeasible, because the normalization term
requires the solution of intractable sums or integrals.
In its simplest setting, the dataD consists of n obser-

vations, x, . . . , xn, which are assumed to be indepen-
dent and identically-distributed (i.i.d.). �e posterior
probability then factorizes into n + terms, one for
each observation and one for the prior.With de�nitions
Ψ(w) ≡ P(w) and Ψi(w) ≡ P(xi∣w), we can rewrite

P(w∣D) =
P(w)∏

n
i= P(xi∣w)

P(D)
≡
∏

n
i= Ψi(w)

P(D)
.

�is factorization is visualized in the so-called factor
graph in Fig. . We use it as a running example in the
following section.

Assumed Density Filtering

Expectation propagation can be interpreted as an itera-
tive re�nement of assumed density �ltering. In assumed
density �ltering, we add terms one-by-one and project
in each step back to the “assumed density.” For exam-
ple, suppose that our prior probability P(w) = Ψ(w)

is a (known) Gaussian distribution over model param-
eters w, the terms corresponding to the data points
are non-Gaussian, and we aim to �nd an appropri-
ate Gaussian approximation Q(w) to the exact (non-
Gaussian) posterior P(w∣D). Our �rst approximation

is the prior itself. Assumed-density �ltering now pro-
ceeds by adding terms one at a time, where at each step
we approximate the resulting distribution as closely as
possible by a Gaussian. �e pseudo-code is given in
Algorithm , where Q:i(w) denotes the approximation
obtained a�er incorporating the prior and the �rst i
observations.
If we use the Kullback–Leibler divergence as

the distance measure from the non-Gaussian (but
normalized) product of Q:i−(w) and Ψi(w) and the
Gaussian approximation, projection becomes “moment
matching”; the result of the projection is the Gaussian
that has the same mean and covariance matrix as the
non-Gaussian product.

Expectation Propagation

When in assumed density �ltering, we add the term
Ψi(w), the Gaussian approximation changes from
Q:i−(w) to Q:i(w). We will call the quotient of the
two the term approximation (here and in the following
we ignore normalization constants):

Ψ̃i(w) =
Q:i(w)

Q:i−(w)
.

In our running example, term approximations are quo-
tients between two di�erent Gaussian densities and
therefore have a Gaussian form themselves. Since the
prior Ψ(w) is a Gaussian density, Ψ̃(w) = Ψ(w).
�e approximationQ:n(w) is equal to the product of all

Algorithm Assumed density �ltering

: Q(w) = Ψ(w)

: for i = to n do
: Q:i(w) = Project_to_Gaussian(Q:i−(w)Ψi(w))

: end for

Expectation Propagation E

E

0 1 i n

w

substitute

project

0 1 i n

w

Expectation Propagation. Figure . Visualization of expectation propagation when recomputing the term approxima-

tion for observation i

term approximations and is visualized on the righthand
side of Fig. . In assumed density �ltering, the resulting
approximation depends on the ordering in which the
terms have been added. For example, if the terms had
been added in reverse order, their term approximations
might have been (slightly) di�erent.
Expectation propagation now generalizes assumed

density �ltering by iteratively re�ning these term
approximations. When successful, the �nal approxima-
tion will be independent of the ordering. Pseudo-code
of expectation propagation is given in Algorithm . In
step through , the term approximations are initial-
ized; in step through , these term approximations
are iteratively re�ned until they no longer change. In
step , we take out the previous term approximation
from the current approximation. In step , we put back
in the exact term and project back to a Gaussian, like we
did in assumed density �ltering. It is easy to check that
the approximation Q(w) a�er the �rst loop equals the
approximation Q:n(w) obtained with assumed density
�ltering. �e recalculation of the term approximation
corresponding to observation i is visualized in Fig. .

Computational Aspects

With expectation propagation, we have to do a lit-
tle more bookkeeping than with assumed density
�ltering: we have to keep track of the term approx-
imations. One loop of expectation propagation is
about as expensive as running assumed density �lter-
ing. Typically, about �ve iterations are su�cient for
convergence.

�e crucial operation is in step of Algorithm
and step of Algorithm . Here we have to compute
the moments of the (non-Gaussian) probability distri-
bution on the right-hand side. In most cases, we do
not have analytical expressions for these moments and
have to compute them numerically, e.g., using Gaussian
quadrature. We then obtain the moments (mean and
covariance matrix) of the new approximation Q(w).
Divisions and multiplications correspond to a simple

subtraction and addition of so-called canonical param-
eters. For the Gaussian, these canonical parameters are
the inverse of the covariance matrix (precision matrix)
and the product of the precision matrix and the mean.
�e bottom-line is that we go back and forth between
distributions in terms of moments and in terms of
canonical parameters. For a Gaussian, this requires
computing the inverse of the covariance matrix, which
is roughly on the order of d, where d is the dimension of
w. A practical point of concern is that matrix inversion
is numerically instable, in particular for matrices that
are close to singular, which can lead to serious round-o�
errors.

Convergence Issues

Sadly enough, expectation propagation is not guaran-
teed to converge to a �xed point. If it does, this �xed
point can be shown to correspond to an extremum of
the so-called Bethe free energy, an approximation of the
“evidence” logP(D), under particular consistency and
normalization constraints (Heskes, Opper, Wiegerinck,

Algorithm Expectation propagation

: Ψ̃(w) = Ψ(w)

: for i = to n do
: Ψ̃i(w) =
: end for

: Q(w) =
n

∏
i=
Ψ̃i(w)

: while not converged do
: for i = to n do

: Q−i(w) =
Q(w)

Ψ̃i(w)

: Q(w) = Project_to_Gaussian(Q−i(w)Ψi(w))

: Ψ̃i(w) =
Q(w)

Q−i(w)

: end for
: end while

 E Expectation Propagation

Winther, & Zoeter, ; Heskes &Zoeter, ;Minka,
,). �ese constraints relate to the projection
step in Algorithm : a�er convergence, the moments of
Q(w) should be equal to the moments of the distribu-
tion obtained by taking out a term approximation and
putting back the corresponding exact term.�is should
hold for all i.i.d. observations i = , . . . ,n in the factor
graph of Fig. : so we conclude that, a�er convergence,
the moments (“expectations”) of all distributions con-
structed in this way should be the same. Expectation
consistent approximations are based on the exact same
idea and indeed turn out to be equivalent to expectation
propagation (Heskes et al.,).
When expectation propagation does not converge,

we can try “damping”: instead of replacing the old term
approximation by the new one, we replace it by a log-
convex combination of the old and the new one. In
many cases, damping with a step size . makes expec-
tation propagation converge, at the expense of requir-
ing more iterations. However, even damping with an
in�nitesimally small step size is not guaranteed to lead
to convergence. In those cases, we can try to mini-
mize the Bethe free energy more explicitly with a so-
called double-loop algorithm (Heskes & Zoeter,):
in the outer loop we compute a convex bound on
the Bethe free energy, which we then minimize in the
inner loop with an algorithm very similar to standard
expectation propagation. Double-loop algorithms are
an order ofmagnitude slower than standard expectation
propagation.

Generalizations

�e running example above serves to illustrate
the main idea, but is of course rather restrictive.
Expectation propagation can be applied with any mem-
ber of the exponential family as approximating distri-
bution (Minka, ; Seeger,). �e crucial oper-
ations are the projection step and the transformation
from moment to canonical form: if these can be per-
formed e�ciently and robustly, expectation propaga-
tion is into play.
In many interesting cases, the model to be learned

(here represented as a single variable w) contains a lot
of structure.�is structure can be exploited by expecta-
tion propagation tomake it more e�cient. For example,
when a term only contains a subset of the elements

of w, so does its term approximation. Also, we might
take as the approximating distribution a distribution
that factorizes over the elements of w, instead of a “full”
distribution coupling all elements. For a Gaussian, this
would amount to a diagonal instead of a full covari-
ance matrix. Such a factorization will lead to lower
memory requirements and faster computation, perhaps
at the expense of reduced accuracy. More advanced
approximations include Tree-EP, where the approxi-
mating structure is a tree, and generalized expectation
propagation, which generalizes expectation propaga-
tion to include higher-order interactions in the same
way as generalized belief propagation generalizes loopy
belief propagation (Welling, Minka, & Teh,).
Power expectation propagation (Minka,) gen-

eralizes expectation propagation by considering a dif-
ferent distance measure in the projection step. Instead
of taking the Kullback–Leibler divergence, we can take
any so-called α-divergence. α = corresponds to the
Kullback–Leibler divergence, α =− to the Kullback–
Leibler divergence with the two probabilities inter-
changed. In the latter case, we obtain a variational
method called variational Bayes.

Programs and Data
Code for expectation propagation applied for Gaussian
process classi�cation can be found at http://www.kyb.
tuebingen.mpg.de/bs/people/csatol/ogp/, and http://
www.gaussianprocess.org/gpml/code/matlab/doc/clas-
si�cation.html. Kevin Murphy’s Bayes Net toolbox
(http://bnt.sourceforge.net) can provide a good starting
point to write your own code for expectation propa-
gation.

Applications
Expectation propagation has been applied for, among
others, Gaussian process classi�cation (Csató,),
inference in Bayesian networks and Markov random
�elds, text classi�cation with Dirichlet models and
processes (Minka & La�erty,), 7logistic regres-
sion models for rating players (Herbrich & Graepel,
), and inference and learning in hybrid and non-
linear dynamic Bayesian networks (Heskes & Zoeter,
).

http://www.kyb.tuebingen.mpg.de/bs/people/csatol/ogp/
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html

Experience Curve E

E

Future Directions
From an application point of view, expectation propa-
gation will probably become one of the standard tech-
niques for approximate Bayesian machine learning,
much like the Laplace approximation and Monte Carlo
methods. Future research may involve questions like

● When does expectation propagation converge? Can
we design variants that are guaranteed to converge?

● What “power” to use in power expectation propaga-
tion for what kind of purposes?

● Can we adapt expectation propagation to handle
approximating distributions that are not part of the
exponential family?

Cross References
7Gaussian Distribution
7Gaussian Process
7Graphical Models

Recommended Reading
Csató, L. (). Gaussian processes – iterative sparse approxima-

tions. PhD thesis, Aston University, Birmingham, UK.
Herbrich, R., & Graepel, T. (). TrueSkill: A Bayesian skill rat-

ing system. (Tech. Rep. No. MSR-TR--). Cambridge, UK:
Microsoft Research.

Heskes, T., Opper, M., Wiegerinck, W., Winther, O., & Zoeter, O.
(). Approximate inference with expectation constraints.
Journal of Statistical Mechanics: Theory and Experiment, ,
P-–P-.

Heskes, T., & Zoeter, O. (). Expectation propagation for approx-
imate inference in dynamic Bayesian networks. In A. Darwiche
& N. Friedman (Eds.), Proceedings of the th conference on
uncertainty in artificial intelligence (pp. –). San Fran-
cisco: Morgan Kaufmann.

Minka, T. (). A family of algorithms for approximate Bayesian
inference. PhD thesis, Cambridge, MA: MIT.

Minka, T. (). Divergence measures and message passing.
(Tech. Rep. NO. MSR-TR--), Cambridge, UK: Microsoft
Research.

Minka, T., & Lafferty, J. (). Expectation-propogation for the
generative aspect model. In A. Darwiche & N. Friedman (Eds.),
Proceedings of the th conference on uncertainty in artificial
intelligence (pp. –). San Francisco: Morgan Kaufmann.

Opper, M., & Winther, O. (). Tractable approximations
for probabilistic models: The adaptive Thouless-Anderson-
Palmer mean field approach. Physical Review Letters, ,
–.

Seeger, M. (). Expectation propagation for exponential families
(Tech. Rep.). Berkeley, CA: University of California.

Welling, M., Minka, T., & Teh, Y. (). Structured region graphs:
Morphing EP into GBP. In F. Bacchus & T. Jaakkola (Eds.),
Proceedings of the st conference on uncertainty in artificial
intelligence (UAI) (pp. –). Arlington, VA: AUAI Press.

Expectation-Maximization
Algorithm

Synonyms
EM Algorithm; Expectation Maximization Algorithm

Expectation-Maximization (EM)was described byArthur
Dempster, Nan Laird, and Donald Rubin in a classic
 paper in the Journal of the Royal Statistical Soci-
ety. �e EM algorithm is used for �nding maximum
likelihood estimates of parameters in stochasticmodels,
where the model depends on unobserved latent or hid-
den variables. EM iterates between performing expecta-
tion (E) and maximization (M) steps. Each expectation
step involves the computation of the expectation of the
likelihood of all model parameters by including the hid-
den variables as if they were observed. Each maximiza-
tion step involves the computation of the maximum
likelihood estimates of the parameters by maximizing
the expected likelihood found during the expectation
step. �e parameters produced by the maximization
step are then used to begin another expectation step,
and the process is repeated.
It can be shown that an EM iteration will not

decrease the observed data likelihood function. How-
ever, there is no guarantee that the iteration converges
to a maximum likelihood estimator.
“Expectation-maximization” has developed to be a

general recipe and umbrella term for a class of algo-
rithms that iterates between a type of expectation and
maximization step. �e Baum–Welch algorithm is an
example of an EM algorithm speci�cally suited to
HMMs.

Experience Curve

7Learning Curves in Machine Learning

 E Experience-Based Reasoning

Experience-Based Reasoning

7Case-Based Reasoning

Explanation

In 7Minimum Message Length, an explanation is a
code with two parts, where the �rst part is an assertion
code and the second part is a detail code.

Explanation-Based Generalization
for Planning

7Explanation-Based Learning for Planning

Explanation-Based Learning

Gerald DeJong, ShiauHong Lim
University of Illinois at Urbana
Urbana, IL, USA
University of Illinois,
IL, USA

Synonyms
Analytical learning; Deductive learning; EBL; Utility
problem

Definition
Explanation-Based Learning (EBL) is a principled
method for exploiting available domain knowledge to
improve 7supervised learning. Improvement can be
in speed of learning, con�dence of learning, accuracy
of the learned concept, or a combination of these. In
modern EBL the domain theory represents an expert’s
approximate knowledge of complex systematic world
behavior. It may be imperfect and incomplete. Inference
over the domain knowledge provides analytic evidence
that compliments the empirical evidence of the train-
ing data. By contrast, in original EBL the domain theory
is required to be much stronger; inferred properties
are guaranteed. Another important aspect of modern
EBL is the interaction between domain knowledge and

Explanation-Based Learning. Figure . Conventional

learner

labeled training examples a�orded by explanations.
Interaction allows the nonlinear combination of evi-
dence so that the resulting information about the target
concept can be much greater than the sum of the infor-
mation from each evidence source taken independently.

Motivation and Background
A conventional machine learning system is illustrated
in Fig. . A hypothesis ĥ is selected from a space of can-
didates H using a training set of labeled examples Z as
evidence. It is common to assume that the examples
are drawn from some space of well-formed inputs X
according to some �xed but unknown distribution D.
�e quality of ĥ is to be judged against di�erent exam-
ples similarly selected and labeled. �e correct label
for an example is speci�ed by some ideal target con-
cept, c∗.�is is typically some complex world process
whose outcome is of interest.�e target concept, c∗, will
generally not be a member of space of acceptable candi-
dates, H. Rather, the learner tries to �nd some ĥ which
is acceptably similar to c∗ over XD and can serve as a
computationally tractable stand-in.
Of course, good performance of ĥ on Z (its train-

ing performance) alone is insu�cient.�e learner must
achieve some statistical guarantee of good performance
on the underlying distribution (test performance). If H
is too rich and diverse or if Z is too impoverished, a
learner is likely to7over�t the data; itmay �nd a pattern
in the training data that does not hold in the underlying
distribution XD . Test performance will be poor despite
good training performance.
An Explanation-Based Learner employs its domain

theory, ∆ (Fig.) as an additional source of informa-
tion. �is domain theory must not be confused with
7learning bias, which is present in all learners. Deter-
minations (Russell & Grosof,) provide an extreme

Explanation-Based Learning E

E

Explanation-Based Learning. Figure . EBL learner

illustration. �ese are logical expressions that make
strong claims about the world but only a�er seeing a
training example. EBL domain theories are used only
to explain. An inferred expression is not guaranteed to
hold but only provides analytic evidence.
An explanation for some z ∈ Z is immediately

and easily generalized:�e structure of the explanation
accounts for why zs assigned classi�cation label should
follow from its features. All other examples that meet
these conditions are assigned the same classi�cation by
the generalized explanation for the same reasons.
Early approaches to EBL (e.g., DeJong & Mooney,

; Mitchell, ; Mitchell, Keller, & Kedar-Cabelli,
; Russell & Norvig,) were undone by two dif-
�cult problems: () unavoidable imperfections in the
domain theory and () the utility problem.�e former
stems from assuming a conventional semantics for the
domain theory. It results in a brittleness and an under-
reliance on the training data. Modern EBL is largely a
reaction to this di�culty.�e utility problem is a con-
sequence of an ill-de�ned hypothesis space and, as will
be discussed later, can be avoided in a straightforward
manner.

Structure of Learning System
Explanations and Their Generalization

An explanation for a training example is any causal
structure, derivable from ∆, which justi�es why this
training example might merit its teacher-assigned clas-
si�cation label. A generalized explanation is the struc-
ture of an explanation without the commitment to any
particular example.�e explanation and generalization
processes are relatively straightforward and not signi�-
cantly di�erent from the original EBL algorithms.

�eweaknessofearlyEBLisinviewingthecomponents
of ∆ as constraints.�is leads to a view of explanations
andtheirgeneralizationsasproofs.Real-worldbrittleness
duetothequali�cationproblem(McCarthy,)follows
inevitably.InmodernEBL,∆isseenasapproximatingthe
underlying world constraints (DeJong, ; Kimmig,
De Raedt, & Toivonen,). �e domain theory is
fundamentally a statistical device. Its analytic evidence
and the empirical evidenceof the trainingexamplesboth
provide a bridge to the real world.

�e domain theory introduces new predicates and
speci�es their signi�cant potential interactions. From a
statistical point of view, these are named latent (hidden)
features together with a kind of grammar for construct-
ing alternative estimators for them. In short, the domain
theory compactly speci�es a large set of conceptual
structures that an expert believes may be useful mak-
ing sense of the domain. If the expert is correct, then
patterns of interest will become computationally much
more accessible via analytic inference.
One �exible and useful form of a domain theory

is sound inference over a set of �rst-order symbolic
logic sentences. In such domain theories, the explana-
tion mechanism can be identical to logical deduction
although using a paraconsistent inference mechanism;
inference must be well behaved despite inconsisten-
cies in the theory. Generalized explanations are simply
“theorems” of ∆ that relate a classi�cation label to the
values of observable example features. But since the
sentences of the theory only approximate world con-
straints, derivation alone, even via sound inference, is
not su�cient evidence to believe a conclusion. �us,
a generalized explanation is only a conjecture. Addi-
tional training examples beyond those used to generate
each explanation help to estimate the utility of these
generalizations.
But analytic mechanisms need not be limited to

symbolic logic-like inference. For example, one EBL
approach is to distinguish handwritten Chinese charac-
ters (Lim, Wang, & DeJong,) employing a Hough
transform as a component of the domain theory.�ere,
an explanation conjectures (hidden) glyph “strokes” to
explain how the observed pixels of the training images
may realize the image’s character label.
Whatever the form of the analytic inferential mech-

anism, multiple, quite incompatible explanations can
be generated; the same training label can be explained

 E Explanation-Based Learning

Explanation-Based Learning. Figure . An example

space with two designated positive training items

Explanation-Based Learning. Figure . Four constructed

explanations are sufficient to cover the positive examples

using di�erent input features and postulating di�erent
interactions. Such explanations will generalize to cover
quite di�erent subsets ofX. Figure shows a small train-
ing set with two positive examples highlighted. While
the explanation process can be applied to all exam-
ples both positive and negative, these two will be used
to illustrate. In this illustration, just two explanations
are constructed for each of the highlighted training
examples. Figure shows the generalized extensions
of these four explanations in the example space. �e
region enclosed by each contour is meant to denote
the subset of X conjectured to merit the same classi-
�cation as the explained example. Explanations make
no claim about the labels for examples outside their
extension.

Evaluation and Hypothesis Selection

Additional training examples that fall within the exten-
sion of a generalized explanation help to evaluate it

Explanation-Based Learning. Figure . Explanations are

evaluated with other training examples

Explanation-Based Learning. Figure . An element from

H that approximates the weighted explanations

empirically.�is is shown in Fig. .�e estimated utility
of a generalized explanation re�ects () the general-
ized explanation’s empirical accuracy on these train-
ing examples, () the inferential e�ort required to
derive the explanation (see DeJong,), and () the
redundancies and interactions with other generalized
explanations (higher utility is estimated if its correct
predictions are less commonly shared by other gener-
alized explanations).

�e estimated utilities de�ne an EBL classi�er as a
mixture of the generalized explanations each weighted
by its estimated utility:

ĉEBL(x) = ∑
g∈GE(Z,∆)

ug ⋅ g(x),

where GE(Z, ∆) denotes the generalized explanations
for Z from ∆ and ug is the estimated utility for g.�is
corresponds to a voting scheme where each general-
ized explanation that claims to apply to an example

Explanation-Based Learning E

E

casts a vote in proportion to its estimated utility. �e
votes are normalized over the utilities of voting general-
ized explanations.�e mixture scheme is similar to that
of sleeping experts (Freund, Schapire, Singer, & War-
muth,).�is EBL classi�er approximates the target
concept c∗. But unlike the approximation chosen by a
conventional learner, ĉEBL re�ects the information of ∆
in addition to Z.

�e �nal step is to select a hypothesis ĥ fromH.�e
EBL concept ĉEBL is used to guide this choice. Figure
illustrates the selection of a ĥ ∈ H, which is a good
approximation to a utility-blended mixture of Fig. .
�is �nal step, selecting a hypothesis fromH, is impor-
tant but was omitted in original EBL. �ese systems
employed generalized explanations directly. Unfortu-
nately, such classi�ers su�er from a di�culty known
as the utility problem (Minton,). Note this is a
slightly di�erent use of the term utility, referring to
the performance of an application system. �is sys-
tem can be harmed more than helped by concepts such
as ĉEBL, even if these concepts provide highly accurate
classi�cation. Essentially, the average cost of evaluat-
ing an EBL concept may outweigh the average bene�t
that it provides to the application system. It is now
clear that this utility problem is simply the manifesta-
tion of a poorly structured hypothesis space. Note that,
in general, an EBL classi�er itself will not be an ele-
ment of the space of acceptable hypothesesH. Previous
approaches to the utility problem (Etzioni, ; Gratch
& DeJong, ; Greiner & Jurisica, ; Minton,)
identify and disallow o�ending EBL concepts. How-
ever, the root cause is addressed by employing the EBL
concept as a guidance in selecting a ĥ ∈ H rather
than using ĉEBL directly. Without this last step, H is
completely ignored. But H embodies all of the infor-
mation in the learning problem about what makes an
acceptable hypothesis. �e “utility problem” is sim-
ply the manifestation of leaving out this important
information.

Literature

�e roots and motivation for EBL extend at least to
the MACROPs of STRIPS (Fikes, Hart, & Nilsson,
).�e importance of explanations of training exam-
ples was �rst suggested in DeJong ().�e standard

references for the early EBL work are Mitchell et al.
() and DeJong and Mooney (). When cover-
ing EBL, current textbooks give somewhat re�ned ver-
sions of this early approach (Mitchell, ; Russell &
Norvig,). Important related ideas include deter-
minations (Russell & Grosof,), chunking (Laird,
Rosenbloom, & Newell,), and knowledge compi-
lation (Anderson,). EBL’s ability to employ �rst-
order theories make it an attractive compliment to
learning Horn theories with 7Inductive Logic Pro-
gramming (Bruynooghe, De Raedt, & De Schreye,
; Hirsh, ; Pazzani & Kibler, ; Zelle &
Mooney,).�e problem of imperfect domain the-
ories was recognized early, and there have been many
approaches (Cohen, ; Flann & Dietterich, ;
Genest, Matwin, & Plante, ; Ourston & Mooney,
;�run&Mitchell, ; Towell, Craven, & Shavlik,
). But with modern statistical learning ascending to
the dominant paradigm of the �eld, interest in analytic
approaches waned.�e current resurgence of interest is
largely driven by placing EBL in a modern statistically
sophisticated framework that nonetheless is still able
to exploit a �rst-order expressiveness (DeJong, ;
Kimmig et al., ; Lim et al., ; Sun & DeJong,
)

Cross References
7Explanation-Based Learning for Planning
7Speedup Learning

Recommended Reading
Anderson, J. (). Knowledge compilation: The general learning

mechanism. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),
Machine learning II (pp. –). San Mateo, CA: Morgan
Kaufmann.

Bruynooghe, M., De Raedt, L., & De Schreye, D. (). Explanation
based program transformation. In IJCAI (pp. –).

Cohen, W. W. (). Abductive explanation-based learning: A solu-
tion to the multiple inconsistent explanation problem.Machine
Learning, , –.

DeJong, G. (). Generalizations based on explanations. In
IJCAI’, the seventh international joint conference on artificial
intelligence (pp. –). Vancover, BC.

DeJong, G. (). Toward robust real-world inference: A new per-
spective on explanation-based learning. In ECML, the seven-
teenth European conference on machine learning (pp. –).
Heidelberg: Springer.

 E Explanation-Based Learning for Planning

DeJong, G., & Mooney, R. (). Explanation-based learning: An
alternative view. Machine Learning, (), –.

Etzioni, O. (). A structural theory of explanation-based learn-
ing. Artificial Intelligence, (), –.

Fikes, R., Hart, P. E., & Nilsson, N. J. (). Learning and exe-
cuting generalized robot plans. Artificial Intelligence, (–),
–.

Flann, N. S., & Dietterich, T. G. (). A study of explanation-
based methods for inductive learning. Machine Learning, ,
–.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. ().
Using and combining predictors that specialize. In Twenty-
ninth annual ACM symposium on the theory of computing
(pp. –). El Paso, TX.

Genest, J., Matwin, S., & Plante, B. (). Explanation-based learn-
ing with incomplete theories: A three-step approach. In pro-
ceedings of the seventh international conference on machine
learning (pp. –).

Gratch, J., & DeJong, G. (). Composer: A probabilistic solu-
tion to the utility problem in speed-up learning. In AAAI
(pp. –).

Greiner, R., & Jurisica, I. (). A statistical approach to solving
the EBL utility problem. In National conference on artificial
intelligence (pp. –). San Jose, CA.

Hirsh, H. (). Explanation-based generalization in a logic-
programming environment. In IJCAI (pp. –). Milan,
Italy.

Kimmig, A., De Raedt, L., & Toivonen, H. (). Probabilistic
explanation based learning. In ECML’, the eighteenth Euro-
pean conference on machine learning (pp. –).

Laird, J. E., Rosenbloom, P. S., & Newell, A. (). Chunking in
soar: The anatomy of a general learning mechanism. Machine
Learning, (), –.

Lim, S. H., Wang, L.-L., & DeJong, G. (). Explanation-based fea-
ture construction. In IJCAI’, the twentieth international joint
conference on artificial intelligence (pp. –)

McCarthy, J. (). Circumscription – a form of non-monotonic
reasoning. Artificial Intelligence, , –.

Minton, S. (). Quantitative results concerning the utility
of explanation-based learning. Artificial Intelligence, (–),
–.

Mitchell, T. (). Machine learning. New York: McGraw-Hill.
Mitchell, T., Keller, R., & Kedar-Cabelli, S. (). Explanation-

based generalization: A unifying view. Machine Learning, (),
–.

Ourston, D., & Mooney, R. J. (). Theory refinement combining
analytical and empirical methods. Artificial Intelligence, (),
–.

Pazzani, M. J., & Kibler, D. F. (). The utility of knowledge in
inductive learning. Machine Learning, , –.

Russell, S., & Norvig, P. (). Artificial intelligence: A modern
approach (nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

Russell, S. J., & Grosof, B. N. (). A declarative approach to bias
in concept learning. In AAAI (pp. –). Seattle, WA.

Sun, Q., & DeJong, G. (). Feature kernel functions: Improving
svms using high-level knowledge. In CVPR () (pp. –)

Thrun, S., & Mitchell, T. M. (). Integrating inductive neu-
ral network learning and explanation-based learning. In IJCAI
(pp. –). Chambery, France.

Towell, G. G., Craven, M., & Shavlik, J. W. (). Constructive
induction in knowledge-based neural networks. In proceed-
ings of the eighth international conference on machine learning
(pp. –)

Zelle, J. M., & Mooney, R. J. (). Combining Foil and EBG to
speed-up logic programs. In IJCAI (pp. –). Chambery,
France.

Explanation-Based Learning for
Planning

Subbarao Kambhampati, Sungwook Yoon
Arizona State University, Tempe, AZ, USA
Palo Alto, CA, USA

Synonyms
Explanation-based generalization for planning; Speedup
learning for planning

Definition
7Explanation-based learning (EBL) involves using
prior knowledge to explain (“prove”) why the training
example has the label it is given, and using this expla-
nation to guide the learning. Since the explanations are
o�en able to pinpoint the features of the example that
justify its label, EBL techniques are able to get by with
much fewer number of training examples. On the �ip
side, unlike general classi�cation learners, EBL requires
prior knowledge (aka “domain theory/model”) in addi-
tion to labeled training examples – a requirement that
is not easily met in some scenarios. Since many plan-
ning and problem solving agents do start with declara-
tive domain theories (consisting at least descriptions of
actions along with their preconditions and e�ects), EBL
has been a popular learning technique for planning.

Dimensions of Variation
�e application of EBL in planning varies along several
dimensions: whether the learning was for improv-
ing the speed and quality of the underlying plan-
ner (Etzioni, ; Kambhampati, ; Kambhampati,
Katukam, & Qu, ; Minton et al., ; Yoon, Fern,
& Givan,) or acquire the domain model (Levine &
DeJong,); whether it was was done from successes
(Kambhampati, ; Yoon et al.) or failures (Ihrig

Explanation-Based Learning for Planning E

E

& Kambhampati, ; Minton et al.,); whether
the explanations were based on complete/correct
(Kambhampati et al., ; Minton et al.,) or par-
tial domain theories (Yoon et al.), whether learning
is based on single (Kambhampati, ; Kambhampati
et al.; Minton et al.,) or multiple examples (Estlin
& Mooney, ; Flann & Dietterich,) (where, in
the latter case, inductive learning is used in conjunc-
tion with EBL) and �nally whether the planner whose
performance EBL aims to improve is a means-ends
analysis one (Minton et al.,), partial-order planner
(Estlin & Mooney,) or a heuristic search planner
(Yoon et al.).
EBL techniques have been used in planning both

to improve search and to reduce domain modeling
burden (although the former has received more atten-
tion by far). In the former case, EBL is used to learn
“control knowledge” to speedup the search process
(Kambhampati et al., ; Minton et al.,), or to
improve the quality of the solutions found by the search
process (Estlin & Mooney,). In the latter case EBL
is used to develop domain models (e.g., action models)
(Levine & DeJong,).
EBL for search improvement involves either remem-

bering and reusing successful plans, or learning search
control rules to avoid failing search branches. Other
variations include learning e�ective indexing of stored
cases from retrieval failures (Ihrig & Kambhampati,
) and learning “adjustments” to the default heuristic
used by the underlying search.
Another important issue is the degree of complete-

ness/correctness of the underlying background theory
used to explain examples. If the theory is complete and
correct, then learning is possible from a single example.
�is type of EBL has been called “analytical learning.”
When the theory is partia, EBL still is e�ective in nar-
rowing down the set of potentially relevant features of
the training example.�ese features can then be used
within an inductive learner. Within planning, EBL has
been used in the context of complete/correct as well as
partial domain models.
A �nal dimension of variation that di�erentiated a

large number of research e�orts is the type of underly-
ing planner. Initially, EBL was used on top of means-
ends analysis planners (cf. PRODIGY, Minton et al.,
). Later work focused on partial order planners
(e.g., Estlin &Mooney, ; Kambhampati et al.,).

More recently, the focus has been on forward search
state-space planners (Yoon et al.,).

Learning from Success: Explanation-Based
Generalization
When learning from successful cases (plans), the train-
ing examples comprise of successful plans, and the
explanations involve proofs showing that the plan, as
it is given, is able to support the goals. Only the parts
of the plan that take part in this proof are relevant for
justifying the success of the plan.�e plan is thus “gen-
eralized” by removing extraneous actions that do not
take part in the proof. Object identi�ers and action
orderings are also generalized as long as the generaliza-
tion doesn’t a�ect the proof of correctness (Kambham-
pati,).�e output of the learning phase is thus a
variablized plan containing a subset of the constraints
(actions, orderings, object identity constraints) of the
original plan.�is is then typically indexed and used as
a macro-operator to speed-up later search.
For example, given a planning problem of starting

with an initial state where �ve blocks, A, B, C, D and
E are on table, and the problem requires that in the
goal state A must be on B and C must be on D, and a
plan P that is a sequence of actions pickup A, stack A
on B, pickup E, putdown E, Pickup C, stack C on D, the
explanation-based learner might output the generaliza-
tion “do in any order { pickup x, stack x on y} { pick up z,
stack z on w}” for the generalized goals on (x, y) and on
(w, z), starting from a state where x, y, z and w are all
on table and clear, and each of them denotes a distinct
block.
One general class of such proof schema involves

showing that every top level goal of the planning prob-
lem aswell as the precondition of every action are estab-
lished and protected. Establishment requires that there
is an action in the plan that gives that condition, and
protection requires that once established, the condition
is not deleted by any intervening action.
A crucial point is that the extent of generaliza-

tion depends on the �exibility of the proof strategy
used. Kambhampati and Kedar () discuss a spec-
trum of generalization strategies associated with a spec-
trum of proof strategies, while Shavlik () discusses
how the number of actions in the plan can also be
generalized.

 E Explanation-Based Learning for Planning

Learning from Failure
When learning from the failure of a search branch,
EBL starts by analyzing the plans at the failing nodes
and constructing an explanation of failure. �e fail-
ure explanation is just a subset of constraints in the
plan at the current search node, which, in conjunction
with domain theory ensures that no successful solu-
tion can be reached by further re�ning this plan. �e
explanations can range from direct constraint inconsis-
tencies (e.g., ordering cycles), to indirect violation of
domain axioms (e.g., the plan requiring both clear(B)
and On(A,B) to be satis�ed at the same time point).
�e explanations at the leaf nodes are “regressed” over
the decisions in the search tree to higher level nodes
to get explanations of (implicit) failures in these higher
level nodes.�e search control rules can then essentially
recommend pruning any search node which satis�es a
failure explanation.

�e deep a�nity between EBL from search failures
and the idea of 7nogood learning and dependency-
directed backtracking in CSP is explored in
Kambhampati (). As in dependency directed
backtracking, the more succinct the explanation, the
higher the chance of learning e�ective control rules.
Note that e�ectiveness here is de�ned in terms of the
match costs involved in checking whether the rule is
applicable, and the search reductions provided when it
is applicable. Signi�cant work has been done to identify
classes of failure explanation that are expected to lead to
ine�ective rules (Etzioni,). In contrast to CSP that
has a �nite depth search tree, one challenge in planning
is that o�en an unpromising search node might not
exhibit any direct failure with a succinct explanation,
and is abandoned by the search for heuristic reasons
(such as the fact that the node crosses a depth limit
threshold). Strategies for �nding implicit explanations
of failure (using domain axioms), as well as getting by
with incomplete explanations of failure are discussed in
Kambhampati et al. (). EBL from failures has also
been applied to retrieval (rather than search) failures.
In this case, the failure of extending a plan retrieved
from the library to solve a new problem is used to learn
new indexing schemes that inhibit that case from being
retrieved in such situations (Ihrig & Kambhampati,
).

Learning Adjustments to Heuristics
Most recent work in planning has been in the context of
heuristic search planners, where learning from failures
doesn’t work as well (since the heuristic search may
change directions much before a given search branch
ends in an explainable failure). One way of helping
such planners is to improve their default heuristic (Yoon
et al.,). Given a heuristic h(s) that gives the heuris-
tic estimate of state s, the aim in Yoon et al. is to learn
an adjustment δ(s) that is added to h(s) to get a getter
estimate of h∗(s) – the true cost of state s.�e system
has access to actual plan traces (which can be obtained
by having the underlying planner solve some problems
from scratch). For each state s on the trace, we know the
true distance of state s from the goal state, and we can
also compute the h(s) value with respect to the default
heuristic.�is gives the learner a set of training exam-
ples which are pairs of states and the adjustments they
needed to make to the default heuristic meet the true
distance. In order to learn the δ(s) from this training
data, we need to enumerate the features of state s that
are relevant to it needing the speci�c adjustment.�is
is where EBL come in. Speci�cally, one way of enumer-
ating the relevant features is to explain why s has the
default heuristic value it does.�is, in turn, is done by
taking the features of the relaxed plan for state s. Since
the relaxed plan is a plan that assumes away all negative
interactions between the actions, relaxed plan features
can be seen as features of the explanation of the label
for state s in terms of a partial domain theory (onewhich
ignores all the deletes of all actions).

EBL from Incomplete Domain Theories
While most early e�orts for speed-up focused on com-
plete and correct theories, several e�orts also looked at
speed-up learning from incomplete theories. �e so-
called Lazy EBL approaches (Chien, ; Tadepalli,
) work by �rst constructing partial explanations,
and subsequently re�ne the over-general rules learned.
Other approaches that use similar ideas outside plan-
ning include Flann and Dietterich () and Cohen
(). As we noted above, the work by Yoon et al.
() can also be seen as basing learning (in their case
of adjustments to a default heuristic function) w.r.t. a
partial domain theory.

Explanation-Based Learning for Planning E

E

EBL to Learn Domain Knowledge
Although most work in EBL for planning has been
focused on speedup, there has also been some work
aimed at learning domain knowledge (rather than con-
trol knowledge). Of particular interest is “operational-
izing” a complex, if opaque, domain model by learning
from it a simpli�ed domain model that is adequate to
e�ciently solve an expected distribution of problems.
�e recent work by Levine and DeJong () is an
example of such an e�ort.

EBL and Knowledge-Level Learning
Although the focus of this article is on EBL as applied
to planning, we need to foreground one general issue:
whether EBL is capable of knowledge-level learning
or not. A popular misconception of EBL is that since
it depends on a complete and correct domain theory,
no knowledge-level learning is possible, and speedup
learning is the only possibility. (�e origins of this mis-
conception can be traced back to the very beginning.
�e two seminal articles on EBL in the very �rst issue
of the Machine Learning journal di�ered profoundly
in their interpretations of EBL. While Mitchell, Keller,
and Kedar-Cabelli () assumed that EBL by default
workswith complete and correct theories (thus preclud-
ing any knowledge-level learning), DeJong () pro-
vide a more general view of EBL that uses background
knowledge – whether or not it is complete – to focus the
generalization (and as such can be seen as a knowledge-
based feature-selection step for a subsequent inductive
learner)). As we noted at the outset however, EBL is not
required to depend on complete and correct domain
theories, and when it doesn’t, knowledge level learning
is indeed possible.

Utility Problem and its Non-Exclusive
Relation to EBL
As we saw above, much early work in EBL for plan-
ning focused on speed-up for the underlying planner.
Some of the knowledge learned for speedup – especially
control rules and macro-operators – can also adversely
a�ect the search by increasing either the search space
size (macros) and/or per-node cost (matching control

rules). Clearly, in order for the net e�ect to be posi-
tive, care needs to be exercised as to which control rules
and/or macros are stored.�is has been called the “util-
ity problem” (Minton,) and signi�cant attention
has been paid to develop strategies that either dynami-
cally evaluate the utility of the learned control knowl-
edge (and forget useless rules) (Markovitch & Scott,
; Minton,), or select the set of rules that best
serve a given distribution of problem instances (Gratch,
Chien, & DeJong,).
Despite the prominent attention given to the util-

ity problem, it is important to note the non-exclusive
connection between EBL and utility problem We note
that any strategy that aims to provide/acquire control
knowledge will su�er from the utility problem. For
example, utility problem also holds for inductive learn-
ing techniques that were used to learn control knowl-
edge (cf. Leckie & Zukerman,). In other words, it
is not special to EBL but rather to the speci�c applica-
tion task. We note that it is both possible to do speedup
learning that is less suceptible to the utility problem
(e.g., learn adjustments to heuristics, Yoon et al.,),
and possible to to use EBL for knowledge-level learning
(Levine & DeJong,).

Current Status
EBL for planning was very much in vogue in late
eighties and early nineties. However, as the speed of
the underlying planners increased drastically, the need
for learning as a crutch to improve search e�ciency
reduced. �ere has however been a recent resurgence
of interest, both in further speeding up the planners,
and in learning domain models. Starting , there
is a new track in the International Planning Compe-
tition devoted to learning methods for planning. In
the �rst year, the emphasis was on speedup learning.
ObtuseWedge, a system that uses EBL analysis to learn
adjustments to the default heuristic, was among the
winners of the track. �e DARPA integrated learning
initiative, and interest in model-lite planning have also
brought focus back to EBL for planning – this time with
partial domain theories.

 E Explanation-Based Learning for Planning

Additional Reading
�e tutorial (Yoon & Kambhampati,) provides an
up-to-date and broader overview of learning techniques
applied to planning, and contains signi�cant discussion
of EBL techniques.�e paper (Zimmerman & Kamb-
hampati,) provides a survey of machine learning
techniques used in planning, and includes a more com-
prehensive listing of research e�orts that applied EBL in
planning.

Cross References
7Explanation-Based Learning
7Speedup Learning

Recommended Reading
Bhatnagar, N., & Mostow, J. (). On-line learning from search

failures. Machine Learning, (), –.
Borrajo, D., & Veloso, M. M. (). Lazy incremental learning

of control knowledge for efficiently obtaining quality plans.
Artificial Intelligence Review, (–), –.

Chien, S. A. (). Using and refining simplifications: Explanation-
based learning of plans in intractable domains. In IJCAI
(pp. –).

Cohen, W. W. (). Abductive explanation-based learning: A solu-
tion to the multiple inconsistent explanation problem.Machine
Learning, , –.

DeJong, G., & Mooney, R. J. (). Explanation-based learning: An
alternative view. Machine Learning, (), –.

Estlin, T. A., & Mooney, R. J. (). Learning to improve both effi-
ciency and quality of planning. In IJCAI (pp. –).

Etzioni, O. (). A structural theory of explanation-based learn-
ing. Artificial Intelligence, (), –.

Flann, N. S., & Dietterich, T. G. (). A study of explanation-based
methods for inductive learning. Machine Learning, , –.

Gratch, J., Chien, S. A., & DeJong, G. (). Improving learning per-
formance through rational resource allocation. In AAAI
(pp. –).

Ihrig, L. H., & Kambhampati, S. (). Storing and indexing plan
derivations through explanation-based analysis of retrieval fail-
ures. Journal of Artificial Intelligence Research, , –.

Kambhampati, S. (). A unified framework for explanation-based
generalization of partially ordered and partially instantiated
plans. Artificial Intelligence, (), –.

Kambhampati, S. (). On the relations between intelligent
backtracking and failure-driven explanation-based learning
in constraint satisfaction and planning. Artificial Intelligence,
(–), –.

Kambhampati, S., Katukam, S., & Qu, Y. (). Failure driven
dynamic search control for partial order planners: An
explanation based approach. Artificial Intelligence, (–),
–.

Leckie, C., & Zukerman, I. (). An inductive approach to learning
search control rules for planning. In IJCAI (pp. –)

Levine, G., & DeJong, G. (). Explanation-based acquisition of
planning operators. In ICAPS (pp. –).

Markovitch, S., & Scott, P. D. (). The role of forgetting in
learning. In ML (pp. –).

Minton, S. (). Quantitative results concerning the utility
of explanation-based learning. Artificial Intelligence, (–),
–.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D., Etzioni, O.,
& Gil, Y. (). Explanation-based learning: A problem solving
perspective. Artificial Intelligence, (–), –.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. ().
Explanation-based generalization: A unifying view. Machine
Learning, (), –.

Shavlik, J. W. (). Acquiring recursive and iterative concepts with
explanation-based learning. Machine Learning, , –.

Tadepalli, P. (). Lazy explanation based learning: A solution to
the intractable theory problem. In IJCAI (pp. –).

Yoon, S., Fern, A., & Givan, R. (). Learning control knowl-
edge for forward search planning. Journal of Machine Learning
Research, , –.

Yoon, S., & Kambhampati, S. (). Learning for planning. Tutorial
delivered at ICAPS . http://rakaposhi.eas.asu.edu/learn-
plan.html

Zimmerman, T., & Kambhampati, S. (). Learning-assisted auto-
mated planning: Looking back, taking stock, going forward. AI
Magazine, (), –.

http://rakaposhi.eas.asu.edu/learn-plan.html

F

F-Measure

�e F-measure is used to evaluate the accuracy of pre-
dictions in two-class (binary)7classi�cation problems.
It originates in the �eld of information retrieval and is

o�en used to evaluate 7document classi�cation mod-
els and algorithms. It is de�ned as the harmonic mean

of 7precision (i.e., the ratio of 7true positives to all
instances predicted as positive) and 7recall (i.e., the
ratio of true positives to all instances that are actually

positive). As such, it lies between precision and recall,

but is closer to the smaller of these two values.�ere-

fore a system with high F has both good precision and
good recall.�e F-measure is a special case of themore
general family of evaluation measures:

Fβ = (β +)precisionrecall/(βprecision + recall)

�us using β > increases the in�uence of precision
on the overall measure, while using β < increases
the in�uence of recall. Some authors use an alternative

parameterization,

Fα = /(α/precision + (tα)/recall)

which, however, leads to the same family of mea-

sures; conversion is possible via the relationship

α = /(β +).

False Negative

In a two-class problem, a7classi�cation7modelmakes
two types of error: 7false positives and false nega-
tives. A false negative is an example of positive class
that has been incorrectly classi�ed as negative. See

7confusion matrix for a complete range of related
terms.

False Positive

In a two-class problem, a7classi�cation7modelmakes
two types of error: false positives and 7false negatives.
A false positive is an example of negative class that has
been incorrectly classi�ed as positive. See 7confusion
matrix for a complete range of related terms.

Feature

7Attribute

Feature Construction

7Data Preparation

Feature Construction in Text
Mining

Janez Brank, DunjaMladenić,

Marko Grobelnik

Jožef Stefan Insitute

Ljubljana, Slovenia

Synonyms
Feature generation in text mining

Definition
Feature construction in 7text mining consists of var-
ious techniques and approaches which convert textual

data into a feature-based representation. Since tradi-

tional machine learning and data mining techniques

are generally not designed to deal directly with tex-

tual data, feature construction is an important prelimi-

nary step in text mining, converting source documents

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 F Feature Construction in Text Mining

into a representation that a data mining algorithm can

then work with. Various kinds of feature construction

approaches are used in text mining depending on the

task that is being addressed, the data mining algorithms

used, and the nature of the dataset in question.

Motivation and Background
Text mining is the use of machine learning and data

mining techniques on textual data. �is data consists

of natural language documents that can be more or less

structured, ranging from completely unstructured plain

text to documents with various kinds of tags containing

machine-readable semantic information. Furthermore,

documents may sometimes contain hyperlinks that

connect them into a graph. Since most traditional

machine learning and data mining techniques are not

directly equipped to deal with this kind of data, an

important �rst step in text mining is to extract or

construct features from the input documents, thereby

obtaining a feature-based representation which is suit-

able for handling with machine learning and data min-

ing algorithms.�us, the task of feature construction in

text mining is inextricably connected with text mining

itself and has evolved alongside it. An important trend

over the years has been the development of techniques

that do not process each document in isolation but

make use of a corpus of documents as a whole, possibly

even involving external data or background knowledge

in the process.

Documents and text data provide for valuable

sources of information and their growing availability

in electronic form naturally led to application of dif-

ferent analytic methods. One of the common ways is

to take a whole vocabulary of the natural language in

which the text is written as a feature set, resulting in

several tens of thousands of features. In a simple set-

ting, each feature gives a count of the word occurrences

in a document. In this way text of a document is rep-

resented as a vector of numbers.�e representation of

a particular document contains many zeros, as most of

the words from the vocabulary do not occur in a par-

ticular document. In addition to the already mentioned

two common speci�cs of text data, having a large num-

ber of features and a sparse data representation, it was

observed that frequency of words in text in general fol-

lows Zipf ’s law – a small subset of words occur very

frequently in texts while a large number of words occur

only rarely. 7Document classi�cation takes these and
some other data speci�cs into account when developing

the appropriate classi�cation methods.

Structure of Learning System
In a learning or mining system that deals with tex-

tual data, feature construction is usually one of the �rst

steps that is o�en performed alongside typical prepro-

cessing tasks such as data cleaning. A typical output

of feature construction are feature vectors represent-

ing the input documents; these vectors themselves then

form the input for a machine learning or data mining

algorithm. On the other hand, sometimes feature con-

struction is more closely integrated into the learning

algorithm itself, and sometimes it can be argued that

the features themselves are the desired output that is the

goal of the text mining task.

Solutions
At the lowest level, text is represented as a sequence of

bytes or other elementary units of information. How

these bytes are to be converted into a sequence of char-

acters depends on the character encoding of the text.
Many standard encodings exist, such asUTF-, the ISO-

 family, and so on. O�en, all the texts that appear

as input for a speci�c text mining task are in the same

encoding, or if various encodings are used they are

speci�ed clearly and explicitly (e.g., via the Content-

Type header in the HTTP protocol), in which case the

problem of conversion is straightforward. In the case of

missing or faulty encoding information, various heuris-

tics can be used to detect the encoding and convert the

data to characters; it is best to think of this as a data

cleaning and preprocessing step.

Word-Based Features

When we have our text represented as a sequence of

characters, the usual next step is to convert it into

a sequence of words. �is is usually performed with

heuristics which depend to some extent on the lan-

guage and underlying character set; for the purposes

of segmentation of text into words, a word is thought

of as a sequence of alphabetic characters delimited by

Feature Construction in Text Mining F

F

whitespace and/or punctuation. Some e�orts to stan-

dardize word boundary detection in a way that would

work reasonably well with a large set of natural lan-

guages have also been made (see, e.g., the Unicode

Standard Annex #, Unicode Text Segmentation). For
many (but not all) text mining tasks, the distinction

between upper and lower case (if it is present in the

underlying natural language) is largely or entirely irrel-

evant; hence, all text is o�en converted into lower case

at this point. Another frequently used preprocessing

step is stemming, whereby each word is replaced by its
stem (e.g., walking → walk). �e details of stemming
depend on the natural language involved; for English,

a relatively simple set of heuristics such as Porter’s stem-

mer is su�cient. Instead of stemming, where the end-

ing is chopped o� the word, one can apply a more

sophisticated transformation referred to as lemmati-

zation that replaces the word by its normalized form

(lemma). Lemmatization is especially relevant for nat-

ural languages that have many di�erent forms of the

same word (e.g., several cases, gender in�uence on verb

form etc.). E�orts have also been made to discover

stemming rules or lemmatization rules automatically

using machine learning techniques (Plisson, Lavrač,

Mladenić, & Erjavec,).

�e individual words can themselves be thought of

as features of the document. In the feature-vector rep-

resentation of a document d, the feature corresponding
to the word w would tell something about the presence
of the word w in this document: either the frequency
(number of occurrences) of w in d, or a simple binary
value (if present, if absent), or it can further be mod-

i�ed by, e.g., the 7TF-IDF weighting. In this kind of
representation, all information about the word order

in the original document is lost; hence, it is referred

to as the “bag of words” model. For many tasks, the

loss of word order information is not critical and the

bag of words model is a staple of information retrieval,

document classi�cation, and many other text-related

tasks. A downside of this approach (and many other

word-based feature construction techniques) is that the

resulting number of features can be very large (there

are easily tens of thousands of di�erent words in a mid-

sized document corpus); see7Feature Selection in Text
Mining.

Clearly, ignoring the word order completely can

sometimes lead to the loss of valuable information.

Multi-word phrases sometimes have a meaning that

is not adequately covered by the individual words of

the phrase (e.g., proper names, technical terms, etc.).

Various ways of creating multi-word features have

been considered. Let d be a document consisting of
the sequence of words (w, w, . . . ,wm) (note that,

this sequence might already be an output of some

preprocessing operations, e.g., the removal of stopwords

and of very infrequent words.). �en an n-gram is

de�ned as a sequence of n adjacent words from the doc-
ument, i.e., (wi, wi+, . . . ,wi+n−). We can use n-grams
as features in the same way as individual words, and

indeed a typical approach is to use n-grams for all values
of n from to a certain upper limit (e.g.,). Many of the
resulting n-grams will be incidental and irrelevant, but
some of themmay be valuable and informative phrases;

whether the text mining algorithm will be able to pro�t

from them depends a lot on the algorithm used, and

feature selection might be even more necessary than

in the case of individual words. A related problem is

the explosion of the number of features; if the num-

ber of di�erent words in a corpus grows approximately

with the square root of the length of the corpus (Heaps’

law), the number of di�erent n-grams is more likely to
grow nearly linearly with the length of the corpus.�e

use of n-grams as features has been found to be bene�-
cial, e.g., for the classi�cation of very short documents

(Mladenić & Grobelnik,).

Further generalization of n-grams is possible by
removing the requirement that the words of the n-
gram must appear adjacently; we can allow them to

be separated by other words.�e weight of an occur-

rence of the n-gram is o�en de�ned as decreasing

exponentially with the number of intervening separa-

tor words. Another direction of generalizing n-gram
is to ignore the order of words within the n-gram; in
e�ect one treats n-grams as bags (multisets) instead
of sequences.�is results in features sometimes called

loose phrases or proximity features (i.e., every bag of
words up to a certain size, occurring in su�ciently

close proximity to each other, is considered to be a

feature).�ese generalizations greatly increase the fea-

ture space as well as the number of features present

in any individual document, so the risk of compu-

tational intractability is greatly increased; this can

sometimes be alleviated through the use of kernels

(see below).

 F Feature Construction in Text Mining

Character-Based Features

Instead of treating the text as a sequences of words,

we might choose to treat it as a sequence of charac-

ters. A sequence of n characters is also known as an
n-graph. We can use n-graphs as features in the rep-
resentation of text in a way analogous to the use of

n-grams in the previous subsection.�e weight of the
feature corresponding to a particular n-graph in the fea-
ture vector of a particular document d will typically
depend on the number of occurrences of that n-graph
in the text of d. Sometimes noncontiguous occurrences
of the n-graph are also counted (i.e., occurrences where
characters from the n-graph are separated by one or
more other characters), although with a lower weight;

this is can be done very elegantly with kernel methods

(see below). Feature selection and TF-IDF style weight-

ing schemes can also be used as in the case of n-grams.
Whether an n-graph-based representation o�ers any
bene�ts compared to an n-gram-based one depends
largely on the dataset and task in question. For example,

the classi�cation of English documents the usefulness

of n-graphs has been found to be dubious, but they can
be bene�cial in highly agglutinative languages where an

individual word can consist of many morphemes and

it is not really useful to treat a whole word as an indi-

vidual unit of information (as would be the case in a

word-based feature representation). In e�ect, the use

of n-graphs provides the learner with cheap access to
the sort of information that would otherwise require

more sophisticated NLP technologies (stemming, pars-

ing, morpheme analysis, etc.); the downside is that a

lot of the n-graph features are merely noise (Lodhi,
Saunders, Shawe-Taylor, Cristianini, & Watkins,).

For some application, word su�xes can be particu-

larly useful features, e.g., to learn lemmatization rules

(Mladenić, ; Plisson et al.,).

Kernel Methods

Let ϕ be a function which assigns, to a given docu-
ment d, a feature vector ϕ(d) from some feature space
F. Assume furthermore that a dot product (a.k.a. inner
product) is de�ned over F, denoted by ⟨⋅, ⋅⟩F .�en the
function K de�ned by K(d, d) = ⟨ϕ(d), ϕ(d)⟩F is
called a kernel function. It turns out that many machine
learning and data mining methods can be described

in a way such that the only operation they need to do

with the data is to compute dot products of their feature

vectors; in other words, they only require us to be able

to compute the kernel function over our documents.

�ese approaches are collectively known as 7kernel
methods; a well-known example of this is the7support
vector machine (SVM) method for supervised learn-

ing, but the same principle can be used in 7clustering
as well. An important advantage of this approach is

that it is o�en possible to compute the kernel function

K directly from the documents d, without explicitly
generating the feature vectors ϕ(d,).�is is especially
valuable if the feature space is untractably large. Sev-

eral families of kernel functions for textual data have

been described in the literature, corresponding to vari-

ous kinds of n-graph and n-gram based features (Brank,
; Lodhi et al.,).

Linear Algebra Methods

Assume that a corpus of n documents have already
been represented by d-dimensional real feature vectors
x, . . . , xn ∈ Rd. If we select some direction y ∈ Rd and

project a vector xi in this direction, the resulting value
yTxi/∣∣y∣∣ is in e�ect a new feature describing the doc-
ument i. In other words, we have constructed a new
feature as a linear combination of the existing features.

�is leads to the question of how to select one or more

suitable directions y; various techniques from linear
algebra and statistics have been proposed for this.

A well-known example of this is principal compo-
nent analysis (PCA) in which one or more new coordi-
nate axes y are selected in such a way that the variance
of the original vectors x, . . . , xn in the directions of
the new coordinate axes is maximized. As it turns out,

this problem is equivalent to computing the principal

eigenvectors of the covariance matrix of the original

dataset.

Another technique of this sort is latent semantic
indexing (LSI) (Deerwester, Dumais, Furnas, Landauer,
& Harshman,). Let X be a d×n matrix with
x, . . . , xn as its columns (a.k.a. the term-document
matrix). LSI uses singular value decomposition (SVD)
to express X as the product of three matrices, T⋅S⋅D,
where T is a d × r orthonormal matrix, D is a r × n
orthonormal matrix, and S is a r× r diagonal matrix
containing the singular values of X. Here, r denotes the
rank of the original matrix X. Let T(m) be the matrix
consisting of the le� m columns of T, let D(m) be the
matrix consisting of the topm rows ofD, and let S(m) be

Feature Extraction F

F

the top le�m×m submatrix of S.�en it turns out that
X(m) = T(m)S(m)D(m) is the best rank-m approxima-
tion of the original X (best in the sense of minimizing
the Frobenius norm of X – X(m)). �us, the i-th col-
umn of D(m) can be seen as a vector of m new features
representing the i-th document of our original dataset,
and the product T(m)S(m) can be seen as a set ofm new
coordinate axes. �e new feature vectors (columns of

D(m)) can be used instead of the original vectors xi.
Canonical correlation analysis (CCA): Sometimes

several vector representations are available for the same

document di; for example, we might have the same
text in two di�erent languages, giving rise to two fea-

ture vectors, e.g., xi ∈ Rd and yi ∈ Rd′ . Given such a

“parallel corpus” of pairs (xi, yi), i = . . . n, it is some-
times desirable to convert both types of representations

to a “common denominator.” In other words, we want

to �nd a set of r new coordinate axes in x-space (say
the columns of U ∈ Rd×r) and a set of r new coordi-
nate axes in y-space (say the columns of V ∈ Rd′×r)
such that the j-th column of U has a similar role in
x-space as the j-th column of V has in y-space, for
all j.�is can be formulated as an optimization prob-
lem: �nd U and V such that the correlation between
UTxi andVTyi (i.e., the projections of xi and yi onto the
new sets of axes) is maximized. Once we have suitable

matrices U and V , we can convert any feature vector
from the original x-space or y-space into a common
new r-dimensional space. �is makes it easier to deal
with multi-lingual corpora, allowing us, e.g., to retrieve

documents in language x as a response to a query in
language y, or vice versa.�e same techniques are appli-
cable in multimodal scenarios (i.e., xi and yi can be
any two representations of the same instance di from
two substantially di�erent perspectives, not necessar-

ily textual).�is method is o�en used in combination

with kernels, in which case it is known as kernel canoni-
cal correlation analysis (KCCA) (Hardoon, Szedmak, &
Shawe-Taylor,).

Miscellaneous

�ere are many other ways to extract or construct fea-

tures from text, depending on the use that the features

are intended for. For example, a dual representation of
a corpus may be considered, in which features are used

to represent terms and not documents.�e feature vec-

tor for a term t contains one feature for each document,
and its value is related to the frequency of t in that
document.�is representation can be used to analyze

which words co-occur frequently and may therefore

be related in meaning. Feature construction can also

utilize methods from information extraction, such as
identifying various kinds of named entities (names of

persons, places, organizations, etc.) or other interesting

bits of information and introducing featureswhich indi-

cate the presence of particular names or other tagged

entities in the document.

Cross References
7Document Classi�cation
7Feature Selection in Text Mining
7Kernel Methods
7Support Vector Machine
7Text Mining

Recommended Reading
Brank, J. (). Loose phrase string kernels. In Proceedings of

SiKDD, Ljubljana, Slovenia. Jozef Stefan Institute.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,

& Harshman, R. (). Indexing by latent semantic analy-

sis. Journal of the American Society of Information Science, ,
–.

Hardoon, D. R., Szedmak, S. R., & Shawe-Taylor, J. R. ().

Canonical correlation analysis: An overview with appli-

cation to learning methods. Neural Computation, (),
–.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins,

C. (). Text classification using string kernels. Journal of
Machine Learning Research, , –.

Mladenić, D. (). Learning word normalization using word suffix

and context from unlabeled data. Proceedings of the th ICML
(), –.

Mladenić, D., & Grobelnik, M. (). Feature selection on hier-

archy of web documents. Decision Support Systems, (),
–.

Plisson, J., Lavrač, N., Mladenić, D., & Erjavec, T. (). Rip-

ple down rule learning for automated word lemmatization. AI
Communications, (), –.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Feature Extraction

7Dimensionality Reduction

 F Feature Reduction

Feature Reduction

7Feature Selection

Feature Selection

Huan Liu

Arizona State University

Tempe, AZ, USA

Synonyms
Attribute selection; Feature reduction; Feature subset

selection; Variable selection; Variable subset selection

Definition
Feature selection is the study of algorithms for reducing
dimensionality of data to improve machine learning
performance. For a dataset with N features and M
dimensions (or features, attributes), feature selection

aims to reduceM toM′ andM′ ≤M. It is an important
and widely used approach to 7dimensionality reduc-
tion. Another e�ective approach is 7feature extraction.
One of the key distinctions of the two approaches lies

at their outcomes. Assuming we have four features

F,F,F,F, if both approaches result in features,
the selected features are a subset of original fea-
tures (say, F,F), but the extracted features are some
combination of original features (e.g., F′ = ∑ aiFi
and F′ = ∑ biFi, where ai, bi are some constants). Fea-
ture selection is commonly used in applications where

original features need to be retained. Some examples

are document categorization, medical diagnosis and

prognosis, gene-expression pro�ling. We focus our dis-

cussion on feature selection. �e bene�ts of feature

selection are multifold: it helps improve machine learn-

ing in terms of predictive accuracy, comprehensibility,

learning e�ciency, compact models, and e�ective data

collection.

�e objective of feature selection is to remove irrel-

evant and/or redundant features and retain only rele-

vant features. Irrelevant features can be removed with-
out a�ecting learning performance. Redundant fea-
tures are a type of irrelevant features. �e distinction
is that a redundant feature implies the copresence of

another feature; individually, each feature is relevant,

but the removal of either one will not a�ect learning

performance.

Motivation and Background
�e rapid advance of computer technology and the

ubiquitous use of Internet have provided unparalleled

opportunities for humans to expand the capabilities in

production, services, communications, and research. In

this process, immense quantities of high-dimensional

data are accumulated, challenging the state-of-the-art

machine learning techniques to e�ciently produce use-

ful results. Machine learning can bene�t from using

only relevant data in terms of learning performance

(e.g., better predictive accuracy and shortened training

time) and learning results such as improved compre-

hensibility to gain insights and to facilitate validation.

At �rst glimpse, one might think a powerful machine

learning algorithm can automatically identify the useful

features in its model building process. In e�ect, remov-

ing irrelevant and/or redundant features can a�ect

machine learning. First, let us look at what constitutes

e�ective learning. In essence, the 7hypothesis space is
largely constrained by the number of features. Learning

can be viewed as searching for a “correct” hypothesis

in the hypothesis space. A hypothesis is correct if it is

consistent with the training data or the majority of it

in the presence of noise, and is expected to perform

equally well for the unseen data (or instances that are

not present in the training data). In some sense, the

more instances we have in the training data, the more

constraints there are in helping guide the search for a

correct hypothesis.

Broadly speaking, two factors matter most for e�ec-

tive learning: () the number of features (M), and
() the number of instances (N). For a �xedM, a larger
N means more constraints and the resulting correct

hypothesis is expected to bemore reliable. For a �xedN,
a decreasedM is tantamount to a signi�cantly increased
number of instances. Consider the following thought
experiment for a binary domain of a binary classi�ca-
tion problem: F,F,F,F are binary and class C is also
binary (e.g., positive or negative). If the training data

consists of instances (N =), it is only a quarter
of the total number of possible instances (=).
�e size of the hypothesis space is

= , . If
only two features are relevant, the size of the hypothesis

Feature Selection F

F

space becomes

= , an exponential reduction of
the hypothesis space. Now, the only available instances

might su�ce for perfect learning if there is no duplicate

instance in the reduced training data with two features.

And a resulting model of features can also be more

complex than that of features. Hence, feature selection

can e�ectively reduce the hypothesis space, or virtu-

ally increase the number of training instances, and help

create a compact model.

An unnecessarily complex model subjects itself to

oversearching an excessively large hypothesis space. Its

consequence is that the learned hypothesis over�ts the
training data and is expected to perform poorly when

applying the learnedmodel to the unseen data. Another

way of describing the relationship between N andM in
the context of learning is the so-called curse of dimen-
sionality, the need for the exponential increase in data
size associated with linearly adding additional dimen-
sions to a multidimensional space; or the concept of

proximity becomes blurry in a high-dimensional space,

resulting in degrading learning performance.�eoreti-

cally, the reduction of dimensionality can eventuate the

exponential shrinkage of hypothesis space.

Structure of the Learning System
�e structure of a feature selection system consists of

four basic components: input, search, evaluation, and

output.�e output of any feature selection system can

be either a ranked list of features or a subset of features.
For the former, one can select top k highly ranked fea-
tures depending on the need. In the context of learning,

the input to a feature selection system is the data which
can be () supervised – all instances are associated with

class labels as in supervised learning; () unsupervised –

no class labels are available as in unsupervised learning;

and () some instances have class labels and the rest do

not as in semi-supervised learning. To rank the features

or select a feature subset can be phrased as a searchprob-
lem in which various search strategies can be employed.

Depending on how a feature selection system isworking

together with a learning system, we can study di�erent

models of feature selection (Kohavi & John,) such
as wrapper, �lter, or embedded. An inevitable question

about feature selection is whether the removal of fea-

tures can help machine learning.�is necessitates the

evaluation of feature selection. We will review these
aspects of feature selection research next.

Categories of Feature Selection

Feature selection algorithms can be categorized into

supervised, unsupervised, and semi-supervised, corres-

ponding to di�erent types of learning algorithms.�ere

has been a substantial gamut of research on supervised
feature selection. As in supervisedmachine learning, the
data available for feature selection contains class labels.

�e class information is used as a dominant factor in

determining the feature quality. For example, we can

simply measure the correlation between a feature (or a

subset of features) and the class and select those features

with highest correlations. Anotherway of using the class

information is to see if a feature can help di�erentiate

two neighboring instances with di�erent classes: obvi-

ously, a relevant feature can, but an irrelevant feature

cannot.

Unsupervised feature selection has gained much
attention in the recent years. Most data collected are

without class labels since labeling data can incur huge

costs. �e basic principle of unsupervised learning is

to cluster data such that similar objects (instances)

are grouped together and dissimilar objects are sep-

arated. In other words, if we had all similar objects

in their corresponding designated clusters, we would

have the minimum intracluster distances and the max-

imum intercluster distances among all objects. For data

of high-dimensionality, distance calculation can be a big

problem due to the7curse of dimensionality. One idea
is to �nd features that can promote the data separability.

In Dy and Brodley (), the goal of unsupervised fea-

ture selection is de�ned as �nding the smallest feature

subset that best uncovers “interesting natural” clusters

fromdata according to the chosen criterion. A variant of

unsupervised feature selection is subspace clustering. It

explores the fact that in a high-dimensional space, clus-

ters can o�en be found in various subspaces of very low

dimensionality. Some subspace clustering algorithms

are reviewed in Parson, Haque, and Liu ().

Unsupervised feature selection is a more loosely

constrained problem than supervised feature selec-

tion. When a large number of labeled instances are

infeasible to obtain, could we use a small number

of labeled instances? Semi-supervised feature selection
attempts to take advantage of both the size of unla-

beled data and the labeling information of a small num-

ber of labeled instances. In the same spirit of 7semi-
supervised learning, semi-supervised feature selection

takes advantage of the two biases inherited in labeled

 F Feature Selection

and unlabeled data, respectively, in the hope that the

problemof feature selection becomesmore constrained.

�e basic idea is to �nd features that can not only help

group the data, but also encourage to �nd, amongmany

equally good groups, those groups in which instances of

di�erent classes are not in the same group (Zhao & Liu,

b).

Searching for Relevant Features

�e search for relevant features can be realized in two

ways: () feature ranking – features are ranked accord-
ing to the intrinsic properties of the data so that top

k features can be chosen according to the need or a
given threshold; and () subset selection – a subset of fea-
ture is selected from the full set of features, and there

is no relevant di�erence between the features in the

selected subset. Subset selection can be carried out in

variousways: forward selection – startingwith an empty

feature subset and adding more iteratively, backward

elimination – beginning with a full set of features and

eliminating some gradually, and random – the starting

subset can be any number which is then adjusted: if this

number of features su�ces according to some quality

measure, it may be decreased, otherwise it should be

increased.�e exhaustive search is usually too expen-

sive for either forward or backward search. Hence, a

sequential search strategy is o�en adopted. Sequential

forward search (SFS) selects one feature at a time; once a

feature is selected, it will always be in the selected feature

subset and also helps determine which feature should

be selected next within the already selected features.

Sequential backward search eliminates one feature at

a time; once it is ruled out, it will never be consid-

ered for selection or inclusion in the selected set of

features.

Here we brie�y illustrate two e�ective and e�-

cient algorithms with disparate ideas. One is ReliefF

(Robnik-Sikonja & Kononenko,). It selects a

feature by checking how e�ectively it can di�erenti-

ate the neighboring data points with di�erent classes.

A feature’s weight is increased if it is e�ective in doing

so. �e features are then ranked according to their

weights, and the top ranked features are deemed rel-

evant. �e second is FCBF (Yu & Liu,), which

adds the feature-feature correlation into the selection

process with feature-class correlations. �e basic idea

is that for two features and the class, we can consider

not only each feature’s correlationwith the class, but also

the correlation between the two features. If the feature-

feature correlation is greater than the smaller of the

two feature-class correlations, the feature with smaller

feature-class correlation is redundant and can thus be

removed.

Models of Feature Selection

�ree classic models of feature selection are �lter, wrap-

per, and embedded. Research shows that, generally

speaking, even for a classi�er with embedded feature

selection capability, it can bene�t from feature selection

in terms of learning performance. A �lter model relies

onmeasures about the intrinsic data properties. Mutual

information and data consistency are two examples

of measures about data properties. A wrapper model

involves a learning algorithm (e.g., a classi�er, or a clus-

tering algorithm) in determining the feature quality.

For instance, if removing a feature does not a�ect the

classi�er’s accuracy, the feature can be removed. Obvi-

ously, this way feature selection is adapted to improving

a particular classi�cation algorithm. To determine if

the feature should be selected or removed, it needs to

build a classi�er every time when a feature is consid-

ered. Hence, the wrapper model can be quite costly.

An embedded model embeds feature selection in the

learning of a classi�er. A best example can be found

in decision tree induction in which, at each branching

point, a feature has to be selected �rst. When feature

selection is performed for data preprocessing, �lter and

wrapper models are o�en employed. When the pur-

pose of feature selection goes beyond improving learn-

ing performance (e.g., classi�cation accuracy), themost

applied is the �lter model.

Evaluation of Feature Selection

�e e�cacy of feature selection can be validated via

empirical evaluation. Two natural questions related to

classi�cation learning are () whether using selected fea-

tures can do as well as using the full set of features, and

() how to compare two feature selection algorithms

when one wants to �gure out which is more e�ective.

�e �rst question can be considered as a special form

of the second one if we assume the full set of features

is selected by a dummy feature selection algorithm that

simply selects all given features. We therefore address

Feature Selection F

F

only the second question here. When we need to com-

pare two feature selection algorithms (A,A), if the
relevant features are known (the ground truth) as in

the experiments using synthetic data, we can directly

compare the selected features by A and A, respec-
tively, and check which result is closer to the ground

truth. In practice, one seldom knows what the relevant

features are. A conventional way of evaluating two algo-

rithms is to evaluate the e�ect of selected features on

classi�cation accuracy. It is a two-step procedure: �rst,

selecting features from data D to form D′

i with reduced

dimensionality; and second, obtaining estimated pre-

dictive accuracy of a classi�er onD andD′

i , respectively.

Which algorithm is superior can be statistically mea-

sured by accuracy di�erence betweenA andA. If there
is no signi�cant di�erence, one cannot tell which one of

the two feature selection algorithms is better; otherwise,

the algorithm resulting in better predictive accuracy is

better.

Another issue arising from feature selection eval-

uation is about feature selection bias. Using the same
training data in both feature selection and classi�ca-

tion learning can result in this selection bias. According

to statistical theory based on regression research, this

bias can exacerbate data over�tting and negatively a�ect

classi�cation performance. A recommended practice is

to use separate data for feature selection and for learn-

ing. In reality, however, separate datasets are rarely used

in the selection and learning steps.�is is because we

o�en want to use as much data as possible in both selec-

tion and learning. It is against this intuition to divide the

training data into two datasets leading to the reduced

data in either task.�ework presented in Singhi and Liu

() convincingly demonstrates that in regression,

feature selection bias caused by using the same data

for feature selection and classi�cation learning does not

negatively impact classi�cation as expected.

Feature Selection Development and Applications

�e advancement of feature selection research enables

us to tackle new challenges. Feature interaction presents

a challenge to feature selection. If we de�ne relevance

using correlation, a feature by itselfmight have little cor-

relationwith the target concept as in classi�cation learn-

ing, but can be very relevant if it is combined with some

other features, because the subset can be strongly corre-

latedwith the target concept.�e unintentional removal

of these features can eventuate poor learning perfor-

mance. It is, in general, computationally intractable to

handle feature interaction. In Zhao and Liu (a), it is

shown that it is feasible to identify interacting features,

in the case of using data consistency as a feature quality

measure, by designing a special data structure for linear-

time backward elimination in terms of M features and
by employing an information-theoretic feature ranking

heuristic.�e authors also point out that the key chal-

lenge of employing the ranking heuristic is the feature
order problem – a lowly ranked feature is more likely to
be eliminated �rst.

Data fusion of multiple data sources presents

another challenge for feature selection. Multiple data

sources, each with its own features, need to be inte-

grated in order to perform an inference task with the

same objective optimally. Instead of selecting the most

relevant features from each data source, one now needs

to consider selecting complementary features. It is also
very likely that performing conventional feature selec-

tion on the single aggregated dataset by combining all

the data sources cannot accomplish the task.�e prob-

lemof complementary feature selection seems related to

that of �nding interacting features. It will be worthwhile

to examine howboth research e�orts can bootstrap each

other in attacking the two recent challenges.

�e recent developments in feature selection wit-

ness many new e�orts on studying causal relation-
ships among features (Guyon, Aliferis, & Elissee�,)
to distinguish actual features and experimental arti-

facts; on text feature selection (Forman,) that were
widely employed in thwarting spam emails, automatic

sorting of news articles, Web content management,

and customer support; on small data sample problems
that present challenges to reliable estimation of fea-

ture quality and detection of feature interactions, and

on connecting feature selection and feature extraction.

Both feature selection and extraction aim to reduce the

dimensionality of the data by removing the nonessen-

tial (redundant or noisy) information, but the two

areas have been researched largely independently.�ey

can, however, indeed complement each other. On the

one hand, feature extraction approaches, such as lin-

ear discriminant analysis, are e�ective for reducing

data dimensionality, but su�er from the high computa-

tional complexity, especially for high-dimensional data;

on the other hand, feature selection algorithms can

 F Feature Selection in Text Mining

handle large-scale data and also lead to easy interpre-

tation of the resulting learning model, but they may

not select interacting features.�e challenges of high-

dimensional data suggest a need for the two to work

together.

�ere is little work in the literature discussing about

selecting structural features and sequential features.

When data evolve, the variety of data types increases.

Semi-structural or structural data now become increas-

ingly common. Consequently, some features in these

data may contain a structure (e.g., a hierarchy that

de�nes the relationships between some atomic fea-

tures). It can be commonly seen in the data with meta

data. Clearly, extant feature selection algorithms have to

evolve in order to handle structural feature selection.

Another area that requires more research attention is

the study of sequential features for data streams and

for7time series.�ey are very di�erent from the types
of data that are well studied. Data streams are massive,

transient, and o�en from multiple sources. Time series

data present their continuous temporal patterns.

Feature selection research has found its applica-

tion in many �elds where the presence of large (either

row-wise or column-wise) volumes of data presents

challenges to e�ective data analysis and processing.

High-throughput technologies allow for parallel mea-

surements of massive biological variables describing

biological processes.�e inordinate number of the bio-

logical measurements can contain noise, irrelevance,

and redundancy. Feature selection can help focus on rel-

evant biological variables in genomics and proteomics

research.�e pervasive use of Internet and Web tech-

nologies has been bringing about a great number of

new services and applications, ranging from recent

Web . applications to traditional Web services where

multimedia data are ubiquitous and abundant. Fea-

ture selection is widely applied to �nd topical terms,

establish group pro�les, assist categorization, simplify

descriptions, facilitate personalization and visualiza-

tion, among others.

Cross References
7Classi�cation
7Clustering
7Cross Validation
7Curse of Dimensionality
7Dimensionality Reduction
7Semi-Supervised Learning

Recommended Reading
Dy, J. G., & Brodley, C. E. (). Feature selection for unsupervised

learning. Journal of Machine Learning Research, , –.
Forman, G. (). Feature selection for text classification. In

H. Liu & Motoda, H. (Eds.), Computational methods of feature
selection. Boca Raton, FL: Chapman and Hall/CRC Press.

Guyon, I., Aliferis, C., & Elisseeff, A. (). Causal feature

selection. In (LM), A longer technical report is available:
http://clopinet.com/isabelle/Papers/causalFS.pdf.

Guyon, I., & Elisseeff, A. (). An introduction to variable and

feature selection. Journal of Machine Learning Research, , –
.

Kohavi, R., & John, G. H. (). Wrappers for feature subset

selection. Artificial Intelligence, (–), –.
Liu, H., & Motoda, H. (). Feature Selection for knowledge discov-

ery & data mining. Boston, MA: Kluwer Academic Publishers.
Liu, H., & Motoda, H. (Eds.). (). Computational methods of fea-

ture selection. Boca Raton, FL: Chapman and Hall/CRC Press.
Liu, H., & Yu, L. (). Toward integrating feature selection algo-

rithms for classification and clustering. IEEE Transactions on
Knowledge and Data Engineering, (), –.

Parson, L., Haque, E., & Liu, H. (). Subspace clustering for

high dimensional data – a review. ACM SIGKDD Explorations
Newsletter Archive special issue on learning from imbalanced
datasets, (): –. ISSN: –

Robnik-Sikonja, M., & Kononenko, I. (). Theoretical and empir-

ical analysis of Relief and ReliefF. Machine Learning, , –.
Singhi, S., & Liu, H. (). Feature subset selection bias for clas-

sification learning. In Proceeding of the rd international con-
ference on machine learning ACM international conference pro-
ceeding series, (Vol. , pp. –). Pittsburg, PA. ISBN:

Yu, L., & Liu, H. (). Efficient feature selection via analysis of rel-

evance and redundancy. Journal of Machine Learning Research,
(October), –.

Zhao, Z., & Liu, H. (a). Searching for interacting features.

In Proceedings of the th international joint conference on
artificial intelligence, (pp. –). Hydrabad, India.

Zhao, Z., & Liu, H. (b). Semi-supervised feature selection

via spectral analysis. In Proceedings of th international con-
ference on machine learning (–). Corvalis, OR. ISBN:

Feature Selection in Text Mining

DunjaMladenić

Jožef Stefan Insitute

Ljubljana, Slovenia

Synonyms
Dimensionality reduction on text via feature selection

Definition
�e term feature selection is used in machine learn-
ing for the process of selecting a subset of features

Feature Selection in Text Mining F

F

(dimensions) used to represent the data (see 7Feature
Selection, and 7Dimensionality Reduction). Feature
selection can be seen as a part of data pre-processing

potentially followed or coupled with feature construc-

tion 7Feature Construction in Text Mining, but can
also be coupled with the learning phase if embed-

ded in the learning algorithm. An Assumption of fea-

ture selection is that we have de�ned an original fea-

ture space that can be used to represent the data,

and our goal is to reduce its dimensionality by select-

ing a subset of original features. �e original feature

space of the data is then mapped onto a new feature

space. Feature selection in text mining is addressed here
separately due to the speci�city of textual data com-

pared to the data commonly addressed in machine

learning.

Motivation and Background
Tasks addressed in machine learning on text are o�en

characterized by a high number of features used to

represent the data. However, these features are not nec-

essarily all relevant and bene�cial for the task, and

may slow down the applied methods giving similar

results as a much smaller feature set. �e main rea-

sons for using feature selection in machine learning are

Mladenić : to improve performance, to improve

learning e�ciency, to provide faster models possibly

requesting less information on the original data, and to

reduce the complexity of the learned results and enable

better understanding of the underlying process.

Feature selection in text mining was applied in a

simple form from the start of applyingmachine learning

methods on text data; for instance, feature selection

by keeping the most frequent features and learning

decision rules 7Rule Learning proposed in Apte,
Damerau, and Weiss () or keeping the most infor-

mative features for learning decision trees 7Decision
Trees or 7Naïve Bayes 7Bayes Rule proposed in Lewis
and Ringuette ().�e reason is that the number of

features used to represent text data formachine learning

tasks is high, as the basic approach of learning on text

de�nes a feature for each word that occurs in the given

text.�is can easily result in several tens of thousands

of features, compared to several tens or hundreds of fea-

tures, as commonly observed onmostmachine learning

tasks at the time.

Most methods for feature subset selection that are

used on text are very simple compared to the feature

selectionmethods developed inmachine learning.�ey

perform a �ltering of features assuming feature inde-

pendence, so that a score is assigned to each feature

independently and the features with high scores are

selected. However, there are also more sophisticated

methods for feature selection on text data that take into

account interactions between the features. Embedded

feature selectionmethodswere successfully used on text

data, either by applying a learning algorithm that has

feature selection embedded (pre-processing step) or by

inspecting a model generated by such an algorithm to

extract feature scores. On the other hand, approaches to

feature selection that search a space of all possible fea-

ture subsets can be rather time consumingwhen dealing

with a high number of features, and are rarely used on

text data.

Structure of Learning System
Feature selection in text mining is mainly used in

connection with applying knownmachine learning and

statistical methods on text when addressing tasks such

as 7Document Clustering or 7Document Classi�ca-
tion. �is is also the focus of this chapter. However,

we may need to perform some kind of feature selec-

tion on di�erent text mining tasks where features are

not necessarywords or phrases, inwhich casewe should

reconsider the appropriate feature selection methods in

the light of the task properties, including the number

and type of features.

As already pointed out, the common way of doc-

ument text representation is by de�ning a feature for

each word in the document collection and feature

selection by assuming feature independence, assigning

score to the features, and selecting features with high

scores. Scoring of individual features is performed

either in an unsupervised way, ignoring the class infor-

mation, or in a supervised way, taking into account

class information. Surprisingly both kind of approaches

have been shown to perform comparably on docu-

ment classi�cation tasks, even though supervised scor-

ing uses more information. Here we discuss several

feature scoringmeasures and their performance ondoc-

ument classi�cation, as reported in di�erent researcher

papers.

 F Feature Selection in Text Mining

One of the �rst scoring measures used on text data

is scoring by the number of documents that contain a

particular word.�is was applied a�er removing very

frequent words, as given in a standard “stop-list” for

English. An alternative is scoring by frequency – that

is, by the number of times a feature occurs in a doc-

ument collection. Both were shown to work well in

document classi�cation Mladenić & Grobelnik ();

Yang & Pedersen ().

Information gain is commonly used in decision tree

induction (Quinlan,). It was reported to work

well as a feature scoring measure on text data (Yang &

Pedersen,) in some domains (news articles of in

a collection named Reuters-, abstracts of medical

articles in a subset of the MEDLINE collection), where

a multiclass problem was addressed using the nearest

neighbor algorithm 7Nearest Neighbor.�e same fea-
ture scoring almost completely failed when using Naïve

Bayes 7Bayes Rule on a binary classi�cation prob-
lem on a hierarchical topic taxonomy of Web pages

(Mladenić & Grobelnik,).�is di�erence in per-

formance can be partially attributed to the classi�cation

algorithm and domain characteristics.

It is interesting to notice that information gain takes

into account all values for each feature. In the case of

document classi�cation, these are two values: occurs

or does not occur in a document. On the other hand,

expected cross entropy as used on text data (Koller &

Sahami, ;Mladenić &Grobelnik,) is similar in

nature to information gain, but only uses the situation

when the feature occurred in a document. Experiments

on classifying document into a hierarchical topic tax-

onomy (Mladenić & Grobelnik,) have show that

this signi�cantly improves performance. Expected cross

entropy is related to information gain as follows: Inf-

Gain(F) = CrossEntropyTxt(F) + CrossEntropyTxt(F),

where F is a binary feature (usually representing aword’s

occurrence).

�e odds ratio was reported to outperform many

other measures (Mladenić & Grobelnik,) in

combination with Naïve Bayes, used for document clas-

si�cation on data with highly imbalanced class distri-

bution. A characteristic of Naïve Bayes used for text

classi�cation is that, once the model has been gen-

erated, the classi�cation is based on the features that

occur in a document to be classi�ed.�is means that

an empty document will be classi�ed into the majority

class. Consequently, having a highly imbalanced class

distribution, if we want to identify documents from

the under-represented class value, we need to have a

model sensitive to the features that occur in such docu-

ments. If most of the selected features are representative

for the majority class value, the documents from other

classes will be almost empty when represented using the

selected features.

Experimental comparison of di�erent feature selec-

tion measures in combination with the support vec-

tor machines 7Support Vector Machines classi�cation
algorithm (SVM) on news articles from the Reuters-

 collection (Brank, Grobelnik, Milič-Frayling, &

Mladenić,) has shown that using all or almost

all the features yields the best performance.�e same

�nding was con�rmed in experimental evaluation of

di�erent feature selectionmeasures on a number of text

classi�cation problems (Forman,). In addition, in

Forman () a new feature selection measure was

introduced: Bi-Normal Separation, which was reported

to improve the performance of SVM, especially with

problems where the class distribution is highly imbal-

anced. Interestingly, they also report that information

gain is outperforming the other tested measures in the

situation when using only a small number of selected

features (– features).

Another feature scoringmeasure for text data, called

the Fisher Index, was proposed as part of a document

retrieval systembased onorganizing large text databases

into hierarchical topic taxonomies (Chakrabarti, Dom,

Agrawal,&Raghavan,). Similar toMladenić (),

for each internal node in the topic taxonomy, a separate

feature subset is used to build a Naïve Bayes model for

that node.�is is sometimes referred to as local feature

selection or, alternatively, context sensitive feature selec-

tion.�e feature set used in each node is relatively small

and tuned to the node context.

What follows are formulas of the described scoring

measures as given in Mladenić and Grobelnik ().

InfGain(F) = P(F)∑i P(Ci∣F) log(P(Ci∣F)/P(Ci))
+P(⨼F)∑i P(Ci∣

⨼F)
× logP(Ci∣

⨼F)/P(Ci))
CrossEntropyTxt(F) = P(F)∑i P(Ci∣F)

log(P(Ci∣F)/P(Ci))

Feature Selection in Text Mining F

F

MutualInfoTxt(F) = ∑i P(Ci) log(P(F∣Ci)/P(F))
OddsRatio(F) = log(P(F∣Cpos)(− P(F∣Cneg)))

− log((− P(F∣Cpos))P(F∣Cneg))
Bi-NormalSeparation(F) = Z−(P(F∣Cpos))

−Z−(P(F∣Cneg))
FisherIndexTxt(F) = (∑pos,neg(P(F∣Cpos)

−P(F∣Cneg)))/∑Ciεpos,neg ∣Ci∣−

×∑dεCi(n(F,d)
−P(F∣Ci))

where P(F) is the probability that feature F occurred,⨼

F means that the feature does not occur, P(Ci) is the
probability of the ith class value, P(Ci∣F) is the condi-
tional probability of the ith class value given that feature
F occurred, P(F∣Ci) is the conditional probability of
feature occurrence given the ith class value, P(F∣Cpos)
is the conditional probability of feature F occurring
given the class value “positive,” P(F∣Cneg) is the condi-
tional probability of feature F occurring given the class

value “negative,” Z−(x) is the standard Normal dis-
tribution’s inverse cumulative probability function (z-
score), ∣Ci∣ is the number of documents in class Ci, and

n(F, d) is if the document d contains feature F and
otherwise.

As already highlighted in text classi�cation, most

of the feature selection methods evaluate each feature

independently. A more sophisticated approach is pro-

posed in Brank et al. (), where a linear SVM is �rst

trained using all the features, and the induced model is

then used to score the features (weight assigned to each

feature in the normal to the induced hyper plane is used

as a feature score). Experimental evaluation using that

feature selection in combinationwith SVM, Perceptron,

and Naïve Bayes has shown that the best performance

is achieved by SVM when using almost all the features.

�e experiments have con�rmed the previous �ndings

on feature subset selection improving the performance

of Naïve Bayes, but the overall performance is lower

than using SVM on all the features.

Much the same as in Brank et al. (), fea-

ture selection was performed using a linear SVM to

rank the features in Bi, Bennett, Embrechts, Bren-

eman, and Song (). However, the experiments

in Bi et al. () were performed on a regression

problem, and the �nal model was induced using a

nonlinear SVM. �e feature selection was shown to

improve performance.

Distributional clustering of words with an agglom-

erative approach (words are viewed as distributions over

document categories) is used for dimensionality red-

uction via feature construction (Bekkerman, El-Yaniv,

Tishby, & Winter,) that preserves the mutual

information between the features as much as possi-

ble. �is representation was shown to achieve com-

parable or better results than the bag-of-words docu-

ment representation using feature selection based on

Mutual information for text; a linear SVM was used

as the classi�er. A related approach, also based on pre-

serving the mutual information between the features

(Globerson & Tishby,), �nds new dimensions by

using an iterative projection algorithm instead of clus-

tering. It was shown to achieve performance compara-

ble to the bag-of-words representationwith all the origi-

nal features, using signi�cantly less features (e.g., on one

dataset, four constructed features achieved % of per-

formance of original features) using the linear SVM

classi�er.

Divisive clustering for feature construction (Dhillon,

Mallela, & Kumar,) was shown to outperform

distributional clustering when used for dimensional-

ity reduction on text data. �e approach uses the

Kullback-Leibler divergence as a distance function, and

minimizes within-cluster divergence while maximiz-

ing between-cluster divergence. Experiments on two

datasets have shown that this dimensionality reduction

slightly improves the performance ofNaïve Bayes (com-

pared to using all the original features), outperforming

the agglomerative clustering of words combined with

Naïve Bayes and achieving considerably higher clas-

si�cation accuracy for the same number of features

than feature subset selection using information gain or

mutual information (in combination with Naïve Bayes

or SVM).

Recommended Reading
Apte, C., Damerau, F., & Weiss, S. M. (). Toward language inde-

pendent automated learning of text categorization models. In

Proceedings of the th annual International ACM SIGIR con-
ference on research and development in Information Retrieval,
pp. –, Dublin, Ireland, .

 F Feature Subset Selection

Brank, J., Grobelnik, M., Milič-Frayling, N., & Mladenić, D.

(). Feature selection using support vector machines. In

A. Zanasi (Ed.), Data mining III (pp. –). Southampton,
UK: WIT.

Bi, J., Bennett, K. P., Embrechts, M., Breneman, C. M., &

Song, M. (). Dimensionality reduction via sparse sup-

port vector machines. Journal of Machine Learning Research, ,
–.

Bekkerman, R., El-Yaniv, R., Tishby, N., & Winter, Y. (). Distri-

butional word clusters vs. words for text categorization. Journal
of Machine Learning Research, , –.

Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan, P. (). Scal-

able feature selection, classification and signature generation

for organizing large text databases into hierarchical topic tax-

onomies. The VLDB Journal, , –.
Dhillon, I., Mallela, S., & Kumar, R. (). A divisive information-

theoretic feature clustering algorithm for text classification.

Journal of Machine Learning Research, , –.
Forman, G. (). An extensive empirical study of feature selec-

tion metrics for text classification. Journal of Machine Learning
Research, , –.

Globerson, A., & Tishby, N. (). Sufficient dimensional-

ity reduction. Journal of Machine Learning Research, ,
–.

Koller, D., & Sahami, M. (). Hierarchically classifying doc-

uments using very few words. In Proceedings of the th
international conference on machine learning ICML’ (pp. –
). Nashrille, TN.

Lewis, D. D., & Ringuette, M. (). Comparison of two learn-

ing algorithms for text categorization. In Proceedings of the
rd annual symposium on document analysis and information
retrieval SDAIR-. Las Vegas, NV.

Mladenić, D. (). Feature subset selection in text-learning. In

Proceedings of the th European conference on machine learning
ECML’. Chemnitz, Germany.

Mladenić, D. (). Feature selection for dimensionality reduc-

tion. In C. Saunders, S. Gunn, J. Shawe-Taylor, & M. Grobelink

(Eds.), Subspace, Latent Structure and Feature Selection: Statis-
tical and Optimization Perspectives Workshop: Lecture notes in
computer science (Vol. , pp. –). Berlin, Heidelberg:
Springer.

Mladenić, D., & Grobelnik, M. (). Feature selection on hierar-

chy of web documents. Journal of Decision Support Systems, ,
–.

Quinlan, J. R. (). Constructing decision tree. In C.: Pro-
grams for machine learning. San Francisco: Morgan Kaufman
Publishers.

Yang, Y., & Pedersen, J. O. (). A comparative study on fea-

ture selection in text categorization. In Proceedings of the
th international conference on machine learning ICML’
(pp. –). Las Vegas, NV.

Feature Subset Selection

7Feature Selection

Feedforward Recurrent Network

7Simple Recurrent Network

Finite Mixture Model

7Mixture Model

First-Order Logic

Peter A. Flach

University of Bristol

Bristol, UK

Synonyms
First-order predicate calculus; First-order predicate

logic; Predicate calculus; Predicate logic; Resolution

Definition
First-order predicate logic – �rst-order logic for short –

is the logic of properties of, and relations between,

objects and their parts. Like any logic, it consists of

three parts: syntax governs the formation ofwell-formed
formulae, semantics ascribes meaning to well-formed
formulae and formalizes the notion of deductive con-
sequence, and proof procedures allow the inference of
deductive consequences by syntactic means. A num-

ber of variants of �rst-order logic exist, mainly di�ering

in their syntax and proof systems. In machine learn-

ing, the main use of �rst-order logic is in 7learning
from structured data, 7inductive logic programming
and7relational data mining.

Motivation and Background
�e interest in logic arises from a desire to formal-

ize human, mathematical and scienti�c reasoning, and

goes back to at least the Greek philosophers. Aristotle

devised a form of propositional reasoning called syl-
logisms in the fourth century BC. Aristotle was held
in very high esteem by medieval scholars, and so fur-

ther signi�cant advances were not made until a�er the

Middle Ages. Leibniz wrote of an “algebra of thought”

First-Order Logic F

F

and linked reasoning to calculation in the late sev-

enteenth century. Boole and De Morgan developed

the algebraic point of view in the mid-nineteenth

century.

Universally quanti�ed variables, which form the

main innovation in �rst-order logic as compared to

7propositional logic, were invented by Gottlob Frege
in his Begri�sschri� (“concept notation”) from ,

and independently by Charles Sanders Peirce in ,

who introduced the notation ∏x and ∑x for universal

and existential quanti�cation. Frege’s work went largely

unnoticed until it was developed further by Alfred

North Whitehead and Bertrand Russell in their Prin-
cipia Mathematica (). Seminal contributions were
made, among many others: by Giuseppe Peano, who

axiomatized number theory and introduced the nota-

tion (x) and ∃x; by Kurt Gödel, who established the
completeness of �rst-order logic as well as the incom-

pleteness of any system incorporating Peano arithmetic;

by Alonzo Church, who proved that �rst-order logic

is undecidable, and who introduced λ-calculus, a form
of 7higher-order logic that allows quanti�cation over
predicates and functions (as opposed to �rst-order

logic, which only allows quanti�cation over objects);

and by Alfred Tarski, who pioneered logical semantics

through model theory, and the notion of logical conse-

quence.�e now universally accepted notation ∀x was
introduced by Gerhard Gentzen.

Logic plays an important role in any approach to

symbolic AI that employs a formal language for knowl-

edge representation and inference. A signi�cant, rela-

tively recent development was the introduction of logic

programming languages such as 7Prolog, which turn
logical inference into computation. In machine learn-

ing, the use of a �rst-order language is essential in order

to handle domains inwhich objects have inherent struc-

ture; the availability of Prolog as a common language

and programming platform gave rise to the �eld of

inductive logic programming.

Theory
Syntax

A�rst-order logical language is built from constant sym-
bols, variable symbols, predicate symbols and function
symbols; the latter two kinds of symbols have an associ-
ated arity, which is the number of arguments they take.

Terms are either constant symbols, variable symbols, or
of the form f (t, . . . , tn) where f is a function symbol
with arity n, and t, . . . , tn is a sequence of n terms.Using
the logical connectives ¬ (negation), ∧ (conjunction),
∨ (disjunction) and → (material implication) and the
quanti�ers ∀ (universal quanti�er) and ∃ (existential
quanti�er), well-formed formulae or w�s are de�ned
recursively as follows: () if P is a predicate symbol with
arity n, and t, . . . , tn is a sequence of n terms, then
P(t, . . . , tn) is a w�, also referred to as an atomic for-
mula or atom; () if ϕ and ϕ are w� ’s, then (¬ϕ),
(ϕ ∧ ϕ), (ϕ ∨ ϕ) and (ϕ → ϕ) are w�s; () if x is
a variable and ϕ is a w�, then (∀x : ϕ) and (∃x : ϕ)
are w�s; () nothing else is a w�. Brackets are usu-

ally dropped as much as it is possible without causing

confusion.

Example Let “man,” “single,” and “partner” be two
unary and one binary predicate symbol, respectively, and
let “x” and “y” be variable symbols, then the following is
a w� ϕ expressing that men who are not single have a
partner:

(∀x : (man(x)∧(¬single(x)))→ (∃y : partner(x, y))).

Assuming that ¬ binds strongest, then ∧, then →, the
brackets can be dropped:

∀x : man(x) ∧ ¬single(x)→ ∃y : partner(x, y).

A propositional language is a special case of a
predicate-logical language, built only from predicate

symbols with arity , referred to as proposition sym-
bols or propositional atoms, and connectives. So, for
instance, assuming the proposition symbols “man,”
“single” and “has_partner,” the following is a proposi-
tional w�: man ∧ ¬single → has_partner. �e main
di�erence is that in propositional logic references to

objects cannot be expressed and therefore have to be

understood implicitly.

Semantics

First-order w�s express statements that can be true or

false and so a �rst-order semantics consists in con-

structing a mapping from w�s to truth-values, given an

interpretation, which is a possible state of a�airs in the

domain of discourse, mapping constant, predicate and

 F First-Order Logic

function symbols to elements, relations and functions in

and over the domain. To deal with variables, a valuation

function is employed. Once this mapping is de�ned, the

meaning of a w� consists in the set of interpretations in

which the w� maps to true, also called its models.�e

intuition is that the more “knowledge” a w� contains,

the fewer models it has.�e key notion of logical con-

sequence is then de�ned in terms of models: one w� is

a logical consequence of another if the set of models of

the �rst contains the set of models of the second; hence

the second w� contains at least the same, if not more,

knowledge than the �rst.

Formally, a predicate-logical interpretation, or inter-
pretation for short, is a pair (D, i), where D is a

non-empty domain of individuals, and i is a function
assigning to every constant symbol an element of D, to
every function symbol with arity n a mapping from Dn

toD, and to every predicate symbol with arity n a subset
of Dn, called the extension of the predicate. A valuation
is a function v assigning to every variable symbol an
element of D.
Given an interpretation I = (D, i) and a valuation v,

a mapping iv from terms to individuals is de�ned as fol-
lows: () if t is a constant symbol, iv(t) = i(t); () if
t is a variable symbol, iv(t) = v(t); () if t is a term
f (t, . . . , tn), iv(t) = i(f)(iv(t), . . . , iv(tn)).�e map-
ping is extended to a mapping from w�s to truthvalues

as follows: () if ϕ is an atom P(t, . . . , tn), iv(ϕ) =
i(P)(iv(t), . . . , iv(tn)); () iv(¬ϕ) = T if iv(ϕ) = F,
and F otherwise; () iv(ϕ ∧ ϕ) = T if iv(ϕ) = T
and iv(ϕ) = T, and F otherwise; () iv(∀x : ϕ) = T
if ivx→d(ϕ) = T for all d ∈ D, and F otherwise, where
vx→d is v except that x is assigned d.�e remaining con-
nectives and quanti�er are evaluated by rewriting: ()

iv(ϕ ∨ ϕ) = iv(¬(¬ϕ ∧ ¬ϕ)); () iv(ϕ → ϕ) =
iv(¬ϕ ∨ ϕ); () iv(∃x : ϕ) = iv(¬∀x : ¬ϕ).
An interpretation I satis�es a w� ϕ, notation I ⊧ ϕ,

if iv(ϕ) = T for all valuations v; we say that I is amodel
of ϕ, and that ϕ is satis�able. If all models of a set of w�s
Σ are also models of ϕ, we say that Σ logically entails ϕ
or ϕ is a logical consequence of Σ, and write Σ ⊧ ϕ. If
Σ = ∅, ϕ is called a tautology and we write ⊧ ϕ. A w�
ψ is a contradiction if ¬ψ is a tautology. Contradictions
do not have any models, and consequently ψ ⊧ α for
any w� α.�e deduction theorem says that Σ ⊧ α → β
if and only if Σ ∪ {α} ⊧ β. Another useful fact is that,
if Σ ∪ {¬γ} is a contradiction, Σ ⊧ γ; this gives rise to

a proof technique known as Reductio ad absurdum or
proof by contradiction (see below).

Example We continue the previous example. Let
D = {Peter,Paul,Mary}, and let the function i be
de�ned as follows: i(man) = {Peter,Paul}; i(single) =
{Paul}; i(partner) = {(Peter,Mary)}. We then have
that the interpretation I = (D, i) is a model for the w�
ϕ above. On the other hand, I doesn’t satisfy ψ =∀x:∃ y:
partner(x, y), and therefore ϕ ⊭ ψ. However, the reverse
does hold: there is no interpretation that satis�es ψ and
not ϕ, and therefore ψ ⊧ ϕ.

In case of a propositional logic this semantics can

be considerably simpli�ed. Since there are no terms the

domain D plays no role, and an interpretation simply
assigns truth-values to proposition symbols. W�s can

thenbe evaluatedusing rules (–) and (–). For exam-

ple, if i(man)=T, i(single)=T and i(has_partner)=T,
then i(man∧¬single→has_partner) = T (if this

seems counter-intuitive, this is probably because the

reader’s knowledge of the domain suggests another w�

¬(single∧has_partner), which is false in this particular
interpretation).

Proofs

A proof procedure consists of a set of axioms and a set of
inference rules. Given a proof procedure P, we say that ϕ
is provable from Σ and write Σ⊢Pϕ if there exists a �nite
sequence of w�s ϕ, ϕ, . . . , ϕn−, ϕwhich is obtained by
successive applications of inference rules to axioms, pre-
misses in Σ, and/or previous w�s in the sequence. Such a
sequence of w�s, if it exists, is called a proof of ϕ from Σ.
Aproof procedureP is sound, with respect to the seman-
tics established by predicate-logical interpretations, if

Σ ⊧ ϕ whenever Σ ⊢P ϕ; it is complete if Σ ⊢P ϕ when-
ever Σ ⊧ ϕ. For a sound and complete proof proce-
dure for �rst-order predicate logic, see e.g., Turner,

, p. .

A set of w�s Σ is consistent, with respect to a proof
procedure P, if not both Σ ⊢P ϕ and Σ ⊢P ¬ϕ for some
w� ϕ. Given a sound and complete proof procedure,
the proof-theoretic notion of consistency coincideswith

the semantic notion of satis�ability. In particular, if we

can prove that Σ ∪ {¬γ} is inconsistent, then we know
that Σ ∪ {¬γ} is not satis�able, hence a contradiction,
and thus Σ ⊧ γ.�is still holds if the proof procedure

First-Order Logic F

F

is only complete in the weaker sense of being able to

demonstrate the inconsistency of arbitrary sets of w�s

(see the resolution inference rule, below).

Example One useful inference rule for predicate logic
replaces a universally quanti�ed variable with an arbi-
trary term, which is called universal elimination. So,
if “c” is a constant symbol in our language, then we
can infer

man(c) ∧ ¬single(c)→ ∃y : partner(c, y)

from ϕ above by universal elimination. Another inference
rule, which was calledModus Ponens by Aristotle, allows
us to infer β from α and α → β. So, if we additionally have
man(c) ∧ ¬single(c), then we can conclude

∃y : partner(c, y)

by Modus Ponens.�is rule is also applicable to proposi-
tional logic. An example of an axiom is c= c for any con-
stant symbol c (strictly speaking this is an axiom schema,
giving rise to an axiom for every constant symbol in the
language).

Programming in Logic

Syntax, semantics and proof procedures for �rst-order

logic can be simpli�ed and made more amenable to

computation if we limit the number of ways of express-

ing the same thing.�is can be achieved by restricting

w�s to a normal form called prenex conjunctive normal
form (PCNF).�is means that all quanti�ers occur at
the start of the w� and are followed by a conjunction of

disjunctions of atoms and negated atoms, jointly called

literals. An example of a formula in PCNF is

∀x : ∃y : ¬man(x) ∨ single(x) ∨ partner(x, y).

�is formula is equivalent to the w� ϕ in Example , in
the sense that it has the same set ofmodels, and so either

one logically entails the other. Every �rst-order w� can

be transformed into a logically equivalent formula in

PCNF, which is unique up to the order of conjuncts and

disjuncts. A transformation procedure can be found in

Flach ().

PCNF can be further simpli�ed if we use func-

tion symbols instead of existential quanti�ers. For

instance, instead of ∃y : partner(x, y), we can say

partner(x, partner_of (x)), where partner_of is a unary
function symbol called a Skolem function, a�er the
Norwegian logician�oralf Skolem.�e two statements

are not logically equivalent, as the second entails the

�rst but not vice versa, but this di�erence is of little

practical consequence. Since all variables are now uni-

versally quanti�ed the quanti�ers are usually omitted,

leading to clausal form:

¬man(x) ∨ single(x) ∨ partner(x, partner_of (x)).

To sum up, a w� in clausal form is a conjunction of dis-

junctions of literals, of which the variables are implicitly

universally quanti�ed.�e individual disjunctions are

called clauses.

Further simpli�cations include dispensing with

equality, which means that terms involving function

symbols, such as partner_of (c), are not evaluated and
in e�ect treated as names of objects (in this case, the

function symbols are called functors or data construc-
tors). Under this assumption each ground term (a term
without variables) denotes a di�erent object, which

means that we can take the set of ground terms as the

domain D of an interpretation; this is called a Her-
brand interpretation, a�er the French logician Jacques
Herbrand.

�e main advantage of clausal logic is the existence

of a proof procedure consisting of a single inference rule

and no axioms.�is inference rule, which is called reso-
lution, was introduced by Robinson (). In propo-
sitional logic, given two clauses P ∨ Q and ¬Q ∨ R
containing complementary literalsQ and ¬Q, resolution
infers the resolvent P ∨ R (P and/or R may themselves
contain several disjuncts). For instance, given ¬man ∨
single ∨ has_partner and man ∨ woman, we can infer
woman∨single∨has_partner by resolution. In �rst-order
logic, Q and ¬Q′ are complementary if Q and Q′ are

uni�able, i.e., there exists a substitution θ of terms for
variables such that Qθ = Q′θ, where Qθ denotes the
application of substitution θ toQ; in this case, the resol-
vent of P∨Q and ¬Q′ ∨R is Pθ ∨Rθ. For instance, from
the following two clauses:

¬man(x) ∨ single(x) ∨ partner(x, partner_of (x))

¬single(father_of (c))

 F First-Order Logic

we can infer

¬man(father_of (c)) ∨ partner(father_of (c),

partner_of (father_of (c))).

�e resolution inference rule is sound but not complete:

for instance, it is unable to produce tautologies such as

man(c) ∨ ¬man(c) if no clauses involving the predi-
cate man are given. However, it is refutation-complete,
which means it can demonstrate the unsatis�ability of

any set of clauses by deriving the empty clause, indi-
cated by ◻. For instance, man(c) ∧ ¬man(c) is a w�
consisting of two clauses which are complementary lit-

erals, so by resolution we infer the empty clause in

one step.

Refutation by resolution is the way in which queries

are answered in the logic programming language

Prolog. Prolog works with a subset of clausal logic

calledHorn logic, named a�er the logician Alfred Horn.
A Horn clause is a disjunction of literals with at most
one positive (un-negated) literal; Horn clauses can

be further divided into de�nite clauses, which have
one positive literal, and goal clauses which have none
A Prolog program consists of de�nite clauses, and a

goal clause functions as a procedure call. Notice that

resolving a goal clause with a de�nite clause result in

another goal clause, because the positive literal in the

de�nite clause (also called its head) must be one of the
complementary literals.�e idea is that the resolution

step reformulates the original goal into a new goal that

is one step closer to the solution. A refutation is then

a sequence of goals G,G,G, . . . ,Gn such that G is the
original goal, each Gi is obtained by resolving Gi− with

a clause from the program P, and Gn = ◻. Such a refu-
tation demonstrates that P ∪ {G} is inconsistent, and
therefore P ⊧ ¬G.
Finding a refutation amounts to a search problem,

because there are typically several program clauses that

could be resolved against the current goal. Virtually all

Prolog interpreters apply a depth-�rst search procedure,

searching the goal literals le�-to-right and the program

clauses top-down. Once a refutation is found the sub-

stitutions collected in all resolution steps are composed

to obtain an answer substitution. One unique feature of
logic programming is that a goal may have more than

one (or, indeed, less than one) refutation and answer

substitution from a given program.

Example Consider the following Prolog program:

peano_sum(0,Y,Y).
peano_sum(s(X),Y,s(Z)):-

peano_sum(X,Y,Z).

�is program de�nes addition in Peano arithmetic. We
follow Prolog syntax: variables start with an uppercase
letter, and :- stands for reversed implication ← or “if.”
�e unary functor s represents the successor function.
So the �rst rule reads “the sum of and an arbi-
trary number y is y,” and the second rule reads “the
sum of x + and y is z + if the sum of x and y
is z.”

�e goal :-peano_sum(s(0),s(s(0)),Q)
states “there are no numbers q such that + = q." We
�rst resolve this goal with the second program clause
to obtain :-peano_sum(0,s(s(0)),Z) under the
substitution {Q /s(Z)}. �is new goal states “there are
no numbers z such that + = z.” It is resolved
with the �rst clause to yield the empty clause under
the substitution {Y /s(s(0)), Z /s(s(0))}. �e
resulting answer substitution is {Q /s(s(s(0)))}, i.e.,
q = .

As another example, goal :-peano_sum(A,B,
s(s(0))) states “there are no numbers a and b
such that a + b = .” �is goal has three refu-
tations: one involving the �rst clause only, yielding
the answer substitution {A /0, B /s(s(0))}; one
involving the second clause then the �rst, resulting in
{A /s(0), B /s(0)}; and the third applying the second
clause twice followed by the �rst, yielding {A /s(s(0)),
B /0}. Prolog will return these three answers in this
order.

Induction in �rst-order logic amount to recon-

structing a logical theory from some of its logical con-

sequences. For techniques to induce a Prolog program

given examples such as peano_sum(s(0),s(0),
s(s(0))), see inductive logic programming.
For general introductions to logic and its use inArti-

�cial Intelligence, see Genesereth and Nilsson ()

and Turner (). Kowalski’s classic text Logic for prob-
lem solving focusses on clausal logic and resolution
theorem proving (Kowalski,). For introductions

to Prolog programming, see Bratko () and Flach

().

First-Order Regression Tree F

F

Cross References
7Abduction
7Entailment
7Higher-Order Logic
7Hypothesis Language
7Inductive Logic Programming
7Learning from Structured Data
7Logic Program
7Propositionalization
7Relational Data Mining

Recommended Reading
Bratko, I. (). Prolog programming for artificial intelligence (rd

ed.). Boston: Addison Wesley.

Flach, P. (). Simply logical: Intelligent reasoning by example. New
York: Wiley.

Genesereth, M., & Nilsson, N. (). Logical foundations of artificial
intelligence. San Francisco: Morgan Kaufmann.

Kowalski, R. (). Logic for problem solving. New York: North-
Holland.

Robinson, J. A. (). A machine-oriented logic based on the

resolution principle. Journal of the ACM, (), –.
Turner, R. (). Logics for artificial intelligence. Chichester: Ellis

Horwood.

First-Order Predicate Calculus

7First-Order Logic

First-Order Predicate Logic

7First-Order Logic

First-Order Regression Tree

Synonyms
Logical regression tree; Relational regression tree

Definition
A �rst-order regression tree can be de�ned as follows:

De�nition (First-Order Regression Tree) A �rst-
order regression tree is a binary tree in which

● Every internal node contains a test which is a conjunc-
tion of �rst-order literals.

● Every leaf (terminal node) of the tree contains a real
valued prediction.

An extra constraint placed on the �rst-order literals that
are used as tests in internal nodes is that a variable
that is introduced in a node (i.e., it does not occur in
higher nodes) does not occur in the right subtree ofl
the node.

Figure gives an example of a �rst-order regression

tree.�e test in a node should be read as the existentially

quanti�ed conjunction of all literals in the nodes in the

path from the root of the tree to that node. In the le�

subtree of a node, the test of the node is added to the

conjunction, for the right subtree, the negation of the

test should be added. For the example state description

of Fig. , the tree would predict a Qvalue = ., since
there exists no block that is both on the �oor and clear,

but there is a blockwhich is on the �oor and has another

block on top of it. To see this, substitute BlockA in the

tree with (or) and BlockB with (or).

�e constraint on the use of variables stems from the

fact that variables in the tests of internal nodes are exis-

tentially quanti�ed. Suppose a node introduces a new

variableX.Where the le� subtree of a node corresponds
to the fact that a substitution for X has been found to
make the conjunction true, the right side corresponds

to the situation where no substitution for X exists, i.e.,

On(BlockA, floor)

On(BlockB, BlockA)

Clear(BlockA) Qvalue = 0.1

Qvalue = 0.4

Qvalue = 0.9 Qvalue = 0.3

yes

yes

yes

no

no

no

First-Order Regression Tree. Figure . A relational regres-

sion tree

First-Order Regression Tree. Figure . State description

 F F-Measure

there is no such X.�erefore, it makes no sense to refer
to X in the right subtree.

Cross References
7First-Order Rule
7Inductive Logic Programming
7Relational Reinforcement Learning

F-Measure

A measure of information retrieval performance. See

7Precision and Recall.

Foil

7Rule Learning

Formal Concept Analysis

Gemma C. Garriga

Universite Pierre et Marie Curie

Paris, France

Definition
Formal concept analysis is a mathematical theory of

concept hierarchies that builds on order theory; it can

be seen as an unsupervisedmachine learning technique

and is typically used as a method of knowledge repre-

sentation.�e approach takes an input binary relation

(binary matrix) specifying a set of objects (rows) and

a set of attributes for those objects (columns), �nds

the natural concepts described in the data, and then

organizes the concepts in a partial order structure or

Hasse diagram. Each concept in the �nal diagram is a

pair of sets of objects and attributes that are maximally

contained one in each other.

Theory
�e above intuition can be formalized through a Galois

connection as follows. Let R be the binary relation
between a set of objects and a set of attributes, that is,

R ⊆ O × A. Two mappings α : O ↦ A and β :

A ↦ O are de�ned so that the operator α(O), for some
O ⊆ O, returns the maximal set of attributes common
to all objects in O; dually, the operator β(A), for some
A ⊆ A, returns the maximal set of objects containing all
attributes inA.�ese twomappings induce aGalois con-
nection between the powerset of objects and the power-

set of attributes, that is, they satisfy O ⊆ β(A) ⇔ A ⊆
α(O) for a set of objectsO and a set of attributes A.
From here, a formal concept is a pair of sets of

objects and attributes (O,A) from the binary relation
that satisfy α(O) = A and β(A) = O. Typically, O
is called the extent of the concept and A the intent of
the concept. Note that concepts can be interpreted from

the geometrical point of view, they are maximal rectan-

gles of ones (not necessarily consecutive) in the input

binary table R.�e organization of all the formal con-
cepts in a Hasse diagram is called the concept lattice.

�is lattice corresponds to a partial order structure of

concepts where edges between concepts correspond to

the standard inclusion of the sets.

A small toy example in Figs. and illustrates

the formal concepts and their organization in a Hasse

diagram.

Motivation and Background
Formal concept analysis has been applied to a vari-

ety of disciplines, from psychology, sociology, biology,

medicine, linguistics, or industrial engineering, to cite

some, for the interactive exploration of implicit and

explicit structures in the data.

From the point of view ofmachine learning and data

mining, the connection between the formal concepts

of the lattice and the so-called, closed sets of items is

remarkable. Closed sets of items appear in the context of

7constraint-based mining, in which the user provides

1

2

3

a b c d

1 0 1 1

1 1 1 0

1 1 0 0

Formal Concept Analysis. Figure . A binary relation R ⊆
{, , } × {a,b, c,d}

Frequent Itemset F

F

{a, b, c, d}
{}

{a, b, c}
{2}

{a, c, d}
{1}

{a, c}
{1, 2}

{a}
{1, 2, 3}

{a, b}
{2, 3}

Formal Concept Analysis. Figure . Concepts of the rela-

tion R organized in a Hasse diagram

restraints that guide a search of patterns in the data.

�ey are maximal sets of attributes occuring frequently

in the data; they correspond to a compacted repre-

sentation of the frequent sets from 7frequent itemset
mining. It is well known that closed sets correspond

exactly to the intents of the concepts derived via for-

mal concept analysis, and therefore, from the formal

concepts it is possible to construct bases of minimal

nonredundant sets of association rules from which all

other rules holding in the data can be derived.

Also, formal concept analysis has been typically seen

as a type of conceptual 7clustering. Each concept or
groups of concepts form a cluster of objects sharing sim-

ilar properties.�e diagrams obtained from this sort of

clustering can then be used in class discovery and class

prediction. Although a diagramof concepts can become

large and complex, di�erent approaches have worked

toward reducing the complexity of concept lattices via

conceptual scaling.

We refer the reader to Ganter & Wille () for

a general reference on formal concept analysis, and

to Davey & Priestly () for the basic concepts on

order theory. For more thorough descriptions of di�er-

ent applications of formal concept analysis in the com-

puter science �eld, see Carpineto & Romano ().

Cross References
7Clustering
7Constraint-Based Mining
7Frequent Itemset Mining

Recommended Reading
Carpineto, C., & Romano, G. (). Concept data analysis. Theory

and applications. New York: Wiley.
Davey, B. A., & Priestly, H. A. (). Introduction to lattices and

order. Cambridge: Cambridge University Press.
Ganter, B. & Wille, R. (). Formal concept analysis. Mathematical

foundations. Heidelberg: Springer.

Frequent Itemset

Hannu Toivonen

University of Helsinki

Helsinki, Finland

Synonyms
Frequent set

Definition
Frequent itemsets (Agrawal et al., ,) are a form

of 7frequent pattern. Given examples that are sets of
items and a minimum frequency, any set of items that

occurs at least in the minimum number of examples is

a frequent itemset.

For instance, customers of an on-line bookstore

could be considered examples, each represented by the

set of books he or she has purchased. A set of books,

such as {“Machine Learning,” “�e Elements of Statis-
tical Learning,” “Pattern Classi�cation,”} is a frequent
itemset if it has been bought by su�ciently many cus-

tomers. Given a frequency threshold, perhaps only .

or .% for an on-line store, all sets of books that have
been bought by at least that many customers are called

frequent. Discovery of all frequent itemsets is a typi-

cal data mining task.�e original use has been as part

of 7association rule discovery. 7Apriori is a classical
algorithm for �nding frequent itemsets.

 F Frequent Pattern

�e idea generalizes far beyond examples consist-

ing of sets. �e pattern class can be re-de�ned, e.g.,

to be (frequent) subsequences rather than itemsets; or

original data can o�en be transformed to a suitable rep-

resentation, e.g., by considering each discrete attribute-

value pair or an interval of a continuous attribute

as an individual item. In such more general settings,

the term 7frequent pattern is o�en used. Another
direction to generalize frequent itemsets is to consider

other conditions than frequency on the patterns to

be discovered; see 7constraint-based mining for more
details.

Cross References
7Apriori Algorithm
7Association Rule
7Constraint-Based Mining
7Frequent Pattern

Recommended Reading
Agrawal, R., Imieliński, T., & Swami, A. (). Mining association

rules between sets of items in large databases. In Proceedings of
the ACM SIGMOD international conference on management
of data, Washington, DC (pp. –). New York: ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I.

(). Fast discovery of association rules. In U. M. Fayyad,

G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),

Advances in knowledge discovery and data mining (pp. –).
Menlo Park: AAAI Press.

Frequent Pattern

Hannu Toivonen

University of Helsinki

Finland

Definition
Given a setD of examples, a languageL of possible pat-
terns, and a minimum frequencymin_ fr, every pattern
θ ∈ L that occurs at least in the minimum number
of examples, i.e., ∣{e ∈ D ∣ θ occurs in e}∣ ≥ min_ fr,
is a frequent pattern. Discovery of all frequent pat-

terns is a common data mining task. In its most typical

form, the patterns are7frequent itemsets. A more gen-
eral formulation of the problem is 7constraint-based
mining.

Motivation and Background
Frequent patterns can be used to characterize a given set

of examples: they are the most typical feature combina-

tions in the data.

Frequent patterns are o�en used as components in

larger data mining or machine learning tasks. In partic-

ular, discovery of 7frequent itemsets was actually �rst
introduced as an intermediate step in7association rule
mining (Agrawal, Imieliński & Swami,) (“frequent

itemsets” were then called “large”).�e frequency and

con�dence of every valid association rule X → Y are
obtained simply as the frequency of X ∪Y and the ratio
of frequencies of X ∪ Y and X, respectively.
Frequent patterns can be useful as 7features for

further learning tasks.�eymay capture shared proper-

ties of examples better than individual original features,

while the frequency threshold gives some guarantee that

the constructed features are not so likely just noise.

However, other criteria besides frequency are o�en used

to choose a good set of candidate patterns.

Structure of Problem
A frequent pattern o�en is essentially a set of binary

7features. Given a set I of all available features, the pat-
tern language L then is the power set of I . An example
in dataD covers a pattern θ ∈ L if it has all the features
of θ. In such cases, the frequent pattern discovery task
reduces to the task of discovering 7frequent itemsets.
�erefore, the structure of the frequent pattern discov-

ery problem is best described using the elementary case

of frequent itemsets.

Let I be the set of all items (or binary features); sub-
sets of I are called itemsets (or examples or patterns,
depending on the context). �e input to the frequent

itemset mining problem is a multiset D of itemsets
(examples described by their features), and a frequency

threshold. �e task is to output all frequent itemsets
(patterns) and their frequencies, i.e., all subsets of I
that exceed the given frequency threshold in the given

dataD.

Example Assume the following problem speci�cation:

● Set of all items I = {A,B,C,D}.
● Data D = {{A,B,C},{A,D},{B,C,D},{A,B,C},
{C,D},{B,C}}.

● Frequency threshold is .

Frequent Pattern F

F

All possible itemsets and their frequencies:

Itemset Frequency

{A}

{B}

{C}

{D}

{A,B}

{A,C}

{A,D}

{B,C}

Itemset Frequency

{B,D}

{C,D}

{A,B,C}

{A,B,D}

{A,C,D}

{B,C,D}

{A,B,C,D}

�e frequent itemsets are {A}, {B}, {C}, {D},
{A,B}, {A,C}, {B,C}, {C,D}, {A,B,C}.

�e7hypothesis space for itemsets obviously is the
power set of I , and it has an exponential size (∣I∣) in the
number of items. Since all frequent itemsets are output,

this is also the size of the output in the worst case (e.g.,

if the frequency threshold is zero, or if all examples in

D equal I), as well as the worst case time complexity.
In practical applications of frequent itemset mining,

the size of the output as well as the running times are

much smaller, but they strongly depend on the proper-

ties of the data and the frequency threshold.�e useful

range of thresholds varies enormously among di�er-

ent datasets. In many applications – such as 7basket
analysis – the number ∣I ∣ of di�erent items can be
in thousands, even millions, while the typical sizes of

examples are at most in dozens. In such sparse datasets

a relatively small number of frequent itemsets can reveal

the most outstanding co-occurrences; e.g., there are not

likely to be very large sets of books typically bought

by the same customers. In dense datasets, in turn, the

number of frequent patterns can be overwhelming and

also relatively uninformative. E.g., consider the dense

dataset of books that have not been purchased by a cus-
tomer: there are a huge number of sets of books that

have not been bought by the same customers.

Theory/solutions
�emost widely known solution for �nding all frequent

itemsets is the 7Apriori algorithm (Agrawal, Mannila,
Srikant, Toivonen, & Verkamo,). It is based on the

monotonicity of itemset frequencies (a7generalization
relation): the frequency of a set is at most as high as

the frequency of any of its subsets. Conversely, if a set is

known to be infrequent, then none of its supersets can

be frequent.

Apriori views the 7hypothesis space of item-
sets as a (re�nement) lattice de�ned by set contain-

ment, and performs a7general-to-speci�c search using
7breadth-�rst search. In other words, it starts with sin-
gleton itemsets, the most general and frequent sets, and

proceeds to larger and less frequent sets.�e search is

pruned whenever a set does not reach the frequency

threshold: all supersets of such sets are excluded from

further search. Apriori deviates from standard breadth-

�rst search by evaluating all sets of equal size in a single

batch, i.e., it proceeds in a levelwisemanner.�is has no

e�ect on the search structure or results, but can reduce

disk access considerably for large databases. See the

entry7Apriori Algorithm for an outline of themethod.

Example Figure illustrates the search space for the
data D of Example . Dark nodes represent frequent
itemsets, i.e., the answer to the frequent itemset mining
problem. Apriori traverses the space a level at a time. For
instance, on the second level, it �nds out that {A,D} and
{B,D} are not frequent. It therefore prunes all their super-
sets, i.e., does not evaluate sets {A,B,D}, {A,C,D}, and
{B,C,D} on the third level.

Other search strategies have also been applied.

A 7depth-�rst search without the subset check allows
faster identi�cation of candidates, at the expense of hav-

ing more candidates to evaluate and doing that without

natural batches (e.g., Zaki,). FP-growth (Han, Pei,

Yin, & Mao,) uses a tree structure to store the

information in the dataset, and uses it to recursively

search for frequent itemsets.

�e search strategy of Apriori is optimal in a cer-

tain sense. Consider the number of sets evaluated, and

assume that for any already evaluated set we know

whether it was frequent or not but do not consider its

frequency. Apriori evaluates the frequencies of all fre-

quent itemsets plus a number of candidates that turn

out to be infrequent. It turns out that every infrequent

candidate must actually be evaluated under the given

assumptions: knowing which other sets are frequent

andwhich are not does not help, regardless of the search

 F Frequent Pattern

{A, B, C, D}

{A}

{A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

{A, B, C } {A, B, D} {A, C, D} {B, C, D}

{B} {C} {D}

Frequent Pattern. Figure . The search space of frequent itemsets for data D of the running example. Dark nodes:

frequent itemsets; white nodes: infrequent itemsets

{A, B, C, D}

{A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

{A, B, C} {A, B, D} {A, C, D} {B, C, D}

{B} {C} {D}{A}

Frequent Pattern. Figure . The positive border ({A,B,C}, {C,D}) and negative border ({A,D}, {B,D}) of frequent
itemsets

order. �is observation leads to the concept of bor-
der: the border consists of all those itemsets whose all
proper subsets are frequent and whose all proper super-

sets are infrequent (Gunopulos et al., ; Mannila &

Toivonen,).�e border can further be divided into

two: the positive border contains those itemsets in the

border that are frequent, the negative border contains

those that are not.�e positive border thus consists of

the most speci�c patterns that are frequent, and corre-

sponds to the “S” set of7version spaces.

Example Continuing our running example, Figure
illustrates the border between the frequent and infrequent
sets. Either the positive or the negative border can alone
be used to specify the collection of frequent itemsets: every
frequent itemset is a subset of a set in the positive border
({A,B,C}, {C,D}), while every infrequent itemset is a
superset of a set in the negative border ({A,D}, {B,D}).

One variant of frequent itemset mining is to out-

put the positive border only, i.e., to �nd the maximal
frequent itemsets (Bayardo,). �is can be imple-
mented with search strategies that do not need to eval-

uate the whole space of frequent patterns.�is can be

useful especially if the number of frequent itemsets is

very large, or if the maximal frequent itemsets are large

(in which case the number of frequent itemsets is large,

too, since the number of subsets is exponential in the

length of themaximal set). As a trade-o�, the result does

not directly indicate frequencies of itemsets.

Condensed Representations: Closed Sets and

Nonderivable Sets Closed sets and nonderivable sets

are a powerful concept for working with frequent item-

sets, especially if the data is relatively dense or there are

strong dependencies. Unlike the aforementioned sim-

ple model for borders, here also the known frequencies

of sets are used to make inferences about frequencies of

other sets.

As a motivation for closed sets (Pasquier, Bastide,

Taouil, & Lakhal,), consider a situation where the

frequency of itemset {i, j} equals the frequency of item j.
�is implies that whenever j occurs, so does i.�us, any
set A∪ {j} that contains item j also contains item i, and
the frequencies of sets A ∪ {j} and A ∪ {i, j} must be
equal. As a result, it su�cies to evaluate sets A ∪ {j} to
obtain the frequencies of sets A ∪ {i, j}, too.
More formally, the closure of setA is its largest super-

set with identical frequency. A is closed i� it is its own
closure, i.e., if every proper superset of A has a smaller

Frequent Pattern F

F

frequency than A.�e utility of closed sets comes from
the fact that frequent closed sets and their frequen-

cies are a su�cient representation of all frequent sets.

Namely, if B is a frequent set then its closure is a fre-
quent closed set in Cℓ, where Cℓ denotes the collection
of all frequent closed itemsets. B’s frequency is obtained
as fr(B) = max{fr(A) ∣ A ∈ Cℓ and B ⊆ A}. If B is not
a frequent set, then it has no superset in Cℓ. 7Formal
concept analysis studies and uses closed sets and other

related concepts.

Generators are a complementary concept, and also

constitute a su�cient representation of frequent item-

sets. (To be more exact, in addition to frequent genera-

tors, generators in the border are also needed). Set A is
a generator (also known as a key pattern or a free set)
if all its proper subsets have a larger frequency than A
has. �us, in an equivalence class of itemsets, de�ned

by the set of examples in which they occur, the maximal

element is unique and is the closed set, and theminimal

elements are generators.�e property of being a gener-

ator is monotone in the same way that being frequent is,

and generators can be found with simple modi�cations

to the Apriori algorithm.

Example Figure illustrates the equivalence classes
of itemsets by circles. For instance, the closure of itemset
{A,B} is {A,B,C}, i.e., whenever {A,B} occurs in the
data, C also occurs, but no other items. Given just the
frequent closed sets and their frequencies, the frequency
of, say, {B} is obtained by �nding its smallest frequent
closed superset. It is {B,C}, with frequency , which is
also B’s frequency. Alternatively, using generators as the
condensed representation, the frequency of itemset {B,C}

can be obtained by �nding its maximal generator subset,
i.e., {B}, with which it shares the same frequency.

Nonderivability of an itemset (Calders & Goethals,

) is a more complex but o�en also a more pow-

erful concept than closed sets. Given the frequencies

of (some) subsets of itemset A, the frequency of A
may actually be uniquely determined, i.e., there is only

one possible consistent value. A practical method of

trying to determine the frequency is based on deriv-

ing upper and lower bounds with inclusion–exclusion

formula from the known frequencies of some sub-

sets, and checking if these coincide. An itemset is

derivable if this is indeed the case, otherwise it is non-
derivable. Obviously, the collection of nonderivable fre-
quent sets is a su�cient representation for all frequent

sets.

Bounds for the absolute frequency of set I are
obtained from its subsets as follows, for any X ⊆ I:

fr(I) ≤ ∑
J :X⊆J⊂I

(−)∣I∖J∣+fr(J) if ∣I ∖ X∣ is odd, ()

fr(I) ≥ ∑
J :X⊆J⊂I

(−)∣I∖J∣+fr(J) if ∣I ∖ X∣ is even. ()

Using all subsets X of I, one can obtain a number of
upper and lower bounds. If the least upper bound equals

the greatest lower bound, then set I is derivable. �e
conceptual elegance of this solution lies in the fact that

derivable sets follow logically from the nonderivable

ones – the aforementioned formula is one way of �nd-

ing (some) such situations – whereas with closed sets

the user must know the closure properties.

{A }: 3 { B }: 4 {C }: 5 { D }: 3

{ A, B }: 2 { A, C }: 2 { B, C }: 4 { C, D }: 2

{ A, B, C }: 2

{ A, D } { B, D }

{ A, B, D } { A, C, D } { B, C, D }

{ A, B, C, D }

Frequent closed set = {{A},{C},{D},{B, C},{C, D},{A, B, C}}.
Frequent generators: {{A},{B},{C},{D},{A,B},{A,C},{C,D}}.

Frequent Pattern. Figure . Frequencies and equivalence classes of frequent itemsets in dataD of the running exam-

ple, and the corresponding closed sets and generators

 F Frequent Pattern

Generalizations of Frequent Patterns �e concept of

frequent patterns has been extended in two largely

orthogonal directions. One is to more complex patterns

and data, such as frequent sequences, trees (see 7tree
mining), graphs (see 7graph mining), and �rst-order
logic (Dehaspe & Toivonen,).�e other direction

to generalize the concept is to 7constraint-based min-
ing, where other and more complex conditions are con-

sidered beyond frequency. We encourage the interested

reader to continue at the entry for 7constraint-based
mining, which also gives further insight into many of

themore theoretical aspects of frequent patternmining.

Programs and Data
Frequent itemset mining implementations repository:

http://�mi.cs.helsinki.�/

Weka: http://www.cs.waikato.ac.nz/ml/weka/

Christian Borgelt’s implementations:

http://www.borgelt.net/so�ware.html

Data mining template library:

http://dmtl.sourceforge.net/

Applications
Frequent patterns are a general purpose tool for data

exploration, with applications virtually everywhere.

Market 7basket analysis was the �rst application, tele-
com alarm correlation and gene mapping are examples

of quite di�erent application �elds.

Future Directions
Work on frequent pattern mining is being expanded in

several directions. New types of pattern languages are

being developed, either to meet some speci�c needs or

to increase the expressive power.Many of these develop-

ments aremotivated by di�erent types of data and appli-

cations.Withinmachine learning, frequent patterns are

increasingly being used as a tool for feature construc-

tion in complex domains. For an end-user application,

methods for choosing and ranking the most interest-

ing patterns among thousands or millions of them is

a crucial problem, for which there are no perfect solu-

tions (cf. Geng & Hamilton,). At the same time,

theoretical understanding of the problem and solu-

tions of frequent pattern discovery still has room for

improvement.

Cross References
7Apriori Algorithm
7Association Rule
7Basket Analysis
7Constraint-Based Mining
7Data Mining
7Frequent Itemset
7Graph Mining
7Knowledge Discovery in Databases
7Tree Mining

Recommended Reading
Agrawal, R., Imielinski, T., & Swami, A. (). Mining association

rules between sets of items in large databases. In Proceedings
of the ACM SIGMOD international conference on man-
agement of data, Washington, DC (pp. –). New York:
ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo,

A. I. (). Fast discovery of association rules. In U. M.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy

(Eds.), Advances in knowledge discovery and data mining
(pp. –). Menlo Park, CA: AVAAI Press.

Bayardo, R. J. Jr. (). Efficiently mining long patterns from

databases. In Proceedings of the ACM SIGMOD interna-
tional conference on management of data, Seatle, Washington,
DC (pp. –). New York: ACM.

Calders, T., & Goethals, B. (). Mining all non-derivable fre-

quent itemsets. In Proceedings of the th European Confer-
ence on principles of data mining and knowledge discovery,
Helsinki, Finland. Lecture Notes in Computer Science (vol. ,
pp. –). London: Springer.

Ceglar, A., & Roddick, J. F. (). Association mining. ACM Com-
puting Surveys (): Article No. .

Dehaspe, L., & Toivonen, H. (). Discovery of frequent datalog

patterns. Data mining and knowledge discovery (): –.
Geng, L., & Hamilton, H. J. (). Interestingness measures for data

mining: A survey. ACM Computing Surveys (): Article No. .
Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., &

Sharma, R. S. (). Discovering all most specific sentences.

ACM transactions on database systems (): –.
Han, J., Pei, J., Yin, Y., & Mao, R. (). Mining frequent

patterns without candidate generation: A frequent-pattern

tree approach. Data Mining and Knowledge Discovery ():
–.

Mannila, H., & Toivonen, H. (). Levelwise search and borders of

theories in knowledge discovery. Data Mining and Knowledge
Discovery (): –.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (). Discovering

frequent closed itemsets for association rules. In Proceedings
of th international conference on database theory, Jerusalem,
Israel. Lecture Notes in Computer Science (vol. , pp. –
). London: Springer.

Zaki, M. J. (). Scalable algorithms for association mining. In

IEEE transactions on knowledge and data engineering ():
–.

Fuzzy Systems F

F

Frequent Set

7Frequent Itemset

Functional Trees

7Model Trees

Fuzzy Sets

Fuzzy sets were introduced by Lo�i Zadeh as a gener-
alization of the concept of a regular set. A fuzzy set is

characterized by a membership function that assigns a

degree (or grade) of membership to all the elements in

the universe of discourse. �e membership value is a

real number in the range [,], where denotes no def-

inite membership, denotes de�nite membership, and

intermediate values denote partial membership to the

set. In this way, the transition from nonmembership to

membership in a fuzzy set is gradual and not abrupt like

in a regular set, allowing the representation of impre-

cise concepts like “small,” “cold,” “large,” or “very” for

example.

A variable with its values de�ned by fuzzy sets is

called a linguistic variable. For example, a linguistic

variable used to represent a temperature can be de�ned

as taking the values “cold,” “comfortable,” and “warm,”

each one of them de�ned as a fuzzy set. �ese lin-

guistic labels, which are imprecise by their own nature,

are, however, de�ned very precisely by using fuzzy set

concepts.

Based on the concepts of fuzzy sets and linguistic

variables, it is possible to de�ne a complete fuzzy logic,

which is an extension of the classical logic but appro-

priate to deal with approximate knowledge, uncertainty,

and imprecision.

Recommended Reading
Zadeh, L. A. (). Fuzzy sets. Information and control. ():

–.

Fuzzy Systems

A fuzzy system is a computing framework based on

the concepts of the theory of 7fuzzy sets, fuzzy rules,
and fuzzy inference. It is structured in four main com-

ponents: a knowledge base, a fuzzi�cation interface,

an inference engine, and a defuzzi�cation interface.

�e knowledge base consists of a rule base de�ned in

terms of fuzzy rules, and a database that contains the

de�nitions of the linguistic terms for each input and

output linguistic variable. �e fuzzi�cation interface

transforms the (crisp) input values into fuzzy values,

by computing their membership to all linguistic terms

de�ned in the corresponding input domain.�e infer-

ence engine performs the fuzzy inference process, by

computing the activation degree and the output of each

rule.�e defuzzi�cation interface computes the (crisp)

output values by combining the output of the rules and

performing a speci�c transformation.

Fuzzy systems can be classi�ed in di�erent cate-

gories.�e most widely used are the Mamdani and the

Takagi-Sugeno models. In a Mamdani fuzzy system the

output variables are de�ned as linguistic variables while

in a Takagi-Sugeno fuzzy system they are de�ned as a

linear combination of the input variables.

Fuzzy systems can model nonlinear functions of

arbitrary complexity, however, their main strength

comes from their ability to represent imprecise concepts

and to establish relations between them.

Recommended Reading
Mamdani, E. H., & Assilian, S. (). An experiment in linguistic

synthesis with a fuzzy logic controller. International journal of
man-machine studies. (): –.

Sugeno, M. () Industrial applications of fuzzy control. Elsevier
Science Publishers, New York.

G

Gaussian Distribution

Xinhua Zhang

Australian National University, Canberra, Australia

NICTA London Circuit, Canberra, Australia

Synonyms
Normal distribution

Definition
�e simplest form of Gaussian distribution is the one-

dimensional standard Gaussian distribution, which can

be described by the probability density function (pdf):

p(x) = ϕ(x) =

√
π
e−x

/
,

where √
π
ensures the normalization, i.e., ∫R p(x)dx= .

�is distribution centers around x = and the rate of

decay or “width” of the curve is .

More generally, we can apply translation and scaling

to obtain a Gaussian distribution that centers on arbi-

trary µ ∈ R and with arbitrary width σ > .�e pdf

is:

p(x) =

σ
ϕ (
x − µ

σ
) =

√
πσ

exp(−
(x − µ)

σ
) .

Technically, µ is called the mean and σ is called the

variance. Obviously, µ is the peak/mode of the density,

and is also the mean andmedian of the distribution due

to the symmetry of the density around µ. If a random

variable X has this density, then we write

X ∼ N (µ, σ).

Example density functions are plotted in Fig. a.

As an extension to multivariate random variables,

the multivariate Gaussian distribution is a distribution

on d-dimensional column vector x with mean column
vector µ and positive de�nite variance matrix Σ. �is
gives

p(x∣bµ,bΣ) =

(π)d/ det/ Σ

× exp(−

(x − µ)⊺Σ−(x − µ)) ,

and is denoted by X ∼ N (µ, Σ). An example pdf for the
two dimensional case is plotted in Fig. b.

Motivation and Background
Gaussian distributions are one of the most important

distributions in statistics. It is a continuous probability

distribution that approximately describes some mass of

objects that concentrate about their mean. �e prob-

ability density function is bell-shaped, peaking at the

mean. Its popularity also arises partly from the cen-

tral limit theorem, which says the average of a large

number of independent and identically-distributed ran-

dom variables are approximately Gaussian distributed.

Moreover, under some reasonable conditions, poste-

rior distributions become approximately Gaussian in

the large data limit.�erefore, theGaussian distribution

has been used as a simple model for many theoretical

and practical problems in statistics, natural science, and

social science.

In history, Abraham de Moivre �rst introduced this

distribution in under the name “normal distribu-

tion” (of course, he did not call it Gaussian distribution

since Gauss had not yet been born).�en Laplace used

it to analyze experiment errors, based on which Leg-

endre invented the least squares in . Carl Friedrich

Gauss rigorously justi�ed it in , and determined the

formula of its probability density function. Finally this

distribution is named the Gaussian distribution a�er

Gauss. �e name “normal distribution” is also widely

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC

 G Gaussian Distribution

x

p(
x)

−5 0 5
0

0.2

0.4

0.6

0.8

1
μ=0, σ=1
μ=0,σ = 0.5
μ=0, σ=2
μ=1, σ=1

One dimension(a)

−2
0

2

−2
0

2
0

0.1

0.2

x1x2

p(
x)

Two dimension(b)

Gaussian Distribution. Figure . Gaussian probability density functions

used, meaning it is a typical, common, or usual dis-

tribution. It was coined by Peirce, Galton, and Lexis

around , and made popular by Karl Pearson near

the inception of the twentieth century.

Theory/Solution
Canonical Form

�e standard de�nition allows one to easily read o� the

moments from the pdf. Another useful parameteriza-

tion is called canonical parameterization:

p(x∣η, Λ) = exp(η⊺x −

x⊺Λx −

(d log(π)

−log det Λ + η⊺Λη)) ,

where η = Σ−µ and Λ = Σ−. Λ is o�en called preci-

sion. �is parameterization is useful when posing the

distribution as a member of the exponential family.

Cumulative Distribution Function

For a one-dimensional Gaussian distribution, the

cumulative distribution function (cdf) is de�ned by

Φ(x) = ∫
x

−∞
ϕ(t)dt.

Formally, it can be conveniently represented by the error

function and its complement:

erf(x) =

√
π
∫

x

e−t

dt,

erfc(x) = − erf(x) =

√
π
∫

∞

x
e−t

dt.

So

Φ(x) =

(+ erf(

x
√

)) =

erfc(−

x
√

) .

�e inverse of the cdf, called quantile function, can be

written as

Φ
−
(s) =

√
erf

−
(s −), for s ∈ (,).

�e error function erf() and its inverse erf−() do

not usually have a closed form, and can be computed

numerically by functions like ERF in Fortran, and dou-

ble erf(double x) in C/C++. For the multi-variate case,

the corresponding cdf is highly challenging to compute

numerically.

Moments

�e �rst order moment is E[X]= µ, the variance is
Var[X] = Σ, and all higher order cumulants are . Any

central moments with odd terms are , i.e., E[Πdi=(xi −

µi)
pi] = when∑i pi is odd.

Entropy and Kullback–Leibler Divergence

�e di�erential entropy of a multi-variate Gaussian is

h(p) = −∫
Rd
p(x) ln p(x)dx =

ln ((πe)d det Σ) .

�e Kullback–Leibler divergence from N (µ

, Σ) to

N (µ

, Σ) is

KL(N (µ

, Σ)∣∣N (µ

, Σ)) =

(ln
det Σ

det Σ
+ tr Σ

−
 Σ

+ (µ

− µ

)
⊺
Σ
−
 (µ

− µ

) − d) .

Gaussian Distribution G

G

Properties Under Affine Transform

Let X ∼ N (µ, Σ). Suppose A is a linear transform from
Rd to Rs and c ∈ Rs, then

Ax + c ∼ N (Aµ + c,AΣA⊺)

E[(x − µ)⊺A(x − µ)] = tr AΣ

Var[(x − µ)⊺A(x − µ)] = tr AΣAΣ.

where the last two relations require s = d.

Conjugate Priors

Conjugate priors where discussed in 7prior probabili-
ties. With known variance, the conjugate prior for the

mean is again a multi-variate Gaussian. With known

mean, the conjugate prior for the variance matrix is the

Wishart distribution, while the conjugate prior for the

precision matrix is the Gamma distribution.

Parameter Estimation

Given n iid observations X, . . . ,Xn, the maximum like-

lihood estimator of themean is simply the samplemean

µ = X̄ =

n

n

∑
i=
Xi.

�e maximum likelihood estimator of the covariance

matrix is:

Σ̃ =

n

n

∑
i=

(Xi − X̄)(Xi − X̄)
⊺
.

�is estimator is biased, and its expectation is E[Σ̃] =
n−
n
Σ. An unbiased estimator is

Σ̃ = S =

n −

n

∑
i=

(Xi − X̄)(Xi − X̄)
⊺
.

Distributions Induced by the Gaussian

IfX ∼ N (, Σ), thenX⊺Σ−X has aGamma distribution

Gamma(d/,).

LetX,X ∼N (,) and they are independent.�eir

ratio is the standard Cauchy distribution, X/X ∼

Cauchy(,).

Given n independent univariate random variables

Xi ∼N (,), the random variable Z :=
√
∑i X

i has a

χ distribution with degree of freedom n. And Z has a

χ distribution with degree of freedom n.

Using Basu’s theoremorCochran’s theorem, one can

show that the samplemean ofX, . . . ,Xn and the sample

standard deviation are independent.�eir ratio

t :=
X̄

S
=

n
(X +⋯ + Xn)

√

n− [(X − X̄)
 +⋯ + (Xn − X̄)]

has the student’s t-distribution with degree of freedom

n − .

Applications
�is section discusses some applications and properties

of the Gaussian.

Central Limit Theorem

Given n independent and identically distributed obser-

vations drawn from a distribution whose variance is

�nite, the average of the observations is asymptotically

Gaussian distributed when n tends to in�nity. Under

certain conditions, the requirement for identical dis-

tribution can be relaxed and asymptotic normality still

holds.

Approximate Gaussian Posterior

Consider n independent and identically distributed

observations drawn from a distribution p(Xi∣θ), so the

data set is X= (X, . . . ,Xn)
⊺. Under certain conditions,

saying roughly that the posterior on θ converges in

probability to a single interior point in its domain as

n → ∞, the posterior for θ⃗ is approximately Gaussian

for large n, θ∣X ≈ N (θ̂, I (θ̂)), where θ̂ is the maxi-

mum likelihood or aposterior value for θ and I (θ) is

the observed (Fisher) information, the negative of the

second derivative (Hessian) of the likelihood w.r.t. the

parameters θ.

�e Gaussian approximation to the posterior, while

a poor approximation in many cases, serves as a use-

ful insight into the nature of asymptotic reasoning. It is

justi�ed based on the multi-dimensional Taylor expan-

sion of the log likelihood at the maximum likelihood

or aposterior value, together with its asymptotic conver-

gence property.

-σ Rule

For standard Gaussian distribution, .% of the prob-

ability mass lie within the three standard deviations

[−σ , σ], i.e., ∫
σ

−σ ϕ(x)dx > .. About % mass

 G Gaussian Process

lies within two standard deviations, and about %

within one standard deviation. �is empirical rule is

called -σ rule, and can be easily extended to general

one dimensional Gaussian distributions.

Combination of Random Variables

Let d-dimensional random variables Xi ∼N (µi, Σi). If
they are independent, then for any set of linear trans-

forms Ai from Rd to Rs, we have∑i AiXi ∼N (∑i Aiµi,
∑i AiΣiA

⊺
i).�e converse is also true by the Cramer’s

theorem: if Xi are independent and their sum ∑i Xi is

Gaussian distributed, then all Xi must be Gaussian.

Correlations and Independence

In general, independent random variables must be

uncorrelated but not vice versa. However, if a multi-

variate random variable is jointly Gaussian, then any

uncorrelated subset of the random variables must be

independent. Notice the precondition of joint Gaus-

sian. It is possible for two Gaussian random variables

to be uncorrelated but not independent, for the rea-

son that they are not jointly Gaussian. For example, let

X ∼ N (,) and Y = −X if ∣X∣ < c, and Y = X if ∣X∣ > c.

By properly setting c,Y andX can bemade uncorrelated

but obviously not independent.

Marginalization, Conditioning, and Agglomeration

Suppose the vector x can be written as (x⊺ , x
⊺
)

⊺ and

correspondingly the mean and covariance matrix can

be written as

µ =

⎛
⎜
⎜
⎝

µ

µ

⎞
⎟
⎟
⎠

, Σ =

⎛
⎜
⎜
⎝

Σ Σ

Σ Σ

⎞
⎟
⎟
⎠

�en the marginal distribution of x is Gaussian

N (µ, Σ), and the conditional distribution of x con-

ditioned on x isN (µ
∣, Σ∣), where

µ
∣ = µ

+ ΣΣ

−
(x − µ

), Σ∣ = Σ − ΣΣ

−
Σ.

Suppose the multi-variate Gaussian vector x ∼N (µ,

Σ), and a vector x is a linear function of x with Gaus-

sian noise, i.e., x∣x ∼ N (Ax + µ, Σ).�en the joint
distribution of (x⊺ , x

⊺
)

⊺ is also Gaussian:

⎛
⎜
⎜
⎝

x

x

⎞
⎟
⎟
⎠

∼ N

⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

µ

Aµ

+ µ

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

Σ +A
⊺ΣA −A⊺Σ

−ΣA Σ

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

.

For a complete treatment of Gaussian distributions

from a statistical perspective, see Casella and Berger

(), and Mardia, Kent, and Bibby () provides

details for the multi-variate case. Bernardo and Smith

() shows how Gaussian distributions can be used

in the Bayesian theory. Bishop () introduces Gaus-

sian distributions in Chap. , and shows how it is

extensively used inmachine learning. Finally, some his-

torical notes on Gaussian distributions can be found

at http://je�.tripod.com/mathword.html, especially

under the entries “NORMAL” and “GAUSS.”

Cross References
7Gaussian Processes

Recommended Reading
Bernardo, J. M., & Smith, A. F. M. (). Bayesian theory. Chich-

ester: Wiley.

Bishop, C. (). Pattern recognition and machine learning. New

York: Springer.

Casella, G., & Berger, R. (). Statistical inference (nd ed.). Pacific

Grove, CA: Duxbury.

Jolliffe, I. T. (). Principal component analysis (nd ed.). Springer

series in statistics. New York: Springer.

Mardia, K. V., Kent, J. T., & Bibby, J. M. ().Multivariate analysis.

London: Academic Press.

Miller, J., Aldrich, J., Cabillón, J. G., de Araújo, C. C., Landau,

J. A. Earliest known uses of some of the words of mathematics.

http://jeff.tripod.com/mathword.html

Gaussian Process

Novi Quadrianto, Kristian Kersting, Zhao Xu

Department of Engineering and Computer Science,

RSISE, ANU and SML, NICTA, Canberra, Australia
Fraunhofer IAIS, Sankt Augustin, Germany

Synonyms
Expectation propagation; Kernels; Laplace estimate;

Nonparametric Bayesian

Definition
Gaussian processes generalizemultivariateGaussian dis-

tributions over �nite dimensional vectors to in�nite

dimensionality. Speci�cally, a Gaussian process is a

Gaussian Process G

G

stochastic process that has Gaussian distributed �nite

dimensional marginal distributions, hence the name.

In doing so, it de�nes a distribution over functions,

i.e., each draw from a Gaussian process is a function.

Gaussian processes provide a principled, practical, and

probabilistic approach to inference and learning in ker-

nel machines.

Motivation and Background
Bayesian probabilistic approaches have many virtues,

including their ability to incorporate prior knowledge

and their ability to link related sources of information.

Typically, we are given a set of data points sampled

from an underlying but unknown distribution, each of

which includes input x and output y, such as the ones

shown in Fig. a.�e task is to learn a functional rela-

tionship between x and y. Traditionally, in a parametric

approach, an assumption on the mathematical form of

the relationship such as linear, polynomial, exponential,

or combination of them needs to be chosen a priori.

Subsequently, weights (or parameters) are placed on

each of the chosen forms, and a prior distribution is

then de�ned over parameters. �us, the learning task

is now reduced to the Bayesian estimation over the

parameters, cf. Fig. a–c.�is approach, however, may

not always be practical, as illustrated in Fig. d. To dis-

cover the latent input–output relationship in Fig. d,

we might need in�nitely many functional forms, and

this translates to in�nite number of parameters. Instead

of working over a parameter space, Gaussian processes

place a prior directly on the space of functions without

parameterizing the function, hence nonparametric. As

will be shown, the computational complexity of infer-

ence now scales as the number of data points instead of

the number of parameters.

Several nonparametric Bayesian models have been

developed for di�erent tasks such as density estima-

tion, regression, classi�cation, survival time analysis,

topic modeling, etc. Among the most popular ones

are 7Dirichlet processes and Gaussian processes. Just as
the Gaussian process, a Dirichlet process has Dirichlet

distributed �nite dimensional marginal distributions,

hence the name.

Gaussian processeswere �rst formalized formachine

learning tasks by Williams and Rasmussen () and

Neal ().

Theory
Formally, a Gaussian process is a stochastic process

(i.e., a collection of random variables) in which all the

�nite-dimensional distributions are multivariate Gaus-

sian distributions for any �nite choice of variables. In

general, Gaussian processes are used to de�ne a proba-

bility distribution over functions f : X → R such that
the set of values of f evaluated at an arbitrary set of

points {xi}
N
i= ∈ X will have an N-variate Gaussian dis-

tribution. Note that, for xi ∈ R, this may also be known
as a Gaussian random �eld.

Gaussian Process

A Gaussian distribution is completely speci�ed by its

mean and covariance matrix. Similarly, a Gaussian

process is characterized by its mean function m(x) :=

E[f (x)] and covariance function

C(x, x′) := E[(f (x) −m(x))(f (x′) −m(x′))] .

We say a real process f (x) is Gaussian process dis-

tributed with a mean function m(x) and a covari-

ance function C(x, x′), written as f ∼ GP(m(x),

C(x, x′)).

�e mean function can be arbitrarily chosen (for

convenience, it is o�en taken to be a zero function

since we can always center our observed outputs to

have a zero mean), but the covariance function must

be a positive de�nite function to ensure the existence

of all �nite-dimensional distributions.�at is, the pos-

itive de�niteness of C(., .) ensures the positive (semi-)

de�niteness of all covariance matrices, Σ, appearing

in the exponent of the �nite-dimensional multivariate

Gaussian distribution.

�e attractiveness of Gaussian processes is that

they admit the marginalization property (7Gaussian
Distribution), i.e., if the Gaussian process speci�es

(f (x), f (x))∼N (µ, Σ), then it must also specify

f (x)∼N (µ, Σ), where Σ is the relevant subma-

trix of Σ. �is means, addition of novel points will

not in�uence the distribution of existing points. �e

marginalization property allows us to concentrate on

distribution of only observed data points with the rest of

unobserved points considered to be marginalized out;

thus a �nite amount of computation for inference can

be achieved.

 G Gaussian Process

20

15

10

5

0
0 1 2

x

y

3 4 5

4

2

0

–2

–4
–4 –2 0 2 4

w1

w
2

4

2

0

–2

–4
–4 –2 0 2 4

w1

w
2

0

1

0

–1

–2

1 2
x

y

3 4 5

2

Gaussian Process. Figure . (a) Ten observations (one-dimensional input x and output y variables) generated from a

7linear regression model y = x + + є with Gaussian noise є. The task is to learn the functional relationship between

x and y. Assuming the parametric model y =ωx + ω + є, i.e., ω = (ω, ω) is the vector of parameters, and the prior

distribution over ω be a -dimensional Gaussian as shown in (b), the posterior distribution over ω can be estimated as

shown in (c). Its mean (., .) is close to the true parameters (,). The inference, however, was performed in

an ideal situation where in the relationship between x and y was indeed linear. If the true relationship is not known in

advances and/or cannot easily be described using a finite set of parameters, this approach may fail. For example, in (d),

infinite number of parameters might be required to recover the functional relationship

Covariance Functions

A covariance function bears an essential role in a Gaus-

sian process model as its continuity properties deter-

mine the continuity properties of samples (functions)

from the Gaussian process. In the literature, covariance

functions are also known as positive (semi-)de�nite

kernels or Mercel kernels.

�ere are generally two types of covariance func-

tions: stationary and non-stationary. A stationary

covariance function is a function that is transla-

tion invariant, i.e., C(x, x′)=D(x − x′) for some

function D. �e typical examples include squared

exponential, Matérn class, γ-exponential, exponential,

rational quadratic, while examples of non-stationary

covariance functions are dot product and polynomial.

Squared exponential (SE) is a popular form of sta-

tionary covariance function, and it corresponds to the

class of sums of in�nitely many Gaussian shaped basis

functions placed everywhere, f (x) := limn→∞
s
n ∑i γi

exp (−((x − xi)/ℓ)
)with γi ∼ N (,)∀i.�is covari-

ance function is in the form of

C(x, x′) = E[f (x)f (x′)] = s exp(−

ℓ
∥x − x′∥

) .

Gaussian Process G

G

Typical functions sampled from this covariance func-

tion can be seen in Fig. a.�is covariance function has

the characteristic length scale ℓ and the signal variance

s as free parameters (hyperparameters). �e longer

the characteristic length scale, the more slowly vary-

ing the typical sample function is.�e signal variance

de�nes the vertical scale of variations of a sample func-

tion. Figure illustrates prediction with SE covariance

function with varying characteristic length scale. Sev-

eral other covariance functions are listed in Table .

For a comprehensive review on the �eld of co-

variance functions, we refer interested readers to

(Abrahamsen,).

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

Gaussian Process. Figure . (a) Three functions drawn at

random from a Gaussian process prior. (b) Three random

functions drawn from the posterior, i.e., the distribution

learned with the prior from Fig. a and the ten observa-

tions from Fig. d. In both plots the shaded area shows the

pointwise mean plus and minus two times the standard

deviation for each input value, i.e., the % confidence

region

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

Gaussian Process. Figure . Gaussian process prediction

with the SE kernel. (a) mean of the prediction distribution

with length-scale . and signal variance . (the hyperpa-

rameters of the original process used to generate the data

in Fig.). The other two plots show the prediction setting

the length-scale (b) longer (.) and (c) shorter (.). In all

plots, the % confidence region is shown

 G Gaussian Process

Gaussian Process. Table Examples of covariance functions. θcov denotes the set of hyperparameters

Name C(x, x′) θcov Remark

Squared exp. (SE) s exp (−
ℓ ∥x − x′∥

) {s, ℓ} Strong smoothness assumption

Matérn class −ν

Γ(ν)
(
√

ν∣x−x′ ∣
ℓ

)
ν

Kν(
√

νr
ℓ

) {ν, ℓ} Less smooth than SE

γ-exponential exp(−(∣x − x′∣/ℓ)γ), with < γ <= {ℓ} Includes both Exp. and SE

Exponential exp (−∣x−x′ ∣
ℓ

) {ℓ} ν = / in the Matérn class

Rational quadratic (+ ∥x−x′∥

αℓ)
−α

{α, ℓ} An infinite sum of SE

Dot product σ
w ⟨x, x′⟩ + σ

c {σw , σc}

Polynomial (⟨x, x′⟩ + σ
c)p {σc} Effective for high-dimensional

classification with binary or grayscale
input

Applications
For Gaussian processes, there are two main classes of

applications: regression and classi�cation. We will dis-

cuss each of them in turn.

Regression

In a7regression problem, we are interested to recover a
functional dependency yi = f (xi) + єi from N observed

training data points {(xi, yi)}
N
i=, where yi ∈R is the

noisy observed output at input location xi ∈Rd. Tra-
ditionally, in the Bayesian 7linear regression model,
this regression problem is tackled by requiring us to

parameterize the latent function f by a parameter

w ∈RH , f (x) := ⟨ϕ(x),w⟩ for H �xed basis functions

{ϕh(x)}
H
h=. A prior distribution is then de�ned over

parameter w. �e idea of Gaussian process regression

(in the geostatistical literature, this is also called kriging,

see e.g., (Krige, ; Matheron,)) is to place a prior

directly on the space of functions without parameteriz-

ing the function (vide Motivation and Background).

Likelihood Function and Posterior Distribution: Assum-

ing independent and normally distributed noise terms,

єi ∼ N (, σ noise), the likelihood model on an output

vector Y ∈ RN and an input matrix X ∈ RN×d will be

Y ∣ f ,X ∼ N (fX , σ

noiseI).

�at is, the data likelihood is distributed according to

a Gaussian distribution with the function values eval-

uated at training input locations as its mean and the

variance of the noise terms as its variance.

Placing a (zero mean) Gaussian process prior over

functions

f ∼ GP(m(x) ≡ , k(x, x′)), ()

will lead us to a Gaussian process posterior (this form

of posterior process is described in the next section),

f ∣X,Y ∼ GP(mpost(x) = k(x,X)[K + σ noiseI]
−Y ,

kpost(x, x
′
) = k(x, x′) − k(x,X)[K + σ noiseI]

−k(x′,X)).

()

In the above equations, K ∈ RN×N denotes the Gram
matrix with elements Kij = k(xi, xj) and k(x, x

′) is the

kernel function.�e term k(x,X)denotes a kernel func-

tion with one of the inputs �xed at training points.

Predictive Distribution: �e �nal goal in regression is to

make an output prediction for a novel input x∗, given

a set of input-output training points. By the marginal-

ization property, instead of working with a prior over

in�nite dimensional function spaces as in (), we can

concentrate on themarginal distribution over the train-

ing inputs,

fX ∼ N (,K). ()

Gaussian Process G

G

Subsequently, the marginal distribution over training

outputs (conditioned on inputs) can be computed via

p(Y ∣X) = ∫ p(Y ∣ fX)p(fX)dfX = N (,K + σ noiseI).

()

�e above integration is computed by using the

standard result for the convolution of two Gaussian

distributions (7Gaussian Distribution). �e joint dis-
tribution over sets of training points Y and the quantity

we wish to predict y∗ is given by

p(Y , y∗∣X, x∗) = N (,C), ()

where C ∈ R(N+)×(N+) is the joint covariance matrix.
We can partition this joint covariance matrix as follows:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K + σ noiseI kX,x∗

k⊺X,x∗ k(x∗, x∗) + σ noise

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the vector kX,x∗ ∈ RN has elements k(xi, x∗) for
i = , . . . ,N and ⊺ denotes a transpose operation.�e

noise variance appears only at the diagonal elements of

the covariancematrixC, this is due to the independence

assumption about the noise. Using a standard Gaussian

property on computing conditional distribution from a

joint Gaussian distribution (7Gaussian Distribution),
the predictive distribution is given by

p(y∗∣x∗,X,Y) = N (µ∗, σ

∗), ()

with

µ∗ = k
⊺
X,x∗

(K + σ noiseI)
−Y , ()

σ ∗ = k(x∗, x∗) − k
⊺
X,x∗

(K + σ noiseI)
−kX,x∗ + σ noise.

()

Note that, () and () are the mean function and the

covariance function of the posterior process in () for

any novel inputs.�e only di�erence is the additional

term σ noise, since there exists observation noise є∗ such

that y∗ = f∗ + є∗.

Point Prediction: �e previous section has shown how

to compute a predictive distribution for outputs y∗
associated with the novel test inputs x∗. To convert

this predictive distribution into a point prediction, we

need the notion of a loss function, L(ytrue, yprediction).

�is function speci�es the loss incurred for pre-

dicting the value yprediction while the true value is

ytrue. �us, the optimal point prediction can be com-

puted by minimizing the expected loss as follows

yoptimal∣x∗ = argminyprediction ∫ L(y∗, yprediction)

× p(y∗∣x∗,X,Y)dy∗. ()

For a squared loss function (or any other symmetric

loss functions) and predictive distribution (), the solu-

tion to the above equation is the mean of the predictive

distribution, i.e.,

yoptimal∣x∗ = Ey∗∼p(y∗∣x∗ ,X,Y)[y∗] = µ∗.

�e above Gaussian process regression description

is known as a function space view in the literature

(Rasmussen & Williams,). Equivalently, a Gaus-

sian process regression can also be viewed from the

traditional Bayesian linear regression with a possibly

in�nite number of basis functions ϕ(x) and with a zero

mean and arbitrary positive de�nite covariance matrix

Gaussian prior on the parameter w, see e.g., Rasmussen

&Williams ().

Classification

Gaussian process models can also be applied to classi-

�cation problems. In a probabilistic approach to classi-

�cation, the goal is to model posterior probabilities of

an input point xi belonging to one of Ω classes, yi ∈

{, . . . ,Ω}.�ese probabilities must lie in the interval

[,], however, a Gaussian process model draws func-

tions that lie on (−∞,∞). For the binary classi�cation

(Ω =), we can turn the output of a Gaussian process

into a class probability using an appropriate nonlinear

activation function. In the following, we will show this

for the case of binary classi�cation. For themore general

cases, see e.g., Rasmussen &Williams ().

Likelihood Function and Posterior Distribution: In a

regression problem, aGaussian likelihood is chosen and

combined with a Gaussian process prior, which leads to

a Gaussian posterior process over functions where in

all required integrations remain analytically tractable.

For classi�cation, however, Gaussian likelihood is not

 G Gaussian Process

the most suitable owing to the discreteness nature of

the class labels. �e most commonly used likelihood

functions are

p(yi∣ f , xi) =

 + exp(−yifxi)
or

p(yi∣ f , xi) = ∫
yi fxi

−∞
N (,)dt = Φ,(yifxi), ()

known as logistic and cumulative Gaussian likelihood

functions, respectively. Assuming that the class labels

(conditioned on f) are generated independent and iden-

tically distributed, the joint likelihood over N data

points can be expressed as p(Y ∣ f ,X) = ∏
N
i= p(yi∣ f , xi).

By Bayes’ rule, the posterior distribution over latent

functions is given by p(fX ∣X,Y) =
p(Y ∣ f)p(fX)

∫ p(Y ∣ f)p(fX)dfX
.

�is posterior is no longer analytically tractable (due

to intractable integration in the denominator) and an

approximation is needed.

�ere are several approximation methods to han-

dle intractability of the inference stage in Gaussian

process classi�cation such as Laplace approximation,

expectation propagation, variational bounding, and

MCMC, among others (see (Nickisch & Rasmussen,

) for a comprehensive overview of approximate

inference in binary Gaussian process classi�cation).

Most of the methods (if not all) approximate the

non-Gaussian posterior with a tractable Gaussian

distribution. We describe in detail the straightforward

Laplace approximation method, but note that the more

complicated expectation propagation (7Expectation
Propagation) is almost always the method of choice

unless the computational budget is very tight (Nickisch

& Rasmussen,).

Laplace’s method approximates the non-Gaussian

posterior with a Gaussian one by performing a

second order Taylor expansion of the log poste-

rior, log p(fX ∣X,Y) at the maximum point of the

posterior

p(fX ∣X,Y) ≈ p̂(fX ∣X,Y) = N (f̂X ,H
−
), ()

where f̂X = argmaxfX log p(fX ∣X,Y) and H = −∇∇ log p

(fX ∣X,Y)∣fX=f̂X is the Hessian of the negative log poste-

rior at the maxima. Since the denominator of the Bayes’

theorem is independent of the latent function, themode

of the posterior can be computed instead from the log

un-normalized posterior

Ψ(fX) := log p(Y ∣ f) + log p(fX), ()

with the expression for p(fX) given in (). Computa-

tion of the mode requires us to evaluate the gradient of

Ψ(fX) which is given as

∇Ψ(fX) = ∇ log p(Y ∣ f) + K
−fX . ()

To �nd the stationary point, however, we cannot sim-

ply set this gradient to zero as ∇ log p(Y ∣ f) depends

non-linearly on fX . We need to resort to an iterative

scheme based on the Newton–Raphson’s method with

the update equation given by

f newX ← f oldX − (∇∇Ψ(fX))
−
∇Ψ(fX), ()

and the Hessian given by

∇∇Ψ(fX) = −W − K−, ()

and W := −∇∇ log p(Y ∣ f) is a diagonal matrix. It is

important to note that if the likelihood function

p(Y ∣f ,X) is log-concave, the diagonal elements ofW are

non-negative and the Hessian in () is negative de�nite

(since −K and its inverse is negative de�nite by con-

struction and the sum of two negative de�nite matrices

is also negative de�nite). �us, Ψ(fX) is concave and

has a unique maxima point.

Predictive Distribution: �e latent function fX plays the

role of a nuisance function, i.e., we do not observe

values of fX itself, and more importantly, we are not

particularly interested in the values of fX . What we are

interested in is a class conditional posterior probabil-

ity, p(y∗ = +∣x∗,X,Y) (as the probability of the two

classes must sum to , p(y∗ = −∣x∗,X,Y) = − p(y∗ =

+∣x∗,X,Y) is a class conditional probability of a class

label of not) for a novel input x∗.

�e inference strategy involves marginalizing out

the nuisance function and is divided into two steps.

First, we need to compute the distribution of the latent

function at the novel input x∗,

p(f∗∣X,Y , x∗) = ∫ p(f∗∣x∗,X, fX)p(fX ∣X,Y)dfX .

()

Gaussian Process G

G

�e conditional distribution p(f∗∣x∗,X, fX) is computed
by invoking the Gaussian process regression model in

() to arrive at

p(f∗∣x∗,X, fX) = N (k⊺X,x∗K
−
fX , k(x∗, x∗) − k⊺X,x∗K

−
kX,x∗).
()

Note that, the underlying Gaussian process regression

model is assumed to be a noise-free process. Another

approach would be assuming an independent Gaussian

noise in combination with a step function likelihood

function. However, this is equivalent to the noise-free

latent process with a cumulative Gaussian likelihood

function (Rasmussen & Williams,). With Laplace

approximation of posterior distribution p(fX ∣X,Y) ≈

N (f̂X , (K
− + W)−), we can now compute the inte-

gration in () by using the standard result for the

convolution of two Gaussian distributions. �us, the

conditional distribution is given by

p(f∗∣x∗,X,Y) = N (E[f∗∣x∗,X,Y],Var[f∗∣x∗,X,Y]),
()

with

E[f∗∣x∗,X,Y] = k⊺X,x∗K
− f̂X ,

Var[f∗∣x∗,X,Y] = k(x∗, x∗) − k⊺X,x∗(K +W
−
)
−kX,x∗ .

�e predictive distribution can now be computed as

follows

π∗ := p(y∗ = +∣x∗,X,Y)

= ∫ p(y∗ = +∣f∗)p(f∗∣x∗,X,Y)df∗.

�e above integral can be solved analytically for a cumu-

lative Gaussian likelihood function,

π∗ = ∫

E[f∗ ∣x∗ ,X,Y]
(y−
∗
+Var[f∗ ∣x∗ ,X,Y])/

−∞
N (t∣,)dt

= Φ, (
E[f∗∣x∗,X,Y]

(y−∗ +Var[f∗∣x∗,X,Y])/
) ,

and can be approximated for a logistic likelihood func-

tion (MacKay,),

π∗ =

 + exp(−E[f∗∣x∗,X,Y]κ(Var[f∗∣x∗,X,Y]))
,

with κ(c) = (+ cπ/)−/.

Point Prediction: Similar to the regression case, we

might need to make a point prediction from the pre-

dictive distribution described in the section above. For

a zero-one loss function, i.e., a loss of one unit is suf-

fered for a wrong classi�cation and for not making a

classi�cation mistake, the optimal point prediction (in

the sense of expected loss) is

yoptimal∣x
∗
= argmax
y∗∈{,. . .,Ω}

p(y∗∣x∗,X,Y). ()

It is worth noting that the probabilistic approach to

classi�cation allows the same inference stage to be re-

used with di�erent loss functions. In some situations,

a cost sensitive loss function, i.e., di�erent classi�ca-

tion mistakes incur di�erent losses, is more desirable.

�e optimal point prediction is now taken by minimiz-

ing expected cost sensitive loss with respect to the same

p(y∗∣x∗,X,Y).

Extension of the Laplace approximation to multi-

class Gaussian process classi�cation (Ω >) (Williams

& Barber,) can be achieved via the so�max activa-

tion function, i.e., a generalization of logistic activation

function.

Practical Issues
We have seen how to do regression and classi�ca-

tion using Gaussian processes. Like other kernel based

methods such as support vector machines, they are

very �exible in that all operations are kernelized, i.e.,

the operations are performed in the (possibly in�nite

dimensional) feature space. However, this feature space

is only de�ned implicitly via positive de�nite kernels

(covariance functions), which only requires computa-

tion in the (lower dimensional) input space. Compared

to other non-Bayesian kernel approaches, Gaussian

processes provide an explicit probabilistic formulation

of the model.�is directly provides us with con�dence

intervals (for regression) or posterior class probabilities

(for classi�cation).

So far, however, we have assumed a covariance func-

tion with the known functional form and hyperparam-

eters. In many practical applications, it may not be easy

to specify all aspects of the covariance function by hand.

Furthermore, inverting the correspondingN ×N Gram

matrix is the main computational cost and it may be

 G Gaussian Process

prohibitive as it scales as O(N). We will now discuss

approaches to overcome both limitations in turn.

Model Selection

In many practical applications, the functional form of

the covariance function needs to be chosen and any

values of hyperparameters associated with the chosen

covariance function and possible free parameters of the

likelihood function needs to be optimally determined.

�is is called model selection.

Ideally, we would like to de�ne a prior distribu-

tion over the hyperparameters θ, and predictions are

made by integrating over di�erent possible choice of

hyperparameters. More formally,

p(y∗∣x∗,X,Y) = ∫ p(y∗∣x∗,X,Y , θ)p(θ∣X,Y)dθ.

()

�e evaluation of the above integral, however, may

be di�cult, and an approximation is needed either

by using the most likely value of hyperparameters,

p(y∗∣x∗,X,Y) ≈ p(y∗∣x∗,X,Y , θML), or by performing

the integration numerically via Monte Carlo methods.

We will focus here on the approximation approach and

show how to use it for regression and classi�cation

problems respectively.

Marginal Likelihood for Regression: �e posterior prob-

ability of the hyperparameters θ in () is

p(θ∣X,Y)∝ p(Y ∣X, θ)p(θ), ()

where the �rst term is known as marginal likelihood or

evidence for the hyperparameters and its logarithm is in

the form of (from ())

log p(Y ∣X, θ) = −

Y⊺K̄−Y −

log ∣K̄∣ −

N

log(π),

with K̄ := K + σ noiseI. We can then set the hyperpa-

rameters by maximizing this marginal likelihood (We

can alsomaximize the un-normalized posterior instead,

assuming�nding the derivatives of the priors is straight-

forward.) (also known as type II maximum likelihood

approximation, ML-II) and its partial derivatives with

respect to hyperparameters is

∂

∂θ j

log p(Y ∣X, θ) =

Y⊺K̄−

∂K̄

∂θ j

K̄−Y −

tr(K̄−

∂K̄

∂θ j

) .

Marginal Likelihood for Classification: �e Laplace appr-

oximation of the marginal likelihood, p(Y ∣X, θ)≈

p̂(Y ∣X, θ)

= ∫ exp(Ψ(fX))dfX

= exp(Ψ(f̂X))∫ exp(−

(fX − f̂X)

⊺H(fX − f̂X))dfX ,

which is achieved via a Taylor expansion of () locally

around f̂X to obtainΨ(fX) ≈ Ψ(f̂X)−

(fX− f̂X)

⊺H(fX−

f̂X). Computing the integral analytically gives us the

approximate marginal likelihood

log p̂(Y ∣X, θ) = −

f̂XK

− f̂X

+ log p(Y ∣ f̂ ,X) −

log ∣I +W

KW

 ∣.

Subsequently, the partial derivatives with respect to

hyperparameters is given by

∂

∂θ j

log p̂(Y ∣X, θ) =

f̂ ⊺XK

− ∂K

∂θ j

K− f̂X

−

tr((K +W−

)
− ∂K

∂θ j

)

+
N

∑
i=

∂ log p̂(Y ∣X, θ)

∂f̂xi

∂f̂xi
∂θ j
.

�e familiar multiple local optima problem is also

present in the marginal likelihood maximization. How-

ever, practical experiences suggest that local optima

are not a devastating problem especially with simple

functional forms of covariance function.

Sparse Approximation

A signi�cant problem with Gaussian process model is

associated with the computation cost of inverting the

N × N Gram matrix. A number of sparse approxima-

tion methods have been proposed to overcome this

high computational demand. Common to all these

methods is that only a subset of the latent function

values of size M < N are treated exactly and the

remaining latent values are approximated with cheaper

computational demand. Quiñonero-Candela and Ras-

mussen () describe a unifying view of sparse

Gaussian Process G

G

approximation. All existing sparse methods are shown

to be an instance of it. �e framework is described

for regression problems, however, it should also be

applicable for classi�cation learning settings, albeit

with complicacy associated with the non-Gaussian

likelihood.

In this unifying treatment, an additional set of M

latent variables fU ∈ RM , called inducing variables,
are introduced. �ese latent variables are latent func-

tion values corresponding to a set of input locations

XU ∈ RM×d, called inducing inputs. �e choice of
inducing inputs are not restricted to only from the

training or test inputs. Due to themarginalization prop-

erty, introducing more latent variables will not change

the distribution of the original variables. Consider ()

with the covariance matrix contains no noise compo-

nents, that is the distribution now de�nes joint dis-

tribution over latent training and test function values,

p(fX , f∗∣X, x∗)

= ∫ p(fX , f∗, fU ∣X, x∗)dfU

= ∫ p(fX , f∗∣X, x∗, fU)p(fU)dfU , ()

with p(fU)=N (,Ku,u). So far, no approximations

have been introduced. Introducing the key assumption

which is fX is conditionally independent of f∗ given fU ,

f∗⊥⊥fX ∣ fU , allow us to approximate () as

p(fX , f∗∣X, x∗) ≈ ∫ p(f∗∣x∗, fU)p(fX ∣X, fU)p(fU)dfU ,

()

where p(f∗∣x∗, fU) and p(fX ∣X, fU) admit the same form

as () without noise components. Di�erent computa-

tionally e�cient algorithms in the literature correspond

to di�erent assumptionsmade on those two conditional

distributions. Table shows various sparse approxima-

tion methods with their corresponding approximated

conditional distributions. For all sparse approxima-

tion methods, the computational complexity is reduced

fromO(N) toO(NM).

Current and Future Directions
Gaussian processes are an active area of research both

within the machine learning and the Bayesian statis-

tics community. First, there is the issue of e�cient

inference and learning as already discussed in the text

above. Second, there is interest in adapting Gaussian

processes to other learning settings. �ey have been

used for ordinal regression (Chu&Ghahramani, a;

Yu, Yu, Tresp & Kriegel,), preference learning

(Chu & Ghahramani, b), ranking (Guiver &

Snelson,), mixtures of experts (Tresp, b),

transductive learning (Schwaighofer & Tresp,),

multi-task learning (Yu, Tresp, & Schwaighofer,),

dimensionality reduction (Lawrence,), matrix fac-

torization (Lawrence & Urtasun,), reinforcement

learning (Deisenroth & Rasmussen, ; Engel, Man-

nor, & Meir,), among other settings. �ey have

also been extended to handle relational data (Chu,

Sindhwani, Ghahramani, & Keerthi, ; Kersting &

Xu, ; Silva, Chu, & Ghahramani, ; Xu, Kerst-

ing, & Tresp, ; Yu, Chu, Yu, Tresp, & Xu,).

Standard Gaussian processes only exploit the available

information about attributes of instances and typically

Gaussian Process. Table Sparse approximation methods

Method p̂(fX ∣X, fU) p̂(f∗∣x∗, fU) Ref.

SR N (KX ,XU K−
XU ,XU

fU,) N (Kx∗ ,XU K−
XU ,XU

fU,) Silverman ()

PP N (KX ,XU K−
XU ,XU

fU,) p(f∗∣x∗, fU) Seeger, Williams, and Lawrence ()

SPGPs
N (KX ,XU K−

XU ,XU
fU,∆)

∆ = diag[KX ,X − KX ,XU K−
XU ,XU

KXU ,X] p(f∗∣x∗, fU) Snelson and Ghahramani ()

BCM N (KX ,XU K−
XU ,XU

fU,∆) p(f∗∣x∗, fU) Tresp (a)

∆ = blockdiag[KX ,X − KX ,XU K−
XU ,XU

KXU ,X]
SR subset of regressors; PP projected process; SPGPs sparse pseudo-input gaussian processes; BCM: bayesian committe machine

 G Gaussian Process

ignore any relations among the instances. Intuitively,

however, we would like to use our information about

one instance to help us reach conclusions about other,

related instances.

Gaussian processes are also of great interest for

practical applications because they naturally deal with

noisy measurements, unevenly distributed observa-

tions, and �ll small gaps in the data with high con-

�dence while assigning higher predictive uncertainty

in sparsely sampled areas. For instance, Platt ()

generated music playlists using Gaussian processes.

Schwaighofer, Grigoras, Tresp, and Ho�mann ()

used them for realizing positioning systems using cel-

lular networks. Chu, Ghahramani, and Falciani ()

proposed a gene selection algorithm based on Gaus-

sian processes to discover consistent gene expression

patterns associated with ordinal clinical phenotypes.

Brooks, Makarenko, and Upcro� () proposed a

Gaussian process model in the context of appearance-

based localization with an omni-directional camera.

Ferris, Haehnel, and Fox () applied Gaussian pro-

cesses to locate a mobile robot from wireless signal

strength. Plagemann, Fox, and Burgard () used

them to detect failures on amobile robot. Gao, Honkela,

Rattray, and Lawrence () inferred latent chemi-

cal species in biochemical interaction networks using

Gaussian processes. Krause, Singh, and Guestrin ()

modeled precipitation data using Gaussian processes.

Finally, there is the issue of relaxing the assump-

tion of the standard Gaussian process model that the

noise on the output is uniform throughout the domain.

If we assume that the noise is a smooth function of

the inputs, the noise variance can be modeled using a

secondGaussian process, in addition to the process gov-

erning the noise-free output values.�e posterior dis-

tribution of the noise levels can then be sampled using

MCMC or approximated using maximum-aposteriori

inference. �e resulting heteroscedastic, i.e., input-

dependent noise regression model has been shown to

outperform state-of-the-art methods for mobile robot

localization (Plagemann, Kersting, Pfa�, & Burgard,

).

In addition to the references embedded in the

text above, we also recommend http://www.gaussian-

process.org/. A highly recommended textbook is Ras-

mussen &Williams ().

Cross References
7Dirichlet Process

Recommended Reading
Abrahamsen, P. (). A review of Gaussian random fields and cor-

relation functions. Rapport , Norwegian Computing Center,

Oslo. www.nr.no/publications/_Rapport.ps.

Brooks, A., Makarenko, A., & Upcroft, B. (). Gaussian process

models for sensor-centric robot localisation. In Proceedings of

ICRA. IEEE.

Chu, W., & Ghahramani, Z. (a). Gaussian processes for ordinal

regression. Journal of Machine Learning Research, , –.

Chu, W., & Ghahramani, Z. (b). Npreference learning with

gaussian processes. In: Proceedings of the international confer-

ence on machine learning (pp. –). New York: ACM.

Chu, W., Ghahramani, Z., Falciani, F., & Wild, D. (). Biomarker

discovery in microarray gene expression data with Gaussian

processes. Bioinformatics, (), –.

Chu, W., Sindhwani, V., Ghahramani, Z., & Keerthi, S. (). Rela-

tional learning with gaussian processes. In Proceedings of neural

information processing systems. Canada: Vancouver.

Deisenroth, M. P., Rasmussen, C. E., & Peters, J. (). Gaus-

sian process dynamic programming. Neurocomputing, (–),

–.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learning

with Gaussian processes. In Proceedings of the international con-

ference on machine learning, Bonn, Germany (pp. –). New

York: ACM.

Ferris, B., Haehnel, D., & Fox, D. (). Gaussian processes for

signal strength-based location estimation. In Proceedings of

robotics: Science and systems, Philadelphia, USA. Cambridge,

MA: The MIT Press.

Gao, P., Honkela, A., Rattray, M., & Lawrence, N. (). Gaussian

process modelling of latent chemical species: applications to

inferring transcription factor activities. Bioinformatics (),

i–i.

Guiver, J., & Snelson, E. (). Learning to rank with softrank and

gaussian processes. In Proceedings of SIGIR. (pp. –). New

York: ACM.

Kersting, K., & Xu, Z. (). Learning preferences with hidden

common cause relations. In Proceedings of ECML PKDD. Berlin:

Springer.

Krause, A., Singh, A., & Guestrin, C. (). Near-optimal sensor

placements in Gaussian processes: Theory, efficient algorithms

and empirical studies. Journal of Machine Learning Research, ,

–.

Krige, D. G. (). A statistical approach to some basic mine val-

uation problems on the witwatersrand. Journal of the Chem-

ical, Metallurgical and Mining Society of South Africa, (),

–.

Lawrence, N. (). Probabilistic non-linear principal component

analysis with gaussian process latent variable models. Journal of

Machine Learning Research, , –.

Lawrence, N., & Urtasun, R. (). Non-linear matrix factoriza-

tion with Gaussian processes. In Proceedings of the international

conference on machine learning (pp. –). New York: ACM.

MacKay, D. J. C. (). The evidence framework applied to classifi-

cation networks. Neural Computation, (), –.

http://www.gaussian-process.org/

Gaussian Process Reinforcement Learning G

G

Matheron, G. (). Principles of geostatistics. Economic Geology

(), –.

Neal, R. (). Bayesian learning in neural networks. New York:

Springer.

Nickisch, H., & Rasmussen, C. E. (). Approximations for binary

gaussian process classification. Journal of Machine Learning

Research, , –.

Plagemann, C., Fox, D., & Burgard, W. (). Efficient failure

detection on mobile robots using particle filters with gaus-

sian process proposals. In Proceedings of the international joint

conference on artificial intelligence (IJCAI), Hyderabad, India.

Morgan Kaufmann.

Plagemann, C., Kersting, K., Pfaff, P., & Burgard, W. ().

Gaussian beam processes: A nonparametric bayesian measure-

ment model for range finders. In Proceedings of the robotics:

Science and systems conference (RSS-), Atlanta, GA, USA. The

MIT Press.

John C. Platt., Christopher J. C. Burges., Steven Swenson., Christo-

pher Weare., & Alice Zheng. (). Learning a gaussian

process prior for automatically generating music playlists. In

Advances in Neural Information Processing Systems, –,

MIT Press.

Quiñonero-Candela, J., & Rasmussen, C. E. (). A unifying view

of sparse approximate gaussian process regression. Journal of

Machine Learning Research, , –.

Rasmussen, C. E., & Williams, C. K. I. (). Gaussian processes for

machine learning. Cambridge, MA: MIT Press.

Schwaighofer, A., Grigoras, M., Tresp, V., & Hoffmann, C. ().

A Gaussian process positioning system for cellular networks.

In Advances in neural information processing systems . Cam-

bridge, MA: MIT Press.

Schwaighofer, A., & Tresp, V. (). Transductive and inductive

methods for approximate guassian process regression. InNeural

information processing systems. Cambridge, MA: MIT Press.

Seeger, M., Williams, C. K. I., & Lawrence, N. (). Fast for-

ward selection to speed up sparse gaussian process regression.

In Ninth international workshop on artificial intelligence and

statistics. Society for Artificial Intelligence and Statistics.

Silva, R., Chu, W., & Ghahramani, Z. (). Hidden common

cause relations in relational learning. In Proceedings of neural

information processing systems. Canada: Vancouver.

Silverman, B. W. (). Some aspects of the spline smoothing

approach to non-parametric regression curve fitting. Journal of

Royal Statistical Society B, (), –.

Snelson, E., & Ghahramani, Z. (). Sparse gaussian processes

using pseudo-inputs. In Advanes in neural information process-

ing systems (pp. –). The MIT Press.

Tresp, V. (a). A Bayesian committee machine. Neural Computa-

tion, (), –.

Tresp, V. (b). Mixtures of gaussian processes. In T. K. Leen,

T. G. Dietterich, V. Tresp (Eds.), Advances in neural information

processing systems (pp. –). The MIT Press.

Williams, C., & Barber, D. (). Bayesian classification with

Gaussian processes. IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI, (), –.

Williams, C., & Rasmussen, C. (). Gaussian processes for regres-

sion. In D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (Eds.),

Advances in neural information processing systems (Vol. ,

pp. –). Cambridge, MA: MIT Press.

Xu, Z., Kersting, K., & Tresp, V. (). Multi-relational learn-

ing with gaussian processes. In Proceedings of the interna-

tional joint conference on artificial intelligence (IJCAI). Morgan

Kaufmann.

Yu, K., Chu, W., Yu, S., Tresp, V., & Xu, Z. (). Stochastic rela-

tional models for discriminative link prediction. In Proceedings

of neural information processing systems. Canada: Vancouver.

Yu, K., Tresp, V., & Schwaighofer, A. (). Learning gaussian pro-

cesses from multiple tasks. In Proceedings of the international

conference on machine learning (pp. –). New York:

ACM.

Yu, S., Yu, K., Tresp, V., & Kriegel, H. P. (). Collaborative

ordinal regression. In W. Cohen, A. Moore (Eds.), Proceed-

ings of the rd international conference on machine learning

(pp. –). New York: ACM.

Gaussian Process Reinforcement
Learning

Yaakov Engel

University of Alberta, Edmonton, Alberta, Canada

Definition
Gaussian process reinforcement learning generically

refers to a class of 7reinforcement learning (RL) algo-
rithms that use Gaussian processes (GPs) to model and

learn some aspect of the problem.

Such methods may be divided roughly into two

groups:

. Model-based methods: Here, GPs are used to

learn the transition and reward model of the

7Markov decision process (MDP) underlying the
RL problem. �e estimated MDP model is then

used to compute an approximate solution to the

true MDP.

. Model-free methods: Here no explicit representation

of the MDP is maintained. Rather, GPs are used to

learn either the MDP’s value function, state-action

value function, or some other quantity that may be

used to solve the MDP.

�is entry is concerned with the latter class of

methods, as these constitute the majority of published

research in this area.

 G Gaussian Process Reinforcement Learning

Motivation and Background
7Reinforcement learning is a class of learning problems
concerned with achieving long-term goals in unfamil-

iar, uncertain, and dynamic environments. Such tasks

are conventionally formulated by modeling the envi-

ronment as a 7MDPs (Or more generally as partially
observable MDPs (7POMDPs).), and modeling the
agent as an adaptive controller implementing an action-

selection policy.

Markov Decision Processes

Let us denote by P(S) the set of probability distribu-

tions over (Borel) subsets of a set S . A discrete time

MDP is a tuple (X ,U , p, p, q, γ), whereX andU are the

state and action spaces, respectively; p(⋅) ∈ P(X) is a

probability density over initial states; p(⋅∣x,u) ∈ P(X)

is a probability density over successor states, condi-

tioned on the current state x and action u; q(⋅∣x,u) ∈

P(R) is a probability distribution over immediate

single-step rewards, conditioned on the current state

and action. We denote by R(x,u) the random variable
distributed according to q(⋅∣x,u). Finally, γ ∈ [,] is

a discount factor. We assume that both p and q are sta-

tionary, that is, they do not depend explicitly on time. To

maintain generality, we use z to denote either a state x or
a state-action pair (x,u).�is overloaded notation will
allow us to present models and algorithms in a concise

and uni�ed form.

In the context of control it is useful to make sev-

eral additional de�nitions. A stationary policy µ(⋅∣x) ∈

P(U) is a time-independent mapping from states to

action selection probabilities. A stationary policy µ

induces a Markov reward process (MRP) (Puterman,

) via policy-dependent state-transition probability

density, de�ned as (Here and in the sequel, whenever

integration is performed over a �nite or discrete space,

the integral should be understood as a summation.)

pµx (x
′
∣x) = ∫

U
du µ(u∣x)p(x′∣u, x).

Similarly, the policy µmay also be used to de�ne a state-

action transition probability density, de�ned as

p
µ
x,u(x′,u′∣x,u) = p(x′∣u, x)µ(u′∣x′).

Using our overloaded notational convention, we refer to

either of these as p
µ
z . Let us denote by ξ(z) a path that

starts at z. Hence, for a �xed policy µ and a �xed initial
state or state-action pair z, the probability (density) of
observing the path ξ(z) = (z, z, . . . , zt) of length t is
(we take z as given) P(ξ(z)) = ∏

t
i= p

µ
z (zi∣zi−).�e

discounted return Dµ(ξ(z)) of a path ξ(z) is a random
process, de�ned (with some abuse of notation) as

Dµ(z) = Dµ(ξ(z)) =
∞
∑
i=

γiR(zi)∣(z = z), ()

where γ ∈ [,] is the discount factor (When γ = the

policy must be proper, see Bertsekas and Tsitsiklis

().)�e randomness in Dµ(z), for any given z, is
due both to ξ(z) being a random process and to the
randomness, or noise, in the rewards R(z),R(z), . . .,
etc., both of which jointly constitute the intrin-

sic randomness of the MDP. Equation () together

with the stationarity of the MDP yield the recursive

formula

Dµ(z) = R(z) + γDµ(z′) where z′ ∼ pµz (⋅∣z). ()

Let us de�ne the expectation operator Eξ as the

expectation over all possible trajectories and all possi-

ble rewards collected in them.�is allows us to de�ne

the value function V µ(z) as the result of applying this
expectation operator to the discounted return Dµ(z),
i.e.,

V µ(z) = EξD
µ
(z). ()

Applying the law of total expectation to this equation

results in theMRP (�xed policy) version of the Bellman

equation:

V µ(z) = R(z) + γEz′∣z[V µ(z′)]. ()

A policy thatmaximizes the expected discounted return

from each state is called an optimal policy, and is

denoted by µ∗. In the case of stationary MDPs, there

exists a deterministic optimal policy (�is is no longer

the case for POMDPs andMarkov games, see Kaelbling,

Littman, and Cassandra () and Littman ()).

�e value function corresponding to an optimal pol-

icy is called the optimal value, and is denoted by V∗ =

V µ
∗

. While there may exist more than one optimal pol-

icy, the optimal value function is unique (Bertsekas,

).

Gaussian Process Reinforcement Learning G

G

Reinforcement Learning

Many of the algorithms developed for solving RL prob-

lems may be traced back to the 7dynamic program-
ming Value Iteration and Policy Iteration algorithms

(Bellman, ; Bertsekas, ; Bertsekas & Tsitsiklis,

; Howard,). However, there are two major fea-

tures distinguishing RL from the traditional planning

framework. First, while in planning it is assumed that

the environment is fully known, in RL no such assump-

tion is made. Second, the learning process in RL is usu-

ally assumed to take place online, namely, concurrently

with the acquirement of data by the learning agent as it

interacts with its environment.�ese two features make

solving RL problems a signi�cantly more challenging

undertaking.

An important algorithmic component of policy-

iteration-based RL algorithms is the estimation of either

state or state-action values of a �xed policy control-

ling a MDP, a task known as policy evaluation. Sutton’s

TD(λ) algorithm (Sutton,) is an early RL algorithm

that performs policy evaluation based on observed sam-

ple trajectories from the MDP, while it is being con-

trolled by the policy being evaluated (see 7Temporal
Di�erence Learning). In its original formulation, TD(λ)

as well as many other algorithms (e.g., Watkins’

7Q-learning ()), employs a lookup table to store
values corresponding to theMDP’s states or state-action

pairs. �is approach clearly becomes infeasible when

the size of theMDPs joint state-action space exceeds the

memory capacity ofmodernworkstations.One solution

to this problem is to represent the value function using

a parametric function approximation architecture, and

allow these algorithms to estimate the parameters of

approximate value functions. Unfortunately, with few

exceptions, this seemingly benign modi�cation turns

out to have ruinous consequences to the convergence

properties of these algorithms. One notable exception

is TD(λ), when it is used in conjunction with a func-

tion approximator V̂(z)= ∑Ni= wiϕi(z), which is linear
in its tunable parametersw= (w, . . . ,wN)

⊺
. Under cer-

tain technical conditions, it has been shown that in this

case, TD(λ) converges almost surely, and the limit of

convergence is “close” (in a well de�ned manner) to a

projection ΠV µ of the true value function V µ onto the

�nite-dimensional space Hϕ of functions spanned by

{ϕi∣i = , . . . ,N} (Tsitsiklis & Van Roy,). Note that

this projection is the best one may hope for, as long

as one is restricted to a �xed function approximation

architecture. In fact, when λ = , the bound of Tsitsik-

lis and Van Roy () implies that TD() converges to

ΠV µ (assuming it is unique). However, as λ is reduced

toward , the quality of TD(λ)’s solution may deterio-

rate signi�cantly. If V µ happens to belong to Hϕ , then

V µ = ΠV µ and TD(λ) converges almost surely to V µ ,

for any λ ∈ [,].

As noted in Bertsekas and Tsitsiklis (), TD(λ) is

a stochastic approximation algorithm (Kushner & Yin,

). As such, to ensure convergence to a meaning-

ful result, it relies on making small and diminishing

updates to its value-function estimates.Moreover, in the

typical on-line mode of operation of TD(λ), a sample is

observed, acted upon (by updating the parameters of V̂)

and is then discarded, never to be seen again. A nega-

tive consequence of these two properties is that on-line

TD(λ) is inherently wasteful in its use of the observed

data. �e least-squares TD(λ), or LSTD(λ) algorithm

(Boyan, ; Bradtke & Barto,), was put forward

as an alternative to TD(λ) that makes better use of data,

by directly solving a set of equations characterizing the

�xed point of the TD(λ) updates. LSTD(λ) is amenable

to a recursive implementation, at a time and memory

cost of O(N) per sample. A more fundamental short-

coming, shared by both TD(λ) and LSTD(λ) is that they

do not supply the user with a measure of the accuracy

of their value predictions.

�e discussion above motivates the search for:

. Nonparametric estimators for V µ , since these are

not generally restricted to searching in any �nite

dimensional hypothesis space, such asHϕ .

. Estimators that make e�cient use of the data.

. Estimators that, in addition to value predictions,

deliver a measure of the uncertainty in their

predictions.

Structure of Learning System
We�rst describe the structure and operation of the basic

GP temporal di�erences (GPTD) algorithm for policy

evaluation. We then build on this algorithm to describe

policy improving algorithms, in the spirit of Howard’s

Policy Iteration (Howard,).

In the preceding section we showed that the value

V is the result of taking the expectation of the dis-

counted return D with respect to the randomness in

 G Gaussian Process Reinforcement Learning

the trajectories and in the rewards collected therein.

In the classic, or frequentist approach V is no longer

random, since it is the true, albeit unknown value func-

tion induced by the policy µ. Adopting the Bayesian

approach, we may still view the value V as a random

entity by assigning it additional randomness, that is

due to our subjective uncertainty regarding the MDP’s

transition model (p, q). We do not know what the true

distributions p and q are, which means that we are

also uncertain about the true value function. Previous

attempts to apply Bayesian reasoning to RL modeled

this uncertainty by placing priors over the MDP’s tran-

sition and reward model (p, q) and applying Bayes’

rule to update a posterior based on observed transi-

tions. �is line of work may be traced back to the

pioneering works of Bellman and Howard (Bellman,

; Howard,) followed by more recent contri-

butions in the machine learning literature (Dearden,

Friedman, & Andre, ; Dearden, Friedman, & Rus-

sell, ; Du�, ; Mannor, Simester, Sun, & Tsitsik-

lis, ; Poupart, Vlassis, Hoey, & Regan, ; Strens,

; Wang, Lizotte, Bowling, & Schuurmans,).

A fundamental shortcoming of this approach is that

the resulting algorithms are limited to solving MDPs

with �nite (and typically rather small) state and action

spaces, due to the need to maintain a probability distri-

bution over the MDP’s transition model. In this work,

we pursue a di�erent path – we choose to model our

uncertainty about the MDP by placing a prior (and

updating a posterior) directly on V . We achieve this by

modelingV as a randomprocess, ormore speci�cally, as

a Gaussian Process.�is mirrors the traditional classi�-

cation of classical RL algorithms to either model-based

or model-free (direct) methods, see Chapter in Sut-

ton and Barto (). Figure illustrates these di�erent

approaches.

xt+1xt

xt

rt

ut ut

lag(1)

Bayesian−RL
Prior

learning data

le
ar

ni
ng

 d
at

a

MDP

Policy: µ(u|x)

GPTD Prior

MRP

Frequentist RL:
No Prior

Value Estimator: Vµ(x) or Qµ(x,u)^ ^

Gaussian Process Reinforcement Learning. Figure . An illustration of the frequentist as well as the two different

Bayesian approaches to value-function based reinforcement learning. In the traditional Bayesian RL approach a prior

is placed on the MDP’s model, whereas in our GPTD approach the prior is placed directly on the value function. x, u,

and r denote state, action, and reward, respectively. The data required to learn value estimators typically consists of a

temporal stream of state-action-reward triplets. Another stream of data is used to update the policy based on the cur-

rent estimate of the value function. A MDP and a stationary policy controlling it, jointly constitute a MRP. lag() denotes

the -step time-lag operator

Gaussian Process Reinforcement Learning G

G

Gaussian Process Temporal Difference Learning

GPTD should be viewed as a family of statistical gen-

erative models (see 7Generative Learning) for value
functions, rather than as a family of algorithms. As such,

GPTD models specify the statistical relation between

the unobserved value function and the observable

quantities, namely the observed trajectories and the

rewards collected in them. �e set of equations pre-

scribing the GPTD model for a path ξ = (z, z, . . . , zt)
is (Here and in the sequel, to simplify notation, we

omit the superscript µ, with the understanding that

quantities such as D, V , or ξ generally depend on the
policy µ being evaluated.)

R(zi) = V(zi) − γV(zi+) +N(zi, zi+)

for i = , , . . . , t − .

N(zi, zi+) is a zero-mean noise term that must account
for the statistics of R(zi) + γV(zi+) − V(zi). If V is a
priori distributed according to a GP prior, and the noise

term N(zi, zi+) is also normally distributed then R(zi)
is also normally distributed, and so is the posterior dis-

tribution ofV conditioned on the observed rewards. To

fully specify the GPTD model, we need to specify the

GP prior over V in terms of prior mean and covariance

aswell as the covariance of the noise processN. In Engel,

Mannor, and Meir () it was shown that modeling

N as a white noise process is a suitable choice for MRPs

with deterministic transition dynamics. In Engel, Man-

nor, andMeir () a di�erent, correlated noise model

was shown to be useful for general MRPs. Let us de�ne

Rt = (R(z), . . . ,R(zt)), Vt = (V(z), . . . ,V(zt)), and
Nt = (N(z, z), . . . ,N(zt−, zt)), also de�ne the t× (t+

)matrix

Ht =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 −γ . . .

 −γ ⋮

⋮ ⋱ ⋱

 . . . −γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the white-noise and correlated-noise GPTD models

the noise covariance matrices Σt = Cov[Nt] are given,
respectively, by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ R(z) . . .

 σ R(z) ⋮

⋮ ⋱

 . . . σ R(zt−)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Ht

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ . . .

 σ ⋮

⋮ ⋱

 . . . σ t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H⊺t .

�e �nal component of the GPTD model remaining to

be speci�ed is the prior distribution of the GP V .�is

distribution is speci�ed by prior mean and covariance

functions v(z) and k(z, z′), respectively.
Let us de�ne vt = (v(z), . . . , v(zt))

⊺
. Employing

7Bayes’ rule, the posterior distribution of V(z) – the
value function at some arbitrary query point z – is now
given by

(V(z)∣Rt− = rt−) ∼ N{V̂t(z),Pt(z, z),

where

V̂t(z) = v(z) + kt(z)⊺αt , Pt(z, z′)

= k(z, z′) − kt(z)⊺Ctkt(z′),

αt = H⊺t (HtKtH
⊺
t + Σt)

−
(rt− −Htvt),

Ct = H⊺t (HtKtH
⊺
t + Σt)

−Ht .

It is seen here that in order to compute the posterior dis-

tribution ofV for arbitrary sets of query points, one only

needs the vector αt and the matrix Ct . Consequently,
αt and Ct are su�cient statistics for the posterior
of V .

Algorithms and provide pseudocode for recur-

sive computations of these su�cient statistics, in the

deterministic-transitions and general MDP models,

respectively.

It can be seen that a�er observing t sample transi-

tions, both the algorithms require storage quadratic in

t (due to the matrix Ct).�e updates also require time
quadratic in t due to matrix-vector products involving

 G Gaussian Process Reinforcement Learning

Ct . �ese properties are unsatisfying from a practi-
cal point of view, since realistic RL problems typically

require large amounts of data to learn. �ere are two

general approaches for reducing the memory and time

footprints of GPTD. One approach is to de�ne para-

metric counterparts of the twoGPTDmodels described

earlier, and derive the corresponding recursive algo-

rithms. If the number of independent parameters (i.e.,

the dimensionality of the hypothesis spaceHϕ) used to

represent the value function ism, the memory and time

costs of the algorithms become quadratic in m, rather

than t. Another approach, which is based on an e�-

cient sequential kernel sparsi�cation method, allows us

to selectively exclude terms from Dt , while controlling

the error incurred as a result. Here again (Bounds on

m in this case may be derived using arguments based

on the �niteness of packing numbers of the hypothe-

sis space, see Engel () for details.), if the size of

Dt saturates at m, the memory and time costs of the

resulting algorithms are quadratic in m. For the com-

plete derivations, as well as detailed pseudocode of the

corresponding algorithms we refer the reader to Engel

().

Theory
In this section we derive the two GPTD models men-

tioned above, explicitly stating the assumptions under-

lying each model.

MRPs with Deterministic Transitions

In the deterministic case, the Bellman equation ()

degenerates into

R̄(z) = V(z) − γV(z′), ()

where z′ is the state or state-action pair succeeding z,
under the deterministic policy µ. We also assume that

the noise in the rewards is independent and Gaussian,

but not necessarily identically distributed. We denote

the reward variance by σ R(z) = Var [R(z)]. Formally,
this means that the reward R(z), at some z, satis�es
R(z) = R̄(z)+N(z) where R̄(z) is the mean reward for
that state. Assume we have a sequence of rewards sam-

pled along a sampled path ξ.�en, at the ith time step
we have R(zi) = R̄(zi) +N(zi). Using the random vec-
tors Rt , Vt , and Nt de�ned earlier, we have N (,Σt),

Algorithm Recursive nonparametric GPTD for deter-
ministic MDPs

Initialize α = , C = ,D = {z}
for t = , , . . .
observe zt− , rt− , zt
ht = (, . . . , ,−γ)⊺

∆kt = kt−(zt−) − γkt−(zt)
∆ktt = k(zt− , zt−) − γk(zt− , zt) + γk(zt , zt)

ct = ht −
⎛
⎜⎜⎜
⎝

Ct−∆kt

⎞
⎟⎟⎟
⎠

dt = rt− − ∆kt⊺αt−
st = σ t− + ∆ktt − ∆kt⊺Ct−∆kt

αt =
⎛
⎜⎜⎜
⎝

αt−

⎞
⎟⎟⎟
⎠
+ ct
st
dt

Ct =

⎡⎢⎢⎢⎢⎢⎢⎣

Ct−

⊺

⎤⎥⎥⎥⎥⎥⎥⎦

+

st
ctc⊺t

Dt = Dt− ∪ {zt}
end for
return αt , Ct , Dt

where

Σt = diag(σ R(z), . . . , σ

R(zt−)), ()

and diag(⋅) denotes a diagonal matrix whose diagonal

elements are the components of the argument vector.

Writing theBellman equations () for the points belong-

ing to the sample path, and substituting R(zi) = R̄(zi)+
N(zi), we obtain the following set of t equations

R(zi) = V(zi) − γV(zi+) +N(zi), i = , , . . . , t − .

�is set of linear equations may be concisely written as

Rt− = HtVt +Nt . ()

General MRPs

Let us consider a decomposition of the discounted

returnD into its mean V and a zero-mean residual ∆V :

D(z) = EξD(z) + (D(z) − EξD(z))
def

=V(z) + ∆V(z).
()

�is decomposition is useful, since it separates the two

sources of uncertainty inherent in the discounted return

Gaussian Process Reinforcement Learning G

G

Algorithm Recursive nonparametric GPTD for gen-
eral MDPs

Initialize α = , C = ,D = {z}, c = , d = , /s =
for t = , , . . .
observe zt− , rt− , zt
ht = (, . . . , ,−γ)⊺

∆kt = kt−(zt−) − γkt−(zt)
∆ktt = k(zt− , zt−) − γk(zt− , zt) + γk(zt , zt)

ct = γσt−
st−

⎛
⎜⎜⎜
⎝

ct−

⎞
⎟⎟⎟
⎠
+ ht −

⎛
⎜⎜⎜
⎝

Ct−∆kt

⎞
⎟⎟⎟
⎠

dt = γσt−
st−
dt− + rt− − ∆kt⊺αt−

st = σ t−+γσ t −
γσt−
st−

+∆ktt−∆kt⊺Ct−∆kt+ γσt−
st−
c⊺t−∆kt

αt =
⎛
⎜⎜⎜
⎝

αt−

⎞
⎟⎟⎟
⎠
+ ct
st
dt

Ct =

⎡⎢⎢⎢⎢⎢⎢⎣

Ct−

⊺

⎤⎥⎥⎥⎥⎥⎥⎦

+

st
ctc⊺t

Dt = Dt− ∪ {zt}
end for
return αt , Ct , Dt

processD: For a knownMDPmodel,V is a (determinis-

tic) function and the randomness inD is fully attributed

to the intrinsic randomness in the trajectories gener-

ated by the MDP and policy pair, modeled by ∆V . On

the other hand, in aMDP in which both transitions and

rewards are deterministic but otherwise unknown, ∆V

is deterministic (identically zero), and the randomness

in D is due solely to the extrinsic Bayesian uncertainty,

modeled by the random process V .

Substituting () into () and rearranging we get

R(z) = V(z) − γV(z′) +N(z, z′),

where z′ ∼ pµ(⋅∣z), and

N(z, z′)def=∆V(z) − γ∆V(z′). ()

As before, we are provided with a sample path ξ, and
wemaywrite themodel equations () for these samples,

resulting in the following set of t equations

R(zi)=V(zi)−γV(zi+)+N(zi, zi+) for i = , . . . , t − .

Using our standard de�nitions for Rt , Vt , Ht and with
Nt = (N(z, z), . . . ,N(zt−, zt))⊺, we again have

Rt− = HtVt +Nt . ()

In order to fully de�ne a complete probabilistic gen-

erative model, we also need to specify the distribu-

tion of the noise process Nt . We model the residuals

∆V t = (∆V(z), . . . , ∆V(zt))
⊺
as random Gaussian

noise (�is may not be a correct assumption in gen-

eral; however, in the absence of any prior information

concerning the distribution of the residuals, it is the

simplest assumption we can make, since the Gaussian

distribution possesses the highest entropy among all

distributions with the same covariance. It is also pos-

sible to relax the Gaussianity requirement on both the

prior and the noise.�e resulting estimator may then

be shown to be the linear minimummean-squared error

estimator for the value.). In particular, this means that

the distribution of the vector ∆V t is completely spec-

i�ed by its mean and covariance. Another assumption

we make is that each of the residuals ∆V(zi) is inde-
pendently distributed. Denoting σ i = Var[D(zi)], the
distribution of ∆V t is given by:

∆V t ∼ N (, diag(σ t)),

where σ t = (σ , σ

 , . . . , σ

t
)
⊺
. Since Nt = Ht∆V t , we

have Nt ∼ N (,Σt) with,

Σt = Htdiag(σ t)H⊺t

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ + γσ −γσ . . .

−γσ σ + γσ −γσ . . .

 −γσ σ + γσ ⋱ ⋮

⋮ ⋱ ⋱ ⋱

 ⋮ ⋱ ⋱ −γσ t−

 . . . −γσ t− σ t− + γσ t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

()

Applications
Any RL algorithm that requires policy evaluation as

an algorithmic component can potentially use a GPTD

algorithm for this task. In particular, this is true of algo-

rithms based on Howard’s Policy Iteration. In Engel

 G Gaussian Process Reinforcement Learning

et al. () and Engel () is shown how GPTDmay

be used to construct a SARSA-type algorithm (Rum-

mery & Niranjan, ; Sutton & Barto,), called

GPSARSA. In Engel, Szabo, and Volkinshtein (),

GPSARSAwas used to learn control policies for a simu-

lated Octopus arm. In Ghavamzadeh and Engel ()

GPTD was used within a Bayesian actor–critic learning

algorithm.

Future Directions
By virtue of the posterior covariance, GPTD algorithms

compute a con�dence measure (or more precisely,

Bayesian credible intervals) for their value estimates.

So far, little use has been made of this additional

information. Several potential uses of the posterior

covariance may be envisaged:

. It may be used to construct stopping rules for value

estimation.

. It may be used to guide exploration.

. In the context of Bayesian actor–critic algorithms

(Ghavamzadeh & Engel,), it may used to con-

trol the size and direction of policy updates.

Further Reading
Yaakov Engel’s doctoral thesis (Engel,) is currently

the most complete reference to GPTD methods. Two

conference papers (Engel et al., ,) provide a

more concise view. �e �rst of these introduces the

GPTD model for deterministic MRPs, while the sec-

ond introduces the general MDP model, as well as the

GPSARSAalgorithm.A forthcoming journal articlewill

subsume these two papers, and include some additional

results, concerning the connection between GPTD and

the popular TD(λ) and LSTD(λ) algorithms.

Recommended Reading
Bellman, R. E. (). A problem in the sequential design of experi-

ments. Sankhya, , –.

Bellman, R. E. (). Dynamic programming. Princeton, NJ: Prince-

ton University Press.

Bertsekas, D. P. (). Dynamic programming and optimal control.

Belmont, MA: Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (). Neuro-dynamic program-

ming. Belmont, MA: Athena Scientific.

Boyan, J. A. (). Least-squares temporal difference learning.

In Proceedings of the th international conference on machine

learning (pp. –). San Francisco: Morgan Kaufmann.

Bradtke, S. J., & Barto, A. G. (). Linear least-squares algo-

rithms for temporal difference learning. Machine Learning, ,

–.

Dearden, R., Friedman, N., & Andre, D. (). Model based

Bayesian exploration. In Proceedings of the fifteenth confer-

ence on uncertainty in artificial intelligence (pp. –). San

Francisco: Morgan Kaufmann.

Dearden, R., Friedman, N., & Russell, S. (). Bayesian Q-

learning. In Proceedings of the fifteenth national conference on

artificial intelligence (pp. –). Menlo Park, CA: AAAI

Press.

Duff, M. (). Optimal learning: Computational procedures for

Bayes-adaptive Markov decision processes. PhD thesis, Univer-

sity of Massachusetts, Amherst.

Engel, Y. (). Algorithms and representations for reinforcement

learning. PhD thesis, The Hebrew University of Jerusalem.

Engel, Y., Mannor, S., & Meir, R. (). Bayes meets Bellman:

The Gaussian process approach to temporal difference learning.

In Proceedings of the th international conference on machine

learning. San Francisco: Morgan Kaufmann.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learning

with Gaussian processes. In Proceedings of the nd interna-

tional conference on machine learning.

Engel, Y., Szabo, P., & Volkinshtein, D. (). Learning to con-

trol an Octopus arm with Gaussian process temporal difference

methods. Technical report, Technion Institute of Technology.

www.cs.ualberta.ca/~yaki/reports/octopus.pdf.

Ghavamzadeh, M., & Engel, Y. (). Bayesian actor-critic algo-

rithms. In Z. Ghahramani (Ed.), th international conference

on machine learning. Corvallis, OR: Omnipress.

Howard, R. (). Dynamic programming and Markov processes.

Cambridge, MA: MIT Press.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (). Planning

and acting in partially observable stochastic domains. Artificial

Intelligence, , –.

Kushner, H. J., & Yin, C. J. (). Stochastic approximation algo-

rithms and applications. Berlin: Springer.

Littman, M. L. (). Markov games as a framework for multi-agent

reinforcement learning. In Proceedings of the th international

conference on machine learning (ICML-) (pp. –). New

Brunswick, NJ: Morgan Kaufmann.

Mannor, S., Simester, D., Sun, P., & Tsitsiklis, J. N. (). Bias and

variance in value function estimation. In Proceedings of the st

international conference on machine learning.

Poupart, P., Vlassis, N. A., Hoey, J., & Regan, K. (). An analytic

solution to discrete Bayesian reinforcement learning. In Pro-

ceedings of the twenty-third international conference on machine

learning (pp. –). Pittsburgh, PA.

Puterman, M. L. (). Markov decision processes: Discrete stochas-

tic dynamic programming. New York: Wiley.

Rummery, G., & Niranjan, M. (). On-line Q-learning using con-

nectionist systems. Technical report CUED/F-INFENG/TR ,

Cambridge University Engineering Department.

Strens, M. (). A Bayesian framework for reinforcement learn-

ing. In Proceedings of the th international conference on

machine learning (pp. –). San Francisco: Morgan Kauf-

mann.

Sutton, R. S. (). Temporal credit assignment in reinforcement

learning. PhD thesis, University of Massachusetts, Amherst.

Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An

introduction. Cambridge, MA: MIT Press.

Generalization Bounds G

G

Tsitsiklis, J. N., & Van Roy, B. (). An analysis of temporal-

difference learning with function approximation. Technical

report LIDS-P-, Cambridge, MA: MIT Press.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. ().

Bayesian sparse sampling for on-line reward optimization. In

Proceedings of the nd international conference on machine

learning (pp. –). New York: ACM Press.

Watkins, C. J. C. H. (). Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, UK.

Generality And Logic

7Logic of Generality

Generalization

Claude Sammut

University of New South Wales, Sydney, Australia

A hypothesis, h, is a predicate that maps an instance to

true or false.�at is, if h(x) is true, then x is hypothe-

sized to belong to the concept being learned, the target.

Hypothesis, h, is more general than or equal to h, if h
covers at least as many examples as h (Mitchell,).

�at is, h ≥ h if and only if

(∀x)[h(x)→ h(x)]

A hypothesis, h, is strictly more general than h, if h ≥

h and h ≰ h.

Note that themore general than ordering is strongly

related to subsumption.

Cross References
7Classi�cation
7Specialization
7Subsumption
7Logic of Generality

Recommended Reading
Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Generalization Bounds

Mark Reid

�e Australian National University, Canberra,

Australia

Synonyms
Inequalities; Sample complexity

Definition
In the theory of statistical machine learning, a gener-

alization bound – or, more precisely, a generalization

error bound – is a statement about the predictive per-

formance of a learning algorithm or class of algorithms.

Here, a learning algorithm is viewed as a procedure that

takes some �nite training sample of labeled instances as

input and returns a hypothesis regarding the labels of all

instances, including thosewhichmaynot have appeared

in the training sample. Assuming labeled instances are

drawn from some �xed distribution, the quality of a

hypothesis can be measured in terms of its risk – its

incompatibility with the distribution.�e performance

of a learning algorithm can then be expressed in terms

of the expected risk of its hypotheses given randomly

generated training samples.

Under these assumptions, a generalization bound is

a theorem, which holds for any distribution and states

that, with high probability, applying the learning algo-

rithm to a randomly drawn sample will result in a

hypothesis with risk no greater than some value.�is

bounding value typically depends on the size of the

training sample, an empirical assessment of the risk of

the hypothesis on the training sample as well as the

“richness” or “capacity” of the class of predictors that

can be output by the learning algorithm.

Motivation and Background
Suppose we have built an e-mail classi�er and then col-

lected a random sample of e-mail labeled as “spam” or

“not spam” to test it on. We notice that the classi�er

incorrectly labels % of the sample. What can be said

about the accuracy of this classi�er when it is applied

to new, previously unseen e-mail? If we make the rea-

sonable assumption that the mistakes made on future

 G Generalization Bounds

e-mails are independent of mistakes made on the sam-

ple, basic results from statistics tell us that the classi�er’s

true error rate will also be around %.

Now suppose that instead of building a classi�er by

hand we use a learning algorithm to infer one from the

sample. What can be said about the future error rate

of the inferred classi�er if it also misclassi�es % of

the training sample? In general, the answer is “nothing”

since we can no longer assume futuremistakes are inde-

pendent of those made on the training sample. As an

extreme case, consider a learning algorithm that outputs

a classi�er that just “memorizes” the training sample –

predicts labels for e-mail in the sample according to

what appears in the sample – and predicts randomly

otherwise. Such a classi�er will have a % error rate

on the sample, however, if most future e-mail does not

appear in the training sample the classi�er will have a

true error rate around %.

To avoid the problem of memorizing or over-�tting

the training data it is necessary to restrict the “�exibil-

ity” of the hypotheses a learning algorithm can output.

Doing so forces predictions made o� the training set to

be related to thosemade on the training set so that some

form of generalization takes place. However, doing this

can limit the ability of the learning algorithm to output

a hypothesis with small risk.�us, there is a classic bias

and variance trade-o�: the bias being the limits placed

on how �exible the hypotheses can be versus the vari-

ance between the training and the true error rates (see

7bias variance decomposition).
By quantifying the notion of hypothesis �exibility in

various ways, generalization bounds provide inequali-

ties that show how the �exibility and empirical error

rate can be traded o� to control the true error rate.

Importantly, these statements are typically probabilistic

but distribution-independent—they hold for nearly all

sets of training data drawn from a �xed but unknown

distribution. When such a bound holds for a learning

algorithm it means that, unless the choice of training

sample was very unlucky, we can be con�dent that some

form of generalization will take place.�e �rst results of

this kind were established by Vapnik and Chervonenkis

() about years ago and the measure of hypoth-

esis �exibility they introduced – the 7VC dimension
(see below) – now bears their initials. A similar style

of results were obtained independently by Valiant in

 in the Probably Approximately Correct, or 7PAC

learning framework (Valiant,).�ese two lines of

work were drawn together by Blumer et al. () and

now form the basis of what is known today as statistical

learning theory.

Details
For simplicity, we restrict our attention to generaliza-

tion bounds for binary 7classi�cation problems such
as the spam classi�cation example above. In this set-

ting instances (e.g., e-mail) from a set X are associated

with labels from a set Y = {−, } (e.g., indicating not

spam/spam) and an example z = (x, y) is a labeled

instance from Z := X ×Y .�e association of instances

to labels is assumed to be governed by some unknown

distribution P over Z .

A hypothesis h is a function that assigns labels

h(x) ∈ Y to instances. �e quality of a hypothesis

is assessed via a loss function ℓ : Y × Y → [,∞),

which assigns penalty ℓ(y, y′) when h predicts the label

y′ = h(x) for the example (x, y). For convenience,

we will o�en combine the loss and hypothesis evalu-

ation on an example z = (x, y) by de�ning ℓh(z) =

ℓ(y,h(x)). When examples are sampled from P the

expected penalty, or risk

LP(h) := EP [ℓh(z)]

can be interpreted as ameasure of howwell hmodels the

distribution P. A loss that is prevalent in classi�cation is

the – loss ℓ−(y, y′) = Jy ≠ y′Kwhere JpK is the indica-
tor function for the predicate p.�is loss simply assigns

a penalty of for an incorrect prediction and other-

wise.�e associated – risk for h is the probability the

prediction h(x) disagrees with a randomly drawn sam-

ple (x, y) from P. Unless stated otherwise, the bounds

discussed below are for the – loss only but, with care,

can usually be made to hold with more general losses

also.

Once a loss is speci�ed, the goal of a learning algo-

rithm is to produce a low-risk hypothesis based on a

�nite number of examples. Formally, a learning algo-

rithm A is a procedure that takes a training sample

z = (z, . . . , zn) ∈ Z
n as input and returns a hypothesis

h = A(z) with an associated empirical risk

L̂z(h) :=

n

n

∑
i=
ℓh(zi).

Generalization Bounds G

G

In order to relate the empirical and true risks, a com-

mon assumption made in statistical learning theory is

that the examples are drawn independently from P. In

this case, a sample z = (z, . . . , zn) is a random vari-

able from the product distributionPn overZn. Since the

sample can be of arbitrary but �nite size a learning algo-

rithm can be viewed as a function A : ⋃
∞
n=Z

n → H

whereH is the algorithm’s7hypothesis space.
A generalization bound typically comprises several

quantities: an empirical estimate of a hypothesis’s per-

formance L̂z(h); the actual (and unknown) risk of the

hypothesis LP(h); a con�dence term δ ∈ [,]; and

some measure of the �exibility or complexity C of the

hypotheses that can be output by learning algorithm.

�e majority of the bounds found in the literature �t

the following template.

▸ A generic generalization bound: LetAbe a learning algo-

rithm, P some unknown distribution over X × Y , and

δ > . Then, with probability at least −δ over randomly

drawn samples z from Pn , the hypothesis h = A(z) has

risk LP(h) no greater than L̂z(h) + є(δ,C).

Of course, there are many variations, re�nements, and

improvements of the bounds presented below and not

all �t this template. �e bounds discussed below are

only intended to provide a survey of some of the key

ideas and main results.

Basic bounds:�e penalties ℓh(zi) := ℓ(yi,h(xi))made

by a �xed hypothesis h on a sample z = (z, . . . , zn)

drawn from Pn are independent random variables.�e

law of large numbers guarantees (under somemild con-

ditions) that their mean L̂z(h) =

n ∑
n
i= ℓh(zi) con-

verges to the true risk LP(h) = EP[ℓh(z)] for h as
the sample size increases and several inequalities from

probability theory can be used to quantify this conver-

gence. A key result is 7McDiarmid’s inequality, which
can be used to bound the deviation of a function of

independent random variables from its mean. Since the

– loss takes values in [,], applying this result to the

random variables ℓh(Zi) gives

Pn (LP(h) > L̂z(h) + є) ≤ exp (−nє) . ()

We can invert this and obtain an upper bound for the

true risk that will hold on a given proportion of samples.

�at is, if we want LP(h) ≤ L̂z(h) + є to hold on at least

 − δ of the time on randomly drawn samples we can

solve δ = exp(−nє) for є and obtain є =

√
ln

δ

n
so that

Pn
⎛
⎜
⎝
LP(h) ≤ L̂z(h) +

√
ln

δ

n

⎞
⎟
⎠
≥ − δ. ()

�is simple bound lays the foundation for many of the

subsequent bounds discussed below and is the reason

for the ubiquity of the

√
ln

δ

n
-like terms.

A crucial observation to make about the above

bound is that while it holds for any hypothesis h it does

not hold for all h ∈ H simultaneously.�at is, the sam-

ples for which the bounds hold for hmay be completely

di�erent to those which make the bound hold for h.

Since a generalization bound must hold for all possi-

ble hypotheses output by a learning algorithm we need

to extend the above analysis by exploiting additional

properties of the hypothesis spaceH.

In the simple case when there are only �nitely many

hypothesis, we use the union bound. �is states that

for any distribution P and any �nite or countably in�-

nite sequence of events A,A . . . we have P (⋃i Ai) ≤

∑i P(Ai). ForH = {h, . . . ,hm} we consider the events

Zh = {z ∈ Zn : LP(h) > L̂z(h)+ є} when samples of size
n give empirical risks for h that are least є smaller than

its true risk. Using the union bound and () on these

events gives

Pn (⋃
h∈H
Zh(n, є)) ≤

m

∑
i=
Pn (Zh(n, є)) = m ⋅ exp(−nє).

�is is a bound on the probability of drawing a train-

ing sample from Pn such that every hypothesis has a

true risk that is є larger than its empirical risk. Invert-

ing this inequality by setting δ = m exp(−nє) yields

the following bound.

▸ Finite class bound: SupposeA has finite hypothesis class

H = {h , . . . ,hm}. Then with probability at least −δ over

draws of z from Pn the hypothesis h = A(z) satisfies

LP(h) ≤ L̂z(h) +

√
ln ∣H∣ + ln

δ

n
. ()

It is instructive to compare this to the single hypothesis

bound in () and note the bound is weakened by the

additional term ln ∣H∣.

 G Generalization Bounds

Since the union bound also holds for countable sets

of events this style of bound can be extended from

�nite hypothesis classes to countable ones. To do this

requires a slight modi�cation of the above argument

and the introduction of a distribution π over a count-

able hypothesis space H = {h,h, . . .}, which is cho-

sen before any samples are seen.�is distribution can

be interpreted as a prior belief or preference over the

hypotheses inH. Letting δ(h) = δ ⋅ π(h) in the bound

() implies that for each h ∈H we have

Pn
⎛
⎜
⎜
⎝

LP(h) > L̂z(h) +

¿
Á
ÁÀ ln

δ .π(h)

n

⎞
⎟
⎟
⎠

< δ ⋅ π(h).

�us, applying the countable union bound to the union

of these events over all of H, and noting that ∑h∈H δ ⋅

π(h) = δ since π is a distribution overH, gives use the

following bound:

▸ Countable class bound: Suppose µ is a probability dis-

tribution over a finite or countably infinite hypothesis

spaceH. Then with probability at least − δ over draws

of z from Pn the following bound holds for all h ∈H

LP(h) ≤ L̂z(h) +

¿
Á
ÁÀ ln

π(h) + ln

δ

n
. ()

Although the �nite and countable class bounds are

proved using very similar techniques (indeed, the for-

mer can be derived from the latter by choosing π(h) =

∣H∣), they di�er in the type of penalty they introduce

for simultaneously bounding all the hypotheses in H.

In (), the penalty ln ∣H∣ is purely a function of the size

of the class whereas in () the penalty ln

π(h) varies with

h. �ese two di�erent styles of bound can be seen as

templates for the two main classes of bounds discussed

below: the hypothesis-independent bounds of the next

section and the hypothesis-dependent bounds in the

section on PAC-Bayesian bounds.�e main conceptual

leap from here is the extension of the arguments above

to non-countable hypothesis classes.

Class complexity bounds: A key result in extending the

notion of size or complexity in the above bounds to

more general classes of hypotheses is the symmetriza-

tion lemma. Intuitively, it is based on the observation

that if the empirical risks for di�erent samples are fre-

quently near the true risk then they will also be near

each other. Formally, it states that for any є > such

that nє ≥ we have

Pn (sup
h∈H

∣LP(h) − L̂z(h)∣ > є)

≤ Pn (sup
h∈H

∣L̂z′(h) − L̂z(h)∣ >
є

) . ()

�us, to obtain a bound on the di�erence between

empirical and true risk it su�ces to bound the di�er-

ence in empirical risks on two independent samples z
and z′, both drawn fromPn.�is is useful since themax-
imum di�erence suph∈H ∣L̂z′(h) − L̂z(h)∣ is much easier

to handle than the di�erence involving LP(h) as the

former term only evaluates losses on the points in z and
z′ while the latter takes into account the entire spaceZ .
To study these restricted evaluations, we de�ne the

restriction of a function classF to the sample z byFz =
{(f (z), . . . , f (zn)) : f ∈ F}. Since the empirical risk

L̂z(h) =

n ∑
n
i= ℓh(zi) only depends on the values of the

loss functions ℓh on samples from z we de�ne the loss
class L = ℓH = {ℓh : h ∈ H} and consider its restriction

Lz as well as the restrictionHz of the hypothesis class it
is built upon. As we will see, themeasures of complexity

of these two classes are closely related.

One such complexity measure is arrived at by

examining the size of a restricted function class Fz

as the size of the sample z increases. �e growth
function or 7shattering coe�cient for the function
class F is de�ned as the maximum number of dis-

tinct values the vectors in Fz can take given a sam-

ple of size n: Sn(F) = supz∈Zn ∣Fz∣. In the case of

binary classi�cation with a – loss, it is not hard to

see that the growth functions for both L and H are
equal, that is, Sn(L) = Sn(H), and so they can be

used interchangeably. Applying a union bound argu-

ment to () as in the previous bounds guarantees that

Pn (suph∈H ∣LP(h) − L̂z(h)∣ > є) ≤ Sn(H) exp(−nє/)

and by inversion we obtain the following generalization

bound for arbitrary hypothesis classesH:

▸ Growth function bound: For all δ > , a draw of z from Pn

will, with probability at least − δ, satisfy for all h ∈H

LP(h) ≤ L̂z(h) +

√
 ln Sn(H) + ln

δ

n
. ()

One conclusion that can be immediately drawn from

this bound is that the shattering coe�cient must grow

Generalization Bounds G

G

sub-exponentially for the bound to provide any mean-

ingful guarantee. If the classH is so rich that hypotheses

from it can �t all n possible label combinations – if

Sn(H) = n for all n – then the term
√
 ln Sn(H)/n >

and so () just states LP(h) ≤ .�erefore, to get non-

trivial bounds from () there needs to exist some value

d for which Sn(H) < n whenever n > d.

VC dimension:�is desired property of the growth

function is exactly what is captured by the7VC dimen-
sion VC(H) of a hypothesis class H. Formally, it is

de�ned as VC(H) = max{n ∈ N : Sn(H) = n}

and is in�nite if no �nite maximum exists. Whether

or not the VC dimension is �nite plays a central role

in the consistency of empirical risk minimization tech-

niques. Indeed, it is possible to show that using ERM

on a hypothesis class H is consistent if and only if

VC(H) <∞.�is is partly due to Sauer’s lemma, which

shows that when a hypothesis class H has �nite VC

dimension VC(H) = dH < ∞ its growth function

is eventually polynomial in the sample size. Speci�-

cally, for all n ≥ dH the growth function satis�es

Sn(H) ≤ (en
dH

)
dH
. By substituting this result into the

Growth Function Bound () we obtain the following

bound, which shows how the VC dimension plays a role

that is analogous to the size a hypothesis class in the

�nite case.

▸ VC dimension bound: SupposeA has hypothesis classH
with finite VC dimension dH. Then with probability at

least − δ over draws of z from Pn the hypothesis h =
A(z) satisfies

LP(h) ≤ L̂z(h) +

¿
Á
ÁÀdH ln (

en
dH

) + ln
δ

n
. ()

�ere are many other bounds in the literature that are

based on the VC dimension. See the Recommended

Reading for pointers to these.

Rademacher averages: 7Rademacher averages are
a second kind of measure of complexity for uncount-

able function classes and can be used to derive more

re�ned bounds than those above.�ese averages arise

naturally by treating as a random variable the sample-

dependent quantityMF(z) = supf ∈F [EP[f] −Ez[f]].
�is is just the largest di�erence taken over all f ∈ F

between its true mean EP[f] and its empirical mean

Ez[f] :=

∣z∣ ∑
∣z∣
i= f (zi). For a loss class L = ℓH a bound

on this maximum di�erence – ML(z) ≤ B – immedi-

ately gives a generalization bound of the form LP(h) ≤

L̂z(h) + B. Since MF(z) is a random variable, McDi-
armid’s inequality can be used to bound its value in

terms of its expected value plus the usual

√
ln

δ

n
term.

Applying symmetrization it can then be shown that this

expected value satis�es

EPn [MF(z)] ≤ E
⎡
⎢
⎢
⎢
⎣
sup
f ∈F

n

n

∑
i=

ρi (f (z
′
i) − f (zi))

⎤
⎥
⎥
⎥
⎦

≤ Rn(F)

where the right-hand expectation is taken over two

independent samples z, z′ ∼ Pn and the Rademacher

variables ρ, . . . , ρn. �ese are independent random

variables, each with equal probability of taking the val-

ues − or , that give their name to the Rademacher

average

Rn(F) = E
⎡
⎢
⎢
⎢
⎣
sup
f ∈F

n

n

∑
i=

ρif (zi)
⎤
⎥
⎥
⎥
⎦
.

Intuitively, this quantity measures how well the func-

tions inF can be chosen to align with randomly chosen

labels ρi.�e Rademacher averages for the loss class L
and the hypothesis class H are closely related. For –

loss, it can be shown they satisfy Rn(L) =

Rn(H).

Putting all the above steps together gives the follow-

ing bounds.

▸ Rademacher bound: SupposeA has hypothesis classH.

Then with probability at least − δ over draws of z from

Pn the hypothesis h = A(Z) satisfies

LP(h) ≤ L̂z(h) + Rn(H) +

√
ln

δ

n
. ()

�is bound is qualitatively di�erent to the Growth

Function and VC bounds above as the Rademacher

average term is distribution-dependent whereas the

other complexity terms are purely a function of

the hypothesis space. Indeed, it is possible to bound

the Rademacher average in terms of the VC dimension

and obtain the VC bound () from (). Furthermore,

the Rademacher average is closely related to the mini-

mum empirical risk via Rn(H) = −E[infh∈H L̂x,ρ(h)]

where L̂x,ρ(h) is the empirical risk of h for the randomly

labeled sample z = ((x, ρ), . . . , (xn, ρn)). �us, in

 G Generalization Bounds

principle,Rn(H) could be estimated for a given learning

problem using standard ERMmethods.

�e Rademacher bound can be further re�ned so

that the complexity term is data-dependent rather than

distribution-dependent.�is is done by noting that the

Rademacher averageRn(F) = E [R̂z(F)]where R̂z(F)

is the empirical Rademacher average for F conditioned

on the sample z. Applying McDiarmid’s inequality to
the di�erence between R̂z(F) and its mean gives a

sample-dependent bound:

▸ Empirical Rademacher bound: Under the same condi-

tions as the Rademacher bound, the following holds

with probability − δ:

LP(h) ≤ L̂z(h) + R̂z(H) +

√
ln

δ

n
. ()

PAC-Bayesian bounds: All the bounds in the previous

section provide bounds on deterministic hypotheses,

which include complexity terms that are functions of

the entire hypothesis space. PAC-Bayesian bounds dif-

fer from these in two ways: they provide bounds on

nondeterministic hypotheses – labels may be predicted

for instances stochastically; and their complexity terms

are hypothesis-dependent.�e term “Bayesian” given to

these bounds refers to the use of a distribution over

hypotheses that is used to de�ne the complexity term.

�is distribution can be interpreted as a prior belief over

the e�cacy of each hypothesis before any observations

are made.

Nondeterministic hypotheses aremodeled by assum-

ing that a distribution µ over H is used to randomly

draw a deterministic hypothesis h ∈ H to predict h(x)

each time a new instance x is seen. Such a strategy is

called a Gibbs hypothesis for µ. Since its behavior is

de�ned by the distribution µ, we will abuse our nota-

tion slightly and de�ne its loss on the example z to

be ℓµ(z) := Eh∼µ [ℓh(z)]. Similarly, the true risk and
empirical risk for a Gibbs hypothesis are, respectively,

de�ned to be LP(µ) := Eh∼µ [LP(h)] and L̂z(µ) :=
Eh∼µ [L̂z(h)]. Aswith the earlier generalization bounds,
the aim is to provide guarantees about the di�erence

between LP(µ) and L̂z(µ). In the case of – loss,

p := LP(µ) ∈ [,] is just the probability of the

Gibbs hypothesis for µ misclassifying an example and

q := L̂z(µ) ∈ [,] can be thought of as an estimate

of p. However, unlike the earlier bounds on the di�er-

ence between the true and estimated risk, PAC-Bayesian

bounds are expressed in terms the Kullback–Leibler

(KL) divergence. For the values p, q ∈ [,] this is de�ned

as kl(q∥p) := q ln
q

p
+(−q) ln

−q
−p and for distributions µ

and π over the hypothesis spaceHwewriteKL(µ∥π) :=

∫H ln
dµ

dπ
dµ. Using these de�nitions, the most common

PAC-Bayesian bound states the following.

▸ Theorem (PAC-Bayesian bound): For all choices of the dis-

tribution π overHmade prior to seeing any examples,

the Gibbs hypothesis defined by µ satisfies

kl(LP(µ), L̂z(µ)) ≤
KL(µ∥π) + ln n+

δ

n
()

▸ with probability at least − δ over draws of z from Pn .

�is says that the di�erence (asmeasured by kl) between

the true and empirical risk for the Gibbs hypothesis

based on µ is controlled by two terms: a complexity term
KL(µ∥π)

n
and a sampling term

ln n+
δ

n
, both of which con-

verge to zero as n increases. To make connections with

the previous boundsmore apparent, we canweaken ()

using the inequality kl(q∥p) ≥ (p − q) to get the fol-

lowing bound that holds under the same assumptions:

LP(µ) ≤ L̂z(µ) +

√
KL(µ∥π) + ln n+

δ

n
.

�e sampling term is similar to the ubiquitous estima-

tion penalty in the earlier bounds but with an additional

ln(n +)/n .�e complexity term is a measure of the

complexity of the Gibbs hypothesis for µ relative to the

distribution π. Intuitively, KL(⋅∥π) can be thought of

as a parametrized family of complexity measures where

hypotheses from a region where π is large are “cheap”

and those where π is small are “expensive”. Informa-

tion theoretically, it is the expected number of extra bits

required to code hypotheses drawn from µ using a code

based on π instead of a code based on µ. It is for these

reasons the PAC-Bayes bound is said to demonstrate

the importance of choosing a good prior. If the Gibbs

hypothesis µ, which minimizes L̂z(µ) is also “close” to

π then the bound will be tight.

Unlike the other bounds discussed above, PAC-

Bayesian bounds are in terms of the complexity of single

meta-classi�ers rather than the complexity of classes.

Furthermore, for speci�c base hypothesis classes such

as margin classi�ers used by SVMs it is possible to

get hypothesis-speci�c bounds via the PAC-Bayesian

Generalization Bounds G

G

bounds.�ese are typically much tighter than the VC

or Rademacher bounds.

Other bounds: While the above bounds are land-

marks in statistical learning theory there is obviously

much more territory that has not been covered here.

For starters, the VC bounds for classi�cation can

be re�ned by using more sophisticated results from

empirical process theory such as the Bernstein and

Variance-based bounds.�ese are discussed in Sect. of

(Boucheron et al.,). �ere are also other dis-

tribution- and sample-dependent complexity measures

that are motivated di�erently to Rademacher aver-

ages. For example, the VC entropy (see Sect. . of

(Bousquet et al.,)) is a distribution-dependent

measure obtained by averaging ∣Fz∣ with respect to the

sample distribution rather than taking supremum in the

de�nition of the shattering coe�cient.

Moving beyond classi�cation, bounds for regression

problems have been studied in depth and have similar

properties to those for classi�cation.�ese bounds are

obtained by essentially discretizing the function spaces.

�e growth function is replaced by what is known

as a covering number but the essence of the bounds

remain the same.�e reader is referred to (Herbrich and

Williamson,) for a brief discussion and (Anthony

and Bartlett,) for more detail.

�ere are a variety of bounds that, unlike those

above, are algorithm-speci�c. For example, the reg-

ularized empirical risk minimization performed by

SVMs has been analyzed within an algorithmic stabil-

ity framework. As discussed in Boucheron et al. ()

and Herbrich and Williamson (), hypotheses are

considered stable if their predictions are not varied

too much when a single training example is perturbed.

Two other algorithm-dependent frameworks include

the luckiness and compression frameworks, both sum-

marized in Herbrich and Williamson ().�e for-

mer gives bounds in terms of an a priori measure of

luckiness – howwell a training sample alignswith biases

encoded in an algorithm – while the latter considers

algorithms, like SVMs, which base hypotheses on key

examples within a training sample.

Recently, there has been work on a type of

algorithm-dependent, relative bound called reductions

(see Beygelzimer et al., for an overview). By trans-

forming inputs and outputs for one type of problem

(e.g., probability estimation) into a di�erent type of

problem (e.g., classi�cation), bounds for the former

can be given in terms of bounds for the latter while

making very few assumptions.�is opens up a variety

of avenues for applying existing results to new learn-

ing tasks.

Cross References
7Classi�cation
7Empirical Risk Minimization
7Hypothesis Space
7Loss
7PAC Learning
7Regression
7Regularization
7Structural Risk Minimization
7VC Dimension

Recommended Readings
As mentioned above, the uniform convergence bounds by Vapnik

and Chervonenkis () and the PAC framework of Valiant ()

were the first generalization bounds for statistical learning. Ideas

from both were synthesized and extended by Blumer et al. ().

The book by Kearns and Vazirani () provides a good overview

of the early PAC-style bounds while Vapnik’s comprehensive book

(Vapnik,), and Antony and Bartlett’s book () cover clas-

sification and regression bounds involving the VC dimension.

Rademacher averages were first considered as an alternative to VC

dimension in the context of learning theory by Koltchinskii and

Panchenko () and were refined and extended by Bartlett and

Mendelson () who provide a readable overview. Early PAC-

Bayesian bounds were established by McAllester () based on

an earlier PAC analysis of Bayesian estimators by Shawe-Taylor

and Williamson (). Applications of the PAC-Bayesian bound

to SVMs are discussed in Langford’s tutorial on prediction the-

ory (Langford,) and recent paper by Banerjee () pro-

vides an information theoretic motivation, a simple proof of the

bound in (), as well as connections with similar bounds in online

learning.

There are several well-written surveys of generalization bounds

and learning theory in general. Herbrich and Williamson ()

present a unified view of VC, compression, luckiness, PAC-Bayesian,

and stability bounds. In a very readable introduction to statisti-

cal learning theory, Bousquet et al. () provide good intuition

and concise proofs for all but the PAC-Bayesian bounds presented

above. That introduction is a good companion for the excellent but

more technical survey by Boucheron et al. () based on tools

from the theory of empirical processes. The latter paper also pro-

vides a wealth of further references and a concise history of the

development of main techniques in statistical learning theory.

Anthony, M., & Bartlett, P. L. (). Neural network learning: The-

oretical foundations. Cambridge: Cambridge University Press.

Banerjee, A. (). On Bayesian bounds. ICML ’: Proceedings of

the rd International Conference on Machine learning, Pitts-

burgh, pp. –.

 G Generalization Performance

Bartlett, P. L., & Mendelson, S. (). Rademacher and Gaus-

sian complexities: risk bounds and structural results. Journal

of Machine Learning Research, , –.

Beygelzimer, A., Langford, J., & Zadrozny, B. (). Machine learn-

ing techniques – reductions between prediction quality metrics.

In Liu, Zhen; Xia, Cathy H. (Eds.) Performance modeling and

engineering (pp. –). Springer.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().

Learnability and the Vapnik-Chervonenkis dimension. Journal

of the ACM (JACM), (), –.

Boucheron, S., Bousquet, O., & Lugosi, G. (). Theory of classi-

fication: A survey of some recent advances. ESAIM Probability

and statistics, , –.

Bousquet, O., Boucheron, S., & Lugosi, G. (). Introduction

to statistical learning theory, volume of lecture notes in

artificial intelligence (pp. –). Berlin: Springer.

Herbrich, R., & Williamson, R. C. (). Learning and generaliza-

tion: Theory and bounds. In M. Arbib (Ed.), Handbook of brain

theory and neural networks (nd ed.). Cambridge: MIT Press.

Kearns, M. J., & Vazirani, U. V. (). An introduction to computa-

tional learning theory. Cambridge: MIT Press.

Koltchinskii, V. (). Rademacher penalties and structural risk

minimization. IEEE Transactions on Information Theory, (),

–.

Langford, J. (). Tutorial on practical prediction theory for clas-

sification. Journal of Machine Learning Research, (), –.

McAllester, D. A. (). Some PAC-Bayesian theorems. Machine

Learning, (), –.

Shawe-Taylor, J., & Williamson, R. C. (). A PAC analysis of a

Bayesian estimator. Proceedings of the Tenth Annual Conference

on Computational Learning Theory, ACM, p. .

Valiant, L. G. (). A theory of the learnable. Communications of

the ACM, (), .

Vapnik, V. N. (). Statistical learning theory. New York: Wiley.

Vapnik, V. N., & Chervonenkis, A. Y., (). On the uniform con-

vergence of relative frequencies of events to their probabilities.

Theory of Probability and Its Applications, (), –.

Generalization Performance

�e generalization performance of a learning algorithm

refers to the performance on7out-of-sample data of the
7models learned by the algorithm.

Cross References
7Algorithm Evaluation

Generalized Delta Rule

7Backpropagation

General-to-Specific Search

When searching a hypothesis space, a general-to-

speci�c search starts from the most general hypoth-

esis and expands the search by specialization. See

7Learning as Search.

Generative and Discriminative
Learning

Bin Liu, Geoffrey I. Webb

Monash University

Definition
Generative learning refers alternatively to any classi-

�cation learning process that classi�es by using an

estimate of the joint probability P(y, x) or to any clas-
si�cation learning process that classi�es by using esti-

mates of the prior probability P(y) and the conditional

probability P(x ∣ y) (Bishop, ; Jaakkola & Haussler,
; Jaakkola, Meila & Jebara, ; Lasserre, Bishop &

Minka, ; Ng & Jordan,), where y is a class and

x is a description of an object to be classi�ed. Generative
learning contrasts with discriminative learning in which

a model or estimate of P(y ∣ x) is formed without ref-
erence to an explicit estimate of any of P(y, x), P(x) or
P(x ∣ y).
It is also common to categorize as discriminative

approaches based on a decision function that directly

maps from input x onto the output y (such as support
vector machines, neural networks, and decision trees),

where the decision risk isminimizedwithout estimation

of P(y, x), P(x ∣ y) or P(y ∣ x) (Jaakkola &Haussler,).
�e standard exemplar of generative learning is

naïve Bayes and of discriminative learning, 7logistic
regression. Another important contrasting pair is the

generative hidden Markov model and discriminative

conditional random �eld.

It is widely accepted that generative learning works

well when samples are rare while discriminative learn-

ing has better asymptotic error performance (Ng &

Jordan,).

Generative Learning G

G

Motivation and Background
Efron () provides an early examination of the gen-

erative/discriminative distinction. Efron performs an

empirical comparison of the e�ciency of the gen-

erative linear discriminant analysis (LDA) and dis-

criminative logistic regression. His results show that

logistic regression has % less e�ciency than LDA,

whichmeans the discriminative approach is % slower

to reach the asymptotic error than the generative

approach.

Ng et al. () give a theoretical discussion of the

e�ciency of generative naïve Bayes and discrimina-

tive logistic regression. �eir result shows that logis-

tic regression converges toward its asymptotic error in

order n samples while naïve Bayes converges in order

log n samples.While logistic regression convergesmuch

slower than naïve Bayes, it has lower asymptotic error

than naïve Bayes.�ese results suggest that it is desir-

able to use a generative approach when training data is

scarce and to use a discriminative approach when there

is enough training data.

Recent research into the generative/discriminative

learning distinction has concentrated on the area of

hybrids of generative and discriminative learning, as

well as generative learning and discriminative learning

in structured data learning or semi-supervised learning

context.

In hybrid approaches, researchers seek to obtain

the merits of both generative learning and discrimina-

tive learning. Some examples include the Fisher ker-

nel for discriminative learning (Jaakkola & Haussler,

), max-ent discriminative learning (Jaakkola, Meila

& Jebara,), and principled hybrids of generative

and discriminative models (Lasserre, Bishop & Minka,

).

In structured data learning, the output data have

dependent relationships. As an example of genera-

tive learning, the hidden Markov models are used

in structured data problems which need sequential

decisions.�e discriminative analog is the conditional

random �eld models. Another example of discrimina-

tively structured learning is Max-margin Markov net-

works (Taskar, Guestrin & Koller,).

In semi-supervised learning, co-training and mul-

tiview learning are usually applied to generative learn-

ing (Blum & Mitchell,). It is less straightfor-

ward to apply semi-supervised learning in traditional

discriminative learning, since P(y∣ x) is estimated by
ignoring P(x). Examples of semi-supervised learning
methods in discriminative learning include transduc-

tive SVM, Gaussian processes, information regulariza-

tion, and graph-based methods (Chapelle, Schölkopf &

Zien,).

Cross References
7Evolutionary Feature Selection and Construction

Recommended Reading
Bishop, C. M. (). Pattern recognition and machine learning.

Springer.

Blum, A., & Mitchell, T. (). Combining labeled and unlabeled

data with co-training. Proceedings of the eleventh annual con-

ference on Computational learning theory, Madison, Wisconsin,

USA. New York: ACM.

Chapelle, O., Schölkopf, B., & Zien, A. (). Semi-supervised

learning. Cambridge: The MIT Press.

Efron, B. (). The efficiency of logistic regression compared to

normal discriminant analysis. Journal of the American Statisti-

cal Association, (), –.

Jaakkola, T. S., & Haussler, D. (). Exploiting generative mod-

els in discriminative classifiers. Advances in neural information

processing systems, .

Jaakkola, T., Meila, M., & Jebara, T. (). Maximum entropy

discrimination. Advances in neural information processing sys-

tems, .

Lasserre, J. A., Bishop, C. M., & Minka, T. P. (). Princi-

pled hybrids of generative and discriminative models. IEEE

Conference on Computer Vision and Pattern Recognition,

New York.

Ng, A. Y., & Jordan, M. I. (). On discriminative vs. Generative

classifiers: A comparison of logistic regression and naive Bayes.

Advances in neural information processing systems, .

Taskar, B., Guestrin, C., & Koller, D. (). Max-margin

Markov networks. Advances in neural information processing

systems, .

Generative Learning

Definition
Generative learning refers alternatively to any classi�ca-

tion learning process that classi�es by using an estimate

of the joint probability P(y, x) or to any classi�cation
learning process that classi�es by using estimates of the

prior probability P(y) and the conditional probability

 G Genetic and Evolutionary Algorithms

P(x ∣ y), where y is a class and x is a description of an
object to be classi�ed. Given such models or estimates

it is possible to generate synthetic objects from the joint

distribution. Generative learning contrasts to discrimi-

native learning inwhich amodel or estimate of P(y ∣ x) is
formed without reference to an explicit estimate of any

of P(x), P(y, x), or P(x ∣ y).

Cross References
7Generative and Discriminative Learning

Genetic and Evolutionary
Algorithms

Claude Sammut

�e University of New South Wales

Sydney, Australia

Definitions
�ere are many variations of genetic algorithms (GA).

Here, we describe a simple scheme to introduce some of

the key terms in genetic and evolutionary algorithms.

See the main entry on 7Evolutionary Algorithms for
references to speci�c methods.

In genetic learning, we assume that there is a popu-

lation of individuals, each of which represents a candi-

date problem solver for a given task. GAs can be thought

of as a family of general purpose search methods that

are capable of solving a broad range of problems from

optimization and scheduling to robot control. Like evo-

lution, genetic algorithms test each individual from the

population and only the �ttest survive to reproduce for

the next generation.�e algorithm creates new genera-

tions until at least one individual is found that can solve

the problem adequately.

Each problem solver is a chromosome. A position,

or set of positions in a chromosome is called a gene.

�e possible values (from a �xed set of symbols) of a

gene are known as alleles. For example, a simple genetic

algorithmmay de�ne the set of symbols to be {, }, and

chromosome lengths are �xed.�e most critical prob-

lem in applying a genetic algorithm is in �nding a suit-

able encoding of the examples in the problem domain

to a chromosome. A good choice of representation will

make the search easier by limiting the size of the search

space. A poor choice will result in a large search space.

Choosing the size of the population can be problematic

since a small population size provides an insu�cient

sample over the space of solutions for a problem and

large population requires extensive evaluation and will

be slow.

Each iteration in a genetic algorithm is called a gen-

eration. Each chromosome in a population is used to

solve a problem. Its performance is evaluated and the

chromosome is given a rating of �tness. �e popula-

tion is also given an overall �tness rating based on the

performance of its members. �e �tness value indi-

cates how close a chromosome or population is to the

required solution.

New sets of chromosomes are produced from one

generation to the next. Reproduction takes place when

selected chromosomes from one generation are recom-

bined with others to form chromosomes for the next

generation.�e new ones are called o�spring. Selection

of chromosomes for reproduction is based on their �t-

ness values.�e average �tness of the population may

also be calculated at the end of each generation. �e

strategy must be modi�ed if too few or too many chro-

mosomes survive. For example, at least % and at most

% must survive.

Genetic Operators
Operators that recombine the selected chromosomes

are called genetic operators. Two common operators are

crossover and mutation. Crossover exchanges portions

of a pair of chromosomes at a randomly chosen point

called the crossover point. Some Implementations have

more than one crossover point. For example, if there are

two chromosomes, X and Y :

X = , Y =

and the crossover point is a�er position , the resulting

o�spring are:

O = , O =

O�spring produced by crossover cannot contain infor-

mation that is not already in the population, so an addi-

tional operator, mutation, is required. Mutation gener-

ates an o�spring by randomly changing the values of

Gini Coefficient G

G

genes at one or more gene positions of a selected chro-

mosome. For example, if the following chromosome,

Z =

is mutated at positions , , and , then the resulting

o�spring is:

O =

�e number of o�spring produced for each new gen-

eration depends on how members are introduced so as

to maintain a �xed population size. In a pure replace-

ment strategy, thewhole population is replaced by a new

one. In an elitist strategy, a proportion of the population

survives to the next generation.

Cross References
7Evolutionary Algorithms

Genetic Attribute Construction

7Evolutionary Feature Selection and Construction

Genetic Clustering

7Evolutionary Clustering

Genetic Feature Selection

7Evolutionary Feature Selection and Construction

Genetic Grouping

7Evolutionary Clustering

Genetic Neural Networks

7Neuroevolution

Genetic Programming

Moshe Sipper

Ben-Gurion University, Beer-Sheva, Israel

Genetic Programming is a subclass of 7evolutionary
algorithms, wherein a population of individual pro-

grams is evolved.�e main mechanism behind genetic

programming is that of a 7generic algorithm, namely,
the repeated cycling through four operations applied

to the entire population: evaluate–select–crossover–

mutate. Starting with an initial population of randomly

generated programs, each individual is evaluated in the

domain environment and assigned a �tness value rep-

resenting how well the individual solves the problem

at hand. Being randomly generated, the �rst-generation

individuals usually exhibit poor performance. However,

some individuals are better than others, that is, as in

nature, variability exists, and through the mechanism

of selection, these have a higher probability of being

selected to parent the next generation.�e size of the

population is �nite and usually constant.

See7EvolutionaryGames for amore detailed expla-
nation of genetic programming.

Genetics-Based Machine Learning

7Classi�er Systems

Gibbs Sampling

Gibbs Sampling is a heuristic inference algorithm

for 7Bayesian networks. See 7Graphical Models for
details.

Gini Coefficient

�e Gini coe�cient is an empirical measure of classi-

�cation performance based on the area under an ROC

curve (AUC). Attributed to the Italian statistician Cor-

rado Gini (-), it can be calculated as ⋅AUC−

 G Gram Matrix

and thus takes values in the interval [−,], where indi-

cates perfect ranking performance and − indicates that

all negatives are ranked before all positives. See 7ROC
Analysis.

Gram Matrix

7Kernel Matrix

Grammar Learning

7Grammatical Inference

Grammatical Inference

Lorenza Saitta, Michele Sebag

Università del Piemonte Orientale, Alessandria, Italy
CNRS − INRIA − Université Paris-Sud, Orsay, France

Synonyms
Grammatical inference, Grammar learning

Definition
Grammatical inference is concerned with inferring

grammars from positive (and possibly negative) exam-

ples (Angluin, ; Kor�atis & Paliouras, ;

Sakakibara,). A context-free grammar (CFG) G

(equivalent to a push-down �nite-state automaton), is

described by a four-tuple (Q,E , δ, Σ):

● Σ is the alphabet of terminal symbols, upon which

the grammar is de�ned.

● �e pair (Q,E) de�nes a graph, whereQ is the set of

nodes (states), and E is the set of edges (production

rules).Q includes one starting node q and a setQf
(Qf ⊂ Q) of �nal or accepting nodes.

● Every edge in E is labelled by one or several letters

in Σ, expressed through mapping δ : E ↦ Σ .

● Let L(G) denote the language associated to the

grammar. Each string s in L(G) is generated along a

randomwalk in the graph, starting in q with an ini-

tially empty s. Upon traversing edge e, one symbol

from δ(e) is concatenated to s.�e walk ends upon

reaching a �nal node (e ∈ Qf).

A CFG is determinist i� all pairs of edges (q, q′)

and (q, q′′) (q′ /= q′′) bear di�erent labels (δ(q, q′)⋂

δ(q, q′′) = ∅).

One generalizes a given CFG by applying one or

several operators, among the following: () introduc-

ing additional nodes and edges; () turning a node into

an accepting one; () merging two nodes q and q′. In

the latter case, some non-determinism can be intro-

duced (if some edges (q, r) and (q′, r′) have label(s) in

common); enforcing a deterministic generalization is

done using the recursive determinisation operator (e.g.,

merging nodes r and r′).

In general, grammatical inference proceeds as fol-

lows (Lang, Pearlmutter, & Price, ; Oncina &

Garcia,). Let S be the set of positive examples,

strings on alphabet Σ. �e pre�x tree acceptor (PTA),

a most speci�c generalization of S, is constructed by

associating to each character of every string a distinct

node, and applying the determinisation operator.�is

PTA is therea�er iteratively generalized by merging a

pair of nodes. Well known grammar learners are Rpni

(Oncina & Garcia,) and Blue-Fringe (Lang et

al.,). Rpni uses a depth �rst search strategy, and

merges the pair of nodes which are closest to the start

node, such that their deterministic generalization does

not cover any negative example. Blue-Fringe uses a

beam search from a candidate list, selecting the pair of

nodes to bemerged a�er the evidence-driven statemerg-

ing (EDSM) criterion, i.e., such that their generalization

involves a minimal number of �nal states.

Recommended Reading
Angluin D. (). On the complexity of minimum inference of

regular sets. Information and Control, , –.

Korfiatis, G., & Paliouras, G. (). Modeling web navogation using

grammatical inference. Applied Artificial Intelligence, (–),

–.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (). Results

of the abbadingo one dfa learning competition and a new

evidence-driven state merging algorithm. In ICGI ’: Proceed-

ings of the th international colloquium on grammatical inference

(pp. –). Berlin: Springer.

Oncina, J., & Garcia, P. (). Inferring regular languages in poly-

nomial update time. In Pattern recognition and image analysis,

(Vol. , pp. –). World Scientific.

Sakakibara, Y. (). Grammatical inference in bioinformatics.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

(), –.

Graph Clustering G

G

Grammatical Tagging

7POS Tagging

Graph Clustering

Charu C. Aggarwal

IBM T. J. Watson Research Center, Hawthorne,

NY, USA

Synonyms
Minimum cuts; Network clustering; Spectral clustering;

Structured data clustering

Definition
Graph clustering refers to 7clustering of data in the
form of graphs. Two distinct forms of clustering can

be performed on graph data. Vertex clustering seeks to

cluster the nodes of the graph into groups of densely

connected regions based on either edge weights or edge

distances.�e second formof graph clustering treats the

graphs as the objects to be clustered and clusters these

objects on the basis of similarity.�e second approach

is o�en encountered in the context of structured or

XML data.

Motivation and Background
Graph clustering is a form of7graphmining that is use-
ful in a number of practical applications including mar-

keting, customer segmentation, congestion detection,

facility location, and XML data integration (Lee, Hsu,

Yang, & Yang,).�e graph clustering problems are

typically de�ned into two categories:

● Node clustering algorithms: Node clustering algo-

rithms are generalizations of multidimensional clus-

tering algorithms in which we use functions of the

multidimensional data points in order to de�ne

the distances. In the case of graph clustering algo-

rithms,we associate numerical valueswith the edges.

�ese numerical values need not satisfy traditional

properties of distance functions such as the trian-

gle inequality. We use these distance values in order

to create clusters of nodes. We note that the numer-

ical value associated with a given node may either

be a distance value or a similarity value. Corre-

spondingly, the objective function associated with

the partitioning may either be minimized or maxi-

mized. We note that the problem of minimizing the

intercluster similarity for a �xed number of clusters

essentially reduces to the problem of graph parti-

tioning or the minimum multiway cut problem.�is

is also referred to the problem of mining dense

graphs and pseudo-cliques. Recently, the problem

has also been studied in the database literature as

that of quasi-clique determination. In this problem,

we determine groups of nodes which are “almost

cliques.” In other words, an edge exists between any

pair of nodes in the set with a high probability.

A closely related problem is that of determining shin-

gles (Gibson, Kumar, & Tomkins,). Shingles

are de�ned as those subgraphs which have a large

number of common links.�is is particularly use-

ful for massive graphs which contain a large num-

ber of nodes. In such cases, a min-hash approach

(Gibson et al.,) can be used in order to sum-

marize the structural behavior of the underlying

graph.

● Graph clustering algorithms: In this case, we have

a (possibly large) number of graphs which need to

be clustered based on their underlying structural

behavior. �is problem is challenging because of

the need to match the structures of the underly-

ing graphs and use these structures for clustering

purposes. Such algorithms are discussed both in

the context of classical graph data sets as well as

semistructured data. In the case of semistructured

data, the problem arises in the context of a large

number of documents which need to be clustered on

the basis of the underlying structure and attributes.

It has been shown by Aggarwal, Ta, Feng, Wang,

and Zaki () that the use of the underlying doc-

ument structure leads to signi�cantly more e�ective

algorithms.

�is chapter will discuss the di�erent kinds of clustering

algorithms and their applications. Each section will dis-

cuss a particular class of clustering algorithms and the

di�erent approaches which are commonly used for this

class.

 G Graph Clustering

Graph Clustering as Minimum Cut
�e graph clustering problem can be related to the

minimum-cut and graph partitioning problems. In this

case, it is assumed that the underlying graphs have

weights on the edges. It is desired to partition the graphs

in such a way so as to minimize the weights of the

edges across the partitions. In general, we would like to

partition the graphs into k groups of nodes. However,

since the special case k = is e�ciently solvable, we

would like to �rst provide a special discussion for this

case.�is version is polynomially solvable, since it is the

mathematical dual of the maximum-�ow problem.�is

problem is also referred to as theminimum-cut problem.

�e minimum-cut problem is de�ned as follows.

Consider a graph G = (N,A) with node set N and edge

set A.�e node set N contains the source s and sink t.

Each edge (i, j) ∈ Ahas aweight associatedwith it which

is denoted by uij. We note that the edges may be either

undirected or directed, though the undirected case is

o�enmuchmore relevant for connectivity applications.

We would like to partition the node set N into two

groups S andN−S.�e set of edges such that one end lies

in S and the other lies inN−S is denoted byC(S,N−S).

We would like to partition the node set N into two

sets S and N − S, such that the sum of the weights in

C(S,N−S) is minimized. In other words, we would like

to minimize ∑(i,j)∈C(S,N−S) uij.�is is the unrestricted

version of the minimum-cut problem. We will examine

two variations of the minimum-cut problem:

● We wish to determine the global minimum s-t cut

with no restrictions on the membership of nodes to

di�erent partitions.

● Wewish to determine theminimum s-t cut, inwhich

one partition contains the source node s and the

other partition contains the sink node t.

It is easy to see that the former problem can be solved

by using repeated applications of the latter algorithm.

By �xing s and choosing di�erent values of the sink t,

it can be shown that the global minimum cut may be

e�ectively determined.

It turns out that the maximum-�ow problem is the

mathematical dual of theminimum-cut problem. In the

maximum-�ow problem, we assume that the weight uij
is a capacity of the edge (i, j). Each edge is allowed to

have a �ow xij which is at most equal to the capacity uij.

Each node other than the source s and sink t is assumed

to satisfy the �ow conservation property. In other words,

for each node i ∈ N we have

∑
j:(i,j)∈A

xij = ∑
j:(j,i)∈A

xji.

We would like to maximize the total �ow originat-

ing from the source and reaching the sink t, subject

to the above constraints.�e maximum-�ow problem

is solved with the use of a variety of augmenting path

and pre�ow push algorithms. Details of di�erent kinds of

algorithms may be found in the work by Ahuja, Orlin,

and Magnanti ().

A closely related problem to the minimum s-t

cut problem is that of determining a global mini-

mum cut in an undirected graph. �is particular case

is more e�cient than that of �nding the s-t mini-

mum cut. One way of determining a minimum cut is

by using a contraction-based edge-sampling approach.

While the previous technique is applicable to both

the directed and undirected versions of the prob-

lem, the contraction-based approach is applicable only

to the undirected version of the problem. Further-

more, the contraction-based approach is applicable

only for the case in which the weight of each edge is

uij = . While the method can easily be extended to the

weighted version by varying the edge-sampling proba-

bility, the polynomial running time bounds discussed

by Tsay, Lovejoy, and Karger () do not apply to

this case. �e contraction approach is a probabilistic

technique in which we successively sample the edges

in order to collapse nodes into larger sets of nodes. By

successively sampling di�erent sequences of edges and

picking the optimum value (Tsay et al.,), it is possi-

ble to determine a global minimum cut.�e broad idea

of the contraction-based approach is as follows.We pick

an edge randomly in the graph and contract its two end

points into a single node. We remove all the self-loops

which are created as a result of the contraction. Wemay

also create some parallel edges, which are allowed to

remain, since they in�uence the sampling probability

(Alternatively, we may replace parallel edgesby a single

edge of weight which is equal to the number of parallel

edges. We use this weight in order to bias the sampling

process.) of contractions.�e process of contraction is

repeated until we are le� with two nodes. We note that

Graph Clustering G

G

each of this pair of “super-nodes” corresponds to a set

of nodes in the original data.�ese two sets of nodes

provide us with the �nal minimum cut. We note that

the minimum cut will survive in this approach, if none

of the edges in the minimum cut are sampled during

the contraction. It has been shown by Tsay et al. that

by using repeated contraction of the graph to a size of
√
n nodes, it is possible to obtain a correct solution with

high probability in O(n) time.

Graph Clustering as Multiway Graph
Partitioning
�emultiway graph partitioning problem is signi�cantly

more di�cult, and is NP-hard (Kernighan & Lin,).

In this case, we wish to partition a graph into k > com-

ponents, so that the total weight of the edges whose ends

lie in di�erent partitions is minimized. A well-known

technique for graph partitioning is the Kerninghan-

Lin algorithm (Kernighan & Lin,). �is classical

algorithm is based on hill climbing (or more generally

neighborhood-search technique) for determining the

optimal graph partitioning. Initially, we start o� with a

random cut of the graph. In each iteration, we exchange

a pair of vertices in two partitions to see if the overall

cut value is reduced. In the event that the cut value is

reduced, then the interchange is performed. Otherwise,

we pick another pair of vertices in order to perform

the interchange.�is process is repeated until we con-

verge to a optimal solution. We note that this optimum

may not be a global optimum, but may only be a local

optimum of the underlying data. �e main variation

in di�erent versions of the Kerninghan-Lin algorithm

is the policy which is used for performing the inter-

changes on the vertices. Some examples of strategies

which may be used in order to perform the interchange

are as follows:

● We randomly pick a pair of vertices and perform the

interchange, if it improves the underlying solution

quality.

● We test all possible vertex-pair interchanges (or a

sample of possible interchanges), and pick the inter-

change which improves the solution by the greatest

amount.

● A k-interchange is one in which a sequence of k

interchanges are performed at one time. We can test

any k-interchange and perform it, if it improves the

underlying solution quality.

● We can pick the optimal k-interchange from a sam-

ple of possibilities.

We note that the use of more sophisticated strategies

allows a better improvement in the objective function

for each interchange, but also requires more time for

each interchange. For example, the determination of an

optimal k-interchange requires much more time than

a straightforward interchange. �is is a natural trade-

o� which may work out di�erently depending upon

the nature of the application at hand. Furthermore, the

choice of the policy also a�ects the likelihood of get-

ting stuck at a local optimum. For example, the use of

k-interchange techniques are far less likely to result in

local optimum for larger values of k. In fact, by choos-

ing the best interchange across all possible values of k

it is possible to ensure that a global optimum is always

reached. On the other hand, it is increasingly di�cult

to implement the algorithm e�ciently with increasing

value of k. �is is because the time complexity of the

interchange increases exponentially with the value of k.

Graph Clustering with k-Means
Two well-known (and related) techniques for cluster-

ing in the context of multidimensional data (Jain &

Dubes,) are the k-medoid and k-means algorithms.

In the k-medoid algorithm (formultidimensional data),

we sample a small number of points from the original

data as seeds and assign every other data point from

the clusters to the closest of these seeds. �e close-

ness may be de�ned based on a user-de�ned objec-

tive function. �e objective function for the cluster-

ing is de�ned as the sum of the corresponding dis-

tances of data points to the corresponding seeds. In

the next iteration, the algorithm interchanges one of

the seeds for another randomly selected seed from the

data, and checks if the quality of the objective func-

tion improves upon performing the interchange. If this

is indeed the case, then the interchange is accepted.

Otherwise, we do not accept the interchange and try

another sample interchange. �is process is repeated,

until the objective function does not improve over a

prede�ned number of interchanges. A closely related

method is the k-means method. �e main di�erence

 G Graph Clustering

with the k-medoid method is that we do not use rep-

resentative points from the original data a�er the �rst

iteration of picking the original seeds. In subsequent

iterations, we use the centroid of each cluster as the seed

set for the next iteration.�is process is repeated until

the cluster membership stabilizes.

A method has been proposed by Rattigan, Maier,

and Jensen (), which uses the characteristics of

both the k-means and k-medoids algorithms. As in

the case of the conventional partitioning algorithms,

it picks k graph nodes as seeds. �e main di�erences

from the conventional algorithms are in terms of com-

putation of distances (for assignment purposes), and in

determination of subsequent seeds. A natural distance

function for graphs is the geodesic distance, or the small-

est number of hops between a pair of nodes. In order to

determine the seed set for the next iteration, we com-

pute the local closeness centrality for each cluster, and

use the corresponding node as the sample seed.�us,

while this algorithm continues to use seeds from the

original data set (as in the k-medoids algorithm), it uses

intuitive ideas from the k-means algorithms in order to

determine the identity of these seeds.

Graph Clustering with the Spectral Method
Eigenvector techniques are o�en used in multidimen-

sional data in order to determine the underlying cor-

relation structure in the data. It is natural to question

as to whether such techniques can also be used for the

more general case of graph data. It turns out that this is

indeed possible with the use of a method called spectral

clustering.

In the spectral clustering method, we make use of

the node-node adjacency matrix of the graph. For a

graph containing n nodes, let us assume that we have

an n × n adjacency matrix, in which the entry (i, j) cor-

respond to the weight of the edge between the nodes

i and j. �is essentially corresponds to the similarity

between nodes i and j.�is entry is denoted by wij, and

the corresponding matrix is denoted byW.�is matrix

is assumed to be symmetric, since we are working with

undirected graphs.�erefore, we assume that wij = wji
for any pair (i, j). All diagonal entries of the matrixW

are assumed to be . As discussed earlier, the aim of any

node partitioning algorithm is to minimize (a function

of) the weights across the partitions.�e spectral clus-

teringmethod constructs this minimization function in

terms of the matrix structure of the adjacency matrix

and another matrix which is referred to as the degree

matrix.

�e degree matrix D is simply a diagonal matrix in

which all entries are zero except for the diagonal val-

ues. �e diagonal entry dii is equal to the sum of the

weights of the incident edges. In other words, the entry

dij is de�ned as follows:

dij =
n

∑
j=
wij, i = j,

, i /= j.

We formally de�ne the Laplacian matrix as follows:

(Laplacian matrix): �e Laplacian matrix L is de�ned

by subtracting the weighted adjacency matrix from the

degree matrix. In other words, we have

L = D −W.

�is matrix encodes the structural behavior of the

graph e�ectively and its eigenvector behavior can be

used in order to determine the important clusters in

the underlying graph structure. It can be shown that

the Laplacian matrix L is positive semide�nite i.e., for

any n-dimensional row vector f = [f . . . fn] we have

f ⋅ L ⋅ f T ≥ . �is can be easily shown by expressing

L in terms of its constituent entries which are a func-

tion of the corresponding weights wij. Upon expansion,

it can be shown that

f ⋅ L ⋅ f T = (/) ⋅
n

∑
i=

n

∑
j=
wij ⋅ (fi − fj)

.

�e Laplacian matrix L is positive semide�-

nite. Speci�cally, for any n-dimensional row vector

f = [f . . . fn], we have

f ⋅ L ⋅ f T = (/) ⋅
n

∑
i=

n

∑
j=
wij ⋅ (fi − fj)

.

At this point, let us examine some interpretations of

the vector f in terms of the underlying graph partition-

ing. Let us consider the case in which each fi is drawn

from the set {, }, and this determines a two-way par-

tition by labeling each node either or .�e particular

partition to which the node i belongs is de�ned by

the corresponding label. Note that the expansion of the

Graph Clustering G

G

expression f ⋅ L ⋅ f T from the above relationship simply

represents the sum of the weights of the edges across

the partition de�ned by f .�us, the determination of

an appropriate value of f for which the function f ⋅L ⋅ f T

is minimized also provides us with a good node parti-

tioning. Unfortunately, it is not easy to determine the

discrete values of f which determine this optimum par-

titioning. Nevertheless, we will see later in this section

that even when we restrict f to real values, this provides

us with the intuition necessary to create an e�ective

partitioning.

An immediate observation is that the indicator vec-

tor f = [. . .] is an eigenvector with a correspond-

ing eigenvalue of . We note that f = [. . .] must

be an eigenvector, since L is positive semide�nite and

f ⋅ L ⋅ f T can be only for eigenvectors with eigen-

values.�is observation can be generalized further in

order to determine the number of connected compo-

nents in the graph. We make the following observation.

�e number of (linearly independent) eigenvectors

with zero eigenvalues for the Laplacian matrix L is equal

to the number of connected components in the underlying

graph.

We observe that connected components are the

most obvious examples of clusters in the graph.�ere-

fore, the determination of eigenvectors correspond-

ing to zero eigenvalues provides us the information

about (relatively rudimentary set of) clusters. Broadly

speaking, it may not be possible to glean such clean

membership behavior from the other eigenvectors. One

of the problems is that other than this particular rudi-

mentary set of eigenvectors (which correspond to the

connected components), the vector components of the

other eigenvectors are drawn from the real domain

rather than the discrete {, } domain. Nevertheless,

because of the nature of the natural interpretation of

f ⋅L ⋅ f T in terms of the weights of the edges across nodes

with very di�ering values of fi, it is natural to cluster

together the nodes for which the values of fi are as sim-

ilar as possible across any particular eigenvector on an

average.�is provides us with the intuition necessary to

de�ne an e�ective spectral clustering algorithm, which

partitions the data set into k clusters for any arbitrary

value of k.�e algorithm is as follows:

● Determine the k eigenvectors with the smallest

eigenvalues. Note that each eigenvector has as many

components as the number of nodes. Let the com-

ponent of the jth eigenvector for the ith node be

denoted by pij.

● Create a new data set with as many records as the

number of nodes. �e ith record in this data set

corresponds to the ith node and has k components.

�e record for this node is simply the eigenvector

components for that node, which are denoted by

pi . . . pik.

● Since we would like to cluster nodes with simi-

lar eigenvector components, we use any conven-

tional clustering algorithm (e.g., k-means) in order

to create k clusters from this data set. Note that

the main focus of the approach was to create a

transformation of a structural clustering algorithm

into a more conventional multidimensional cluster-

ing algorithm, which is easy to solve.�e particular

choice of the multidimensional clustering algorithm

is orthogonal to the broad spectral approach.

�e above algorithm provides a broad framework for

the spectral clustering algorithm.�e input parameter

for the above algorithm is the number of clusters k. In

practice, a number of variations are possible in order to

tune the quality of the clusters which are found. More

details on the di�erent methods which can be used

for e�ective spectral graph clustering may be found in

Chung ().

Graph Clustering as Quasi-Clique
Detection
A di�erent way of determining massive graphs in the

underlying data is that of determining quasi-cliques.

�is technique is di�erent from many other partition-

ing algorithms, in that it focuses on de�nitions which

maximize the edge densities within a partition, rather

than minimizing the edge densities across partitions.

A clique is a graph in which every pair of nodes are

connected by an edge. A quasi-clique is a relaxation on

this concept, and is de�ned by imposing a lower bound

on the degree of each vertex in the given set of nodes.

Speci�cally, we de�ne a γ-quasi-clique is as follows:

A k-graph (k ≥)G is a γ-quasi-clique if the degree of

each node in the corresponding subgraph of vertices is at

least γ ⋅ k.

�e value of γ always lies in the range (,]. We note

that by choosing γ = , this de�nition reverts to that

 G Graph Clustering

of standard cliques. Choosing lower values of γ allows

for the relaxations which are more true in the case of

real applications. �is is because we rarely encounter

complete cliques in real applications, and at least some

edges within a dense subgraph would always be miss-

ing. A vertex is said to be critical if its degree in the

corresponding subgraph is the smallest integer which is

at least equal to γ ⋅ k.

�e earliest piece of work on this problem is from

Abello, Resende, and Sudarsky (). �e work of

Abello et al. () uses a greedy randomized adap-

tive search algorithm, GRASP, to �nd a quasi-clique

with the maximum size. A closely related problem is

that of �nding frequently occurring cliques in multiple

data sets. In other words, when multiple graphs are

obtained fromdi�erent data sets, some dense subgraphs

occur frequently together in the di�erent data sets. Such

graphs help in determining important dense patterns of

behavior in di�erent data sources. Such techniques �nd

applicability in mining important patterns in graph-

ical representations of customers. �e techniques are

also helpful inmining cross-graph quasi-cliques in gene

expression data. An e�cient algorithm for determining

cross graph quasi-cliques was proposed by Pei, Jiang,

andZhang ().�emain restriction of thework pro-

posed by Pei et al. () is that the support threshold

for the algorithms is assumed to be %.�is restric-

tion has been relaxed in subsequent work (Zeng,Wang,

Zhou, & Karypis,).�e work by Zeng et al. ()

examines the problem ofmining frequent, closed quasi-

cliques from a graph database with arbitrary support

thresholds.

Graph Clustering as Dense Subgraph
Determination
A closely related problem is that of dense subgraph

determination in massive graphs.�is problem is fre-

quently encountered in large graph data sets. For exam-

ple, the problem of determining large subgraphs of web

graphs was studied by Gibson et al. ().�e broad

idea in the min-hash approach is to represent the out-

links of a particular node as sets. Two nodes are consid-

ered similar if they share many outlinks.�us, consider

a node A with an outlink set SA, and a node B with out-

link set SB.�en the similarity between the two nodes

is de�ned by the Jaccard coe�cient, which is de�ned

as
SA∩SB
SA∪SB . We note that explicit enumeration of all the

edges in order to compute this can be computationally

ine�cient. Rather, amin-hash approach is used in order

to perform the estimation. �is min-hash approach is

as follows. We sort the universe of nodes in a random

order. For any set of nodes in random sorted order,

we determine the �rst node First(A) for which an out-

link exists from A to First(A). We also determine the

�rst node First(B) for which an outlink exists from B

to First(B). It can be shown that the Jaccard coe�cient

is an unbiased estimate of the probability that First(A)

and First(B) are the same nodes. By repeating this pro-

cess over di�erent permutations over the universe of

nodes, it is possible to accurately estimate the Jaccard

coe�cient.�is is done by using a constant number of

permutations c of the node order.�e actual permuta-

tions are implemented by associated cdi�erent random-

ized hash values with each node.�is creates c sets of

hash values of size n.�e sort-order for any particular

set of hash-values de�nes the corresponding permu-

tation order. For each such permutation, we store the

minimum node index of the outlink set.�us, for each

node, there are c such minimum indices. �is means

that, for each node, a �ngerprint of size c can be con-

structed. By comparing the �ngerprints of two nodes,

the Jaccard coe�cient can be estimated.�is approach

can be further generalized with the use of every s ele-

ment set contained entirely with SA and SB.�us, the

above description is the special case when s is set to . By

using di�erent values of s and c, it is possible to design

an algorithm which distinguishes between two sets that

are above or below a certain threshold of similarity.

�e overall technique by Gibson et al. () �rst

generates a set of c shingles of size s for each node.

�e process of generating the c shingles is extremely

straightforward. Each node is processed independently.

We use the min-wise hash function approach in order

to generate subsets of size s from the outlinks at each

node.�is results in c subsets for each node.�us, for

each node, we have a set of c shingles.�us, if the graph

contains a total of n nodes, the total size of this shingle

�ngerprint is n × c × sp, where sp is the space required

for each shingle. Typically, sp will be O(s), since each

shingle contains s nodes. For each distinct shingle thus

created, we can create a list of nodes which contain it.

In general, we would like to determine groups of shin-

gles which contain a large number of common nodes.

Graph Clustering G

G

In order to do so, the method by Gibson et al. performs

a second-order shingling in which the meta-shingles

are created from the shingles.�us, this further com-

presses the graph in a data structure of size c× c.�is is

essentially a constant-size data structure. We note that

this group of meta-shingles have the the property that

they contain a large number of common nodes. �e

dense subgraphs can then be extracted from thesemeta-

shingles. More details on this approachmay be found in

the work by Gibson et al.

Clustering Graphs as Objects
In this section, we will discuss the problem of cluster-

ing entire graphs in a multigraph database, rather than

examining the node clustering problem within a sin-

gle graph. Such situations are o�en encountered in the

context of XML data, since each XML document can

be regarded as a structural record, and it may be nec-

essary to create clusters from a large number of such

objects. We note that XML data is quite similar to graph

data in terms of how the data is organized structurally.

�e attribute values can be treated as graph labels and

the corresponding semistructural relationships as the

edges. In has been shown by Aggarwal et al. (),

Dalamagas, Cheng, Winkel, and Sellis (), Lee et al.

(), and Lian, Cheung, Mamoulis, and Yiu ()

that this structural behavior can be leveraged in order

to create e�ective clusters.

Since we are examining entire graphs in this ver-

sion of the clustering problem, the problem simply boils

down to that of clustering arbitrary objects, where the

objects in this case have structural characteristics.Many

of the conventional algorithms discussed by Jain and

Dubes () (such as k-means type partitional algo-

rithms and hierarchical algorithms) can be extended to

the case of graph data. �e main changes required in

order to extend these algorithms are as follows:

● Most of the underlying classical algorithms typi-

cally use some form of distance function in order to

measure similarity.�erefore, we need appropriate

measures in order to de�ne similarity (or distances)

between structural objects.

● Many of the classical algorithms (such as k-means)

use representative objects such as centroids in criti-

cal intermediate steps. While this is straightforward

in the case of multidimensional objects, it is much

more challenging in the case of graph objects.�ere-

fore, appropriate methods need to be designed in

order to create representative objects. Furthermore,

in some cases it may be di�cult to create represen-

tatives in terms of single objects. We will see that it

is o�en more robust to use representative summaries

of the underlying objects.

�ere are two main classes of conventional techniques,

which have been extended to the case of structural

objects.�ese techniques are as follows:

● Structural distance-based approach: �is approach

computes structural distances between documents

and uses them in order to compute clusters of doc-

uments. One of the earliest work on clustering tree

structured data is the XClust algorithm (Lee et al.

), which was designed to cluster XML schemas

in order for e�cient integration of large numbers of

document type de�nitions (DTDs) of XML sources.

It adopts the agglomerative hierarchical clustering

method which starts with clusters of single DTDs

and gradually merges the two most similar clusters

into one larger cluster. �e similarity between two

DTDs is based on their element similarity, which

can be computed according to the semantics, struc-

ture, and context information of the elements in

the corresponding DTDs. One of the shortcomings

of the XClust algorithm is that it does not make

full use of the structure information of the DTDs,

which is quite important in the context of clustering

tree-like structures.�emethod byChawathe ()

computes similarity measures based on the struc-

tural edit-distance between documents. �is edit-

distance is used in order to compute the distances

between clusters of documents.

S-GRACE is hierarchical clustering algorithm

(Lian et al.). In the work by Lian et al., an

XML document is converted to a structure graph (or

s-graph), and the distance between two XML doc-

uments is de�ned according to the number of the

common element-subelement relationships, which

can capture better structural similarity relationships

than the tree edit-distance in some cases (Lian et al.).

● Structural summary-based approach: In many cases,

it is possible to create summaries from the under-

lying documents. �ese summaries are used for

 G Graph Clustering

creating groups of documents which are simi-

lar to these summaries. �e �rst summary-based

approach for clustering XML documents was pre-

sented by Dalamagas et al. (). In the work by

Dalamagas et al., the XML documents are modeled

as rooted, ordered labeled trees. A framework for

clustering XML documents by using structural sum-

maries of trees is presented.�e aim is to improve

algorithmic e�ciencywithout compromising cluster

quality.

A second approach for clustering XML docu-

ments is presented by Aggarwal et al. (). �is

technique is a partition-based algorithm. �e pri-

mary idea in this approach is to use frequent-pattern

mining algorithms in order to determine the sum-

maries of frequent structures in the data.�e tech-

nique uses a k-means type approach in which each

cluster center comprises a set of frequent patterns

which are local to the partition for that cluster.�e

frequent patterns are mined using the documents

assigned to a cluster center in the last iteration.�e

documents are then further reassigned to a clus-

ter center based on the average similarity between

the document and the newly created cluster cen-

ters from the local frequent patterns. In each itera-

tion the document assignment and the mined fre-

quent patterns are iteratively reassigned until the

cluster centers and document partitions converge to

a �nal state. It has been shown by Aggarwal et al.

that such a structural summary-based approach is

signi�cantly superior to a similarity function-based

approach, as presented by Chawathe (). �e

method is also superior to the structural approach

by Dalamagas et al. () because of its use of more

robust representations of the underlying structural

summaries.

Conclusions and Future Research
In this chapter, we presented a review of the commonly

known algorithms for clustering graph data.�e prob-

lem of clustering graphs has been widely studied in

the literature, because of its application to a variety of

data mining and data management problems. Graph

clustering algorithms are of two types:

● Node clustering algorithms: In this case, we attempt

to partition the graph into groups of clusters so

that each cluster contains groups of nodes which are

densely connected.�ese densely connected groups

of nodes may o�en provide signi�cant information

about how the entities in the underlying graph are

interconnected with one another.

● Graph clustering algorithms: In this case, we have

complete graphs available, and wewish to determine

the clusters with the use of the structural informa-

tion in the underlying graphs. Such cases are o�en

encountered in the case of XML data, which are

commonly encountered in many real domains.

We provided an overview of the di�erent clustering

algorithms available and the trade-o�s with the use of

di�erent methods.�e major challenges that remain in

the area of graph clustering are as follows:

● Clustering massive data sets: In some cases, the data

sets containing the graphs may be so large that they

may be held only on disk. For example, if we have a

dense graph containing nodes, then the number

of edges may be as high as . In such cases, it may

not even be possible to store the graph e�ectively on

disk. In the cases in which the graph can be stored

on disk, it is critical that the algorithm should be

designed in order to take the disk-resident behavior

of the underlying data into account.�is is especially

challenging in the case of graph data sets, because

the structural behavior of the graph interferes with

our ability to process the edges sequentially formany

applications. In the cases in which the graph is

too large to store on disk, it is essential to design

summary structures which can e�ectively store the

underlying structural behavior of the graph. �is

stored summary can then be used e�ectively for

graph clustering algorithms.

● Clustering graph streams: In this case, we have large

graphs which are received as edge streams. Such

graphs are more challenging, since a given edge can-

not be processed more than once during the com-

putation process. In such cases, summary structures

need to be designed in order to facilitate an e�ective

clustering process. �ese summary structures may

be utilized in order to determine e�ective clusters in

the underlying data.�is approach is similar to the

case discussed above in which the size of the graph

is too large to store on disk.

Graph Kernels G

G

In addition, techniques need to be designed for inter-

facing clustering algorithms with traditional database

management techniques. In order to achieve this goal,

e�ective representations and query languages need to

be designed for graph data. �is is a new and emerg-

ing area of research, and can be leveraged upon in

order to further improve the e�ectiveness of graph

algorithms.

Cross References
7Group Detection
7Partitional Clustering

Recommended Reading
Abello, J., Resende, M. G., & Sudarsky, S. (). Massive quasi-

clique detection. In Proceedings of the th Latin American sym-

posium on theoretical informatics (LATIN) (pp. –). Berlin:

Springer.

Aggarwal, C., Ta, N., Feng, J., Wang, J., & Zaki, M. J. ().

XProj: A framework for projected structural clustering of XML

documents. In KDD conference (pp. –). San Jose, CA.

Ahuja, R., Orlin, J., & Magnanti, T. (). Network flows: Theory,

algorithms, and applications. Englewood Cliffs, NJ: Prentice-

Hall.

Chawathe, S. S. (). Comparing hierachical data in external

memory. In Very large data bases conference (pp. –). San

Francisco: Morgan Kaufmann.

Chung, F. (). Spectral graph theory. Washington, DC: Confer-

ence Board of the Mathematical Sciences.

Dalamagas, T., Cheng, T., Winkel, K., & Sellis, T. (). Clustering

XML documents using structural summaries. In Information

systems. Elsevier, January .

Gibson, D., Kumar, R., & Tomkins, A. (). Discovering large dense

subgraphs in massive graphs. In VLDB conference (pp. -).

http://www.vldb.org/program/paper/thu/p-gibson.pdf

Jain, A., & Dubes, R. (). Algorithms for clustering data. Engle-

wood, NJ: Prentice-Hall.

Kernighan, B. W., & Lin, S. (). An efficient heuristic proce-

dure for partitioning graphs, Bell System Technical Journal, ,

–.

Lee, M., Hsu, W., Yang, L., & Yang, X. (). XClust: Clus-

tering XML schemas for effective integration. In ACM

conference on information and knowledge management.

http://doi.acm.org/./.

Lian, W., Cheung, D. W., Mamoulis, N., & Yiu, S. (). An efficient

and scalable algorithm for clustering XML documents by struc-

ture, IEEE Transactions on Knowledge and Data Engineering,

(), –.

Pei, J., Jiang, D., & Zhang, A. (). On mining cross-graph quasi-

cliques. In ACM KDD conference. Chicago, IL.

Rattigan, M., Maier, M., & Jensen, D. (). Graph clustering

with network structure indices. Proceedings of the International

Conference on Machine Learning (-). ACM: New York.

Tsay, A. A., Lovejoy, W. S., & Karger, D. R. (). Random sam-

pling in cut, flow, and network design problems. Mathematics

of Operations Research, (), –.

Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (). Out-of-core

coherent closed quasi-clique mining from large dense graph

databases. ACM Transactions on Database Systems, (), .

Graph Kernels

ThomasGärtner, TamásHorváth, StefanWrobel

University of Bonn, Fraunhofer IAIS,

Schloss Birlinghoven, Sankt Augustin, Germany

Definition
�e term graph kernel is used in two related but dis-

tinct contexts: On the one hand, graph kernels can be

de�ned between graphs, that is, as a kernel function

k : G ×G → R where G denotes the set of all graphs un-
der consideration. In the most common setting G is the

set of all labeled undirected graphs. On the other hand,

graph kernels can be de�ned between the vertices of a

single graph, that is, as a kernel function k : V ×V → R
where V is the vertex set of the graph G under consid-

eration. In the most common settingG is an undirected

graph.

Motivation and Background
7Kernel methods are a class of machine learning algo-
rithms that can be applied to any data set on which

a valid, that is, positive de�nite, kernel function has

been de�ned. Many kernel methods are theoretically

well founded in statistical learning theory and have

shown good predictive performance on many real–

world learning problems.

Approaches for Kernels between Graphs
One desireable property of kernels between graphs is

that for non-isomorphic graphs G,G′ ∈ G the functions

k(G, ⋅) and k(G′, ⋅) are not equivalent. If this property

does not hold, the distance is only a pseudometric rather

than a metric, that is, non-isomorphic graphs can be

mapped to the same point in feature space and no kernel

method can ever distinguish between the two graphs.

However, it can be seen that computing graph kernels

 G Graph Kernels

for which the property does hold is at least as hard as

solving graph isomorphism (Gärtner et al.,).

For various classes of graphs, special purpose ker-

nels have been de�ned such as for paths (7string ker-
nels) and trees (Collins & Du�y,).�ese kernels

are typically de�ned as the number of patterns that two

objects have in common or as the inner product in a

feature space counting the number of times a particu-

lar pattern occurs.�e problem of computing a graph

kernel where the patterns are all connected graphs, all

cycles, or all paths and occurrence is determined by

subgraph-isomorphism is, however, NP-hard (Gärtner

et al.,).

Techniques that have been used to cope with the

computational intractability of such graph kernels are

() to restrict the considered patterns, for example, to

bound the pattern size by a constant; () to restrict

the class of graphs considered, for example, to trees or

small graphs; () to de�ne occurrence of a pattern dif-

ferently, that is, not by subgraph-isomorphism; and ()

to approximate the graph kernel. Note that these four

techniques can be combined.

While for technique () it is not immediately clear

if the resulting graph kernel is feasible, technique

() allows for �xed parameter tractable graph kernels.

(Notice that even counting paths or cycles of length k

in a graph is #W[]-complete while the corresponding

decision problem is �xed parameter tractable.)�ough

these will o�en still have prohibitive runtime require-

ments, it has been observed that enumerating cycles

in real-world databases of small molecules is feasible

(Horvath et al.,).

With respect to technique () it has been proposed

to use graph kernels where the patterns are paths but

the occurrences are determined by homomorphism

(Gärtner et al., ; Kashima et al.,). Despite the

explosion in the number of pattern occurrences (even

very simple graphs can contain an in�nite number of

walks, that is, images of paths under homomorphism), if

one downweights the in�uence of larger patterns appro-

priately, the kernel takes a �nite value and closed form

polynomial time computations exist. To increase the

practical applicability of these graph kernels, it has been

proposed to increase the number of labels by taking

neighborhoods into account (Gärtner,) or to avoid

“tottering” walks (Mahé et al.,).

Various approaches to approximate computation of

graph kernels () exist. On the one hand, work on com-

puting graph kernels based on restricting the patterns to

frequent subgraphs (Deshpande et al.,) can be seen

as approximations to the intractable all-subgraphs ker-

nel. Computing such graph kernels is still NP-hard and

no approximation guarantees are known. On the other

hand, a recent graph kernel (Borgwardt et al.,)

based on sampling small subgraphs of a graph at ran-

dom is known to have a polynomial time algorithmwith

approximation guarantees.

�e most common application scenario for such

graph kernels is the prediction pharmaceutical activity

of small molecules.

Approaches for Kernels on a Graph
Learning on the vertices of a graph is inherently trans-

ductive. Work on kernels between the vertices of a

graph began with the “di�usion kernel” (Kondor &

La�erty,) and was later generalized in (Smola and

Kondor,) to a framework that contains the di�u-

sion kernel as a special case. Intuitively, these kernels

can be understood as comparing the neighborhoods

of two vertices in the sense that the more neighbors

two vertices have in common, the more similar they

are. For classi�cation, this de�nition is related to mak-

ing the “cluster assumption”, that is, assuming that

the decision boundary between classes does not cross

“high density” regions of the input space. To compute

such graph kernels for increasing sizes of the neigh-

borhood, one needs to compute the limit of a matrix

poser series of the (normalized) graph Laplacian or its

adjacency matrix. Di�erent graph kernels arise from

choosing di�erent coe�cients. In general, the limit of

suchmatrix power series can be computed on the eigen-

values. For geometrically decaying parameters, the ker-

nel matrix can also be computed by inverting a sparse

matrix obtained by adding a small value to the diago-

nal of the Laplacian (in which case the kernel is called

the “regularized Laplacian kernel”) or the adjacency

matrix.

In the case of the regularized Laplacian kernel,

rather than �rst computing the kernel matrix and then

applying an o�-the-shelf implementation of a kernel

method, it is o�en more e�ective to reformulate the

Graph Mining G

G

optimization problem of the kernel method. Several

possibilities for such reformulation have been pro-

posed, including changing the variables as in (Gärtner

et al.,).

�e most common application scenario for such

graph kernels is the classi�cation of entities in a social

network.

Recommended Reading
Borgwardt, K. M., Petri, T., Vishwanathan, S. V. N., & Kriegel,

H.-P. (). An efficient sampling scheme for comparison of

large graphs. In Mining and learning with graphs (MLG),

Firenze.

Collins, M., & Duffy, N. (). Convolution kernel for natural lan-

guage. In Advances in neural information proccessing systems

(NIPS), , –.

Deshpande, M., Kuramochi, M., & Karypis, G. (). Automated

approaches for classifying structures. In Proceedings of the nd

ACM SIGKDD workshop on data mining in bioinformatics (BIO

KDD).

Gärtner, T. (). Predictive graph mining with kernel methods. In

S. Bandyopadhyay, U. Maulik, L.B. Holder, and D.J. Cook (Eds.),

Advanced methods for knowledge discovery from complex data.

pp. –, Springer, Heidelberg.

Gärtner, T., Flach, P. A., & Wrobel, S. (). On graph kernels:

Hardness results and efficient alternatives. In Proceedings of

the th annual conference on computational learning theory

and the th kernel workshop (COLT), vol. of LNCS,

pp. –, Springer, Heidelberg.

Gärtner, T., Le, Q. V., Burton, S., Smola, A. J., & Vishwanathan,

S. V. N. (). Large-scale multiclass transduction. In

Advances in neural information processing systems, vol. ,

pp. –, MIT Press, Cambride, MA.

Horvath, T., Gärtner, T., & Wrobel, S. (). Cyclic pattern kernels

for predictive graph mining. In Proceedings of the international

conference on knowledge discovery and data mining (KDD),

pp. –, ACM Press, New York, NY.

Kashima, H., Tsuda, K., & Inokuchi, A. (). Marginalized kernels

between labeled graphs. In Proceedings of the th international

conference on machine learning (ICML), pp. –, AAAI

Press, Menlo Park, CA.

Kondor, R. I., & Lafferty, J. (). Diffusion kernels on graphs

and other discrete input spaces. In C. Sammut & A. Hoff-

mann (Eds.), Proceedings of the nineteenth international confer-

ence on machine learning (ICML), pp. –, Morgan

Kaufmann, San Fransisco, CA.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P. ().

Extensions of marginalized graph kernels. In Proceedings of the

st international conference on machine learning (ICML),

pp. , ACM Press, New York, NY.

Smola, A. J., & Kondor, R. (). Kernels and regularization on

graphs. In Proceedings of the th annual conference on computa-

tional learning theory and the th kernel workshop (COLT),

vol. of LNCS, pp. –, Springer, Heidelberg.

Graph Mining

Deepayan Chakrabarti

Yahoo! Research, Sunnyvale, USA

Definition
Graph Mining is the set of tools and techniques used to

(a) analyze the properties of real-world graphs, (b) pre-

dict how the structure and properties of a given graph

might a�ect some application, and (c) develop models

that can generate realistic graphs thatmatch the patterns

found in real-world graphs of interest.

Motivation and Background
A graph G = (V ,E) consists of a set of edges, E connec-

ting pairs of nodes from the set V ; extensions allow for

weights and labels on both nodes and edges. Graphs

edges can be used to point from one node to another,

in which case the graph is called directed; in an undi-

rected graph, edges must point both ways: i → j ⇔

j → i. A variant is the bipartite graph G = (V,V,E)

where only edges linking nodes inV to nodes inV are

allowed.

A graph provides a representation of the binary rela-

tionships between individual entities, and thus is an

extremely common data structure. Examples include

the graph of hyperlinks linking HTML documents

on the Web, the social network graph of friendships

between people, the bipartite graphs connecting users

to the movies they like, and so on. As such, mining

the graph can yield useful patterns (e.g., the commu-

nities in a social network) or help in applications (e.g.,

recommend new movies to a user based on movies

liked by other “similar” users). Graph mining can also

yield patterns that are common in many real-world

graphs, which can then be used to design graph “gen-

erators” (e.g., a generator that simulates the Internet

topology, for use in testing next-generation Internet

protocols).

Structure of Learning System
We split up this discussion into three parts: the analy-

sis of real-world graphs, realistic graph generators, and

 G Graph Mining

applications on graphs. Detailed surveys can be found

in Newman () and Chakrabarti and Faloutsos

().

Analysis of Real-World Graphs

Four basic types of large-scale patterns have been

detected in real-world graphs.�e �rst is the existence

of power-laws, for instance in the degree distribution

and eigenvalue distribution. Most nodes have very low

degree while a few have huge degree.�is has implica-

tions for algorithms whose running times are bounded

by the highest degree.�e second set of patterns is called

the “small-world phenomenon,” which state that the

diameter (or e�ective diameter) of such graphs are very

small with respect to their size. Recall that the diam-

eter of a connected graph is the maximum number of

hops needed to travel between any pair of nodes; the

e�ective diameter is a more robust version that speci�es

the number of hops within which a large fraction (say,

%) of all pairs can reach each other. Examples include

a diameter of around for the Internet Autonomous

System graph, around for the entire US power grid,

around for the graph of actors who worked together

in movies, and so on.�ird, many large graphs exhibit

“community e�ects,” where each community consists of

a set of nodes that are more tightly connected to other

nodes in the community compared to nodes outside.

One local manifestation of this e�ect is the relatively

high clustering coe�cientwhich counts, given all pairs of

edges (i, j) and (j, k), the probability of the existence of

the “transitive” edge (i, k). High clustering coe�cients

imply tight connections in neighborhoods, which is the

basis of strong community structure. Finally,many large

graphs were shown to increase in density as they evolve

over time, that is, the number of edges grows accord-

ing to a power-law on the number of nodes. In addition,

even while more nodes and edges are being added, the

diameter of the graph tends to decrease.

Graph Generators

Imagine designing an application that works on the

Internet graph. Collecting the entire Internet graph in

one place is hard, making the testing process for such

an application infeasible. In such cases, a realistic graph

generator can be used to simulate a large “Internet-like”

graph, which can be used in place of the real graph.

�is synthetic graph must match the patterns typi-

cally found in the Internet, including the patterns dis-

cussed in the previous paragraph. Apart from generat-

ing such graphs, the generators can provide insights into

the process by which large graphs came to attain their

structure.

One example of this is the preferential attachment

model. Starting with a small initial graph, this model

adds one new node every step. �e new node is con-

nected to m previous nodes, with the probability of

connecting to node i being proportional to its degree.

�is idea, popularly known as “the rich get richer,” can

be shown to lead to a power-law degree distribution

a�er a large number of nodes and edges have been

added.

Many other models have also been proposed, which

demonstrate graph generation as a random process, an

optimization process, as a process on nodes embedded

in some geographic space, and so on.

Applications
Some graph mining algorithms are meant to solve

some application on any graph(s) provided as input

to the algorithm. Several basic tools are commonly

used in such applications, such as the 7Greedy Search
Approach to Graph Mining the 7Inductive Database
Search Approach to Graph Mining spectral methods,

graph partitioning methods, and models based on ran-

dom walks on graphs. Tree Mining is a special case of

graph mining where the graphs are constrained to be

trees. We will discuss a few such applications here.

Frequent subgraph mining: �e aim is to �nd sub-

graphs that occur very frequently in the particular

graph(s) in question (Kuramochi & Karypis,).�is

is quite useful in chemical datasets consisting of the

graph structures of many di�erent molecules (say, all

protein molecules that have a certain chemical prop-

erty); the frequent subgraphs in such molecules might

represent basic structural units responsible for giving

the molecules their special property. Unfortunately, the

frequent subgraph problem subsumes the problem of

subgraph isomorphism, and hence is NP-Hard. How-

ever, clever techniques have been devised to represent

subgraphs so that checking for isomorphism can be

done quickly in many cases.

Community detection: �e problem is to detect

tightly knit groups of nodes, where all nodes in the

Graphical Models G

G

group have “similar” linkage structure.�ere are many

algorithms, each optimizing for a di�erent notion

of similarity. Examples include graph partitioning

methods such as spectral partitioning (Ng, Jordan, &

Weiss ,) andMETIS that try tominimize the num-

ber of edges linking nodes across partitions, and co-

clustering methods that aim for homogeneity in links

across partitions.

Information di�usion and virus propagation: �e

spread of a contagious disease or a computer virus can

bemodeled (somewhat crudely) as a contact process on

a graph, where the nodes are individuals who can get

infected, and the links allow transmission of the conta-

gion from an infected individual to an uninfected one.

Similar models have been proposed to model the dif-

fusion of information in social networks.�e topology

of the graph can be used to infer the most “in�uential”

nodes in the graph, who are most capable of spreading

the information quickly throughout the graph (Kempe,

Kleinberg, & Tardos ,).

Graph kernels: While subgraph isomorphism is a

hard problem, we still need to be able to compare

graphs on the basis of some similarity measure that can

be computed in polynomial time. In the Kernel-Based

Approach to Graph Mining graph kernels perform this

task by computing similarities based on numbers of

walks, paths, cyclic patterns, trees, etc.

Ranking on graphs: Given a graph (say, the Web

hyperlink graph), we o�en need a ranking of the nodes

in the graph.�e ranking could be static (as in Page-

Rank (Brin & Page,)) or it could depend on a user-

speci�ed query node. Such algorithms typically use

some version of randomwalks on graphs (Lovász,),

with the probability of the walk hitting a node being

correlatedwith the importance of the node; such impor-

tances in turn yield a ranking of the nodes. Both static

and query-dependent rankings can be useful in infor-

mation retrieval settings, where a user desires informa-

tion pertinent (i.e., “similar”) to her query.

Cross References
7Graph�eory
7Greedy Search Approach of Graph Mining
7InductiveDatabase SearchApproach ofGraphMining
7Kernel-Based Approach of Graph Mining
7Link Mining and Link Discovery
7Tree Mining

Recommended Reading
Brin, S., & Page, L. (). The anatomy of a large-scale hypertextual

web search engine. Computer Networks and ISDN Systems,

(–), –.

Chakrabarti, D., & Faloutsos, C. (). Graph mining: Laws, gen-

erators and algorithms. ACM Computing Surveys, ().

Kempe, D., Kleinberg, J., & Tardos, E. (). Maximizing the spread

of influence through a social network. In KDD.

Kuramochi, M., & Karypis, G. (). Frequent subgraph discovery.

In ICDM (pp. –).

Lovász, L. (). Random walks on graphs: A survey. In Combina-

torics: Paul Erdös is eighty (Vol. , pp. –).

Ng, A., Jordan, M., & Weiss, Y. (). On spectral clustering:

Analysis and an algorithm. In NIPS.

The structure and function of complex networks. (). SIAM

Review, , –.

Graphical Models

JulianMcAuley, Tibério Caetano,

Wray Buntine

Statistical Machine Learning Program, NICTA,

Canberra, Australia

Definition
�e notation we shall use is de�ned in Table , and some

core de�nitions are presented in Table . In each of the

examples presented in Fig. , we are simply asserting

that

p(xA, xB∣xC)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

function of three variables

= p(xA∣xC)p(xB∣xC)
´¹¹¸¹¹¹¶
functions of two variables

, ()

which arises by a straightforward application of the

product rule (De�nition), along with the fact that XA
and XB are conditionally independent, given XC (De�ni-

tion).�e key observation we make is that while the

le�-hand side of (Eq.) is a function of three variables,

its conditional independence properties allow it to be

factored into functions of two variables.

In general, we shall have a series of conditional

independence statements about X:

{XAi y XBi ∣ XCi} . ()

It is precisely these statements that de�ne the “structure”

of our multivariate distribution, which we shall express

in the form of a graphical model.

 G Graphical Models

Graphical Models. Table Notation

Notation Description

X = (X . . . XN) A random variable (we shall also use X =
(A, B, C . . .) in figures to improve readabil-
ity)

x = (x . . . xN) A realization of the random variable X

X The sample space (domain) of X

XA X can be indexed by a set, where we
assume A ⊆ { . . .N}

p(x) The probability that X = x
∼

A The negation of A, i.e., { . . .N}/A

XA y XB XA and XB are independent

XA y XB ∣ XC XA and XB are conditionally independent,
given XC

Graphical Models. Table Definitions

Definition (product Rule). p(xA, xB) = p(xA∣xB)p(xB).

Definition (marginalization). p(xA) = ∑x∼A∈X∼A
p(xA, x ∼A).

Definition (conditional independence). XA and XB are said
to be conditionally independent (given XC) iff p(xa∣xb, xc) =
p(xa∣xc), for all xa, xb, and xc; the conventional definition of
“independence” is obtained by setting XC = ∅.

Motivation and Background
Graphical models are o�en used to model multivariate

data, since they allow us to represent high-dimensional

distributions compactly; they do so by exploiting the

interdependencies that typically exist in such data. Put

simply, we can take advantage of the fact that high-

dimensional distributions can o�en be decomposed

into low-dimensional factors to develop e�cient algo-

rithms by making use of the distributive law: ab + ac =

a(b + c).

Some motivating examples are presented in Fig. ;

similar examples are ubiquitous in �elds ranging from

computer vision and pattern recognition, to economics

and the social sciences. Although we are dealing with

high-dimensional data, we canmake certain statements

about the structure of the variables involved, allowing

Graphical Models. Figure . Some examples of con-

ditional independence; we say that XA and XB are

conditionally independent, given XC , or more compactly

XA y XB ∣ XC

us to express important properties about the distribu-

tion compactly. Some of the properties we would like

to compute include the probabilities of particular out-

comes, and the outcomes with the highest probability.

Theory
Directed Graphical Models

Due to the product rule (De�nition), it is clear that any

probability distribution can be written as

p(x) =
N

∏
i=
p(xπi ∣x<πi) ()

for an arbitrary permutation π of the labels, where

we de�ne < i:={ . . . i − }. For example any four-

dimensional distribution can be written as

p(xa, xb, xc, xd) = p(xc)p(xb∣xc)p(xd∣xc, xb)

p(xa∣xc, xb, xd). ()

Graphical Models G

G

With this idea inmind, consider amodel p(x) for which

we have the conditional independence statements

{p(xπi ∣x<πi) = p(xπi ∣xpaπi
)} , ()

where paπi ⊂<πi. We now have

p(x) =
N

∏
i=
p(xπi ∣xpaπi

). ()

We can interpret pai as referring to the “parents” of the

node i. Essentially, we are saying that a variable is con-

ditionally independent on its nondescendants, given its

parents.

We can represent (Eq.) using a directed acyclic

graph (DAG) by representing each variableXi as a node;

an arrow is formed from Xj to Xi if j ∈ pai. An example

of such a representation is given in Fig. . It can easily

be shown that the resulting graph is always acyclic.

A Bayesian Network (a type of directed graphical

model) is simply a set of probability distributions of the

form p(x) = ∏
N
i= p(xi∣xpai). Every Bayesian Network

can be represented as a DAG, though we o�en simply

say that the Bayesian Network “is” the DAG. Some triv-

ial examples, and the type of independence statements

they imply are shown in Fig. .

We �nish this section with a simple lemma:

Lemma (topological sort) Every DAG has at least

one permutation π that “sorts” the nodes such that each

node has a larger index than its parents; in other words,

the factorization associated to any DAG can be written in

the form of (Eq.) for at least one π such that πi > j for

all i, where j ∈ paπi .

Undirected Graphical Models

Although we have shown how conditional indepen-

dence statements in the form of (Eq.) can be modeled

using a DAG, there exist certain conditional indepen-

dence statements that are not satis�ed by any Bayesian

Network, such as those in Fig. .

Markov random �elds (orMRFs) allow for the speci-

�cation of a di�erent class of conditional independence

statements, which are naturally represented by undi-

rected graphs (UGs for short). �e results associated

with MRFs require a few additional de�nitions:

De�nition (clique) A set of nodes X in a graph G =

(V ,E) is said to form a clique if (Xi,Xj) ∈ E for every

Xi,Xj ∈ X (i.e., the subgraph X is fully connected).

De�nition (maximal clique) A clique X is said to be

maximal if there is no clique Y such that X ⊂ Y.

AMarkov random �eld is a probability distribution

of the form p(x) =

Z ∏c∈C ψc(xc), where C is the set

of maximal cliques of G, ψc is an arbitrary nonnegative

real-valued function and Z is simply a normalization

constant ensuring that∑x p(x) = .

A

C

B D

E

F A

C

B D

E

F

p(a)p(b |a)p(c |a)p(d |b)p(e|b, c)p(f |b, e)
1
Z y (a, b)y (a, c)y (b, d)y (c, e)y (b, e, f)

Graphical Models. Figure . A directed model (left) and an undirected model (right). The joint distributions they

represent are shown

A

C

B
A C B

A

C

B

p(a,b,c) = p(c)p(a|c)p(b|c) p(a)p(c|a)p(b|c) p(a)p(b)p(c|a,b)
A B BC A C A B

Graphical Models. Figure . Some simple Bayesian Networks, and their implied independence statements. Note in

particular that in the rightmost example, we do not have A y B ∣ C

 G Graphical Models

A

C

B

D

A

C

B

A B {C, D}, A B
C D {A, B}⎥

⎥

Graphical Models. Figure . There is no Bayesian Net-

work that captures precisely the conditional indepen-

dence properties of the Markov random field at left; there

is no Markov random field that captures precisely the con-

ditional independence properties of the Bayesian Net-

work at right

Conversion from Directed to Undirected Graphical

Models

It is possible to convert a directed graphical model to

an undirected graphical model via the following simple

procedure:

● For every node Xi with parents paXi , add undirected

edges between every Xj,Xk ∈ paXi .

● Replace all directed edges with undirected edges.

In other words, we are replacing statements of the form

p(xA∣xB) with ψ(xA, xB), so that the nodes {Xi} ∪ paXi
now form a clique in the undirected model.�is proce-

dure of “marrying the parents” is referred to as Moral-

ization. Naturally, the undirected model formed by this

procedure does not precisely capture the conditional

independence relationships in the directed version. For

example, if it is applied to the graph in Fig. (right),

then the nodes A, B, and C form a clique in the result-

ing model, which does not capture the fact that A y B.

However, we note that every term of the form p(xi∣xpai)

appears in some clique of the undirected model, mean-

ing that it can include all of the factors implied by the

Bayesian Network.

Characterization of Directed and Undirected Graphical

Models

We can now present some theorems that charac-

terize both Bayesian Networks and Markov random

�elds:

Lemma (Local Markov Property) A node in a DAG

is conditionally independent of its non-descendants, given

its parents (this is referred to as the “Directed” Local

F

EAB

DC

G F

EB

DC

G

A

Graphical Models. Figure . The Markov Blanket of the

node A consists of its parents, its children, and the par-

ents of its children (left). The corresponding structure

for undirected models simply consists of the neighbors

of A. Note that if we convert the directed model to an

undirected one (using the procedure described in Sec-

tion “Conversion from directed to undirected graphical

models”), then the Markov Blankets of the two graphs are

identical

Markov Property); a node in a UG is conditionally inde-

pendent of its non-neighbors, given its neighbors.

De�nition (Markov Blanket) Given a node A, its

“Markov Blanket” is the minimal set of nodes C such that

A y B ∣ C for all other nodes B in the model (in other

words, the minimal set of nodes that we must know to

“predict” the behavior of A).

Lemma (MarkovBlankets ofDirected andUndirected
Graphs) In a directed network, the Markov Blanket of

a node A (denotedMB(A)) consists of its parents, its chil-

dren, and its children’s (other) parents. In an undirected

network, it simply consists of the node’s neighbors (see

Fig.).

De�nition (d-separation) �e notion of a Markov

Blanket can be generalized to the notion of “d-separation”.

A set of nodes A is said to be d-separated from a set B

by a set C if every (undirected) path between A and B is

“blocked” when C is in the conditioning set (i.e., when C is

observed). A path is said to be blocked if either it contains
(p, p, p) with p → p ← p (where arrows indicate

edge directions) and neither p nor any of its descendants

are observed, or it contains (p, p, p)with p → p → p
and p is observed or it contains (p, p, p) with p ←
p → p and p is observed.

Applying (De�nition) to the directed graphs

in Fig. , we would say that the aqua regions (XC)

d-separate the red regions (XA) from the white regions

Graphical Models G

G

A

C

B

E

D

F

Graphical Models. Figure . The nodes {B, E} form a

clique; the nodes {B, E, F} form a maximal clique. The

nodes {B, E} separate the nodes {A,C} from {D, F}

(XB); all conditional independence statements can simply

be interpreted as d-separation in a DAG.

�e analogous notion of graph separation for

Markov random �elds is simpler than that of d-

separation for Bayesian Networks. Given an undirected

graph G and disjoint subsets of nodes A,B,C, if A is

only reachable from B via C, this means that A is sep-

arated from B by C and these semantics encode the

probabilistic fact that A y B ∣ C. �is is illustrated in

Fig. .

In both the directed and undirected case, A Markov

Blanket of a node is simply theminimal set of nodes that

d-separates/graph separates that node from all others.

A complete characterization of the class of proba-

bility distributions represented by Bayesian Networks

can be obtained naturally once conditional indepen-

dence statements are mapped to d-separation state-

ments in a DAG. �e following theorem settles this

characterization.

�eorem Let p be a probability distribution that sat-

is�es the conditional independence statements implied

by d-separation in a DAG. �en p factors according to

(Eq.).�e converse also holds.

For Markov random �elds, an analogous character-

ization exists:

�eorem (Hammersley-Cli�ord) If a strictly pos-

itive probability distribution p satis�es the conditional

independence statements implied by graph-separation in

an undirected graph G, then

p(x) =

Z
∏
c∈C

ψc(xc). ()

�e converse also holds, albeit in a more general sense in

that p need not be strictly positive.

It can be shown that

directed local

Markov

property

local Markov

property

⇕ ⇕

d-separation in

a DAG

and (for positive

p) that

graph

separation in a

UG

⇕ ⇕

factorization of

p by (Eq.)

factorization of

p by (Eq.)

Knowing that directed models can be converted to

undirected models, we shall consider inference algo-

rithms in undirected models only.

Applications
Inference Algorithms in Graphical Models

�e key observation that we shall rely on in order to do

inference e�ciently is the distributive law:

ab + ac
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

three operations

= a(b + c)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

two operations

. ()

By exploiting the factorization in a graphical model,

we can use this law to perform certain queries e�-

ciently (such as computing the marginal with respect to

a certain variable).

As an example, suppose we wish to compute

the marginal p(x) in an MRF with the following

factorization:

p(x) =

Z

N−
∏
i=

ψ(xi, xi+). ()

Note that the graph representing this model is simply

a chain. Computing the sum in the naïve way requires

computing

p(x) =

Z
∑
x{.. .N}

N−
∏
i=

ψ(xi, xi+), ()

 G Graphical Models

whose complexity is Θ(∏
N
i= ∣Xi∣). However, due to the

distributive law, the same result is simply

p(x) =

Z
∑
x

[ψ(x, x)∑
x

[ψ(x, x)⋯

∑
xN−

[ψ(xN−, xN−)∑
xN

ψ(xN−, xN)]]], ()

whose complexity is Θ(∑
N−
i= ∣Xi∣∣Xi+∣). As a more

involved example, consider computing the marginal

with respect toA in the undirectedmodel in Fig. ; here

we wish to compute

p(a) =

Z
∑

b,c,d,e,f

ψ(a, b)ψ(a, c)ψ(b,d)ψ(c, e)

ψ(b, e, f) ()

=

Z
∑
b

ψ(a, b)∑
c

ψ(a, c)∑
d

ψ(b,d)∑
e

ψ(c, e)

∑
f

ψ(b, e, f). ()

Exploiting the distributive law in this way is o�en

referred to as the Elimination Algorithm. It is useful for

computing the marginal with respect to a single vari-

able. However, should we wish to compute the marginal

with respect to each variable (for example), it is not

an e�cient algorithm as several operations shall be

repeated.

Belief-Propagation In tree-structuredmodels, the elim-

ination algorithm can be adapted to avoid repeated

computations, using a message-passing scheme known

as Belief Propagation, or the sum-product algorithm.

�is is presented in Algorithm . Here the “cliques”

in the model are simply edges. �is algorithm was

invented independently by many authors, and is the

most e�cient amongst many variations.

It can be easily demonstrated that the condition in

Algorithm , Line is always satis�ed by some pair of

edges until all messages have been passed: initially, it is

satis�ed by all of the “leaves” of the model; messages are

then propagated inwards until they reach the “root” of

the tree; they are then propagated outwards.

Maximum A Posteriori (MAP) Estimation Algorithm

allows us to compute themarginals of the variables in a

graphical model.�ere are other related properties that

we may also wish to compute, such as �nding which

states have the highest probability (the Maximum A

Posteriori, or simply “MAP” states). To do so, we note

that the operations (+,×) used in Algorithm can be

replaced by (max,×).�is variant is usually referred to

as the max-product (as opposed to sum-product) algo-

rithm. Indeed, di�erent quantities can be computed by

replacing (+,×) by any pair of operations that form a

semiring (Aji & McEliece,).

The Junction-Tree Algorithm Algorithm applies only

for tree-structured graphs. We can generalize this algo-

rithm to general graphs. We do so by working with

a di�erent type of tree-structured graph, whose nodes

contain the cliques in our original graph. We begin with

some de�nitions:

De�nition (chordal graph) A graph G is said to be

chordal if every cycle (c . . . cn) inG contains a chord (i.e.,

an edge (ci, cj) such that j > (i +)).

De�nition (clique-graph, clique-tree) A clique-

graph H of a graph G is a graph whose nodes consist of

(maximal) cliques in G, and whose edges correspond to

intersecting cliques in G. A clique-tree is a clique-graph

without cycles.

Algorithm �e sum-product algorithm
Input: an undirected, tree-structured graphical model
X with cliques C {the cliques are simply edges in this

case}

: de�ne mA→B(xA∩B) to be the “message” from an

edge A to an adjacent edge B {for example if A =

(a, b) and B = (b, c) then we havem(a,b)→(b,c)(xb)}

: while there exist adjacent edges A,B ∈ C for which
mA→B has not been computed do

: �nd some A ∈ C such that mC→A has been com-

puted for every neighbor C ∈ Γ(A), except B

{Γ(A) returns the edges neighboring A; initially

the condition is satis�ed by all leaf-edges}

: mA→B(xA∩B):=

∑xA∖B {ψA(xA)∏C∈Γ(A)∖BmC→A(xA∩C)}

: end while
: for A ∈ C′ do
: marginalA(xA):=

ψA(xA)∏C∈Γ(A)mC→A(xA∩C)

: end for

Graphical Models G

G

A

C

B D

E

F A

C

B D

E

F

B,D

A,B,C B,C,EB,C B,E B,E,F

B

Graphical Models. Figure . The graph at left is not chordal, since the cycle (A,B, E,C) does not contain a chord; adding

the edge (B,C) results in a chordal (or triangulated) graph (centre). The graph at right is a Junction-Tree for the graph at

centre; the cliques of the triangulated graph form the nodes (circles); their intersection sets are shown as squares. Note

that this is not the only Junction-Tree that we could form – the node {B,D} could connect to any of the other three

nodes

De�nition (Junction-Tree) A clique-tree H of G is

said to form a Junction-Tree if for every pair of nodes

A,B (i.e., maximal cliques in G), the path between them

(P . . . Pm) satis�es (A ∩ B) ⊂ Pi for all i ∈ { . . .m}.

�e algorithms we shall de�ne apply only if the

graph in question is chordal, or “triangulated” (Def-

inition); this can always be achieved by adding

additional edges to the graph, as demonstrated in Fig. ;

adding additional edgesmeans increasing the size of the

maximal cliques in the graph.

Finding the “optimal” triangulation (i.e., the one

that minimizes the size of the maximal cliques) is an

NP-complete problem. In practice, triangulation algo-

rithms vary from simple greedy heuristics (e.g., select

a node that has as few neighbors as possible), to com-

plex approximation algorithms working within a factor

of the optimal solution (Amir,).

�e problem of actually generating a Junction-

Tree from the triangulated graph is easily solved by

a maximum spanning tree algorithm (where we pre-

fer edges corresponding to pairs of cliques with large

intersections).

�eorem Let G be a triangulated graph and H a

corresponding clique-tree. If the sum of the cardinalities

of the intersection sets of H is maximum, then H is a

Junction Tree.�e converse also holds.

If the nodes and edges inAlgorithm are replaced by

the nodes (maximal cliques in G) and edges (intersect-

ing cliques in G) ofH, then we recover the Junction-Tree

Algorithm.

Approximate Inference �e act of triangulating the

graph in the Junction-Tree Algorithm may have the

Graphical Models. Figure . The graph above at left has

maximal cliques of size two; in order to triangulate it, we

must introduce maximal cliques of size four (right)

e�ect of increasing the size of its maximal cliques, as

in Fig. . �is may be a problem, as its running time

is exponential in the size of the maximal cliques in the

triangulated graph (this size minus one is referred to as

the tree-width of the graph, e.g., a chain has a tree-width

of).

�ere are a variety of approximate algorithms that

allow us to perform inference more e�ciently:

Variational approximation. If doing inference in a

graphical model X is intractable, we might search

for a model Y for which inference is tractable,

and which is “similar” to X in terms of the KL-

divergence between p(x) and p(y). (Wainwright &

Jordan,).

Loopy belief-propagation. We can build a clique-graph

from a graph that has not been triangulated, sim-

ply by connecting all cliques that intersect (in which

case, the clique-graph will contain loops). If we then

propagate messages in some random order, we can

obtain good approximations under certain condi-

tions (Ihler et al.,).

Gibbs sampling. Given an estimate xA∖B of a set of vari-

ables XA∖B, we can obtain an estimate of xB by sam-

pling from the conditional distribution p(xB∣xA∖B).

If we choose B = {Xi}, and repeat the procedure for

 G Graphical Models

random choices of i ∈ { . . .N}, we obtain the pro-

cedure known asGibbs Sampling (Geman &Geman,

).

�ere are several excellent books and tutorial papers

on graphical models. A selection of tutorial papers

includes Aji and McEliece (), Kschischang, Frey,

and Loeliger (), Murphy (), Wainwright and

Jordan (); review articles include Roweis and

Ghahramani () and Smyth (), to name but

a few.

A selection of works includes Koller and Friedman

(), Jensen () (introductory books), Edwards

() (undirectedmodels), Pearl (,) (directed

models), Cowell, Dawid, Lauritzen, and Spiegelhalter

() (exact inference), Jordan () (learning and

approximate inference) and Lauritzen (, Lauritzen

and Spiegelhalter () (a comprehensive mathemati-

cal theory).

�ere is also a variety of closely related models and

extensions:

Gaussian graphical models. We have assumed through-

out that our probability distributions are discrete;

however, the only condition we require is that they

are closed under multiplication and marginalization.

�is property is also satis�ed for Gaussian random

variables.

Hidden Markov models. In many applications, the vari-

ables in our model may be hidden. �e above

algorithms can be adapted to infer properties

about our hidden states, given a sequence of

observations.

Kalman �lters. Kalman �lters employ both of the above

ideas, in that they include hidden state variables tak-

ing values from a continuous space using a Gaussian

noise model.�ey are used to estimate the states of

linear dynamic systems under noise.

Factor graphs. Factor graphs employ an alternate

message-passing scheme, which may be prefer-

able for computational reasons. Inference remains

approximate in graphs with loops, though approx-

imate solutions may be obtained more e�ciently

than by Loopy Belief-Propagation (Kschischang et

al.,).

Relational models. Relational models allow us to explore

the relationships between objects in order to predict

the behavior and properties of each. Graphical mod-

els are used to predict the properties of an object

based on others that relate to it (Getoor & Taskar,

).

Learning. O�en, we would like to learn either the

parameters or the structure of the model from (pos-

sibly incomplete) data. �ere is an extensive vari-

ety of approaches; a collection of papers appears in

Jordan ().

Cross References
7Bayesian Network
7Expectation Propogation
7Hidden Markov Models
7Markov Random Field

Recommended Reading
Aji, S. M., & McEliece, R. J. (). The generalized distribu-

tive law. IEEE transactions on information theory, ():

-.

Amir, E. (). Efficient approximation for triangulation of mini-

mum treewidth. In Proceedings of the th conference on uncer-

tainty in artificial intelligence (pp. –). San Francisco: Morgan

Kaufmann.

Cowell, R. G., Dawid, P. A., Lauritzen, S. L., & Spiegelhalter, D. J.

(). Probabilistic networks and expert systems. Berlin:

Springer.

Edwards, D. (). Introduction to graphical modelling. New York:

Springer.

Geman, S., & Geman, D. (). Stochastic relaxation, Gibbs dis-

tributions and the bayesian restoration of images. In IEEE

transactions on pattern analysis and machine intelligence, ,

–.

Getoor, L., & Taskar, B. (Eds.). (). An introduction to statistical

relational learning. Cambridge, MA: MIT Press.

Ihler, A. T., Fischer III, J. W., & Willsky, A. S. (). Loopy

belief propagation: Convergence and effects of message errors.

Journal of Machine Learning Research, , –.

Jensen, F. V. (). Bayesian networks and decision graphs. Berlin:

Springer.

Jordan, M. (Ed.). (). Learning in graphical models. Cambridge,

MA: MIT Press.

Koller, D., & Friedman, N. (). Probabilistic graphical models:

Principles and techniques. Cambridge, MA: MIT Press.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (). Factor

graphs and the sum-product algorithm. IEEE transactions on

information theory, (), –.

Lauritzen, S. L. (). Graphical models. Oxford: Oxford University

Press.

Lauritzen, S. L., & Spiegelhalter, D. J. (). Local computations

with probabilities on graphical structures and their application

Graphs G

G

to expert systems. Journal of the Royal Statistical Society, Series

B, , –.

Murphy, K. (). A brief introduction to graphical models and

Bayesian networks. San Francisco: Morgan Kaufmann.

Pearl, J. (). Probabilistic reasoning in intelligent systems: Net-

works of plausible inference. San Francisco: Morgan Kaufmann.

Pearl, J. (). Causality. Cambridge: Cambridge University Press.

Roweis, S., & Ghahramani, Z. (). A unifying review of linear

Gaussian models. Neural Computation, , –.

Smyth, P. (). Belief networks, hidden Markov models, and

Markov random fields: A unifying view. Pattern Recognition

Letters, , –.

Wainwright, M. J., & Jordan, M. I. (). Graphical models, expo-

nential families, and variational inference. Foundations and

Trends in Machine Learning, , –.

Graphs

Tommy R. Jensen

Alpen-Adria-Universität Klagenfurt,

Klagenfurt, Austria

Definition
Graph�eory is (dyadic) relations on collections spec-

i�ed objects. In its most common, a graph is a pair

G = (V ,E) of a (�nite) set of vertices V and a set of edges

E (or links). Each edge e is a -element subset {u, v} of

V , usually abbreviated as e = uv; u and v are called the

endvertices of e, they are mutually adjacent and each is

incident to e in G.�is explains the typical model of a

simple graph.

A directed graph or 7digraph is a more general
structure, in which the edges are replaced by ordered

pairs of distinct elements of the vertex set V , each such

pair being referred to as an arc. Another generalization

of a graph is a hypergraph or “set-system” onV , in which

the hyperedges may have any size. Various concepts in

graph theory extend naturally to multigraphs, in which

each pair of (possibly identical) vertices may be adja-

cent via several edges (respectively loops). Also studied

are in�nite graphs, for which the vertex and edge sets are

not restricted to be �nite.

A graph is conveniently depicted graphically by rep-

resenting each vertex as a small circle, and representing

each edge by a curve that joins its two endvertices. A

digraph is similarly depicted by adding an arrow on the

curve representing an arc showing the direction from its

tail to its (possibly identical) head.

Motivation and Background
One of the very �rst results in graph theory appeared in

Leonhard Euler’s paper on SevenBridges of Königsberg,

published in . �e paper contained the complete

solution to the problem whether, when given a graph,

it is possible to locate an Euler tour, that is, a sequence

of adjacent edges (each edge imagined to be traversed

from one end to the other) that uses every edge exactly

once. Figure illustrates the four main parts of the city

of Königsberg with the seven bridges connecting them;

since this graph contains four vertices of odd degree, it

does not allow an Euler tour.

Applications of graphs are numerous andwidespread.

Much of the success of graph theory is due to the ease at

which ideas and proofs may be communicated pictori-

ally in place of, or in conjunction with, the use of purely

formal symbolism.

Theory
Isomorphism

A graph drawing should not be confused with the graph

itself (the underlying abstract structure) as there are

several ways to structure the graph drawing. It onlymat-

ters which vertices are connected to which others by

how many edges, the exact layout may be suited for the

particular purpose at hand. It is o�en a problem of inde-

pendent interest to optimize a drawing of a given graph

in terms of aesthetic features.

In practice it is o�en di�cult to decide if two

drawings represent the same graph (as in Fig.).�is

Graphs. Figure . A graph of the city of Königsberg

 G Graphs

1

Graphs. Figure . Two drawings of the same graph

decision problem has gained increasing status in com-

plexity theory, with growing suspicion that this prob-

lem may fall in a new class of problems, which lies

between the familar classes of polynomially solvable

and NP-complete7(NP-completeness) problems (sup-
posing that these classes are indeed distinct; for issues

related to the complexities of decision and optimiza-

tion problems see Garey & Johnson, ()). Nonethe-

less it is customary in the treatment of abstract graphs

to consider two graphs identical if they are isomor-

phic. A closely related problem, the subgraph isomor-

phism problem, an NP-complete problem, consists in

�nding a given graph as a subgraph of another given

graph.

Whereas there seems common agreement in the

graph theoretic community on what constitutes a draw-

ing of a graph, it may be considered a weakness, and

sometimes a source of confusion, that even the most

central general sources on the fundamentals of graph

theory, such as the monographs (Berge, ; Bondy &

Murty, ; Diestel,), do not agree on a common

formalization of the theory.

Classes of Graphs

Important special classes of graphs are bipartite graphs,

for which the vertex set is partitionable into two classes

A,B with every edge having one end in A and one in

B; in particular the complete bipartite graph Km,n has

∣A∣ = m, ∣B∣ = n, and every vertex in A is joined to

every vertex in B.�e complete graph Kn consists of n

vertices that are all pairwise adjacent. A path of length

n consists of vertices v, v, . . . , vn with edges vi−vi for

i = , , . . . ,n; such a path joins its two endvertices v
and vn. A circuit of length n consists of a path of length

n − together with an additional edge between the two

endvertices of the path. A graph is connected if each pair

of its vertices is joined by at least one path within the

graph. Of central importance to the study of e�cient

search procedures in computer science is the class of

trees, those connected graphs that contain no circuits.

Most de�nitions have various natural counterparts for

directed graphs, in particular a tournament is a directed

graph in which each pair of vertices is joined by exactly

one arc.

Properties of Graphs

Finding a complete subgraph of a given order in

an input graph is called the clique problem. �e

complementary problem of �nding an independent set

is called the independent set problem.�e longest path

problem and the longest circuit problem have as spe-

cial cases the Hamilton path problem and the Hamilton

circuit problem, the latter two problems asking to �nd

a path, respectively a circuit, that uses all vertices of

the given graph. Each of these problems (or a suit-

able modi�cation of it) belongs to the complexity class

of NP-complete problems, hence is generally believed

to be very di�cult to solve e�ciently. �e weighted

version of the Hamilton circuit problem, the so-called

travelling salesman problem is of central importance in

combinatorial optimization.

A graph is called planar if it may be drawn in the

Euclidian plane without any two of its edges cross-

ing except where they meet at a common endver-

tex. �is is o�en a convenient way of representing a

graph, whenever it is doable. A theorem of Kuratowski

states that a graph is planar if and only if it contains

Graphs G

G

homeomorphic copies of neither the complete bipartite

graph K, (the three-houses-three-utilities-graph) nor

the complete graph K. A main branch of graph theory

is concerned with investigating relationships between

the topological and combinatorial properties of graphs

Mohar &�omassen, ().

In , Francis Guthrie posed the four color prob-

lem, asking if it is possible to color the countries of

any map, using only four colors, in such a way that

all pairs of bordering countries receive di�erent colors.

Equivalently, by representing dually every country as a

vertex of a graph, with two vertices joined by an edge

if their countries share a stretch of common border, the

question is whether it is possible to color the vertices

of a planar graph using four colors, so that any two

adjacent vertices receive distinct colors.�is problem,

was solved a century later in by Kenneth Appel,

Wolfgang Haken, and John Koch, who invested mas-

sive amounts of computing time to complete a graph

theoretic approach developed by various mathemati-

cians over a period of most of the preceding part of the

twentieth century.

�e problem of coloring a possibly nonplanar graph

with a minimal number of colors, that is, to partition

its vertex set into as few independent sets as possible, is

a well-studied problem (e.g., see Jensen & To�, ()),

though NP-hard in general. In fact it is already an NP-

complete problem to ask whether a given planar graph

allows a coloring using at most three colors (see Garey,

Johnson & Stockmeyer).�e recent strong perfect

graph theorem provides one of quite few known exam-

ples of a fairly rich class of graphs, the Berge graphs,

for which the coloring problem has a satisfactory solu-

tion (see Chudnovsky, Robertson, Seymour &�omas

).

Other well-solved problems include �nding a largest

matching in a given graph; a largest set of edges no

two of which share a common endvertex (see Lovász &

Plummer () for a thorough treatment of matching

theory).�e most interesting special case asks to �nd a

perfect matching, having the property that every vertex

is paired up with a unique vertex of the graph adjacent

to it. For the special case of bipartite graphs (the mar-

riage problem), the problem was solved by Dénes König

in . Even when given for every pair of vertices a

measure of the desirability of pairing up these particular

vertices (theweightedmatching problem), there exists an

x1

x2 x3

x4 x5

x6 x7

1

Graphs. Figure . Reproduced from Bishop (, p.)

e�cient solution to the problem of �nding an optimum

matching of maximal total weight, discovered by Jack

Edmonds in .

Applications
As an example of a visualization application, Fig.

shows a digraph to symbolize for a collection of seven

stochastic variables x, . . . , x that their joint distribu-

tion is given by the product

p(x)p(x)p(x)p(x∣x, x, x)p(x∣x, x)

× p(x∣x)p(x∣x, x)

In addition to visualization of a network, a pro-

cess, a search procedure, or any hierarchical structure,

there are many applications using implementations of

known graph algorithms on computers, so that the

graph in question will only exist as an abstract datas-

tructure within a program and thus remains invisible to

the user.

�ere are di�erent ways to store graphs in a com-

puter. O�en a combination of list and matrix structures

will be preferred for storage and dynamic manipula-

tion of a graph by an algorithm. List structures are o�en

preferred for sparse graphs as they have smaller mem-

ory requirements. Matrix structures on the other hand

provide faster access but can consume a large amount

of memory if a graph contains many vertices. In most

cases it is convenient to represent a graph or digraph

by an array containing, for each edge or arc, the pair

of vertices that it joins, together with additional infor-

mation, such as the weight of the edge, as appropriate.

 G Greedy Search

It may be an advantage in addition to store for each

vertex a list of the vertices adjacent to it, or alterna-

tively, a list of the edges incident to it, depending on the

application.

�e adjacency matrix of a graph, multigraph, or

digraph on n vertices is an n × n matrix in which the

ij-entry is the number of edges or arcs that join vertex

i to vertex j (or more generally, the weight of a single

such edge or arc). As a storage device this is inferior for

sparse graphs, those with relatively few edges, but gains

in importance when an application naturally deals with

very dense graphs or multigraphs.

Future Directions
In recent years the theory of graph minors has been an

important focus of graph theoretic research. A graph

H is said to be a minor of a graph G if there exists a

subgraph of G from which H can be obtained through

a sequence of edge contractions, each consisting of the

identi�cation of the two ends of an edge e followed by

the removal of e. A monumental e�ort by Neil Robert-

son and Paul Seymour has resulted in a proof of the

Robertson–Seymour theorem (Robertson & Seymour,

; see also Diestel,), with the important con-

sequence that for any set G of graphs that is closed

under taking minors, there exists a �nite set of obstruc-

tion graphs, such that G is an element of G precisely

if G does not contain any minor that belongs to the

obstruction set. �is theorem has several important

algorithmic consequences, many still waiting to be fully

explored.

A particularly challenging unsolved problem is the

Hadwiger conjecture (see Jensen & To�,), stating

that any graph G that does not allow a vertex coloring

with as few as k colors will have to contain the complete

graph Kk+ as a minor.�e special cases of k ≤ colors

have been shown to be consequences of the four color

theorem. But the problem remains open for all larger

values of k.

Other central areas of research relate to the notori-

ously hard problems of vertex- and edge-coloring, and

of Hamilton paths and circuits. �ese have important

applications, but it is not expected that any satisfactory

necessary and su�cient conditions will be found for

their existence. Hence the study of su�cient conditions

of practical value is lively pursued.

A list of open problems in graph theory can be found

in Bondy & Murty ().

Recommended Reading
Bang-Jensen, J., & Gutin, G. (). Digraphs: theory, algorithms

and applications. Springer monographs in mathematics, London:

Springer. http://www.imada.sdu.dk/Research/Digraphs/

Berge, C. (). Graphs and hypergraphs. North-Holland mathemat-

ical library (Vol.).

Bishop, C. M. (). Pattern recognition and machine learning.

Springer.

Bondy, J. A., & Murty, U. S. R. () Graph theory, Springer.

Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. ().

The strong perfect graph theorem. Annals of Mathematics, ,

–.

Diestel, R. (). Graph theory (rd ed.). Springer. http://www.

math . uni - hamburg . de / home / diestel / books / graph . theory /

GraphTheoryIII.pdf

Emden-Weinert, T. Graphs: theory–algorithms–complexity.

http://people.freenet.de/Emden-Weinert/graphs.html.

Garey, M. R., & Johnson, D. S. (). Computers and Intractability:

A guide to the theory of NP-completeness. New York: Freeman.

Garey, M. R., Johnson, D. S., & Stockmeyer, L. J. (). Some

simplified NP-complete graph problems. Theoretical Computer

Science, , –.

Gimbel, J., Kennedy, J. W., & Quintas, L. V. (Eds.). (). Quo Vadis,

graph theory? North-Holland.

Harary, F. (). Graph theory. Reading: Addison-Wesley.

Jensen, T. R., & Toft, B. (). Graph coloring problems. Wiley.

Locke, S. C. Graph theory.http://www.math.fau.edu/locke/graphthe.

htm.

Lovász, L., & Plummer, M. D. (). Matching theory. Annals of

discrete math (Vol.). North Holland.

Mohar, B., & Thomassen, C. (). Graphs on surfaces. John Hop-

kins University Press.

Robertson, N., & Seymour, P. D. (). Graph minors. XX.Wagner’s

conjecture. Journal of Combinatorial Theory, Series B, (),

–.

Weisstein, E. W. Books about graph theory. http : // www .

ericweisstein.com/encyclopedias/books/GraphTheory.html.

Greedy Search

Claude Sammut

University of New South Wales, Sydney, Australia

At each step in its search, a greedy algorithmmakes the

best decision it can at the time and continues without

backtracking. For example, an algorithm may perform

a7general-to-speci�c search and at each step, commits
itself to the specialization that best �ts that training data,

so far. It continues without backtracking to change any

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.fau.edu/locke/graphthe.htm.
http://www.ericweisstein.com/encyclopedias/books/GraphTheory.html.

Greedy Search Approach of Graph Mining G

G

of its decisions. Greedy algorithms are used in many

machine-learning algorithms, including decision tree

learning (Breiman, Friedman, Olshen, & Stone, ;

Quinlan,) and 7rule learning algorithms, such as
7sequential covering.

Cross References
7Learning as Search
7Rule Learning

Recommended Reading
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().

Classification and regression trees. Belmont, CA: Wadsworth

International Group.

Quinlan, J. R. (). C.: Programs for machine learning. San

Mateo, CA: Morgan Kaufmann.

Greedy Search Approach of Graph
Mining

LawrenceHolder

Washington State University, Pullman, USA

Definition
7Greedy search is an e�cient and e�ective strategy for
searching an intractably large space when su�ciently

informed heuristics are available to guide the search.

�e space of all subgraphs of a graph is such a space.

�erefore, the greedy search approach of 7graph min-
ing uses heuristics to focus the search toward subgraphs

of interest while avoiding search in less interesting por-

tions of the space. One such heuristic is based on the

compression a�orded by a subgraph; that is, how much

is the graph compressed if each instance of the subgraph

is replaced by a single vertex. Not only does compres-

sion focus the search, but it has also been found to prefer

subgraphs of interest in a variety of domains.

Motivation and Background
Many datamining andmachine learningmethods focus

on the attributes of entities in the domain, but the rela-

tionships between these entities also represents a signif-

icant source of information, and ultimately, knowledge.

Mining this relational information is an important chal-

lenge both in terms of representing the information and

facing the additional computational obstacles of ana-

lyzing both entity attributes and relations. One e�cient

way to represent relational information is as a graph,

where vertices in the graph represent entities in the

domain, and edges in the graph represent attributes and

relations among the entities. �us, mining graphs is

an important approach to extracting relational infor-

mation. �e main alternative to a graph-based rep-

resentation is �rst-order logic, and the methods for

mining this representation fall under the area of induc-

tive logic programming. Here, the focus is on the graph

representation.

Several methods have been developed for mining

graphs (Washio & Motoda,), but most of these

methods focus on �nding the most frequent subgraphs

in a set of graph transactions (e.g., FSG (Kuramochi

& Karypis,), gSpan (Yan & Han,), Gaston

(Nijssen & Kok,)) and use e�cient exhaustive,

rather than heuristic search. However, there are other

properties besides frequency of a subgraph pattern that

are relevant to many domains. One such property is the

amount of compression a�orded by the subgraph pat-

tern, when each instance of the pattern is replaced by a

single vertex. Searching for themost frequent subgraphs

can bemade e�cientmainly through the exploitation of

the downward closure property, which essentially says

one can prune any extension of a subgraph that does

not meet the minimum support frequency threshold.

Unfortunately, the compression of a subgraph does not

satisfy the downward closure property; namely, while a

small extension of a subgraph may have less compres-

sion, a larger extension may have greater compression.

�erefore, one cannot easily prune extensions andmust

search a larger portion of the space of subgraphs.�us,

onemust resort to a greedy searchmethod to search this

space e�ciently.

As with any greedy search approach, the result-

ing solution may sometimes be suboptimal, that is, the

resulting subgraph pattern is not the pattern with max-

imum compression.�e extent to which optimal solu-

tions are missed depends on the type of greedy search

and the strength of the heuristics used to guide the

search. One approach is embodied in the graph-based

induction (GBI) method (Matsuda, Motoda, Yoshida,

&Washio, ; Yoshida, Motoda, & Indurkhya,).

GBI continually compresses the input graph by identi-

fying frequent triples of vertices, some of which may

 G Greedy Search Approach of Graph Mining

represent previously compressed portions of the input

graph. Candidate triples are evaluated using a measure

similar to information gain.

A similar approach recommended here is the use

of a beam search strategy coupled with a compression

heuristic based on the 7minimum description length
(MDL) principle (Rissanen,). �e goal is to per-

form unsupervised discovery of a subgraph pattern that

maximizes compression, which is essentially a trade-

o� between frequency and size. Once the capability to

�nd such a pattern exists, it can be used in an iterative

discovery-and-compress fashion to perform hierarchi-

cal conceptual clustering, and it can be used to perform

supervised learning, that is, �nd patterns that com-

press the positive graphs, but not the negative graphs.

�is approach has been well studied (Cook & Holder,

, ; Gonzalez, Holder, & Cook, ; Holder

& Cook, ; Jonyer, Cook, & Holder, ; Kukluk,

Holder, &Cook,) and has proven successful in sev-

eral domains (Cook, Holder, Su, Maglothin, & Jonyer,

; Eberle & Holder, ; Holder, Cook, Coble, &

Mukherjee, ; You, Holder, & Cook,).

Structure of Learning System
Figure depicts the structure of the greedy search

approach of graph mining.�e input data is a labeled,

directed graph G.�e search begins by identifying the

set of small common patterns in G, that is, all vertices

with unique labels having a frequency greater than one.

�e algorithm then iterates by evaluating the patterns

according to the search heuristic, retaining the best pat-

terns, and extending the best patterns by one edge until

the stopping condition is met.

�e search is guided by the minimum description

length (MDL) principle, which seeks to minimize the

description length of the entire data set.�e evaluation

heuristic based on the 7MDL principle assumes that
the best pattern is the one that minimizes the descrip-

tion length of the input graph when compressed by the

pattern. �e description length of the pattern S given

the input graph G is calculated as DL(G, S) = DL(S) +

DL(G∣S), where DL(S) is the description length of the

pattern, and DL(G∣S) is the description length of the

input graph compressed by the pattern.�e search seeks

a pattern S that minimizes DL(G,S).

While several greedy search strategies apply here

(e.g., hill climbing, stochastic), the strategy that has

been found to work best is the 7beam search. Of

the patterns currently under consideration, the sys-

tem retains only the best Beam patterns, where Beam

is a user-de�ned parameter. �ese patterns are then

extended by one edge in all possible ways according

to the input graph, the extended patterns are evalu-

ated, and then again, all but the best Beam patterns

are discarded. �is process continues until the stop-

ping condition is met. Several stopping conditions are

applicable here, including a user-de�ned limit on the

number of patterns considered, the exhaustion of the

search space, or the case in which all extensions of

a pattern evaluate to a lesser value than their parent

pattern. Once meeting the stopping condition, the sys-

tem returns the best patterns. Note that while the naïve

Identify small,
common

patterns in G

Input
Graph G

Stopping
condition?

no

yes

Best patterns

Evaluate
patterns in G
using MDL

Retain best
Beam patterns

Extend
patterns by
one edge

Greedy Search Approach of Graph Mining. Figure . Structure of the greedy search approach of graph mining

Greedy Search Approach of Graph Mining G

G

S1

S1

S1

S1

S1

S2

S2 S2

Greedy Search Approach of Graph Mining. Figure . Exa-

mple of the greedy search approach of graph

mining

approach to implementing this algorithmwould require

an NP-complete subgraph isomorphism procedure to

collect the instances of each pattern, a more e�cient

approach takes advantage of the fact that new patterns

are always one-edge extensions of existing patterns, and,

therefore, the instances of the extended patterns can

be identi�ed by searching the extensions of the par-

ent’s instances. �is process does require several iso-

morphism tests, which is the computational bottleneck

of the approach, but avoids the subgraph isomorphism

problem.

Once the search terminates, the input graph can be

compressed using the best pattern. �e compression

procedure replaces all instances of the pattern in the

input graph by single vertices, which represent the pat-

tern’s instances. Incoming and outgoing edges to and

from the replaced instances will point to, or originate

from the new vertex that represents the instance. �e

algorithmcan then be invoked again on this compressed

graph.

Figure illustrates the process on a simple example.

�e system discovers pattern S, which is used to com-

press the data. A second iteration on the compressed

graph discovers pattern S. Because instances of a pat-

tern can appear in slightly di�erent forms throughout

the data, an inexact graph match, based on graph edit

distance, can be used to address noise by identifying

similar pattern instances.

Graph-Based Hierarchical Conceptual Clustering

Given the ability to �nd a prevalent subgraph pattern

in a larger graph and then compress the graph with this

pattern, iterating over this process until the graph can

no longer be compressed will produce a hierarchical,

conceptual clustering of the input data (Jonyer, Cook,

& Holder,). On the ith iteration, the best subgraph

Si is used to compress the input graph, introducing new

vertices labeled Si in the graph input to the next itera-

tion.�erefore, any subsequently discovered subgraph

Sj can be de�ned in terms of one or more of Sis, where

i < j.�e result is a lattice, where each cluster can be

de�ned in terms of more than one parent subgraph. For

example, Fig. shows such a clustering done on a DNA

molecule.

Graph-Based Supervised Learning

Extending a graph-based data mining approach to per-

form7supervised learning involves the need to handle
negative examples (focusing on the two-class scenario).

In the case of a graph the negative information can

come in three forms. First, the data may be in the

form of numerous smaller graphs, or graph transac-

tions, each labeled either positive or negative. Second,

data may be composed of two large graphs: one posi-

tive and one negative.�ird, the data may be one large

graph inwhich the positive and negative labeling occurs

throughout.�e �rst scenario is closest to the standard

supervised learning problem in that one has a set of

clearly de�ned examples (Gonzalez et al.,). Let G+

represent the set of positive graphs, and G− represent

the set of negative graphs.�en, one approach to super-

vised learning is to �nd a subgraph that appears o�en in

the positive graphs, but not in the negative graphs.�is

amounts to replacing the information-theoretic mea-

sure with simply an error-basedmeasure.�is approach

will lead the search toward a small subgraph that dis-

criminates well. However, such a subgraph does not

necessarily compress well, nor represent a characteristic

description of the target concept.

One can bias the search toward amore characteristic

description by using the information-theoretic measure

to look for a subgraph that compresses the positive

examples, but not the negative examples. If I(G) rep-

resents the description length (in bits) of the graph G,

and I(G∣S) represents the description length of graph G

compressed by subgraph S, then one can look for an

S that minimizes I(G+∣S) + I(S) + I(G−) − I(G−∣S),

where the last two terms represent the portion of the

negative graph incorrectly compressed by the subgraph.

�is approach will lead the search toward a larger sub-

graph that characterizes the positive examples, but not

the negative examples.

 G Greedy Search Approach of Graph Mining

Greedy Search Approach of Graph Mining. Figure . Iterative application of the greedy search approach of graph min-

ing yields the hierarchical, conceptual clustering on the right given an input graph representing the portion of DNA

structure depicted on the left

Finally, this process can be iterated in a set-covering

approach to learn a disjunctive hypothesis. If using the

error measure, then any positive example containing

the learned subgraph would be removed from sub-

sequent iterations. If using the information-theoretic

measure, then instances of the learned subgraph in

both the positive and negative examples (even multi-

ple instances per example) are compressed to a single

vertex. Note that the compression is a lossy one, that

is, one does not keep enough information in the com-

pressed graph to know how the instance was connected

to the rest of the graph.�is approach is consistent with

the goal of learning general patterns, rather than mere

compression.

Graph Grammar Inference

In the above algorithms the patterns are limited to

non-recursive structures. In order to learn subgraph

motifs, or patterns that can be used as the building

blocks to generate arbitrarily large graphs, one needs

the ability to learn graph grammars. �e key to the

inference of a graph grammar is the identi�cation of

overlapping structure. One can detect the possibility of

a recursive graph-grammar production by checking if

the instances of a pattern overlap. If a set of instances

overlap by a single vertex, then one can propose a

recursive node-replacement graph grammar produc-

tion. Figure shows an example of a node-replacement

graph grammar (right) learned from a simple, repetitive

input graph (le�).�e input graph in Fig. is composed

of three overlapping substructures. Based on how the

instances overlap, one can also infer connection instruc-

tions that describe how the pattern can connect to itself.

For example, the connection instructions in Fig. indi-

cate that the graph can grow by connecting vertex of

one pattern instance to either vertex or vertex of

another pattern instance.

If a set of pattern instances overlap by an edge, then

one can propose a recursive edge-replacement graph

grammar production. Figure shows an example of an

edge-replacement graph grammar (right) learned from

the input graph (le�). Connection instructions describe

how the motifs can connect via the edge labeled “a” or

the edge labeled “b.”

Apart from the inclusion of recursive patterns, the

greedy search approach of graph mining is unchanged.

Both recursive and non-recursive patterns are evalu-

ated according to their ability to compress the input

graph using the 7MDL heuristic. A�er several iter-
ations of the approach, the result is a graph gram-

mar consisting of recursive and non-recursive pro-

ductions that both describe the input graph and pro-

vide a mechanism for generating graphs with similar

properties.

Programs and Data
Most of the aforementioned functionality has been

implemented in the SUBDUE graph-based pattern

learning system.�e SUBDUE source code and numer-

ous sample graph data �les are available at http://www.

subdue.org.

http://www.subdue.org.

Greedy Search Approach of Graph Mining G

G

a

b

a a

bb

a a a a

1
x

2
y

3
x

5
y

6 7

z

z

4
x

8
y

9 10

z

(S)

(S)

(S)

S

1

x
2
zy

3 4a a a a

aa

bb

1
x

2
z

43

y

Connection
instructions

1–3
1–4

Greedy Search Approach of Graph Mining. Figure . The node-replacement graph grammar (right) inferred from the

input graph (left). The connection instructions indicate how the pattern can connect to itself

S3a

S3 S3b

S3a S3

S3b S3

Greedy Search Approach of Graph Mining. Figure . The edge-replacement graph grammar (right) inferred from the

input graph (left). The connection instructions indicate how the pattern can connect to itself

Applications
Many relational domains, from chemical molecules to

social networks, are naturally represented as a graph,

and a graph mining approach is a natural choice for

extracting knowledge from such data.�ree such appli-

cations are described below.

A huge amount of biological data that has been

generated by long-term research encourages one to

move one’s focus to a systems-level understanding of

bio-systems. A biological network, containing various

biomolecules and their relationships, is a fundamen-

tal way to describe bio-systems. Multi-relational data

mining �nds the relational patterns in both the entity

attributes and relations in the data. A graph consist-

ing of vertices and edges between these vertices is a

natural data structure to represent biological networks.

�e greedy search approach of graph mining has been

applied to �nd patterns in metabolic pathways (You

et al.,). Graph-based supervised learning �nds

the unique substructures in a speci�c type of pathway,

which help one understand better how pathways di�er.

Unsupervised learning shows hierarchical clusters that

describe the common substructures in a speci�c type

of pathway, which allow one to better understand the

common features in pathways.

Social network analysis is the mapping and mea-

suring of relationships and �ows between people, orga-

nizations, computers, or other information processing

entities. Such analysis is naturally done using a graphical

representation of the domain.�e greedy approach of

graph mining has been applied to distinguish between

criminal and legitimate groups based on their mode

of communication (Holder et al.,). For exam-

ple, terrorist groups tend to exhibit communications

chains; whereas, legitimate groups (e.g., families) tend

to exhibit more hub-and-spoke communications.

Anomaly detection is an important problem for

detecting fraud or unlawful intrusions. However,

anomalies are typically rare and, therefore, present

a challenge to most mining algorithms that rely on

 G Greedy Search Approach of Graph Mining

regularity and frequency to detect patterns. With the

graph mining approach’s ability to iteratively compress

away regularity in the graph, what is le� can be con-

strued as anomalous. To distinguish this residual struc-

ture from noise, one can compare its regularity with

the probability that such structure would appear ran-

domly. �e presence of rare structure that is unlikely

to appear by chance suggests an anomaly of inter-

est. Furthermore, most fraudulent activity attempts to

disguise itself by mimicking legitimate activity.�ere-

fore, another method for �nding such anomalies in

graphs is to �rst �nd the normative pattern using the

greedy search approach of graph mining and then �nd

unexpected deviations to this normative pattern. �is

approach has been applied to detect anomalies in cargo

data (Eberle & Holder,).

Future Directions
One of the main challenges in approaches to graph

mining is scalability. Since most relevant graph opera-

tions (e.g., graph and subgraph isomorphism) are com-

putationally expensive, they can be applied to only

modest-sized graphs that can �t in the main memory.

Clearly, there will always be graphs larger than can �t

in main memory, so e�cient techniques for mining in

such graphs are needed. One approach is to keep the

graph in a database and translate graph mining oper-

ations into database queries. Another approach is to

create abstraction hierarchies of large graphs so that

mining can occur at higher-level, smaller graphs to

identify interesting regions of the graph before descend-

ing down into more speci�c graphs. Traditional high-

performance computing techniques of partitioning a

problem into subproblems, solving the subproblems,

and then recomposing a solution do not always work

for graph mining problems, because partitioning the

problem means breaking links which may later turn

out to be important. New techniques and architectures

are needed to improve the scalability of graph mining

operations.

Another challenge for graph mining techniques is

dynamic graphs. Most graphs represent data that can

change over time. For example, a social network can

change as people enter and leave the network, new links

are established and old links are discarded. First, one

would like to be able to mine for static patterns in

the presence of the changing data, which will require

incremental approaches to graph mining. Second, one

would like to mine patterns that describe the evolution

of the graph over time, which requires mining of time

slice graphs or the stream of graph transaction events.

�ird, the dynamics can reside in the attributes of enti-

ties (e.g., changing concentrations of an enzyme in a

metabolic pathway), in the relation structure between

entities (e.g., new relationships in a social network),

or both. Research is needed on e�cient and e�ective

techniques for mining dynamic graphs.

Cross References
7Grammatical Inferences

Recommended Reading
Cook, D., & Holder, L. (March/April). Graph-based data min-

ing. IEEE Intelligent Systems, (), –.

Cook, D., & Holder, L. (Eds.). ().Mining graph data. New Jersey:

Wiley.

Cook, D., Holder, L., Su, S., Maglothin, R., & Jonyer, I. (July/August

). Structural mining of molecular biology data. IEEE

Engineering in Medicine and Biology, Special Issue on Genomics

and Bioinformatics, (), –.

Eberle, W., & Holder, L. (). Detecting anomalies in cargo ship-

ments using graph properties. In Proceedings of the IEEE intel-

ligence and security informatics conference, San Diego, CA, May

.

Gonzalez, J., Holder, L., & Cook D. (). Graph-based relational

concept learning. In: Proceedings of the nineteenth interna-

tional conference on machine learning, Sydney, Australia, July

.

Holder, L., & Cook, D. (July). Graph-based relational learning:

Current and future directions. ACM SIGKDD Explorations, (),

–.

Holder, L., Cook, D., Coble, J., & Mukherjee, M. (March).

Graph-based relational learning with application to security.

Fundamenta Informaticae, Special Issue on Mining Graphs, Trees

and Sequences, (–), –.

Jonyer, I., Cook, D., & Holder, L. (October). Graph-based

hierarchical conceptual clustering. Journal of Machine Learning

Research, , –.

Kukluk, J., Holder, L., & Cook, D. (). Inference of node

replacement graph grammars. Intelligent Data Analysis, (),

–.

Kuramochi, M., & Karypis, G. (). Frequent subgraph discov-

ery. In Proceedings of the IEEE international conference on data

mining (ICDM) (pp. –), San Jose, CA.

Matsuda, T., Motoda, H., Yoshida, T., & Washio, T. (). Min-

ing patterns from structured data by beam-wise graph-based

induction. In Proceedings of the fifth international conference on

discovery science (pp. –), Lubeck, Germany.

Nijssen, S., & Kok, J. N. (). A quickstart in frequent structure

mining can make a difference. In Proceedings of the tenth ACM

Group Detection G

G

SIGKDD international conference on knowledge discovery and

data mining (KDD) (pp. –), Seattle, WA.

Rissanen, J. (). Stochastic complexity in statistical inquiry. New

Jersey: World Scientific.

Washio, T., & Motoda H. (July). State of the art of graph-based

data mining. ACM SIGKDD Explorations, (), –.

Yan, X., & Han, J. (). gSpan: Graph-based substructure pat-

tern mining. In Proceedings of the IEEE international confer-

ence on data mining (ICDM) (pp. –), Maebashi City,

Japan.

Yoshida, K., Motoda, H., & Indurkhya, N. (). Graph-based

induction as a unified learning framework. Journal of Applied

Intelligence, , –.

You, C., Holder, L., & Cook, D. (). Application of graph-based

data mining to metabolic pathways. InWorkshop on data mining

in bioinformatics, IEEE international conference on data mining,

Hong Kong, China, December .

Group Detection

Hossam Sharara, Lise Getoor

University of Maryland, Maryland, USA

Synonyms
Community detection; Graph clustering; Modularity

detection

Definition
Group detection can de�ned as the clustering of nodes

in a graph into groups or communities.�is may be a

hard partitioning of the nodes, ormay allow for overlap-

ping group memberships. A community can be de�ned

as a group of nodes that share dense connections among

each other, while being less tightly connected to nodes

in di�erent communities in the network. �e impor-

tance of communities lies in the fact that they can

o�en be closely related to modular units in the system

that have a common function, e.g., groups of individu-

als interacting with each other in a society (Girvan &

Newman,), WWW pages related to similar top-

ics (Flake, Lawrence, Giles, & Coetzee,), or pro-

teins having the same biological function within the cell

(Chen & Yuan,).

Motivation and Background
�e work done in group detection goes back as early

as the s when Stuart Rice clustered data by hand

to investigate political blocks (Rice,). Another

early example is the work of George (Homans,)

who illustrated how simple rearrangement of the rows

and columns of data matrices helped to reveal their

underlying structure. Since then, group detection has

attracted researchers from di�erent areas such as soci-

ology, mathematics, physics, marketing, statistics, and

computer science.

Group detection techniques vary from simple

similarity-based7clustering algorithms that follow the
classical assumption that the data points are inde-

pendent and identically distributed, to more advanced

techniques that take into consideration the existing rela-

tionships between nodes in addition to their attributes,

and try to characterize the di�erent distributions

present in the data.

Theory Solution
A network is de�ned as a graph G = (V ,E) consisting

of a set of nodes v ∈ V , and a set of edges e ∈ E. In the

case of weighted networks, w(vi, vj) denotes the weight

of the edge connection nodes vi and vj. A community,

or a group, C is a subgraph C(V ′,E′) of the original

graph G(V ,E) whose nodes and edges are subsets of

the original graph’s nodes and edges; i.e., V ′ ⊂ V and

E′ ⊂ E.

Following the de�nition of the community, we can

expect that all the vertices in any community must be

connected by a path within the same community.�is

property is referred to in literature as connectedness,

which implies that in the case of disconnected graphs,

we can analyze each connected component separately,

as communities cannot span di�erent components.

Another important property that follows from the

de�nition of a community is that the group of vertices

within a community should share denser connections

among each other, and fewer connectionswith the other

vertices in the network. To quantify this measure, the

link density of a group δ(C) is de�ned as the ratio

between the number of internal edges in that group and

the maximum number of possible internal edges:

δ(C) =
∣E′∣

∣V ′∣ × (∣V ′∣ −)/
()

�us, for any community C, we require that δ(C) >

δ(G); where δ(G) is the average link density of the

whole network. Similarly, the average link density

between di�erent communities, calculated using the

 G Group Detection

ratio between the number of edges emanating from a

group and terminating in another, and the maximum

number possible of such edges, should generally be low.

Approaches
Beyond the intuitive discussion above, the precise

de�nition of what constitutes a community involves

multiple aspects. One important aspect is whether com-

munities form hard partitions of the graph or nodes can

belong to several communities. Overlapping communi-

ties do commonly occur in natural settings, especially

in social networks. Currently, only a few methods are

able to handle overlapping communities (Palla, Dernyi,

Farkas, & Vicsek,).

Other aspects should also be taken into consid-

eration when de�ning community structure, such as

whether link weights and/or directionalities are uti-

lized, and whether the de�nition allows for hierarchical

community structure, which means that communities

may be parts of larger ones. However, one of the most

important aspect that comes into consideration in com-

munity detection is whether the de�nition depends on

global or local network properties.�e main di�erence

between the two approaches is whether the commu-

nities are de�ned in the scope of the whole network

structure, such as methods based on centrality mea-

sures (Girvan & Newman,), global optimization

methods (Newman & Girvan,), spectral meth-

ods (Arenas, Daz-Guilera, & Prez-Vicente,), or

information-theoretic methods (Rosvall & Bergstrom,

). Local methods, on the other hand, de�ne com-

munities based on purely local network structure, such

as detecting cliques of di�erent sizes, clique percolation

method (Palla et al.,), and subgraph �tnessmethod

(Lancichinetti, Fortunato, & Kertesz,).

Local Techniques

Local methods for community detection basically rely

on de�ning a set of properties that should exist in a

community, then �nding maximal subgraphs for which

these set of properties hold. �is formulation corre-

sponds to �nding maximal cliques in the network,

where a clique is a subgraph in which all its vertices are

directly connected.

However, there are some issues that rises from the

previous formulation. First, �nding cliques in a graph is

an NP-Complete problem, thus most solutions will be

approximate based onheuristicmethods.Anothermore

semantic issue is the interpretation of communities,

especially in the context of social networks, where dif-

ferent individuals have di�erent centralities within their

corresponding groups, contradicting with the degree

symmetry of the nodes in cliques. To overcome these

drawbacks, the notion of a clique is relaxed to n-clique,

which is amaximal subgraphwhere each pair of vertices

are at most n-steps apart from each other.

Clustering Techniques

7Data clustering is considered one of the earliest tech-
niques for revealing group structure, where data points

are grouped based on the similarity between their cor-

responding features according to a given similarity

measure. �e main objective of traditional clustering

methods is to obtain clusters or groups of data points

possessing high intra-cluster similarity and low inter-

cluster similarity. Classical data clustering techniques

can be divided into partition-based methods such as

k-means clustering (MacQueen,), spectral clus-

tering algorithms (Alpert, Kahng, & Yao,), and

hierarchical clusteringmethods (Hartigan,), which

are the most popular and the most commonly used in

many �elds.

One of the main advantages of the hierarchical clus-

tering techniques is their ability to provide multiple

resolutions at which the data can be grouped. In general,

hierarchical clustering can be divided into agglomer-

ative and divisive algorithms.�e agglomerative algo-

rithm is a greedy bottom-up one that starts with clusters

including single data points then successively merge

the pairs of clusters with the highest similarity. Divi-

sive algorithms work in an opposite direction, where

initially all the data points are regarded as one clus-

ter, which is successively divided into smaller ones by

splitting groups of nodes having the lowest similarity.

In both algorithms, clusters are represented as a den-

drogram, whose depths indicate the steps at which two

clusters are joined. �is representation clari�es which

communities are built up from smaller modules, and

how these smaller communities are organized, which

can be particularly useful in the case of the presence of

a normal hierarchy of community structure in the data.

Hierarchical clustering techniques can easily be used

in network domains, where data points are replaced by

Group Detection G

G

individual nodes in the network, and the similarity is

based on edges between them.

Centrality-Based Techniques

One of the methods for community detection that

is based on the global network structure is the one

proposed by Girvan and Newman (), where they

proposed an algorithm based on the betweenness

centrality of edges to be able to recover the group struc-

ture within the network. Betweenness centrality is a

measure of centrality of nodes in networks, de�ned for

each node as the number of shortest paths between

pairs of nodes in the network that run through it.�e

Girvan–Newman algorithm extended this de�nition for

edges in the network as well, where the betweenness

centrality of an edge is de�ned as the number of shortest

paths between pairs of nodes that run along it.

�e basic idea behind the algorithm is exploiting the

fact that the number of edges connecting nodes from

di�erent communities is sparse. Following from that,

all shortest paths between nodes fromdi�erent commu-

nities should pass along one of these edges, increasing

their edge betweenness centrality measure. �erefore,

by following a greedy approach and removing edges

with highest betweenness centrality from the network

successively, the underlying community structure will

be revealed. One of the major drawbacks of the algo-

rithm is the time complexity, which is O(∣E∣∣V ∣) gen-

erally, andO(∣V ∣) for sparse networks.�e fact that the

edge betweenness needs only to be recalculated only for

the edges a�ected by the edge removal can be factored

in, which makes the algorithm e�cient in sparse net-

works with strong community structure, but not very

e�cient on dense networks.

Modularity-Based Techniques

�e concept of modularity was introduced by Newman

and Girvan () as a measure to evaluate the qual-

ity of a set of extracted communities in a network, and

has become one of the most popular quality functions

used for community detection. �e basic idea is uti-

lizing a null model: a network having the same set of

nodes as the original one, but with random edges placed

between them taking into account preserving the orig-

inal node degrees. �e basic idea is that the created

random network is expected to contain no commu-

nity structure, thus by comparing the number of edges

within the extracted communities against the expected

number of edges in the same communities from the ran-

dom network, we can judge the quality of the extracted

community structure. More speci�cally, the modularity

Q is de�ned as follows

Q =

∣E∣
∑
ij

[Aij −
deg(i) × deg(j)

∣E∣
] δk(ci, cj) ()

where Aij is the element of the adjacency matrix of the

network denoting the number of edges between nodes i

and j, deg(i) and deg(j) are the degrees of nodes i and j

respectively, ci and cj are the communities to which

nodes i and j belong respectively, and δk refers to the

kronecker delta.�e summation runs over all pairs of

nodes within the same community.

Clearly, a higher modularity value indicates that the

average link density within the extracted community

is larger than that of the random network where no

community structure is present.�us, modularity max-

imization can be used as the objective for producing

high-quality community structure. However, modular-

ity maximization is an NP-hard problem. Nevertheless,

there have been several algorithms for �nding fairly

good approximations of the modularity maximum in

reasonable amount of time.

One of the �rst modularity maximization algo-

rithms was introduced by Newman in (Newman,

). It is a greedy hierarchical agglomerative clus-

tering algorithm, which starts with individual nodes

and merges them in the order of increasing the over-

all modularity of the resulting con�guration.�e time

complexity of this greedy algorithm isO(∣V ∣(∣E∣+ ∣V ∣))

or O(∣V ∣) for sparse networks, which enables the user

to run community detection on large networks in a

reasonable amount of time.

Issues
One of themain issueswith themethods of group detec-

tion in network setting is the focus on the network

structure, without taking into consideration other prop-

erties of nodes and edges in the network. �is issue

o�en results in a lack of correspondence between the

extracted communities and the functional groups in the

network (Shalizi, Camperi, & Klinkner,).�is also

 G Grouping

leads to another common problem which is how to val-

idate the resulting communities produced by any of the

proposed techniques.

Although in network settings there are o�en di�er-

ent types of interactions between entities of di�erent

natures, most group detection methods work on single-

mode networks, which have just a single node and edge

type. Fewer works focus on �nding groups in more

complex,multimodal settings, where nodes fromdi�er-

ent types have multiple types of interactions with each

other. One of themost common approaches to deal with

these types of networks is projecting them into a series

of individual graphs for each node type. However, this

approach results in losing some of the information that

could have been retained by operating collectively on

the original multi-relational network.

Another issue also gaining interest is developing

methods for group detection in dynamic network set-

tings (Tantipathananandh & Berger-Wolf,), where

the underlying network structure changes over time.

Most of the previous work on group detection focused

on static networks, and handles the dynamic case by

either analyzing a snapshot of the network at a single

point in time, or aggregating all interactions over the

whole time period. Both approaches do not capture the

dynamics of change in the network structure, which

can be an important factor in revealing the underlying

communities.

Cross References
7Graph Clustering
7Graph Mining

Recommended Reading
Alpert, C., Kahng, A., & Yao, S. (). Spectral partitioning: The

more eigenvectors, the better. Discrete Applied Mathematics, ,

–.

Arenas, A., Daz-Guilera, A., & Prez-Vicente, C. J. (). Syn-

chronization reveals topological scales in complex networks.

Physical Review Letters, (), .

Chen, J., & Yuan, B. (). Detecting functional modules in

the yeast protein–protein interaction network. Bioinformatics,

(), –.

Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, F. ().

Self-organization and identification of web communities. IEEE

Computer, , –.

Girvan, M., & Newman, M. E. J. (). Community structure

in social and biological networks. Proceedings of National

Academy of Science, , –.

Hartigan, J. A. (). Clustering algorithms. New York: Wiley.

Homans, G. C. (). The human group. New York: Harcourt, Brace.

Lancichinetti, A., Fortunato, S., & Kertesz, J. (). Detecting the

overlapping and hierarchical community structure in complex

networks. New Journal of Physics, , .

MacQueen, J. B. (). Some methods for classification and

analysis of multivariate observations. In Proceedings of fifth

Berkeley symposium on mathematical statistics and probability

(Vol. , pp. –). Berkeley, CA: University of California

Press.

Newman, M. E. J. (). Fast algorithm for detecting community

structure in networks. Physical Review E, (), .

Newman, M. E. J., & Girvan, M. (). Finding and evaluat-

ing community structure in networks. Physical Review E, ,

.

Palla, G., Dernyi, I., Farkas, I., & Vicsek, T. (). Uncovering

the overlapping community structure of complex networks in

nature and society. Nature, (), –.

Rice, S. A. (). The identification of blocs in small political

bodies. American Political Science Review, , –.

Rosvall, M., & Bergstrom, C. T. (). Maps of random walks on

complex networks reveal community structure. Proceedings of

National Academy of Science, , –.

Shalizi, C. R., Camperi, M. F., & Klinkner, K. L. (). Discovering

functional communities in dynamical networks. Statistical net-

work analysis: Models, issues, and new directions (pp. –).

Berlin: Springer-Verlag.

Tantipathananandh, C., & Berger-Wolf, T. Y. (). Algorithms for

identifying dynamic communities. In Proceedings of the th

ACM SIGKDD international conference on knowledge discovery

and data mining, Paris. New York: ACM.

Grouping

7Categorical Data Clustering

Growing Set

Definition
A growing set is a subset of a 7training set contain-
ing data that are used by a7learning system to develop
models that are then evaluated against a7pruning set.

Cross References
7Data Set

Growth Function

7Shattering Coe�cient

H

Hebb Rule

7Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

Hebbian Learning

Synaptic weight changes depend on the joint activity of
the7presynaptic and postsynaptic neurons.

Cross References
7Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

Heuristic Rewards

7Reward Shaping

Hidden Markov Models

Antal van den Bosch
Tilburg University, Tilburg,�e Netherlands

Synonyms
HMM

Definition
Hidden Markov models (HMMs) form a class of sta-
tistical models in which the system being modeled is
assumed to be a Markov process with hidden states.
From observed output sequences generated by the
Markov process, both the output emission probabilities
from the hidden states and the transition probabilities
between the hidden states can be estimated by using
dynamic programming methods.�e estimated model

parameters can then be used for various sequence anal-
ysis purposes.

Motivation and Background
�e states of a regular Markov model, named a�er
Russian mathematician Andrey Markov (–),
are directly observable, hence its only parameters are
the state transition probabilities. In many real-world
cases, however, the states of the system that one wants
to model are not directly observable. For instance, in
speech recognition the audio is the observable stream,
while the goal is to discover the phonemes (the cat-
egorical elements of speech) that emitted the audio.
HMMs o�er the necessary architecture to estimate hid-
den states through indirect means. Dynamic program-
ming methods have been developed that can estimate
both the output emission probabilities and the tran-
sition probabilities between the hidden states, either
from observations of output sequences only (an unsu-
pervised learning setting), or from pairs of aligned
output sequences and gold-standard hidden sequences
(a supervised learning setting).

Structure of the Learning System
Figure displays the general architecture of a HMM.
Each state (circle) represents a variable xi or yi occurring
at time i; xt is the discrete value of the hidden variable at
time t. �e variable yt is the output variable observed
at the same time t, said to be emitted by xt . Arrows
denote conditional dependencies. Any hidden variable
is only dependent on its immediate predecessor; thus,
the value of xt is only dependent on that of xt− occur-
ring at time t−; this deliberate simplicity is referred to
as the Markov assumption. Analogously, observed vari-
ables such as yt are conditionally dependent only on the
hidden variables occurring at the same time t, which is
xt in this case.

Typically, a start state x is used as the �rst hidden
state (not conditioned by any previous state), as well as

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 H Hidden Markov Models

Hidden Markov Models. Figure . Architecture of a hid-

den Markov model (HMM)

an end state xn+ that closes the hidden state sequence of
length n. Start and end states usually emitmeta-symbols
signifying the “start” and “end” of the sequence.

An important constraint on the data that can, in
principle, be modeled in an HMM is that the hidden
and output sequences need to be discrete, aligned (i.e.,
one yt for each xt), and of equal length. Sequence pairs
that do not conform to these constraints need to be
discretized (e.g., in equal-length time slices) or aligned
where necessary.

Training and Using Hidden Markov Models

HMMs can be trained both in an unsupervised and a
supervised fashion. First, when only observed output
sequences are available for training, the model’s condi-
tional probabilities from this indirect evidence can be
estimated through the Baum–Welch algorithm (Baum,
Petrie, Soules, & Weiss,), a form of unsuper-
vised learning, and an instantiation of the expectation-
maximization algorithm (Dempster, Laird, & Rubin,
).

When instead aligned sequences of gold-standard
hidden variables and output variables are given as
supervised training data, both the output emission
probabilities and the state transition probabilities can
be straightforwardly estimated from frequencies of
co-occurrence in the training data.

Once trained, it is possible to �nd the most likely
sequence of hidden states that could have generated
a particular (test) output sequence using the Viterbi
algorithm (Viterbi,).

Applications of Hidden Markov Models

HMMs are known for their successful application in
pattern recognition tasks such as speech recognition

(Rabiner,) and DNA sequencing (Kulp, Haussler,
Reese, & Eeckman,), but also in sequential pat-
tern analysis tasks such as in part-of-speech tagging
(Church,).

�eir introduction in speech recognition in the
s (Jelinek,) led the way toward the introduc-
tion of stochastic methods in general in the �eld of
natural language processing in the s and s
(Charniak, ; Manning & Schütze,) and into
text mining and information extraction in the late s
and onwards (Freitag & McCallum,). In a similar
way, HMMs started to be used in DNA pattern recog-
nition in the mid-s, and have gained widespread
usage throughout bioinformatics since (Burge &Karlin,
; Durbin, Eddy, Krogh, & Mitchison,).

Programs

Many implementations of HMMs exist.�ree notewor-
thy packages are the following:

● UMDHMM by Tapas Kanungo: Implements the
forward-backward, Viterbi, and Baum–Welch algo-
rithms (Kanungo,).

● JAHMM by Jean-Marc François: A versatile Java
implementation of algorithms related to HMMs
(François,).

● HMMER by Sean Eddy: An implementation of pro-
�le HMM so�ware for protein sequence analysis
(Eddy,).

Cross References
7Baum–Welch Algorithm
7Bayesian Methods
7Expectation-Maximization Algorithm
7Markov Process
7Viterbi Algorithm

Recommended Reading
Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (). A maximiza-

tion technique occurring in the statistical analysis of proba-
bilistic functions of Markov chains. Annals of Mathematical
Statistics, (), –.

Burge, C., & Karlin, S. (). Prediction of complete gene structures
in human genomic DNA. Journal of Molecular Biology, ,
–.

Charniak, E. (). Statistical language learning. Cambridge, MA:
MIT Press.

Hierarchical Reinforcement Learning H

H

Church, K. W. (). A stochastic parts program and noun phrase
parser for unrestricted text. In Proceedings of the second con-
ference on applied natural language processing (pp. –).
Austin, TX.

Dempster, A., Laird, N., & Rubin, D. (). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, Series B, (), –.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (). Biological
sequence analysis: Probabilistic models of proteins and nucleic
acids. Cambridge, UK: Cambridge University Press.

Eddy, S. (). HMMER. http://hmmer.janelia.org/.
François, J.-M. (). JAHMM. http://www.run.montefiore.ulg.ac.

be/~francois/software/jahmm/.
Freitag, D., & McCallum, A. (). Information extraction with

HMM structures learned by stochastic optimization. In Pro-
ceedings of the national conference on artificial intelligence
(pp. –). Cambridge, MA: MIT Press.

Jelinek, F. (). Statistical methods for speech recognition.
Cambridge, MA: MIT Press.

Kanungo, T. (). UMDHMM: Hidden Markov model toolkit.
In A. Kornai (Ed.), Extended finite state models of language.
Cambridge, UK: Cambridge University Press. URL: http://www.
kanungo.us/software/software.html.

Kulp, D., Haussler, D., Reese, M. G., & Eeckman, F. H. (). A gen-
eralized hidden Markov model for the recognition of human
genes in DNA. Proceedings of the International Conference on
Intelligent Systems for Molecular Biology, , –.

Manning, C., & Schütze, H. (). Foundations of statistical natural
language processing. Cambridge, MA: MIT Press.

Rabiner, L. R. (). A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of the
IEEE, (), –.

Viterbi, A. J. (). Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transac-
tions on Information Theory, (), –.

Hierarchical Reinforcement
Learning

BernhardHengst
University of New South Wales
Sydney, Australia

Definition
Hierarchical reinforcement learning (HRL) decomposes
a 7reinforcement learning problem into a hierarchy of
subproblems or subtasks such that higher-level parent-
tasks invoke lower-level child tasks as if they were
primitive actions. A decomposition may have multiple
levels of hierarchy. Some or all of the subproblems can
themselves be reinforcement learning problems. When
a parent-task is formulated as a reinforcement learning

problem it is commonly formalized as a semi-Markov
decision problem because its actions are child-tasks
that persist for an extended period of time.�e advan-
tage of hierarchical decomposition is a reduction in
computational complexity if the overall problem can
be represented more compactly and reusable subtasks
learned or provided independently. While the solution
to a HRL problem is optimal given the constraints of
the hierarchy there are no guarantees in general that
the decomposed solution is an optimal solution to the
original reinforcement learning problem.

Motivation and Background
Bellman’s “curse of dimensionality” beleaguers rein-
forcement learning because the problem representation
grows exponentially in the number of state and action
variables.�e complexity we encounter in natural envi-
ronments has a property, near decomposability, that
may be exploited using hierarchical models to greatly
simplify our understanding and control of behavior.
Human societies have used hierarchical organizations
to solve complex tasks dating back to at least Egyptian
times. It seems natural, therefore, to introduce hier-
archical structure into reinforcement learning to solve
more complex problems.

When large problems can be decomposed hierar-
chically there may be improvements in the time and
space complexity for both learning and execution of
the overall task. Hierarchical decomposition is a divide-
and-conquer strategy that solves the smaller subtasks
and puts them back together for a more cost-e�ective
solution to the larger problem. �e subtasks de�ned
over the larger problem are stochastic macro-operators
that execute their policy until termination. If there are
multiple ways to terminate a subtask the optimal sub-
task policy will depend on the context in which the
subtask is invoked. Subtask policies usually persist for
multiple time-steps and are hence referred to as tem-
porally extended actions. Temporally extended actions
have the potential to transition through a much smaller
“higher-level” state-space, reducing the size of the orig-
inal problem. For example, navigating through a house
may only require room states to represent the abstract
problem if room-leaving temporally extended actions
are available to move through each room. A room state
in this example is referred to as an abstract state as the

 H Hierarchical Reinforcement Learning

detail of the exact position in the room is abstracted
away. Hierarchical reinforcement learning can also pro-
vide opportunities for subtask reuse. If the rooms are
similar, the policy to leave a room will only need to be
learnt once and can be transferred and reused.

Early developments of hierarchical learning appeal
to analogies of boss – subordinatemodels. Ashby ()
discusses the “ampli�cation” of regulation in very large
systems through hierarchical control – a doctor looks
a�er a set of mechanics who in turn maintain thou-
sands of air-conditioning systems. Watkins () used
a navigator – helmsman hierarchical control exam-
ple to illustrate how reinforcement learning limitations
may be overcome. Early examples of hierarchical rein-
forcement learning include Singh’s Hierarchical-DYNA
(Dyna, a class of architectures for intelligent systems
based on approximating dynamic programming meth-
ods. Dyna architectures integrate trial-and-error (rein-
forcement) learning and execution-time planning into
a single process operating alternately on the world and
on a learned model of the world (Sutton)) (Singh,
), Kaelbling’s Hierarchical Distance to Goal (HDG)
(Kaelbling,), and Dayan and Hinton’s Feudal rein-
forcement learning (Dayan & Hinton,).�e latter
explains hierarchical structure in terms of a manage-
ment hierarchy.�e example has four hierarchical lev-
els and employs abstract states, which they refer to as
“information hiding”.

Close to the turn of the last century three approaches
to hierarchical reinforcement learning were devel-
oped relatively independently: Hierarchies of Abstract
Machines (HAMs) (Parr & Russell,); the Options
framework (Sutton, Precup, & Singh,); andMAXQ
value function decomposition (Dietterich,). Each
approach has di�erent emphases, but a common factor
is the use of temporally extended actions and the for-
malization of HRL in terms of semi-Markov decision
process theory (Puterman,) to solve the higher-
level abstract reinforcement learning problem.

Hierarchical reinforcement learning is still an active
research area. More recent extensions include: contin-
uous state-space; concurrent actions and multi-agency;
use of average rewards (Ghavamzadeh & Mahadevan,
); continuing problems; policy-gradient methods;
partial-observability and hierarchical memory; fac-
tored state-spaces and graphicalmodels; and basis func-
tions. Hierarchical reinforcement learning also includes

hybrid approaches such as Ryan’s reinforcement learn-
ing teleo-operators (RL-TOPs) (Ryan&Reid,) that
combines planning at the top level and reinforcement
learning at the more stochastic lower levels. Please see
Barto and Mahadevan () for a survey of recent
advances in hierarchical reinforcement learning. More
details can be found in the section on recommended
reading.

In most applications the structure of the hierarchy
is provided as background knowledge by the designer.
Some researchers have tried to learn the hierarchi-
cal structure from the agent–environment interaction.
Most approaches look for subgoals or subtasks that try
to partition the problem into near independent reusable
subproblems.

Structure of Learning System
Structure of HRL

�e agent view of reinforcement learning illustrated
on the le� in Fig. shows an agent interacting with
an environment. At regular time-steps the agent takes
actions in the environment and receives sensor observa-
tions and rewards from the environment. A hierarchical
reinforcement learning agent is given or discovers back-
ground knowledge that explicitly or implicitly provides
a decomposition of the environment.�e agent exploits
this knowledge to solve the problem more e�ciently by
�nding an action policy to optimize a measure of future
reward, as for reinforcement learning.

We will motivate the machinery of hierarchical
reinforcement learning with the simple example shown
in Fig. (right).�is diagram shows a four-room house
with doorways between adjoining rooms and a doorway
in the top le� room leading outside. Each cell represents
a possible position of the agent. We assume the agent
always starts in the bottom le� room position as shown
by the black oval. It is able to sense its position in the
room and which room it occupies. It can move one step
in any of the four compass directions each time-step.
It also receives a reward of − at each time-step. �e
objective is to leave the house via the least-cost route.
We assume that the actions are stochastic with an %
chance of moving in the intended direction and a %
chance of staying in place. Solving this problem in a
straightforward manner using reinforcement learning
requires storage for Q values de�ned over states
and actions.

Hierarchical Reinforcement Learning H

H

Sense, reward

Agent Environment

Act

Goal

Hierarchical Reinforcement Learning. Figure . Left: The agent view of reinforcement learning. Right: A four-room

environment with the agent in one of the rooms show as a solid black oval

If the state space is decomposed into the four iden-
tical rooms a hierarchical reinforcement learner could
solve this problem more e�ciently. For example, we
could solve two subproblems. One that �nds an opti-
mal solution to leave a room to theNorth and another to
leave a room to theWest.When learning these subtasks,
leaving a room in any other way is disallowed. Each of
these subproblems requires storage for Q values –
 states and actions.

We also formulate and solve a higher-level prob-
lem that consists of only the four rooms as states.�ese
are abstract states because, as previously explained, the
exact position in the room has been abstracted away.
In each abstract state we allow a choice of only one
or the other of the learnt room-leaving actions. �ese
are temporally extended actions because, once invoked,
they will usually persist formultiple time-steps until the
agent exits the room. We proceed to solve this higher-
level problem in the usual way using reinforcement
learning.�e proviso is that the reward on completing a
temporally extended action is the sum of rewards accu-
mulated since invocation of the subtask. �e higher-
level problem requires storage for only Q values –
 states and actions.

Once learnt, execution of the higher-level policy will
determine the optimal room-leaving action to invoke
given the current room – in this case to leave the room
via the West doorway. Control is passed to the room-
leaving subtask that leads the agent out of the
room through the chosen doorway. Upon leaving the
room, the subtask is terminated and control is passed
back to the higher level that chooses the next optimal
room-leaving action until the agent �nally leaves the
house. �e total number of Q values required for the

hierarchical reinforcement formulation is for the
two subtasks and eight for the higher-level problem, a
total of .�is almost halves the storage requirements
compared to the “�at” formulation with corresponding
savings in time complexity. In this example, hierarchical
reinforcement learning �nds the same optimal policy
that a less e�cient reinforcement learner would �nd,
but this is not always the case.

�e above example hides many issues that hierar-
chical reinforcement learning needs to address, includ-
ing: safe state abstraction; appropriately accounting for
accumulated subtask reward when initial conditions
change or rewards are discounted; optimality of the
solution; and learning of the hierarchical structure itself.
In the next sections we will touch on these issues as we
discuss the semi-Markov decision problem formalism
and review several approaches to hierarchical reinforce-
ment learning.

Semi-Markov Decision Problem Formalism

�e common underlying formalism in hierarchical
reinforcement learning is the semi-Markov decision
process (SMDP). A SMDP generalizes a 7Markov
decision process by allowing actions to be temporally
extended. We will state the discrete time equations fol-
lowing Dietterich (), recognizing that in general
SMDPs are formulated with real-time valued tempo-
rally extended actions (Puterman,).

Denoting the random variable N to be the number
of time steps that a temporally extended action a takes
to complete when it is executed starting in state s, the
state transition probability function for the result state
s′ and the expected reward function are given by () and

 H Hierarchical Reinforcement Learning

() respectively.

TN ,ass′ = Pr{st+N = s′∣st = s, at = a} ()

RN ,ass′ = E{
N

∑
n=

γn−rt+n∣st = s, at = a, st+N = s′} ()

RN ,ass′ is the expected sum of N future discounted
rewards.�e discount factor γ ∈ [,]. When set to less
than , γ insures that the value functionwill converge for
continuing or in�nite-horizon problems. �e Bellman
“backup” equations for the value function V(s) for an
arbitrary policy π and optimal policies (denoted by ∗)
are similar to those for MDPs with the sum taken with
respect to s′ and N.

Vπ
m(s) = ∑

s′ ,N
TN ,π(s)ss′ [RN ,π(s)ss′ + γNVπ

m(s′)] ()

V∗m(s) = max
a
∑
s′ ,N
TN ,ass′ [RN ,ass′ + γNV∗m(s′)] ()

For problems that are guaranteed to terminate, the
discount factor γ can be set to . In this case the num-
ber of steps N can be marginalized out and the sum
taken with respect to s alone. �e above equations are
then similar to the ones for MDPs with the expected
primitive reward replaced with the expected sum of
rewards to termination of the temporally extended
action. All the methods developed for reinforcement
learning using primitive actions work equally well for
problems using temporally extended actions.

Approaches to Hierarchical Reinforcement Learning

Hierarchies of Abstract Machines (HAMs) In the
HAM approach to hierarchical reinforcement learning

(Parr & Russell,), the designer speci�es subtasks by
providing stochastic �nite state automata called abstract
machines. While in practice several abstract machines
may allow some to call others as subroutines (hence
hierarchies of abstract machines), in principle this is
equivalent to specifying one large abstractmachinewith
two types of states. Action states, that specify the action
to be taken given the state of the MDP to be solved and
choice states with nondeterministic actions.

An abstract machine is a triple ⟨µ, I, δ⟩, where µ
is a �nite set of machine states, I is a stochastic func-
tion from states of the MDP to be solved to machine
states that determines the initial machine state, and δ
is a stochastic next-state function mapping machine
states and MDP states to next machine states.�e par-
allel action of the MDP and an abstract machine yields
a discrete-time higher-level SMDP with the abstract
machine’s action states generating a sequence of tem-
porally extended actions between choice states. Only
a subset of states of the original MDP are associated
with choice-points, potentially reducing the higher-
level problem signi�cantly.

Continuing with our four-room example, the
abstract machine in Fig. provides choices for leaving
a room to the West or the North. In each room it
will take actions that move the agent to a wall, and
perform a random walk along the wall until it �nds
the doorway. Only �ve states of the original MDP are
states of the higher-level SMDP. �ese states are the
initial state of the agent and the states on the other
side of doorways where the abstract machine enters
choice states. Reinforcement learning methods update
the value function for these �ve states in the usual way
with rewards accumulated since the last choice state.

DoorDoor

West West EastSouth

0.5 0.5
0.50.5

North North

West
Wall

North
Wall

Choose Leave room
to North

Leave room
to West

Hierarchical Reinforcement Learning. Figure . An abstract machine for a HAM that provides routines for leaving

rooms to the West and North of the house in Fig. right

Hierarchical Reinforcement Learning H

H

�e optimal policy consists of the three temporally
extended actions sequentially leaving a room to the
West, North, and North again.

Solving the SMDP will yield an optimal policy for
the agent to leave the house subject to the constraints of
the abstractmachine. In this case it is not a globally opti-
mal policy because a random walk along walls to �nd
a doorway is ine�cient. �e HAM approach is predi-
cated on engineers and control theorists being able to
design good controllers that will realize speci�c lower
level behaviors. HAMs are away to partially specify pro-
cedural knowledge to transform an MDP to a reduced
SMDP. In the most general case HAMs can be Turing
machines that execute any computable mapping of the
agent’s complete sensory-action history.

Options For an MDP with �nite states S and actions
A, options generalize one-step primitive actions to
include temporally extended actions (Sutton et al.,
). Options consist of three components: a policy
π : S×A→ [,], a termination condition β : S→ [,],
and an initiation set I ⊆ S. An option ⟨I, π, β⟩ is avail-
able in state s if and only if s ∈ I. If an option is invoked,
actions are selected according to π until the option ter-
minates according to β.�ese options are calledMarkov
options because intra-option actions taken by policy
π depend only on the current state s. It is possible to
generalize options to semi-Markov options in which
policies and termination conditions make their choices
dependent on all prior events since the option was ini-
tiated. In this way it is possible, for example, to “time-
out” options a�er some period of time has expired.
For their most general interpretation, options and
HAMs appear to have similar functionality, but di�erent
emphases.

Options were intended to augment the primitive
actions available to an MDP. �e temporally extended
actions executed by the options yield a SMDP. As for
HAMs, if options replace primitive actions, the SMDP
can be considerably reduced.�ere is debate as to bene-
�ts when primitive actions are retained. Reinforcement
learning may be accelerated because the value function
can be backed-up over greater distances in the state-
space and the inclusion of primitive actions guaran-
tees convergence to the globally optimal policy, but the
introduction of additional actions increased the storage
and exploration necessary.

In a similar four-room example to that of Fig. ,
the authors (Sutton et al.,) show how options
can learn signi�cantly faster proceeding on a room-by-
room basis, rather than position by position. When the
goal is not in a convenient location, able to be reached
by the given options, it is possible to include primi-
tive actions as special-case options and still accelerate
learning for some problems. For example, with room-
leaving options alone, it is not possible to reach a goal
in the middle of a room. Primitive actions are required
when the room containing the goal state is entered.
Although the inclusion of primitive actions guarantees
convergence to the globally optimal policy, this may
create extra work for the learner.

MAXQ �eMAXQ (Dietterich,) approach to hier-
archical reinforcement learning restricts subtasks to
subsets of states, actions, and policy fragments of the
original MDPwithout introducing extra state, as is pos-
sible with HAMs and semi-Markov options. �e con-
tribution of MAXQ is the decomposition of the value
function over the hierarchy and provision of opportuni-
ties for state abstraction. An MDP is manually decom-
posed into a hierarchical directed acyclic graph of sub-
tasks called a task-hierarchy. Each subtask is a smaller
(semi-)MDP. In decomposing the MDP the designer
speci�es the active states and terminal states for each
subtask. Terminal states are typically classed either as
goal terminal states or non-goal terminal states. Using
disincentives for non-goal terminal states, policies are
learned for each subtask to encourage them to terminate
in goal terminal states.�e actions available in each sub-
task can be primitive actions or other (child) subtasks.
Each sub-task can invoke any of its child subtasks as a
temporally extended action.When a task enters a termi-
nal state, it, and all its children, abort and return control
to the calling subtask.

Figure shows a task-hierarchy for the previous
four-room problem. �e four lower-level subtasks are
sub-MDPs for a generic room, where a separate pol-
icy is learnt to exit a room by each of the four possible
doorways. �e arrow indicates a transition to a goal
terminal state and the “×”s indicate non-goal terminal
states. States, actions, transitions, and rewards are inher-
ited from the original MDP.�e rewards on transition
to terminal states are engineered to encourage the agent
to avoid non-goal terminal states and terminate in goal

 H Hierarchical Reinforcement Learning

X

XX X X X

X X

X

X

X

X

Hierarchical Reinforcement Learning. Figure . A task-hierarchy decomposing the four-room problem in Fig. . The

four lower-level subtasks are generic room-leaving sub-MDPs, one for leaving a room in each compass direction

states.�e higher-level problem (SMDP) consists of just
four states representing the rooms. Any of the subtasks
(room-leaving actions) can be invoked in any of the
rooms.

A key feature ofMAXQ is that it represents the value
of a state as a decomposed sum of subtask comple-
tion values plus the value of the immediate primitive
action. A completion value is the expected (discounted)
cumulative reward to complete the subtask a�er taking
the next (temporally extended) action when following
a policy over subtasks. �e sum includes all the tasks
invoked on the path from the root task in the task hier-
archy right down to the primitive action. For a rigorous
mathematical treatment the reader is referred to Diet-
terich (). �e Q function is expressed recursively
() as the value for completing the subtask plus the com-
pletion value for the overall problem a�er the subtask
has terminated. In this equation, i is the subtask iden-
ti�er, s is the current state, action a is the child subtask
(or primitive action), and π is a policy for each subtask.

Qπ(i, s, a) = Vπ(a, s) + Cπ(i, s, a) ()

We describe the basic idea for the task-hierarchy
shown in Fig. for the optimal policy.�e value of the
agent’s state has three components determined by the
two levels in the task-hierarchy plus a primitive action.
For the agent state, shown in Fig. by a solid black oval,
the value function represents the expected reward for
taking the next primitive action to the North, complet-
ing the lower-level subtask of leaving the room to the
West, and completing the higher-level task of leaving
the house.�e bene�t of decomposing the value func-
tion is that it can be represented much more compactly
because only the completion values for non-primitive
subtasks and primitive actions need be stored.

Hierarchical Reinforcement Learning. Figure . The com-

ponents of the decomposed value function for the agent

following an optimal policy for the the four-room prob-

lem in Fig. . The agent is shown as a solid black oval at

the starting state

�e example illustrates two types of state abstrac-
tion.As all the rooms are similarwe can ignore the room
identity when we learn intra-room navigation policies.
Secondly, when future rewards are not discounted, the
completion value a�er leaving a room is independent of
the starting state in that room. �ese “funnel” actions
allow the intra-room states to be abstracted into a sin-
gle state for each room as far as the completion value is
concerned. �e e�ect is that the original problem can
be decomposed into a small four-state SMDP at the top
level and four smaller subtask MDPs.

Optimality Hierarchical reinforcement learning can at
best yield solutions that are hierarchically optimal,

Hierarchical Reinforcement Learning H

H

assuming convergence conditions are met, meaning
that they are consistent with the task-hierarchy. MAXQ
introduces another form of optimality – recursive opti-
mality. MAXQ optimizes subtask policies to reach goal
states ignoring the needs of their parent tasks. �is
has the advantage that subtasks can be reused in vari-
ous contexts, but they may not therefore be optimal in
each situation. A recursively optimal solution cannot be
better than a hierarchical optimal solution. Both recur-
sive and hierarchical optimality can be arbitrarily worse
than the globally optimal solution if a designer chooses
a poor HAM, option or hierarchical decomposition.

�e stochastic nature of MDPs means that the con-
dition under which a temporally abstract action is
appropriate may have changed a�er the action’s invoca-
tion and that another actionmay become a better choice
because of “stochastic dri�.” A subtask policy proceed-
ing to termination in this situation may be suboptimal.
By constantly interrupting the subtask, as for exam-
ple in HDG (Kaelbling,), a better subtask may be
chosen. Dietterich calls this “polling” procedure hier-
archical greedy execution. While this is guaranteed to
be no worse than the hierarchically optimal or recur-
sively optimal solution and may be considerably better,
it still does not provide any global optimality guaran-
tees. Great care is required while learning with hier-
archical greedy execution. Hauskrecht, Meuleau, and
Kaelbling () discuss decomposition and solution
techniques that make optimality guarantees, but unfor-
tunately, unless the MDP can be decomposed into very
weakly coupled smallerMDPs, the computational com-
plexity is not necessarily reduced. Bene�ts will still
accrue if the options or subtask policies can be reused
and amortized over multiple MDPs.

Automatic Decomposition In the above approaches the
programmer is expected to manually decompose the
overall problem into a hierarchy of subtasks. Methods
to automatically decompose problems include ones that
look for subgoal bottleneck or landmark states, and ones
that �nd common behavior trajectories or region poli-
cies. For example, in Fig. the agent will exit one of
the two starting room doorways on the way to the goal.
�e states adjacent to each doorway will be visitedmore
frequently in successful trials than other states.

Both NQL (nested Q learning) (Digney,) and
McGovern () use this idea to identify subgoals.

Moore, Baird, and Kaelbling () suggest that, for
some navigation tasks, performance is insensitive to the
position of landmarks and an (automatic) randomly
generated set of landmarks does not show widely vary-
ing results from more purposefully positioned ones.
Hengst has explored automatic learning of MAXQ-like
task-hierarchies from the agent’s interactive experience
with the environment, automatically �nding common
regions and generating subgoals when the agent’s pre-
diction fails. Methods include state abstraction with
discounting for in�nite horizon problems and decom-
positions of problems to form partial-order task-
hierarchies (Hengst,). When there are no cycles in
the causal graph the variable in�uence structure analy-
sis (VISA) algorithm (Jonsson & Barto,) performs
hierarchical decomposition of factored Markov deci-
sion processes using a given dynamic Bayesian network
model of actions. Konidaris and Barto () introduce
a skill discovery method for reinforcement learning
in continuous domains that constructs chains of skills
leading to an end-of-task reward.

Given space limitations we cannot adequately cover
all the research in hierarchical reinforcement learn-
ing, but we trust that the material above will provide a
starting point.

Cross References
7Associative Reinforcement Learning
7Average Reward Reinforcement Learning
7Bayesian Reinforcement Learning
7Credit Assignment
7Markov Decision Process
7Model-Based Reinforcement Learning
7Policy Gradient Methods
7Q Learning
7Reinforcement Learning
7Relational Reinforcement Learning
7Structured Induction
7Temporal Di�erence Learning

Recommended Reading
Ashby, R. (). Introduction to Cybernetics. London: Chapman &

Hall.
Barto, A., & Mahadevan, S. (). Recent advances in hiearchical

reinforcement learning. Special Issue on Reinforcement Learn-
ing, Discrete Event Systems Journal, , –.

Dayan, P., & Hinton, G. E. (). Feudal reinforcement learning.
In Advances in neural information processing systems NIPS

 H High-Dimensional Clustering

Conference, Denver, CO, December –, . San Francisco:
Morgan Kaufmann.

Dietterich, T. G. (). Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of Artificial
Intelligence Research, , –.

Digney, B. L. (). Learning hierarchical control structures for
multiple tasks and changing environments. In From animals to
animats : Proceedings of the fifth international conference on
simulation of adaptive behaviour. SAB Zurich, Switzerland,
August –, . Cambridge: MIT Press.

Ghavamzadeh, M., & Mahadevan, S. (). Hierarchically optimal
average reward reinforcement learning. In C. Sammut & Achim
Hoffmann (Eds.), Proceedings of the nineteenth international
conference on machine learning, Sydney, Australia (pp. –).
San Francisco: Morgan-Kaufman.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T., &
Boutilier, C. (). Hierarchical solution of Markov decision
processes using macro-actions. In Fourteenth annual confer-
ence on uncertainty in artificial intelligence, Madison, WI (pp.
–).

Hengst, B. (). Partial order hierarchical reinforcement learn-
ing. In Australasian conference on artificial intelligence Auck-
land, New Zealand, December (pp. –). Berlin:
Springer.

Jonsson, A., & Barto, A. (). Causal graph based decomposi-
tion of factored MDPs. Journal of Machine Learning Research,
, –.

Kaelbling, L. P. (). Hierarchical learning in stochastic domains:
Preliminary results. In Machine learning: Proceedings of the
tenth international conference (pp. –). San Mateo: Morgan
Kaufmann.

Konidaris, G., & Barto, A. (). Skill discovery in continuous
reinforcement learning domains using skill chaining. In Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta
(Eds.), Advances in neural information processing systems
(pp. –).

McGovern, A. (). Autonomous discovery of abstractions
through interaction with an environment. In SARA (pp. –
). London: Springer.

Moore, A., Baird, L., & Kaelbling, L. P. (). Multi-value functions:
Efficient automatic action hierarchies for multiple goal MDPs.
In Proceedings of the international joint conference on artificial
intelligence, Stockholm (pp. –). San Francisco: Morgan
Kaufmann.

Parr, R., & Russell, S. J. (). Reinforcement learning with hierar-
chies of machines. In NIPS, Denver, CO, .

Puterman, M. L. (). Markov decision processes: Discrete stochas-
tic dynamic programming. Wiley: New York.

Ryan, M. R. K., & Reid, M. D. (). Using ILP to improve planning
in hierarchical reinforcement learning. In Proceedings of the
tenth international conference on inductive logic programming,
ILP , London. London: Springer.

Singh, S. (). Reinforcement learning with a hierarchy of abstract
models. In Proceedings of the tenth national conference on arti-
ficial intelligence.

Sutton, R. S., Precup, D., & Singh, S. P. (). Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence, (–),
–.

Watkins, C. J. C. H. (). Learning from delayed rewards. PhD
thesis, King’s College.

High-Dimensional Clustering

7Document Clustering

Higher-Order Logic

John Lloyd
�e Australian National University
Canberra ACT, Australia

Definition
Higher-order logic is a logic that admits so-called
“higher-order functions,” which are functions that can
have functions as arguments or return a function as a
result. �e expressive power that comes from higher-
order functions makes the logic highly suitable for
representing individuals, predicates, features, back-
ground theories, and hypotheses, and performing the
necessary reasoning, in machine learning applications.

Motivation and Background
Machine learning tasks naturally require knowledge
representation and reasoning. �e individuals that are
the subject of learning, the training examples, the
features, the background theory, and the hypothesis
languages all have to be represented. Furthermore, rea-
soning, usually in the form of computation, has to be
performed.

Logic is a convenient formalism in which knowl-
edge representation and reasoning can be carried out;
indeed, it was developed exactly for this purpose.
For machine learning applications, quanti�cation over
variables is generally needed, so that, at a minimum,
7�rst-order logic should be used. Here, the use of
higher-order logic for this task is outlined.Higher-order
logic admits higher-order functions that can have func-
tions as arguments or return a function as a result.�is
means that the expressive power of higher-order logic
is greater than �rst-order logic so that some expressions
of higher-order logic are di�cult or impossible to state
directly in �rst-order logic. For example, sets can be
represented by 7predicates which are terms in higher-
order logic and operations on sets can be implemented
by higher-order functions. Grammars that generate

Higher-Order Logic H

H

spaces of predicates can be easily expressed. Also the
programming idioms of functional programming lan-
guages become available.

�e use of higher-order logic in learning appli-
cations began around when researchers argued
for the advantages of li�ing the concept of 7least
general generalization in the �rst-order setting to the
higher-order setting (Dietzen & Pfenning, ; Feng
& Muggleton, ; Lu, Harao, & Hagiya,). A few
years later, Muggleton and Page () advocated the
use of higher-order concepts, especially sets, for learn-
ing applications. �en the advantages of a type sys-
tem and also higher-order facilities for concept learn-
ing were presented in Flach, Giraud-Carrier, and Lloyd
(). Higher-order logic is also widely used in other
parts of computer science, for example, theoretical com-
puter science, functional programming, and veri�ca-
tion of so�ware.

Most treatments of higher-order logic can be traced
back to Church’s simple theory of types (Church,
). Recent accounts can be found, for example, in
Andrews (), Fitting (), and Wolfram ().
For a highly readable account of the advantages of
working in higher-order rather than �rst-order logic,
Farmer () is strongly recommended. An account
of higher-order logic speci�cally intended for learning
applications is in Lloyd (), which contains much
more detail about the knowledge representation and
reasoning issues that are discussed below.

Theory
Logic

To begin, here is one formulation of the syntax of
higher-order logic which gives prominence to a type
system that is useful for machine learning applications,
in particular.

An alphabet consists of four sets: a setT of type con-
structors; a set P of parameters; a set C of constants;
and a set V of variables. Each type constructor in T has
an arity.�e set T always includes the type constructor
Ω of arity . Ω is the type of the booleans. Each con-
stant in C has a signature (i.e., type declaration). �e
set V is denumerable. Variables are typically denoted
by x, y, z,�e parameters are type variables that pro-
vide polymorphism in the logic; they are ignored for the
moment.

Here is the de�nition of a type (for the nonpolymor-
phic case).

De�nition A type is de�ned inductively as follows:

. If T is a type constructor of arity k and α, . . . , αk
are types, then T α . . . αk is a type. (�us a type
constructor of arity is a type.)

. If α and β are types, then α → β is a type.
. If α, . . . , αn are types, then α ×⋯ × αn is a type.

�e set C always includes the following constants:

. ⊺ and �, having signature Ω.
. =α , having signature α → α → Ω, for each type α.
. ¬, having signature Ω → Ω.
. ∧, ∨,Ð→,←Ð, and←→, having signature Ω → Ω →
Ω.

. Σα and Πα , having signature (α → Ω) → Ω, for
each type α.

�e intended meaning of =α is identity (i.e., =α x y
is ⊺ if x and y are identical), the intended meaning of
⊺ is true, the intended meaning of � is false, and the
intendedmeanings of the connectives ¬, ∧, ∨,Ð→,←Ð,
and←→ are as usual.�e intended meanings of Σα and
Πα are that Σα maps a predicate to ⊺ if the predicate
maps at least one element to ⊺ and Πα maps a predicate
to ⊺ i� the predicate maps all elements to ⊺.

Here is the de�nition of a term (for the nonpolymor-
phic case).

De�nition A term, together with its type, is de�ned
inductively as follows:

. A variable in V of type α is a term of type α.
. A constant in C having signature α is a term of

type α.
. If t is a term of type β and x a variable of type α, then

λx.t is a term of type α → β.
. If s is a term of type α → β and t a term of type α,

then (s t) is a term of type β.
. If t, . . . , tn are terms of type α, . . . , αn, respectively,

then (t, . . . , tn) is a term of type α ×⋯ × αn.

A formula is a term of type Ω. Terms of the form
(Σα λx.t) are written as ∃α x.t and terms of the
form (Πα λx.t) are written as ∀αx.t (in accord with the

 H Higher-Order Logic

intendedmeaning of Σα andΠα).�us, in higher-order
logic, each quanti�er is obtained as a combination of an
abstraction acted on by a suitable function (Σα or Πα).

�e polymorphic version of the logic extends what
is given above by also having available parameters.�e
de�nition of a type as above is then extended to poly-
morphic types that may contain parameters and the
de�nition of a term as above is extended to terms that
may have polymorphic types.

Reasoning in higher-order logic can consist of theo-
rem proving, via resolution or tableaus, for example, or
can consist of equational reasoning, as is embodied in
the computational mechanisms of functional program-
ming languages, for example. �eorem proving and
equational reasoning can even be combined to produce
more �exible reasoning systems. Determining whether
a formula is a theorem is, of course, undecidable.

�e semantics for higher-order logic is generally
based on Henkin () models. Compared with �rst-
order interpretations, the main extra ingredient is that,
for each (closed) type of the form α → β, there is a
domain that consists of some set of functions from the
domain corresponding to α to the domain correspond-
ing to β. �ere exist proof procedures that are sound
and complete with respect to this semantics (Andrews,
; Fitting,).

�e logic includes the λ-calculus.�us, the rules of
λ-conversion are available:

. (α-Conversion) λx.t ≻α λy.(t{x/y}), if y is not
free in t.

. (β-Reduction) (λx.s t) ≻β s{x/t}.
. (η-Reduction) λx.(t x) ≻η t, if x is not free in t.

Here s{x/t} denotes the result of replacing free occur-
rences of x in s by t, where free variable capture is
avoided by renaming the relevant bound variables in s.

Higher-order generalization is introduced through
the concept of least general generalization as follows
(Feng & Muggleton,). A term s is more general
than a term t if there is a substitution θ such that sθ is
λ-convertible to t. A term t is a common generalization
of a set T of terms if t is more general than each of the
terms in T. A term t is a least general generalization of a
set T of terms if t is a common generalization of T and,
for all common generalizations s of T, t is not strictly
more general than s.

Knowledge Representation

In machine learning applications, the individuals that
are the subject of learning need to be represented. Using
logic, individuals are most naturally represented by
(closed) terms. In higher-order logic, advantage can be
taken of the fact that sets can be identi�ed with predi-
cates (their characteristic functions).�us, the set {, }
is the term

λx.if x = then ⊺ else if x = then ⊺ else �.

�is idea generalizes to multisets and similar abstrac-
tions. For example,

λx.if x = A then else if x = B then else

is the multiset with occurrences of A and occur-
rences of B (and nothing else).�us abstractions of the
form

λx.if x = t then s else . . . if x = tn then sn else s

are adopted to represent (extensional) sets, multisets,
and so on.

�ese considerations motivate the introduction of
the class of basic terms that are used to represent indi-
viduals (Lloyd,). �e de�nition of basic terms is
an inductive one consisting of three parts.�e �rst part
covers data types such as lists and trees and uses the
same constructs for this as are used in functional pro-
gramming languages.�e second part uses abstractions
to cover data types such as (�nite) sets and multi-
sets, for which the data can be represented by a �nite
lookup table. �e third part covers data types that are
product types and therefore allows the representation
of tuples. �e de�nition is inductive in the sense that
basic terms include lists of sets of tuples, tuples of sets,
and so on.

It is common in learning applications to need to
generate spaces of predicates. �is is because features
are typically predicates and logical hypothesis languages
contain predicates.�us, there is a need to specify gram-
mars that can generate spaces of predicates. In addition
to �rst-order approaches based on re�nement operators
or antecedent description grammars, higher-order logic
o�ers another approach to this task based on the idea
of generating predicates by composing certain primitive
functions.

Higher-Order Logic H

H

Predicate rewrite systems are used to de�ne spaces
of standard predicates, where standard predicates are
predicates in a particular syntactic form that involves
composing certain functions (Lloyd,). A predicate
rewrite is an expression of the form p↣ q, where p and
q are standard predicates. �e predicate p is called the
head and q is the body of the rewrite. A predicate rewrite
system is a �nite set of predicate rewrites. One should
think of a predicate rewrite system as a kind of grammar
for generating a particular class of predicates. Roughly
speaking, this works as follows. Starting from the weak-
est predicate top, all predicate rewrites that have top (of
the appropriate type) in the head are selected to make
up child predicates that consist of the bodies of these
predicate rewrites. �en, for each child predicate and
each redex (i.e., subterm selected for expansion) in that
predicate, all child predicates are generated by replacing
each redex by the body of the predicate rewrite whose
head is identical to the redex.�is generation of predi-
cates continues to produce the entire space of predicates
given by the predicate rewrite system.

Predicate rewrite systems are a convenient mecha-
nism to specify precise control over the space of predi-
cates that is to be generated. Note that predicate rewrite
systems depend essentially on the higher-order nature
of the logic since standard predicates are obtained by
composition of functions and composition is a higher-
order function.

Other ingredients of learning problems, such as
background theories and training examples, can also be
conveniently represented in higher-order logic.

Reasoning

Machine learning applications require that reasoning
tasks be carried out, for example, computing the value of
some predicate on some individual. Generally, reason-
ing in (higher-order) logic can be either theorem prov-
ing or purely equational reasoning or a combination of
both.

A variety of proof systems have been developed for
higher-order logic; these include Hilbert-style systems
(Andrews,) and tableau systems (Fitting,).

Purely equational reasoning includes the compu-
tational models of functional programming languages
and therefore can be usefully thought of as computation.
Typical examples of this approach include the declara-
tive programming languages Curry (Hanus,) and

Escher (Lloyd,) which are extensions of the func-
tional programming language Haskell (Peyton Jones,
). For both Curry and Escher, the Haskell compu-
tational model is generalized in such a way as to admit
the logic programming idioms.

Alternatively, by suitably restricting the fragment of
the logic considered and the proof system, computation
systems in the form of declarative programming lan-
guages can be developed. A prominent example of this
approach is the logic programming language λProlog
that was introduced in the s (Nadathur & Miller,
). In λProlog, program statements are higher-order
hereditary Harrop formulas, a generalization of the
de�nite 7clauses used by 7Prolog. �e language pro-
vides an elegant use of λ-terms as data structures,
meta-programming facilities, universal quanti�cation
and implications in goals, among other features.

Applications
Higher-order logic has been used in a variety of
machine learning settings including decision-tree
learning, kernels, Bayesian networks, and evolution-
ary computing. Decision-tree learning based on the use
of higher-order logic as the knowledge representation
and reasoning language is presented in Bowers, Giraud-
Carrier, and Lloyd (), and further developed in Ng
(b). Kernels and distances over individuals repre-
sented by basic terms are studied in Gärtner, Lloyd,
and Flach (). In Gy�odimos and Flach (),
Bayesian networks over basic terms are de�ned and it
is shown there how to construct probabilistic classi�ers
over such networks. In Ng, Lloyd, and Uther (),
higher-order logic is used as the setting for study-
ing probabilistic modelling, inference and learning. An
evolutionary approach to learning higher-order con-
cepts is demonstrated in Kennedy and Giraud-Carrier
(). In addition, the learnability of hypothesis lan-
guages expressed in higher-order logic is investigated in
Ng (a,).

Cross References
7First-Order Logic
7Inductive Logic Programming
7Learning from Structured Data
7Propositional Logic

 H HMM

Recommended Reading
Andrews, P. B. (). An introduction to mathematical logic and

type theory: To truth through proof (rd ed.). Dordrecht: Kluwer
Academic Publishers.

Bowers, A. F., Giraud-Carrier, C., & Lloyd, J. W. (). Classi-
fication of individuals with complex structure. In P. Langley
(Ed.), Machine learning: Proceedings of the seventeenth inter-
national conference (ICML) (pp. –). Stanford, CA:
Morgan Kaufmann.

Church, A. (). A formulation of the simple theory of types.
Journal of Symbolic Logic, , –.

Dietzen, S., & Pfenning, F. (). Higher-order and modal logic
as a framework for explanation-based generalization. Machine
Learning, , –.

Farmer, W. (). The seven virtues of simple type theory. Journal
of Applied Logic, (), –.

Feng, C., & Muggleton, S. H. (). Towards inductive general-
isation in higher order logic. In D. Sleeman & P. Edwards
(Eds.), Proceedings of the ninth international workshop on
machine learning (pp. –). San Mateo, CA: Morgan
Kaufmann.

Fitting, M. (). Types, tableaus, and Gödel’s god. Dordrecht:
Kluwer Academic Publishers.

Flach, P., Giraud-Carrier, C., & Lloyd, J. W. (). Strongly typed
inductive concept learning. In D. Page (Ed.), Inductive logic
programming, th international conference, ILP-. Lecture
Notes in Artificial Intelligence (pp. –). Berlin:
Springer.

Gärtner, T., Lloyd, J. W., & Flach, P. (). Kernels and
distances for structured data. Machine Learning, (),
–.

Gyftodimos, E., & Flach, P. (). Combining Bayesian networks
with higher-order data representations. In Proceedings of th
international symposium on intelligent data analysis (IDA).
Lecture notes in computer science (Vol. , pp. –).
Berlin: Springer.

Hanus, M. (Ed.). (). Curry: An integrated functional logic lan-
guage. http://www.informatik.uni-kiel.de/~curry. Retrieved
December .

Henkin, L. (). Completeness in the theory of types. Journal of
Symbolic Logic, (), –.

Kennedy, C. J., & Giraud-Carrier, C. (). An evolutionary
approach to concept learning with structured data. In Proceed-
ings of the fourth international conference on artificial neural
networks and genetic algorithms (ICANNGA’) (pp. –).
Berlin: Springer.

Lloyd, J. W. (). Logic for learning. Cognitive technologies. Berlin:
Springer.

Lu, J., Harao, M., & Hagiya, M. (). Higher order generalization.
In JELIA ’: Proceedings of the European workshop on logics in
artificial intelligence. Lecture notes in artificial intelligence (Vol.
, pp. –). Berlin: Springer.

Muggleton, S., & Page, C. D. (). Beyond first-order learning:
Inductive learning with higher-order logic. Technical report
PRG-TR--, Oxford University Computing Laboratory.

Nadathur, G., & Miller, D. A. (). Higher-order logic program-
ming. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.),
The handbook of logic in artificial intelligence and logic pro-
gramming (Vol. , pp. –). Oxford: Oxford University
Press.

Ng, K. S. (a). Generalization behaviour of alkemic decision
trees. In Inductive logic programming, th international con-
ference (ILP). Lecture notes in artificial intelligence (Vol.
, pp. –). Berlin: Springer.

Ng, K. S. (b). Learning comprehensible theories from struc-
tured data. PhD thesis, Computer Sciences Laboratory, The
Australian National University.

Ng, K. S. (). (Agnostic) PAC learning concepts in higher-
order logic. In European conference on machine learning
(ECML). Lecture notes in artificial intelligence (Vol. ,
pp. –). Berlin: Springer.

Ng, K. S., Lloyd, J. W., & Uther, W. T. B. (). Probabilistic mod-
elling, inference and learning using logical theories. Annals
of Mathematics and Artificial Intelligence, , –. Doi:
./s ---.

Peyton Jones, S. (Ed.) (). Haskell language and libraries: The
revised report. Cambridge: Cambridge University Press.

Wolfram, D. A. (). The clausal theory of types. Cambridge:
Cambridge University Press.

HMM

7Hidden Markov Models

Hold-One-Out Error

7Leave-One-Out Error

Holdout Data

7Holdout Set

Holdout Evaluationl

Definition
Holdout evaluation is an approach to 7out-of-sample
evaluation whereby the available data are partitioned
into a 7training set and a 7test set. �e test set is
thus 7out-of-sample data and is sometimes called the
holdout set or holdout data. �e purpose of holdout
evaluation is to test a model on di�erent data to that
from which it is 7learned. �is provides an unbiased
estimate of learning performance, in contrast to 7in-
sample evaluation.

In repeated holdout evaluation, repeated holdout
evaluation experiments are performed, each time with

Hypothesis Language H

H

a di�erent partition of the data, to create a distribution
of 7training and 7test sets with which an algorithm is
assessed.

Cross References
7Algorithm Evaluation

Holdout Set

Synonyms
Holdout data

Definition
A holdout set is a7data set containing data that are not
used for learning and that are used for 7evaluation by
a7learning system.

Cross References
7Evaluation Set
7Holdout Evaluation

Hopfield Network

RistoMiikkulainen
�e University of Texas at Austin, Austin, TX, USA

Synonyms
Recurrent associative memory

Definition
�e Hop�eld network is a binary, fully recurrent
network that, when started on a random activation
state, settles the activation over time into a state that
represents a solution (Hop�eld & Tank,). �is
architecture has been analyzed thoroughly using tools
from statistical physics. In particular, with symmetric
weights, no self-connections, and asynchronous neu-
ron activation updates, a Lyapunov function exists for
the network, whichmeans that the network activity will
eventually settle. �e Hop�eld network can be used as
an associate memory or as a general optimizer. When
used as an associative memory, the weight values are

computed from the set of patterns to be stored. During
retrieval, part of the pattern to be retrieved is acti-
vated, and the network settles into the complete pattern.
When used as an optimizer, the function to be opti-
mized is mapped into the Lyapunov function of the
network, which is then solved for the weight values.�e
network then settles to a state that represents the solu-
tion. �e basic Hop�eld architecture can be extended
in many ways, including continuous neuron activa-
tions. However, it has limited practical value mostly
because it is not strong in either of the above task: as
an associative memory, its capacity is approximately
.N in practice (where N is the number of neurons),
and as an optimizer, it o�en settles into local optima
instead of the global one. �e 7Boltzmann Machine
extends the architecture with hidden neurons, allow-
ing for better performance in both tasks. However, the
Hop�eld network has had a large impact in the �eld
because the theoretical techniques developed for it have
inspired theoretical approaches for other architectures
as well, especially for those of self-organizing systems
(e.g., 7Self Organizing Maps, 7Adaptive Resonance
�eory).

Recommended Reading
Hopfield, J. J., & Tank, D. W. (). Computing with neural circuits:

A model. Science, , –.

Hypothesis Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science
�e Netherlands

Synonyms
Representation language

Definition
�e hypothesis language used by a machine learn-
ing system is the language in which the hypotheses
(also referred to as patterns or models) it outputs are
described.

 H Hypothesis Language

Motivation and Background
Most machine learning algorithms can be seen as a pro-
cedure for deriving one or more hypotheses from a set
of observations. Both the input (the observations) and
the output (the hypotheses) need to be described in
some particular language.�is language is respectively
called the 7Observation Language or the hypothesis
language. �ese terms are mostly used in the con-
text of symbolic learning, where these languages are
o�en more complex than in subsymbolic or statisti-
cal learning. For instance, hypothesis languages have
received a lot of attention in the �eld of 7Inductive
Logic Programming, where systems typically take as
one of their input parameters a declarative speci�ca-
tion of the hypothesis language they are supposed to
use (which is typically a strict subset of full clausal
logic). Such a speci�cation is also called a 7Language
Bias.

Examples of Hypothesis Languages
�e hypothesis language used obviously depends on the
learning task that is performed. For instance, in pre-
dictive learning, the output is typically a function, and
thus the hypothesis language must be able to repre-
sent functions; whereas in clustering the language must
have constructs for representing clusters (sets of points).
Even for one and the same goal, di�erent languagesmay
be used; for instance, decision trees and rule sets can
typically represent the same type of functions, so the
di�erence between these two is mostly syntactic.

In the following section, we discuss brie�y a few
di�erent formalisms for representing hypotheses. For
most of these, there are separate entries in this vol-
ume that o�er more detail on the speci�cs of that
formalism.

Decision Trees and Rule Sets

A 7Decision Tree represents a decision process where
consecutive tests are performed on an instance to deter-
mine the value of its target variable, and at each step in
this process, the test that is performed depends on the
outcome of previous tests. Each leaf of the tree contains
the set of all instances that ful�ll the conjunctions of all
conditions on the path from the root to this leaf, and
as such a tree can easily be written as a set of if-then
rules where each rule contains one such conjunction. If
the target variable is boolean, this format corresponds
to disjunctive normal form.

Figure shows a decision tree and the corresponding
rule set. (Inspired by Mitchell,).

Graphical Models

�e term “graphical models” usually refers to proba-
bilistic models where the joint distribution over a set of
variables is de�ned as the product of a number of joint
distributions over subsets of these variables (i.e., a fac-
torization), and this factorization is de�ned by a graph
structure.�e graph may be directed, in which case we
speak of a 7Bayesian Network, undirected, in which
case we speak of a 7Markov Network, or even a mix
of the two (so-called chain graphs). In a Bayesian net-
work, the constituent distributions of the factorization
are conditional probability functions associated with
each node. In a Markov network, the constituent dis-
tributions are potential functions associated with each
clique in the graph.

Two learning settings can be distinguished: learn-
ing the parameters of a graphicalmodel given themodel
structure (the graph), and learning both structure and
parameters of the model. In the �rst case, the graph is
in fact a language bias speci�cation: the user forces the
learner to return a hypothesis that lies within the set

IF Outlook=sunny AND Humidity=high THEN Play=no
IF Outlook=sunny AND Humidity=normal THEN Play=yes
IF Outlook=overcast THEN Play=yes
IF Outlook=rainy AND Wind=strong THEN Play=no
IF Outlook=rainy AND Wind=weak THEN Play=yes

Outlook

overcast

no

strong weak

yesyesno

high normal

WindyesHumidity

sunny rainy

Hypothesis Language. Figure . A decision tree and an equivalent rule set

Hypothesis Language H

H

Wind

Humidity

Outlook

Play

Wind Humidity

Outlook Play

Wind Humidity

Outlook Play

Hypothesis Language. Figure . A Bayesian network, a Markov network, and a neural network

of hypotheses representable by this particular structure.
In the second case, the structure of the graph makes
explicit certain independencies that are hypothesized
to exist between the variables (thus it is part of the
hypothesis itself).

Figure shows examples of possible graphical mod-
els that might be learned from data. For details about
the interpretation of such graphical models, we refer to
the respective entries in this encyclopedia.

Neural Networks

7Neural networks are typically used to represent com-
plex nonlinear functions. A neural network can be seen
as a directed graph where the nodes are variables and
edges indicate which variables depend on which other
variables. Some nodes represent the observed input
variables xi and output variables y, and some represent
new variables introduced by the network. Typically, a
variable depends, in a nonlinear way, on a linear com-
bination of those variables that directly precede it in
the directed graph. �e parameters of the network are
numerical edge labels that represent the weight of a
parent variable in that linear combination.

As with graphical models, one can learn the param-
eters of a neural network with a given structure, in
which case the structure serves as a language bias; or
one can learn both the structure and the parameters of
the network.

Figure shows an example of a neural network. We
refer to the respective entry for more information on
neural networks.

Instance-Based Learning

In the most basic version of 7instance-based learn-
ing, the training data set itself represents the hypoth-
esis. As such, the hypothesis language is simply the

powerset of the observation language. Because many
instance-based learners rescale the dimensions of the
input space, the vector containing the rescaling factors
can be seen as part of the hypothesis. Similarly, some
methods derived from instance-based learning build a
model in which the training set instances are replaced
by prototypes (one prototype being representative for a
set of instances) or continuous functions approximating
the instances.

Clustering

In clustering tasks, there is an underlying assumption
that there is a certain structure in the data set; that is,
the data set is really amixture of elements fromdi�erent
groups or clusters, with each cluster corresponding to a
di�erent population.�e goal is to describe these clus-
ters or populations and to indicate which data elements
belong to which cluster.

Some clustering methods de�ne the clusters exten-
sionally, that is, they describe the di�erent clusters in the
dataset by just enumerating the elements in the dataset
that belong to them. Other methods add an intensional
description to the clusters, de�ning the properties that
an instance should have in order to belong to the cluster;
as such, these intensional methods attempt to describe
the population that the cluster is a sample from. Some
methods recursively group the clusters into larger clus-
ters, building a cluster hierarchy. Figure shows an
example of such a cluster hierarchy.

�e term “mixture models” typically refers to meth-
ods that return a probabilistic model (e.g., a Gaussian
distribution with speci�ed parameters) for each sepa-
rate population identi�ed. Being probabilistic in nature,
these methods typically also assign data elements to the
populations in a probabilistic, as opposed to determin-
istic, manner.

 H Hypothesis Language

black white

sqsq cir tr cir

Hypothesis Language. Figure . A hierarchical clustering: left, the data set; middle: an extensional clustering shown

on the data set; right, above: the corresponding extensional clustering tree; right, below: a corresponding intensional

clustering tree, where the clusters are described based on color and shape of their elements

First-Order Logic Versus Propositional Languages

In symbolic machine learning, a distinction is o�en
made between the so-called attribute-value (or propo-
sitional) and relational (or �rst-order) languages. �e
terminology “propositional” versus “�rst-order” origi-
nates in logic. In 7Propositional Logic, only the exis-
tence of propositions, which can be true or false, is
assumed, and these propositions can be combined with
the usual logical connectives into logical formulae. In
7First-Order Predicate Logic, the existence of a uni-
verse of objects is assumed as well as the existence of
predicates that can express certain properties of and
relationships between these objects. By adding variables
and quanti�ers, one can describe deductive reasoning
processes in �rst-order logic that cannot be described
in propositional logic. For instance, in propositional
logic, one could state propositions Socrates_is_human
and all_humans_are_mortal (both are statements that
may be true or false), but there is no inherent relation-
ship between them. In �rst order logic, the formulae
human(Socrates) and ∀x : human(x) → mortal(x)
allow one to deduce mortal(Socrates). A more exten-
sive explanation of the di�erences between proposi-
tional and �rst-order logic can be found in the entry on
7First-Order Logic.

Many machine learning approaches use an essen-
tially propositional language for describing obser-
vations and hypotheses. In the �elds of Inductive
Logic Programming and 7Relational Learning, more

powerful languages are used, with an expressiveness
closer to that of �rst-order logic. Many of the repre-
sentation languages mentioned above, which are essen-
tially propositional, have been extended towards the
�rst-order logic context.

�e simplest example is that of rule sets. If-then
rules have a straightforward counterpart in �rst-order
logic in the form of 7Clauses, which are usually writ-
ten as logical implications where all variables are inter-
preted as universally quanti�ed. For instance, the rule
“IF Human=true THENMortal=true” can be written in
clausal form as

mortal(x)← human(x).

Propositional rules correspond to clauses that refer to
only one object (and the object reference is implicit). A
rule such as

grandparent(x, y)← parent(x, z), parent(z, y)

(expressing that, for any x, y, z, whenever x is a parent
of z and z is a parent of y, x is a grandparent of y) has
no translation into propositional logic that retains the
inference capacity of the �rst-order logic clause.

Clauses are a natural �rst-order logic equivalent
to the if-then rules typically returned by rule learn-
ers, and many of the other representation languages
have also been upgraded to the relational or �rst-
order-logic context. For instance, several researchers
(e.g., Blockeel & De Raedt,) have upgraded the

Hypothesis Space H

H

formalism of decision trees toward “structural” or “�rst-
order logic” decision trees. Probabilistic relationalmod-
els (Getoor, Friedman, Koller, & Pfe�er,) and
Bayesian logic programs (Kersting & De Raedt,)
are examples of how Bayesian networks have been
upgraded, while Markov networks have been li�ed to
“Markov logic” (Richardson & Domingos,).

Further Reading
Most of the literature on hypothesis and observation
languages is found in the area of inductive logic pro-
gramming. Excellent starting points, containing exten-
sive examples of bias speci�cations, are Relational Data
Mining by Džeroski & Lavrač (), Logic for Learning
by Lloyd (), and Logical and Relational Learning by
De Raedt ().

De Raedt () compares a number of di�er-
ent observation and hypothesis languages with respect
to their expressiveness, and indicates relationships
between them.

Cross References
7First-Order Logic
7Hypothesis Space
7Inductive Logic Programming
7Observation Language

Recommended Reading
Blockeel, H., & De Raedt, L. (). Top-down induction of first

order logical decision trees. Artificial Intelligence, (–),
–.

De Raedt, L. (). Attribute-value learning versus inductive logic
programming: the missing links (extended abstract). In D. Page
(Ed.), Proceedings of the eighth international conference on
inductive logic programming. Lecture notes in artificial intelli-
gence (Vol. , pp. –). Berlin: Springer.

De Raedt, L. (). Logical and relational learning. Berlin:
Springer.

Džeroski, S., & Lavrač, N. (Ed.). (). Relational data mining.
Berlin: Springer.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. ().
Learning probabilistic relational models. In S. Dzeroski &
N. Lavrac (Eds.), Relational data mining (pp. –). Berlin:
Springer.

Kersting, K., & De Raedt, L. (). Towards combining
inductive logic programming and Bayesian networks. In
C. Rouveirol & M. Sebag (Eds.), Proceedings of the th inter-
national conference on inductive logic programming Lecture
notes in computer science (Vol. , pp. –). Berlin:
Springer.

Lloyd, J. W. (). Logic for learning. Berlin: Springer.
Mitchell, T. (). Machine Learning. McGraw Hill.
Richardson, M., & Domingos, P. (). Markov logic networks.

Machine Learning, (–), –.

Hypothesis Space

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science
�e Netherlands

Synonyms
Model space

Definition
�e hypothesis space used by a machine learning sys-
tem is the set of all hypotheses that might possibly be
returned by it. It is typically de�ned by a 7Hypothesis
Language, possibly in conjunction with a 7Language
Bias.

Motivation and Background
Many machine learning algorithms rely on some kind
of search procedure: given a set of observations and a
space of all possible hypotheses that might be consid-
ered (the “hypothesis space”), they look in this space for
those hypotheses that best �t the data (or are optimal
with respect to some other quality criterion).

To describe the context of a learning system inmore
detail, we introduce the following terminology. �e
key terms have separate entries in this encyclopedia,
and we refer to those entries for more detailed
de�nitions.

A learner takes observations as inputs.�e7Obser-
vation Language is the language used to describe these
observations.

�e hypotheses that a learner may produce, will be
formulated in a language that is called the Hypoth-
esis Language. �e hypothesis space is the set of
hypotheses that can be described using this hypothesis
language.

O�en, a learner has an implicit, built-in, hypoth-
esis language, but in addition the set of hypotheses

 H Hypothesis Space

set of observations hypotheses

language bias

bias specification
language

observation language hypothesis language

learning algorithm

learner’s implicit
hypothesis language

hypothesis space

Hypothesis Space. Figure . Structure of learning systems that derive one or more hypotheses from a set of

observations

that can be produced can be restricted further by the
user by specifying a language bias. �is language bias
de�nes a subset of the hypothesis language, and cor-
respondingly a subset of the hypothesis space. A sepa-
rate language, called the7Bias Speci�cation Language,
is used to de�ne this language bias. Note that while
elements of a hypothesis language refer to a single
hypothesis, elements of a bias speci�cation language
refer to sets of hypotheses, so these languages are typ-
ically quite di�erent. Bias speci�cation languages have
been studied in detail in the �eld of 7Inductive Logic
Programming.

�e terms “hypothesis language” and “hypothesis
space” are sometimes used in the broad sense (the lan-
guage that the learner is inherently restricted to, e.g.,
Horn clauses), and sometimes in a more narrow sense,
referring to the smaller language or space de�ned by the
language bias.

�e structure of a learner, in terms of the above
terminology, is summarized in Fig. .

Theory
For a given learning problem, let us denote with O the
set of all possible observations (sometimes also called
the instance space), and with H the hypothesis space,
i.e., the set of all possible hypotheses that might be
learned. Let X denote the power set of a set X. Most
learners can then be described abstractly as a function
T : O → H, which takes as input a set of observations
(also called the training set) S ⊆ O, and produces as
output a hypothesis h ∈H.

In practice, the observations and hypotheses are
represented by elements of the observation language
LO and the hypothesis language LH , respectively. �e
connection between language elements and what they
represent is de�ned by functions IO : LO → O (for
observations) and IH : LH → H (for hypotheses).
�is mapping is o�en, but not always, bijective. When
it is not bijective, di�erent representations for the same
hypothesis may exist, possibly leading to redundancy in
the learning process.

We will use the symbol I as a shorthand for IO or
IH . We also de�ne the application of I to any set S as
I(S) = {I(x)∣x ∈ S}, and to any function f as I(f) =
g⇔ ∀x : g(I(x)) = I(f (x)).

�us, a machine learning system really implements
a functionT′:LO→LH , rather than a functionT:O→H.
�e connection between T′ and T is straightforward:
for any S ⊆ LO and h ∈ LH , T′(S) = h if and only if
T(I(S)) = I(h); in other words: T = I(T′).

Figure summarizes these languages and spaces and
the connections between them. We further illustrate
them with a few examples.

Example In supervised learning, the observations are
usually pairs (x, y) with x ∈ X an instance and y ∈ Y
its label, and the hypotheses are functions mapping X
onto Y. �us O = X × Y and H ⊆ YX , with YX the
set of all functions from X to Y. LO is typically chosen
such that I(LO) = O, i.e., each possible observation can
be represented in LO. In contrast to this, in many cases
I(LH) will be a strict subset of YX , i.e., I(LH) ⊂ YX .

Hypothesis Space H

H

Hypothesis Space. Figure . Illustrationof the interpreta-

tion function I mappingLO,LH, and T ′ ontoO,H, and T

For instance, LH may contain representations of all poly-
nomial functions from X to Y if X = Rn and Y = R (with
R the set of real numbers), or may be able to represent all
conjunctive concepts over X when X = Bn and Y = B
(with B the set of booleans).

When I(LH) ⊂ YX , the learner cannot learn every
imaginable function.�us,LH re�ects an inductive bias
that the learner has, called its language bias. We can
distinguish an implicit language bias, inherent to the
learning system, and corresponding to the hypothesis
language (space) in the broad sense, and an explicit
language bias formulated by the user, correspond-
ing to the hypothesis language (space) in the narrow
sense.

Example Decision tree learners and rule set learn-
ers use a di�erent language for representing the functions
they learn (call these languages LDT and LRS, respec-
tively), but their language bias is essentially the same: for
instance, if X = Bn and Y = B, I(LDT) = I(LRS) =
YX : both trees and rule sets can represent any boolean
function from Bn to B.
In practice a decision tree learner may employ con-

straints on the trees that it learns, for instance, it might
be restricted to learning trees where each leaf contains at
least two training set instances. In this case, the actual
hypothesis language used by the tree learner is a subset
of the language of all decision trees.

Generally, if the hypothesis language in the broad
sense is LH and the hypothesis language in the nar-
row sense is L′H , then we have L′H ⊆ LH and the

corresponding spaces ful�ll (in the case of supervised
learning)

I(L′H) ⊆ I(LH) ⊆ YX .

Clearly, the choice of LO and LH determines the
kind of patterns or hypotheses that can be expressed.
See the entries on Observation Language and Hypoth-
esis Language for more details on this.

Further Reading
�e term “hypothesis space” is ubiquitous in the
machine learning literature, but few articles discuss the
concept itself. In Inductive Logic Programming, a sig-
ni�cant body of work exists on how to de�ne a language
bias (and thus a hypothesis space), and on how to auto-
maticallyweaken the bias (enlarge the hypothesis space)
when a given bias turns out to be too strong.�e expres-
siveness of particular types of learners (e.g., classes of
7Neural Networks) has been studied, and this relates
directly to the hypothesis space they use.We refer to the
respective entries in this volume for more information
on these topics.

Cross References
7Bias Speci�cation Language
7Hypothesis Language
7Inductive Logic Programming
7Observation Language

Recommended Reading
De Raedt, L. (). Interactive theory revision: An inductive logic

programming approach. London: Academic Press.
Nédellec, C., Adé, H., Bergadano, F., & Tausend, B. ().

Declarative bias in ILP. In L. De Raedt (Ed.), Advances
in inductive logic programming. Frontiers in artificial intelli-
gence and applications (Vol. , pp. –). Amsterdam: IOS
Press.

Hypothesis Space

Definition
A hypothesis space is the space of hypotheses through
which a learning algorithm can search for a model. See
7Learning as Search.

I

ID

7Decision Tree

Identification

7Classi�cation

Identity Uncertainty

7Entity Resolution

Idiot’s Bayes

7Naïve Bayes

Immune Computing

7Arti�cial Immune Systems

Immune Network

A proposed theory that the immune system is capable

of achieving immunological memory by the existence

of a mutually reinforcing network of B-cells.�is net-

work of B-cells forms due to the ability of the paratopes,

located on B-cells, to match against the idiotopes on

other B-cells. �e binding between the idiotopes and

paratopes has the e�ect of stimulating the B-cells.�is

is because the paratopes on B-cells react to the idiotopes

on similar B-cells, as it would an antigen. However,

to counter the reaction there is a certain amount of

suppression between the B-cells which acts as a regu-

latory mechanism. �is interaction of the B-cells due

to the network was said to contribute to a stable mem-
ory structure and account for the retainment ofmemory

cells, even in the absence of antigen.�is interaction of

cells forms the basis of inspiration for a large number of

AIS algorithms, for example aiNET.

Immune-Inspired Computing

7Arti�cial Immune Systems

Immunocomputing

7Arti�cial Immune Systems

Immunological Computation

7Arti�cial Immune Systems

Implication

7Entailment

Improvement Curve

7Learning Curves in Machine Learning

Incremental Learning

Paul E. Utgoff

University of Massachusetts, Amherst, USA

Definition
Incremental learning refers to any7online learning pro-
cess that learns the same7model as would be learnt by
a7batch learning algorithm.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 I Incremental Learning

Motivation and Background
Incremental learning is useful when the input to a learn-

ing process occurs as a stream of distinct observations

spread out over time, with the need or desire to be able

to use the result of learning at any point in time, based

on the input observations received so far. In principle,

the stream of observations may be in�nitely long, or the

next observation long delayed, precluding any hope of

waiting until all the observations have been received.

Without the ability to forestall learning, one must com-

mit to a sequence of hypotheses or other learned arti-

facts based on the inputs observed up to the present.

One would rather not simply accumulate and store all

the inputs and, upon receipt of each new one, apply

a batch learning algorithm to the entire sequence of

inputs received so far. It would be preferable compu-

tationally if the existing hypothesis or other artifact of

learning could be updated in response to each newly

received input observation.

Theory
Consider the problem of computing the balance in one’s

checkbook account. Most would say that this does not

involve learning, but it illustrates an important point

about incremental algorithms. One procedure, a batch

algorithm based on the fundamental de�nition of bal-

ance, is to compute the balance as the sum of the

deposits less the sum of the checks and fees. As deposit,

check, and fee transactions accumulate, this de�nition

remains valid. �ere is an expectation that there will

be more transactions in the future, and there is also a

need to compute the balance periodically to ensure that

no contemplated check or fee will cause the account

to become overdrawn. We cannot wait to receive all

of the transactions and then compute the balance

just once.

One would prefer an incremental algorithm for this

application, to reduce the cost of computing the bal-

ance a�er each transaction.�is can be accomplished

by recording and maintaining one additional piece of

information, the balance a�er the nth transaction. It is
a simplematter to prove that the balance a�er n transac-
tions added to the amount of transaction n+ provides
the balance a�er n + transactions.�is is because the
sums of the fundamental de�nition for n + transac-
tions can be rewritten as the sums of the fundamental

de�nition for n transactions plus the amount of the
nth transaction. �is incremental algorithm reduces
the computation necessary to know the balance a�er

each transaction, but it increases the bookkeeping e�ort

somewhat due to the need for an additional variable.

Now consider the problem of learning the mean

of a real valued variable from a stream of observed

values of this variable. �ough simple, most would

say that this does involve learning, because one esti-

mates themean fromobservations, without ever establi-

shing themean de�nitively.�e fundamental de�nition

for themean requires summing the observed values and

then dividing by the number of observed values. As each

newobservation is received, one could compute the new

mean. However, one can reduce the computational cost

by employing an incremental algorithm. For n observa-
tions, we could just as well have observed exactly the

n occurences of the mean.�e sum of these observa-
tions divided by n would produce the mean. If we were
to be provided with an n+ observation, we could com-
pute the new sum of the n + observations as n cases
of the mean value plus the new observation, divided by

n+ .�is reduces the cost of computing the mean a�er
each observation to one multiplication, two addition,

and one division operations.�ere is a small increase in

bookkeeping inmaintaining the counter n of howmany
observations have been received, and the mean m a�er
n observations.
In both of the above examples, the need to record the

fundamental data is eliminated. Only a succinct sum-

mary of the data needs to be retained. For the checkbook

balance, only the balance a�er n transactions needs to
be stored, making the speci�c amounts for the individ-

ual transactions super�uous. For themean of a variable,

only the mean m a�er n observations and the num-
ber n of observations need to be retained, making the
speci�c values of the individual observations super�u-

ous. Due to this characteristic, incremental algorithms

are o�en characterized as memoryless, not because no

memory at all is required, but because no memory

of the original data items is needed. An incremental

algorithm is not required to be memoryless, but the

incremental algorithm must operate by modifying its

existing knowledge, not by hiding the application of

the corresponding batch algorithm to the accumulated

set of observations. �e critical issue is the extent to

which computation is reduced compared to starting

Incremental Learning I

I

with all the data observations and nothing more. An

essential aspect for an incremental algorithm is that

the obtained result be identical to that indicated by

the fundamental de�nition of the computation to be

performed.

A point of occasional confusion is whether to call an

algorithm incremental when it makes adjustments to its

data structures in response to a new data observation.

�e answer depends on whether the result is the same

that one would obtain when starting with all the obser-

vations in hand. If the answer is no, then one may have

an online learning algorithm that is not an incremental

learning algorithm. For example, consider two alterna-

tive formulations of the problem mentioned above of

learning the mean of a variable. Suppose that the count

of observations, held in the variable n, is not permit-
ted to exceed some constant, say . �en the mean

a�er n observations coupled with the minimum of n
and no longer summarizes all n observations accu-
rately. Consider a second reformulation. Suppose that

the most recent observations are held in a queue.

When a new observation is received, it replaces the

oldest of the observations. Now the algorithm can

maintain a moving average, but not the overall overage.

�ese may be desirable, if one wishes to remain respon-

sive to dri� in the observations, but that is another

matter.�e algorithm would not be considered incre-

mental because it does not produce the same result for

all n observations that the corresponding batch algo-
rithm would for these same n observations.�e algo-
rithmwould be online, and it would bememoryless, but

it would not be computing the same learned artifact as

the batch algorithm.

�ese two latter reformulations raise the issue

of whether the order in which the observations are

received is relevant. It is o�en possible to determine this

by looking at the fundamental de�nition of the com-

putation to be performed. If the operator that aggre-

gates the observations is commutative, then order is not

important. For the checking account balance example

above, the fundamental aggregation is accomplished in

the summations, and addition is commutative, so the

order of the transactions is not relevant to the result-

ing balance. If a fundamental algorithm operates on a

set of observations, then aggregation of a new observa-

tion into a set of observations is accomplished by the set

union operator, which is commutative. Can one have an

incremental algorithm for which order of the observa-

tions is important? In principle, yes, provided that the

result of the incremental algorithm a�er observation n
is the same as that of the fundamental algorithm for the

�rst n observations.
A �nal seeming concern for an incremental learn-

ing algorithm is whether the selection of future obser-

vations (n + and beyond) is in�uenced by the �rst
n observations. �is is a red herring, because for the
n observations, the question of whether the learning
based on these observations can be accomplished by a

batch algorithm or a corresponding incremental algo-

rithm remains. Of course, if one needs to use the result

of learning on the �rst k instances to help select the
k + instance, then it would be good sense to choose
an incremental learning algorithm. One would rather

not apply a batch algorithm to each and every pre-

�x of the input stream. �is would require saving the

input stream and it would require doing much more

computation than is necessary.

We can consider a few learning scenarios which

suit incremental learning. An 7active learner uses its
current knowledge to select the next observation. For

a learner that is inducing a classi�er, the observation

would be an unclassi�ed instance. �e active learner

selects an unclassi�ed instance, which is passed to an

oracle that attaches a correct class label.�en the ora-

cle returns the labeled instance as the next observation

for the learner. �e input sequence is no longer one

of instances for which each was drawn independently

according to a probability distribution over the possi-

ble instances. Instead, the distribution is conditionally

dependent on what the learner currently believes.�e

learning problem is sequential in its nature.�e obser-

vation can be delivered in sequence, and an incremental

learning algorithm can modify its hypothesis accord-

ingly. For the n observations received so far, one could
apply a corresponding batch algorithm, but this would

be unduly awkward.

7Reinforcement learning is a kind of online learn-
ing in which an agent makes repeated trials in a sim-

ulated or abstracted world in order to learn a good, or

sometimes optimal, policy that maps states to actions.

�e learning artifact is typically a functionV over states
or a function Q over state-action pairs. As the agent
moves from state to state, it can improve its function

over time.�e choice of action depends on the current

 I Incremental Learning

V or Q and on the reward or punishment received at
each step.�us, the sequence of observations consists

of state-reward pairs or state-action-reward triples. As

with active learning, the sequence of observations can

be seen as being conditionally dependent on what the

learner currently believes at each step.�e function V
or Q can be modi�ed a�er each observation, without
retaining the observation.When the function is approx-

imated in an unbiased manner, by using a lookup table

for discrete points in the function domain, there is an

analogy with the problem of computing a checkbook

balance, as described above. For each cell of the lookup

table, its value is its initial value plus the sum of the

changes, analogously for transactions. One can com-

pute the function value by computing this sum, or one

can store the sum in the cell, as the net value of all the

changes. An incremental algorithm is preferable both

for reasons of time and space.

A k-nearest classi�er (see 7instance based learn-
ing) is de�ned by a set of training instances, the

observations, and a distance metric that returns the

numeric distance between any two instances.�e dif-

ference between the batch algorithm and the incremen-

tal algorithm is slight.�e batch algorithm accepts all

the observations at once, and the incremental algo-

rithm simply adds each new observation to the set

of observations. If however, there were data structures

kept in the background to speed computation, one

could distinguish between building those data struc-

tures once (batch) and updating those data structures

(incremental). One complaint might be that all of

the observations are retained. However, these obser-

vations do not need to be revisited when a new

one arrives. �ere is an impact on space, but not

on time.

A 7decision tree classi�er may be correct for the n
observations observed so far.When then+ observation
is received, an incremental algorithm will restructure

the tree as necessary to produce the tree that the batch

algorithm would have built for these n+ observations.
To do this, it may be that no restructuring is required at

all, or that restructuring is needed only in a subtree.�is

is a case in which memory is required for saving obser-

vations in the event that some of them may be needed

to be reconsidered from time to time.�ere is a great

savings in time over running the corresponding batch

algorithm repeatedly.

Applications
Incremental learning is pervasive, and one can �nd any

number of applications described in the literature and

on the web.�is is likely due to the fact that incremen-

tal learning o�ers computational savings in both time

and space. It is also likely due to the fact that human

and animal learning takes place over time. �ere are

sound reasons for incremental learning being essential

to development.

Future Directions
Increasingly, machine learning is confronted with the

problem of learning from input streams that contain

many millions, or more, of observations. Indeed, the

stream may produce millions of observations per day.

Streams with this many instances need to be han-

dled by methods whose memory requirements do not

grow much or at all. Memoryless online algorithms

are being developed that are capable of handling this

much throughput. Consider transaction streams, say

of a telephone company, or a credit card company, or

a stock exchange, or a surveillance camera, or eye-

tracking data, or mouse movement data. For such a rich

input stream, one could sample it, thereby reducing it

to a smaller stream. Or, one could maintain a window

of observations, giving a �nite sample that changes but

does not growover time.�ere is no shortage of applica-

tions that can produce rich input streams.Newmethods

capable of handling such heavy streams have already

appeared, and we can expect to see growth in this area.

Cross References
7Active Learning
7Cumulative Learning
7Online Learning

Recommended Reading
Domingos, P., & Hulten, G. (). A general framework for mining

massive data streams. Journal of Computational and Graphical
Statistics, .

Giraud-Carrier, C. (). A note on the utility of incremental

learning. AI Communications, , –.
Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (). Decision

tree induction based on efficient tree restructuring. Machine
Learning, , –.

Induction I

I

Indirect Reinforcement Learning

7Model-Based Reinforcement Learning

Induction

James Cussens

University of York, Heslington, UK

Definition
Induction is the process of inferring a general rule from

a collection of observed instances. Sometimes it is used

more generally to refer to any inference from premises

to conclusion where the truth of the conclusion does

not follow deductively from the premises, but where the

premises provide evidence for the conclusion. In this

more general sense, induction includes abductionwhere
facts rather than rules are inferred. (�e word “induc-

tion” also denotes a di�erent, entirely deductive form of

argument used in mathematics.)

Theory
Hume’s Problem of Induction

�e problem of induction was famously set out by
the great Scottish empiricist philosopher David Hume

(–), although he did not actually use the word

“induction” in this context. With characteristic blunt-

ness, he argued that:

▸ there can be no demonstrative arguments to prove

that those instances of which we have had no experience

resemble those of which we have had experience (Hume,

, Part , Section).

Since scientists (and machine-learning algorithms) do
infer future-predicting general laws from past obser-

vations, Hume is led to the following unsettling con-

clusion concerning human psychology (and statistical

inference):

▸ It is not, therefore, reason, which is the guide of life,

but custom. That alone determines the mind, in all

instances, to suppose the future conformable to the

past (Hume,).

�at general laws cannot be demonstrated (i.e., deduced)

from data is generally accepted. Hume, however, goes

further: he argues that past observations do not even

a�ect the probability of future events:

▸ Nay, I will go farther, and assert, that he could not so

much as prove by any probable arguments, that the

future must be conformable to the past. All probable

arguments are built on the supposition, that there is this

conformity betwixt the future and the past, and there-

fore can never prove it. This conformity is a matter of

fact, and if it must be proved, will admit of no proof but

from experience. But our experience in the past can be a

proof of nothing for the future, but upon a supposition,

that there is a resemblance betwixt them. This therefore

is a point, which can admit of no proof at all, and which

we take for granted without any proof (Hume,).

Induction and Probabilistic Inference

Hume’s unwavering skepticism concerning prediction

appears at variance with the predictive accuracy of

machine learning algorithms: there ismuch experimen-

tal evidence that ML algorithms, once trained on “past

observations,” make predictions on unseen cases with

an accuracy far in excess of what can be expected by

chance.�is apparent discrepancy betweenHume’s phi-

losophy and practical experience of statistical inference

can be explored using a familiar example from the liter-

ature on induction. Let e be the statement that all swans
seen so far have been white and let h be the general
rule that all swans are white. Since h implies e it follows
that P(e∣h) = and so, using Bayes’ theorem, we have
that

P(h∣e) = P(h)P(e∣h)
P(e) = P(h)

P(e) . ()

So P(h∣e) > P(h) as long as P(e) < and

P(h) > . �is provides an explanation for the

predictive accuracy of hypotheses supported by data:

given supporting data they just have increased prob-

ability of being true. Of course, most machine learn-

ing outputs are not “noise-free” rules like h; almost
always hypotheses claim a certain distribution for

future data where no particular observation is ruled

out entirely – some are just more likely than oth-

ers. �e same basic argument applies: if P(h) >

 I Induction

then as long as the observed data is more likely given

the hypothesis than it is a priori, that is, as long as

P(e∣h)/P(e) > , then the probability of h will increase.
Even in the (common) case where each hypothesis in

the hypothesis space depends on real-valued param-

eters and so P(h) = for all h, Bayes theorem
still produces an increase in the probability density
in the neighborhoods of hypotheses supported by

the data.

In all these cases, it appears that e is giving “induc-
tive support” to h. Consider, however, h′ which states
that all swans until now have been white and all future
swans will be black. Even in this case, we have that
P(h′∣e)>P(h′) as long as P(e)< and P(h′)> , though
h and h′make entirely contradictory future predictions.
�is is a case of Goodman’s paradox.�e paradox is the

result of confusing probabilistic inference with induc-

tive inference. Probabilistic inference, of which Bayes

theorem is an instance, is entirely deductive in nature –

the conclusions of all probabilistic inferences follow

with absolute certainty from their premises (and the

axioms of probability). P(h∣e)>P(h) for P(e)< and
P(h)> essentially because e has (deductively) ruled
out some data that might have refuted h, not because
a “conformity betwixt the future and the past” has been

established.

Good performance on unseen data can still be

explained. Statistical models (equivalently machine

learning algorithms)make assumptions about theworld.
�ese assumptions (so far!) o�en turn out to be correct.

Hume noted that the principle “that like objects, placed

in like circumstances, will always produce like e�ects”

(Hume, , Part , Section) although not deducible

from �rst principles, has been established by “su�cient

custom.” �is is called the uniformity of nature prin-
ciple in the philosophical literature. It is this principle

which informs machine learning systems. Consider the

standard problemof predicting class labels for attribute-

value data using labeled data as training. If an unlabeled

test case has attribute valueswhich are “close” to those of

many training examples all of which have the same class

label then in most systems the test case will be labeled

also with this class. Di�erent systems di�er in how they

measure “likeness”: they di�er in their7inductive bias.
A systemwhich posited h′ above on the basis of ewould
have an inductive bias strongly at variance with the

uniformity of nature principle.

�ese issues resurfaced within the machine learn-

ing community in the s. �is ML work focused

on various “7no-free-lunch theorems.” Such a theorem
essentially states that a uniformity of nature assumption

is required to justify any given inductive bias. �is is

howWolpert puts in one of the earliest “no-free-lunch”

papers:

▸ This paper proves that it is impossible to justify a correla-

tion between reproduction of a training set and gener-

alization error off of the training set using only a priori

reasoning. As a result, the use in the real world of any

generalizer which fits a hypothesis function to a training

set (e.g., the use of back-propagation) is implicitly pred-

icated on an assumption about the physical universe

(Wolpert,).

Note that in Bayesian approaches inductive bias is

encapsulated in the prior distribution: once a prior has

been determined all further work in Bayesian statis-

tics is entirely deductive.�erefore it is no surprise that

inductivists have sought to �nd “objective” or “logical”

prior distributions to provide a �rm basis for induc-

tive inference. Foremost among these is Rudolf Carnap

(–) who followed a logical approach – de�ning

prior distributions over “possible worlds” (�rst-order

models) which were in some sense uniform (Carnap,

). A modern extension of this line of thinking can

be found in Bacchus, Grove, Halpern, andKoller ().

Popper

Karl Popper (–) accepted the Humean posi-

tion on induction yet sought to defend science from

charges of irrationality (Popper,). Popper replaced
the problem of induction by the problem of criticism.

For Popper, scienti�c progress proceeds by conjecturing

universal laws and then subjecting these laws to severe

tests with a view to refuting them. According to the

veri�ability principle of the logical positivist tradition, a
theory is scienti�c if it can be experimentally con�rmed,

but for Popper con�rmation is a hopeless task, instead

a hypothesis is only scienti�c if it is falsi�able. All uni-
versal laws have prior probability of zero, and thus will

eternally have probability zero of being true, no mat-

ter how many tests they pass. �e value of a law can

only be measured by how well-tested it is.�e degree

to which a law has been tested is called its degree of

corroboration by Popper.�e P(e∣h)/P(e) term in Bayes

Induction I

I

theorem will be high if a hypothesis h has passed many
severe tests.

Popper’s critique of inductivism continued through-

out his life. In the Popper–Miller argument (Popper &
Miller,), as it became known, it is observed that a

hypothesis h is logically equivalent to:

(h← e) ∧ (h ∨ e)

for any evidence e.Wehave that e ⊢ h∨e (where⊢means
“logically implies”) and also that (under weak condi-

tions) p(h ← e∣e) < p(h ← e). From this Popper and
Miller argue that

▸ …we find that what is left of h once we discard from

it everything that is logically implied by e, is a propo-

sition that in general is counterdependent on e (Popper

& Miller,)

and so

▸ Although evidence may raise the probability of a

hypothesis above the value it achieves on background

knowledge alone, every such increase in probability has

to be attributed entirely to the deductive connections

that exist between the hypothesis and the evidence

(Popper & Miller,).

In other words if P(h∣e)>P(h) this is only because
e⊢h ∨ e.�e Popper–Miller argument found both crit-
ics and supporters. Two basic arguments of the critics

were that () deductive relations only set limits to prob-

abilistic support; in�nitely many probability distribu-

tions can still be de�ned on any given �xed system of

propositions and () Popper–Miller are mischaracter-

izing induction as the absence of deductive relations,

when it actually means ampliative inference: concluding
more than the premises entail (Cussens,).

Causality and Hempel’s Paradox

�e branch of philosophy concerned with how evi-

dence can con�rm scienti�c hypotheses is known as

7con�rmation theory. Inductivists take the position
(against Popper) that observing data which follows

from a hypothesis not only fails to refute the hypoth-

esis, but also con�rms it to some degree: seeing a white

swan con�rms the hypothesis that all swans are white,

because

∀x : swan(x)→ white(x), swan(white_swan)

⊢ white(white_swan).

But, by the same argument it follows that observing any

nonwhite, nonswan (say a black raven) also con�rms

that all swans are white, since:

∀x : swan(x)→ white(x),¬white(black_raven)

⊢ ¬swan(black_raven).

�is is Hempel’s paradox to which there are a number

of possible responses. One option is to accept that the

black raven is a con�rming instance, as one object in

the universe has been ruled out as a potential refuter.

�e degree of con�rmation is however of “a minis-
cule and negligible degree” (Howson & Urbach, ,

p.). Another option is to reject the formulation of

the hypothesis as a material implication where ∀x :
swan(x)→ white(x) is just another way of writing ∀x :
¬swan(x)∨white(x). Instead, to be a scienti�c hypoth-
esis of any interest the statement must be interpreted

causally.�is is the view of Imre Lakatos (–),
and since any causal statement has a (perhaps implicit)

ceteris paribus (“all other things being equal”) clause this
has implications for refutation also.

▸ …“all swans are white,” if true, would be a mere curios-

ity unless it asserted that swanness causes whiteness.

But then a black swan would not refute this proposi-

tion, since it may only indicate other causes operating

simultaneously. Thus “all swans are white” is either an

oddity and easily disprovable or a scientific proposi-

tion with a ceteris paribus clause and therefore easily

undisprovable (Lakatos, , p.).

Cross References
7Abduction
7Bayesian Statistics
7Classi�cation
7Learning from Analogy
7No-Free Lunch�eorems
7Nonmonotonic Logic

 I Induction as Inverted Deduction

Recommended Reading
Bacchus, F., Grove, A., Halpern, J. Y., & Koller, D. (). From statis-

tical knowledge bases to degrees of belief. Artificial Intelligence,
(–), –.

Carnap, R. (). Logical foundations of probability. Chicago: Uni-
versity of Chicago Press.

Cussens, J. (). Deduction, induction and probabilistic support.

Synthese, (), –.
Howson, C., & Urbach, P. (). Scientific reasoning: The Bayesian

approach. La Salle, IL: Open Court.
Hume, D. (). A treatise of human nature, book one (Anonymously

published).

Hume, D. (). An abstract of a treatise of human nature (Anony-
mously published as a pamphlet). London.

Lakatos, I. (). Falsification and the methodology of scientific

research programmes. In I. Lakatos & A. Musgrave (Eds.), Crit-
icism and the growth of knowledge (pp. –). Cambridge, MA:
Cambridge University Press.

Popper, K. R. (). The logic of scientific discovery. London:
Hutchinson (Translation of Logik der Forschung,).

Popper, K. R., & Miller, D. (). The impossibility of inductive

probability. Nature, , .
Popper, K. R., & Miller, D. (). Why probabilistic support is

not inductive. Philosophical Transactions of the Royal Society of
London, , –.

Wolpert, D. H. (). On the connection between in-sample testing

and generalization error. Complex Systems, , –.

Induction as Inverted Deduction

7Logic of Generality

Inductive Bias

Synonyms
Learning bias; Variance hint

Definition
Most ML algorithms make predictions concerning

future data which cannot be deduced from already

observeddata.�e inductive bias of an algorithm iswhat

choses between di�erent possible future predictions.

A strong form of inductive bias is the learner’s choice

of hypothesis/model space which is sometimes called

declarative bias. In the case of Bayesian analysis, the
inductive bias is encapsulated in the prior distribution.

Cross References
7Induction, Learning as Search

Inductive Database Approach to
Graphmining

Stefan Kramer

Technische Universität München

Garching b. München, Germany

Overview
�e inductive database approach to graph mining can

be characterized by () the concept of querying for

(subgraph) patterns in databases of graphs, and () the

use of speci�c data structures representing the space

of solutions. For the former, a query language for the

speci�cation of the patterns of interest is necessary.�e

latter aims at a compact representation of the solution

patterns.

Pattern Domain
In contrast to other graph mining approaches, the

inductive database approach to graph mining (De

Raedt & Kramer, ; Kramer, De Raedt, & Helma,

) focuses on simple patterns (paths and trees) and

complex queries (see below), not on complex patterns

(general subgraphs) and simple queries (minimum fre-

quency only).While the �rst approaches were restricted

to paths as patterns in graph databases, they were later

extended toward unrooted trees (Rückert & Kramer,

,). Most of the applications are dealing with

structures of small molecules and structure–activity

relationships (SARs), that is, models predicting the bio-

logical activity of chemical compounds.

Query Language
�e conditions on the patterns of interest are usu-

ally called constraints on the solution space. Simple
constraints are speci�ed by so-called query primitives.
Query primitives express frequency-related or syntactic

constraints. As an example, consider the frequency-

related query primitive f (p,D)≥ t, meaning that a sub-
graph pattern p has to occur with a frequency of
at least t in the database of graphs D. Analogously,
other frequency-related primitives demand amaximum

frequency of occurrence, or a minimum agreement

with the target class (e.g., in terms of the information

gain or the χ statistic). Answering frequency-related

Inductive Inference I

I

queries generally requires database access. In contrast to

frequency-related primitives, syntax-related primitives

only restrict the syntax of solution (subgraph) patterns,

and thus do not require database access. For instance,

we may demand that a pattern p is more speci�c
than “c:c-Cl” (formally p≥ c:c-Cl) or more general than
“C-c:c:c:c:c-Cl” (formally p≤C-c:c:c:c:c-Cl).�e strings
in the primitive contain vertex (e.g., “C,” “c,” “Cl”...)
and edge labels (e.g., “:,” “-”...) of a path in a graph.

Many constraints on patterns can be categorized as

either monotonic or anti-monotonic. Minimum fre-

quency constraints, for instance, are anti-monotonic,

because all subpatterns (in our case: subgraphs) are fre-

quent as well, if a pattern is frequent (according to

some user-de�ned threshold) in a database. Vice versa,

maximum frequency is monotonic, because if a pat-

tern is not too frequent, then all superpatterns (in our

case: supergraphs) are not too frequent either. Anti-

monotonic or monotonic constraints can be solved by

variants of level-wise search and APriori (De Raedt

& Kramer, ; Kramer, De Raedt, & Helma, ;

Mannila & Toivonen,). Other types of constraints

involving convex functions, for example, related to the

target class, can be solved by branch-and-bound algo-

rithms (Morishita & Sese,). Typical query lan-

guages o�er the possibility to combine query primitives

conjunctively or disjunctively.

Data Structures
It is easy to show that solutions to conjunctions of

monotonic and anti-monotonic constraints can be rep-

resented by version spaces, and in particular, borders
of the most general and the most speci�c patterns

satisfying the constraints (De Raedt & Kramer, ;

Mannila & Toivonen,). Version spaces of patterns

can be represented in data structures such as version
space trees (De Raedt, Jaeger, Lee, & Mannila, ;
Rückert & Kramer,). For sequences, data struc-

tures based on su�x arrays are known to be more
e�cient than data structures based on version spaces

(Fischer, Heun, & Kramer,). Query languages

allowing disjunctive normal forms of monotonic or

anti-monotonic primitives yieldmultiple version spaces

as solutions, represented by generalizations of version

space trees (Lee & De Raedt,). �e inductive

database approach to graph mining can also be catego-

rized as constraint-based mining, as the goal is to �nd
solution patterns satisfying user-de�ned constraints.

Recommended Reading
De Raedt, L., Jaeger, M., Lee, S. D., & Mannila, H. (). A theory

of inductive query answering. In Proceedings of the IEEE
international conference on data mining (ICDM). IEEE
Computer Society, Washington, DC.

De Raedt, L., & Kramer, S. (). The levelwise version space

algorithm and its application to molecular fragment finding.

In Proceedings of the seventeenth international joint conference
on artificial intelligence (IJCAI). Morgan Kaufmann: San
Francisco, CA.

Fischer, J., Heun, V., & Kramer, S. (). Optimal string min-

ing under frequency constraints. In Proceedings of the tenth
European conference on the principles and practice of knowledge
discovery in databases (PKDD). Springer: Berlin.

Kramer, S., De Raedt, L., & Helma, C. (). Molecular feature min-

ing in HIV data. In Proceedings of the seventh ACM SIGKDD
international conference on knowledge discovery and data mining
(KDD). ACM Press: New York, NY.

Lee, S. D., & De Raedt, L. (). An algebra for inductive query

evaluation. In Proceedings of the third IEEE international con-
ference on data mining (ICDM). IEEE Computer Society,
Washington, DC.

Mannila, H., & Toivonen, H. (). Levelwise search and borders of

theories in knowledge discovery. Data Mining and Knowledge
Discovery, (), –.

Morishita, S., & Sese, J. (). Traversing itemset lattice

with statistical metric pruning. In Proceedings of the nine-
teenth ACM SIGMOD-SIGACT-SIGART symposium on prin-
ciples of database systems (PODS). ACM Press: New

York, NY.

Rückert, U., & Kramer, S. (). Generalized version space

trees. In J.-F. Boulicaut, S. Dzeroski (Eds.), Proceed-
ings of the second international workshop on knowledge
discovery in inductive databases (KDID-). Springer:
Berlin.

Rückert, U., & Kramer, S. (). Frequent free tree discovery in

graph data. In Proceedings of the ACM symposium on applied
computing (SAC). ACM Press: New York, NY.

Inductive Inference

Sanjay Jain, Frank Stephan

National University of Singapore,

Singapore, Republic of Singapore

Definition
Inductive inference is a theoretical framework to model

learning in the limit. �e typical scenario is that the

 I Inductive Inference

learner reads successively datum d,d,d, . . . about a
concept and outputs in parallel hypotheses e, e, e, . . .
such that each hypothesis en is based on the preced-
ing data d,d, . . . ,dn−. �e hypotheses are expected
to converge to a description for the data observed; here

the constraints on how the convergence has to happen

depend on the learning paradigm considered. In the

most basic case, almost all en have to be the same correct
index e, which correctly explains the target concept.�e
learnermight have some preknowledge of what the con-

cept might be, that is, there is some class C of possible
target concepts – the learner has only to �nd out which

of the concepts in C is the target concept; on the other
hand the learner has to be able to learn every concept

which is in the class C.

Detail
�e above given scenario of learning is essentially the

paradigm of inductive inference introduced by Gold

() and known as Ex (explanatory) learning. Usually
one considers learning of recursive functions or recur-

sively enumerable languages. Intuitively, using coding,

one can code any natural phenomenon into subsets of

N, the set of natural numbers. �us, recursive func-
tions from N to N or recursively enumerable subsets
of N (called languages here), are natural concepts to be
considered.

Here we will mainly consider language learning.

Paradigms related to function learning can be similarly

de�ned and we refer the reader to Osherson, Stob and

Weinsten, ; Jain, Osherson, Royer, & Sharma, .

One normally considers data provided to the learner

to be either full positive data (i.e., the learner is told

about every element in the target language, one ele-

ment at a time, but never told anything about elements

not in the target language) or full positive data and

full negative data (i.e., the learner is told about every

element, whether it belongs or does not belong to the

target language). Intuitively, the reason for considering

only positive data is that in many natural situations,

such as language learning by children, scienti�c explo-

ration (such as in astronomy) one gets essentially only

positive data.

A text is a sequence of elements over N ∪ {#}. Con-
tent of a text T, denoted ctnt(T) is the set of natural
numbers in the range of T. For a �nite sequence σ over

N ∪ {#}, one can similarly de�ne ctnt(σ) as the set of
natural numbers in the range of σ . A text T is said to
be for a language L i� ctnt(T) = L. Intuitively, a text
T for L represents sequential presentation of elements
of L, with #’s representing pauses in the presentation.

For example, the only text for ∅ is #∞. T[n] denotes
the initial sequence of T of length n. �at is, T[n] =
T()T() . . .T(n −). We let SEQ denote the set of
all �nite sequences over N ∪ {#}. An informant I is
a sequence of elements over N × {, } ∪ {#}, where
for each x ∈ N, exactly one of (x,) or (x,) is in
the range of I. An informant I is for L i� range(I) −
{#} = {(x, χL(x)) : x ∈ N}, where χL denotes the
characteristic function of L.
A learner W is a mapping from SEQ to N ∪ {?}.

Intuitively, output of ? denotes that the learner does not

wish to make a conjecture on the corresponding input.

�e output of e denotes that the learner conjectures
hypothesis We, where W,W, . . . is some acceptable

numbering of all the recursively enumerable languages.

We say that a learner M converges on T to e i�, for all
but �nitely many n, M(T[n]) = e.

Explanatory Learning
A learner M TxtEx-identi�es a language L i� for all
texts T for L, M converges to an index e such that
We = L. Learner M TxtEx-identi�es a class L of lan-
guages i� M TxtEx-identi�es each language in the class
L. Finally, one says that a class L is TxtEx-learnable if
some learnerTxtEx-identi�esL.TxtExdenotes the col-
lection of all TxtEx-learnable classes. One can similarly
de�ne InfEx-identi�cation, for learning from infor-

mants instead of texts.�e following classes are impor-

tant examples:

RE = {L : L is recursively enumerable};
FIN = {L : L is a �nite subset of N};

KFIN = {L : L = K ∪H for some H ∈ FIN};
SD = {L :Wmin(L) = L};

COFIN = {L : N − L is �nite};
SDSIZE = {{e + x : x = ∨ x < ∣We∣} :We is �nite};
SDALL = {{e + x : x ∈ N} : e ∈ N}.

Here, in the de�nition of KFIN, K is the halting prob-
lem, that is, some standard example of a set, which is

recursively enumerable but not recursive. �e classes

Inductive Inference I

I

FIN, SD, SDSIZE, and SDALL are TxtEx-learnable
(Case & Smith, ; Gold,):�e learner for FIN
always conjectures the set of all data observed so far.�e

learner for SD conjectures the least datum seen so far as,
eventually, the least observed datum coincides with the

least member of the language to be learnt.�e learner

for SDSIZE as well as the learner for SDALL also �nd in
the limit the least datum e to occur and translate it into
an index for the e-th set to be learnt. �e class KFIN
is not TxtEx-learnable, mainly for computational rea-
sons. It is impossible for the learner to determine if the

current input datum belongs to K or not; this forces a
supposed learner either to make in�nitely many mind

changes on some text for K or to make an error on
K ∪ {x}, for some x /∈ K.�e union SDSIZE ∪ SDALL
is also not TxtEx-learnable, although it is the union
of two learnable classes; so it is one example of vari-

ous nonunion theorems. Gold () gave even a more

basic example: FIN ∪ {N} is not TxtEx-learnable. Fur-
thermore, the class COFIN is also not TxtEx-learnable.
However, except for RE, all the classes given above are
InfEx-learnable, so when being fed the characteristic
function in place of only an in�nite list of all elements,

the learners become, in general, more powerful.

Note that the learner never knows when it has con-

verged to its �nal hypothesis. If the learner is required

to know when it has converged to the �nal hypothe-

sis, then the criterion of learning is the same as �nite

learning. Here a �nite learner is de�ned as follows: the

learner keeps outputting the symbol ? while waiting for

enough data to appear and, when the data observed

are su�cient, the learner outputs exactly one conjec-

ture di�erent from ?, which then is required to be an

index for the input concept in the hypothesis space.�e

class of singletons, {{n} : n ∈ N} is �nitely learn-
able; the learner just waits until the unique element n
of {n} has appeared and then knows the language. In
contrast to this, the classes FIN and SD are not �nitely
learnable.

Blum and Blum () obtained the following fun-

damental result: Whenever M learns L explanatorily
from text then L has a locking sequence for M. Here,
a sequence σ is said to be a locking sequence for M on
L i� (a) ctnt(σ) ⊆ L, (b) for all τ such that ctnt(τ) ⊆ L,
M(σ) =M(στ) and (c)WM(σ) = L. If only the �rst two
conditions are satis�ed, then the sequence is called a sta-
bilizing sequence for M on L (Fulk,). It was shown

by Blum and Blum () that if a learner M TxtEx-
identi�es L then there exists a locking sequence σ for M
on L. One can use this result to show that certain classes,
such as FIN ∪ {N}, are not TxtEx-learnable.

Beyond Explanatory Learning
While TxtEx-learning requires that the learner syn-
tactically converges to a �nal hypothesis, which cor-

rectly explains the concept, this is no longer required

for the more general criterion of behaviourally cor-

rect learning (called TxtBc-learning). Here, the learner
may not syntactically converge but it is still required

that all its hypothesis a�er sometime are correct,

see (Bārzdiņš, b; Osherson & Weinstein, ;

Osherson, Stob and Weinsten, ; Case & Smith,

; Case & Lynes,). So there is semantic con-

vergence to a �nal hypothesis. �us, a learner M

TxtBc identi�es a language L i� for all texts T for
L, for all but �nitely many n, WM(T[n]) = L. One
can similarly de�ne TxtBc-learnability of classes of
languages and the collection TxtBc. Every TxtEx-
learnable class is Bc-learnable, but the class KFIN and
SDSIZE ∪ SDALL are TxtBc-learnable but not TxtEx-
learnable. Furthermore, InfEx /⊆ TxtBc, for exam-
ple, FIN ∪ {N} is InfEx-learnable but not TxtBc-
learnable. On the other hand, every class that is �nitely

learnable from informant is also TxtEx-learnable
(Sharma,).

An intermediate learning criterion is TxtFex-
learning (Case,) or vacillatory learning, which is

similar to TxtBc-learning except that we require that
the number of distinct hypothesis output by the learner

on any text is �nite. Here one says that the learner

TxtFexn-learns the language L i� the number of distinct
hypothesis that appear in�nitely o�en on any text T for
L is bounded by n. Note that TxtFex∗ = TxtFex. Case
() showed that

TxtEx = TxtFex ⊂ TxtFex ⊂ TxtFex
⊂ . . . ⊂ TxtFex∗ ⊂ TxtBc.

For example, the class SD∪ SDALL is actually TxtFex-
learnable and not TxtEx-learnable.�e corresponding
notion has also been considered for function learning,

but there the paradigms of explanatory and vacillatory

learning coincide (Case & Smith,).

 I Inductive Inference

Blum and Blum (), Case and Lynes () and

Case and Smith () also considered allowing the �nal

(or �nal sequence of) hypothesis to be anomalous; Blum

and Blum () considered ∗-anomalies and (Case &
Lynes, ; Case & Smith,) considered the gen-

eral case. Here the �nal grammar for the input language

may not be perfect, but may have up to a anomalies. A
grammar n is a anomalous for L (writtenWn = aL) i�
card((L −Wn) ∪ (Wn − L)) ≤ a. Here one also con-
siders �nite anomalies, denoted by ∗-anomalies, where
card(S) ≤ ∗ just means that S is �nite.�us, a learnerM
TxtExa-identi�es a language L i�, for all textsT for all L,
M on T converges to a hypothesis e such thatWe = aL.
One can similarly de�neTxtBca-learning criteria. It can
be shown that

TxtEx = TxtEx ⊂ TxtEx ⊂ TxtEx ⊂ . . . ⊂ TxtEx∗

and

TxtBc = TxtBc ⊂ TxtBc ⊂ TxtBc ⊂ . . . ⊂ TxtBc∗.

Let SDn = {L : Wmin(L) = nL}. �en one can
show (Case & Smith, ; Case & Lynes,) that

SDn+ ∈ TxtExn+ − TxtExn. However, there is a trade-
o� between behaviourally correct learning and explana-

tory learning for learning with anomalies. On one hand,

TxtBc /⊆ TxtEx∗, but on the other hand TxtExn+ /⊆
TxtBcn and TxtExn ⊆ TxtBcn. However, for learning
from informants, we have InfEx∗ ⊆ InfBc (Case and
Lynes () for the above results).

Consistent and Conservative Learning
Besides the above basic criteria of learning, researchers

have also considered several properties that are useful

for the learner to satisfy.

A learner M is said to be consistent on L i� for
all texts T for L, ctnt(T[n]) ⊆ WM(T[n]). �at is, the

learner’s hypothesis is consistent with the data seen

so far. �ere are three notions of consistency consid-

ered in the literature: (a) TCons, in which the learner
is expected to be consistent on all inputs, irrespective

of whether they represent some concept from the tar-

get class or not (Wiehagen and Liepe,), (b) Cons,
in which the learner is just expected to be consis-

tent on the languages in the target class being learnt,

though the learner may be inconsistent or even unde-

�ned on the input outside the target class (Bārzdiņš,

a), and (c) RCons, in which the learner is expected
to be de�ned on all inputs, but required to be consis-

tent only on the languages in the target class (Jantke &

Beick,). It can be shown that TCons ⊂ RCons ⊂
Cons ⊂ TxtEx (Bārzdiņš, a; Jantke and Beick, ;
Wiehagen and Liepe,).

A learner M is said to be conservative (Angluin,
) i� it does not change its mind unless the data con-

tradicts its hypothesis.�at is, M conservatively learns

L i� for all texts T for L, if M(T[n]) ≠ M(T[n +]),
then ctnt(T[n +]) /⊆ WM(T[n]). It can be shown that

conservativeness is restrictive, that is there are classes of

languages, which can be TxtEx-identi�ed but not con-
servatively identi�ed. An example of a class that can

be identi�ed explanatorily but not conservatively is the

class containing all sets from SDALL, that is, the sets of
the form {e, e+ , e+ , . . .}, and all sets with minimum
ks and up to s elements where k, k, k, . . . is a recur-
sive one-one enumeration of K.�e general idea why
this class is not conservatively learnable is that when the

learner reads the data e, e+ , e+ , . . . it will, a�er some
�nite time based on data e, e+ , e+ , . . . , e+ s, output a
conjecture which contains these data plus e + s + ; but
conservative learning would then imply that e ∈ K i�
e = kr for some r ≤ s, contradicting the non-
recursiveness of K.

Monotonicity
Related notions to conservativeness are the various

notions on monotonic learning that impose certain

conditions on whether the previous hypothesis is a sub-

set of the next hypothesis or not.�e following notions

are the three main ones.

● A learner M is said to be strongly monotonic

(Jantke,) on L i� for all texts T for L,
WM(T[n]) ⊆ WM(T[n+]. Intuitively, strong mono-

tonicity requires that the hypothesis of the learner

grows

with time.

● A learner M is said to be monotonic (Wiehagen,

) on L i� for all texts T for L, WM(T[n]) ∩ L ⊆
WM(T[n+]) ∩ L. In monotonicity, the growth of the
hypothesis is required only with respect to the lan-

guage being learnt.

● A learner M is said to be weakly monotonic (Jantke,

) on L i� for all texts T for L, if ctnt(T[n+])) ⊆

Inductive Inference I

I

WM(T[n]), thenWM(T[n]) ⊆ WM(T[n+]).�at is, the

learner behaves strongly monotonically, as long as

the input data is consistent with the hypothesis.

An example for a strong monotonically learnable class

is the class SDALL. When the learner currently con-
jectures {e, e + , e + , . . .} and it sees a datum d < e,
then it makes a mind change to {d,d + ,d + , . . .}
which is a superset of the previous conjecture; it is easy

to see that all mind changes are of this type. It can be

shown that strong monotonic learning implies mono-

tonic learning and weak monotonic learning, though

monotonic learning and weak monotonic learning are

incomparable (and thus both are proper restrictions of

TxtEx-learning). For example, consider the class C con-
sisting of the set {, , , . . .} of all even numbers and,
for each n, the set {, , , . . . , n}∪{n+} consisting of
the even numbers below n and the odd number n+ .
�en, C is monotonically but not strong monotonically
learnable.

Lange, Zeugmann, and Kapur () also consid-

ered the dual version of the above criteria, where dual

strong monotonicity learning of L requires that for all
texts T for L,WM(T[n]) ⊇WM(T[n+]); dual monotonic-

ity requires that for all texts T for L, WM(T[n]) ∩ (N −
L) ⊇WM(T[n+]) ∩ (N − L); and dual weak monotonic-
ity requires that if ctnt(T[n +]) ⊆ WM(T[n]), then

WM(T[n]) ⊇WM(T[n+]).

In a similar fashion various other properties of

learners have been considered. For example, reliability

(Blum & Blum, ; Minicozzi,) postulates that

the learner does not converge on the input text unless

it learns it, prudence (Fulk, ; Osherson, Stob and

Weinsten,) postulates that the learner outputs only

indices of languages, which it also learns and con�-

dence (Osherson, Stob and Weinsten,) postulates

that the learner converges on every text to some index,

even if the text is for some language outside the class of

languages to be learnt.

Indexed Families
Angluin () initiated a study of learning indexed

families of recursive languages. A class of languages

(along with its indexing) L,L, . . . is an indexed family
i�membership questions for the languages is uniformly

decidable, that is, x ∈ Li can be recursively decided in

x and i. Angluin gave an important characterization of
indexed families that are TxtEx-learnable.
Suppose a class L = {L,L, . . .} (along with the

indexing) is given. �en, S is said to be a tell-tale
(Angluin,) of Li i� S is �nite and for all j, if S ⊆ Lj
and Lj ⊆ Li, then Li = Lj. It can be shown that for any
class of languages that are learnable (in TxtEx or TxtBc
sense), there exists a tell-tale for each language in the

class. Moreover, Angluin showed that for indexed fam-

ilies, L = L,L, . . . , one can TxtEx-learn L i� one can
recursively enumerate a tell-tale set for each Li, e�ec-
tively from i. Within the framework of learning indexed
families, a special emphasis is given to the hypothesis

space used; so the following criteria are considered for

de�ning the learnability of a class L in dependence of
the hypothesis spaceH = H,H,�e class L is

● Exactly learnable i� there is a learner using the same
hypothesis space as the given class, that is, Hn = Ln
for all n;

● Class-preservingly learnable i� there is a learner
using a hypothesis space H with {L,L, . . .} =
{H,H, . . .} – here the order and the number of
occurrences in the hypothesis space can di�er, but

the hypothesis space must consist of the same lan-

guages as the class to be learnt, and no other lan-

guages are allowed in the hypothesis space;

● Class-comprisingly learnable i� there is a learner
using a hypothesis space H with {L,L, . . .} ⊆
{H,H, . . .} – here the hypothesis space can also
contain some further languages not in the class to

be learnt and the learner does not need to identify

these additional languages;

● Prescribed learnable i� for every hypothesis spaceH
containing all the languages fromL there is a learner
for L using this hypothesis space;

● Uniformly learnable i� for every hypothesis spaceH
with index e containing all the languages fromL one
can synthesize a learnerMe which succeeds to learn

L using the hypothesis spaceH.

Note that in all �ve cases H only ranges over indexed
families. �is di�ers from the standard case where H
is an acceptable numbering of all recursively enumer-

able sets. We refer the reader to the survey of Lange,

Zeugmann, and Zilles () for an overview on work

done on learning indexed families (TxtEx-learning,

 I Inductive Inference

learning under various properties of learners as well

as characterizations of such learning criteria) and to

(Jain, Stephan, & Ye, ; Lange & Zeugmann,).

While for explanatory learning and every class L, all
these �ve notions coincide, these notions turn out to be

di�erent for other learning notions like those of conser-

vative learning, monotonic learning, and strong mono-

tonic learning. For example, the class of all �nite sets is

not prescribed conservatively learnable: one can make

an adversary hypothesis space where some indices con-

tain large spurious elements, so that a learner is forced

to do non-conservative mind change to obtain correct

indices for the �nite sets. �e same example as above

works for showing the limitations of prescribed learning

for monotonic and strong monotonic learning.

�e interested reader is referred to the textbook

“Systems that Learn” (Jain, Osherson, Royer, & Sharma,

; Osherson, Stob and Weinsten,) and the

papers below as well as the references found in these

papers for further reading. Complexity issues in induc-

tive inference like the number of mind changes neces-

sary to learn a class or oracles needed to learn some class

can be foundunder the entriesComputational Complex-
ity of Learning and Query-Based Learning. �e entry
Connections between Inductive Inference and Machine
Learning provides further information on this topic.

Cross References
7Connections Between Inductive Inference and

Machine Learning

Recommended Reading
Angluin, D. (). Inductive inference of formal languages from

positive data. Information and Control, , –.
Bārzdiņš, J. (a). Inductive inference of automata, functions

and programs. In Proceedings of the international congress of
mathematics, Vancouver (pp. –).

Bārzdiņš, J. (b). Two theorems on the limiting synthesis of func-

tions. In Theory of algorithms and programs (Vol. ., pp. –).
Latvian State University, Riga (In Russian).

Blum, L., & Blum, M. (). Toward a mathematical theory of

inductive inference. Information and Control, , –.
Case, J. (). The power of vacillation in language learning. SIAM

Journal on Computing, , –.
Case, J., & Lynes, C. (). Machine inductive inference and lan-

guage identification. In M. Nielsen & E. M. Schmidt (Eds.),

Proceedings of the th international colloquium on automata,
languages and programming, Lecture Notes in Computer Sci-
ence (Vol. ., pp. –). Heidelberg: Springer-Verlag.

Case, J., & Smith, C. (). Comparison of identification criteria for

machine inductive inference. Theoretical Computer Science, ,
–.

Fulk, M. (). Prudence and other conditions on formal language

learning. Information and Computation, , –.
Gold, E. M. (). Language identification in the limit. Information

and Control, , –.
Jain, S., Osherson, D., Royer, J., & Sharma, A. (). Systems that

learn: An introduction to learning theory. (nd ed.). Cambridge:
MIT Press.

Jain, S., Stephan, F., & Ye, N. (). Prescribed learning of indexed

families. Fundamenta Informaticae, , –.
Jantke, K. P. (). Monotonic and non-monotonic inductive infer-

ence. New Generation Computing, , –.
Jantke, K. P., & Beick, H.-R. (). Combining postulates of natu-

ralness in inductive inference. Journal of Information Processing
and Cybernetics (EIK), , –.

Lange, S., & Zeugmann, T. (). Language learning in dependence

on the space of hypotheses. Proceedings of the sixth annual con-
ference on computational learning theory, Santa Cruz, CA, (pp.
–).

Lange, S., Zeugmann, T., & Kapur, S. (). Class preserving mono-

tonic language learning. Tech. Rep. /, GOSLER-Report, FB
Mathematik und Informatik, TH Leipzig.

Lange, S., Zeugmann, T., & Zilles, S. (). Learning indexed

families of recursive languages from positive data: a survey.

Theoretical Computer Science, , –.
Minicozzi, E. (). Some natural properties of strong identifica-

tion in inductive inference. Theoretical Computer Science, ,
–.

Osherson, D., Stob, M., & Weinstein, S. (). Systems that learn,
an introduction to learning theory for cognitive and computer
scientists. Cambridge: Bradford–The MIT Press.

Osherson, D., & Weinstein, S. (). Criteria of language learning.

Information and Control, , –.
Sharma, A. (). A note on batch and incremental learnability.

Journal of Computer and System Sciences, , –.
Wiehagen, R. (). A thesis in inductive inference. In J. Dix, K.

Jantke, & P. Schmitt (Eds.), Nonmonotonic and inductive logic,
st international workshop: Vol. of Lecture notes in artificial
intelligence (pp. –). Berlin: Springer-Verlag.

Wiehagen, R., & Liepe, W. (). Charakteristische Eigenschaften

von erkennbaren Klassen rekursiver Funktionen. Journal of
Information Processing and Cybernetics (EIK), , –.

Inductive Inference

Choice of a model, theory, or hypothesis to express an

apparent regularity or pattern in a body of data about

many particular instances or events.

Inductive Inference Rules

7Logic of Generality

Inductive Logic Programming I

I

Inductive Learning

Synonyms
Statistical learning

Definition
Inductive learning is a subclass ofmachine learning that

studies algorithms for learning knowledge based on sta-

tistical regularities.�e learned knowledge typically has

no deductive guarantees of correctness, though there

may be statistical forms of guarantees.

Inductive Logic Programming

Luc De Raedt

Katholieke Universiteit Leuven, Heverlee, Belgium

Synonyms
Learning in logic; Multi-relational data mining; Rela-

tional data mining; Relational learning

Definition
Inductive logic programming is the sub�eld of machine

learning that uses 7�rst-order logic to represent
hypotheses and data. Because �rst-order logic is expres-

sive and declarative, inductive logic programming

speci�cally targets problems involving structured data

and background knowledge. Inductive logic program-

ming tackles a wide variety of problems in machine

learning, including classi�cation, regression, cluster-

ing, and reinforcement learning, o�en using “upgrades”

of existing propositional machine learning systems.

It relies on logic for knowledge representation and

reasoning purposes. Notions of coverage, generality,

and operators for traversing the space of hypothe-

ses are grounded in logic, see also 7logic of general-
ity. Inductive logic programming systems have been

applied to important applications in bio- and chemo-

informatics, natural language processing, and web

mining.

Motivation
�e �rst motivation andmost important motivation for

using inductive logic programming is that it overcomes

the representational limitations of attribute-value learn-

ing systems. Such systems employ a table-based rep-

resentations where the instances correspond to rows

in the table, the attributes to columns, and for each

instance, a single value is assigned to each of the

attributes. �is is sometimes called the single-table
single-tuple assumption. Many problems, such as the
Bongard problem shown in Fig. , cannot elegantly be

described in this format. Bongard () introduced

about a hundred concept-learning or pattern recog-

nition problems, each containing six positive and six

negative examples. Even though Bongard problems are

toy-problems, they are similar to real-life problems such

as structure–activity relationship prediction, where the

goal is to learn to predict whether a given molecule

(as represented by its D graph structure) is active or

not. It is hard — if not, impossible — to squeeze this

type of problem into the single-table single-tuple format

for various reasons. Attribute-value learning systems

employ a �xed number of attributes and also assume

that these attributes are present in all of the exam-

ples. �is assumption does not hold for the Bongard

problems as the examples possess a variable number

of objects (shapes).�e singe-table single-tuple repre-

sentation imposes an implicit order on the attributes,

Inductive Logic Programming. Figure . A complex clas-

sification problem: Bongard problem , developed by

the Russian scientist Bongard (). It consists of

scenes (or examples), of class ⊕ and of class ⊖. The

goal is to discriminate between the two classes

 I Inductive Logic Programming

whereas there is no natural order on the objects in

the Bongard problem. Finally, the relationships between

the objects in the Bongard problem are essential and

must be encoded as well. It is unclear how to do this

within the single-table single-tuple assumption. First-

order logic and relational representations allow one to

encode problems involving multiple objects (or enti-

ties) as well as the relationships that hold them in a

natural way.

�e second motivation for using inductive logic

programming is that it employs logic, a declarative rep-

resentation. �is implies that hypotheses are under-

standable and interpretable. By using logic, inductive

logic programming systems are also able to employ

background knowledge in the induction process. Back-

ground knowledge can be provided in the form of

de�nitions of auxiliary relations or predicates that

may be used by the learner. Finally, logic provides a

well-understood theoretical framework for knowledge

representation and reasoning. �is framework is also

useful for machine learning, in particular for de�n-

ing and developing notions such as the covers relation,

generality, and re�nement operators, see also7logic of
generality.

Theory
Inductive logic programming is usually de�ned as con-

cept learning using logical representations. It aims at

�nding a hypothesis (a set of rules) that covers all pos-

itive examples and none of the negatives, while taking

into account a background theory.�is is typically real-

ized by searching a space of possible hypotheses. More

formally, the traditional inductive logic programming

de�nition reads as follows:

Given

● a language describing hypotheses Lh,

● a language describing instances Li,

● possibly a background theory B, usually in the form
of a set of (de�nite) clauses,

● the covers relation that speci�es the relation between
Lh andLi, that is when an example e is covered (con-
sidered positive) by a hypothesis h, possibly taking
into account the background theory B,

● a set of positive and negative examples E = P ∪N

Find a hypothesis h ∈ Lh such that for all p ∈ P :
covers(B,h, p) = true and for all n ∈ N : covers(B,h,n) =
false.

�is de�nition can, as for7concept-learning in gen-
eral, be extended to cope with noisy data by relaxing the

requirement that all examples be classi�ed correctly.

�ere exist di�erent ways to represent learning

problems in logic, resulting in di�erent learning set-

tings. �ey typically use de�nite clause logic as the

hypothesis language Li, but di�er in the notion of an

example. One can learn from entailment, from inter-

pretations, or from proofs, cf. 7logic of generality.�e
most popular setting is learning from entailment, where
each example is a clause and covers(B,h, e) = true if and
only if B ∪ h ⊧ e.

�e top le�most scene in the Bongard problem of

Fig.1 can be represented by the clause:

positive :- object(o1), object(o2),
circle(o1), triangle(o2),
in(o1, o2), large(o2).

�e other scenes can be encoded in the same way.

�e following hypothesis then forms a solution to the

learning problem:

positive :- object(X), object(Y),
circle(X),

triangle(Y), in(X,Y).

It states that those scenes having a circle inside a triangle

are positive. For somemore complex Bongard problems

it could be useful to employ background knowledge. It

could, for instance, state that triangles are polygons.

polygon(X) :- triangle(X).

Using this clause as background theory, an alterna-

tive hypothesis covering all positives and none of the

negatives is

positive :- object(X), object(Y),
circle(X),

polygon(Y), in(X,Y).

An alternative for using long clauses as examples is

to provide an identi�er for each example and to add

Inductive Logic Programming I

I

the corresponding facts from the condition part of the

clause to the background theory. For the above example,

the following facts

object(e1,o1).
object(e1,o2).
circle(e1,o1).
triangle(e1,o2).
in(e1,o1,o2).
large(e1,o2).

would be added to the background theory and the posi-

tive example itself would then be represented through

the fact positive(e1), where e1 is the identi�er.
�e inductive logic programming literature typically

employs this format for examples and hypotheses.

Whereas inductive logic programming originally

focused on concept-learning – as did the whole �eld

of machine learning – it is now being applied to vir-

tually all types of machine learning problems, includ-

ing regression, clustering, distance-based learning,

frequent pattern mining, reinforcement learning, and

even kernel methods and graphical models.

A Methodology
Many of the more recently developed inductive logic

programming systems have started from an existing

attribute-value learner and have upgraded it toward the

use of �rst-order logic (Van Laer & De Raedt,).

By examining state-of-the-art inductive logic program-

ming systems one can identify a methodology for real-

izing this (Van Laer and De Raedt,). It starts from

an attribute-value learning problem and systemof inter-

est, and takes the following two steps. First, the prob-

lem setting is upgraded by changing the representation

of the examples, the hypotheses as well as the covers

relation toward �rst-order logic.�is step is essentially

concerned with de�ning the learning setting, and pos-

sible settings to be considered include the already men-

tioned learning from entailment, interpretations, and
proofs settings. Once the problem is clearly de�ned,
one can attempt to formulate a solution.�us the sec-

ond step adapts the original algorithm to deal with the

upgraded representations. While doing so, it is advis-

able to keep the changes as minimal as possible. �is

step o�en involves the modi�cation of the operators

used to traverse the search space. Di�erent operators for

realizing this are introduced in the entry on the 7logic
of generality.

�ere are many reasons why following the method-

ology is advantageous. First, by upgrading a learner

that is already e�ective for attribute-value represen-

tations, one can bene�t from the experiences and

results obtained in the propositional setting. In many

cases, for instance decision trees, this implies that one

can rely on well-established methods and �ndings,

which are the outcomes of several decades of machine

learning research. It will be hard to do better start-

ing from scratch. Second, upgrading an existing learner

is also easier than starting from scratch as many of

the components (such as heuristics and search strat-

egy) can be recycled. It is therefore also economic in

terms of man power. �ird, the upgraded system will

be able to emulate the original one, which provides

guarantees that the output hypotheses will perform

well on attribute-value learning problems. Even more

important is that it will o�en also be able to emulate

extensions of the original systems. For instance, many

systems that extend frequent item-set mining toward

using richer representations, such as sequences, inter-

vals, the use of taxonomies, graphs, and so on, have

been developed over the past decade. Many of them

can be emulated using the inductive logic program-

ming upgrade of Apriori (Agrawal, Mannila, Srikant,

Toivonen & Verkamo,) called Warmr (Dehaspe &

Toivonen,). �e upgraded inductive logic pro-

gramming systems will typically be more �exible than

the systems it can emulate but typically also less e�cient

because there is a price to be paid for expressiveness.

Finally, it may be possible to incorporate new features in

the attribute-value learner by following the methodol-

ogy. One feature that is o�en absent from propositional

learners and may be easy to incorporate is the use of a

background theory.

It should be mentioned that the methodology is

not universal, that is, there exist also approaches, such

as Muggleton’s Progol (Muggleton,), which have

directly been developed in �rst-order logic and for

which no propositional counter part exists. In such

cases, however, it can be interesting to follow the inverse

methodology, which would specialize the inductive

logic programming system.

 I Inductive Logic Programming

FOIL: An Illustration
One of the simplest and best-known inductive logic

programming systems is FOIL (Quinlan,). It can

be regarded as an upgrade of a rule-learner such as

CN (Clark & Niblett,). FOIL’s problem setting

is an instance of the learning from entailment set-

ting introduced above (though it restricts the back-

ground theory to ground facts only and does not allow

functors).

Like most rule-learning systems, FOIL employs

a separate-and-conquer approach. It starts from the

empty hypothesis, and then repeatedly searches for one

rule that covers as many positive examples as possi-

ble and no negative example, adds it to the hypothesis,

removes the positives covered by the rule, and then iter-

ates. �is process is continued until all positives are

covered. To �nd one rule, it performs a hill-climbing

search through the space of clauses ordered according

to generality.�e search starts at the most general rule,

the one stating that all examples are positive, and then

repeatedly specializes it. Among the specializations it

then selects the best one according to a heuristic evalu-

ation based on information gain. A heuristic, based on

the minimum description length principle, is then used

to decide when to stop specializing clauses.

�e key di�erences between FOIL and its proposi-

tional predecessors are the representation and the oper-

ators used to compute the specializations of a clause.

It employs a re�nement operator under θ-subsumption
(Plotkin,) (see also 7logic of generality). Such an
operator essentially re�nes clauses by adding atoms to

the condition part of the clause or applying substitutions

to a clause. For instance, the clause

positive :- triangle(X), in(X,Y),
color(X,C).

can be specialized to

positive :- triangle(X), in(X,Y),
color(X,red).

positive :- triangle(X), in(X,Y),
color(X,C), large(X).

positive :- triangle(X), in(X,Y),
color(X,C),

rectangle(Y).
...

�e �rst specialization is obtained by substituting the

variable C by the constant red, the other two by adding
an atom (large(X), rectangle(Y), respectively)
to the condition part of the rule. Inductive logic

programming systems typically also employ syntac-

tic restrictions – the so-called – that specify which

clauses may be used in hypotheses. For instance, in

the above example, the second argument of the color
predicate belongs to the type Color, whereas the argu-
ments of in are of type Object and consist of object
identi�ers.

Application
Inductive logic programming has been successfully

applied to many application domains, including bio-

and chemo-informatics, ecology, network mining,

so�ware engineering, information retrieval, music

analysis, web mining, natural language processing, tox-

icology, robotics, program synthesis, design, architec-

ture, and many others.�e best-known applications are

in scienti�c domains. For instance, in structure–activity

relationship prediction, one is given a set of molecules

together with their activities, and background knowl-

edge encoding functional groups, that is particular

components of the molecule, and the task is to learn

rules stating when a molecule is active or inactive.

�is is illustrated in Fig. (a�er Srinivasan, Muggleton,

Sternberg, and King ()), where two molecules are

active and two are inactive. One then has to �nd a pat-

tern that discriminates the actives from the inactives.

Structure–activity relationship prediction (SAR) is an

essential step in, for instance, drug discovery. Using

the general purpose inductive logic programming sys-

tem Progol (Muggleton,) structural alerts, such
as that shown in Fig. , have been discovered. �ese

alerts allow one to distinguish the actives from the inac-

tives – the one shown in the �gure matches both of

the actives but none of the inactives – and at the same

time they are readily interpretable and provide use-

ful insight into the factors determining the activity. To

solve structure–activity relationship prediction prob-

lems using inductive logic programming one must rep-

resent the molecules and hypotheses using the logical

formalisms introduced above. �e resulting represen-

tation is very similar to that employed in the Bongard

Inductive Logic Programming I

I

O CH=N-NH-C-NH2O=N

O– O

nitrofurazone

N O
+

4-nitropenta[cd]pyrene

N

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N+
O– O

4-nitroindole

Active

Inactive Y=Z

Structural alert:

O– O–

O–

Inductive Logic Programming. Figure . Predicting mutagenicity (Srinivasan et al.,)

problems: the objects are the atoms and relationships

the bonds. Particular functional groups are encoded as

background predicates.

State-of-the-Art
�e upgrading methodology has been applied to a

wide variety ofmachine learning systems and problems.

�ere exist now inductive logic programming systems

that

● induce logic programs from examples under vari-

ous learning settings.�is is by far the most popular

class of inductive logic programming systems. Well-

known systems include Aleph (Srinivasan,)

and Progol (Muggleton,) as well as various

variants of FOIL (Quinlan,). Some of these

systems, especially Progol and Aleph, contain many

features that are not present in propositional learn-

ing systems. Most of these systems focus on a clas-

si�cation setting, and learn the de�nition of a single
predicate.

● induce logical decision trees from examples.�ese

are binary decision trees containing conjunctions of

atoms (i.e., queries) as tests. If a query succeeds, then

one branch is taken, else the other one. Decision tree

methods for both classi�cation and regression exist

(see Blockeel & De Raedt, ; Kramer & Widmer,

).

● mine for frequent queries, where queries are con-

junctions of atoms. Such queries can be evaluated

on an example. For instance, in the Bongard prob-

lem, the query?- triangle (X), in (X, Y)
succeeds on the le�most scenes, and fails on the

rightmost ones. �erefore, its frequency would be

. �e goal is then to �nd all queries that are fre-

quent, that is, whose frequencies exceed a certain

threshold. Frequent querymining upgrades the pop-

ular local pattern mining setting due to Agrawal

et al. () to inductive logic programming (see

Dehaspe & Toivonen,).

● learn or revise the de�nitions of theories, which con-

sist of the de�nitions of multiple predicates, at the

same time (cf.Wrobel,), and the entry7�eory
revision in this encyclopedia. Several of these sys-

tems have their origin in themodel inference system

by Shapiro () or the work by Angluin ().

Current Trends and Challenges
�ere are two major trends and challenges in induc-

tive logic programming.�e �rst challenge is to extend

 I Inductive Logic Programming

the inductive logic programming paradigm beyond the

purely symbolic one. Important trends in this regard

include

● the combination of inductive logic programming

principles with graphical and probabilistic mod-

els for reasoning about uncertainty. �is is a �eld

known as statistical relational learning, probabilistic
logic learning, or probabilistic inductive logic pro-
gramming. At the time of writing, this is a very pop-
ular research stream, attracting a lot of attention in

the wider arti�cial intelligence community, cf. the

entry 7Statistical Relational Learning in this ency-
clopedia. It has resulted in many relational or logical

upgrades of well-known graphical models includ-

ing Bayesian networks, Markov networks, hidden

Markov models, and stochastic grammars.

● the use of relational distance measures for classi-

�cation and clustering (Kirsten, Wrobel, & Hor-

vath, ; Ramon & Bruynooghe,).�ese dis-

tances measure the similarity between two examples

or clauses, while taking into account the under-

lying structure of the instances. �ese distances

are then combined with standard classi�cation and

clustering methods such as k-nearest neighbor and
k-means.

● the integration of relational or logical representa-

tions in reinforcement learning, known as 7rela-
tional reinforcement learning (Džeroski,DeRaedt,&

Driessens,).

�e power of inductive logic programming is also

its weakness. �e ability to represent complex objects

and relations and the ability to make use of background

knowledge add to the computational complexity.�ere-

fore, a key challenge of inductive logic programming

is tackling this added computational complexity. Even

the simplest method for testing whether one hypothesis

is more general than another – that is θ-subsumption
(Plotkin,) – is NP-complete. Similar tests are

used for deciding whether a clause covers a particular

example in systems such as FOIL.�erefore, inductive

logic programming and relational learning systems are

computationally much more expensive than their

propositional counterparts. �is is an instance of the

expressiveness versus e�ciency trade-o� in computer

science. Because of these computational di�culties,

inductive logic programming has devoted a lot of atten-

tion to e�ciency issues. On the theoretical side, there

exist various results about the polynomial learnability

of certain subclasses of logic programs (cf. Cohen &

Page, , for an overview). From a practical perspec-

tive, there is quite some work on developing e�cient

methods for searching the hypothesis space and espe-

cially for evaluating the quality of hypotheses. Many

of these methods employ optimized inference engines

based on Prolog or database technology or constraint-

satisfaction methods (cf. Blockeel & Sebag, for an

overview).

Cross References
7Multi-Relational Data Mining

Recommended Reading
A comprehensive introduction to inductive logic programming can

be found in the book by De Raedt () on logical and relational

learning. Early surveys of inductive logic programming are con-

tained in Muggleton and De Raedt () and Lavrač and Džeroski

() and an account of its early history is provided in Sammut

(). More recent collections on current trends can be found in the

proceedings of the annual Inductive Logic Programming Conference
(published in Springer’s Lectures Notes in Computer Science Series)
and special issues of the Machine Learning Journal. An interest-
ing collection of inductive logic programming and multi-relational

data mining works are provided in Džeroski and Lavrač ().

The upgrading methodology is described in detail in Van Laer and

De Raedt (). More information on logical issues in inductive

logic programming are given in the entry 7logic of generality
in this encyclopedia, whereas the entries 7statistical relational
learning and 7graph mining are recommended for those inter-
ested in frameworks tackling similar problems using other types of

representations.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo,

A. I. (). Fast discovery of association rules. In U. Fayyad,

G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),

Advances in knowledge discovery and data mining (pp. –).
Cambridge, MA: MIT Press.

Angluin, D. (). Queries and concept-learning. Machine Learn-
ing, , –.

Blockeel, H., & De Raedt, L. (). Top-down induction of first

order logical decision trees. Artificial Intelligence, (–),
–.

Blockeel, H., & Sebag, M. (). Scalability and efficiency

in multi-relational data mining. SIGKDD Explorations, (),
–.

Bongard, M. (). Pattern recognition. New York: Spartan Books.
Clark, P., & Niblett, T. (). The CN algorithm.Machine Learning,

(), –.

Inductive Process Modeling I

I

Cohen, W. W., & Page, D. (). Polynomial learnability and induc-

tive logic programming: Methods and results. New Generation
Computing, , –.

De Raedt, L. (). Logical and relational learning. Springer.
Dehaspe, L., & Toivonen, H. (). Discovery of relational

association rules. In S. Džeroski & N. Lavrač (Eds.),

Relational data mining (pp. –). Berlin/Heidelberg:

Springer.

Džeroski, S., De Raedt, L., & Driessens, K. (). Relational rein-

forcement learning. Machine Learning, (/), –.
Džeroski, S., & Lavrač, N. (Eds.). (). Relational data mining.

Springer.

Kirsten, M., Wrobel, S., & Horvath, T. (). Distance based

approaches to relational learning and clustering. In S. Džeroski

and N. Lavrač (Eds.), Relational data mining (pp. –).
Berlin/Heidelberg: Springer.

Kramer, S., & Widmer, G. (). Inducing classification and regres-

sion trees in first order logic. In S. Džeroski and N. Lavrač

(Eds.), Relational data mining (pp. –). Berlin/Heidelberg:
Springer.

Lavrač, N., & Džeroski, S. (). Inductive logic programming:
techniques and applications. Chichester, UK: Ellis Horwood.

Muggleton, S. (). Inverse entailment and Progol. New Genera-
tion Computing, , –.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, (),
–.

Plotkin, G. D. (). A note on inductive generalization. InMachine
Intelligence (vol. , pp. –). Edinburgh, Scotland: Edin-
burgh University Press.

Quinlan, J. R. ().

Learning logical definitions from relations. Machine Learning,
, –.

Ramon, J., & Bruynooghe, M. (). A framework for defining

distances between first-order logic objects. In D. Page (Ed.),

Proceedings of the eighth international conference on inductive
logic programming. Lecture notes in artificial intelligence, (vol.
, pp. –). Berlin/Heidelberg: Springer.

Sammut, C. (). The origins of inductive logic programming: A

prehistoric tale. In S. Muggleton (Ed.), Proceedings of the third
international workshop on inductive logic programming (pp. –
). Ljubljana: J. Stefan Institute.

Shapiro, E. Y. (). Algorithmic program debugging. MIT Press.

Srinivasan, A. The Aleph Manual, . URL: http://www.

comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_

toc.html.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E., & King, R. D.

(). Theories for mutagenicity: A study in first-order and

feature-based induction. Artificial Intelligence, (/), –
.

Van Laer, W., & De Raedt, L. (). How to upgrade proposi-

tional learners to first order logic: A case study. In S. Džeroski

and N. Lavrač (Eds.), Relational data mining, (pp. –).
Berlin/Heidelberg: Springer.

Wrobel, S. (). First-order theory refinement. In L. De Raedt

(Ed.), Advances in inductive logic programming. Frontiers in
artificial intelligence and applications (vol. , pp. –).
Amsterdam: IOS Press.

Inductive Process Modeling

Ljupčo Todorovski

University of Ljubljana, Ljubljana, Slovenia

Synonyms
Process-based modeling

Definition
Inductive process modeling is a machine learning task

that deals with the problem of learning quantitative pro-
cessmodels from7time series data about the behavior of
an observed dynamic system. Process models are mod-

els based on ordinary di�erential equations that add an

explanatory layer to the equations. Namely, scientists

and engineers use models to both predict and explain

the behavior of an observed system. In many domains,

models commonly refer to processes that govern sys-

tem dynamics and entities altered by those processes.

Ordinary di�erential equations, o�en used to cast mod-

els of dynamic systems, o�er one way to represent these

mechanisms and can be used to simulate and predict

the system behavior, but fail to make the processes and

entities explicit. In response, process models tie the

explanatory information about processes and entities to

the mathematical formulation, based on equations, that

enables simulation.

Table shows a process model for a predator–

prey interaction between foxes and rabbits. �e three

processes explain the dynamic change of the

concentrations of both species (represented in the

model as two population entities) through time.�e rab-
bit_growth process states that the reproduction of rabbit
is limited by the �xed environmental capacity. Similarly,

the fox_death process speci�es an unlimited exponen-
tial mortality function for the fox population. Finally,

the fox_rabbit_predation process refers to the predator–
prey interaction between foxes and rabbits that states

that the prey concentration decreases and the predator

one increases proportionally with the sizes of the two

populations.�e process model makes the structure of

the model explicit and transparent to scientists; while at

the same time it can be easily transformed in to a system

of two di�erential equations by additively combining

the equations for the time derivatives of the system

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.

 I Inductive Process Modeling

Inductive Process Modeling. Table A Process Model of

Predatory–Prey Interaction between Foxes and Rabbits.

The Notation d[X, t] Indicates the Time Derivative of

Variable X.

model predation;

entities fox{population}, rabbit{population};

process rabbit_growth;

entites rabbit;

equations d[rabbit.conc,t] = . * rabbit.conc *

(− . * rabbit.conc);

process fox_death;

entites fox;

equations d[fox.conc,t] = –. * fox.conc;

process fox_rabbit_predation;

entities fox, rabbit;

equations

d[fox.conc,t] = . * rabbit.conc * fox.conc;

d[rabbit.conc,t] =− * . * rabbit.conc * fox.conc;

variables fox.conc and rabbit.conc. Given initial values
for these variables, one can simulate the equations to

produce trajectories that correspond to the population

dynamics through time.

�e processes from Table instantiate more general

generic processes, that can be used for modeling any

ecological system. For example:

generic process predation;
entities Predator{population}, Prey{population};
parameters ar[.,], ef[., .];
equations
d[Predator.conc,t] = ef * ar * Prey.conc * Predator.conc;
d[Prey.conc,t] = – * ar * Prey.conc * Predator.conc;

is a general form of the fox_rabbit_predation pro-
cess from the example model in Table . Note that

in the generic process, the parameters are replaced

with numeric ranges and the entities with identi�ers of

generic entities (i.e., Predator and Prey are identi�ers
that refer to instances of the generic entity population).

Having de�ned entities and processes on an exam-

ple, one can de�ne the task of inductive process model-

ing as: Given

● Time series observations for a set of numeric system

variables as they change through time

● A set of entities that the model might include

● Generic processes that specify casual relations

among entities

● Constraints that determine plausible relations among

processes and entities in the model

Find a speci�c processmodel that explains the observed

data and the simulation of which closely matches

observed time series.

�ere are two approaches for solving the task of

inductive process modeling.�e �rst is the transforma-

tional approach that transforms the given knowledge

about entities, processes, and constraints to 7language
bias for equation discovery and uses the Lagramge

method for7equation discovery in turn (Todorovski &
Džeroski, ,). �e second approach performs

search through the space of candidate processmodels to

�nd the one thatmatches the given time series data best.

Inductive process modeling methods IPM

(Bridewell, Langley, Todorovski, & Džeroski,)

and HIPM (Todorovski, Bridewell, Shiran, & Langley,

) follow the second approach. IPM is a naïve

method that exhaustively searches the space of candi-

date process models following the 7learning as search
paradigm.�e search space of candidate process mod-

els is de�ned by the sets of generic processes and

of entities in the observed system speci�ed by the

user. IPM �rst matches the type of each entity against

the types of entities involved in each generic process

and produces a list of all possible instances of that

generic process. For example, the generic process pre-
dation, from the example above, given two population
entities fox and rabbit, can be instantiated in four di�er-
ent ways (fox_fox_predation, fox_rabbit_predation, rab-
bit_fox_predation, and rabbit_rabbit_predation). �e
IPM search procedure collects the set of all possible

instances of all the generic processes and uses them

as a set of candidate model components. In the search

phase, all combinations of these model components

are being matched against observed 7time series.�e

Inductive Programming I

I

matching involves the employment of gradient-descent

methods for nonlinear optimization to estimate the

optimal values of the process model parameters. As

output, IPM reports the process models with the best

match.

Trying out all components’ combinations is pro-

hibitive in many situations since it obviously leads to

combinatorial explosion. HIPM employs constraints

that limit the space of combinations by ruling-out

implausible or forbidden combinations. Examples of

such constraints in the predator–prey example above

include rules that a proper process model of population

dynamics should include a single growth and a single

mortality process per species, the predator–prey pro-

cess should relate two di�erent species, and di�erent

predator–prey interaction should refer to di�erent pop-

ulation pairs. HIPM speci�es the rules in a hierarchy

of generic processes where each node in the hierar-

chy speci�es a rule for proper combination/selection of

process instances.

Cross References
7Equation Discovery

Recommended Reading
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. ().

Inductive process modeling. Machine Learning, (),
–.

Todorovski, L., Bridewell, W., Shiran, O., & Langley, P. ().

Inducing hierarchical process models in dynamic domains. In

M.M. Veloso & S. Kambhampati (Eds.), Proceedings of the twen-
tieth national conference on artificial intelligence, Pittsburgh,
PA, USA.

Todorovski, L., & Džeroski, S. (). Declarative bias in equation

discovery. In D.H. Fisher (Ed.), Proceedings of the fourteenth
international conference on machine learning, Nashville, TN,
USA.

Todorovski, L., & Džeroski, S. (). Integrating domain knowl-

edge in equation discovery. In S. Džeroski & L. Todorovski

(Eds.), Computational discovery of scientific knowledge. LNCS
(Vol.). Berlin: Springer.

Inductive Program Synthesis

7Inductive Programming

Inductive Programming

Pierre Flener,, Ute Schmid

Sabancı University, Orhanlı, Tuzla, İstanbul, Turkey
Uppsala University, Uppsala, Sweden
University of Bamberg, Feldkirchenstr. Bamberg,

Germany

Synonyms
Example-based programming; Inductive program syn-

thesis; Inductive synthesis; Program synthesis from

examples

Definition
Inductive programming is the inference of an algorithm

or program featuring recursive calls or repetition con-

trol structures, starting from information that is known

to be incomplete, called the evidence, such as positive
and negative input–output examples or clausal con-

straints. �e inferred program must be correct with

respect to the provided evidence, in a 7generalization
sense: it should neither be equivalent nor inconsistent

to it. Inductive programming is guided explicitly or

implicitly by a 7language bias and a 7search bias.�e
inferencemay draw on background knowledge or query

an oracle. In addition to 7induction, 7abduction may
be used. �e restriction to algorithms and programs

featuring recursive calls or repetition control structures

distinguishes inductive programming from 7concept
learning or7classi�cation.

�is chapter is restricted to the inference of declar-

ative programs, whether functional or logic, and dis-

pense with repetition control structures in the inferred

program in favour of recursive calls.

Motivation and Background
Inductive program synthesis is a branch of the �eld of

program synthesis, which addresses a cognitive ques-
tion as old as computers, namely the understanding

of the human act of computer programming, to the

point where a computer can be made to help in this

task (and ultimately to enhance itself). See Flener

() for a recent survey; the other main branches

of program synthesis are based on deductive inference,

 I Inductive Programming

namely constructive program synthesis and transforma-
tional program synthesis. In such deductive program syn-
thesis, the provided information, called the speci�cation,
is assumed to be complete (in contrast to inductive

program synthesis where the provided information is

known to be incomplete), and the presence of repeti-

tive or recursive control structures in the synthesized

program is not imposed.

Research on the inductive synthesis of recursive

functional programs started in the early s and was
brought onto �rm theoretical foundationswith the sem-

inal thesys system of Summers () and work of

Biermann (), where all the evidence is handled

non-incrementally (see7incremental learning). Essen-
tially, the idea is �rst to infer computation traces from
input–output examples (7instances), and then to use a
7trace-based programmingmethod to fold these traces
into a recursive program.�e main results till the mid

s were surveyed in Smith (). Due to limited

progress with respect to the range of programs that

could be synthesized, research activities decreased sig-

ni�cantly in the next decades. However, a new approach

that formalizes functional program synthesis in the

term-rewriting framework and that allows the syn-

thesis of a broader class of programs than the classi-

cal approaches is pursued in Kitzelmann and Schmid

().

�e advent of logicprogramming brought a new elan
but also a newdirection in the early s, especially due

to the mis system of Shapiro (), eventually spawn-

ing the new �eld of 7inductive logic programming
(ILP). Most of this ILP work addresses a wider class

of problems, as the focus is not only on recursive logic
programs: more adequate designations are inductive

7theory revision and declarative program debugging, as
an additional input is a possibly empty initial theory

or program that is incrementally revised or debugged

according to each newly presented piece of evidence,

possibly in the presence of background knowledge or

an oracle.�e main results on the inductive synthesis

of recursive logic programswere surveyed in Flener and

Yılmaz ().

Structure of Learning System
�e core of an inductive programming system is a

mechanism for constructing a recursive generalization

for a set of input/output examples (instances), say.

Although vocabulary of logic programming is used,

this method also covers the synthesis of functional pro-

grams.

�e input, o�en a set of input/output examples, is

called the evidence. Further evidence may be queried
from an oracle. Additional information, in the form of
predicate symbols that can be used during the synthe-

sis, can be provided as background knowledge. Since
the 7hypothesis space – the set of legal recursive pro-
grams – is in�nite, a7language bias is introduced. One
particularly useful and common approach in inductive

programming is to provide a statement bias bymeans of

a program schema.
�e evidential synthesis of a recursive program

starts from the provided evidence for some predicate

symbol and works essentially as follows. A program

schema is chosen to provide a template for the program

structure, where all yet unde�ned predicate symbols

must be instantiated during the synthesis. Prede�ned

predicate symbols of the background knowledge are

then chosen for some of these unde�ned predicate sym-

bols in the template. If it is deemed that the remaining

unde�ned predicate symbols cannot all be instantiated

via purely structural generalization by non-recursive

de�nitions, then the method is recursively called to

infer recursive de�nitions for some of them (this is

called 7predicate invention and amounts to shi�ing
the vocabulary bias); otherwise the synthesis ends suc-
cessfully right away. �is generic method can back-

track to any choice point for synthesizing alternative

programs.

In the rest of this section, this basic terminology

of inductive programming discussed more precisely. In

the next section, instantiations of this generic method

by some well-known methods are presented.

The Evidence and the Oracle

�e evidence is o�en limited to ground positive exam-

ples of the predicate symbols that are to be de�ned.

Ground negative examples are convenient to prevent

overgeneralization, but should be used constructively

and not just to reject candidate programs. A useful

generalization of ground examples is evidence in the

form of a set of (non-recursive) clauses, as variables and

additional predicate symbols can then be used.

Inductive Programming I

I

Example �e delOdds(L,R) relation, which holds if
and only if R is the integer list L without its odd ele-
ments, can be incompletely described by the following

clausal evidence:

delOdds([], [])← true

delOdds([X], [])← odd(X)
delOdds([X], [X])← ¬odd(X) ()

delOdds([X,Y], [Y])← odd(X), ¬odd(Y)
delOdds([X,Y], [X,Y])← ¬odd(X), ¬odd(Y)

false← delOdds([X], [X]),
odd(X)

�e �rst clause is a ground positive example, whereas

the second and third clauses generalize the in�nity of

ground positive examples, such as delOdds([], []) and
delOdds([], []), for handling singleton lists, while
the fourth and ��h clauses summarize the in�nity of

ground positive examples for handling lists of two ele-

ments, the second one being even: these clauses make

explicit the underlying �ltering relation (odd) that is
intrinsic to the problem at hand but cannot be pro-
vided via ground examples andwould otherwise have to

be guessed.�e sixth clause summarizes an in�nity of

ground negative examples for handling singleton lists,

namely where the only element of the list is odd but not

�ltered.

In some methods, especially for the induction of

functional programs, the �rst n positive input–output
examples with respect to the underlying data type are

presented (e.g., for linear lists, what to dowith the empty

list, with a one-element list, up to a list with three ele-

ments); because of this ordering of examples, no explicit

presentation of negative examples is then necessary.

Inductive program synthesis should be monotonic

in the evidence (more evidence should never yield a less

complete program, and less evidence should not yield a

more complete program) and should not be sensitive to

the order of presentation of the evidence.

Program Schemas

Informally, a program schema (Smith,) contains a
template program and a set of axioms. �e template
abstracts a class of actual programs, called instances, in

the sense that it represents their data�ow and control-

�ow by means of place-holders, but does not make

explicit all their actual computations nor all their

actual data structures.�e axioms restrict the possible
instances of the place-holders and de�ne their interrela-

tionships. Note that a schema is problem-independent.

A 7�rst-order-logic approach is taken and templates
are considered as open logic programs (programswhere

some place-holder predicate symbols are le� unde�ned,

or open; a program with no open predicate symbols is
said to be closed) and axioms as �rst-order speci�cations
of these open predicate symbols.

Example Most methods of inductive synthesis are

biased by program schemas whose templates have

clauses of the forms in the following generic template:

r(X,Y ,Z) ← c(X,Y ,Z), p(X,Y ,Z)

r(X,Y ,Z) ← d(X,H,X, . . . ,Xt ,Z),

r(X,Y,Z), . . . , r(Xt ,Yt ,Z),

q(H,Y, . . . ,Yt ,Z,Y)

()

where c, d, p, and q are open predicate symbols, X is
a non-empty sequence of terms, and Y , Z are possi-
bly empty sequences of terms.�e intended semantics

of this generic template can be described informally

as follows. For an arbitrary relation r over parameters
X, Y , and Z, an instance of this generic template is
to determine the values of result parameter Y corre-
sponding to a given value of induction parameter X,
considering the value of auxiliary parameter Z. Two
cases arise: either the c test succeeds and X has a value
for which Y can easily be directly computed through p,
or X has a value for which Y cannot be so easily directly
computed and the divide-and-conquer principle is
applied:

. Divide X through d into a term H and t terms
X, . . . ,Xt of the same type as X but smaller than X
according to some well-founded relation;

. Conquer through t recursive calls to r to determine
the values of Y, . . . ,Yt corresponding to X, . . . ,Xt ,

respectively, considering the value of Z;

 I Inductive Programming

. Combine through q the terms H,Y, . . . ,Yt ,Z to
build Y .

Enforcing this intended semantics must be done man-

ually, as any instance template by itself has no seman-

tics, in the sense that any program is an instance of it

(it su�ces to de�ne c by a program that always suc-
ceeds, and p by the given program). One way to do
this is to attach to a template some axioms (see Smith

() for the divide-and-conquer axioms), namely the

set of speci�cations of its open predicate symbols: these

speci�cations refer to each other, including the one

of r, and are generic (because even the speci�cation
of r is unknown), but can be manually abduced (see
7abduction) once and for all according to the informal
semantics of the schema.

Predicate Invention

Another important language bias is the available vocab-

ulary, which is here the set of predicate symbols men-

tioned in the evidence set, or actually de�ned in the

background knowledge (and possibly mentioned by the

oracle). If an inductive synthesis fails, other than back-

tracking to a di�erent program schema (i.e., shi�ing the

statement bias), one can try and shi� the vocabulary

bias by inventing new predicate symbols and induc-

ing programs for them in the extended vocabulary;

this is also known as performing 7constructive induc-
tion. Only the invention of recursively de�ned predi-

cate symbols is necessary, as a non-recursive de�nition
of a predicate symbol can be eliminated by substitu-

tion (under 7resolution) for its calls in the 7induced
program (even though that might make the program

longer).

In general, it is undecidable whether predicate

invention is necessary to induce a �nite program in the

vocabulary of its evidence and background knowledge

(as a consequence of Rice’s theorem,), but introduc-

ing new predicate symbols always allows the induction

of a �nite program (as a consequence of a result by

Kleene), as shown in Stahl ().�e necessity of shi�-

ing the vocabulary bias can only be decided for some

restricted languages (but the bias shi� attempt might

then be unsuccessful), so in practice one o�en has to

resort to heuristics. Note that an inductive synthesiser

of recursive algorithms may be recursive itself: it may

recursively invoke itself for a necessary new predicate

symbol.

Other than the decision problem, the di�culties

of predicate invention are as follows. First, adequate

formal parameters for a new predicate symbol have

to be identi�ed among all the variables in the clause

using it.�is can be done instantaneously by using pre-

computations done manually once and for all at the

template level. Second, evidence for a new predicate

symbol has to be abduced from the current program

using the evidence for the old predicate symbol. �is

usually requires an oracle for the old predicate symbol,

whose program is still un�nished at that moment and

cannot be used. �ird, the abduced evidence may be

less numerous than for the old predicate symbol (note

that if the new predicate symbol is in a recursive clause,

then no new evidence might be abduced from the old

evidence that is covered by the base clauses) and can

be quite sparse, so that the new synthesis is more dif-

�cult.�is sparseness problem can be illustrated by an
example.

Example Given the positive ground examples

factorial(,), factorial(,), factorial(,), factorial
(,), factorial(,), and given the still open program:

factorial(N,F) ← N = , F =

factorial(N,F) ← add(M, ,N), factorial(M,G),

product(N,G,F)

where add is known but product was just invented
(and named so only for the reader’s convenience), the

abduceable examples are product(, ,), product(, ,),
product(, ,), and product(, ,), which is hardly
enough for inducing a recursive program for product;
note that there is one less example than for factorial.
Indeed, examples such as product(, ,), product
(, ,), product(, ,), etc., are missing, which puts
the given examples more than one resolution step apart,

if not on di�erent resolution paths.�is is aggravated

by the absence of an oracle for the invented predi-

cate symbol, which is not necessarily intrinsic to the

task at hand (although product actually is intrinsic to
factorial).

Inductive Programming I

I

Background Knowledge

In an inductive programming context, background

knowledge is particularly important, as the inference

of recursive programs is more di�cult than the infer-

ence of 7classi�ers. For the e�ciency of synthesis,
it is crucial that this collection of de�nitions of the

pre-de�ned predicate symbols be annotated with infor-
mation about the types of their arguments and about
whether some well-founded relation is being enforced
between some of their arguments, so that semantically

suitable instances for the open predicate symbols of

any chosen program schema can be readily spotted.

(�is requires in turn that the types of the arguments

of the predicate symbols in the provided evidence are

declared as well.)�e background knowledge should be

problem-independent, and an inductive programming

method should be able to perform knowledge mobili-
sation, namely organizing it dynamically according to
relevance to the current task.

In data-driven, analytical approaches, background

knowledge is used in combination with 7explanation-
based learning (EBL) methods, such as abduction

(see Example) or systematic rewriting of input/

output examples into computational traces (see

Example).

Programs and Data

Example �e dialogs (Dialogue-based Inductive-

Abductive LOGic programSynthesiser)method (Flener,

) is interactive. �e main design objective was to

take all extra burden from the speci�er by having the

method ask for exactly and only the information it

needs, default answers being provided wherever pos-

sible. As a result, no evidence needs to be prepared

in advance, as the method invents its own candidate

evidence and queries the oracle about it, with an oppor-

tunity to declare (at the oracle/speci�er’s risk) that

enough information has been provided. All answers

by the oracle are stored as judgements, to prevent ask-
ing the same query twice.�is is suitable for all levels

of expertise of human users, as the queries are for-

mulated in the speci�er’s initially unknown conceptual

language, in a way such that the speci�er must know

the answers if she really feels the need for the wanted

program. �e method is schema-biased, and the cur-

rent implementation has two schemas.�e template of

the divide-and-conquer schema has the generality of the
generic template (). �e template of the accumulate
schema extends this by requiring an accumulator in the

sequence Z of auxiliary parameters.�e evidence lan-
guage (7observation language) is (non-recursive) logic
programswith negation. Type declarations are provided

as a language bias.�e program language (7hypothesis
language) is recursive logic programs with negation,

with possibly multiple base cases and recursive cases.

For instance, starting from the empty program

for the relation delOdds in Example , the algorithm
design choices of using the divide-and-conquer schema
with R as result parameter and L as induction param-
eter decomposed (with t =) through head-tail

decomposition by d lead to the following intermediate
open program:

delOdds(L,R)← c(L,R), p(L,R)

delOdds(L,R)← d(L,H,L), delOdds(L,R),

q(H,R,R) ()

c(_, _)← true

d(L,H,T)← L = [H∣T]

�e �rst �ve evidential clauses for delOdds in ()
are then implicitly interactively acquired from the

oracle/speci�er by the following question & answer

dialogue, leading the speci�er to reveal the intrinsic

predicate symbol odd:

dialogs: When does delOdds([],R) hold?

Speci�er: If R = [].

dialogs: When does delOdds([X],R) hold?

Speci�er: If (odd(X) and R = [])

or (¬odd(X) and R = [X]).

dialogs: When does delOdds([X,Y],R) hold,

assuming odd(Y)?

Speci�er: If (odd(X) and R = [])

or (¬odd(X) and R = [X]).

 I Inductive Programming

dialogs: When does delOdds([X,Y],R) hold,

assuming ¬odd(Y)?

Speci�er: If (odd(X) and R = [Y])

or (¬odd(X) and R = [X,Y]).

Next, abduction infers the following evidence set for the

still open predicate symbols p and q:

p([], []) ← true

p([X], []) ← odd(X)

q(X, [], [])← odd(X)

p([X], [X]) ← ¬odd(X)

q(X, [], [X])← ¬odd(X)

p([X,Y], [Y]) ← odd(X), ¬odd(Y)

q(X, [Y], [Y])← odd(X)

p([X,Y], [X,Y]) ← ¬odd(X), ¬odd(Y)

q(X, [Y], [X,Y])← ¬odd(X)

From this, induction infers the following closed pro-

grams for p and q:

p([], []) ← true

q(H,L, [H∣L]) ← ¬odd(H)

q(H,L,L) ← odd(H)

()

�e �nal closed program is the union of the pro-

grams () and (), as no predicate invention is deemed

necessary. Sample syntheses with predicate invention

are presented in Flener () and Flener and Yılmaz

().

Example �e thesys method (Summers,)

was one of the �rst methods for the inductive syn-

thesis of functional (Lisp) programs. Although it

has a rather restricted scope, it can be seen as the

methodological foundation of many later methods

for inducing functional programs.�e non-interactive

method is schema-biased, and the implementation has

two schemas. Upon adaptation to functional program-

ming, the template of the linear recursion schema is the
instance of the generic template () obtained by having

X as a sequence of exactly one induction parameter and
Z as the empty sequence of auxiliary parameters, and
by dividing X into t = smaller value Xt , so that there

is only t = recursive call.�e template of the accumu-
late schema extends this by having Z as a sequence of
exactly one auxiliary parameter, playing the role of an

accumulator.�e evidence language (observation lan-

guage) is sets of ground positive examples.�e program

language (hypothesis language) is recursive functional

programs, with possibly multiple base cases, but only

one recursive case.�e only primitive functions are nil,
cons, head, tail, and empty, because the implementa-
tion is limited to the list datatype, inductively de�ned by

list ≡ nil ∣ cons(x, list), under the axioms empty(nil) =
true, head(cons(x, y)) = x, and tail(cons(x, y)) = y.
�ere is no function invention.

For instance, from the following examples of a list

unpacking function:

unpack(nil) = nil

unpack((A)) = ((A))

unpack((A B)) = ((A) (B))

unpack((A B C)) = ((A) (B) (C))

the abduced traces are:

empty(X) → nil

empty(tail(X)) → cons(X,nil)

empty(tail(tail(X))) →

cons(cons(head(X),nil), cons(tail(X),nil))

empty(tail(tail(tail(X)))) →

cons(cons(head(X),nil),

cons(cons(head(tail(X)),nil),

cons(tail(tail(X)),nil)))

Inductive Programming I

I

and the induced program is:

unpack(X) ←

empty(X) → nil,

empty(tail(X)) → cons(X,nil),

true → cons(cons(head(X),nil),

unpack(tail(X)))

A modern extension of thesys is the igor method

(Kitzelmann& Schmid,).�e underlying program

template describes the set of all functional programs

with the following restrictions: built-in functions can

only be �rst-order, and no nested or mutual recur-

sion is allowed. igor adopts the two-step approach of

thesys. Synthesis is still restricted to structural prob-

lems,where only the structure of the argumentsmatters,

but not their contents, such as in list reversing. Never-

theless, the scope of synthesisable programs is consid-

erably larger. For instance, tree-recursive functions and

functions with hidden parameters can be induced.Most

notably, programs consisting of a calling function and

an arbitrary set of further recursive functions can be

induced.�e �rst step of synthesis (trace construction)

is therefore expanded such that traces can contain nest-

ings of conditions. �e second step is expanded such

that the synthesis of a function can rely on the inven-

tion and synthesis of other functions (that is, igor uses

a technique of function invention in correspondence to

the concept of predicate invention introduced above).

An extension, igor, relies on constructor-term rewrit-

ing techniques.�e two synthesis steps are merged into

one andmake use of background knowledge.�erefore,

the synthesis of programs for semantic problems, such

as list sorting, becomes feasible.

Applications
In the framework of so�ware engineering, inductive pro-
gramming is de�ned as the inference of information

that is pertinent to the construction of a generalized

computational system for which the provided evidence

is a representative sample (Flener & Partridge,). In

other words, inductive programming does not have to

be a panacea for so�ware development in-the-large and

infer a complete so�ware system in order to be useful: it

su�ces to induce, for instance, a self-contained system

module while programming in-the-small, problem fea-

tures and decision logic for speci�cation acquisition and

enhancement, or support for debugging and testing.

Inductive programming is then not always limited to

programswith repetitive or recursive control structures.

�ere are opportunities for synergy with manual pro-

gramming and deductive program synthesis, as there

are sometimes system modules that no one knows how

to specify in a complete way, or that are harder to specify

or program in a completeway, and yetwhere incomplete

information such as input-output examples is readily

available. More examples and pointers to the literature

are given in Flener (, Section) and Flener and

Partridge ().

In the context of end-user programming, inductive
programming methods can be used to enable non-

expert users to take advantage of themore sophisticated

functionalities o�ered by their so�ware. �is kind of

application is in the focus of7programming by demon-
stration (PBD).

Finally, it is worth having an evidential synthesiser

of recursive algorithms invoked by a more general-

purpose machine learning method when necessary

predicate invention is detected or conjectured, as such

general methods require a lot of evidence to infer reli-

ably a recursively de�ned hypothesis.

Future Directions
Inductive programming is still mainly a topic of

basic research, exploring how the intellectual ability

of humans to infer generalized recursive procedures

from incomplete evidence can be captured in the form

of synthesis methods. Already a variety of promising

methods are available. A necessary step should be to

compare and analyse the currentmethods. A �rst exten-

sive comparison of di�erent ILP methods for inductive

programming was presented some years ago (Flener &

Yılmaz,). An up-to-date analysis should take into

account not only ILP methods but also methods for

the synthesis of functional programs, using classical

(Kitzelmann & Schmid,) as well as evolutionary

 I Inductive Synthesis

(Olsson,) methods.�e methods should be com-

pared with respect to the required quantity of evi-

dence, the kind and amount of background knowledge,

the scope of programs that can be synthesized, and

the e�ciency of synthesis. Such an empirical compar-

ison should result in the de�nition of characteristics

that describe concisely the scope, usefulness, and e�-

ciency of the existing methods in di�erent problem

domains.

Since only a few inductive programming methods

can deal with semantic problems, it should be useful to

investigate how inductive programming methods can

be combined with other machine learning methods,

such as kernel-based classi�cation.

Finally, the existing methods should be adapted to

a broad variety of application areas in the context of

programming assistance, as well as in other domains

where recursive data structures or recursive procedures

are relevant.

Acknowledgment
Most of the work by Pierre Flener was done while

on leave of absence in / as a Visiting Faculty

Member and Erasmus Exchange Teacher at Sabancı

University.

Cross References
7Explanation-Based Learning
7Inductive Logic Programming
7Programming by Demonstration
7Trace-Based Programming

Websites
● Online Platform of the Inductive Programming

Co- mmunity: http://www.inductiveprogramming.

org/.

● Flener, P., & Partridge, D. (). Inductive pro-

gramming. Automated So�ware Engineering, (),
–. http://user.it.uu.se/~pierref/ase/.

● Workshops on Approaches and Applications of Induc-
tive Programming (AAIP , AAIP , and
AAIP): http://www.cogsys.wiai.uni-

bamberg.de/aaip/.

● Journal of Machine Learning Research, Special Topic
on Approaches and Applications on Inductive Pro-
gramming, February/March : http://jmlr.csail.
mit.edu/papers/topic/inductive_programming.html.

● Tutorial on Automatic Inductive Programming at
ICML : http://www.evannai.inf.ucm.es/

et/icml/aiptutorial.htm.

Recommended Reading
Biermann, A. W. (). The inference of regular LISP programs

from examples. IEEE Transactions on Systems, Man, and Cyber-
netics, (), –.

Flener, P. (). Inductive logic program synthesis with DIALOGS.

In S. H. Muggleton, (Ed.), Revised selected papers of the th
international workshop on inductive logic programming (ILP
), volume of lecture notes in artificial intelligence
(pp. –). Berlin: Springer.

Flener, P. (). Achievements and prospects of program syn-

thesis. In A. Kakas & F. Sadri (Eds.), Computational logic:
Logic programming and beyond; essays in honour of Robert A.
Kowalski, volume of lecture notes in artificial intelligence
(pp. –). Berlin: Springer.

Flener, P., & Partridge, D. (). Inductive programming. Auto-
mated Software Engineering, (), –.

Flener, P., & Yılmaz S. (). Inductive synthesis of recursive

logic programs: achievements and prospects. Journal of Logic
Programming, (–), –.

Kitzelmann, E., & Schmid, U. (). Inductive synthesis of

functional programs – An explanation based generalization

approach. Journal of Machine Learning Research, , –.
Olsson, J. R. (). Inductive functional programming using incre-

mental program transformation. Artificial Intelligence, (),
–.

Shapiro, E. Y. (). Algorithmic program debugging. Cambridge,
MA: MIT Press.

Smith, D. R. (). The synthesis of LISP programs from examples:

A survey. In A. W. Biermann, G. Guiho, & Y. Kodratoff (Eds.),

Automatic program construction techniques (pp. –). New
York: Macmillan.

Smith, D. R. (). Top-down synthesis of divide-and-conquer

algorithms. Artificial Intelligence, (), –.
Stahl, I. (). The appropriateness of predicate invention as bias

shift operation in ILP. Machine Learning, (–), –.
Summers, P. D. (). A methodology for LISP program construc-

tion from examples. Journal of the ACM, (), –.

Inductive Synthesis

7Inductive Programming

http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm.
http://www.inductiveprogramming.org/.

Inductive Transfer I

I

Inductive Transfer

Ricardo Vilalta, Christophe Giraud-Carrier,

Pavel Brazdil, Carlos Soares

University of Houston, Houston TX, USA
Brigham Young University, UT, USA
University of Porto, Porto, Portugal

Synonyms
Transfer of knowledge across domains

Definition
Inductive transfer refers to the ability of a learning

mechanism to improve performance on the current

task a�er having learned a di�erent but related concept

or skill on a previous task. Transfer may additionally

occur between two ormore learning tasks that are being

undertaken concurrently. Transfer may include back-

ground knowledge or a particular form of7search bias.
As an illustration, an application of inductive trans-

fer arises in competitive games involving teams of

robots (e.g., Robocup Soccer). In this scenario, trans-

ferring knowledge learned from one task into another

task is crucial to acquire skills necessary to beat the

opponent team. Speci�cally, imagine a situation where

a team of robots has been taught to keep a soccer ball

away from the opponent team. To achieve that goal,

robots must learn to keep the ball, pass the ball to a

close teammate, etc., always trying to remain at a safe

distance from the opponents. Now let us assume that we

wish to teach the same team of robots to play a di�er-

ent game where they must learn to score against a team

of defending robots. Knowledge gained during the �rst

activity can be transferred to the second one. Speci�-

cally, a robot can prefer to perform an action learned in

the past over actions proposed during the current task

because the past action has a signi�cant higher merit

value. For example, a robot under the second task may

learn to recognize that it is preferable to shoot than to

pass the ball because the goal is very close.�is action

can be learned from the �rst task by recognizing that the

precision of a pass is contingent on the proximity of the

teammate.

Structure of the System
�e main idea behind a learning architecture using

knowledge transfer is to produce a source model from

which knowledge can be extracted and transferred

to a target model. �is allows for multiple scenar-

ios (Brazdil, Giraud-Carrier, Soares, & Vilalta, ;

Pratt & �run,). For example, the target and

source models can be trained at di�erent times such

that the transfer takes place a�er the source model has

been trained; in this case there is an explicit form of

knowledge transfer, also called representational trans-
fer. In contrast, we use the term functional transfer to
denote the case where two or more models are trained

simultaneously; in this case the models share (part

of) their internal structure during learning (see Neu-

ral Networks below). When the transfer of knowledge

is explicit, we denote the case as literal transfer when
the source model is le� intact. In addition, we denote

the case as nonliteral transfer when the source model
is modi�ed before knowledge is transferred to the tar-

get model; in this case some processing step takes place

on the model before it is used to initialize the target

model.

Neural Networks

A learning paradigm amenable to test the feasibil-

ity of knowledge transfer is that of neural networks

(Caruana,). A popular form of knowledge transfer

is e�ected throughmultitask learning, where the output

nodes in the multilayer network represent more than

one task. In such a scenario, internal nodes are shared

by di�erent tasks dynamically during learning. As an

illustration, consider the problem of learning to clas-

sify astronomical objects from images mapping the sky

into multiple classes. One task may be in charge of clas-

sifying a star into several classes (e.g., main sequence,

dwarf, red giant, neutron, pulsar, etc.). Another task can

focus on galaxy classi�cation (e.g., spiral, barred spi-

ral, elliptical, irregular, etc.). Rather than separating the

problem into di�erent tasks where each task is in charge

of identifying one type of luminous object, one can

combine the tasks together into a single parallel multi-

task problemwhere the hidden layer of a neural network

shares patterns that are common to all classi�cation

 I Inductive Transfer

tasks (see Fig.). �e reason explaining why learning

o�en improves in accuracy and speed in this context is

that trainingwithmany tasks in parallel on a single neu-

ral network induces information that accumulates in

the training signals; if there exists properties common

to several tasks, internal nodes can serve to represent

common subconcepts simultaneously.

Other Paradigms

Knowledge transfer can be performed using other

learning and data-analysis paradigms such as 7kernel
methods, probabilistic methods (see 7Bayesian Meth-
ods) and 7clustering (Evgeniou, Micchelli, & Pontil,
; Raina, Ng, & Koller,). For example, induc-

tive transfer can take place in learning methods that

assume a probabilistic distribution of the data by guar-

anteeing a form of relatedness among the distributions

adopted across tasks (Raina et al.). As an illustration,

if learning to classify both stars and galaxies assumes

a mixture of normal densities to model the example-

class distribution, one can force both distributions to

have sets of parameters that are as similar as possible

while preserving good generalization performance. In

that case, shared knowledge can be interpreted as a set

of assumptions about the data distribution for all tasks

under analysis.�e knowledge transfer concept is also

related to the problem of introducing new intermedi-

ate concepts in the process of bottom–up induction of

rules. In the inductive logic programming (ILP) setting,

this is referred to as predicate invention (Stahl,).

Metasearching for Problem Solvers

A di�erent research direction in inductive transfer

explores complex scenarioswhere the so�ware architec-

ture itself evolves with experience (Schmidhuber,).

�emain idea is to divide a program into di�erent com-

ponents that can be reused during di�erent stages of

the learning process. As an illustration, one can work

within the space of (self-delimiting binary) programs

to propose an optimal ordered problem solver.�e goal

is to solve a sequence of problems, deriving one solu-

tion a�er the other, as optimally as possible; ideally, the

system should be capable of exploiting previous solu-

tions and incorporate them into the solution to the

current problem.�is can be done by allocating com-

puting time to the search for previous solutions that,

if useful, become transformed into building blocks. We

assume that the current problem can be solved by copy-

ing or invoking previous pieces of code (i.e., building

blocks or knowledge). In that case the mechanism will

accept those solutions with substantial savings in com-

putational time.

Theoretical Work
Several studies have provided a theoretical analysis of

the case where a learner uses experience from previ-

ous tasks to learn a new task. �is process is o�en

referred to as metalearning.�e aim is to understand

the conditions under which a learning algorithm can

provide good generalizations when embedded in an

environment made of related tasks. Although the idea

of knowledge transfer is normally made implicit in

the analysis, it is clear that the metalearner extracts

and exploits knowledge on every task to perform

well on future tasks. �eoretical studies fall within

a Bayesian model and within a Probably Approx-

imately Correct (PAC) model. �e idea is to �nd

not only the right hypothesis in a hypothesis space

(base learning), but in addition, to �nd the right

hypothesis space in a family of hypothesis spaces

(metalearning).

Let us review the main ideas behind these studies

(Baxter,). We begin by assuming that the learner

is embedded in a set of related tasks that share cer-

tain commonalities. Going back to the problemwhere a

learner is designed for the recognition of astronomical

objects, the idea is to classify objects (e.g., stars, galaxies,

nebulae, planets) extracted from images mapping cer-

tain region of the sky.Oneway to transfer learning expe-

rience from one astronomical center to another is by

sharing ametalearner that carries a bias toward recogni-

tion of astronomical objects. In traditional learning, we

assume a probability distribution p that indicates which
examples are more likely to be seen in such task. Now

we assume there is a more general distribution P over
the space of all possible distributions. In essence, the

metadistributionP indicates which tasks aremore likely
to be found within the sequence of tasks faced by the

metalearner (just as an example distribution p indicates
which examples are more likely to be seen in one task).

In our example, the metadistribution P peaks over tasks
corresponding to classi�cation of astronomical objects.

Given a family of hypothesis spaces {H}, the goal of the

Inductive Transfer I

I

……

… …

Stars

Main
Sequence

Giants and
Red Giants

White Dwarfs

Galaxies

Spiral Elliptical Irregular

seixalaGsratS

Inductive Transfer. Figure . Example of multitask learning on astronomical images

metalearner is to �nd a hypothesis space H* that mini-
mizes a functional risk corresponding to the expected

loss of the best possible hypothesis in each hypothe-

sis space. In practice, since we ignore the form of P,
we need to draw samples T, T, . . . ,Tn to infer how

tasks are distributed in our environment. To summa-

rize, in the transfer learning scenario our input is made

of samples T = {Ti}, where each sample Ti is composed

of examples.�e goal of the metalearner is to output a

hypothesis space with an7inductive bias that generates
accurate models for a new task.

Future Directions
�e research community faces several challenges on

how to e�ciently transfer knowledge across tasks. One

challenge involves devising learning architectures with

an explicit representation of knowledge about mod-

els and algorithms, i.e., metaknowledge. Most systems

that integrate knowledge transfer mechanisms make an

implicit assumption about the transfer process by mod-

ifying the bias embedded by the hypothesis space. For

example, we may change bias by selecting a learning

algorithm that draws linear boundaries over the input

space instead of one that draws quadratic boundaries;

here, no explicit knowledge is transferred specifying our

preference for linear boundaries. Because of this limita-

tion, transferring knowledge across domains becomes

problematic.

Another challenge is to understand why a learn-

ing algorithm performs well or not on certain datasets

and to use that (meta)knowledge to improve its per-

formance. Recent work in metalearning has explored

the idea that high-quality dataset characteristics or

metafeatures provide enough information to di�er-

entiate the performance of a given set of learning

algorithms. From a practical perspective, a proper char-

acterization of datasets leads to an interesting goal: the

construction of metalearning assistants.�e main role

of these assistants is to recommend a good predictive

 I Inequalities

model given a new dataset, or to attempt to modify

the learning mechanism before it is invoked again in a

dataset drawn from a similar distribution.

Cross References
7Metalearning

Recommended Reading
Baxter, J. (). A model of inductive learning bias. Journal of

Artificial Intelligence Research, , –.
Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (). Met-

alearning: Applications to data mining. Springer-Verlag Berlin:
Heidelberg.

Caruana, R. (). Multitask learning: A knowledge-based

source of inductive bias. In P. E. Utgoff (Ed.), Proceedings
of the tenth international conference on machine learning
(pp. –). San Mateo, Springer Netherlands: Morgan

Kaufmann.

Dai, W., Yang, Q., Xue, G., & Yu, Y. (). Boosting for trans-

fer learning. In Proceedings of the th annual international
conference on machine learning (pp. –). New York:

ACM.

Evgeniou, T., Micchelli, C. A., & Pontil, M. (). Learning mul-

tiple tasks with kernel methods. Journal of Machine Learning
Research, , –.

Mihalkova, L., Huynh, T., & Mooney, R. J. (). Mapping and

revising Markov logic networks for transfer learning. In Pro-
ceedings of the nd AAAI conference on artificial intelligence
(pp. –). Vancouver, BC: AAAI Press.

Oblinger, D., Reid, M., Brodie, M., & de Salvo Braz, R. ().

Cross-training and its application to skill-mining. IBM Systems
Journal, (), –.

Pratt, L., & Thrun, S. (). Second special issue on inductive

transfer. Machine Learning, , No. , –.
Raina, R., Ng, A. Y., & Koller, D. (). Constructing informative

priors using transfer learning. In Proceedings of the twenty-third
international conference on machine learning (pp. –).
Pittsburgh, PA: ACM.

Reid, M. (). Improving rule evaluation using multitask learn-

ing. In Proceedings of the th international conference on ILP
(pp. –). Springer-Verlag, Heidelberg.

Schmidhuber, J., Zhao, J., & Wiering M. A. (). Shifting induc-

tive bias with success-story algorithm, adaptive Levin search,

and incremental self-improvement. Machine Learning, (),
–.

Stahl, I. (). Predicate invention in inductive logic programming.

In L. De Raedt (Ed.), Advances in inductive logic programming.
(pp. –). IOS Press.

Inequalities

7Generalization Bounds

Information Retrieval

Information retrieval (IR) is a set of techniques that

extract from a collection of documents those that are

relevant to a given query. Initially addressing the needs

of librarians and specialists, the �eld has evolved dra-

matically with the advent of the World Wide Web.

It is more general than data retrieval, whose purpose
is to determine which documents contain occurrences

of the keywords that make up a query. Whereas the

syntax and semantics of data retrieval frameworks is

strictly de�ned, with queries expressed in a totally for-

malized language, words from a natural language given

no or limited structure are the medium of commu-

nication for information retrieval frameworks. A cru-

cial task for an IR system is to index the collection of

documents to make their contents e�ciently accessi-

ble.�e documents retrieved by the system are usually

ranked by expected relevance, and the user who exam-

ines some of them might be able to provide feedback

so that the query can be reformulated and the results

improved.

Information Theory

7Minimum Description Length Principle
7MinimumMessage Length

In-Sample Evaluation

Synonyms
Within-sample evaluation

Definition
In-sample evaluation is an approach to 7algorithm
evaluation whereby the learned model is evaluated on

the data from which it was learned. �is provides a

biased estimate of learning performance, in contrast to

7holdout evaluation.

Cross References
7Algorithm Evaluation

Instance-Based Learning I

I

Instance

Synonyms
Case; Example; Item; Object

Definition
An instance is an individual object from the universe
of discourse. Most 7learners create a 7model by ana-
lyzing a 7training set of instances. Most 7machine
learning models take the form of a function from an

7instance space to an output space. In7attribute-value
learning, each instance is o�en represented as a vec-

tor of 7attribute values, each position in the vector
corresponding to a unique attribute.

Instance Language

7Observation Language

Instance Space

Synonyms
Example space; Item space; Object space

Definition
An instance space is the space of all possible7instances
for some 7learning task. In 7attribute-value learning,
the instance space is o�en depicted as a geometric space,

one dimension corresponding to each attribute.

Instance-Based Learning

Eamonn Keogh

University of California, Riverside, CA, USA

Synonyms
Analogical reasoning; Case-based learning; Memory-

based; Nearest neighbor methods; Non-parametric

methods

Definition
Instance-based learning refers to a family of techniques

for 7classi�cation and 7regression, which produce

a class label/predication based on the similarity of the

query to its nearest neighbor(s) in the training set. In

explicit contrast to other methods such as 7decision
trees and 7neural networks, instance-based learning
algorithms do not create an abstraction from speci�c

instances. Rather, they simply store all the data, and at

query time derive an answer from an examination of the

query’s7nearest neighbor(s).
Somewhat more generally, instance-based learning

can refer to a class of procedures for solving new prob-

lems based on the solutions of similar past problems.

Motivation and Background
Most instance-based learning algorithms can be speci-

�ed by determining the following four items:

. Distance measure: Since the notion of similarity is

being used to produce class label/prediction, we

must explicitly state what similarity/distance mea-

sure to use. For real-valued data, Euclidean distance

is a popular choice and may be optimal under some

assumptions.

. Number of neighbors to consider: It is possible to

consider any number from one to all neighbors.

�is number is typically denoted as k.
. Weighting function: It is possible to give each neigh-

bor equal weight, or to weight them based on their

distance to the query.

. Mapping from local points: Finally, some method

must be speci�ed to use the (possibly weighted)

neighbors to produce an answer. For example, for

regression the output can be the weighted mean

of the k nearest neighbors, or for classi�cation the
output can be the majority vote of the k near-
est neighbors (with some speci�ed tie-breaking

procedure).

Since instance-based learning algorithms defer all the

work until a query is submitted, they are some-

times called lazy algorithms (in contrast to eager

learning algorithms, such as decision trees). Beyond

the setting of parameters/distance measures/mapping

noted above, one of the main research issues with

instance-based learning algorithms is mitigating their

expensive classi�cation time, since a naïve algorithm

would require comparing the distance for the query

to every point in the database. Two obvious solutions

 I Instance-Based Reinforcement Learning

are indexing the data to achieve a sublinear search,

and numerosity reduction (data editing) (Wilson &

Martinez,).

Further Reading
�e best distancemeasure to usewith an instance-based

learning algorithms is the subject of active research. For

the special case of time series data alone, there are at

least one hundred methods Ding, Trajcevski, Scheuer-

mann, Wang, & Keogh (). Conferences such as

ICML, SIGKDD, etc. typically have several papers each

year which introduce new distance measures and/or

e�cient search techniques.

Recommended Reading
Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, , –.
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. J.

(). Querying and mining of time series data: Experimental

comparison of representations and distance measures. PVLDB,
(), –.

Wilson, D. R., & Martinez, T. R. (). Reduction techniques for

exemplar-based learning algorithms. Machine Learning, (),
–.

Instance-Based Reinforcement
Learning

William D. Smart

Washington University in St. Louis,

St. Louis, MO, USA

Synonyms
Kernel-based reinforcement learning

Definition
Traditional reinforcement-learning (RL) algorithms

operate on domains with discrete state spaces.�ey typ-

ically represent the value function in a table, indexed by

states, or by state–action pairs. However, when apply-

ing RL to domains with continuous state, a tabular

representation is no longer possible. In these cases,

a common approach is to represent the value func-

tion by storing the values of a small set of states

(or state–action pairs), and interpolating these val-

ues to other, unstored, states (or state–action pairs).

�is approach is known as instance-based reinforce-

ment learning (IBRL).�e instances are the explicitly

stored values, and the interpolation is typically done

using well-known instance-based supervised learning

algorithms.

Motivation and Background
Instance-Based Reinforcement Learning (IBRL) is one

of a set of value-function approximation techniques that

allow standard RL algorithms to deal with problems

that have continuous state spaces. Essentially, the tab-

ular representation of the value function is replaced

by an instance-based supervised learning algorithm

and the rest of the RL algorithm remains unaltered.

Instance-based methods are appealing because each

stored instance can be viewed as analogous to one cell in

the tabular representation.�e interpolation method of

the instance-based learning algorithm then blends the

value between these instances.

IBRL allows generalization of value across the state

(or state–action) space.Unlike tabular representations it

is capable of returning a value approximation for states

(or state–action pairs) that have never been directly

experienced by the system.�is means that, in theory,

fewer experiences are needed to learn a good approxi-

mation to the value function and, hence, a good control

policy. IBRL also provides a more compact representa-

tion of the value function than a table does.�is is espe-

cially important in problems with multi-dimensional

continuous state spaces. A straightforward discretiza-

tion of such a space results in an exponential number of

table cells.�is, in turn, leads to an exponential increase

in the amount of training experiences needed to obtain

a good approximation of the value function.

An additional bene�t of IBRL over other value-

function approximation techniques, such as arti�cial

neural networks, is the ability to bound the predicted

value of the approximation. �is is important, since

it allow us to retain some of the theoretical non-

divergence results for tabular representations.

Structure of Learning System
IBRL can be used to approximate both the state

value function and the state–action value function. For

problems with discrete actions, it is common to store a

separate value function for each action. For continuous

Instance-Based Reinforcement Learning I

I

actions, the (continuous) state and action vectors are

o�en concatenated, and VFA is done over this com-

bined domain. For clarity, we will discuss only the

state value function here, although our comments apply

equally well to the state–action value function.

The Basic Approach

IBRL uses an instance-based supervised learning algo-

rithm to replace the tabular value function represen-

tation of common RL algorithms. It maintains a set

of states, o�en called basis points, and their associated

values, using them to provide a value-function approx-

imation for the entire state space.�ese exemplar states

can be obtained in a variety of ways, depending on the

nature of the problem.�e simplest approach is to sam-

ple, either regularly or randomly, from the state space.

However, this approach can result in an unacceptably

large number of instances, especially if the state space

is large, or has high dimension. A better approach is

to use states encountered by the learning agent as it

follows trajectories in the state space. �is allows the

representational power of the approximation algorithm

to be focused on areas of the space in which the learning

agent is likely to be.�is, too, can result in a large num-

ber of states, if the agent is long-lived. A �nal approach

combines the previous two by sub-sampling from the

observed states.

Each stored instance state has a value associ-

ated with it, and an instance-based supervised learn-

ing algorithm is used to calculate the value of all

other states. While any instance-based algorithm can

be used, kernel-based algorithms have proven to be

popular. Algorithms such as locally weighted regres-

sion (Smart & Kaelbling,), and radial basis func-

tion networks (Kretchmar & Anderson,) are com-

monly seen in the literature. �ese algorithms make

some implicit assumptions about the form of the value

function and the underlying state space, which we

discuss below. For a state s, the kernel-based value-
function approximation V(s) is

V(s) =
η

n

∑
i=

ϕ (s, si)V(si), ()

where the si values are the n stored basis points, η is a
normalizer,

η =
n

∑
i=

ϕ (s, si) , ()

and ϕ is the kernel function. A common choice for ϕ is
an exponential kernel,

ϕ (s, t) = e
(s−t)

σ , ()

where σ is the kernel bandwidth. �e use of kernel-
based approximation algorithms is well motivated,

since they respect Gordon’s non-divergence condi-

tions (Gordon,), and also Szepesvári and Smart’s

convergence criteria (Szepesvári & Smart,).

As the agent gathers experience, the value approxi-

mations at each of the stored states and, optionally, the

location and bandwidth of the states must be updated.

Several techniques, o�en based on the temporal dif-

ference error, have been proposed, but the problem

remains open. An alternative to on-line updates is a

batch approach, which relies on storing the experiences

generated by the RL agent, composing these into a dis-

crete MDP, solving this MDP exactly, and then using

supervised learning techniques on the states and their

associated values.�is approach is known as �tted value

iteration (Szepesvári & Munos,).

Examples of IBRL Algorithms

Several IBRL algorithms have been reported in the

literature. Kretchmar and Anderson () presented

one of the �rst IBRL algorithms. �ey used a radial

basis function (RBF) network to approximate the state–

action value function for the well-knownmountain-car

test domain.�e temporal di�erence error of the value

update is used to modify the weights, centers, and vari-

ances of the RBF units, although they noted that it

was not particularly e�ective in producing good control

policies.

Smart and Kaelbling () used locally weighted

learning algorithms and a set of heuristic rules to

approximate the state–action value function. A set of

states, sampled from those experienced by the learning

agent, were stored along with their associated values.

One approximation was stored for each discrete action.

Interpolation between these exemplars was done by

locally weighted averaging or locally weighted regres-

sion, supplemented with heuristics to avoid extrapola-

tion and over-estimation. Learning was done on-line,

with new instances being added as the learning agent

explored the state space. �e algorithm was shown

to be e�ective in practice, but o�ered no theoretical

guarantees.

 I Instance-Based Reinforcement Learning

Ormoneit and Sen () presented an o�ine

kernel-based reinforcement-learning algorithm that

stores experiences (si, ai, ri, s′i) as the instances, and uses
these to approximate the state–action value function for

problems with discrete actions. For a given state s and
action a, the state–action value Q(s, a) is approximated
as

Q̂ (s, a) =

ηs,a
∑
i∣ai=a

ϕ (d (s, si)
σ

)[ri + γmax
a′

Q̂ (s′i , a′)] ,

()

where ϕ is a kernel function, σ is the kernel bandwidth,
γ is the RL discount factor, and ηs,a is a normalizing

term,

ηs,a = ∑
i∣ai=a

ϕ (d (s, si)
σ

) . ()

�ey showed that, with enough basis points, this

approximation converges to the true value function,

under some reasonable assumptions. However, they

provide no bound on the number of basis points needed

to provide a good approximation to the value function.

Assumptions

IBRLmakes a number of assumptions about the form of

the value function, and the underlying state space.�e

main assumptions are that state similarity is well mea-

sure by (weighted) Euclidean distance. �is implicity

assumes that the underlying state space be metric, and

is a topological disk. Essentially, this means that stattes

that are close to each other in the state space have similar

value.�is is clearly not true for states between which

the agent cannot move, such as those on the opposite

sides of a thin wall. In this case, there is a discontinuity

in the state space, introduced by the wall, which is not

well modeled by the instance-based algorithm.

Instance-based function approximation algorithms

assume that the function theymodel is smooth and con-

tinuous between the basis points. Any discontinuities in

the function tend to get “smoothed out” in the approx-

imation.�is assumption is especially problematic for

value-function approximation, since it allows value on

one side of the discontinuity to a�ect the approxima-

tion on the other. If the location of the discontinuity is

known, and we are able to allocate an arbitrary number

of basis points, we can overcome this problem. How-

ever, in practical applications of RL, neither of these is

feasible, and the problem of approximating the value

function at or near discontinuities remains an open one.

Problems and Drawbacks

Although IBRL has been shown to be e�ective on

a number of problems, it does have a number of

drawbacks that remain unaddressed. Instance-based

approximation algorithms are o�en expensive in terms

of storage, especially for long-lived agents. Although the

literature containsmany techniques for editing the basis

set of instance-based approximators, these techniques

are generally for a supervised learning setting,where the

utility of a particular edit can be easily evaluated. In the

RL setting, we lack the ground truth available to super-

vised learning, making the evaluation of edits consider-

ably more di�cult. Additionally, as the number of basis

points increases, so does the time needed to perform an

approximation.�is limitation is signi�cant in the RL

setting, since many such value predictions are needed

on every step of the accompanying RL algorithm.

�e value of a particular state, s, is calculated by
blending the values from other nearby states, si.�is is
problematic if it is not possible to move from state s to
each of the states si.�e value of s should only be in�u-
enced by the value of states reachable from s, but this
condition is not enforced by standard instance-based

approximation algorithms.�is leads to problemswhen

modeling discontinuities in the value function, as noted

above, and in situations where the system dynamics

constrain the agent’smotion, as in the case of a “one-way

door” in the state space.

IBRL also su�ers badly from the curse of dimen-

sionality; the number of points needed to adequately

represent the value function is exponential in the

dimensionality of the state space. However, by using

only states actually experienced by the learning agent,

we can lessen the impact of this problem. By using

only observed states, we are explicitly modeling the

manifold over which the system state moves. �is

manifold is embedded in the full state space and, for

many real-world problems, has a lower dimensional-

ity than the full space. �e Euclidean distance metric

used by many instance-based algorithms will not accu-

rately measure distance along this manifold. In prac-

tice, the manifold over which the system state moves

will be locally Euclidean for problems with smooth,

continuous dynamics. As a result, the assumptions of

Inverse Entailment I

I

instance-based function approximators are valid locally

and the approximations are of reasonable quality.

Cross References
7Curse of Dimensionality
7Instance-Based Learning
7Locally Weighted Learning
7Reinforcement Learning
7Value-Function Approximation

Recommended Reading
Gordon, G. J. (). Stable function approximation in dynamic pro-

gramming. In Proceedings of the twelfth international conference
on machine learning (pp. –). Tahoe City, CA.

Kretchmar, R. M., & Anderson, C. W. (). Comparison of CMACs

and radial basis functions for local function approximators in

reinforcement learning. In International conference on neural
networks, Houston, TX (Vol. , pp. –).

Ormoneit, D., & Sen, Ś. (). Kernel-based reinforcement learn-

ing. Machine Learning, (–), –.
Smart, W. D., & Kaelbling, L. P. (). Practical reinforcement

learning in continuous spaces. In Proceedings of the seventeenth
international conference on machine learning (ICML) (pp.
–). Stanford, CA.

Szepesvári, C., & Munos, R. (). Finite time bounds for sampling

based fitted value iteration. In Proceedings of the twenty-second
international conference on machine learning (ICML),
Bonn, Germany (pp. –).

Szepesvári, C., & Smart, W. D. (). Interpolation-based

Q-learning. In Proceedings of the twenty-first international
conference on machine learning (ICML), Banff, Alberta,
Canada (pp. –).

Intelligent Backtracking

Synonyms
Dependency directed backtracking

Definition
Intelligent backtracking is a general class of techniques

used to enhance search and constraint satisfaction algo-

rithms. Backtracking is a general mechanism in search

where a problem solver encounters an unsolvable search

state and backtracks to a previous search state that

might be solvable. Intelligent backtrackingmechanisms

provide variousways of selecting the backtracking point

based on past experience in a way that is likely to be

fruitful.

Intent Recognition

7Inverse Reinforcement Learning

Internal Model Control

Synonyms
Certainty equivalence principle; Model-based control

Definition
Many advanced controllers for nonlinear systems

require knowledge of the model of the dynamics of the

system to be controlled.�e system dynamics is o�en

called an “internal model,” and the resulting controller

is model-based. If the model is not known, it can be

learned with function approximation techniques. �e

learned model is subsequently used as if it were correct

in order to synthesize a controller – the control liter-

ature calls this assumption the “certainty equivalence

principle.”

Interval Scale

An intervalmeasurement scale ranks the data, and the
di�erences between units of measure can be calculated

by arithmetic.However, zero in the interval level ofmea-
surement means neither “nil” nor “nothing” as zero in
arithmetic means. See7Measurement Scales.

Inverse Entailment

Definition
Inverse entailment is a 7generality relation in

7inductive logic programming.More speci�cally, when
7learning from entailment using a background theory
B, a hypothesis H covers an example e, relative to the
background theory B if and only if B∧H ⊧ e, that is, the
background theory B and the hypothesis H together
entail the example (see 7entailment). For instance,
consider the background theory B:

bird :- blackbird.
bird :- ostrich.

 I Inverse Optimal Control

and the hypothesis H:

flies :- bird.

Together B ∧H entail the example e :

flies :- blackbird, normal.

�is can be decided through deductive inference. Now

when learning from entailment in inductive logic pro-

gramming, one starts from the example e and the back-
ground theory B, and the aim is to induce a rule H that
together with B entails the example. Inverting entail-
ment is based on the observation that B ∧ H ⊧ e is
logically equivalent to B ∧ ¬e ⊧ ¬H, which in turn can
be used to compute a hypothesis H that will cover the
example relative to the background theory. Indeed, the

negation of the example is ¬e:

blackbird.
normal.
:-flies.

and together with B this entails ¬H:

bird.
:-flies.

�e principle of inverse entailment is typically employed

to compute the 7bottom clause, which is the most
speci�c clause covering the example under entailment.

It can be computed by generating the set of all facts (true

and false) that are entailed by B ∧ ¬e and negating the
resulting formula ¬H.

Cross References
7Bottom Clause
7Entailment
7Inductive Logic Programming
7Logic of Generality

Inverse Optimal Control

7Inverse Reinforcement Learning

Inverse Reinforcement Learning

Pieter Abbeel, Andrew Y. Ng

University of California, Berkeley, California, USA
Stanford University, Stanford, California, USA

Synonyms
Intent recognition; Inverse optimal control; Plan

recognition

Definition
Inverse reinforcement learning (inverse RL) consid-

ers the problem of extracting a reward function from

observed (nearly) optimal behavior of an expert acting

in an environment.

Motivation and Background
�e motivation for inverse RL is two fold:

. For many RL applications, it is di�cult to write

down an explicit reward function specifying how

di�erent desiderata should be traded o� exactly. In

fact, engineers o�en spend signi�cant e�ort tweak-

ing the reward function such that the optimal policy

corresponds to performing the task they have in

mind. For example, consider the task of driving a

car well. Various desiderata have to be traded o�,

such as speed, following distance, lane preference,

frequency of lane changes, distance from the curb,

and so on. Specifying the reward function for the

task of driving requires explicitly writing down the

trade-o� between these features.

Inverse RL algorithms provide an e�cient solu-

tion to this problem in the apprenticeship learning

setting – when an expert is available to demon-

strate the task. InverseRL algorithms exploit the fact

that an expert demonstration implicitly encodes the

reward function of the task at hand.

. Reinforcement learning and related frameworks

are o�en used as computational models for ani-

mal and human learning (Schmajuk & Zanutto,

; Touretzky & Saksida, ; Watkins,).

Such models are supported both by behavioral

studies and by neurophysiological evidence that

reinforcement learning occurs in bee foraging

(Montague, Dayan, Person, & Sejnowski,) and

Inverse Reinforcement Learning I

I

in songbird vocalization (Doya & Sejnowski,).

It seems clear that in examining animal and human

behavior, we must consider the reward function as

an unknown to be ascertained through empirical

investigation, particularly when dealing with mul-

tiattribute reward functions. Consider, for example,

that the bee might weigh nectar ingestion against

�ight distance, time, and risk fromwind and preda-

tors. It is hard to see how one could determine the

relative weights of these terms a priori. Similar con-

siderations apply to human economic behavior, for

example. Hence, inverse reinforcement learning is a

fundamental problem of theoretical biology, econo-

metrics, and other scienti�c disciplines that deal

with reward-driven behavior.

Structure of the Learning System
Preliminaries and Notation

AMarkov decision process (MDP) is a tuple ⟨S,A,T, γ,
D,R⟩, where S is a �nite set of states; A is a set of
actions; T = {Psa} is a set of state-transition probabil-
ities (here, Psa is the state transition distribution upon

taking action a in state s); γ ∈ [,) is a discount fac-
tor; D is the distribution over states for time zero; and
R : S↦ R is the reward function.
A policy π is a mapping from states to probability

distributions over actions. Let Π denotes the set of all

stationary policies. (We restrict attention to stationary

policies, since it is well known that there exists a station-

ary policy that is optimal for in�nite horizon MDPs.)

�e utility of a policy π is given by

U(π) = E [
∞

∑
t=

γtR(st)∣π] .

�e expectation is taken with respect to the random

state sequence s, s, s, . . . drawnby starting froma state
s ∼ D, and picking actions according to π.
Let µS(π) be the discounted distribution over states

when acting according to the policy π. In particular,
for a discrete state space we have that [µS(π)](s) =
∑∞t= γtProb(st = s∣π). (In the case of a continuous state
space, we replace Prob(st = s∣π) by the appropriate
probability density function.)�en, we have that

U(π) = R⊺µS(π).

�us, the utility of a policy π is linear in the reward
function.

O�en the reward function R can be represented
more compactly. Let ϕ : S→ Rn be a featuremap. A typ-

ical assumption in inverse RL is to assume the reward

function R is a linear combination of the features ϕ:
R(s) = w⊺ϕ(s).�en, we have that the utility of a policy
π is linear in the reward function weights w:

U(π) = E [∑∞t= γtR(st)∣π]
= E [∑∞t= γtw⊺ϕ(st)∣π]
= w⊺E [∑∞t= γtϕ(st)∣π]
= w⊺µϕ(π). ()

Here, we used linearity of expectation to bringw outside
of the expectation.�e last equality de�nes the vector of

feature expectations µϕ(π) = E [∑∞t= γtϕ(st)∣π].
We assume access to demonstrations by some

expert. We denote the expert’s policy by π∗. Speci�-
cally, we assume the ability to observe trajectories (state

sequences) generated by the expert starting from s ∼ D
and taking actions according to π∗.

Characterization of the Inverse RL Solution Set

A reward function R is consistent with the policy π∗

being optimal if and only if the utility obtained when

acting according to the policy π∗ is at least as high as
the utility obtained when acting according to any other

policy π, or equivalently,

U(π∗) ≥ U(π) ∀π ∈ Π. ()

Using the fact that U(π) = R⊺µS(π), we can equiva-
lently write the conditions of Eq. () as a set of linear

constraints on the reward function R:

R⊺µS(π∗) ≥ R⊺µS(π) ∀π ∈ Π. ()

�e state distribution µS(π) does not depend on the
reward function R.�us, Eq. () is a set of linear con-
straints in the reward function and we can use a linear

program (LP) solver to �nd a reward function consis-

tent with the policy π∗ being optimal. Strictly speaking,
Eq. () solves the inverse RL problem. However, to apply

inverse RL in practice, the following three issues need to

be addressed:

 I Inverse Reinforcement Learning

. Reward Function Ambiguity. Typically, a large set
of reward functions satisfy all the constraints of

Eq. (). One such reward function that satis�es all

the constraints for any MDP is the all-zeros reward

function (it is consistent with any policy being opti-

mal). Clearly, the all-zeros reward function is not a

desirable answer to the inverse RL problem. More

generally, this observation suggests not all reward

functions satisfying Eq. () are of equal interest and

raises the question of how to recover reward func-

tions that are of interest to the inverse RL problem.

. Statistical E�ciency. O�en the state space is very
large (or even in�nite) and we do not have suf-

�ciently many expert demonstrations available to

accurately estimate µ(⋅; π∗) from data.
. Computational E�ciency. �e number of con-
straints in Eq. () is equal to the number of station-

ary policies ∣Π∣ and grows quickly with the number
of states and actions of the MDP. For �nite-state-

actionMDPs, we have ∣A∣∣S∣ constraints. So, even for
small state and action spaces, feeding all the con-

straints of Eq. () into an LP solver becomes quickly

impractical. For continuous state-action spaces, the

formulation of Eq. () has an in�nite number of

constraints, and thus using a standard LP solver to

�nd a feasible reward function R is impossible.

In the following sections, we address these three

issues.

Reward Function Ambiguity As observed above, typi-

cally a large set of reward functions satisfy all the con-

straints of Eq. (). To obtain a single reward function,

it is natural to reformulate the inverse RL problem as

an optimization problem. We describe one standard

approach for disambiguation. Of course, many other

formulations as an optimization problem are possible.

Similar to common practice in support vector

machines research, one can maximize the (so�) margin

by which the policy π∗ outperforms all other policies.
As is common in structured prediction tasks (see, e.g.,

Taskar, Guestrin, & Koller,), one can require the

margin by which the policy π∗ outperforms another
policy π to be larger when π di�ers more from π∗,
as measured according to some function h(π∗, π).�e
resulting formulation (Ratli�, Bagnell, & Zinkevich,

) is

min
R,ξ

∥R∥ + Cξ

s.t. R⊺µS(π∗) ≥ R⊺µS(π) + h(π∗, π) − ξ ∀π ∈ Π.
()

For the resulting optimal reward function to corre-

spond to a desirable solution to the inverse RL problem,

it is important that the objective and the margin scaling

encode the proper prior knowledge. If a sparse reward

function is suggested by prior knowledge, then a -norm

might be more appropriate in the objective. An exam-

ple of a margin scaling function for a discrete MDP is

the number of states in which the action prescribed by

the policy π di�ers from the action prescribed by the
expert policy π∗. If the expert has only been observed in
a small number of states, then one could restrict atten-

tion to these states when evaluating this margin scaling

function.

Another way of encoding prior knowledge is by

restricting the reward function to belong to a certain

functional class, for example, the set of functions lin-

ear in a speci�ed set of features.�is approach is very

common, and is also important for statistical e�ciency.

It will be explained in the next section.

Remark.When using inverse RL to help us specify
a reward function for a given task based on an expert

demonstration, it is not necessary to explicitly resolve

the ambiguities in the reward function. In particular,

one can provably perform as well as the expert without

matching the expert’s reward function. More details are

given in Sect. ..

Statistical Efficiency As formulated thus far, solving the

inverse RL problem requires the knowledge (or accu-

rate statistical estimates) of µS(π∗). For most practical
problems, the number of states is large (or even in�nite)

and thus accurately estimating µS(π∗) requires a very
large number of expert demonstrations. �is (statisti-

cal) problem can be resolved by restricting the reward

function to belong to a prespeci�ed class of functions.

�e common approach is to assume the reward function

R can be expressed as a linear combination of a known
set of features. In particular, we have R(s) = w⊺ϕ(s).
Using this assumption, we can use the expression for the

utility of the policy π from Eq. ().
Rewriting Eq. (), we now have the following con-

straints in the reward weights w:

Inverse Reinforcement Learning I

I

min
w,ξ

∥w∥ + Cξ

s.t. w⊺µϕ(π∗) ≥ w⊺µϕ(π) + h(π∗, π) − ξ ∀π ∈ Π.

()

�is new formulation requires only estimates of the

expected feature counts µϕ(π∗), rather than estimates
of the distribution over the state space µS(π∗). Assum-
ing the number of features is smaller than the number

of states, this signi�cantly reduces the number of expert

demonstrations required.

Computational Efficiency For concreteness, we will

consider the formulation of Eq. (). Although the num-

ber of variables is only equal to the number of features

in the reward function, the number of constraints is

very large (equal to the number of stationary policies).

As a consequence, feeding the problem into a standard

quadratic programming (QP) solver will not work.

Ratli� et al. () suggested a formal computa-

tional approach to solving the inverse RL problem,

using standard techniques from convex optimization,

which provide convergence guarantees. More speci�-

cally, they used a subgradient method to optimize the

following equivalent problem:

min
w,ξ

∥w∥ + Cmax
π∈Π

(w⊺µϕ(π) + h(π∗, π)

−w⊺µϕ(π∗)) . ()

In each iteration, to compute the subgradient, it is suf-

�cient to �nd the optimal policy with respect to a

reward function that is easily determined from the cur-

rent reward weights w and the margin scaling function
h(π∗, ⋅). In more recent work, Ratli�, Bradley, Bagnell,
and Chestnutt () proposed a boosting algorithm

to solve a formulation similar to Eq. (), which also

includes feature selection.

A Generative Approach to Inverse RL

Abbeel and Ng () made the following observation,

which resolves the ambiguity problem in a completely

di�erent way: if, for a policy π, we have that µϕ(π) =
µϕ(π∗), then the following holds:

U(π) = w⊺µϕ(π) = w⊺µϕ(π∗) = U(π∗),

no matter what the value of w is. �us, to perform
as well as the expert, it is su�cient to �nd a policy

that attains the same expected feature counts µϕ as the
expert.

Abbeel andNgprovide an algorithm that �nds a pol-

icy π satisfying µϕ(π) = µϕ(π∗).�e algorithm iterates
over two steps: () generate a reward function by solving

aQP; () solve theMDP for the current reward function.

In contrast to the previously described inverse RL

methods, which focus on merely recovering a reward

function that could explain the expert’s behavior, this

inverse RL algorithm is shown to �nd a policy that

performs at least as well as the expert. �e algo-

rithm is shown to converge in a polynomial number of

iterations.

Apprenticeship Learning: Inverse RL
Versus Imitation Learning
Inverse RL alleviates the need to specify a reward

function for a given task when expert demonstrations

are available. Alternatively, one could directly estimate

the policy of the expert using a standard machine-

learning algorithm, since it is simply a mapping from

state to action.�e latter approach, o�en referred to as

7imitation learning or 7behavioral cloning, has been
successfully tested on a variety of tasks, including learn-

ing to �y in a �xed-wing �ight simulator (Sammut,

Hurst, Kedzier, & Michie,), and learning to drive

a car (Pomerleau,).

�e behavioral cloning approach can be expected to

be successful whenever the policy class to be consid-

ered can be learned e�ciently fromdata. In contrast, the

inverse RL approach relies on having a reward function

that can be estimated e�ciently from data.

Cross References
7Apprenticeship Learning
7Reinforcement Learning
7Reward Shaping

Recommended Reading
Abbeel, P., & Ng, A. Y. (). Apprenticeship learning via inverse

reinforcement learning. In Proceedings of ICML, Banff, Alberta,
Canada.

Doya, K., & Sejnowski, T. (). A novel reinforcement model of

birdsong vocalization learning. In Neural Information Process-
ing Systems . Cambridge, MA: MIT Press.

 I Inverse Resolution

Montague, P. R., Dayan, P., Person, C., & Sejnowski, T. J. (). Bee

foraging in uncertain environments using predictive hebbian

learning. Nature, (), –.
Pomerleau, D. (). ALVINN: An autonomous land vehicle in a

neural network. In NIPS . San Francisco, CA: Morgan Kauf-
mann.

Ratliff, N., Bagnell, J., & Zinkevich, M. (). Maximum margin

planning. In Proceedings of ICML, Pittsburgh, Pennsylvania.
Ratliff, N., Bradley, D., Bagnell, J., & Chestnutt, J. (). Boost-

ing structured prediction for imitation learning. In Neural
Information Processing Systems . Cambridge, MA: MIT Press.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (). Learning to

fly. In Proceedings of ICML. Aberdeen, Scotland, UK.
Schmajuk, N. A., & Zanutto, B. S. (). Escape, avoidance, and

imitation. Adaptive Behavior, , –.
Taskar, B., Guestrin, C., & Koller, D. (). Max-margin Markov

networks. In Neural Information Processing Systems Conference
(NIPS), Vancouver, Canada.

Touretzky, D. S., & Saksida, L. M. (). Operant conditioning in

skinnerbots. Adaptive Behavior, , –.
Watkins, C. J. (). Models of delayed reinforcement learning. PhD

thesis, Psychology Department, Cambridge University.

Inverse Resolution

Definition
Inverse resolution is, as the name indicates, a rule that

inverts resolution.�is follows the idea of induction as

the inverse of deduction formulated in the 7logic of
generality.�e resolution rule is the best-known deduc-

tive inference rule, used in many theorem provers and

logic programming systems. 7Resolution starts from
two 7clauses and derives the resolvent, a clause that
is entailed by the two clauses. �is can be graphically

represented using the following schema (for proposi-

tional logic).

h← g, a, . . . , an and g ← b, . . . , bm
h← b, . . . , bm, a, . . . , an

.

Inverse resolution operators, such as absorption () and
identi�cation (), invert this process. To this aim, they
typically assume the resolvent is given together with

one of the original clauses and then derive the missing
clause.�is leads to the following two operators, which

start from the clauses below and induce the clause above

the line.

h← g, a, . . . , an and g ← b, . . . , bm
h← b, . . . , bm, a, . . . , an and g ← b, . . . , bm

,

h← g, a, . . . , an and g ← b, . . . , bm
h← b, . . . , bm, a, . . . , an and h← g, a, . . . , an

.

�e operators are shown here only for the proposi-

tional case, as the �rst order case is more involved as

it requires one to deal with substitions as well as inverse

substitutions.

As one example, consider the clauses

(1) flies :- bird, normal.
(2) bird :- blackbird.
(3) flies :- blackbird, normal.

Here, () is the resolvent of () and (). Furthermore,

starting from () and (), the absorption operator would

generate (), and starting from () and (), the identi�-

cation operator would generate ().

Cross References
7First-Order Logic
7Logic of Generality
7Resolution

Is More General Than

7Logic of Generality

Is More Specific Than

7Logic of Generality

Item

7Instance

Iterative Classification

7Collective Classi�cation

J

Junk Email Filtering

7Text Mining for Spam Filtering

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

K

k-Armed Bandit

ShieMannor
Israel Institute of Technology, Haifa, Israel

Synonyms
Multi-armed bandit; Multi-armed bandit problem

Definition
In the classical k-armed bandit problem, there are k
alternative arms, each with a stochastic reward whose
probability distribution is initially unknown. A decision
maker can try these arms in some order, which may
depend on the rewards that have been observed so far.
A commonobjective in this context is to �nd a policy for
choosing the next arm to be tried, under which the sum
of the expected rewards comes as close as possible to
the ideal reward, that is, the expected reward that would
be obtained if it were to try the “best” arm at all times.
�ere are many variants of the k-armed bandit problem
that are distinguished by the objective of the decision
maker, the process governing the reward of each arm,
and the information available to the decision maker at
the end of every trial.

Motivation and Background
k-Armed bandit problems are a family of sequential
decision problems that are among the most studied
problems in statistics, control, decision theory, and
machine learning. In spite of their simplicity, they
encompass many of the basic problems of sequential
decision making in uncertain environments such as the
tradeo� between exploration and exploitation.

�ere are many variants of bandit problems includ-
ing Bayesian, Markovian, adversarial, budgeted, and
exploratory variants. Bandit formulations arise natu-
rally in multiple �elds and disciplines including com-
munication networks, clinical trials, search theory,

scheduling, supply chain automation, �nance, control,
information technology, etc. (Berry & Fristedt, ;
Cesa-Bianchi & Lugosi, ; Gittins,).

�e term “multi-armed bandit” is borrowed from
the slang term for a slot machine (the one-armed ban-
dit), where a decision maker has to decide whether to
insert a coin into the gambling machine and pull a lever
possibly getting a signi�cant reward, or to quit without
spending any money.

Theory
We brie�y review some of the most popular bandit
variants.

The Stochastic k-Armed Bandit Problem
�e classical stochastic bandit problem is described as
follows.�ere are k arms (or machines or actions) and
a single decision maker (or controller or agent). Each
arm corresponds to a discrete time Markov process. At
each timestep, the decision maker observes the current
state of each arm’s process and selects one of the arms.
As a result, the decision maker obtains a reward from
the process of the selected arm and the state of the cor-
responding process changes. Arms that are not selected
are “frozen” and their processes remain in the same
state.�e objective of the decisionmaker is tomaximize
her (discounted) reward.
More formally, let the state of arm n’s process at stage

t be xn(t).�en, if the decision maker selects armm(t)
at time t we have that:

xn(t +) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xn(t) n ≠ m(t)

fn (xn(t),ω) n = m(t)
,

where fn(x,ω) is a function that describes the (possi-
bly stochastic) transition probability of the n-th process
and accepts the state of the n-th process and a random
disturbance ω.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 K k-Armed Bandit

�e reward the decision maker receives at time t is
a function of the current state and a random element:
r(xm(t)(t),ω). �e objective of the decision maker is
to maximize her cumulative discounted reward.�at is,
she wishes to maximize

V = Eπ [
∞
∑
t=

γtr (xm(t) (t) ,ωt)] ,

where Eπ is the expectation obtained when following
policy π and γ is a discount factor (< γ <). A policy
is a decision rule for selected arms as a function of the
state of the processes.

�is problem can be solved using 7dynamic pro-
gramming, but the state space of the joint Markov deci-
sion process is exponential in the number of arms.
Moreover, the dynamic programming solution does
not reveal the important structural properties of the
solution.
Gittins and Jones () showed that there exists

an optimal index policy. �at is, there is a function
that maps the state of each arm to real number (the
“index”) such that the optimal policy is to choose the
armwith the highest index at any given time.�erefore,
the stochastic bandit problem reduces to the problem of
computing the index, which can be easily done in many
important cases.

Regret Minimization for the Stochastic
k-Armed Bandit Problem
A di�erent �avor of the bandit problem focuses on the
notion of regret, or learning loss. In this formulation,
there are k arms as before and when selecting arm m a
reward that is independent and identically distributed
is given (the reward depends only on the identity of
the arm and not on some internal state or the results
of previous trials).�e decision maker’s objective is to
obtain high expected reward. Of course, if the decision
maker had known the statistical properties of each arm,
she would have always chosen the arm with the highest
expected reward. However, the decisionmaker does not
know the statistical properties of the arms in advance, in
this setting.
More formally, if the reward when choosing arm m

has expectation rm, the regret is de�ned as:

r(t) = t ⋅max≤m≤k rm − Eπ [
t

∑
τ=

r(τ)] ,

where r(t) is sampled from the armm(t).�is quantity
represents the expected loss for not choosing the arm
with the highest expected reward on every timestep.

�is variant of the bandit problem highlights the
tension between acquiring information (exploration)
and using the available information (exploitation).�e
decision maker should carefully balance between the
two since if she chooses to only try the arm with
the highest estimated reward she might regret not
exploring other arms whose reward is underestimated
but is actually higher than the reward of the arm with
highest estimated reward.
A basic question in this context is whether R(t) can

be made to grow sub-linearly. Robbins () answered
this question in the a�rmative. It was later proved
(Lai & Robbins,) that it is possible in fact to obtain
logarithmic regret (the growth of the regret is loga-
rithmic in the number of timesteps). Matching lower
bounds (and constants) were also derived.

The Non-stochastic k-Armed Bandit
Problem
A third popular variant of the bandit problem is the
non-stochastic one. In this problem, it is assumed that
the sequence of rewards each arm produces is deter-
ministic (possibly adversarial).�e decision maker, as
in the stochastic bandit problem, wants to minimize
her regret, where the regret is measured with respect
to the best �xed arm (this best arm might change with
time, however). Letting the reward of arm m at time t
be rm(t), we rede�ne the regret as:

r(t) = max≤m≤k
t

∑
τ=

rm(τ) − Eπ [
t

∑
τ=

r(τ)],

where the expectation is now taken with respect to ran-
domness in the arm selection.�e basic question here is
if the regret can be made to grow sub-linearly.�e case
where the reward of each arm is observedwas addressed
in the s (see Cesa-Bianchi & Lugosi, , for a
discussion), where it was shown that there are algo-
rithms that guarantee that the regret grows like

√
t. For

the more di�cult case, where only the reward of the
selected arm is observed and that the rewards of the
other arms may not be observed it was shown (Auer,
Cesa-Bianchi, Freund, & Schapire,) that the same
conclusion still holds.

K-Means Clustering K

K

It should be noticed that the optimal policy of the
decision maker in this adversarial setting is generally
randomized. �at is, the decision maker has to select
an action at random by following some distribution.
�e reason is that if the action the decision maker takes
is deterministic and can be predicted by Nature, then
Nature can consistently “give” the decision maker a low
reward for the selected armwhile “giving” a high reward
to all other arms, leading to a linear regret.

�ere are some interesting relationships between
the non-stochastic bandit problem and prediction with
expert advice, universal prediction, and learning in
games (Cesa-Bianchi & Lugosi,).

The Exploratory k-Armed Bandit Problem
�is bandit variant emphasizes e�cient exploration
rather than on the exploration–exploitation tradeo�. As
in the stochastic bandit problem, the decision maker
is given access to k arms where each arm is associ-
ated with an independent and identically distributed
random variable with unknown statistics.�e decision
maker’s goal is to identify the “best” arm. �at is, the
decision maker wishes to �nd the arm with the highest
expected reward as quickly as possible.

�e exploratory bandit problem is a sequential
hypothesis testing problem but with the added com-
plication that the decision maker can choose where to
sample next, making it among the simplest active learn-
ing problems. In the context of the probably approx-
imate correct (PAC) setup, it was shown (Mannor &
Tsitsiklis,) that �nding the ε-optimal arm (that is,
an arm whose expected reward is lower than that of the
best arm by at most ε) with probability of at least − δ
requires

O(k
ε
log(

δ
))

samples on expectation. Moreover, this bound can be
obtained (up to multiplicative constants) via an algo-
rithm known as median elimination.
Bandit analyses such as these have played a key

role in understanding the e�ciency of7reinforcement-
learning algorithm as well.

Cross References
7Active Learning
7Associative Bandit Problems

7Dynamic Programming
7Machine Learning in Games
7Markov Processes
7PAC Learning
7Reinforcement Learning

Recommended Reading
Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (). The

non-stochastic multi-armed bandit problem. SIAM Journal on
Computing, (), –.

Berry, D., & Fristedt, B. (). Bandit problems: Sequential alloca-
tion of experiments. London/New York: Chapman and Hall.

Cesa-Bianchi, N., & Lugosi, G. (). Prediction, learning, and
games. New York: Cambridge University Press.

Gittins, J. C. (). Multi-armed bandit allocation indices. New
York: Wiley.

Gittins, J., & Jones, D. (). A dynamic allocation index for sequen-
tial design of experiments. In Progress in statistics, European
Meeting of Statisticians (Vol. , pp. –).

Lai, T. L., & Robbins, H. (). Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, , –.

Mannor, S., & Tsitsiklis, J. N. (). The sample complexity of
exploration in the multi-armed bandit problem. Journal of
Machine Learning Research, , –.

Robbins, H. (). Some aspects of the sequential design of exper-
iments. Bulletin of the American Mathematical Society, ,
–.

K-Means Clustering

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

K-means (Lloyd, ; MacQueen,) is one of the
most popular clustering methods. Algorithm shows
the procedure of K-means clustering. �e basic idea
is: Given an initial but not optimal clustering, relocate
each point to its new nearest center, update the clus-
tering centers by calculating the mean of the member
points, and repeat the relocating-and-updating process
until convergence criteria (such as prede�ned number
of iterations, di�erence on the value of the distortion
function) are satis�ed.

�e task of initialization is to form the initial
K clusters. Many initializing techniques have been pro-
posed, from simple methods, such as choosing the �rst
K data points, Forgy initialization (randomly choosing
K data points in the dataset) and Random partitions

 K K-Medoids Clustering

(a) Initialization (b) Re-assignment

K-Means Clustering. Figure . K-Means clustering example (K =). The center of each cluster is marked by “x”

(dividing the data points randomly into K subsets),
to more sophisticated methods, such as density-based
initialization, Intelligent initialization, Furthest First
initialization (FF for short, it works by picking the
�rst center point randomly, then adding more center
points which are furthest from existing ones), and sub-
set furthest-�rst (SFF)initialization. For more details,
refer to paper Steinley and Brusco () which pro-
vides a survey and comparison of over initialization
methods.
Figure shows an example ofK-means clustering on

a set of points, withK = .�e clusters are initialized by
randomly selecting two points as centers.

Complexity analysis. Let N be the number of points,
D the number of dimensions, and K the number of
centers. Suppose the algorithm runs I iterations to
converge.�e space complexity of K-means clustering
algorithm isO(N(D+K)). Based on the number of dis-
tance calculations, the time complexity of K-means is
O(NKI).

Algorithm K-means clustering algorithm
Require: K, number of clusters;D, a data set ofN points
Ensure: A set of K clusters
. Initialization.
. repeat
. for each point p in D do
. �nd the nearest center and assign p to the

corresponding cluster.
. end for
. update clusters by calculating new centers using

mean of the members.
. until stop-iteration criteria satis�ed
. return clustering result.

Recommended Reading
Lloyd, S. P. (). Least squares quantization in PCM. Technical

Report RR-, Bell Lab, September .
MacQueen, J. B. (). Some methods for classification and

analysis of multivariate observations. In L. M. Le Cam &
J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability (Vol. , pp. –).
California: University of California Press.

Steinley, D., & Brusco, M. J. (). Initializing k-means batch clus-
tering: A critical evaluation of several techniques. Journal of
Classification, (), –.

K-Medoids Clustering

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

�e K-means clustering algorithm is sensitive to out-
liers, because amean is easily in�uenced by extreme val-
ues.K-medoids clustering is a variant ofK-means that is
more robust to noises and outliers. Instead of using the
mean point as the center of a cluster, K-medoids uses
an actual point in the cluster to represent it. Medoid
is the most centrally located object of the cluster, with
minimum sum of distances to other points. Figure
shows the di�erence between mean and medoid in a
-D example.�e group of points in the right form a
cluster, while the rightmost point is an outlier. Mean is
greatly in�uenced by the outlier and thus cannot repre-
sent the correct cluster center, while medoid is robust to
the outlier and correctly represents the cluster center.
Partitioning around medoids (PAM) (Kaufman &

Rousseeuw,) is a representative K-medoids clus-
tering method. �e basic idea is as follows: Select
K representative points to form initial clusters, and then

K-Way Spectral Clustering K

K

(a) Mean (b) Medoid

K-Medoids Clustering. Figure . Mean vs. medoid in -D space. In both figures (a) and (b), the group of points in the

right form a cluster and the rightmost point is an outlier. The red point represents the center found by mean or medoid

repeatedly moves to better cluster representatives. All
possible combinations of representative and nonrep-
resentative points are analyzed, and the quality of the
resulting clustering is calculated for each pair. An orig-
inal representative point is replaced with the new point
which causes the greatest reduction in distortion func-
tion. At each iteration, the set of best points for each
cluster form the new respective medoids.

�e time complexity of the PAM algorithm is
O(K(N − K)I). PAM is not scalable for large dataset,
and some algorithms have been proposed to improve
the e�ciency, such as Clustering LARge Applications
(CLARA) (Kaufman & Rousseeuw,) and Clus-
tering Large Applications based upon RANdomized
Search (CLARANS) (Ng & Han,).

Recommended Reading
Kaufman, L., & Rousseeuw, P. J. (). Finding groups in data: An

introduction to cluster analysis (Wiley series in probability and
statistics). New York: Wiley-Interscience.

Ng, R. T., & Han, J. (). Clarans: A method for clustering objects
for spatial data mining. IEEE Transactions on Knowledge and
Data Engineering, (), –.

K-Way Spectral Clustering

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

In spectral clustering (Luxburg,), the dataset is
represented as a similarity graph G= (V ,E). �e ver-
tices represent the data points. Two vertices are con-
nected if the similarity between the corresponding data

points is larger than a certain threshold, and the edge is
weighted by the similarity value. Clustering is achieved
by choosing a suitable partition of the graph that each
group corresponds to one cluster.
A good partition (i.e., a good clustering) is that

the edges between di�erent groups have overall low
weights and the edges within a group have high weights,
which indicates that the points in di�erent clusters are
dissimilar from each other and the points within the
same cluster are similar to each other. One basic spec-
tral clustering algorithm �nds a good partition in the
following way:
Given a set of data points P and the similaritymatrix

S, where Sij measures the similarity between points
i, j ∈ P, form a graph. Build a Laplacian matrix L of the
graph,

L = I −D−/SD−/, ()

where D is the diagonal matrix

Dii =∑
j
Sij. ()

Find the eigenvalues and eigenvectors of the matrix
L, map the vertices to corresponding components and
form clusters based on the embedding space.

�e methods to �nd K clusters include recursive
bipartitioning and clusteringmultiple eigenvectors.�e
former technique is ine�cient and unstable.�e latter
approach is more preferable because it is able to prevent
instability due to information loss.

Recommended Reading
Luxburg, U. (). A tutorial on spectral clustering. Statistics and

Computing, (), –.

 K Kernel Density Estimation

Kernel Density Estimation

7Density Estimation

Kernel Matrix

Synonyms
Gram matrix

Definition
Given a kernel function k : X × X → and patterns
x, . . . , xm ∈ X, them×mmatrix K with elements Kij :=
k(xi, xj) is called the kernel matrix of k with respect to
x, . . . , xm.

Kernel Methods

Xinhua Zhang
Australian National University, Canberra, Australia
NICTA London Circuit, Canberra, Australia

Definition
Kernel methods refer to a class of techniques that
employ positive de�nite kernels. At an algorithmic level,
its basic idea is quite intuitive: implicitly map objects
to high-dimensional feature spaces, and then directly
specify the inner product there. As a more principled
interpretation, it formulates learning and estimation
problems in a reproducing kernel Hilbert space, which
is advantageous in a number of ways:

● It induces a rich feature space and admits a large class
of (nonlinear) functions.

● It can be �exibly applied to a wide range of domains
including both Euclidean and non-Euclidean spaces.

● Searching in this in�nite-dimensional space of func-
tions can be performed e�ciently, and one only
needs to consider the �nite subspace expanded by
the data.

● Working in the linear spaces of function lends signif-
icant convenience to the construction and analysis of
learning algorithms.

Motivation and Background
Over the past decade, kernelmethods have gainedmuch
popularity in machine learning. Linear estimators have
been popular due to their convenience in analysis and
computation. However, nonlinear dependencies exist
intrinsically in many real applications, and are indis-
pensable for e�ective modeling. Kernel methods can
sometimes o�er the best of both aspects. �e repro-
ducing kernel Hilbert space provides a convenient way
to model nonlinearity, while the estimation is kept lin-
ear. Kernels also o�er signi�cant �exibility in analyzing
generic non-Euclidean objects such as graphs, sets, and
dynamic systems.Moreover, kernels induce a rich func-
tion space where functional optimization can be per-
formed e�ciently. Furthermore, kernels have also been
used to de�ne statisticalmodels via exponential families
or Gaussian processes, and can be factorized by graph-
ical models. Indeed, kernel methods have been widely
used in almost all tasks in machine learning.

�e reproducing kernel was �rst studied by Aron-
szajn (). Poggio and Girosi () and Wahba
() used kernels for data analysis and Boser, Guyon,
and Vapnik () incorporated kernel function into
the maximum margin models. Schölkopf, Smola, and
Müller () �rst used kernels for principal component
analysis.

Theory
Positive semi-de�nite kernels are the most commonly
used type of kernels, and its motivation is as follows.
Given two objects x, x from a space X , which is
not necessarily Euclidean, we map them to a high-
dimensional feature space via ϕ(x) and ϕ(x), and
then compute the inner products there by k(x, x) =
⟨ϕ(x), ϕ(x)⟩. In many algorithms, the set {xi} in�u-
ences learning only via inner products between xi and
xj, hence it is su�cient to specify k(x, x) directly
without explicitly de�ning ϕ. �is leads to consid-
erable savings in computation, when ϕ ranges in
high-dimensional spaces or even in�nite-dimensional
spaces. Clearly, the function k must satisfy some con-
ditions. For example, as a necessary condition, for any
�nite number of examples x, . . . , xn fromX , thematrix

K := (k(xi, xj))i,j =(ϕ(x), . . . , ϕ(xn))⊺

(ϕ(x), . . . , ϕ(xn))

Kernel Methods K

K

must be positive semi-de�nite. Surprisingly, this turns
out to be a su�cient condition as well, and hence we
de�ne the positive semi-de�nite kernels.

De�nition (Positive semi-de�nite kernels) Let X
be a nonempty set. A function k : X × X ↦ R is
called a positive semi-de�nite kernel if for any n ∈N and
x, . . . , xn ∈ X , the Gram matrix K := (k(xi, xj))i,j is
symmetric and positive semi-de�nite (psd).

Reproducing Kernel Hilbert Space

Given a psd kernel k, we are able to construct a map
ϕ from X to an inner product space H, such that
⟨ϕ(x), ϕ(x)⟩ = k(x, x).�e image of x under ϕ is
just a function ϕ(x) := k(x, ⋅), where k(x, ⋅) is a func-
tion of ⋅, assigning the value k(x, x′) for any x′ ∈X .
To de�ne inner products between functions, we need
to construct an inner product space H that contains
{k(x, ⋅) : x ∈ X}. First,H must contain the linear com-
binations {∑n

i= αik(xi, ⋅) : n ∈ N, xi ∈ X , αi ∈ R}.�en,
we endow it with an inner product as follows. For any
f , g ∈H and f = ∑n

i= αik(xi, ⋅), g = ∑m
j= βjk (x′j , ⋅), de�ne

⟨ f , g⟩ :=
n

∑
i=

m

∑
j=

αiβjk (xi, x′j) ,

and it is easy to show that this is well de�ned (indepen-
dent of the expansion of f and g). Using the induced
norm, we can complete the space and thus get a Hilbert
space H, which is called reproducing kernel Hilbert
space (RKHS). �e term “reproducing” is because for
any function f ∈H, ⟨ f , k(x, ⋅)⟩ = f (x).

Properties of psd Kernels

Let X be a nonempty set and k, k, . . . be arbitrary psd
kernels on X ×X .�en

● �e set of psd kernels is a closed convex cone, that
is, (a) if α, α ≥ , then αk + αk is psd; (b) if
k(x, x′) := limn→∞ kn(x, x′) exists for all x, x′, then k
is psd.

● �e pointwise product kk is psd.
● Assume for i = , , ki is a psd kernel on Xi × Xi,
whereXi is a nonempty set.�en the tensor product
k ⊗ k and the direct sum k ⊕ k are psd kernels on
(X ×X) × (X ×X).

Example Kernels

One of the key advantage of kernels lies in its applica-
bility to a wide range of objects.

Euclidean spaces: In Rn, popular kernels include
linear kernel k(x, x)= ⟨x, x⟩, polynomial kernels
k(x, x)= (⟨x, x⟩ + c)d where d ∈ N and c ≥ ,
Gaussian RBF kernels k(x, x) = exp(−γ ∥x − x∥)
where γ > , and Laplacian RBF kernels k(x, x) =
exp(−γ ∥x − x∥). Another useful type of kernels on
Euclidean spaces is the spline kernels.

Convolution kernels: Haussler () investigated
how to de�ne a kernel between composite objects by
building on the similarity measures that assess their
respective parts. It needs to enumerate all possible ways
to decompose the objects, hence e�cient algorithms
like dynamic programming are needed.

Graph kernels: Graph kernels are available in two
categories: between graphs and on a graph.�e �rst type
is similar to convolution kernels, which measures the
similarity between two graphs.�e second type de�nes
a metric between the vertices, and is generally based
on the graph Laplacian. By applying various transform
functions to the eigenvalue of the graph Laplacian,
various smoothing and regularization e�ects can be
achieved.

Fisher kernels: Kernels can also be de�ned between
probability densities p(x∣θ). LetUθ(x) = −∂θ log p(x∣θ)
and I =Ex [Uθ(x)U⊺

θ (x)] be the Fisher score and Fisher
information matrix respectively. �en the normalized
and unnormalized Fisher kernels are de�ned by

k(x, x′) = U⊺
θ (x)I

−Uθ(x′) and

k(x, x′) = U⊺
θ (x)Uθ(x′),

respectively. In theory, estimation using normalized
Fisher kernels corresponds to regularization on the
L(p(⋅∣θ)) norm. And in the context of exponential
families, the unnormalized Fisher kernels are identical
to the inner product of su�cient statistics.

Kernel Function Classes

Many machine learning algorithms can be posed as
functional minimization problems, and the RKHS is
chosen as the candidate function set.�e main advan-
tage of optimizing over an RKHS originates from the
representor theorem.

 K Kernel Methods

�eorem (Representor theorem) Denote by Ω :
[,∞) ↦ R a strictly monotonic increasing function, by
X a set, and by c : (X ×R)n ↦ R ∪ {∞} an arbitrary
loss function.�en each minimizer f ∈ H of the regular-
ized risk functional

c((x, y, f (x)), . . . , (xn, yn, f (xn))) +Ω (∥f ∥H) ()

admits a representation of the form

f (x) =
n

∑
i=

αik(xi, x).

�e representer theorem is important in that al-
though the optimization problem is in an in�nite-
dimensional spaceH, the solution is guaranteed to lie in
the span of n particular kernels centered on the training
points.

�e objective () is composed of two parts: the �rst
part measures the loss on the training set {xi, yi}ni=,
which depends on f only via its value at xi.�e second
part is the regularizer, which encourages small RKHS
norm of f . Intuitively, this regularizer penalizes the
complexity of f and prefers smooth f . When the kernel
k is translation invariant, that is, k(x, x) = h(x − x),
Smola, Schölkopf, andMüller () showed that ∥f ∥ is
related to the Fourier transform of h, with more penalty
imposed on the high frequency components of f .

Applications
Kernels have been applied to almost all branches of
machine learning.

Supervised Learning

One of the most well-known applications of kernel
method is the SVM for binary classi�cation. Its primal
form can be written as

minimize
w,b,ξ

λ

∥w∥ +

n

n

∑
i=

ξi,

s.t. yi(⟨w, xi⟩ + b) ≥ − ξi, and ξi ≥ , ∀i.

Its dual form can be written as

minimize
αi

λ∑i,j

yiyj ⟨xi, xj⟩ αiαj −∑
i

αi,

s.t. ∑
i
yiαi = , αi ∈ [,n−], ∀i.

Clearly, this can be extended to feature maps and ker-
nels by setting k(xi, xj) = ⟨xi, xj⟩. �e same trick can
be applied to other algorithms like ν-SVM, regression,
density estimation, etc. For multi-class classi�cation
and structured output classi�cation where the possi-
ble label set Y can be large, kernel maximum margin
machines can be formulated by introducing a joint ker-
nel on pairs of (xi, y) (y ∈ Y), that is, the feature map
takes the tuple (xi, y). Letting ∆(yi, y) be the discrep-
ancy between the true label yi and the candidate label y,
the primal form is

minimize
w,ξi

λ

∥w∥ +

n

n

∑
i=

ξi,

s.t. ⟨w, ϕ(xi, yi) − ϕ(xi, y)⟩ ≥ ∆(yi, y) − ξi, ∀ i, y,

and the dual form is

minimize
αi,y

λ ∑
(i,y),(i′ ,y′)

αi,yαi′ ,y′⟨ϕ(xi, yi)

− ϕ(xi, y), ϕ(xi′ , yi′) − ϕ(xi′ , y′)⟩

−∑
i,y
∆(yi, y)αi,y

s.t. αi,y ≥ , ∀ i, y; ∑
y

αi,y =

n
, ∀i.

Again all the inner products ⟨ϕ(xi, y), ϕ(xi′ , y′)⟩ can
be replaced by the joint kernel k((xi, y), (xi′ , y′)). Fur-
ther factorization using graphical models are possible
(see Taskar, Guestrin, & Koller,). Notice when
Y = {,−}, setting ϕ(xi, y) = yϕ(xi) recovers the
binary SVM formulation. E�ectivemethods to optimize
the dual objective include sequential minimal opti-
mization, exponentiated gradient (Collins, Globerson,
Koo, Carreras, & Bartlett,),mirror descent, cutting
plane, or bundle methods (Smola, Vishwanathan, & Le,
).

Unsupervised Learning

Data analysis can bene�t from modeling the distribu-
tion of data in feature space.�ere we can still use the
rather simple linear methods, which gives rise to non-
linear methods on the original data space. For exam-
ple, the principal components analysis (PCA) can be
extended to Hilbert spaces (Schölkopf et al.,),

Kernel Methods K

K

which allows for image denoising, clustering, and non-
linear dimensionality reduction.
Given a set of data points {xi}ni=, PCA tries to �nd a

direction d such that the projection of {xi} to d has the
maximal variance. Mathematically, one solves:

max
d:∥d∥=

Var{⟨xi,d⟩}⇐⇒

max
d:∥d∥=

d⊺
⎛
⎝

n
∑
i
xix⊺i −

n
∑
ij
xix⊺j

⎞
⎠
d,

which can be solved by �nding the maximum eigen-
value of the variance of {xi}. Along the same line, we
can map the examples to the RKHS and �nd the maxi-
mum variance projection direction again. Here we �rst
center the data, that is, let the feature map be ϕ̃(xi) =
ϕ(xi) −

n ∑j ϕ(xj), and de�ne a kernel k̃ based on the
centered feature. So we have ∑n

j= K̃ij = for all i. Now
the objective can be written as

max
f :∥f ∥H̃=

Var{⟨ϕ̃(xi), f ⟩H̃}⇐⇒ max
f :∥f ∥=

Var{f (xi)}

⇐⇒ max
f :∥f ∥≤

Var{f (xi)}. ()

Treat the constraint ∥f ∥ ≤ as an indicator function
Ω(∥f ∥) where Ω(x)= if x≤ and∞ otherwise.�en
the representer theorem can be invoked to guaran-
tee that the optimal solution is f = ∑i αik̃(xi, ⋅) for
some αi ∈R. Plugging it into (), the problem becomes
maxα :α⊺K̃α= α⊺K̃α. To get necessary conditions for
optimality, we write out the Lagrangian L = αK̃α −
λ(αK̃α −). Setting to the derivative over α, we get

K̃α = λK̃α. ()

�erefore α⊺K̃α = λ. Although () does not guaran-
tee that α is an eigenvector of K̃, one can show that for
each λ satisfying () there exists an eigenvector α of K̃
such that K̃α = λα. Hence, it is su�cient to study the
eigensystem of K̃ just like in the vanilla PCA. Once the
optimal α∗i is obtained, any data point x can be projected
to∑i α∗i k̃(xi, x).
More applications of kernels in unsupervised learn-

ing can be found in canonical correlation analysis, inde-
pendent component analysis (Bach & Jordan,),
kernelized independence criteria via Hilbert space
embeddings of distributions (Smola, Gretton, Song, &
Schölkopf,), etc.

Cross References
7Principal Component Analysis
7Support Vector Machine

Further Reading
A survey paper on kernel methods up to year is
Hofmann, Schölkopf, and Smola (). For an intro-
duction to SVMs and kernel methods, read Cristianini
and Shawe-Taylor (). More comprehensive treat-
ment can be found in Schölkopf and Smola (),
Shawe-Taylor and Cristianini (), and Steinwart and
Christmann (). As far as applications are con-
cerned, see Lampert () for computer vision and
Schölkopf, Tsuda, and Vert () for bioinformatics.
Finally, Vapnik () provides the details on statistical
learning theory.

Recommended Reading
Aronszajn, N. (). Theory of reproducing kernels. Transactions

of the American Mathematical Society, , –.
Bach, F. R., & Jordan, M. I. (). Kernel independent component

analysis. Journal of Machine Learning Research, , –.
Boser, B., Guyon, I., & Vapnik, V. (). A training algorithm

for optimal margin classifiers. In D. Haussler, (Ed.), Proceed-
ings of the annual conference computational learning theory,
(pp. –). Pittsburgh: ACM Press.

Collins, M., Globerson, A., Koo, T., Carreras, X., & Bartlett, P.
(). Exponentiated gradient algorithms for conditional ran-
dom fields and max-margin Markov networks. Journal of
Machine Learning Research, , –.

Cristianini, N., & Shawe-Taylor, J. (). An introduction to sup-
port vector machines and other kernel-based learning methods.
Cambridge: Cambridge University Press.

Haussler, D. (). Convolution kernels on discrete structures (Tech.
Rep. UCS-CRL--). University of California, Santa Cruz.

Hofmann, T., Schölkopf, B., & Smola, A. J. (). Kernel
methods in machine learning. Annals of Statistics, (),
–.

Lampert, C. H. (). Kernel methods in computer vision. Foun-
dations and Trends in Computer Graphics and Vision, (),
–.

Poggio, T., & Girosi, F. (). Networks for approximation and
learning. Proceedings of the IEEE, (), –.

Schölkopf, B., & Smola, A. (). Learning with Kernels. Cambridge:
MIT Press.

Schölkopf, B., Smola, A. J., & Müller, K.-R. (). Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural Compu-
tation, , –.

Schölkopf, B., Tsuda, K., & Vert, J.-P. (). Kernel methods in
computational biology. Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

 K Kernel Shaping

Smola, A. J., Gretton, A., Song, L., & Schölkopf, B. (). A Hilbert
space embedding for distributions. In International conference
on algorithmic learning theory. LNAI (Vol. , pp. –).
Springer, Berlin, Germany.

Smola, A. J., Schölkopf, B., & Müller, K.-R. (). The connection
between regularization operators and support vector kernels.
Neural Networks, (), –.

Smola, A., Vishwanathan, S. V. N., & Le, Q. (). Bundle methods
for machine learning. In D. Koller, & Y. Singer, (Eds.), Advances
in neural information processing systems (Vol.). Cambridge:
MIT Press.

Steinwart, I., & Christmann, A. (). Support vector machines.
Information Science and Statistics. Springer, New York.

Taskar, B., Guestrin, C., & Koller, D. (). Max-margin Markov
networks. In S. Thrun, L. Saul, & B. Schölkopf, (Eds.), Advances
in neural information processing systems (Vol. , pp. –).
Cambridge: MIT Press.

Vapnik, V. (). Statistical learning theory. New York: Wiley.
Wahba, G. (). Spline models for observational data. CBMS-

NSF regional conference series in applied mathematics (Vol.).
Philadelphia: SIAM.

Kernel Shaping

7Local Distance Metric Adaptation
7Locally Weighted Regression for Control

Kernel-Based Reinforcement
Learning

7Instance-Based Reinforcement Learning

Kernels

7Gaussian Process

Kind

7Class

Knowledge Discovery

7Text Mining for Semantic Web

Kohonen Maps

7Self-Organizing Maps

L

L-Distance

7Manhattan Distance

Label

A label is a target value that is associated with each

7object in 7training data. In 7classi�cation learn-
ing, labels are 7classes. In 7regression, labels are
numeric.

Labeled Data

Labeled data are 7data for which each 7object has
an identi�ed target value, the 7label. Labeled data
are used in 7supervised learning. �ey stand in con-
trast to unlabeled data that are used in 7unsupervised
learning.

Language Bias

Definition
A learner’s language bias is the set of hypotheses that can

be expressed using the hypothesis language employed

by the learner.

�is language bias can be implicit, or it can be

de�ned explicitly, using a bias speci�cation language

(see7Bias Speci�cation Language).

Cross References
7Learning as Search

Laplace Estimate

7Rule Learning

Latent Class Model

7Mixture Model

Latent Factor Models and Matrix
Factorizations

Definition
Latent Factor models are a state of the art method-

ology for model-based 7collaborative �ltering. �e
basic assumption is that there exist an unknown

low-dimensional representation of users and items

where user-item a�nity can be modeled accurately.

For example, the rating that a user gives to a movie

might be assumed to depend on few implicit factors

such as the user’s taste across various movie genres.

Matrix factorization techniques are a class of widely

successful Latent Factor models that attempt to �nd

weighted low-rank approximations to the user-item

matrix, where weights are used to hold out missing

entries. �ere is a large family of matrix factorization

models based on choice of loss function to measure

approximation quality, regularization terms to avoid

over�tting, and other domain-dependent formulations.

Lazy Learning

Geoffrey I. Webb

Monash University, Victoria, Australia

Definition
�e computation undertaken by a learning system can

be viewed as occurring at two distinct times,7training
time and 7consultation time. Consultation time is the
time between when an7object is presented to a system
for an inference to be made and the time when the

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC

 L Learning as Search

inference is completed. Training time is the time prior

to consultation time during which the system makes

inferences from training data in preparation for consul-

tation time. Lazy learning refers to any machine learn-

ing process that defers the majority of computation to

consultation time. Two typical examples of lazy learn-

ing are 7instance-based learning and 7Lazy Bayesian
Rules. Lazy learning stands in contrast to7eager learn-
ing in which the majority of computation occurs at

training time.

Discussion
Lazy learning can be computationally advantageous

when predictions using a single 7training set will only
be made for few objects.�is is because only the imme-

diate sections of the instance space that are occupied

by objects to be classi�ed need be modeled. In conse-

quence, no computation is expended in the modeling

areas of the instance space that are irrelevant to the

predictions that need to be made.�is can also be an

advantage when a training set is frequently updated,

as can be the case in 7online learning, as only the
applicable portions of each model are created.

Lazy learning can help improve prediction 7accu-
racy by allowing a system to concentrate on deriving the

best possible decision for the exact points of the instance

space for which predictions are to be made. In contrast,

eager learning can sometimes result in suboptimal pre-

dictions for some speci�c parts of the instance space as a

result of trade-o�s during the process of deriving a sin-

gle model that seeks to minimize average error over the

entire instance space.

Cross References
7Eager Learning
7Instance-Based Learning
7Locally Weighted Regression for Control
7Online Learning

Learning as Search

Claude Sammut

�e University of New South Wales, Sydney NSW,

Australia

Definition
Learning can be viewed as a search through the space

of all sentences in a concept description language for

a sentence that best describes the data. Alternatively, it

can be viewed as a search through all hypotheses in a

7hypothesis space. In either case, a generality relation
usually determines the structure of the search space.

Background
�e input to a learning program consists of descrip-

tions of objects from the universe (the 7training set)
and, in the case of 7supervised learning, an output
value associated with the example. A program is limited

in the concepts that it can learn by the representa-

tional capabilities of both the 7observation language
(i.e., the language used to describe the training exam-

ples) and 7hypothesis language (the language used to
describe the concept). For example, if an attribute/value

list is used to represent examples for an induction pro-

gram, the measurement of certain attributes and not

others places limits on the kinds of patterns that the

learner can �nd. �e learner is said to be biased by

its observation language.�e hypothesis language also

places constraints on what may andmay not be learned.

For example, in the language of attributes and values,

relationships between objects are di�cult to represent.

Whereas, amore expressive language, such as �rst-order

logic, can easily be used to describe relationships.�ese

biases are collectively referred to as representation bias.

Representational power comes at a price. Learning

can be viewed as a search through the space of all sen-

tences in a language for a sentence that best describes

the data.�e richer the language, the larger the search

space. When the search space is small, it is possible to

use “brute force” search methods. If the search space is

very large, additional knowledge is required to reduce

the search. Notions of generality and speci�city are

important for ordering the search (see7Generalization
and7Specialization).

Representation
�e representation of instances and concepts a�ects the

way a learning system searches for concept representa-

tions.

�e input to a learning program may take many

forms, for example, records in a database, pages of

text, images, audio, and other signals of continuous

data. Very o�en, the raw data are transformed into fea-

ture vectors or attribute/value lists. �e values of the

attributes or features may be continuous or discrete.

Learning as Search L

L

�ese representation by attribute/value lists is the obser-

vation language.

�e representation of the concept varies consider-

ably, depending on the approach taken for learning. In

7instance-based learning, concepts are represented by
a set of prototypical instances of the concept, so abstract

representations are not constructed at all. �is kind

of representation is said to be extensional. Instance-

based learning is also called 7lazy learning because
the learner does little work at the time that training

instances are presented. Rather, at classi�cation time,

the system must �nd the most similar instances to the

new example. See Fig. .

When instances are represented as feature vectors,

we can treat each feature or attribute as one dimension

in a multi-dimensional space. �e supervised learn-

ing problem can then be characterized as the prob-

lem of �nding a surface that separates objects that

belong to di�erent classes into di�erent regions. In the

case of unsupervised learning, the problem becomes

one of the �nding clusters of instances in the multi-

dimensional space.

Learning methods di�er in the way they repre-

sent and create the discrimination surfaces. In function

approximation, the learner searches for functions that

describes the surface (Fig.). Function approximation

methods can o�en produce accurate classi�ers because

+

+
+

+

+ +

+

-

-
-

-

- +
+ +

+

-

-

-

-

-
-

-

-

-

-

-

-

-

-

+ +

+

+

+

+

Learning as Search. Figure . The extension of an

Instance-Based Learning concept is shown in solid lines.

The dashed lines represent the target concept. A sample

of positive and negative examples is shown Adapted

from Aha, Kibler and Albert ()

they are capable of construction complex decision sur-

faces. However, the concept description is stored as a set

of coe�cients.�us, the results of learning are not easily

available for inspection by a human reader.

Rather than searching for discriminant functions,

symbolic learning systems �nd expressions equivalent

to sentences in some form of logic. For example, wemay

distinguish objects according to two attributes: size and

color. We may say that an object belongs to class if its

color is red and its size is very small tomedium. Follow-

ing the notation of Michalski (), the classes in Fig.

may be written as:

class← size = large ∧ color ∈ {red, orange}

class← size ∈ {small,medium} ∧ color

∈ {oragne, yellow}

class← size ∈ {v_small . . .medium} ∧ color = blue

Note that this kind of description partitions the uni-

verse with axis-orthogonal surfaces, unlike the function

approximation methods that �nd smooth surfaces to

discriminate classes (Fig.).

Useful insights into induction can be gained by visu-

alizing it as searching for a discrimination surface in a

multi-dimensional space. However, there are limits to

this geometric interpretation of learning. If we wish to

learn concepts that describe complex objects and rela-

tionships between the objects, it is o�en useful to rely on

reasoning about the concept description language itself.

As we saw, the concepts in Fig. can be expressed

as clauses in propositional logic. We can establish a

correspondence between sentences in the concept des-

Learning as Search. Figure . A linear discrimination

between two classes

 L Learning as Search

V_small

V_large

small

medium

large

red orange yellow green blue violet

Class1 Class1

Class2

Class2

Class3

Class3

Class3

Class2

Learning as Search. Figure . Discrimination on attributes and values

+

+
+

+

+ +

+

-

-
-

-

-

+

+

+
+

-

-

-

-

-

-

-

-

-

-

-

+ +

+

+

+

+

Learning as Search. Figure . The dashed line shows the

real division of objects in the universe. The solid lines

show a decision tree approximation

cription language (the hypothesis language) and a

diagrammatic representation of the concept. More

importantly, we can create a correspondence between

generalization and specialization operations on the sets

of objects and generalization and specialization opera-

tions on the sentences of the language.

Once we have established the correspondence

between sets of objects and their descriptions, it is o�en

convenient to forget about the objects and only consider

that we are working with expressions in a language. For

example, the clause

class← size = large ∧ color = red ()

can be generalized to

class← size = large ()

by dropping one of the conditions.�us, we can view

learning as search through a generalization lattice that is

created by applying di�erent syntactic transformations

on sentences in the hypothesis language.

Version Spaces and Subsumption
Mitchell (,) de�nes the version space for a

learning algorithm as the subset of hypotheses consis-

tent with the training examples.�at is, the hypothesis

language is capable of describing a large, possibly in�-

nite, number of concepts.When searching for the target

concept, we are only interested in the subset of sen-

tences in the hypothesis language that are consistent

with the training examples, where consistentmeans that

the examples are correctly classi�ed. We can used the

generality of concepts to help us limit our search to only

those hypotheses in the version space.

In the above example, we stated that clause () is

more general than clause (). In doing so, we assumed

that there is a general-to-speci�c ordering on the sen-

tences in the hypothesis language.We can formalize the

generality relation as follows. A hypothesis, h, is a predi-

cate thatmaps an instance to true or false.�at is, if h(x)
is true then x is hypothesized to belong to the concept

being learned, the target. Hypothesis, h, ismore general

than or equal to h, if h covers at least asmany examples

as h (Mitchell,).�at is, h ≥ h if and only if

(∀x)[h(x)→ h(x)]

A hypothesis, h, is strictly more general than h, if h ≥
h and h ≰ h.

Note that themore general than ordering is strongly

related to subsumption (see 7subsumption and the

Learning as Search L

L

7Logic of Generality). Where the above de�nition of
the generality relation is given in terms of the cover of

a hypothesis, subsumption de�nes a generality ordering

on expressions in the hypothesis language.

Learning algorithms can use the more general than

relation to order their search for the best hypothesis.

Because generalizations and specializations may not be

unique, this relation forms a lattice over the sentences

in the hypothesis language, as illustrated in Fig. . A

search may start from the set of most speci�c hypothe-

ses that �t the training data and perform a speci�c-

to-general search or it may start from the set of most

general hypotheses and perform a general-to-speci�c

search.�e search algorithm may also be bidirectional,

combining both.

In Fig. , each node represents a hypothesis. �e

learning algorithm searches this lattice in an attempt

to �nd the hypothesis that best �ts the training data.

Like searching in any domain, the algorithm may keep

track of one node at a time, as in depth �rst or best

�rst searches, or it may create a frontier of nodes as in

breadth �rst or beam searches.

Supposewehave single-hypothesis search.A speci�c-

to-general search may begin by randomly selecting a

positive training example and creating a hypothesis that

the target concept is exactly that example. Each time a

new positive example is seen that is not covered by the

hypothesis, the hypothesismust be generalized.�at is, a

new hypothesis is constructed that is general enough to

cover all the examples covered by the previous hypothe-

sis, as well as covering the new example. If the algorithm

sees a negative example that is incorrectly covered by

the current hypothesis, then the hypothesis must be

h1

h2

h3

Specific

General

Learning as Search. Figure . Generalization lattice

specialized.�at is, a new hypothesis is construct that is

more speci�c than the current hypothesis such that all

the positive examples that were previously covered are

still covered by the new negative example is excluded.

A similar method can be used for a general-to-

speci�c search. In this case, the initial hypothesis is that

the target concept covers every object in the universe.

In both cases, the algorithm must choose how to con-

struct either generalizations or specializations.�at is, a

method is needed to choose which nodes in the search

to expand next. Here, the7least general generalization
(Plotkin,) or the 7most general specialization are
useful.�ese de�ne the smallest steps that can be taken

in expanding the search. For example, in Fig. , h is the

minimal specialization that can be made from h or h
in a general-to-speci�c search that starts from the top

of the lattice. Similarly, h and h are the least general

generalizations of h. A search for the target concept

can begin with an initial hypothesis and make minimal

generalizations or specializations in expanding the next

node in the search.

Rather thanmaintaining on a single current hypoth-

esis, a search strategy may keep a set of candidate

hypotheses. For example, a breadth �rst search gener-

alizing from hypothesis h will create a frontier for the

search that is the set {h, h}. When there are many
ways in which an hypothesis can be generalized or spe-

cialized, the size of the frontier set may be large. In

algorithms such asAq (Michalski,) andCN (Clark

and Niblett,), a beam search is used. Rather than

storing all possible hypotheses, the n best are kept are

stored, where “best” can be de�ned in several ways. One

metric for comparing hypotheses is given by

Pc +Nc̄

P +N

where P and N are the number of positive and nega-

tive instances, respectively; Pc is the number of posi-

tive instances covered by the hypothesis; and Nc̄ is the

number of negative instances not covered.

Mitchell’s () candidate-elimination algorithm

performs a bidirectional search in the hypothesis space.

It maintains a set, S, of most speci�c hypotheses that

are consistent with the training data and a set, G,

of most general hypotheses consistent with the train-

ing data. �ese two sets form two boundaries on the

version space. As new training examples are seen, the

 L Learning as Search

Algorithm .�e candidate-elimination algorithm, a�er Mitchell ()
Initialize G to the set of maximally general hypotheses in the hypothesis space
Initialize S to the maximally speci�c hypotheses in the hypothesis space
For each training example, d,
if d is a positive example
remove from G any hypothesis inconsistent with d

For each hypothesis, s, in S that is not consistent with d
remove s from S

add all minimal generalizations, h, of s such that
h is consistent with d and some member of G is more general than h

remove from S any hypothesis that is more general than another hypothesis in S

if d is a negative example
remove from S any hypothesis inconsistent with d

For each hypothesis, g, in G that is not consistent with d
remove g from G

add all minimal specializations, h, of g such that
h is consistent with d and some member of S is more general than h

remove from G any hypothesis that is less general than another hypothesis in G

boundaries are generalized or specialized to maintain

consistency. If a new positive example is not covered by

a hypothesis in S, then it must be generalized. If a new

negative example is not rejected by an hypotheses in G,

then it must be specialized. Any hypothesis in G not

consistent with a positive example is removed and any

hypothesis in S not consistent with a negative example

is also removed. See Algorithm .

Noisy Data
Up to this point, we have assumed that the training

data are free of noise. �at is, all the examples are

correctly classi�ed and all the attribute values are cor-

rect. Once we relax this assumption, the algorithms

described above must be modi�ed to use approximate

measures of consistency.�e danger presented by noisy

data is that the learning algorithmwill over �t the train-

ing data by creating concept descriptions that try to

cover the bad data as well as the good. For methods to

handle noisy data see the entries in7pruning.
Several standard texts give good introductions to

search in learning, including Langley (), Mitchell

(), Bratko (), Russell and Norvig ().

Cross References
7Decision Tree Learning
7Generalization

7Induction
7Instance-Based Learning
7Logic of Generality
7Rule Learning
7Subsumption

Recommended Reading
Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, (), –.

Bratko, I. (). Prolog programming for artificial intelligence (rd

ed.). Boston, MA: Addison-Wesley.

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, (), –.

Langley, P. (). Elements of machine learning. San Mateo: Morgan

Kaufmann.

Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),Machine learning:

An artificial intelligence approach. Palo Alto: Tioga.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S.

Mitchell, T. M. (). Version spaces: A candidate elimination

approach to rule-learning (pp. –). In Proceedings of

the fifth international joint conference on artificial intelligence,

Cambridge.

Mitchell, T. M. (). Generalization as search. Artificial Intelli-

gence, (), –.

Mitchell, T. M. (). Machine learning. New York:

McGraw-Hill.

Plotkin, G. D. (). A note on inductive generalization. In

B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. , pp.

–). Edinburgh: Edinburgh University Press.

Russell, S., & Norvig, P. (). Artificial intelligence: A modern

approach (rd ed.). Englewood cliffs, WJ: Prentice Hall.

Learning Curves in Machine Learning L

L

Learning Bayesian Networks

7Learning Graphical Models

Learning Bias

7Inductive Bias

Learning By Demonstration

7Behavioral Cloning

Learning By Imitation

7Behavioral Cloning

Learning Classifier Systems

7Classi�er Systems

Learning Control

Learning control refers to the process of acquiring a

control strategy for a particular control system and a

particular task by trial and error. Learning control is

usually distinguished from adaptive control in that the

learning system is permitted to fail during the process of

learning. In contrast, adaptive control emphasizes single

trial convergence without failure. �us, learning con-

trol resembles the way that humans and animals acquire

new movement strategies, while adaptive control is a

special case of learning control that ful�lls stringent

performance constraints, e.g., as needed in life-critical

systems like airplanes and industrial robots. In general,

the control system can be any system that changes its

state in response to a control signal, e.g., a web pagewith

a hyperlink, a car, or a robot.

Learning Control Rules

7Behavioral Cloning

Learning Curves in Machine
Learning

Claudia Perlich

IBM T.J. Watson Research Center, Yorktown Heights,

NY, USA

Synonyms
Error curve; Experience curve; Improvement curve;

Training curve

Definition
A learning curve shows a measure of predictive per-

formance on a given domain as a function of some

measure of varying amounts of learning e�ort.�emost

common form of learning curves in the general �eld

of machine learning shows predictive accuracy on the

test examples as a function of the number of training

examples as in Fig. .

Motivation and Background
Learning curves were initially introduced in educa-

tional and behavioral/cognitive psychology. �e �rst

person to describe the learning curve was Hermann

Ebbinghaus in (Wozniak,). He found that

the time required to memorize a nonsense syllable

increased sharply as the number of syllables increased.

Wright () described the e�ect of learning on labor

Number of Training Examples

P
re

di
ct

io
n

A
cc

ur
ac

y

Learning Curves in Machine Learning. Figure . Stylized

learning curve showing the model accuracy on test

examples as a function of the number of training

examples

 L Learning Curves in Machine Learning

productivity in the aircra� industry and proposed

a mathematical model of the learning curve. Over

time, the term has acquired related interpretation in

many di�erent �elds including the above de�nition in

machine learning and statistics.

Use of Learning Curves in Machine
Learning
In the area of machine learning, the term “learning

curve” is used in two di�erent contexts, the main

di�erence being the variable on the x-axis of the

curve.

● �e7arti�cial neural network (ANN) literature has
used the term to show the diverging behavior of

in and out-of-sample performance as a function of

the number of training iterations for a given num-

ber of training examples. Figure shows this stylized

e�ect.

● General machine learning uses learning curves to

show the predictive7generalization performance as
a function of the number of training examples. Both

the graphs in Fig. are examples of such learning

curves.

Artificial Neural Networks

�e origins of ANNs are heavily inspired by the social

sciences and the goal of recreating the learning behav-

ior of the brain.�e original model of the “perceptron”

mirrored closely the biological foundations of neural

Training Iterations

P
re

d
ic

ti
o

n
 E

rr
o

r

Generalization error

Training error

Early stopping

Learning Curves in Machine Learning. Figure . Learning

curve for an artificial neural network

sciences. It is likely that the notion of learning curves

was to some extent carried over from the social sci-

ences of human learning into the �eld ofANNs. It shows

the model error as a function of the training time mea-

sured in terms of the number of iterations. One iteration

denotes in the context of neural network learning one

single pass over the training data and the corresponding

update of the network parameters (also called weights).

�e algorithm uses gradient descent minimizing the

model error on the training data.

�e learning curve in Fig. shows the stylized e�ect

of the relative training and generalization error on a test

set as a function of the number of iterations. A�er initial

decrease of both types of error, the generalization error

reaches a minimum and starts to increase again while

the training error continues to decrease.

�is e�ect of increasing generalization error is

closely related to the more general machine learning

issue of7over�tting and variance error for models with
high expressive power (or capacity). One of the initial

solutions to this problem for neural networks was early

stopping - some form of early regularization technique

that picked themodel at theminimumof the error curve

on a validation subset of the data that was not used for

training.

General Machine Learning

In themore general machine learning setting and statis-

tics (Flury & Schmid,), learning curves represent

the generalization performance of the model as a func-

tion of the size of the training set.

Figure was taken from Perlich, Provost, and

Simono� () and shows two typical learning curves

for two di�erent modeling algorithms (7decision tree
and 7logistic regression) on a fairly large domain. For
smaller training-set sizes the curves are steep, but the

increase in accuracy lessens for larger training-set sizes.

O�en for very large training-set sizes the standard

representation in the upper graph obscures small, but

non-trivial, gains.�erefore, to visualize the curves it is

o�en useful to use a log scale on the horizontal axis and

start the graph at the accuracy of the smallest training-

set size (rather than at zero). In addition, one can

include error bars that capture the estimated variance of

the error over multiple experiments and provide some

Learning Curves in Machine Learning L

L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000 14000 16000

 A
cc

ur
ac

y

Sample Size

Learning Curve of Californian Housing Data

Decision Tree
Logistic Regression

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

10 100 1000 10000 100000

 A
cc

ur
ac

y

Sample Size

Learning Curve of Californian Housing Data

Decision Tree
Logistic Regression

Learning Curves in Machine Learning. Figure . Typical learning curves in original and log scale

impression of the relevance of the di�erences between

two learning curves as shown in the graphs.

�e �gure also highlights a very important issue in

comparative analysis of di�erent modeling techniques:

learning curves for the same domain and di�erentmod-

els can cross.�is implies an important pitfall as pointed

out by Kibler and Langley (): “Typical empirical

papers report results on training sets of �xed size, which

tells one nothing about how the methods would fare

given more or less data, rather than collecting learning

curves ⋯”. A corollary on the above observation is the
dangers of selecting an algorithm on a smaller subset of

 L Learning from Complex Data

the ultimately available training data either in the con-

text of a proof of concept pre-study or some form of

cross-validation.

Aside from its empirical relevance there has been

signi�cant theoretical work on learning curves - notably

by Cortes, Jackel, Solla, Vapnik, and Denker ().

�ey are addressing the question of predicting the

expected generalization error from the training error

of a model. �eir analysis provides many additional

insights about the generalization performance of di�er-

ent models as a function of not only training size but in

addition the model capacity.

Cross References
7Arti�cial Neural Networks
7Computational Learning�eory
7Decision Tree
7Generalization Performance
7Logistic Regression
7Over�tting

Recommended Reading
Cortes, C., Jackel, L. D., Solla, S. A., Vapnik, V., & Denker, J. S.

(). Learning curves: Asymptotic values and rate of con-

vergence. Advances in Neural Information Processing Systems, ,

–.

Flury, B. W., & Schmid, M. J. (). Error rates in quadratic discrim-

ination with constraints on the covariance matrices. Journal of

Classification, , –.

Kibler, D., & Langley, P. (). Machine learning as an experimental

science. In Proceedings of the third European working session on

learning, Pittman, Glasgow (pp. –). Hingham, MA: Kluwer

Academic Publishers.

Perlich, C., Provost, F., & Simonoff, J. (). Tree induction

vs. logistic regression: A learning-curve analysis. Journal of

Machine Learning Research, , –.

Shavlik, J. W., Mooney, R. J., & Towell, G. G. (). Symbolic

and neural learning algorithms: An experimental comparison.

Machine Learning, , –.

Wozniak, R. H. (). Introduction to memory: Hermann

Ebbinghaus (/). In Classics in the history of psychology.

Bristol, UK: Thoemmes Press.

Wright, T. P. (). Factors affecting the cost of airplanes. Journal

of Aeronautical Sciences, (), –.

Learning from Complex Data

7Learning from Structured Data

Learning from Labeled and
Unlabeled Data

7Semi-Supervised Learning

Learning from Nonpropositional
Data

7Learning from Structured Data

Learning from Nonvectorial Data

7Learning from Structured Data

Learning from Preferences

7Preference Learning

Learning from Structured Data

TamásHorváth, StefanWrobel

University of Bonn, Sankt Augustin, Germany

Synonyms
Learning from complex data; Learning from non-

propositional data; Learning from nonvectorial data

Definition
Learning from structured data refers to all those

learning tasks where the objects to be considered

as inputs and/or outputs can usefully be thought

of as possessing internal structure and/or as being

interrelated and dependent on each other, thus forming

a structured space. Typical instances of data in struc-

tured learning tasks are sequences as they arise, e.g., in

speech processing or bioinformatics, and trees or gen-

eral graphs such as syntax trees in natural language

processing and document analysis, molecule graphs

in chemistry, relationship networks in social analy-

sis, and link graphs in the World Wide Web. Learn-

ing from structured data presents special challenges,

Learning from Structured Data L

L

since the commonly used feature vector representa-

tion and/or the i.i.d. (independently and identically

distributed data) assumption are no longer applicable.

Di�erent �avors of learning from structured data are

represented by (overlapping) areas such as 7Inductive
Logic Programming, 7Statistical Relational Learning,
probabilistic relational and logical learning, learning

with structured outputs, sequence learning, learning

with trees and graphs,7graph mining, and7collective
classi�cation.

Motivation and Background
For a long time, learning algorithms had almost exclu-

sively considered data represented in rectangular tables

de�ned by a �xed set of columns and a number of rows

corresponding to the number of objects to be described.

In this representation, each row independently and

completely describes one object, each column contain-

ing the value of one particular property or feature of

the object. Correspondingly, this representation is also

known as feature vector representation, propositional

representation, or vectorial data representation. Statis-

tically, in such a representation, the values in each row

(i.e., the objects) are assumed to be drawn i.i.d. from a

�xed (but unknown) distribution.

However, when working with objects that are inter-

related and/or have internal structure, this represen-

tation is no longer adequate. Consider representing

chemical molecules with varying numbers of atoms

and bonds in a table with a �xed number of columns.

If we wanted each molecule to correspond to one row,

we would have to �t the atoms and bonds into the

columns, e.g., by reserving a certain number of columns

for each one of them and their respective properties.

To do that however, we would have to make the table

wide enough to contain the largest possible molecule,

resulting inmany empty columns for smallermolecules,

and by mapping the component atoms and bonds to

columns, we would assign an order to them that would

not be justi�ed by the underlying problem and that

would consequently mislead any feature vector learning

algorithm.

�e second issue with structured data arises from

objects that are interrelated. Consider, e.g., the task of

speech recognition, i.e., learning tomap an acoustic unit

into the corresponding lexical unit. Clearly, to solve this

task, onemust consider the sequence of such units, since

both on the input and the output sides the probability

of observing a particular unit will strongly depend on

the preceding or subsequent units. �e same is true,

e.g., in classifying pages in the World Wide Web, where

it is quite likely that the classi�cation of the page will

correlate with the classi�cations of neighboring pages.

�erefore, any learning algorithm that would regard

acoustic units or pages as independent and identically

distributed objects is destined to fail, since for a suc-

cessful solution the interdependenciesmust bemodeled

and exploited.

In machine learning, even though there has been

interest in structured representation from the very

beginning of the s (cf. the systems Arch (Winston,

) or INDUCE (Michalski,)), it was only in the

s, triggered by the popularity of logic programming

and Horn clause representation, that learning from

structured datawasmore intensively considered for log-

ical representations in the sub�eld of Inductive Logic

Programming. Outside of (what was then) machine

learning, due to important applications such as speech

processing, probabilistic models for sequence data such

as 7Hidden Markov Models have been considered
much earlier. Toward the end of the s, given an

enormous surge of interest in applications in bioin-

formatics and the World Wide Web, and technical

advances resulting from the integration of probabilis-

tic and statistical approaches into machine learning

(e.g., 7Graphical Models and 7kernel methods), work
on learning from structured data has taken o� and

now represents a signi�cant part of machine learning

research in overlapping subareas such as Inductive

Logic Programming, Statistical Relational Learning,

probabilistic relational and logical learning, learning

with structured outputs, sequence learning, learning

with trees and graphs, graph mining, and collective

inference.

Main Tasks and Solution Approaches
A particular problem setting for learning from struc-

tured data is given by specifying, among others, () the

language representing the input and output of the learn-

ing algorithms, () the type of the input and/or output

data, and () the learning task.

. Beyond attribute-value representation, the most

intensively investigated representation languages

 L Learning from Structured Data

used in learning are 7First-Order Logic, in par-
ticular, the fragment of �rst-order Horn clauses,

and labeled graphs. Although labeled graphs can

be considered as special relational structures and

thus form a special fragment of �rst-order logic,

these two representation languages are handled sep-

arately in machine learning. As an example of �rst-

order representation of labeled graphs, the molec-

ular graph of a benzene ring can be represented as

follows:

atom(a,carbon).,…,atom(a,carbon).,

atom(a,hydrogen).,…,atom(a,hydrogen).,

edge(a,a,aromatic).,…,edge(a,a,aromatic).,

edge(a,a,single).,…,edge(a,a,single).,

edge(X,Y)← edge(Y ,X).

The molecular graph of benzene rings
(carbon atoms are unmarked)

H

H
H

H

H
H

Besides complexity reasons, the above two repre-

sentation languages are motivated also by the dif-

ference in the matching operators typically used

for these two representations. While in case of

�rst-order logic, the matching operator is de�ned

by logical implication or by relational homomor-

phism (o�en referred to as subsumption), which is

a decidable, but thus, incomplete variant of logical

implication, in case of labeled graphs it is de�ned by

subgraph isomorphism (i.e., by injective homomor-

phism).

. Another component de�ning a task for learn-

ing from structured data is the type of the input

and/or output data (see 7Observation Language
and 7Hypothesis Language). For the input, two
main types can be distinguished: the instances are

disjoint structures (structured instances) or sub-

structures of some global structure (structured

instance space). Molecular graphs formed by the

atom-bond structure of chemical compounds are

a common example of structured instances. For

structured instance spaces, the web graph provides

an example of a global structure; for this case, the

set of instances corresponds to the set of vertices

formed by the web sites. �e primary goal of tra-

ditional discriminative learning is to approximate

unknown target functions mapping the underly-

ing instance space to some subset of the set of

real numbers. In some of the applications, how-

ever, the elements of the range of the target func-

tion must also be structured. Such problems are

referred to as learning in structured output spaces.

As an example of structured output, we mention

the protein secondary structure prediction prob-

lem, where the goal is to approximate the function

mapping the primary structures of proteins to their

secondary structures. Notice that primary and sec-

ondary structures can be represented by strings,

which in turn can be considered as labeled directed

paths.

. Finally, the third component de�ning a problem

setting is the learning task. Besides the classical

learning tasks (e.g., supervised, semisupervised,

unsupervised, transductive learning etc.), recent

tasks include new problems such as, e.g., learning

preferences (i.e., a directed graph, where an edge

from vertex u to vertex v denotes that v is pre-

ferred to u), learning rankings (i.e., when the target
preference relation must be a total order), etc.

Several classes of algorithms have been developed for

the problem settings de�ned by the above components.

7Propositionalization techniques (e.g., as in LINUS
(Lavrac et al.,)) �rst transform the structured data

into a single table of �xed width by extracting a large

number of propositional features and then use some

propositional learner.

Non-propositionalization rule-based approaches fol-

low mainly general-to-speci�c (top–down) or speci�c-

to-general (bottom-up) search strategies. For top–down

search (e.g., as in FOIL (Quinlan,)), the crucial

step of the algorithms is the de�nition of the re�ne-

ment operators. While for graph structured data the

specialization relation on the hypothesis space is usu-

ally de�ned by subgraph isomorphism and is there-

fore a partial order, for First-Order Logic it is typically

de�ned by subsumption and is therefore only a preorder

(i.e., antisymmetry does not hold), leading to undesir-

able algorithmic properties (e.g., incompleteness). For

bottom–up search (e.g., as in GOLEM (Muggleton &

Learning from Structured Data L

L

Feng,)), which is less common for graph struc-

tured data, the generalization of hypotheses is usually

de�ned by some variant of Plotkin’s 7Least General
Generalization operator for �rst-order clauses. While

this generalization operator has nice algebraic proper-

ties, its application raises severe complexity issues, as

the size of the hypothesesmay exponentially grow in the

number of examples.

Recent research in structural learning has been

focusing very strongly on distance- and kernel-based

approaches which in terms of accuracy have o�en

turned out superior to rule-based approaches (e.g., in

virtual screening of molecules). In such approaches,

the basic algorithms carry over unchanged from the

propositional case; instead, special distance (e.g., as in

RIBL (Emde & Wettschereck,)) or kernel func-

tions for structural data are developed. Since even for

graphs, computing any complete kernel (i.e., for which

the underlying embedding function into the feature

space is injective) is at least as hard as the graph isomor-

phism problem, most practical and e�cient kernels are

based on examining the structure for the occurrence of

simpler parts (e.g., trees, walks, paths, and cycles) which

are then counted and e�ectively used as feature vectors

in an intersection kernel.

Finally, as a recent class of approaches, we alsomen-

tion Statistical Relational Learning which extends prob-

abilistic Graphical Models (e.g., Bayesian networks or

Markov networks) with relational and logic elements

(e.g., as in Alchemy (Domingos & Richardson,),

ICL (Poole,), PRISM (Sato & Kameya,)).

Applications
Virtual compound screening is a representative appli-

cation example of learning from structured data.�is

computational problem in pharmaceutical research is

concerned with the identi�cation of chemical com-

pounds that can be developed into drug candidates.

Since current pharmaceutical compound repositories

contain millions of molecules, the design of e�cient

algorithms for virtual compound screening has become

an integral part of computer-aided drug design. One

of the branches of the learning algorithms concerned

with this prediction problem is based on using the com-

pounds’ D graph structures formed by their atoms and

bonds. Depending on the representation of chemical

graphs, this branch of algorithms can further be clas-

si�ed into logic and graph-based approaches.�e �rst

class of algorithms, developed mostly in Inductive

Logic Programming, treats chemical graphs as rela-

tional structures addressing the problem to the con-

text of learning in logic; the second class of algorithms

regards them as labeled graphs addressing the problem

to7Graph Mining.

Cross References
7Hypothesis Language
7Inductive Logic Programming
7Observation Language
7Statistical Relational Learning
7Structured Induction

Recommended Reading
Cook, D., & Holder, L. (Eds.). (). Mining graph data. New York:

Wiley.

De Raedt, L. (). From inductive logic programming to multi-

relational data mining. Heidelberg: Springer.

Domingos, P., & Richardson, M. (). Markov logic: A unifying

framework for statistical relational learning. In L. Getoor &

B. Taskar (Eds.), Introduction to statistical relational learning

(pp. –). Cambridge, MA: MIT Press.

Emde, W., & Wettschereck, D. (). Relational instance based

learning. In L. Saitta (Ed.), Proceedings of the th international

conference on machine learning (pp. –). San Francisco:

Morgan Kaufmann.

Gärtner, T. (). A survey of kernels for structured data. SIGKDD

Explorations, (), –.

Getoor, L., & Taskar, B. (Eds.). (). Introduction to relational

statistical learning. Cambridge, MA: MIT Press.

Lavrac, N., Dzeroski, S., & Grobelnik, M. (). Learning nonrecur-

sive definitions of relations with LINUS. In Y. Kodratoff (Ed.),

Proceedings of the th European working session on learning. Lec-

ture notes in computer science (Vol. , pp. –). Berlin:

Springer.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach

(pp. –). San Francisco: Morgan Kaufmann.

Muggleton, S. H., & De Raedt, L. (). Inductive logic program-

ming: Theory and methods. Journal of Logic Programming,

,, –.

Muggleton, S. H., & Feng, C. (). Efficient induction of logic

programs. In S. Muggleton (Ed.), Inductive logic programming

(pp. –). London: Academic Press.

Poole, D. (). The independent choice logic and beyond. In

L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.),

Probabilistic inductive logic programming: Theory and applica-

tion. Lecture notes in artificial intelligence (Vol.). Berlin:

Springer.

Quinlan, J. R. (). Learning logical definitions from relations.

Machine Learning, (), –.

 L Learning from Labeled and Unlabeled Data

Sato, T., & Kameya, Y. (). New advances in logic-based prob-

abilistic modeling by PRISM. In L. De Raedt, P. Frasconi,

K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic

programming: Theory and application. Lecture notes in artificial

intelligence (Vol. , pp. –). Berlin: Springer.

Winston, P. H. (). Learning structural descriptions from exam-

ples. In P. H. Winston (Ed.), The psychology of computer vision

(pp. –). New York: McGraw-Hill.

Learning from Labeled and
Unlabeled Data

7Semi-Supervised Text Processing

Learning Graphical Models

Kevin B. Korb

Monash University, Clayton, Victoria, Australia

Synonyms
Bayesian model averaging; Causal discovery; Dynamic

bayesian network; Learning bayesian networks

Definition
Learning graphical models (see Graphical Models)

means to learn a graphical representation of either a

causal or probabilistic model containing the variables

Xj ∈ {Xi}. Although graphical models include more
than directed acyclic graphs (DAGs), the focus here

shall be on learning DAGs, as that is where the majority

of research and application is taking place.

De�nition (Directed acyclic graph (DAG)) A

directed acyclic graph (DAG) is a set of variables (nodes,

vertices) {Xi} and a set of directed arcs (edges) between

them such that following the arcs in their given direction

can never lead from a variable back to itself.

DAGs parameterized to represent probability distri-

butions are otherwise known as Bayesian networks.

Some necessary concepts and notation for discussing

the learning of graphical models is given in Table .

A key characteristic of multivariate probability dis-

tributions is the conditional independence structure

they give rise to, that is, the complete list of statements

of the form

XA á XB∣XC

true of the distribution. A goal of learning DAGs is

to learn a minimal DAG representation of the condi-

tional independence structure for a distribution given

the Markov condition:

De�nition (Markov condition) A DAG satis�es the

Markov condition relative to a probability distribution if

and only if for all Xi and Xj in the DAG Xi á Xj∣πXi
so

long as Xj is not a descendant of Xi (i.e., Xj is not in the

transitive closure of the parent relation starting from Xi).

DAGs which violate the Markov condition are not

capable of fully representing the relevant probababil-

ity distribution. Upon discovering such a violation, the

normal response is to �x the model by adding missing

arcs. In the causal discovery literature, this condition is

o�en referred to as the causal Markov condition, which

simply means the arcs are being interpreted as repre-

senting causal relationships and not merely as proba-

bilistic dependencies.

De�nition (Markov Blanket) �e Markov blanket

(MB) of a node Xi is the minimal set XMB such that for

all other nodes Xj in the model Xi á Xj∣XMB.

�e Markov blanket consists of a node’s parents,

children, and its children’s other parents.

Motivation and Background
Bayesian networks have enjoyed substantial success in

thousands of diverse modeling, prediction, and control

applications, including medical diagnosis, epidemiol-

ogy, so�ware engineering, ecology and environmen-

tal management, agriculture, intelligence and security,

�nance and marketing (see, e.g., http://www.norsys.

com for customers implementing such applications and

more). Many of these networks have been built by the

traditional process of “knowledge engineering,” that is,

by eliciting both structure and conditional probabilities

from human domain experts.�at process is limited by

the availability of expertise and also by the time and cost

of performing such elicitation and subsequent model

validation. In domains where signi�cant quantities of

Learning Graphical Models L

L

Learning Graphical Models. Table Notation

Notation Description

Xi a random variable

X a set of random variables

{Xi} a set of random variables indexed by i ∈ I

X = xj (or, xj) a random variable taking the value xj

p(x) the probability that X = x

XA á XB XA and XB are independent (i.e., p(XA) = p(XA∣XB))

XA á XB∣XC XA and XB are conditionally independent given XC (i.e.,
p(XA∣XC) = p(XA∣XB,XC))

XA á XB XA and XB are dependent (i.e., p(XA) /= p(XA∣XB))

XA á XB∣XC XA and XB are conditionally dependent given XC
(i.e., p(XA∣XC) /= p(XA∣XB,XC))

πXi

the set of parents of Xi in a DAG
(i.e., nodes Y such that Y → Xi)

data are available it is pertinent to consider whether

automated learning of Bayesian networks might either

replace or compliment knowledge engineering. A vari-

ety of techniques for doing so have been developed, and

the causal discovery of Bayesian networks is by now an

important subindustry of data mining.

Theory
Probability and Causality

�e key to learningBayesian networks from sample data

is the relation between causal dependence and proba-

bilistic dependence. �is is most easily understood in

reference to undirected chains of variables, as in Fig. .

Where the arcs in Fig. represent causal dependen-

cies, then the probabilistic dependencies are as the cap-

tion describes.�at is, in common causes and chains the

end nodes A and B are rendered probabilistically inde-

pendent of each other given knowledge of the state ofC.

Contrariwise, when A and B are parents of a common

e�ect, and otherwise unrelated, they are probabilisti-

cally independent given no information (i.e.,marginally

independent), but become dependent given knowledge

of C. �is last relationship is o�en called “explain-

ing away,” because it corresponds to situations where,

when already knowing the presence of, say, some dis-

ease C, the learning of the presence of a causeA reduces

one’s belief in some alternative explanation B of the

disease.

�ese relationships between probabilistic depen-

dence and causal dependence are the key for learn-

ing the causal structure of Bayesian networks because

sample data allow one to estimate probabilistic depen-

dencies directly, and the di�erence between condi-

tional dependency structures in Fig. (a) and (b) ver-

sus its opposite in (c) allows automated learners to

distinguish between these di�erent underlying causal

patterns. (�is is related to d-separation in Graphical

Models.) �is distinction is explicitly made use of in

constraint learners, but also implicitly used by metric

learners.

In addition to structure learning, parameter learn-

ing is necessary, that is, learning the conditional prob-

abilities of nodes given their parent values (conditional

probability tables). Straightforward counting methods

are frequently employed, although Expectation Maxi-

mization, Gibbs Sampling, and other techniques may

come into play when the available data are noisy.

Statistical Equivalence

Two DAGs are said to be statistically equivalent

(or, Markov equivalent) when they contain the same

variables and each can be parameterized so as to rep-

resent any probability distribution that the other can

 L Learning Graphical Models

A B

A C B
A B

C

a b c

C

Learning Graphical Models. Figure . Causality and probabilistic dependence: (a) common cause with A á B∣C; (b)

causal chain with A á B∣C; (c) common effect with Aá B∣C

represent. Verma andPearl () proved thatDAGs are

statistically equivalent just in case they have the same

undirected arc structures and the identical set of uncov-

ered common e�ects, that is, common e�ects such as

in Fig. (c) where the two parents are not themselves

directly connected.�ey dubbed the set of statistically

equivalent models patterns; these can be represented

using partially directed acyclic graphs (PDAGs), that

is, graphs with some arcs le� undirected. Chickering

() showed that statistically equivalent models have

identical maximum likelihoods relative to any given set

of data. �is latter result has suggested to many that

causal learning programs can have no reasonable ambi-

tion to learn anything other than patterns, that is, any

learner’s discrimination between DAGs within a com-

mon pattern can only be based upon prior probability

(e.g., prejudice).�is is suggested, for example, by the

fact that Bayesian learning combines (by multiplying)

prior probabilities and likelihoods, so identical likeli-

hoods will always lead to identical conclusions should

the priors also be the same. One shall note some rea-

son to doubt this supposed limit to causal discovery

below.

Applications
Constraint Learners

�e most direct application of the above ideas to learn-

ing Bayesian networks is exhibited in what may be

called constraint learners.�ese programs assess condi-

tional independencies between paired sets of variables

given some other set of observed variables using sta-

tistical tests on the data, eliminating all DAGs that are

incompatible with the independencies and dependen-

cies asserted by the statistical test. (For this reason these

programs are o�en called “conditional independence

learners”; however, that tag ismisleading, as is explained

below.)�e original such algorithm, the IC algorithm of

Verma and Pearl (), can be described in simpli�ed

form as three rules for constructing a network from Yes

or No answers to questions of the form “Is it the case

that X á Y ∣W?”

Rule I:Put anundirected link between any two vari-
ables X and Y if and only if for every set of variables

W s.t. X,Y /∈W
XáY ∣W

that is, X and Y are directly connected if and only

if they are dependent under every conditioning set

(including ∅).
Rule II: For every undirected structure X − Y − Z,

orient the arcs X → Y←Z if and only if

XáZ∣W

for every W s.t. X,Z /∈W and Y ∈ Z.
that is, Y is an uncovered common e�ect if and only

if the end variables X and Z are dependent under

every conditioning set that includes Y .

Rule I is justi�ed by the need to express the proba-

bilistic dependency between X and Y under all possible

circumstances. Rule II is justi�ed by the asymmetry in

probabilistic dependencies illustrated in Fig. .

Application of these two rules is then followed by

applying a Rule III, which just checks for any arc direc-

tions that are forced by further considerations, such as

avoiding the introduction of cycles or any uncovered

common e�ects not already identi�ed in Rule II, and so

not supported by the conditional independence tests.

�is algorithm was �rst put into practice in the PC

algorithmdistributed as a part of the TETRADprogram

(Spirtes, Glymour, & Scheines,). Aside from intro-

ducing some algorithmic e�ciencies, PC adds orthodox

statistical tests to answer the conditional independence

questions. In the case of linear models, it uses a statis-

tical sign�cance test for vanishing partial correlations,

Learning Graphical Models L

L

accepting a dependence when and only when the test

is statistically signi�cant. For discrete networks a χ

test replaces the correlation test. Margaritis and�run

further improve the algorithm’s e�ciency by limiting

conditioning sets to the Markov blankets of the vari-

able under test (Margaritis and�run,).�e PC

algorithm has become the most widely used Bayesian

network learner, available in weka and many Bayesian
network modeling tools.

Metric Learners

Constraint learners attempt to build up a network using

a sequence of independent statistical tests. One problem

with them is that when one such test gives an incorrect

result, subsequent tests will assume that result, with the

potential for errors to cascade. Metric learners, by con-

trast, use some score applied to a network as a whole

to assess it relative to the data.�e earliest of this kind,

by Cooper and Herskovits, turned the computation of

a Bayesian measure into a counting problem. Under a

number of fairly strong assumptions, such as that chil-

dren variable states are always uniformly distributed

given their parent states, they derived the measure

P(d, e) = P(d)
n

∏
k=

sπ(k)

∏
j=

(sk −)!
(Skj + sk −)!

sk

∏
l=

αkjl!

where d is the DAG being scored, e the data, n the num-

ber of variables, sk the number of values Xk may take,

sπ(k) the number of values the parents of Xk may take,

Skj the number of cases in the datawhere πk takes its j-th

value, and αkjl is the number of cases where Xk takes its

l-th value and πk takes its j-th value. Cooper and Her-

skovits proved that this measure can be computed in

polynomial time. Assuming the adequacy of this proba-

bility distribution, computation of the joint probability

su�ces for Bayesian learning, since by Bayes’ �eo-

rem maximizing P(d, e) is equivalent to maximizing
the posterior probability of d. Cooper and Herskovits

applied thismeasure in the programK, which required

as inputs both the data and a total ordering of the vari-

ables. �e latter input eliminates all problems about

discovering arc orientations, which could be consid-

ered a cheat since, as the discussion of the IC algo-

rithm showed, this is a part of the causal learning prob-

lem. Subsequently, Chow and Liu’s () maximum

weighted spanning tree algorithm (MWST) has been

used as a preprocessor to K, doing a reasonable job of

�nding an ordering based upon themutual information

between pairs of variables.

A wide variety of alternative metrics for DAGs

have been developed since K. Heckerman, Geiger, and

Chickering () generalized the K metric to incor-

porate prior information, yielding BD (Bayesian metric

with Dirichlet priors). Other alternatives include Min-

imum Description Length (MDL) scores (Bouckaert,

; Suzuki, ,), Bayesian Information Cri-

terion (BIC) (Cruz-Ramírez, Acosta-Mesa, Barrientos-

Martínez, & Nava-Fernández ,) and Minimum

Message Length (MML) (Korb&Nicholson, ;Wal-

lace, Korb, & Dai,). Although all of these measures

score the DAG as a whole relative to some data set,

they are just as (or more) sensitive to the individual

dependencies and independencies between variables as

are the constraint learners.�e di�erence between the

two types of learners is not whether they attend to

the sets of conditional independencies expressed in the

data, but whether they do so serially (which the con-

straint learners do) or collectively (as do the metric

learners).

�e question naturally arises whether constraint

learners as a class are superior to metric learners or

vice versa, or, indeed, which individual learner might

be best. �ere is no settled answer to such questions,

nor, in fact, is there any agreement about how such

questions are best settled, even for �xed domains or

data sets. Perhaps the issue is more general than that

of learning Bayesian networks, since the fundamental

theory ofmachine learning evaluation seems to bemas-

sively underdeveloped (see Algorithm Evaluation). In

consequence, while nearly every new publication claims

superiority in some sense for its preferred algorithm,

the evidential basis for such claims remains suspect. It

is clear, nonetheless, that many of the programs avail-

able are helpful with data analysis and are being so

applied.

Search and Complexity

�e space of DAGs is superexponential in the num-

ber of variables, making the learning process hard;

it is NP-hard to be exact (Chickering, Heckerman,

& Meek,). In practice there are limits to the

e�ectiveness of each algorithm, imposed by the num-

ber of variables (see Dimensionality), the number of

 L Learning Graphical Models

joint states the variables may take and the amount

of data. �e known limitations for di�erent algo-

rithms are scattered throughout the literature.�e next

section introduces some ideas for scaling up causal

discovery.

Greedy search has frequently been used with both

constraint-based and metric-based learning. �e PC

algorithm searching the space of patterns is an exam-

ple, as it starts with a fully connected graph and searches

greedily for arcs to remove. Chickering and Meek’s

Greedy Equivalence Search (GES) is another greedy

algorithm operating in the pattern space (Chickering

and Meek,). Cooper and Herskovits’ K is also a

greedy searcher, adding arcs so long as single arc addi-

tions increases the probability score for the network.

Bouckaert adopted this approach with his MDL score

(Bouckaert,). Greedy searches, of course, tend to

get lost in localmaxima, and Suzuki loosened the search

method for his MDL scoring, using branch and bound

(Suzuki,).

Genetic algorithms (GAs) have been successfully

applied to learning Bayesian networks. Larrañaga et al.

used GAs over the space of total orderings to max-

imize the K score (Larrañaga, Kuijpers, Murga, &

Yurramendi,); Neil and Korb developed a GA

searching the DAG space to maximize the MML score

(Neil & Korb,). A similar approach using MDL is

found in Wong, Lam, and Leung ().

Markov Chain Monte Carlo (MCMC) searches per-

form stochastic sampling over the model space and

have become a popular technique for Bayesian net-

work learning. Gibbs sampling is used in Chickering

and Heckerman (), where they compare a num-

ber of di�erent metrics (and incorrectly con�ate BIC

and MDL scores; see Cruz-Ramírez,) for learn-

ing a restricted class of Bayesian networks. Another

MCMC approach, the Metropolis-Hastings algorithm,

has been to estimate the posterior probability distribu-

tion over the space of total orderings, using the MML

score (Korb & Nicholson, , Chap.).

An alternative to model selection — searching for

the single best model — is Bayesian model averaging,

that is, searching for a set ofmodels andweights for each

of them (Chickering &Heckerman,). And an alter-

native to that is to �nd a single Bayesian network that is

equivalent to an averaged selection of networks (Dash&

Cooper,).

Markov Blanket Discovery

Recently, interest has grown in algorithms to learn,

speci�cally, the Markov blankets around individual

variables, which is a special kind of feature selection

problem (see Feature Selection). One use for this is

in prediction: since the MB renders all other variables

conditionally independent of a target variable, �nding

the MB means having all the variables required for an

optimal predictor. Tsamardinos et al. describe the max-

min hill-climbing (MMHC) algorithm for MB discov-

ery (Tsamardinos, Brown,&Aliferis,).Nägele et al.

apply this to learning in very high-dimensional spaces

(Nägele, Dejori, & Stetter,).

Given the MB for a target variable, one can then

simply apply regression techniques (or any predictive

classi�cation technique) to the discovered variables.

�is works �ne for standard prediction, but does not

generalize to situations where some of the predictor

variables are externally modi�ed rather than observed.

For an interesting collection of papers mostly apply-

ing some kind of Markov blanket discovery approach

to prediction see the collection (Guyon et al.,).

A di�erent use for local discovery is to avoid prob-

lems with computational complexity, whether due to

the “curse of dimensionality” (too many variables) or

the growing availability of very large data sets. Once

the Markov blanket is found, one can employ causal

discovery within the reduced set of variables, yield-

ing local causal discovery. Iterating this will yield

multiple causal subnetworks, when a global causal net-

work might be stitched together from them (Aliferis,

Statnikov, Tsamardinos, Mani, & Koutsoukos, b),

completing the whole causal discovery process while

evading complexity problems. A current review of the

issues and techniques can be found in two companion

articles by Aliferis, Statnikov, Tsamardinos, Mani, and

Koutsoukos (a, b).

Knowledge Engineering with Bayesian Networks

Another approach to dealing with the complexity and

tribulations of global causal discovery is to aid the dis-

covery process with prior information. Bayesian infer-

ence is, a�er all, done by combining priors with like-

lihoods, and the priors need not always be perfectly

�avorless, such as uniform priors over the DAG space.

In almost all applications where data threaten to over-

whelm automated discovery there is also at least some

Learning Graphical Models L

L

expertise, if only the ability to say, for example, that the

sex of a patient is determined before adult lifestyle prac-

tices are adopted. Such temporal information provided

to a discovery algorithm can provide a huge boost to the

discovery process.

�is quite simple kind of prior information, the tem-

poral tiers within which the variables may be allocated,

has been available in many of the discovery programs

for a long time. PC, for example, allows tiers to be spec-

i�ed. K more restrictively required a total ordering

of the variables. �e methods described by Hecker-

man, Geiger, and Chickering () go beyond tiers.

�ey provide for the speci�cation of a network or sub-

network; the prior probability of any network in the

search space can be computed according to its distance

from the network provided. �ey also introduced the

idea of equivalent sample size, that is, the weight to be

given the prior information relative to the data, mean-

ing that their priors are so� (probabilistic) rather than

hard constraints. O’Donnell et al. () adapted their

MML score to allow so� priors for tiers, dependencies,

direct and indirect causal relations, and networks or

subnetworks, with variable degrees of con�dence.

�e �exible combination of prior information

(expertise) with data in the causal discovery process

allows for a full-�edged knowledge engineering process

in the construction of Bayesian networks. Experts may

be consulted for structural or parametric information,

data may be gathered, and these di�erent contributions

may be weighted or reweighted according to the results

of sensitivity analyses or other tests.�e result can be a

much faster and more useful approach to building and

applying Bayesian networks.

Causal discovery with meaningful priors, by the

way, shows that limiting discovery to patterns is

insu�cient: better priors, or better use of priors, can

make a signi�cant di�erence within patterns of DAGs.

Cross References
7Dimensionality
7Feature Selection
7Graphical Models
7Hidden Markov Models

Recommended Reading
The PC algorithm and variants were initially documented in Spirtes

et al. (); their second edition (Spirtes, Glymour, & Scheines,

) covers more ground. Their TETRAD IV program is avail-

able from their web site http://www.phil.cmu.edu/projects/tetrad/.

PC is contained within (and is available also with the weka machine

learning platform at http://www.cs.waikato.ac.nz/ml/weka/).

A well-known tutorial by David Heckerman () (reprinted

without change in Heckerman,) is well worth looking at

for background in causal discovery and parameterizing Bayesian

networks. A more current review of many of the topics intro-

duced here is to be found in a forthcoming article (Daly, Shen,

& Aitken, forthcoming). For other good treatments of parameter-

ization see Cowell, Dawid, Lauritzen, and Spiegelhalter () or

Neapolitan ().

There are a number of useful anthologies in the area of learning

graphical models. Learning in Graphical Models (Jordan,) is one

of the best, including Heckerman’s tutorial and a variety of excellent

reviews of causal discovery methods, such as Markov Chain Monte

Carlo search techniques.

Textbooks treating the learning of Bayesian networks include

Borgelt and Kruse (), Neapolitan (), Korb and Nicholson

(), and Koller and Friedman ().

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., & Koutsoukos,

X. D. (a). Local causal and Markov blanket induction for

causal discovery and feature selection for classification. Part

I: Algorithms and empirical evaluation. Journal of Machine

Learning Research, , –.

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., & Kout-

soukos, X. D. (b). Local causal and Markov blanket induc-

tion for causal discovery and feature selection for classification.

Part II: Analysis and extensions. Journal of Machine Learning

Research, , –.

Borgelt, C., & Kruse, R. (). Graphical models: Methods for

data analysis and mining. New York: Wiley.

Bouckaert, R. (). Probabilistic network construction using the

minimum description length principle. Lecture Notes in Com-

puter Science, , –.

Chickering, D. M. (). A tranformational characterization of

equivalent Bayesian network structures. In P. Besnard &

S. Hanks (Eds.), Proceedings of the th conference on uncertainty

in artificial intelligence, San Francisco (pp. –).

Chickering, D. M., & Heckerman, D. (). Efficient approxima-

tions for the marginal likelihood of Bayesian networks with

hidden variables. Machine Learning, , –.

Chickering, D. M., Heckerman, D., & Meek, C. (). Large-sample

learning of Bayesian networks is NP-hard. Journal of Machine

Learning Research, , –.

Chickering, D. M., & Meek, C. (). Finding optimal Bayesian

networks. In Proceedings of the th annual conference on uncer-

tainty in AI, San Francisco (pp. –).

Chow, C., & Liu, C. (). Approximating discrete probability dis-

tributions with dependence trees. IEEE Transactions on Infor-

mation Theory, , –.

Cowell, R. G., Dawid, A. P., Lauritzen, St. L., & Spiegelhalter, D. J.

(). Probabilistic networks and expert systems. New York:

Springer.

Cruz-Ramírez, N., Acosta-Mesa, H. G., Barrientos-Martínez, R.

E., & Nava-Fernández, L. A. (). How good are the

Bayesian information criterion and the Minimum Descrip-

tion Length principle for model selection? A Bayesian net-

work analysis. Lecture Notes in Computer Science, ,

–.

 L Learning in Logic

Daly, R., Shen, Q., & Aitken, S. (forthcoming). Learning Bayesian

networks: Approaches and issues. The Knowledge Engineering

Review.

Dash, D., & Cooper, G. F. (). Model averaging for prediction

with discrete Bayesian networks. Journal of Machine Learning

Research, , –.

Guyon, I., Aliferis, C., Cooper, G., Elisseeff, A., Pellet, J.-P., Spirtes,

P., et al. (Eds.) (). JMLR workshop and conference pro-

ceedings: Causation and prediction challenge (WCCI),

volume . Journal of Machine Learning Research.

Heckerman, D. (). A tutorial on learning with Bayesian net-

works. In M. Jordan, (Ed.), Learning in graphical models (pp.

–). Cambridge: MIT.

Heckerman, D. (). A tutorial on learning with Bayesian net-

works. In Innovations in Bayesian networks (pp. –). Berlin:

Springer Verlag.

Heckerman, D., Geiger, D., & Chickering, D. M. (). Learning

Bayesian networks: The combination of knowledge and statisti-

cal data. In Lopes de Mantras & D. Poole (Eds.), Proceedings of

the tenth conference on uncertainty in artificial intelligence, San

Francisco (pp. –).

Jordan, M. I. (). Learning in graphical models. Cambridge, MA:

MIT.

Koller, D., & Friedman, N. (). Probabilistic graphical models:

Principles and techniques. Cambridge, MA: MIT.

Korb, K. B., & Nicholson, A. E. (). Bayesian artificial intelli-

gence. Boca Raton, FL: CRC.

Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., & Yurramendi,

Y. (). Learning Bayesian network structures by search-

ing for the best ordering with genetic algorithms. IEEE

Transactions on Systems, Man and Cybernetics, Part A, ,

–.

Margaritis, D., & Thrun, S. (). Bayesian network induction

via local neighborhoods. In S. A. Solla, T. K. Leen, & K. R.

Müller (Eds.), Advances in neural information processing systems

(Vol. , pp. –). Cambridge: MIT.

Nägele, A., Dejori, M., & Stetter, M. (). Bayesian substructure

learning – Approximate learning of very large network struc-

tures. In Proceedings of the th European conference on machine

learning; Lecture notes in AI (Vol. , pp. –). Warsaw,

Poland.

Neapolitan, R. E. (). Learning Bayesian networks. Upper Saddle

River, NJ: Prentice Hall.

Neil, J. R., & Korb, K. B. (). The evolution of causal models.

In N. Zhong & L. Zhous (Eds.), Third Pacific-Asia Conference

on Knowledge Discovery and Datamining (PAKDD-), Beijing,

China (pp. –). New York: Springer.

O’Donnell, R., Nicholson, A., Han, B., Korb, K., Alam, M., &

Hope, L. (). Causal discovery with prior information. In

Australasian joint conference on artificial intelligence, (pp. –

). New York: Springer.

Spirtes, P., Glymour, C., & Scheines, R. (). Causation, predic-

tion and search. In Lecture notes in statistics (Vol.). New York:

Springer.

Spirtes, P., Glymour, C., & Scheines, R. (). Causation, prediction

and search. (nd ed.). Cambridge: MIT.

Suzuki, J. (). Learning Bayesian belief networks based on the

minimum description length principle. In L. Saitta (Ed.) Pro-

ceedings of the th international conference on machine learn-

ing, San Francisco (pp. –). Morgan Kaufman.

Suzuki, J. (). Learning Bayesian belief networks based on the

MDL principle: An efficient algorithm using the branch and

bound technique. IEEE Transactions on Information and Sys-

tems, , –.

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (). The max-min

hill-climbing Bayesian network structure learning algorithm.

Machine learning, (), –.

Verma, T. S., & Pearl, J. (). Equivalence and synthesis of causal

models. In Proceedings of the sixth conference on uncertainty in

AI, Boston (pp. –). San Mateo, CA: Morgan Kaufmann.

Wallace, C. S., Korb, K. B., & Dai, H. (). Causal discovery via

MML. In L. Saitta, (Ed.), Proceedings of the th international

conference on machine learning, San Francisco (pp. –).

Morgan Kaufman.

Wong, M. L., Lam, W., & Leung, K. S. (). Using evolutionary

programming and minimum description length principle for

data mining of Bayesian networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, (), –.

Learning in Logic

7Inductive Logic Programming

Learning in Worlds with Objects

7Relational Reinforcement Learning

Learning Models of Biological
Sequences

William Stafford Noble, Christina Leslie

University of Washington, Seattle, WA, USA
Memorial Sloan-Kettering Cancer Center,

New York, NY

Definition
Hereditary information is stored in the nucleus of every

living cell as biopolymers of deoxyribonucleic acids

(DNA). DNA thus encodes the blueprint for all known

forms of life. A DNA sequence can be expressed as a

�nite string over an alphabet of {A, C, G, T}, corre-

sponding to the four DNA bases.�e human genome

consists of approximately billion bases, divided among

 chromosomes.

During its life, each cell makes temporary copies

of short segments of DNA.�ese shortlived copies are

Learning Models of Biological Sequences L

L

comprised of ribonucleic acid (RNA). Each -mer of

RNA can subsequently be translated, via the universal

genetic code, into one of amino acids.�e resulting

amino acid sequence is called a protein, and the DNA

sequence that en codes the protein is called a gene.

Machine learning has been used to build models

of many di�erent types of biological sequences.�ese

include models of short, functional elements within

DNA or protein sequences, as well as models of genes,

RNAs, and proteins.

Motivation and Background
Fundamentally, the motivation for building models of

biological sequences is to understand the molecular

mechanisms of the cell and the molecular basis for

human disease. Each subheading below describes a dif-

ferent type ofmodel, each ofwhich attempts to capture a

di�erent facet of the underlying biology. All these mod-

els, ultimately, aim to uncover either evolutionary or

functional relationships among sequences.

Although DNA and protein sequences were avail-

able in small numbers as early as the s, a signi�cant

number of sequences were not available until the s.

Most of the advances in model development occurred

in the s, with the exception of phylogenetic models,

which were already being developed in the s.

Structure of Learning System
Motifs

In the context of biological sequences, a “motif ” is a

short (typically – letters) subsequence that is func-

tionally signi�cant. Amotif may correspond to, e.g., the

location along the DNA strand where a particular pro-

tein binds, or conversely, the location along the protein

that binds to the DNA. �e motif can arise either via

convergent evolution (when two sequences evolve to

look similar to one another) or via evolutionary con-

servation (if sequences that lack the motif are likely to

be eliminated via natural selection).

Motif discovery is the problem of identifying a pre-

viously unknown motif within a given collection of

sequences, by �nding patterns that occur more o�en

than one would expect by chance.�e problem is chal-

lenging in part because two occurences of a given motif

may not resemble each other exactly.

Work onmotif discovery falls into two camps, based

upon how the motifs themselves are represented. One

camp uses position-speci�c scoring matrices (PSSMs),

in which a motif of width w over an alphabet of size

A is represented as a w-by-A probability matrix. In

this matrix, each entry represents the probability that

a given letter occurs at the given position. Early work

in this area used expectation-maximization to identify

proteinmotifs (Lawrence&Reilly,).�is e�ort was

signi�cantly extended in the MEME algorithm (Bailey

& Elkan,), which continues to be widely used

today. A complementary approach uses Gibbs sam-

pling (Lawrence, Altschul, Boguski, Liu, Neuwald, &

Wootton,), which o�ers several bene�ts, including

avoiding localminima and the ability to samplemultiple

motifs simultaneously.

�e othermotif discovery campuses a discretemotif

representation, in which each motif is represented as a

consensus sequence plus a speci�ed maximum number

of mismatches. In this formalism, enumerative meth-

ods can guarantee solving a given problem to optimality.

For realistic problem sizes, this approach is most appli-

cable to DNA, because of its much smaller alphabet

size. Currently, perhaps the most popular such method

is Weeder (Pavesi, Mereghetti, Mauri, & Pesole,),

which performed well in a recent comparison of motif

discovery algorithms (Tompa, Li, Bailey, Church,Moor,

Eskin, et al.,).

Proteins

A central problem in computational biology is the

classi�cation of proteins into functional and struc-

tural classes given their amino acid sequences.�e D

structure that a protein assumes a�er folding largely

determines its function in the cell. However, directly

obtaining a protein’s D structure involves di�cult

experimental techniques such as X-ray crystallography

or nuclear magnetic resonance, whereas it is relatively

easy to determine a protein’s sequence. �rough evo-

lution, structure is more conserved than sequence, so

that detecting even very subtle sequence similarities, or

remote homology, is important for predicting function.

Since the early s, researchers have developed

a battery of successively more powerful methods for

detecting protein sequence similarities. �is develop-

ment can be broken into three main stages. Early

methods focused on the pairwise comparison problem

 L Learning Models of Biological Sequences

and assessed the statistical signi�cance of similarities

between two proteins based on pairwise alignment.

�esemethods are only capable of recognizing relatively

close homologies. �e BLAST algorithm (Altschul,

Gish, Miller, Myers, & Lipman,), based on heuris-

tic alignment, and related tools are the most widely

used methods for pairwise sequence comparison and

database search today.

In the second stage, further accuracy was achieved

by collecting aggregate statistics from a set of sim-

ilar sequences and comparing the resulting statis-

tics to a single, unlabeled protein of interest. One

important example of family-based models are pro-

�le hidden Markov models (HMMs) (Krogh, Brown,

Mian, Sjolander, & Haussler,), probabilistic gen-

erative models estimated from a multiple alignment of

sequences from a protein family. Pro�le HMMs gener-

ate variable length sequences by allowing insertions and

deletions relative to the core residues of the alignment.

�e third stage introduced discriminative algorithms

based on classi�ers like support vector machines for

protein classi�cation and remote homology detection.

Such methods train both on positive sequences belong-

ing to a protein family as well as negative examples

consisting of sequences unrelated to the family. �ey

require protein sequences to be represented using an

explicit feature mapping or a kernel function in order

to train the classi�er. �e �rst discriminative protein

classi�cation algorithm was the SVM-Fisher method

(Jaakkola, Diekhans, & Haussler,), which uses a

pro�le HMM to extract a feature vector of Fisher scores

for each input sequence x, de�ned by the gradient vector

∇θ logP(x∣θ)∣θ=θ ,

where logP(x∣θ) is the log likelihood function of the
sequence relative to the HMM and θ is the maximum

likelihood estimate for the model parameters. Another

feature represention that has been used is the empirical

kernel map

Φ(x) = ⟨s(x, x), . . . , s(xm, x)⟩,

where s(x, y) is a function depending on a pairwise
similarity score between x and y and xi, i = . . .m,
are the training sequences Liano et al. (). In addi-

tion, it is possible to construct useful kernels directly

without explicitly depending on generative models by

using subsequence-based string kernels. For example,

the mismatch kernel (Leslie, Eskin, Weston, & Noble,

) is de�ned by a histogram-like feature map. �e

feature space is indexed by all possible k-length subse-

quences α = aa . . . ak, where each ai is a character

in the alphabet A of amino acids. �e feature map is
de�ned on k-gram α by Φ(α) = (ϕβ(α))

A
k where

ϕβ(α) = if α is within m mismatches of β, oth-

erwise, and is extended additively to longer sequences:

Φ(x) = ∑k−grams∈xΦ(α).

Genes

A�er a genome (or a portion of a genome) has been

sequenced, a biologist’s �rst question is usually, “Where

are the genes?” In simple organisms, most of the

genome is translated into proteins, and so the gene-

�nding problem reduces, essentially, to identifying the

boundaries between genes. Inmore complex organisms,

a large proportion of the genome consists of non pro-

tein coding DNA. �e human genome, for example,

is comprised of approximately % non-coding DNA.

�is non-coding DNA is interspersed between coding

regions and even in the midst of a single coding region.

�e gene-�nding problem, canonically, is to identify the

regions of a given DNA sequence that encode proteins.

Initial methods for gene �nding combined scores

produced by di�erent types of detectors. A signal detec-

tor attempts to recognize local, �xed-length features,

such as characterize the boundaries between coding

and non-coding regions within a single gene. A con-

tent detector attempts to recognize larger patterns on

the basis of compositional statistics. Early gene �nding

algorithms combined these various scores in an ad hoc

fashion to identify gene-like regions.

In the mid-s, several research groups began

using HMMs for gene �nding. HMMs provide a

coherent, fully probabilistic method that is capable of

capturing many of the complexities of real genes. Per-

haps the most widely used such method is Genscan

(Burge & Karlin,), which uses ��h-order Markov

statistics along with variable duration HMMs.

Gene �nding is now a very mature �eld, but

advances continue to be made using, e.g., conditional

random �eldmodels (Bernal, Crammer, Hatzigeorgiou,

& Pereira,) and large-margin structured output

techniques (Rätsch et al.,).

Learning Models of Biological Sequences L

L

RNAs

Most RNA molecules are so-called messenger RNAs,

which are used in the production of a corresponding

protein molecule. Some RNAs, however, do not code

for proteins but instead function on their own. �ese

RNAs fall into functional categories, but they are not

easily recognized byHMMsbecause () theRNAs them-

selves are o�en very short, and () functional RNA

typically folds up in a deterministic fashion, and there-

fore exhibits nonlocal dependencies along the RNA

sequence.

Useful RNA modeling is therefore accomplished

using covariance models, which are a subclass of

stochastic context-free grammars. �e foundational

work in this area was due to Eddy and Durbin (),

who addressed both the structure inference problem

and the inference of transition and emission probabil-

ities given the structure.�ey applied these algorithms

to transfer RNAs (tRNAs), and the approach was the

basis for widely used tools such as Rfam.

Much e�ort in RNA covariance models has been

devoted to improving the time and space e�ciency of

the algorithms associated with covariance models. For

example, Eddy () introduced a memory-e�cient

variant of the core dynamic programming algorithm

used to align a covariance model to an RNA sequence.

�is improvement was practically important, since it

reduced the O(N) space requirement for a length N

RNA sequence. Other work has focused on accelerating

database search using the modeled families.

Recent e�orts have focused on algorithms for

genome-wide screens to discover functional non-

coding RNAs as well as small regulatory RNAs like

microRNAs. Various approaches to this problem have

incorporated conservation as well as RNA structure

prediction, both using covariance models and other

methodologies. One such algorithm is RNAz (Washietl,

Hofacker, & Stadler,), which combines a mea-

sure for thermodynamic stability with a measure for

structure conservation in an SVM approach to detect

functional RNAs in multiple sequence alignments.

Phylogenetic Models

Phylogenetic models attempt to infer the series of evo-

lutionary events (mutations, insertions, deletions, etc.)

that gave rise to an observed collection of DNA or

protein sequences. In most cases, these models ignore

the possibility of copying DNA between individuals or

species, and therefore represent the history as a phylo-

genetic tree, in which leaf nodes represent the observed

sequences, and the internal nodes represent unobserved

ancestral sequences. Of primary interest is inferring the

topology and branch lengths of this tree.

Methods for phylogenetic tree inference can be

divided into three classes: parsimony, distance, and like-

lihood methods, all described in detail in Felsenstein

().

Parsimony methods search for a tree that requires

the smallest number of mutations, insertions or dele-

tions along its branches. Because the search space of

possible tree topologies is so large, this approach is fea-

sible only for relatively small sets of sequences – tens

rather than hundreds. Also, because parsimony mod-

els do not allow for so-called back-mutations – where a

letter mutates to a di�erent letter and then back again

– and other similar events, parsimony models are prov-

ably suboptimal for distantly related sequences.

Distance methods replace parsimony with a

generalized notion of distance, which may include

back-mutation. A series of increasingly sophisticated

distance metrics have been developed in this domain,

starting with the one-parameter Jukes-Cantor model

and the two-parameter Kimura model. Given an

all-versus-all distance matrix, various tree inference

algorithms can be used, including neighbor joining and

agglomerative hierarchical clustering (called UPGMA

in phylogenetics).

�e third class of models use a fully probabilistic

approach and attempt to infer the tree with maximum

likelihood, given the observed sequences.�is approach

was �rst outlined by Felsenstein (), but was not

computationally feasible for large sets of sequences until

recently. Currentmethods employMarkov chainMonte

Carlo methods to carry out the search.

Programs and Data

Following are some of the more popular web sites for

performing biological sequence analysis:

● BLAST and PSI-BLAST (http://www.ncbi.nlm.nih.

gov/BLAST) search a protein or DNA sequence

database with a given, query sequence, and return

a ranked list of homologs.

 L Learning Vector Quantization

● MEME (http://meme.sdsc.edu) searches a given set

of DNA or protein sequences for one or more recur-

rent motif patterns.

● HMMER (http://hmmer.janelia.org) is an HMM

toolkit for training and searching with pro�le

HMMs of proteins.

● Pfam (http://pfam.janelia.org) is a searchable library

of pro�le HMMs corresponding to a curated collec-

tion of homologous protein domains.

● Rfam (http://rfam.janelia.org) is an analagous

database of multiple sequence alignments and

covariance models covering many common non-

coding RNA families.

● PHYLIP (http://evolution.genetics.washington.edu/

phylip.html) is a free so�ware toolkit that includes

many common phylogenetic inference

algorithms.

Recommended Reading
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.

(). A basic local alignment search tool. Journal of Molecular

Biology, , –.

Bailey, T. L., & Elkan, C. P. (). Fitting a mixture model by

expectation-maximization to discover motifs in biopolymers.

In R. Altman, D. Brutlag, P. Karp, R. Lathrop, & D. Searls (Eds.),

Proceedings of the second international conference on intelligent

systems for molecular biology (pp. –). AAAI Press.

Bernal, A., Crammer, K., Hatzigeorgiou, A., & Pereira, F. ().

Global discriminative learning for higher-accuracy computa-

tional gene prediction. PLoS Computational Biology, , c.

Burge, C., & Karlin, S. (). Prediction of complete gene structures

in human genomic DNA. Journal of Molecular Biology, (),

–.

Eddy, S. R. (). A memory-efficient dynamic programming algo-

rithm for optimal alignment of a sequence to an rna secondary

structure. BMC Bioinformatics, , .

Eddy, S. R., & Durbin, R. (). RNA sequence analysis using

covariance models. Nucleic Acids Research, , –.

Felsenstein, J. (). Maximum-likelihood estimation of evolu-

tionary trees from continuous characters. American Journal of

Human Genetics, , –.

Felsenstein, J. (). Inferring phylogenies. Sunderland MA: Sinauer

Associates, .

Jaakkola, T., Diekhans, M., & Haussler, D. (). A discriminative

framework for detecting remote protein homologies. Journal of

Computational Biology, (-), –.

Krogh, A., Brown, M., Mian, I., Sjolander, K., & Haussler, D. ().

Hidden Markov models in computational biology: Applications

to protein modeling. Journal of Molecular Biology, , –

.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A.

F., & Wootton, J. C. (). Detecting subtle sequence sig-

nals: A Gibbs sampling strategy for multiple alignment. Science,

(), –.

Lawrence, C. E., & Reilly, A. A. (). An expectation maximiza-

tion (EM) algorithm for the identification and characterization

of common sites in unaligned biopolymer sequences. Proteins,

(), –.

Leslie, C., Eskin, E., Weston, J., & Noble, W. S. (). Mismatch

string kernels for SVM protein classification. In S. Becker,

Thrun, & Obermayer (Eds.) Advances in neural information pro-

cessing systems, (pp. –). Cambridge, MA: . MIT

Press.

Liao, Li and William Stafford Noble. “Combining pairwise sequence

similarity and support vector machines for remote protein

homology detection”. In Proceedings of the sixth annual inter-

national conferrence on research in computational molecular

biology, April -, . pp. –.

Pavesi, G., Mereghetti, P., Mauri, G., & Pesole, G. (). Weeder

web: Discovery of transcription factor binding sites in a set of

sequences from co-regulated genes. Nucleic Acids Research,

(Web server issue), W–.

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K. R.,

Sommer, R., et al. (). Improving the C. elegans genome

annotation using machine learning. PLoS Computational Biol-

ogy, (), e.

Tompa, M., Li, N., Bailey, T. L., Church, G. M., de Moor, B., Eskin, E.,

et al. (). Assessing Computational tools for the discovery of

transcription factor binding sites. Nature Biotechnology, (),

–.

Washietl, S., Hofacker, I. L., & Stadler, P. F. (). Fast and reli-

able prediction of noncoding rnas. Proceedings of the National

Academy of Sciences USA, (), –.

Learning Vector Quantization

Synonyms
LVQ

Definition
Learning vector quantization (LVQ) algorithms pro-

duce prototype-based classi�ers. Given a set of labeled

prototype vectors, each input vector is mapped to the

closest prototype, and classi�ed according to its label.

�e basic LVQ learning algorithm works by itera-

tively moving the closest prototype toward the cur-

rent input if their labels are the same, and away from

the input if not. Some variants of the algorithm have

been shown to approximate Bayes optimal decision

borders. �e algorithm was introduced by Kohonen,

and being prototype-based it bears close resemblance

to 7competitive learning and 7Self-Organizing Maps.
�e di�erences are that LVQ is supervised and the pro-

totypes are not ordered (i.e., there is no neighborhood

function).

Least-Squares Reinforcement Learning Methods L

L

Learning with Different
Classification Costs

7Cost-Sensitive Learning

Learning with Hidden Context

7Concept Dri�

Learning Word Senses

7Word Sense Disambiguation

Least-Squares
Reinforcement Learning Methods

Michail G. Lagoudakis

Technical University of Crete

Crete, Greece

Definition
Most algorithms for sequential decision making rely

on computing or learning a value function that cap-

tures the expected long-term return of a decision at

any given state. Value functions are in general com-

plex, nonlinear functions that cannot be represented

compactly as they are de�ned over the entire state or

state-action space.�erefore, most practical algorithms

rely on value function approximation methods and the

most common choice for approximation architecture is

a linear architecture. Exploiting the properties of lin-

ear architectures, a number of e�cient learning algo-

rithms based on least-squares techniques have been

developed.�ese algorithms focus on di�erent aspects

of the approximation problem and deliver diverse solu-

tions, nevertheless they share the tendency to process

data collectively (batch mode) and, in general, achieve

better results compared to their counterpart algorithms

based on stochastic approximation.

Motivation and Background
Consider a7MarkovDecision7Process (MDP) (S ,A,P ,
R, γ,D), where S is the state space, A is the action
space, P(s′∣s, a) is a Markovian transition model,
R(s, a) is a reward function, γ ∈ (,] is the
discount factor, and D is the initial state distribu-
tion. A linear approximation architecture approximates

the value function Vπ(s) or Qπ(s, a) of a stationary
(stochastic) policy π(a∣s) as a linear weighted com-
bination of linearly-independent basis functions or

features ϕ:

V̂π(s;w) =
k

∑
j=

ϕj(s)wj = ϕ(s)⊺w

Q̂π(s, a;w) =
m

∑
j=

ϕj(s, a)wj = ϕ(s, a)⊺w.

�e parameters or weights of the approximation are the

coe�cients w.

Let Vπ and V̂π be the exact and the approximate,

respectively, state value function of a policy π, both

given as column vectors of size ∣S ∣. De�ne ΦV as the

(∣S ∣ × k) matrix with elements ϕj(s), where s ∈ S span
the rows and j = , , ..., k span the columns.�en, V̂π

can be expressed compactly as V̂π = ΦVw
π . Similarly,

letQπ and Q̂π be the exact and the approximate, respec-

tively, state-action value function of a policy π, both

given as column vectors of size ∣S ∣∣A∣. De�ne ΦQ as

the (∣S ∣∣A∣ × m) matrix with elements ϕj(s, a), where
(s, a) ∈ (S × A) span the rows and j = , , ...,m span
the columns.�en, Q̂π can be expressed compactly as

Q̂π = ΦQw
π . In addition, letR be a vector of size ∣S ∣∣A∣

with entries R(s, a) that contains the reward function,
P be a stochastic matrix of size (∣S ∣∣A∣ × ∣S ∣) that con-
tains the transition model (P((s, a), s′) = P(s′∣s, a)),
and Ππ be a stochastic matrix of size (∣S ∣ × ∣S ∣∣A∣)
that describes policy π (Ππ(s, (s, a)) = π(a∣s)). �e
state value function Vπ and the state-action value

function Qπ are the solutions of the linear Bellman

equations

Vπ = Ππ(R + γPVπ)
Qπ =R + γPΠπQ

π

 L Least-Squares Reinforcement Learning Methods

and also the �xed points of the corresponding linear

Bellman operators

Vπ = Tπ
V(Vπ), where Tπ

V(x) = Ππ(R + γPx)
Qπ = Tπ

Q(Qπ), where Tπ
Q(x) =R + γPΠπx.

If Vπ and Qπ were known, they could be projected

orthogonally onto the space spanned by the basis func-

tions to obtain the optimal least-squares approximation.

(For simplicity of presentation, we consider only uni-

form least-squares criteria in this text, but generaliza-

tion to weighted least-squares criteria is possible in all

cases). For the state value function we have:

V̂π = ΦVw
π = ΦV (Φ⊺

VΦV)
−
Φ⊺

VV
π

wπ = Φ−
V ΦV (Φ⊺

VΦV)
−
Φ⊺

VV
π
,

whereas for the state-action value function we have:

Q̂π = ΦQw
π = ΦQ (Φ⊺

QΦQ)
−
Φ⊺

QQ
π

wπ = Φ−
Q ΦQ (Φ⊺

QΦQ)
−
Φ⊺

QQ
π
.

�e learning algorithms described here strive to �nd a

set of parameters w, such that the approximate value

function is a good approximation to the true one. How-

ever, since the exact value functions are unknown, these

algorithms have to rely on information contained in

the Bellman equations and the Bellman operators to

derive expressions that characterize a good choice for

w. It has been shown that, in many cases, this kind of

learning is equivalent to approximating the MDP using

a linear (compressed) model and solving exactly the

approximate model (Parr et al.,).

Bellman Residual Minimizing Approximation

An obvious approach to deriving a good approximation

is to require that the approximate function satis�es the

linear Bellman equation as closely as possible. Substi-

tuting the approximation V̂π into the Bellman equation

for Vπ yields an overconstrained linear system over the

k parameters wπ :

V̂π ≈ Ππ(R + γPV̂π)
ΦVw

π ≈ Ππ(R + γPΦVw
π)

(ΦV − γΠπPΦV)wπ ≈ ΠπR.

Solving this overconstrained system in the least-squares

sense is a (k × k) system

(ΦV − γΠπPΦV)⊺(ΦV − γΠπPΦV)wπ

= (ΦV − γΠπPΦV)⊺ΠπR ()

whose solution is unique and minimizes

∥Tπ
V(V̂π) −V̂π∥

. Similarly, substituting the approxi-

mation Q̂π into the Bellman equation for Qπ yields an

overconstrained linear system over the m parameters

wπ :

Q̂π ≈R + γPΠπQ̂
π

ΦQw
π ≈R + γPΠπΦQw

π

(ΦQ − γPΠπΦQ)wπ ≈R.

Solving this overconstrained system in the least-squares

sense is a (m ×m) system

(ΦQ − γPΠπΦQ)⊺(ΦQ − γPΠπΦQ)wπ

= (ΦQ − γPΠπΦQ)⊺R ()

whose solution is unique and minimizes

∥Tπ
Q(Q̂π) − Q̂π∥

. In both cases, the solution minimizes

the L norm of the Bellman residual (the di�erence

between the le�-hand side and the right-hand side of

the linear Bellman equation).

Least-Squares Fixed-Point Approximation

Recall that a value function is also the �xed point of

the corresponding linear Bellman operator. Another

way to go about �nding a good approximation is to

force the approximate value function to be a �xed point

under the linear Bellman operator. For that to be pos-

sible, the �xed point has to lie in the space of approx-

imate value functions, which is the space spanned by

the basis functions. Even though the approximate func-

tion itself lies in that space by de�nition, the result of

applying the linear Bellman operator to the approxima-

tion will in general be out of that space and must be

projected back. Considering the orthogonal projection

(Φ(Φ⊺Φ)−Φ⊺) (which minimizes the L norm) onto
the column space of Φ, we seek an approximate value
function that is invariant under one application of the

linear Bellman operator followed by orthogonal pro-

jection onto the space spanned by the basis functions.

Least-Squares Reinforcement Learning Methods L

L

More speci�cally, for the state value function,we require

that

V̂π = ΦV (Φ⊺

VΦV)
−
Φ⊺

V (Tπ
V(V̂π))

ΦVw
π = ΦV (Φ⊺

VΦV)
−
Φ⊺

V (Ππ(R + γPΦVw
π)) .

Note that the orthogonal projection to the column space

of ΦV is well-de�ned, because the columns of ΦV (the

basis functions) are linearly independent by de�nition.

�e expression above is equivalent to solving a (k × k)
linear system

Φ⊺

V(ΦV − γΠπPΦV)wπ = Φ⊺

VΠπR ()

whose solution is guaranteed to exist for all, but �nitely

many, values of γ (Koller and Parr,) and mini-

mizes (in fact, zeros out) the projected Bellman residual.

Since the orthogonal projectionminimizes theL norm,

the solution wπ yields a value function V̂π , which is

the least-squares �xed-point approximation to the true

state value function. Similarly, for the state-action value

function, we require that

Q̂π = ΦQ (Φ⊺

QΦQ)
−
Φ⊺

Q (Tπ
Q(Q̂π))

ΦQw
π = ΦQ (Φ⊺

QΦQ)
−
Φ⊺

Q (R + γPΠπΦQw
π) .

�is is equivalent to solving a (m ×m) linear system

Φ⊺Q(ΦQ − γPΠπΦQ)wπ = Φ⊺

QR ()

whose solution is again guaranteed to exist for all, but

�nitely many, values of γ (Koller and Parr,) and

minimizes (in fact, zeros out) the projected Bellman

residual. Since the orthogonal projectionminimizes the

L norm, the solution wπ yields a value function Q̂π ,

which is the least-squares �xed-point approximation to

the true state-action value function.

Structure of Learning System
Least-Squares Temporal Difference Learning

�e least-squares temporal di�erence (LSTD) learn-

ing algorithm (Bradtke and Barto,) learns the

least-squares �xed-point approximation to the state

value function Vπ of a �xed policy π. In essence,

LSTD attempts to form and solve the linear system of

Equation using sampling. Each sample (s, r, s′) indi-
cates a minimal interaction with the unknown process,

whereby in some state s, a decision was made using

policy π, and reward r was observed, as well as a tran-

sition to state s′. LSTD processes a set of samples col-

lectively to derive the weights of the approximate value

function. LSTD is an on-policy method; it requires

that all training samples are collected using the policy

under evaluation.�e LSTD algorithm is summarized

in Algorithm .

LSTD improves upon the temporal di�erence (TD)

learning algorithm for linear architectures by making

e�cient use of data and converging faster. �e main

advantage of LSTD over TD is the elimination of the

slow stochastic approximation and the learning rate that

needs careful adjustment. TD uses samples to make

small modi�cations and then discards them. In con-

trast, with LSTD, the information gathered froma single

sample remains present in thematrices of the linear sys-

tem and is used in full every time the parameters are

computed. In addition, as a consequence of the elim-

ination of stochastic approximation, LSTD does not

diverge.

LSTD(λ) (Boyan,) is an extension to LSTD
that spans the spectrum between LSTD (λ =) and
7linear regression over Monte-Carlo returns (λ =)
for λ ∈ [,]. LSTD(λ) for λ > requires that samples
come from complete episodes. RLSTD(λ) is a variant
of LSTD(λ) that uses recursive least-squares techniques
for e�cient implementation (Xu et al.,).

Algorithm Least-Squares Temporal Di�erence
(LSTD)

w = LSTD(D, k, ϕ, γ)
Input: samples D, integer k, basis functions ϕ, dis-
count factor γ

Output:weightsw of the learned state value function

A← // (k × k)matrix
b← // (k ×) vector
for each sample (s, r, s′) ∈ D do
A← A + ϕ(s) (ϕ(s) − γϕ(s′))⊺

b← b + ϕ(s)r
end for
w ← A−b
return w

 L Least-Squares Reinforcement Learning Methods

Bellman Residual Minimization Learning

�e main idea behind LSTD can also be used to

learn the Bellman residual minimization approxima-

tion to the state value function Vπ of a �xed policy π.

In this case, the goal is to form and solve the lin-

ear system of Equation using sampling. However, the

structure of the system, in this case, requires that sam-

ples are “paired,” which means that two independent

samples (s, r, s′) and (s, r, s′′) for the same state s must
be drawn to perform one update.�is is necessary to

obtain unbiased estimates of the system matrices. Each

sample (s, r, s′) again indicates a minimal interaction
with the unknown process, whereby in some state s, a

decision was made using policy π, and reward r was

observed, as well as a transition to state s′. Obtain-

ing paired samples is trivial with a generative model

(a simulator) of the process, but virtually impossible

when samples are drawn directly from a physical pro-

cess. �is fact makes the Bellman residual minimiza-

tion approximation somewhat impractical for learning,

but otherwise a reasonable approach for computing

approximate state value functions from themodel of the

process (Schweitzer and Seidmann,).�e learning

algorithm for Bellman residual minimization is sum-

marized in Algorithm .

Hybrid Least-Squares Learning

Value function learning algorithms, either in the Bell-

man residual minimization or in the �xed point sense,

have been used within approximate policy iteration

Algorithm Bellman Residual Minimization Learning

w = BRML(D, k, ϕ, γ)
Input: paired samplesD, integer k, basis functions ϕ,
discount factor γ

Output:weightsw of the learned state value function

A← // (k × k)matrix
b← // (k ×) vector
for each pair of samples [(s, r, s′), (s, r, s′′)] ∈ D do
A← A + (ϕ(s) − γϕ(s′)) (ϕ(s) − γϕ(s′′))⊺

b← b + (ϕ(s) − γϕ(s′)) r
end for
w ← A−b
return w

schemes for policy learning, but in practice they exhibit

quite diverse performance. Fixed-point approximations

tend to deliver better policies, whereas Bellman resid-

ualminimization approximations �uctuate less between

di�erent rounds of policy iteration. Motivated by a

desire to combine the advantages of both approxima-

tions, some researchers have focused on learning hybrid

approximations that lie somewhere between these two

extremes. Johns et al. () have proposed two di�er-

ent approaches to combine these two approximations.

�e �rst relies on a derivation that begins with the goal

of minimizing a convex combination of the two objec-

tives (Bellman residual and projected Bellman resid-

ual); the resulting learning algorithm is quite expensive

as it requires the maintenance of three matrices and

two vectors (as opposed to one matrix and one vec-

tor when learning a non-hybrid approximation), as well

as the inversion of one of the three matrices at each

update.�e second approach focuses directly on a con-

vex combination of the linear systems produced by the

two extreme approximations (Equations and); the

resulting learning algorithm has the same complexity

as non-hybrid algorithms and in many cases exhibits

better performance than the original approximations.

On the other hand, both hybrid learning algorithms

still have to deal with the paired samples problem and

additionally require tuning of the convex combination

parameter.

Least-Squares Policy Evaluation

�e least-squares policy evaluation (LSPE) learning

algorithm (Nedić and Bertsekas,), like LSTD,

learns the least-squares �xed-point approximation to

the state value function Vπ of a �xed policy π. Both

LSPE and LSTD strive to obtain the solution to the

same linear system (Equation), but using di�erent

methods; LSPE uses an iterativemethod, whereas LSTD

uses direct matrix inversion. Unlike LSTD, LSPE begins

with some arbitrary approximation to the value func-

tion (given by a parameter vector w′) and focuses

on the one-step application of the Bellman operator

within the lower dimensional space spanned by the

basis functions aiming at producing an incremental

improvement on the parameters. In that sense, LSPE

can take advantage of a good initialization of the param-

eter vector. Given the current parameters w′ and a set

Least-Squares Reinforcement Learning Methods L

L

Algorithm Least-Squares Policy Evaluation (LSPE)
w = LSPE(D, k, ϕ, γ,w′, α)
Input: samples D, integer k, basis functions ϕ, dis-
count factor γ, weights w′, stepsize α

Output:weightsw of the learned state value function

A← // (k × k)matrix
b← // (k ×) vector
for each sample (s, r, s′) ∈ D do
A← A + ϕ(s)ϕ(s)⊺
b← b + ϕ(s) (r + γϕ(s′)⊺w′)
end for
w̄ ← A−b
w ← αw′ + (− α)w̄
return w

{(sk, rk, s′k) : k = , . . . , t} of samples, LSPE �rst com-
putes the solution w̄ to the least-squares problem

min
w

t

∑
k=

(ϕ(sk)⊺w − (rk + γϕ (s′k)
⊺

w′))

and then updatesw′ toward w̄ using a stepsize α ∈ (,].
�e LSPE algorithm is summarized in Algorithm .

�e LSPE incremental update at the extreme can be

performed whenever a new sample arrives or whenever

a batch of samples becomes available to remedy com-

putational costs. An e�ciency improvement to LSPE

is to use recursive least-squares computations, so that

the least-squares problem can be solved without matrix

inversion. LSPE(λ) for λ ∈ [,] is an extension of LSPE
to multistep updates in the same spirit as LSTD(λ).
LSPE(λ) for λ > requires that samples come from
complete episodes.

Least-Squares Policy Iteration

Least-squares policy iteration (LSPI) (Lagoudakis and

Parr,) is a model-free, reinforcement learning

algorithm for policy learning based on the approxi-

mate policy iteration framework. LSPI learns in a batch

manner by processing multiple times the same set of

samples. LSPI is an o�-policy method; samples can be

collected arbitrarily from the process using any pol-

icy. Each sample (s, a, r, s′) indicates that the learner
observed the current state s, chose an action a, and

observed the resulting next state s′ and the reward

received r. LSPI iteratively learns a (weighted) least-

squares �xed-point approximation of the state-action

value functions (Equation) of a sequence of improv-

ing (deterministic) policies π. At each iteration, the

value function of the policy is approximated by solv-

ing a (m × m) linear system, formed using the single
sample set and the policy from the previous iteration.

LSPI o�ers a non-divergence guarantee and in most

cases it converges in just a few iterations. LSPI exhibits

excellent sample e�ciency and has been used widely

in many domains. Algorithm summarizes the LSPI

algorithm.

�e default internal policy evaluation procedure in

LSPI is the variation of LSTD for the state-action value

function (LSTDQ). However, any other value function

learning algorithm, such as BRML or LSPE, could be

used instead; nevertheless, the λ extensions are not

applicable in this case, because the samples in LSPI have

been collected arbitrarily and not by the policy being

evaluated each time. �e variation of LSPI that inter-

nally learns the Bellman residual minimizing approxi-

mation (Equation) using BRML has produced inferior

policies, in general, and su�ers from the paired samples

problem.

Algorithm Least-Squares Policy Iteration (LSPI)
w = LSPI(D,m, ϕ, γ, є)
Input: samples D, integer m, basis functions ϕ, dis-
count factor γ, tolerance є

Output: weights w of the learned value function of
the best learned policy

w ←
repeat
A← // (m ×m)matrix
b← // (m ×) vector
w′ ← w

for each sample (s, a, r, s′) in D do
a′ = argmaxa′′∈A ϕ(s′, a′′)⊺w′
A← A + ϕ(s, a) (ϕ(s, a) − γϕ(s′, a′))⊺

b← b + ϕ(s, a)r
end for
w ← A−b
until (∥w −w′∥ < є)
return w

 L Leave-One-Out Cross-Validation

Least-Squares Fitted Q-Iteration

Fitted Q-iteration (FQI) (Ernst et al.,) is a batch

reinforcement learning algorithm for policy learning

based on the popular Q-Learning algorithm. FQI uses

an iterative scheme to approximate the optimal value

function, whereby an improved value function Q is

learned at each iteration by �tting a function approx-

imator to a set of training examples generated using

a set of samples from the process and the Q-Learning

update rule. Any function approximation architecture

and the corresponding supervised learning algorithm

could be used in the iteration.�e simplest choice is to

use least-squares regression alongwith a linear architec-

ture to learn the least-squares �xed-point approxima-

tion of the state-action value function (Equation).�is

version of least-squares �ttedQ-iteration is summarized

in Algorithm . In a sense, this version of FQI com-

bines ideas from LSPE and LSPI. Like LSPI, FQI is an

o�-policy method; samples can be collected arbitrarily

from the process using any policy. In practice, FQI pro-

duces very good policies within a moderate number of

iterations.

Algorithm Least-Squares Fitted Q-Iteration
w = LS-FQI(D,m, ϕ, γ,N)
Input: samples D, integer m, basis functions ϕ, dis-
count factor γ, iterations N

Output: weights w of the learned value function of
the best learned policy

i←
w ←
while (i < N) do
A← // (m ×m)matrix
b← // (m ×) vector
for each sample (s, a, r, s′) in D do
A← A + ϕ(s, a)ϕ(s, a)⊺
b← b + ϕ(s, a) (r + γmaxa′∈A {ϕ(s′, a′)⊺w})
end for
w ← A−b
i← i +
end while
return w

Cross References
7Curse of Dimensionality
7Feature Selection
7Radial Basis Functions
7Reinforcement Learning
7Temporal Di�erence Learning
7Value Function Approximation

Recommended Reading
Boyan, J. A. (). Least-squares temporal difference learning. Pro-

ceedings of the Sixteenth International Conference on Machine

Learning, Bled, Slovenia, pp. –.

Bradtke, S. J., & Barto, A. G. (). Linear least-squares algorithms

for temporal difference learning. Machine Learning, , –.

Ernst, D., Geurts, P., & Wehenkel, L. (). Tree-based batch mode

reinforcement learning. Journal of Machine Learning Research,

, –.

Johns, J., Petrik, M., & Mahadevan, S. (). Hybrid least-squares

algorithms for approximate policy evaluation. Machine Learn-

ing, (–), –.

Koller, D., & Parr, R. (). Policy iteration for factored MDPs. Pro-

ceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, Stanford, CA, USA, pp. –.

Lagoudakis, M. G., Parr, R. (). Least-squares policy iteration.

Journal of Machine Learning Research, , –.

Nedić, A., & Bertsekas, D. P. (). Least-squares policy evaluation

algorithms with linear function approximation. Discrete Event

Dynamic Systems: Theory and Applications, (–), –.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., & Littman, M.

L. (). An analysis of linear models, linear value-function

approximation, and feature selection for reinforcement learn-

ing, Proceedings of the twenty-fifth international conference

on machine learning, Helsinki, Finland, pp. –.

Schweitzer, P. J., & Seidmann, A. (). Generalized polynomial

approximations in Markovian decision processes. Journal of

Mathematical Analysis and Applications, (), –.

Xu, X., He, H. G., & Hu, D. (). Efficient reinforcement learn-

ing using recursive least-squares methods. Journal of Artificial

Intelligence Research, , –.

Leave-One-Out Cross-Validation

Definition
Leave-one-out cross-validation is a special case of

7cross-validation where the number of folds equals the
number of7instances in the7data set.�us, the learn-
ing algorithm is applied once for each instance, using all

other instances as a7training set and using the selected
instance as a single-item7test set.�is process is closely

Linear Discriminant L

L

related to the statistical method of jack-knife estimation

(Efron,).

Cross References
7Algorithm Evaluation

Recommended Reading
Efron, B. (). The Jackknife, the Bootstrap and other resam-

pling plans. In CBMS-NSF regional conference series in applied

mathematics . Philadelphia, PA: Society for Industrial and

Applied Mathematics (SIAM).

Leave-One-Out Error

Synonyms
Hold-one-out error; LOO error

Definition
Leave-one-out error is an estimate of 7error obtained
by7leave-one-out cross-validation.

Lessons-Learned Systems

7Case-Based Reasoning

Lifelong Learning

7Cumulative Learning

Life-Long Learning

7Continual Learning

Lift

Li� is ameasure of the relative utility of a7classi�cation
rule. It is calculated by dividing the probability of the

consequent of the rule, given its antecedent by the prior

probability of the consequent:

li�(x → y) = P(Y = y ∣ X = x)/P(Y = y).

In practice, the probabilities are usually estimated from

either7training data or7test data. In this case,

li�(x → y) = F(Y = y ∣ X = x)/F(Y = y)

where F(Y = y ∣ X = x) is the frequency with which the
consequent occurs in the data in the context of the

antecedent and F(Y = y) is the frequency of the conse-
quent in the data.

Linear Discriminant

Novi Quadrianto, Wray L. Buntine

RSISE, ANU and SML, NICTA, Canberra, Australia

Definition
A discriminant is a function that takes an input variable

and outputs a class label for it. A linear discriminant is a

discriminant that is linear in the input variables. �is

article focuses on one such linear discriminant func-

tion called Fisher’s linear discriminant. Fisher’s discrim-

inant works by �nding a projection of input variables

to a lower dimensional space while maintaining a class

separability property.

Motivation and Background
�e curse of dimensionality (7Curse of Dimensional-
ity) is an ongoing problem in applying statistical tech-

niques to pattern recognition problems. Techniques

that are computationally tractable in low-dimensional

spaces can become completely impractical in high-

dimensional spaces. Consequently, various methods

have been proposed to reduce the dimensionality of the

input or feature space in the hope of obtaining a more

manageable problem. �is relies on the fact that real

data will o�en be con�ned to a region of the space hav-

ing lower e�ective dimensionality, and in particular the

directions over which important variations in the out-

put variables occurmay be so con�ned. For example, we

can reduce a d-dimensional problem to one dimension

 L Linear Discriminant

if we project the d-dimensional data onto a line. How-

ever, arbitrary projectionswill usually produce cluttered

projected samples from all of the classes.�us, the aim

is to �nd a good projection so that the projected samples

are well separated. �is is exactly the goal of Fisher’s

linear discriminant analysis.

Fisher’s Discriminant for Two-Category
Problem
Given N observed training data points {(xi, yi)}Ni=
where yi ∈{, . . . , Ω} is the label for an input variable
xi ∈Rd, our task is to �nd the underlying discrimi-

nant function, f : Rd → {, . . . , Ω}. �e linear dis-
criminant seeks a projection of d-dimensional input

onto a line in the direction of w ∈ Rd, such that

y = wTx. ()

Subsequently, a class label assignment can be performed

by thresholding the projected values, for example y ≥ C

as class and otherwise as class for an appropriate

choice of constant C. While the magnitude of w has no

real signi�cance (acts only as a scaling factor to y), the

direction of w plays a crucial role. Inappropriate choice

of w can result in an non-informative heavily cluttered

line. However, by adjusting the components of weight

w, we can �nd a projection that maximizes the class

separability (Fig.). It is crucial to note that whenever

the underlying data distributions are multimodal and

highly overlapping, it might not be possible to �nd such

a projection.

Consider a two-category problem, Ω and Ω with

N and N number of data points, respectively. �e

d-dimensional sample mean is given by

µ =

N
∑
i∈Ω

xi µ =

N
∑
i∈Ω

xi. ()

�e simplest class separability criterion is the separa-

tion of the projected class mean, that is we can �nd the

weight w that maximizes

m −m =

N
∑
i∈Ω

wTxi −

N
∑
i∈Ω

wTxi = wT(µ − µ),

()

where m and m are the projected class means. An

additional unit length constraint on w, i.e., ∑i w

i =

should be imposed to have a well-de�ned maximiza-

tion problem.�e above separability criterion produces

a line that is parallel to the line joining the two means.

However, this projection is sub-optimal whenever the

data has distinct covariances depending on class (i.e., it

is un-isotropic).

Fisher’s criterion maximizes a large separation

between the projected class means while also minimiz-

ing a variance within each class.�is criterion can be

expressed as

J(w) = wTSBw

wTSWw
. ()

where the total within-class covariance matrix is

SW = ∑
i∈Ω

(xi−µ)(xi−µ)T+∑
i∈Ω

(xi−µ)(xi−µ)T , ()

Wa

Wb

Linear Discriminant. Figure . Colors encode class labels. Projection of samples onto two different lines. The plot on

the left shows greater separation between the white and black projected points

Linear Regression L

L

and a between-class covariance matrix is

SB = (µ − µ)(µ − µ)T . ()

�e maximizer of () can be found by setting its �rst

derivative with respect to theweights vector to zero, that

is

(wTSBw)SWw = (wTSWw)SBw. ()

It is clear from (), that SB is always in the direction of

(m −m). As only the direction of w is important, we
can drop the scaling factors in (), those are (wTSBw)
and (wTSWw). Multiplying both sides of () by S−W , we
can then obtain the solution of w that maximizes () as

w = S−W(µ − µ). ()

Fisher’s Discriminant for Multi-category
Problem
For the general Ω-class problem, we seek a projection

from d-dimensional space to a (Ω −)-dimensional
spacewhich is accomplished byΩ− linear discriminant
functions, that is

yc = wT
c x c = , . . . , Ω − . ()

In the matrix notation, y = WTx for W ∈ Rd×(Ω−)

and y ∈ R(Ω−).�e generalization of the within-class
covariance matrix in () to the case of Ω classes is

SW = ∑Ωc= Sc with Sc = ∑i∈c(xi − µc)(xi − µc)T . Fol-
lowing Duda and Hart (), the between-class covari-

ance matrix is de�ned as the di�erence between the

total covariance matrix, ∑N
i=(xi − µ)(xi − µ)T , where

µ denotes the total sample mean of the dataset, and the

within-class covariance matrix. One of the criterion to

be optimized is (Fukunaga,)

J(w) = Trace((WTSWW)−(WTSBW)). ()

�e maximizer of () is eigenvectors of S−WSB associ-

ated with Ω − largest eigenvalues. It is important to
note that the between-class covariance matrix SB is the

sum of Ω matrices of rank one or less, and because only

Ω − of these matrices are independent, SB has rank at
most equal to Ω− and so there are atmost Ω− nonzero
eigenvalues.�erefore, we are unable to �nd more than

Ω − discriminant functions (Fukunaga,).

Cross References
7Regression
7Support Vector Machines

Recommended Reading
Most good statistical text books cover this.

Bellman, R. E. (). Adaptive control processes. Princeton:

Princeton University Press.

Duda, R. O., & Hart, P. E. (). Pattern classification and scene

analysis. New York: Wiley.

Fukunaga, K. (). Introduction to statistical pattern recognition

(nd ed.). San Diego: Academic.

Linear Regression

Novi Quadrianto, Wray L. Buntine

RSISE, ANU and SML, NICTA, Canberra, Australia

Definition
Linear Regression is an instance of the 7Regression
problem which is an approach to modelling a func-

tional relationship between input variables x and an

output/response variable y. In linear regression, a lin-

ear function of the input variables is used, and more

generally a linear function of some vector function of

the input variables ϕ(x) can also be used. �e linear
function estimates the mean of y (or more generally the

median or a quantile).

Motivation and Background
Assume we are given a set of data points sampled from

an underlying but unknown distribution, each of which

includes input x and output y. �e task of regression

is to learn a hidden functional relationship between x

and y from observed and possibly noisy data points, so

y is to be approximated in some way by f (x). �is is
the task covered in more detail in Regression. A gen-

eral approach to the problem is to make the function

f () be linear. Depending on the optimization criteria
used to �t between the linear function f (x) and the
output y, this can include many di�erent regression

techniques, but optimization is generally easier because

of the linearity.

 L Linear Regression

Theory/Solution
Formally, in a regression problem, we are interested

in recovering a functional dependency yi = f (xi) +
єi from N observed training data points {(xi, yi)}Ni=,
where yi ∈ R is the noisy observed output at input loca-
tion xi ∈ Rd. For the linear parametric technique, we

tackle this regression problem by parameterizing the

latent regression function f () by a parameter w ∈ RH ,

that is f (xi) := ⟨ϕ(xi),w⟩ for H �xed basis functions
{ϕh(xi)}Hh=. Note that the function is a linear function
of the weight vector w. �e simplest form of the lin-

ear parametric model is when ϕ(xi) = xi ∈ Rd, that is

the model is also linear with respect to the input vari-

ables, f (xi) := w + wx

i + ⋯ + wdx

d
i . Here the weight

w allows for any constant o�set in the data. With gen-

eral basis functions such as polynomials, exponentials,

sigmoids, or even more sophisticated Fourier or wave-

lets bases, we can obtain a regression function which is

nonlinear with respect to the input variables although

still linear with respect to the parameters.

In the subsequent section, the simplest and thus

common linear parametric method for solving a regres-

sion problem is covered, the least squares method.

Least Squares Method Let X ∈ RN×d be a matrix of

input variables and y ∈ RN be a vector of output vari-

ables.�e least squaresmethodminimizes the following

sum of squared error,

E(w) = (Xw − y)T(Xw − y) ()

to infer the weight vector w. Note that the above error

function is quadratic in the w, thus the minimization

has a unique solution and leads to a closed-form expres-

sion for the estimated value of the unknown weight

vector w.�e minimizer of the error function in () can

be found by setting its �rst derivative with respect to the

weight vector to zero, that is

∂wE(w) = XT(Xw − y) = ()

w∗ = (XTX)−XTy. ()

�e term

(XTX)−XT
:= X† ()

is known as the Moore-Penrose pseudo-inverse (Golub

& Van Loan,) of the matrix X.�is quantity can

be regarded as a generalization of a matrix inverse to

nonsquare matrices. Whenever X is square and invert-

ible, X† ≡ X−. Having computed the optimal weight

vector, we can then predict the output value at a novel

input location xnew simply by taking an inner product:

ynew = ⟨ϕ(xnew),w∗⟩.
Under the assumption of an independent and nor-

mally distributed noise term, єi ∼ N (, σ), the above
least squares approach can be shown to be equivalent to

the maximum likelihood solution. With the Gaussian

noise term, the log-likelihood model on an output vec-

tor y and an input matrix X is

ln p(y∣X,w) = ln N (Xw, σ I) ()

= −N

ln(πσ) −

σ
(y − Xw)T(y − Xw).

()

Maximizing the above likelihood function with respect

to w will give the optimal weight to be in the form of

(). We can also �nd the maximum likelihood estimate

of the noise variance by setting the �rst derivative of ()

with respect to σ to zero, that is

σ ML =

N
(y − Xw)T(y − Xw). ()

Geometrical Interpretation of Least Squares Method Let

y be a vector in an N-dimensional space whose axes are

given by {yi}Ni=. Each of theH basis functions evaluated
at N input locations can also be represented as a vector

in the same N-dimensional space. For notational con-

venience, we denote this vector as ψh.�eH vectors ψh

will span a linear subspace of dimensionality H when-

ever the number of basis functions H is smaller than

the number of input locations N (see Fig.). Denote

Φ ∈ RN×H as a matrix whose rows are the vectors

{ϕh(xi)}Hh=. Our linear prediction model, Φw (in the
simplest form Xw) will be an arbitrary linear combina-

tion of the vectors ψh.�us, it can live anywhere in the

H-dimensional space.�e sum of squared error crite-

rion in () then corresponds to the squared Euclidean

distance between Φw and y.�erefore, the least squares

solution of w corresponds to the orthogonal projection

of y onto the linear subspace.�is orthogonal projec-

tion is associated with the minimum of the squared

Euclidean distance. As a side note, from Fig. , it is clear

that the vector y −Φw is normal (perpendicular) to the
range of Φ thus ΦTΦw = ΦTy is called the normal

equation associated with the least squares problem.

Linear Regression L

L

2

1

Linear Regression. Figure . Geometrical interpretation

of least squares. The optimal solution w∗ with respect to

the least squares criterion corresponds to the orthogonal

projection of y onto the linear subspace which is formed

by the vectors of the basis functions

Practical note: �e computation of () requires an

inversion of anH byH matrix ΦTΦ (or a d by dmatrix

XTX). A direct inversion of this matrix might lead

to numerical di�culties when two or more basis vec-

tors ψh or input dimensions are (nearly) collinear.�is

problem can be addressed conveniently by using Sin-

gular Value Decomposition (SVD) (Press, Teukolsky,

Vetterling, & Flannery,). It is important to note

that adding a regularization term (see also the later sec-

tion on ridge regression) ensures the non-singularity of

ΦTΦ matrix, even in the presence of degeneracies.

Sequential Learning of Least Squares Method Compu-

tation of the optimal weight vector in () involves the

whole training set comprisingN data points.�is learn-

ing technique is known as a batch algorithm. Real

datasets can however involve large numbers of data

points which might make batch techniques computa-

tionally prohibitive. In contrast, sequential algorithms

or online algorithms process one data point at a time,

and can be more suited to handle large datasets.

We can use a sequential algorithm called stochastic

gradient descent for learning the optimal weight vector.

�e objective function of () can be decomposed into

∑N
i=(⟨xi,w⟩ − yi).�is transformation suggests a sim-
ple stochastic gradient descent procedure: we traverse

the data point i and update the weight vector using

wt+ ← wt − η(⟨xi,wt⟩ − yi)xi, ()

�is algorithm is known as LMS (Least Mean Squares)

algorithm. In the above equation, t denotes the iteration

number and η denotes the learning rate.�e value of η

needs to be chosen carefully to ensure the convergence

of the algorithm.

Regularized/Penalized Least Squares Method �e issue

of over-�tting as mentioned in Regression is usually

addressed by introducing a regularization or penalty

term to the objective function.�e regularized objective

function is now in the form of

Ereg = E(w) + λR(w). ()

Here E(w) measures the quality (such as least squares
quality) of the solution on the observed data points,

R(w) penalizes complex solutions, and λ is called the

regularization parameter which controls the relative

importance between the two. �is regularized formu-

lation is sometimes called coe�cient shrinkage as it

shrinks coe�cients/weights toward zero (c.f. coe�cient

subset selection formulation where the best k out of

H basis functions are greedily selected). Two simple

penalty terms R(w) are given next, but more gener-
ally measures of curvature can also be used to penalize

non-smooth functions.

Ridge regression �e regularization term is in the form

of

R(w) =
D

∑
d=

wd. ()

Considering E(w) to be in the form of (), the regular-
ized least squares quality function is now

(Xw − y)T(Xw − y) + λwTw. ()

Since the additional term is a quadratic of w, the

regularized objective function is still quadratic in w,

thus the optimal solution is unique and can be found

in closed form. As before, setting the �rst derivative of

() with respect to w to zero, the optimal weight vector

is in the form of

∂wEreg(w) = XT(Xw − y) + λw = ()

w∗ = (XTX + λI)−XTy. ()

 L Linear Regression Trees

�e e�ect of the regularization term is to put a small

weight for those basis functions which are useful only

in a minor way as the penalty for small weights is very

small.

Lasso regression �e regularization term is in the form

of

R(w) =
D

∑
d=

∣wd∣. ()

In contrast to ridge regression, lasso regression

(Tibshirani,) has no closed-form solution. In

fact, the non-di�erentiability of the regularization

term has produced many approaches. Most of the

methods involve quadratic programming and recently

coordinate-wise descent algorithms for large lasso prob-

lems (Friedman et al.,). Lasso regression leads to

sparsity in w, that is, only a subset of w is nonzero, so

irrelevant basis functions will be ignored.

Cross References
7Correlation Matrix
7Gaussian Processes
7Regression

Recommended Reading
Statistical textbooks and machine learning textbooks, such as Bishop

() among others, introduce different linear regression models.

For a large variety of built-in linear regression techniques, refer to

R (http://www.r-project.org/).

Bishop, C. (). Pattern recognition and machine learning. New

York: Springer.

Friedman, J., Hastie, T., Hölfling, H., & Tibshirani, R. ().

Pathwise coordinate optimization. Annals of statistics, ():

–.

Golub, G.H., & Van Loan, C.F. ().Matrix computations (rd ed.).

Baltimore: John Hopkins University Press.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P.

(). Numerical recipes in C: The art of scientific comput-

ing (nd ed.). Cambridge: Cambridge University Press. ISBN

---.

Tibshirani, R. (). Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society. Series B. Statistical

Methodology, , –.

Linear Regression Trees

7Model Trees

Linear Separability

Two classes are linearly separable if there exists a hyper-

plane that separates the data for each of the classes.

Cross References
7Perceptrons
7Support Vector Machines

Link Analysis

7Link Mining and Link Discovery

Link Mining and Link Discovery

Lise Getoor

University of Maryland, College Park, MD, USA

Synonyms
Link analysis; Network analysis

Definition
Many domains of interest today are best described

as a linked collection of interrelated objects. Datasets

describing these domains may describe homogeneous

networks, in which there is a single-object type and

link type, or richer, heterogeneous networks, in which

there may be multiple object and link types (and possi-

bly other semantic information). Examples of homoge-

neous networks include social networks, such as people

connected by friendship links, or the WWW, a collec-

tion of linked web pages. Examples of heterogeneous

networks include those in medical domains describing

patients, diseases, treatments and contacts, or biblio-

graphic domains describing publications, authors, and

venues. Link mining refers to data mining techniques

that explicitly consider these links when building pre-

dictive or descriptive models of the linked data. Com-

monly addressed link mining tasks include collective

classi�cation, object ranking, group detection, link pre-

diction, and subgraph discovery. Additional important

Link Mining and Link Discovery L

L

components include entity resolution, and other data

cleaning and data mapping operations.

Motivation and Background
“Links,” ormore generically “relationships,” among data

instances are ubiquitous.�ese links o�en exhibit pat-

terns that can indicate properties of the data instances

such as the importance, rank, or category of the

instances. In some cases, not all links will be observed;

therefore, we may be interested in predicting the exis-

tence of links between instances. Or, we may be inter-

ested in identifying unusual or anomalous links. In

other domains, where the links are evolving over time,

our goal may be to predict whether a link will exist in

the future, given the previously observed links. By tak-

ing links into account, more complex patterns may be

discernable as well.�is observation leads to other chal-

lenges focused on discovering substructures, such as

communities, groups, or common subgraphs. In addi-

tion, links can also help in the process of7entity resolu-
tion, or �guring out when two instance references refer

to the same underlying entity.

Link mining is a newly emerging research area

that is at the intersection of the work in link analysis

(Feldman, ; Jensen & Goldberg,) hypertext

andwebmining (Chakrabarti,),7relational learn-
ing and 7inductive logic programming (Raedt,),
and 7graph mining (Cook & Holder,). We use
the term link mining to put a special emphasis on the

links –moving them up to �rst-class citizens in the data

analysis endeavor.

Theory/Solution
Traditional datamining algorithms such as7association
rule mining, market basket analysis, and cluster anal-

ysis commonly attempt to �nd patterns in a dataset

characterized by a collection of independent instances

of a single relation. �is is consistent with the classi-

cal statistical inference problem of trying to identify

a model given an independent, identically distributed

(IID) sample. One can think of this process as learning

amodel for the node attributes of a homogeneous graph

while ignoring the links between the nodes.

A key emerging challenge for data mining is tack-

ling the problem of mining richly structured, heteroge-

neous datasets.�ese kinds of datasets are commonly

described as networks or graphs. �e domains o�en

consist of a variety of object types; the objects can

be linked in a variety of ways. �us, the graph may

have di�erent node and edge (or hyperedge) types.

Naively applying traditional statistical inference proce-

dures, which assume that instances are independent,

can lead to inappropriate conclusions about the data

(Jensen,). Care must be taken that potential corre-

lations due to links are handled appropriately. In fact,

object linkage is knowledge that should be exploited.

�is information can be used to improve the predic-

tive accuracy of the learned models: attributes of linked

objects are o�en correlated, and links are more likely to

exist between objects that have some commonality. In

addition, the graph structure itself may be an important

element to include in the model. Structural proper-

ties such as degree and connectivity can be important

indicators.

Data Representation
While data representation and feature selection are sig-

ni�cant issues for traditional machine learning algo-

rithms, data representation for linked data is even more

complex. Consider a simple example from Singh et al.

() of a social network describing actors and their

participation in events. Such social networks are com-

monly called a�liation networks (Wasserman & Faust,

), and are easily represented by three tables rep-

resenting the actors, the events, and the participation

relationships. Even this simple structure can be rep-

resented as several distinct graphs. �e most natural

representation is a bipartite graph, with a set of actor

nodes, a set of event nodes, and edges that represent an

actor’s participation in an event. Other representations

may enable di�erent insights and analysis. For exam-

ple, we may construct a network in which the actors are

nodes and edges correspond to actors who have partici-

pated in an event together.�is representation allows us

to perform a more actor-centric analysis. Alternatively,

wemay represent these relations as a graph in which the

events are nodes, and events are linked if they have an

actor in common.�is representation may allow us to

more easily see connections between events.

�is �exibility in the representation of a graph arises

from a basic graph representation duality.�is duality

is illustrated by the following simple example: Consider

 L Link Mining and Link Discovery

a data set represented as a simple G = (,L), where
 is the set of objects (i.e., the nodes or vertices) and
L is the set of links (i.e., the edges or hyperedges).�e
graph G(,L) can be transformed into a new graph
G′(′,L′), in which the links li, lj in G are objects in

G′ and there exists an link between oi, oj ∈ ′ if and
only if li and lj share an object in G.�is basic graph

duality illustrates one kind of simple data representation

transformation. For graphswithmultiple node and edge

types, the number of possible transformations becomes

immense. Typically, these reformulations are not con-

sidered as part of the link mining process. However, the

representation chosen can have a signi�cant impact on

the quality of the statistical inferences that can bemade.

�erefore, the choice of an appropriate representation is

actually an important issue in e�ective linkmining, and

is o�en more complex than in the case where we have

IID data instances.

Link Mining Tasks
Link mining puts a new twist on some classic data min-

ing tasks, and also poses new problems. One way to

understand the di�erent types of learning and inference

problems is to categorize them in terms of the compo-

nents of the data that are being targeted. Table gives a

simple characterization. Note that for the object-related

Link Mining and Link Discovery. Table A simple catego-

rization of different link mining tasks

. Object-related tasks

a. Object classification (collective classification)

b. Object clustering (group detection)

c. Object consolidation (entity resolution)

d. Object ranking

. Link-related tasks

a. Link labeling/classification

b. Link prediction

c. Link ranking

. Graph-related tasks

a. Subgraph discovery

b. Graph classification

tasks, even though we are concerned with classifying,

clustering, consolidating, or ranking the objects, we will

be exploiting the links. Similarly for link-related tasks,

we can use information about the objects that partic-

ipate in the links, and their links to other objects and

so on.

In addition, because of the underlying link struc-

ture, link mining a�ords the opportunity for inferences

and predictions to be collective or dependent on one

another. �e simplest example of this is in collective

classi�cation, where the inferred label of one node can

depend on the inferred label of its neighbors.�ere are a

variety of ways of modeling and exploiting this depen-

dence. Methods include performing joint inference in

the appropriate probabilistic model, use of informa-

tion di�usion models, constructing and optimizing the

appropriate structured prediction using a max margin

approach, and others.

Additional information on di�erent link mining

subtasks is provided in separate entries on collective clas-

si�cation, entity resolution, group detection, and link pre-

diction. Related problems and techniques can be found

in the entries on relational learning, graph mining, and

inductive logic programming.

Cross References
7Collective Classi�cation
7Entity Resolution
7Graph Clustering
7Graph Mining
7Group Detection
7Inductive Logic Programming
7Link Prediction
7Relational Learning

Recommended Reading
Chakrabarti, S. (). Mining the web. San Francisco, CA: Morgan

Kaufman.

Cook, D. J., & Holder, L. B. (). Graph-based data mining. IEEE

Intelligent Systems, (), –. ISSN -. doi: http://dx.

doi.org/./..

Feldman, R. (). Link analysis: Current state of the art. In

Proceedings of the KDD ‘, Edmonton, Alberta, Canada.

Jensen, D. (). Statistical challenges to inductive inference in

linked data. In Seventh international workshop on artificial intel-

ligence and statistics, Fort Lauderdale, FL. San Francisco, CA:

Morgan Kaufmann.

Jensen, D., & Goldberg, H. (). AAAI fall symposium on AI and

link analysis, Orlando, FL. Menlo Park, CA: AAAI Press.

Link Prediction L

L

Raedt, L. D., (Ed.). (). Logical and relational learning. Berlin:

Springer.

Singh, L., Getoor, L., & Licamele, L. (). Pruning social networks

using structural properties and descriptive attributes. In Inter-

national conference on data mining, . Houston, TX: IEEE

Computer Society.

Wasserman, S., & Faust, K. (). Social network analysis: Methods

and applications. Cambridge: Cambridge University Press.

Link Prediction

Galileo Namata, Lise Getoor

University of Maryland, College Park, Maryland, USA

Synonyms
Edge prediction; Relationship extraction

Definition
Many datasets can naturally be represented as graph

where nodes represent instances and links represent

relationships between those instances. A fundamental

problem with these types of data is that the link infor-

mation in the graph maybe of dubious quality; links

may incorrectly exist between unrelated nodes and links

may be missing between two related nodes.�e goal of

link prediction is to predict the existence of incorrect or

missing links between the nodes of the graph.

Theory/Solution
Inferring the existences of edges between nodes in a

graph has traditionally been referred to as link predic-

tion (Liben-Nowell & Kleinberg, ; Taskar, Wong,

Abbeel, & Koller,). Link prediction is a chal-

lenging problem that has been studied in various

guises in di�erent domains. For example, in social net-

work analysis, there is work on predicting friendship

links (Zheleva, Getoor, Golbeck, & Kuter,), event

participation links (i.e., coauthorship (O’Madadhain,

Hutchins, & Smyth,)), communication links (i.e.,

email (O’Madadhain et al.,)), and links repre-

senting semantic relationships (i.e., advisor-of (Taskar

et al.,), subordinate-manager (Diehl, Namata, &

Getoor,)). In bioinformatics, there is interest in

predicting the existence of edges representing physical

protein–protein interactions (Yu, Paccanaro, Trifonov,

&Gerstein, ; Szilagyi et al.,), domain–domain

interactions (Deng, Mehta, Sun, & Chen,), and

regulatory interactions (Albert et al.,). Similarly,

in computer network systems there is work in infer-

ring unobserved connections between routers, as well

as inferring relationships between autonomous systems

and service providers (Spring, Wetherall, & Ander-

son,).�ere is also work on using link prediction

to improve recommender systems (Farrell, Campbell,

& Myagmar,), Web site navigation (Zhu,),

surveillance (Huang & Lin,), and automatic docu-

ment cross referencing (Milne &Witten,).

We begin with some basic de�nitions and notation.

We refer to the set of possible edges in a graph as poten-

tial edges. �e set of potential edges depends on the

graph type, and how the edges for the graph are de�ned.

For example, in a directed graph, the set of potential

edges consists of all edges e = (v, v) where v and v
are any two nodes V in the graph (i.e., the number of

potential edges is ∣V ∣ × ∣V ∣). In an undirected bipartite
graph with two subsets of nodes (V,V ∈ V), while

the edges still consist of a pair of nodes, e = (v, v),
there is an added condition such that one node must

be from V and the other node must be from V; this

results in ∣V∣ × ∣V∣ potential edges. Next, we refer to set
of “true” edges in a graph as positive edges, and we refer

to the “true” non-edges in a graph (i.e., pairs of nodes

without edges between them) as negative edges. For a

given graph, typically we only have information about

a subset of the edges; we refer to this set as the observed

edges. �e observed edges can include both positive

and negative edges, though in many formulations there

is an assumption of positive-only information. We can

view link prediction as a probabilistic inference prob-

lem, where the evidence includes the observed edges,

the attribute values of the nodes involved in the poten-

tial edge, and possibly other information about the net-

work, and for any unobserved, potential edge, we want

to compute the probability of it existing. �is can be

reframed as a binary classi�cation problem by choos-

ing some probability threshold, and concluding that

potential edges with existence probability above the

threshold are true edges, and those below the thresh-

old are considered false edges (more complex schemes

are possible as well). For noisy and incomplete net-

works, we use terminology from the machine learning

literature and refer to an edge that is inferred to exists

 L Link Prediction

and is a true edge in the graph as a true positive edge,

an edge that should exist but is not inferred as a false

negative edge, an edge that should not exist and is not

inferred as a true negative edge, and an edge that should

not exist but is incorrectly inferred to exist as a false

positive edge.

One of the early and simple formulations of the link

prediction problem was proposed by Liben-Nowell and

Kleinberg ().�ey proposed a temporal prediction

problem de�ned over a dynamic network where given

a graph Gt(Vt ,Et) at time t, the problem is to infer
the set of edges at the next time step t + . More for-
mally, the objective is to infer a set of edges Enew where

Et+ = Et⋃Enew. We use a more general de�nition of

link prediction proposed by Taskar et al. () where

given a graph G and the set of potential edges in G,

denoted P(G), the problem of link prediction is to pre-
dict for all p ∈ P(G) whether p exists or does not exists,
remaining agnostic on whether G is a noisy graph with

missing edges or a snapshot of a dynamic graph at a

particular time point.

Approaches
In this section, we discuss the two general cate-

gories of the current link prediction models: topology-

based approaches and node attribute-based approaches.

Topology-based approaches aremethods that rely solely

on the topology of the network to infer edges. Node

attribute-based approaches make predictions based on

the attribute values of the nodes incident to the edges.

In addition, there are models that make use of both

structure and attribute values.

Topology-Based Approaches
A number of link prediction models have been pro-

posed, which rely solely on the topology of the network.

�esemodels typically rely on some notion of structural

proximity, where nodes that are close are likely to share

an edge (e.g., sharing common neighbors, nodes with

a small shortest path distance between). �e earliest

topological approach for link prediction was proposed

by Liben-Nowell and Kleinberg (). In this work,

Liben-Nowell and Kleinberg proposed various struc-

ture based similarity scores and applied them over the

unobserved edges of an undirected graph. �ey then

use a threshold k, and only predict edges with the top

k scores as existing. A variety of similarity scores were

proposed, given two nodes v and v, including graph

distance (the length of the shortest path between v
and v), common neighbors (the size of the intersec-

tion of the sets of neighbors of v and v), and more

complex measures such as the Katz measure, (the sum

of the lengths of the paths between v and v expo-

nentially damped by length to count short paths more

heavily). Evaluating over a coauthorship network, the

best performing proximity score measure was the Katz

measure, however the simple measures, which rely only

on the intersection of the set of nodes adjacent to both

nodes, performed surprisingly well. A related approach

was proposed by Yu et al. (), which applies the

link prediction problem to predicting missing protein–

protein interactions (PPI) from PPI networks generated

by high throughput methods. �is work assumes that

interacting proteins tend to form a clique.�us, miss-

ing edges can be predicted by predicting the existence

of edges that will create cliques in the network. More

recent work by Clauset, Moore, and Newman ()

has tried to go beyond predicting edges between neigh-

boring nodes. In their problem domain of food webs,

for example, pairs of predators o�en prey on a shared

prey species but rarely prey on each other.�us, in these

networks, predicting “predator–prey” edges need to go

beyond proximity. For this, they propose a “hierarchi-

cal random graph” approach, which �ts a hierarchical

model to all possible dendrograms of a given network.

�e model is then used to calculate the likelihood of an

edge existing in the network.

Node Attribute-Based Approaches
Although topology is useful in link prediction, topology-

based approaches ignore an important source of infor-

mation in networks, the attributes of nodes. O�en there

are correlations in the attributes of nodes that share

an edge with each other. One approach that exploits

this correlation was proposed by Taskar et al. ().

In their approach, Taskar et al. () applied the rela-

tional Markov network (RMN) framework to link pre-

diction to predicting the existence and class of edges

between Web sites. �ey exploit the fact that certain

links can only exist between nodes of the appropri-

ate type. For example, an “advisor” edge can only exist

between student and faculty.

Link Prediction L

L

Another approach that uses node attributes was

proposed by Popescul and Ungar (). In that

approach, they used a structured 7logistic regres-
sion model over learned relational features to predict

citation edges in a citation network. �eir relational

features are built over attributes such as the words

used in the paper nodes. O’Madadhain et al. ()

also approached an attribute based approach, con-

structing local conditional probability models based on

the attributes such as node attribute similarity, topic

distribution, and geographical location in predicting

“co-participation” edges in an email communication

network. More recently, there is work on exploiting

other node attributes like the group membership of the

nodes. Zheleva et al. () showed thatmembership in

family groups are very useful in predicting friendship

links in social networks. Similarly, Sprinzak, Altuvia,

& Margalit () showed that using protein complex

information can be useful in predicting protein–protein

interactions. Finally, we note that in link prediction,

as in classi�cation, the quality of predictions can

be improved by making the predictions collectively.

Aside from the relational Markov network approach

by Taskar et al. () mentioned earlier, Markov

logic networks (Richardson & Domingos,) and

probabilistic relational models (Getoor, Friedman,

Koller, & Taskar,) have also been proposed for

link prediction and are capable of performing joint

inference.

Issues
�ere are a number of challenges that make link pre-

diction very di�cult.�e most di�cult challenge is the

large class skew between the number of edges that exist

and the number of edges that do not. To illustrate, con-

sider directed graph denoted by G(V ,E). While the
number of edges ∣E∣ is o�en O(∣V ∣), the number of
edges that do not exist is o�en O(∣V ∣). Consequently,
the prior probability edge existence is very small.�is

causesmany supervisedmodels, which naively optimize

for accuracy, to learn a trivial model, which always pre-

dicts that a link does not exist. A related problem in link

prediction is the large number of edges whose existence

must be considered.�e number of potential edges is

O(∣V ∣) and this limits the size of the data sets that can
be considered.

In practice, there are general approaches to address-

ing these issues either prior to or during the link predic-

tion.With both large class skew and number of edges to

contend with, the general approach is to make assump-

tions that reduce the number of edges to consider. One

common way to do this is to partition the set of nodes

where we only consider potential edges between nodes

of the same partition; edges between partitions are not

explicitly modeled, but are assumed not to exist. �is

is useful in many domains where there is some sort of

natural partition among the nodes available (e.g., geog-

raphy in social networks, location of proteins in a cell),

which make edges across partitions unlikely. Another

way is to de�ne some simple, computationally inexpen-

sive distancemeasure such that only edges whose nodes

are within some distance are considered.

Another practical issue in link prediction is that

while real-world data o�en indicates which edges exist

(positive examples), the edges which do not exist (neg-

ative examples) are rarely annotated for use by link

prediction models. In bioinformatics, for example, the

protein–protein interaction network of yeast, the most

and annotated studied organism, is annotated with

thousands of observed edges (physical interactions)

between the nodes (proteins) gathered from numerous

experiments. �ere are currently, however, no major

datasets available that indicate which proteins de�nitely

do not physically interact.�is is an issue not only in

creating and learning models for link prediction, but

is also an issue evaluating them. O�en, it is unclear

whether a predicted edge which is not in our ground

truth data is an incorrectly predicted edge or an edge

resulting from incomplete data.

Related Problems
In addition to the de�nition of link prediction discussed

above, it is also important to mention three closely

related problems: link completion, leak detection, and

anomalous link discovery, whose objectives are di�er-

ent but very similar to link prediction. Link completion

(Chaiwanarom&Lursinsap, ; Goldenberg, Kubica,

Komarek, Moore, & Schneider,) and leak detec-

tion (Balasubramanyan, Carvalho, &Cohen, ; Car-

valho & Cohen,), are a variation of link prediction

over hypergraphs. A hypergraph is a graph where the

edges (known as hyperedges) can connect any number

 L Link Prediction

of nodes. For example, in a hypergraph representing

an email communication network, a hyperedge may

connect nodes representing email addresses that are

recipients of a particular email communication. In link

completion, given the set of nodes that participate in

a particular hyperedge, the objective is to infer nodes

that are missing. For the email communication network

example, link completion may involve inferring which

email addresses need to be added to the recipients list

of an email communication. Conversely, in leak detec-

tion, given the set of nodes participating in a particular

hyperedge, the objective is to infer which nodes should

not be part of that hyperedge. For example, in email

communications, leak detection will attempt to infer

which email address nodes are incorrectly part of the

hyperedge representing the recipient list of the email

communication.

�e last problem, anomalous link discovery (Huang

& Zeng, ; Rattigan & Jensen,), has been pro-

posed as an alternate task to link prediction. As with

link completion, the existence of the edges are assumed

to be observed, and the objective is to infer which of

the observed links are anomalous or unusual. Specif-

ically, anomalous link discovery identi�es which links

are statistically improbable with the idea that these may

be of interest for those analyzing the network. Rattigan

and Jensen () show that some methods that per-

form poorly for link prediction can still perform well

for anomalous link discovery.

Cross References
7Graph Mining
7Statistical Relational Learning

Recommended Reading
Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E.,

Zelikovsky, A., et al. (). A novel method for signal trans-

duction network inference from indirect experimental evi-

dence. Journal of Computational Biology, , –.

Balasubramanyan, R., Carvalho, V. R., & Cohen, W. (). Cutonce

recipient recommendation and leak detection in action. In

Workshop on enhanced messaging.

Carvalho, V. R., & Cohen, W. W. (). Preventing information

leaks in email. In SIAM conference on data mining.

Chaiwanarom, P., & Lursinsap, C. (). Link completion using

prediction by partial matching. In International symposium on

communications and information technologies.

Clauset, A., Moore, C., & Newman, M. E. J. (). Hierarchi-

cal structure and the prediction of missing links in networks.

Nature, , .

Deng, M., Mehta, S., Sun, F., & Chen, T. (). Inferring

domain-domain interactions from protein-protein interac-

tions. Genome Research, (), –.

Diehl, C., Namata, G. M., & Getoor, L. (). Relationship identi-

fication for social network discovery. In Proceedings of the nd

national conference on artificial intelligence.

Farrell, S., Campbell, C., &Myagmar, S. (). Relescope: An exper-

iment in accelerating relationships. In Extended abstracts on

human factors in computing systems.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (). Learn-

ing probabilistic models of link structure. Machine Learning,

, –.

Goldenberg, A., Kubica, J., Komarek, P., Moore, A., & Schneider, J.

(). A comparison of statistical and machine learning algo-

rithms on the task of link completion. In Conference on knowl-

edge discovery and data mining, Workshop on link analysis for

detecting complex behavior.

Huang, Z., & Lin, D. K. J. (). The time-series link predic-

tion problem with applications in communication surveillance.

Informs Journal on Computing, , –.

Huang, Z., & Zeng, D. D. (). A link prediction approach to

anomalous email detection. In IEEE International conference on

systems, man, and cybernetics, Taipei, Taiwan.

Liben-Nowell, D., & Kleinberg, J. (). The link prediction prob-

lem for social networks. In International conference on informa-

tion and knowledge management.

Milne, D., & Witten, I. H. (). Learning to link with wikipedia.

In Proceedings of the th ACM conference on information and

knowledge management.

O’Madadhain, J., Hutchins, J., & Smyth, P. (). Prediction and

ranking algorithms for event-based network data. SIGKDD

Explorations Newsletter, (), –.

Popescul, A., & Ungar, L. H. (). Statistical relational learning

for link prediction. In International joint conferences on arti-

ficial intelligence workshop on learning statistical models from

relational data.

Rattigan, M. J., & Jensen, D. (). The case for anomalous link

discovery. SIGKDD Explorations Newsletter, , –.

Richardson, M., & Domingos, P. (). Markov logic networks.

Machine Learning, , –.

Spring, N., Wetherall, D., & Anderson, T. (). Reverse engineer-

ing the internet. SIGCOMM Computer Communication Review,

(), –.

Sprinzak, E., Altuvia, Y., &Margalit, H. (). Characterization and

prediction of protein-protein interactions within and between

complexes. Proceedings of the National Academy of Sciences,

(), –.

Szilagyi, A., Grimm, V., Arakaki, A. K., & Skolnick, J. (). Predic-

tion of physical protein-protein interactions. Physical Biology,

(), S–S.

Taskar, B., Wong, M.-F., Abbeel, P., & Koller, D. (). Link pre-

diction in relational data. In Advances in neural information

processing systems.

Yu, H., Paccanaro, A., Trifonov, V., & Gerstein, M. (). Predict-

ing interactions in protein networks by completing defective

cliques. Bioinformatics, (), –.

Zheleva, E., Getoor, L., Golbeck, J., & Kuter, U. (). Using friend-

ship ties and family circles for link prediction. In nd ACM

SIGKDD workshop on social network mining and analysis.

Zhu, J. (). Mining web site link structure for adaptive web site

navigation and search. Ph.D. thesis, University of Ulster at

Jordanstown, UK.

Locally Weighted Regression for Control L

L

Link-Based Classification

7Collective Classi�cation

Liquid State Machine

7Reservoir Computing

Local Distance Metric Adaptation

Synonyms
Supersmoothing; Nonstationary kernels; Kernel

shaping

Definition
In learning systems with kernels, the shape and size of

a kernel plays a critical role for accuracy and general-

ization. Most kernels have a distance metric parameter,

which determines the size and shape of the kernel in

the sense of a Mahalanobis distance. Advanced kernel

learning tune every kernel’s distance metric individu-

ally, instead of turning one global distance metric for all

kernels.

Cross References
7Locally Weighted Regression for Control

Local Feature Selection

7Projective Clustering

Locality Sensitive Hashing Based
Clustering

Xin Jin, JiaweiHan

University of Illinois at Urbana-Champaign

Urbana, IL, USA

�e basic idea of the LSH (Gionis, Indyk, & Motwani,

) technique is usingmultiple hash functions to hash

the data points and guarantee that there is a high prob-

ability of collision for points which are close to each

other and low collision probability for dissimilar points.

LSH schemes exist for many distance measures, such

as Hamming norm, Lp norms, cosine distance, earth

movers distance (EMD), and Jaccard coe�cient.

In LSH, de�ne a familyH = {h : S→ U} as locality-
sensitive, if for any a, the function p(t) = PrH[h(a) =
h(b) : ∣∣a − b∣∣ = x] is decreasing in x. Based on this

de�nition, the probability of collision of points a and b

is decreasing with their distance.

Although LSH was originally proposed for approx-

imate nearest neighbor search in high dimensions, it

can be used for clustering as well (Das, Datar, Garg, &

Rajaram, ; Haveliwala, Gionis, & Indyk,).�e

buckets could be used as the bases for clustering. Seed-

ing the hash functions several times can help getting

better quality clustering.

Recommended Reading
Das, A. S., Datar, M., Garg, A., & Rajaram, S. (). Google

news personalization: Scalable online collaborative filtering. In

WWW ’: Proceedings of the th international conference on

World Wide Web (pp. –). New York: ACM.

Gionis, A., Indyk, P., & Motwani, R. (). Similarity search in high

dimensions via hashing. In VLDB ’: Proceedings of the th

international conference on very large data bases (pp. –).

San Francisco: Morgan Kaufmann Publishers.

Haveliwala, T. H., Gionis, A., & Indyk, P. (). Scalable techniques

for clustering the web (extended abstract). In Proceedings of the

third international workshop on the web and databases (pp. –

). Stanford, CA: Stanford University.

Locally Weighted Learning

7Locally Weighted Regression for Control

Locally Weighted Regression for
Control

Jo-Anne Ting, Sethu Vijayakumar,, Stefan

Schaal,

University of Edinburgh
University of Southern California
ATR Computational Neuroscience Labs

Synonyms
Kernel shaping; Lazy learning; Local distance metric

adaptation; Locally weighted learning; LWPR; LWR;

Nonstationary kernels supersmoothing

Definition
�is article addresses two topics:7learning control and
locally weighted regression.

 L Locally Weighted Regression for Control

7Learning control refers to the process of acquiring
a control strategy for a particular control system and

a particular task by trial and error. It is usually distin-

guished from adaptive control (Aström &Wittenmark,

) in that the learning system is permitted to fail

during the process of learning, resembling how humans

and animals acquire new movement strategies. In con-

trast, adaptive control emphasizes single trial conver-

gence without failure, ful�lling stringent performance

constraints, e.g., as needed in life-critical systems like

airplanes and industrial robots.

Locally weighted regression refers to 7supervised
learning of continuous functions (otherwise known as

function approximation or 7regression) by means of
spatially localized algorithms, which are o�en discussed

in the context of7kernel regression,7nearest neighbor
methods, or7lazy learning (Atkeson, Moore, & Schaal,
). Most regression algorithms are global learning

systems. For instance, many algorithms can be under-

stood in terms of minimizing a global 7loss function
such as the expected sum squared error:

Jglobal = E [

N

∑
i=

(ti − yi)
] = E [

N

∑
i=

(ti − ϕ (xi)Tβ)

]

()

where E [⋅] denotes the expectation operator, ti the
noise-corrupted target value for an input xi, which is
expanded by basis functions into a basis function vec-

tor ϕ (xi), and β the vector of (usually linear) regression
coe�cients. Classical feedforward 7neural networks,
7radial basis function networks, 7mixture models, or
7Gaussian Process regression are all global function
approximators in the spirit of Eq. ().

In contrast, local learning systems split up concep-

tually the cost function into multiple independent local

function approximation problems, using a cost function

such as the one below:

Jglobal = E [

K

∑
k=

N

∑
i=

wk,i (ti − xTi βk)
]

=

K

∑
k=

E [
N

∑
i=

wk,i (ti − xTi βk)
] ()

Motivation and Background
Figure illustrates why locally weighted regression

methods are o�en favored over global methods when

it comes to learning from incrementally arriving data,

especially when dealing with nonstationary input dis-

tributions.�e �gure shows the division of the training

data into two sets: the “original training data” and the

“new training data” (in dots and crosses, respectively).

Initially, a sigmoidal 7neural network and a locally
weighted regression algorithm are trained on the “orig-

inal training data,” using % of the data as a cross-

validation set to assess convergence of the learning. In

a second phase, both learning systems are trained solely

on the “new training data” (again with a similar cross-

validation procedure), but without using any data from

the “original training data.” While both algorithms gen-

eralizewell on the “new training data,” the global learner

incurred catastrophic interference, unlearning what

was learned initially, as seen in Fig. a, b shows that the

locally weighted regression algorithmdoes not have this

problem since learning (along with 7generalization) is
restricted to a local area.

Appealing properties of locally weighted regression

include the following:

● Function approximation can be performed incre-

mentally with nonstationary input and output dis-

tributions and without signi�cant danger of inter-

ference. Locally weighted regression can provide

7posterior probability distributions, o�er con�-
dence assessments, and deal with heteroscedastic

data.

● Locally weighted learning algorithms are compu-

tationally inexpensive to compute. It is well suited

for online computations (e.g., for 7online and
7incremental learning) in the fast control loop of a
robot – typically on the order of – Hz.

● Locallyweighted regressionmethods can implement

continual learning and learning from large amounts

of data without running into severe computational

problems on modern computing hardware.

● Locally weighted regression is a nonparametric

method (i.e., it does not require that the user deter-

mine a priori the number of local models in the

learning system), and the learning systems grows

with the complexity of the data it tries to model.

● Locally weighted regression can include 7feature
selection, 7dimensionality reduction, and 7Baye-
sian inference – all which are required for robust

statistical inference.

Locally Weighted Regression for Control L

L

• original training data

+ new training data

true y predicted y predicted y after new training data

•••

•

••

•

•

•
•
•••

•

•
•••

•

•

•

•

•

••
••

•

•

•
•

••
••

•
•

•

••

•

•••

•
•••
••••

•

•••

•

•

•
•

••
•
•

•
•

•

••
••

•

••

•

•
••

•

••••
•
••
•

•

•
•
•
•

••

•
•••

•

•
•
•••
•
•

••

••
••
•

•
•
•

•
•
•

•

•

•

•
•

•

••

•

•

•

+
++

+

+

+
+

+
++

+

++

+
++

+

+
+

+
+

+

+

+

+
+
+

+
++
++

+
++
+

+
+++

++
+
+++

+
+
++

++
+

+
++

+++++++
++

+

+

+

++

–6

–5

–4

–3

–2

–1

0

1

2

3

4

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

y

xa

b

c

Global function fitting with sigmoidal neural
network

•••

•

••

•

•

•
•
•••

•

•
•••

•

•

•

•

•

••
••

•

•

•
•

••
••

•
•

•

••

•

•••

•
•••
••••

•

•••

•

•

•
•

••
•
•

•
•

•

••
••

•

••

•

•••

•

••••
•
••
•

•

•
•
•
•

••

•
•••

•

•
•
•••
•
•

••

••
••
•

•
•
•

•
•
•

•

•

•

•
•

•

••

•

•

•

+
++

+

+

+
+

+
++

+

++

+
++

+

+
+

+
+

+

+

+

+
+
+

+
++
++

+
++
+

+
+++

++
+
+++

+
+
++

++
+

+
++

+++++++
++

+

+

+

++

–2

–1

0

1

2

3

4

y

0

0.5

1

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
w

x

Learned organization of receptive fields

Local function fitting with receptive fields

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
x

Locally Weighted Regression for Control. Figure . Function approximation results for the function y = sin(x) +

exp(−x
)+N(, .)with (a) a sigmoidal neural network; (b) a locally weighted regression algorithm (note that the

data traces “true y,” “predicted y,” and “predicted y after new training data” largely coincide); and (c) the organization

of the (Gaussian) kernels of (b) after training. See Schaal and Atkeson () for more details

● Locally weighted regression works favorably with

locally linear models (Hastie & Loader,), and

local linearizations are of ubiquitous use in control

applications.

Background
Returning to Eqs. () and (), the main di�erences

between both equations are listed below:

(i) A weightwi,k is introduced that focuses the func-

tion approximation on only a small neighbor-

hood around a point of interest ck in input space
(see Eq. below).

(ii) �e cost function is split into K independent

optimization problems.

(iii) Due to the restricted scope of the function

approximation problem, we do not need a non-

linear basis function expansion and can, instead,

work with simple local functions or local polyno-

mials (Hastie & Loader,).

�e weights wk,i in Eq. () are typically computed from

some 7kernel function (Atkeson, Moore, & Schaal,

) such as a squared exponential kernel

wk,i = exp(−

(xi − ck)T Dk (xi − ck)) ()

with Dk denoting a positive semide�nite distance met-

ric and ck the center of the kernel.�e number of ker-
nels K is not �nite. In many local learning algorithms,

the kernels are never maintained in memory. Instead,

for every query point xq, a new kernel is centered at
ck = xq, and the localized function approximation is
solved with weighted7regression techniques (Atkeson
et al.,).

Locally weighted regression should not be con-

fused with mixture of experts models (Jordan & Jacobs,

). 7Mixture models are global learning systems

since the experts compete globally to cover train-

ing data. Mixture models address the 7bias-variance
dilemma (Intuitively, the 7bias-variance dilemma
addresses how many parameters to use for a func-

tion approximation problem to �nd an optimal bal-

ance between 7over�tting and oversmoothing of the
training data) by �nding the right number of local

experts. Locally weighted regression addresses the

7bias-variance dilemma in a local way by �nding the

 L Locally Weighted Regression for Control

optimal distance metric for computing the weights

in the locally weighted regression (Schaal & Atkeson,

). We describe some algorithms to �ndDk next.

Structure of Learning System
For a locally linear model centered at the query point

xq, the regression coe�cients would be

βq = (XTWqX)
−
XTWqt ()

where X is a matrix that has all training input data
points in its rows (with a column of s added in the last

column for the o�set parameter in7linear regression).
Wq is a diagonal matrix with the corresponding weights

for all data points, computed from Eq. () with ck = xq,
and t is the vector of regression targets for all train-
ing points. Such a “compute-the-prediction-on-the-�y”

approach is o�en called lazy learning (�e approach

is “lazy” because the computational of a prediction is

deferred until the last moment, i.e., when a predic-

tion is needed) and is a memory-based learning system

where all training data is kept in memory for making

predictions.

Alternatively, kernels can be created as needed to

cover the input space, and the su�cient statistics of

the weighted regression are updated incrementally with

recursive least squares (Schaal & Atkeson,). �is

approach does not require storage of data points in

memory. Predictions of neighboring local models can

be blended, improving function �tting results in the

spirit of committee machines.

Memory-Based Locally Weighted
Regression (LWR)
�e original locally weighted regression algorithm was

introduced by Cleveland () and popularized in the

machine learning and learning control community by

Atkeson (). �e algorithm is largely summarized

by Eq. () (for algorithmic pseudo-code, see (Schaal,

Atkeson, & Vijayakumar,)):

● All training data is collected in the matrix X and the
vector t (For simplicity, only functions with a scalar
output are addressed. Vector-valued outputs can be

learned either by �tting a separate learning system

for each output or by modifying the algorithms to

�t multiple outputs (similar to multi-output linear

regression)).

● For every query point xq, the weighting kernel is
centered at the query point.

● �e weights are computed with Eq. ().

● �e local regression coe�cients are computed

according to Eq. ().

● A prediction is formed with yq = [xTq] βq.

As in all kernel methods, it is important to optimize

the kernel parameters in order to get optimal function

�tting quality. For LWR, the critical parameter deter-

mining the7bias-variance tradeo� is the distance met-
ric Dq. If the kernel is too narrow, it starts �tting noise.

If it is too broad, oversmoothing will occur. Dq can be

optimizedwith leave-one-out cross-validation to obtain

a globally optimal value, i.e., the same Dq = D is used
throughout the entire input space of the data. Alter-

natively, Dq can be locally optimized as a function of

the query point, i.e., obtain a Dq as a function of the

query point (as already indicated by the subscript “q”).

In the recent machine learning literature (in particular,

work related to kernel methods), such input dependent

kernels are referred to as nonstationary kernels.

Locally Weighted Projection Regression
(LWPR)
Schaal and Atkeson () suggested a memoryless ver-

sion of LWR in order to avoid the expensive 7nearest
neighbor computations – particularly for large training

data sets – of LWR and to have fast real-time (In most

robotic systems, “real-time”means on the order ofmax-

imally –ms computation time, corresponding to a

–Hz control loop) prediction performance.�e

main ideas of the RFWR algorithm (Schaal & Atkeson,

) are listed below:

● Create new kernels only if no existing kernel in

memory covers a training point with some minimal

activation weight.

● Keep all created kernels in memory and update the

weighted regression with weighted recursive least

squares for new training points {x, t}:

βn+
k = βn

k +wPn+x̃ (t − x̃Tβn
k)

where Pn+k =
λ

⎛
⎝
Pnk −

Pnk x̃x̃
TPnk

λ
w
+ x̃TPnk x̃

⎞
⎠

and x̃ = [xT]T . ()

Locally Weighted Regression for Control L

L

● Adjust the distance metric Dq for each kernel with

a gradient descent technique using leave-one-out

cross-validation.

● Make a prediction for a query point taking a weig-

hted average of predictions from all local models:

yq =
∑K

k= wq,kŷq,k
∑K

k= wq,k

()

Adjusting the distance metric Dq with leave-one-

out cross-validation without keeping all training data

in memory is possible due to the PRESS residual.

�e PRESS residual allows the leave-one-out cross-

validation error to be computed in closed form with-

out needing to actually exclude a data point from the

training data.

Another de�ciency of LWR is its inability to

scale well to high-dimensional input spaces since the

7covariance matrix inversion in Eq. () becomes
severely ill-conditioned. Additionally, LWR becomes

expensive to evaluate as the number of local models

to be maintained increases. Vijayakumar, D’Souza and

Schaal () suggested local 7dimensionality reduc-
tion techniques to handle this problem. Partial least

squares (PLS) regression is a useful 7dimensionality
reduction method that is used in the LWPR algo-

rithm (Vijayakumar et al.,). In contrast to PCA

methods, PLS performs7dimensionality reduction for
7regression, i.e., it eliminates subspaces of the input
space that minimally correlate with the outputs, not just

parts of the input space that have low variance.

LWPR is currently one of the best developed locally

weighted regression algorithms for control (Klanke,

Vijayakumar, & Schaal,) and has been applied

to learning control problems with over input

dimensions.

A Full Bayesian Treatment of Locally
Weighted Regression
Ting, Kalakrishnan, Vijayakumar, and Schaal ()

proposed a fully probabilistic treatment of LWR in

an attempt to avoid cross-validation procedures and

minimize any manual parameter tuning (e.g., gradient

descent rates, kernel initialization, and forgetting rates).

�e resulting Bayesian algorithm learns the distance

metric of local linear model (For simplicity, a local lin-

ear model is assumed, although local polynomials can

be used as well) probabilistically, can cope with high

input dimensions, and rejects data outliers automati-

cally.�e main ideas of Bayesian LWR are listed below

(please see Ting () for details):

● Introduce hidden variables z to the local linear
model (as inVariational Bayesian least squares (Ting

et al.,)) to decompose the statistical estima-

tion problem into d individual estimation prob-

lems (where d is the number of input dimensions).

�e result is an iterative Expectation-Maximization

(EM) algorithm that is of linear 7computational
complexity in d and the number of training data

samples N, i.e., O(Nd).
● Associate a scalar weight wi with each training data

sample {xi, ti}, placing a Bernoulli7prior probabil-
ity distribution over a weight for each input dimen-

sion so that the weights are positive and between

and :

wi =
d

∏
m=

wim where

wim ∼ Bernoulli (qim) for i = , ..,N;m = , ..,d
()

where the weight wi is decomposed into indepen-

dent components in each input dimension wim and

qim is the parameter of the Bernoulli 7probability
distribution.�e weightwi indicates a training sam-

ple’s contribution to the local model. An outlier

will have a weight of and will, thus, be automati-

cally rejected.�e formulation of qim determines the

shape of the weighting function applied to the local

model.�e weighting function qim used in Bayesian

LWR is listed below:

qim =

 + (xim − xqm)

hm
for i = , ..,N;m = , ..,d

()

where xq ∈ Rd× is the query input point and hm
is the bandwidth parameter/distance metric of the

local model in the m-th input dimension (�e dis-

tance metric/bandwidth is assumed to be a diagonal

matrix, i.e., bandwidths in each input dimension are

independent.�at is to say, D = H, where h is the
diagonal vector and hm are the coe�cients of h).

 L Locally Weighted Regression for Control

● Place a Gamma7prior probability distribution over
the distance metric hm:

hm ∼ Gamma (ahm, bhm) ()

where {ahm, bhm} are the prior parameter values of
the Gamma distribution.

● Treat the model as an EM-like 7regression prob-
lem, using 7variational approximations to achieve
analytically tractable inference of the 7posterior
probability distributions.

�e initial parameters {ahm, bhm} should be set so
that the7prior probability distribution over hm is unin-
formative andwide (e.g., ahm = bhm = −).�e other
7prior probability distribution that needs to be speci-
�ed is the one over the noise variance random variable –

and this is best set to re�ect how noisy the data set is

believed to be.More details can be found inTing ().

�is Bayesian method can can also be applied as

general kernel shaping algorithm for global 7kernel
learning methods that are linear in the parameters (e.g.,

to realize nonstationary 7Gaussian processes (Ting
et al.,), resulting in an augmented nonstationary

7Gaussian Process).

Figure illustrates Bayesian kernel shaping’s band-

width adaptation abilities on several synthetic data sets,

comparing it to a stationary 7Gaussian Process and
the augmented nonstationary 7Gaussian Process. For
the ease of visualization, the following one-dimensional

functions are considered: (i) a function with a disconti-

nuity, (ii) a spatially inhomogeneous function, and (iii)

a straight line function. �e data set for function (i)

consists of training samples, test inputs (evenly

spaced across the input space), and output noise with

variance of .; the data set for function (ii) consists

of training samples, test inputs, and an output

signal-to-noise ratio (SNR) of ; and the data set for

function (iii) has training samples, test inputs, and

an output SNR of . Figure shows the predicted out-

puts of all three algorithms for data sets (i)–(iii). �e

local kernel shaping algorithm smoothes over regions

where a stationary 7Gaussian Process over�ts and yet,
it still manages to capture regions of highly varying

curvature, as seen in Figs. a and b.

It correctly adjusts the bandwidths h with the cur-

vature of the function. When the data looks linear, the

algorithm opens up the weighting kernel so that all data

samples are considered, as Fig. c shows.

−2 −1 0 1 2
−4

−2

0

2

x

y

−2 −1 0 1 2

−1

0

1

2

x

y

Training data
Stationary GP
Aug GP
Kernel Shaping

−2 −1 0 1 2
−2

−1

0

1

2

x

y

0

1

w

−2 −1 0 1 2
100

103

107

x
Function (i)a

h

w
xq

0

1

w

−2 −1 0 1 2
100

106

x

h

Function (ii)b

0

1

w

−2 −1 0 1 2

10−6

100

106

x

h

Function (iii)c

Locally Weighted Regression for Control. Figure . Predicted outputs using a stationary Gaussian Process (GP), the

augmented nonstationary GP and local kernel shaping on three different data sets. Figures on the bottom row show

the bandwidths learned by local kernel shaping and the corresponding weighting kernels (in dotted black lines) for

various input query points (shown in red circles)

Locally Weighted Regression for Control L

L

From the viewpoint of 7learning control,

7over�tting – as seen in the 7Gaussian Process in
Fig. – can be detrimental since 7learning control
o�en relies on extracting local linearizations to derive

7controllers (see Applications section). Obtaining the
wrong sign on a slope in a local linearizationmay desta-

bilize a7controller.
In contrast to LWPR, the Bayesian LWR method

is memory-based, although memoryless versions could

be derived. Future work will also have to address how

to incorporate7dimensionality reduction methods for
robustness in high dimensions. Nevertheless, it is a �rst

step toward a probabilistic locally weighted regression

methodwithminimal parameter tuning required by the

user.

Applications
Learning Internal Models with LWPR

Learning an internal model is one of most typical

applications of LWR methods for control. �e model

could be a forward model (e.g, the nonlinear di�er-

ential equations of robot dynamics), an inverse model

(e.g., the equations that predict the amount of torque

to achieve a change of state in a robot), or any other

function that models associations between input and

output data about the environment. �e models are

used, subsequently, to compute a 7controller e.g., an
inverse dynamics controller similar to Eq. (). Mod-

els for complex robots such as humanoids exceed easily

a hundred input dimensions. In such high-dimensional

spaces, it is hopeless to assume that a representative data

set can be collected for o�ine training that can general-

ize su�ciently to related tasks.�us, the LWR philoso-

phy involves having a learning algorithm that can learn

rapidly when entering a new part of the state space such

that it can achieve acceptable 7generalization perfor-
mance almost instantaneously.

Figure demonstrates 7online learning of an
inverse dynamics model for the elbow joint (cf. Eq.)

for a SarcosDexterous RobotArm.�e robot starts with

no knowledge about this model, and it tracks some ran-

domly varying desired trajectories with a proportional-

derivative (PD) controller.During itsmovements, train-

ing data consisting of tuples (q, q̇, q̈, τ) – which model
a mapping from joint position, joint velocities and joint

accelerations (q, q̇, q̈) tomotor torques τ – are collected

(at about every ms). Every data point is used to train a

LWPR function approximator, which generates a feed-

forward command for the controller. �e 7learning
curve is shown in Fig. a.

Using a test set created beforehand, the model pre-

dictions of LWPR are compared every , training

points with that of a parameter estimation method.

�e parameter estimation approach �ts the minimal

number of parameters to an analytical model of the

robot dynamics under an idealized rigid body dynam-

ics (RBD) assumptions, using all training data (i.e.,

not incrementally). Given that the Sarcos robot is a

0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

350

100001000010010 0005211

M
S

E
 o

n
te

st
 s

et

#R
ec

ep
tiv

e
fie

ld
s

#Training data points
Learning curve locally weighted projection

regression (LWPR) online learninga

Parameter
Estimation

LWPR

Seven Degree-of-Freedom Sarcos Robot Armb

Locally Weighted Regression for Control. Figure . Learning an inverse dynamics model in real-time with a high-

performance anthropomprohic robot arm

 L Locally Weighted Regression for Control

hydraulic robot, the RBD assumption is not very suit-

able, and, as Fig. a shows, LWPR (in thick red line)

outperforms the analytical model (in dotted blue line)

a�er a rather short amount of training. A�er about

min of training (about , data points), very good

performance is achieved, using about local models.

�is example demonstrates (i) the quality of func-

tion approximation that can be achieved with LWPR

and (ii) the online allocation of more local models as

needed.

Learning Paired Inverse-Forward Models

Learning inverse models (such as inverse kinematics

and inverse dynamics models) can be challenging since

the inverse model problem is o�en a relation, not a

function, with a one-to-many mapping. Applying any

arbitrary nonlinear function approximation method to

the inverse model problem can lead to unpredictably

bad performance, as the training data can form non-

convex solution spaces, in which averaging is inap-

propriate. Architectures such as 7mixture models (in
particular, mixture density networks) have been pro-

posed to address problems with non-convex solution

spaces. A particularly interesting approach in control

involves learning linearizations of a forward model

(which is proper function) and learning an inversemap-

ping within the local region of the forward model.

Ting et al. () demonstrated such a forward-

inverse model learning approach with Bayesian LWR

to learn an inverse kinematics model for a haptic robot

arm (shown in Fig.) in order to control the end-

e�ector along a desired trajectory in task space. Training

Locally Weighted Regression for Control. Figure .

SensAble Phantom haptic robotic arm

data was collected while the arm performed random

sinusoidalmovements within a constrained box volume

of Cartesian space. Each sample consists of the arm’s

joint angles q, joint velocities q̇, end-e�ector position in
Cartesian space x, and end-e�ector velocities ẋ. From
this data, a forward kinematics model is learned:

ẋ = J(q)q̇ ()

where J(q) is the Jacobian matrix.�e transformation
from q̇ to ẋ can be assumed to be locally linear at a
particular con�guration q of the robot arm. Bayesian
LWR is used to learn the forward model, and, as in

LWPR, local models are only added if a training point

is not already su�ciently covered by an existing local

model. Importantly, the kernel functions in LWR are

localized only with respect to q, while the regression
of each model is trained only on a mapping from q̇ to
ẋ – these geometric insights are easily incorporated as
priors in Bayesian LWR, as they are natural to locally

linear models. Incorporating these priors in other func-

tion approximators, e.g.,7Gaussian Process regression,
is not straightforward.

�e goal of the robot task is to track a desired trajec-

tory (x, ẋ) speci�ed only in terms of x, z positions and
velocities, i.e., the movement is supposed to be in a ver-

tical plane in front of the robot, but the exact position

of the vertical plane is not given.�us, the task has one

degree of redundancy, and the learning system needs to

generate a mapping from {x, ẋ} to q̇. Analytically, the
inverse kinematics equation is

q̇ = J#(q)ẋ − α(I − J#J) ∂g
∂q

()

where J#(q) is the pseudo-inverse of the Jacobian.�e
second term is an gradient descent optimization term

for redundancy resolution, speci�ed here by a cost func-

tion g in terms of joint angles q.
To learn an inverse kinematics model, the local

regions of q from the forward model can be re-used
since any inverse of J is locally linear within these
regions. Moreover, for locally linear models, all solution

spaces for the inverse model are locally convex, such

that an inverse can be learned without problems. �e

redundancy issue can be solved by applying an addi-

tional weight to each data point according to a reward

function. Since the experimental task is speci�ed in

Locally Weighted Regression for Control L

L

0.2

0.1

0

–0.1

z
(m

)

x (m)
Analytical solutiona

–0.1 –0.05 0.05 0.10

Desired
Analytical IK

z
(m

)

x (m)

0.2

0.1

0

–0.1
–0.1 –0.05 0 0.05 0.1

Desired
Learnt IK

Learned solutionb

Locally Weighted Regression for Control. Figure . Desired versus actual trajectories for SensAble Phantom robot arm

terms of {ẋ, ż}, a reward is de�ned, based on a desired
y coordinate, ydes, and enforced as a so� constraint.

�e resulting reward function, is g = e−

h(k(ydes−y)−ẏ)

,

where k is a gain and h speci�es the steepness of the

reward. �is ensures that the learned inverse model

chooses a solution that pushes ẏ toward ydes. Each for-

ward local model is inverted using a weighted 7linear
regression, where each data point is weighted by the

kernel weight from the forward model and addition-

ally weighted by the reward. �us, a piecewise locally

linear solution to the inverse problem can be learned

e�ciently.

Figure shows the performance of the learned

inverse model (Learnt IK) in a �gure-eight tracking

task. �e learned model performs as well as the ana-

lytical inverse kinematics solution (Analytical IK), with

root mean squared tracking errors in positions and

velocities very close to that of the analytical solution.

Learning Trajectory Optimizations

Mitrovic, Klanke, andVijayakumar () have explored

a theory for sensorimotor adaptation in humans, i.e.,

how humans replan their movement trajectories in the

presence of perturbations. �ey rely on the iterative

Linear Quadratic Gaussian (iLQG) algorithm (Todorov

& Li,) to deal with the nonlinear and chang-

ing plant dynamics that may result from altered mor-

phology, wear and tear, or external perturbations.�ey

take advantage of the “on-the-�y” adaptation of locally

weighted regression methods like LWPR to learn the

forward dynamics of a simulated arm for the purpose of

optimizing amovement trajectory between a start point

and an end point.

Figure a shows the diagram of a two degrees-of-

freedom planar human arm model, which is actuated

by four single-joint and two double-joint antagonis-

tic muscles. Although kinematically simple, the sys-

tem is over-actuated and, therefore, it is an interesting

testbed because large redundancies in the dynamics

have to be resolved. �e dimensionality of the con-

trol signals makes adaptation processes (e.g., to external

force �elds) quite demanding.

�e dynamics of the arm is, in part, based on stan-

dard RBD equations of motion:

τ =M (q) q̈ +C (q, q̇) q̇ ()

where τ are the joint torques; q and q̇ are the joint
angles and velocities, respectively; M(q) is the two-
dimensional symmetric joint space inertia matrix; and

C (q, q̇) accounts for Coriolis and centripetal forces.
Given the antagonistic muscle-based actuation, it is not

possible to command joint torques directly. Instead, the

e�ective torques from the muscle activations u – which
happens to be quadratic in u – should be used. As a
result, in contrast to standard torque-controlled robots,

the dynamics equation in Eq. () is nonlinear in the

control signals u.
�e iLQG algorithm (Todorov & Li,) is used

to calculate solutions to “localized” linear and quadratic

approximations, which are iterated to improve the

global control solution. However, it relies on an ana-

lytical forward dynamics model ẋ = f (x,u) and �nite
di�erence methods to compute gradients. To alleviate

this requirement and to make iLQG adaptive, LWPR

can be used to learn an approximation of the plant’s

forward dynamics model. Figure shows the control

 L Locally Weighted Regression for Control

Shoulder

Human arm modela

Elbow

x

y

q1

q2

1

2

3

4

5

6

1 2 3 4 5 6
1

25

49

Muscles
ILQGb

k
(t

im
e)

−10 0 10 20
30

40

50

60

Locally Weighted Regression for Control. Figure . (a) Human arm model with muscles; (b) Optimized control

sequence (left) and resulting trajectories (right) using the known analytic dynamics model. The control sequences (left

target only) for each muscle (–) are drawn from bottom to top, with darker grey levels indicating stronger muscle

activation

ILQG u Plant+

Feedback
controller

x, dx

L, x

u

u

Perturbationsx

δ
– + δu

Cost function
(incl. target)

Learned
dynamics model

u–

–

Locally Weighted Regression for Control. Figure . Illustration of learning and control scheme of the iterative Linear

Quadratic Gaussian (iLQG) algorithm with learned dynamics

diagram, where the “learned dynamics model” (the for-

ward model learned by LWPR) is then updated in an

online fashion with every iteration to cope with changes

in dynamics.�e resulting framework is called iLQG-

LD (iLQG with learned dynamics).

Movements of the arm model in Fig. a are stud-

ied for �xed time horizon reaching movement. �e

manipulator starts at an initial position q and reaches
towards a target qtar.�e cost function to be optimized
during the movement is a combination of target accu-

racy and amount of muscle activation (i.e., energy con-

sumption). Figure b shows trajectories of generated

movements for three reference targets (shown in red

circles) using the feedback controller from iLQG with

the analytical plant dynamics. �e trajectories gener-

ated with iLQG-LD (where the forward plant dynamics

are learned with LWPR) are omitted as they are hardly

distinguishable from the analytical solution.

A major advantage of iLQG-LD is that it does

not rely on an accurate analytic dynamics model; this

enables the framework to predict adaptation behav-

ior under an ideal observer planning model. Reaching

movements were studied where a constant unidirec-

tional force �eld acting perpendicular to the reach-

ing movement was generated as a perturbation (see

Fig. (le�)). Using the iLQG-LD model, the manip-

ulator gets strongly de�ected when reaching for the

target because the learned dynamics model cannot

yet account for the “spurious” forces. However, when

the de�ected trajectory is used as training data and

the dynamics model is updated online, the tracking

improves with each new successive trial (Fig. (le�)).

Please refer to Mitrovic et al. () for more details.

A�ere�ects upon removing the force �eld, very simi-

lar to those observed in human experiments, are also

observed.

Locally Weighted Regression for Control L

L

0 10
30

40

50

60

1 2 3 4 5 6
1

25

49

muscles
k

(t
im

e)

1 2 3 4 5 6
1

25

49

muscles

k
(t

im
e)

Locally Weighted Regression for Control. Figure . Adaptation to a unidirectional constant force field (indicated by the

arrows). Darker lines indicate better trained models. In particular, the left-most trajectory corresponds to the “initial”

control sequence, which was calculated using the LWPR model before the adaptation process. The fully “adapted”

control sequence results in a nearly straight line reaching movement

Cross References
7Bias and Variance
7Dimensionality Reduction
7Incremental Learning
7Kernel Function
7Kernel Methods
7Lazy Learning
7Linear Regression
7Mixture Models
7Online Learning
7Over�tting
7Radial Basis Functions
7Regression
7Supervised Learning

Programs and Data
http://www-clmc.usc.edu/so�ware

http://www.ipab.inf.ed.ac.uk/slmc/so�ware/

Recommended Reading
Aström, K. J., & Wittenmark, B. (). Adaptive control. Reading,

MA: Addison-Wesley.

Atkeson, C., Moore, A., & Schaal, S. (). Locally weighted learn-

ing. AI Review, , –.

Atkeson, C. (). Using local models to control movement.

In Proceedings of the advances in neural information pro-

cessing systems (pp. –). San Francisco, CA: Morgan

Kaufmann.

Cleveland, W. S. (). Robust locally weighted regression and

smoothing scatterplots. Journal of the American Statistical Asso-

ciation, , –.

Hastie, T., & Loader, C. (). Local regression: Automatic kernel

carpentry. Statistical Science, , –.

Jordan, M. I., & Jacobs, R. (). Hierarchical mixtures of experts

and the EM algorithm. Neural Computation, , –.

Klanke, S., Vijayakumar, S., & Schaal, S. (). A library for locally

weighted projection regression. Journal of Machine Learning

Research, , –.

Mitrovic, D., Klanke, S., & Vijayakumar, S. (). Adaptive optimal

control for redundantly actuated arms. In Proceedings of the th

international conference on the simulation of adaptive behavior,

Osaka, Japan (pp. –). Berlin: Springer-Verlag.

Schaal, S., & Atkeson, C. G. (). Constructive incremental learn-

ing from only local information. Neural Computation, (),

–.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. (). Scalable tech-

niques from nonparametric statistics. Applied Intelligence, ,

–.

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D.,

Kakei, S., et al. (). Predicting EMG data from M neu-

rons with variational Bayesian least squares. In Proceedings

of advances in neural information processing systems , Cam-

bridge: MIT Press.

Ting, J., Kalakrishnan, M., Vijayakumar, S., & Schaal, S. ().

Bayesian kernel shaping for learning control. In Proceedings

of advances in neural information processing systems (pp.

–). Cambridge: MIT Press.

Ting, J. (). Bayesian methods for autonomous learning systems.

Ph.D. Thesis, Department of Computer Science, University of

Southern California, .

 L Logic of Generality

Todorov, E., & Li, W. (). A generalized iterative LQG method

for locally-optimal feedback control of constrained nonlinear

stochastic systems. In Proceedings of st international confer-

ence of informatics in control, automation and robotics, Setúbal,

Portugal.

Vijayakumar, S., D’Souza, A., & Schaal, S. (). Incremental online

learning in high dimensions. Neural Computation, , –

.

Logic of Generality

Luc De Raedt

Katholieke Universiteit Leuven

Heverlee, Belgium

Synonyms
Generality and logic; Induction as inverted deduction;

Inductive inference rules; Is more general than; Is more

speci�c than; Specialization

Definition
One hypothesis is more general than another one if it

covers all instances that are also covered by the latter

one.�e former hypothesis is called a 7generalization

of the latter one, and the latter a 7specialization of the

former.When using logical formulae as hypotheses, the

generality relation coincides with the notion of logical

entailment, which implies that the generality relation

can be analyzed from a logical perspective.�e logical

analysis of generality, which is pursued in this chap-

ter, leads to the perspective of induction as the inverse

of deduction. �is forms the basis for an analysis of

various logical frameworks for reasoning about gener-

ality and for traversing the space of possible hypothe-

ses. Many of these frameworks (such as for instance,

θ-subsumption) are employed in the �eld of7inductive
logic programming and are introduced below.

Motivation and Background
Symbolic machine learning methods typically learn by

searching a hypothesis space.�e hypothesis space can

be (partially) ordered by the7generality relation, which
serves as the basis for de�ning operators to traverse the

space as well as for pruning away unpromising parts

of the search space.�is is o�en realized through the

use of7re�nement operators, that is, generalization and

specialization operators. Because many learning meth-

ods employ a 7hypothesis language that is logical or
that can be reformulated in logic, it is interesting to ana-

lyze the generality relation from a logical perspective.

When using logical formulae as hypotheses, the gener-

ality relation closely corresponds to logical entailment.

�is allows us to directly transfer results from logic

to a machine learning context. In particular, machine

learning operators can be derived from logical inference

rules.�e logical theory of generality provides a frame-

work for transferring these results. Within the standard

setting of inductive logic programming, learning from

entailment, specialization is realized through deduc-

tion, and generalization through induction, which is

considered to be the inverse of deduction. Di�erent

deductive inference rules lead to di�erent frameworks

for generalization and specialization. �e most popu-

lar one is that of θ-subsumption, which is employed

by the vast majority of contemporary inductive logic

programming systems.

Theory
A hypothesis g ismore general than a hypothesis s if and

only if g covers all instances that are also covered by s,

more formally, if covers(s) ⊆ covers(g), in which case,
covers(h) denotes the set of all instances covered by the
hypothesis h.

�ere are several possibleways to represent hypothe-

ses and instances in logic (De Raedt, ,), each

of which results in a di�erent setting with a correspond-

ing covers relation. Some of the best known settings are

learning from entailment, learning from interpretations,

and learning from proofs.

Learning from Entailment

In learning from entailment, both hypotheses and

instances are logical formulae, typically de�nite clauses,

which underlie the programming language Prolog

(Flach,). Furthermore, when learning from entail-

ment, a hypothesis h covers an instance e if and only

if h ⊧ e, that is, when h logically entails e, or equiva-

lently, when e is a logical consequence of h. For instance,

consider the hypothesis h:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

Logic of Generality L

L

�e �rst clause or rule can be read asflies if normal
and bird, that is, normal birds �y. �e second and
third states that blackbirds are birds. Consider now the

examples e:

flies :- blackbird, normal, small.

and e:

flies :- ostrich, small.

Example e is covered by h, because it is a logical conse-

quence of h, that is, h ⊧ e. On the other hand, example

e is not covered, which we denote as h /⊧ e.

When learning fromentailment, the following prop-

erty holds:

Property A hypothesis g is more general than a

hypothesis s if and only if g logically entails s, that is, g ⊧ s.

�is is easy to see. Indeed, g is more general than s

if and only if covers(s) ⊆ covers(g) if and only if for all
examples e : (s ⊧ e) → (g ⊧ e), if and only if g ⊧ s. For

instance, consider the hypothesis h:

flies :- blackbird, normal.

Because h ⊧ h, it follows that h covers all examples

covered by h, and hence, h generalizes h.

Property states that the generality relation coin-

cideswith logical entailmentwhen learning from entail-

ment. In other learning settings, such as when learning

from interpretations, this relationship also holds though

the direction of the relationship might change.

Learning from Interpretations

In learning from interpretations, hypotheses are logical

formulae, typically sets of de�nite clauses, and instances

are interpretations. For propositional theories, interpre-

tations are assignments of truth-values to propositional

variables. For instance, continuing the flies illustra-
tion, two interpretations could be

{blackbird, bird, normal, flies} and
{ostrich, small}

where we specify interpretations through the set of

propositional variables that are true. An interpretation

speci�es a kind of possible world. A hypothesis h then

covers an interpretation if and only if the interpreta-

tion is a model for the hypothesis. An interpretation is

a model for a hypothesis if it satis�es all clauses in the

hypothesis. In our illustration, the �rst interpretation is

a model for the theory h, but the second is not. Because

the condition part of the rule bird :- ostrich.
is satis�ed in the second interpretation (as it contains

ostrich), the conclusion part, that is, bird, should
also belong to the interpretation in order to have a

model.�us, the �rst example is covered by the theory

h, but the second is not.

When learning from interpretations, a hypothesis g

is more general than a hypothesis s if and only if for all

examples e: (e is a model of s) → (e is a model of g), if
and only if s ⊧ g.

Because the learning from entailment setting is

more popular than the learning from interpretations

setting, we shall employ in this section the usual con-

vention that states that one hypothesis g is more general

than a hypothesis s if and only if g ⊧ s.

An Operational Perspective

Property lies at the heart of the theory of induc-

tive logic programming and generalization because it

directly relates the central notions of logic with those

of machine learning (Muggleton & De Raedt,). It

is also extremely useful because it allows us to directly

transfer results from logic to machine learning.

�is can be illustrated using traditional deductive

inference rules, which start from a set of formulae and

derive a formula that is entailed by the original set.

For instance, consider the resolution inference rule for

propositional de�nite clauses:

h← g, a, . . . , an and g ← b, . . . , bm

h← b, . . . , bm, a, . . . , an
. ()

�is inference rule starts from the two rules above the

line and derives the so-called resolvent below the line.

�is rule can be used to infer h from h. An alternative

deductive inference rule adds a condition to a rule:

h← a, . . . , an

h← a, a, . . . , an
. ()

 L Logic of Generality

�is rule can be used to infer thath ismore general than

the clause used in example e. In general, a deductive

inference rule can be written as

g

s
. ()

If s can be inferred from g and the operator is sound,

then g ⊧ s. �us, applying a deductive inference rule

realizes specialization, and hence, deductive inference

rules can be used as specialization operators. A spe-

cialization operator maps a hypothesis onto a set of its

specializations. Because specialization is the inverse of

generalization, generalization operators – which map a

hypothesis onto a set of its generalizations – can be

obtained by inverting deductive inference rules. �e

inverse of a deductive inference rule written in for-

mat () works from bottom to top, that is, from s to g.

Such an inverted deductive inference rule is called an

inductive inference rule.�is leads to the view of induc-

tion as the inverse of deduction. �is view is opera-

tional as it implies that each deductive inference rule

can be inverted into an inductive one, and, also, that

each inference rule provides an alternative framework

for generalization.

An example of a generalization operator is obtained

by inverting the adding condition rule (). It corre-

sponds to the well-known “dropping condition” rule

(Michalski,). As will be seen soon, it is also possible

to invert the resolution principle ().

Before deploying inference rules, it is necessary to

determine their properties. Two desirable properties are

soundness and completeness.�ese properties are based

on the repeated application of inference rules. �ere-

fore, we write g ⊢r s when there exists a sequence of

hypotheses h, . . . ,hn such that

g

h
,
h

h
, . . . ,

hn

s
using r. ()

A set of inference rules r is sound whenever g ⊢r s

implies g ⊧ s; and complete whenever g ⊧ s implies

g ⊢r s. In practice, soundness is always enforced though
completeness is not always required in amachine learn-

ing setting. When working with incomplete rules, one

should realize that the generality relation “⊢r” is weaker
than the logical one “⊧.”

�e most important logical frameworks for reason-

ing about generality, such as θ-subsumption and resolu-

tion, are introduced below using the above introduced

logical theory of generality.

Frameworks for Generality
Propositional Subsumption

Many propositional learning systems employ hypothe-

ses that consist of rules, o�en de�nite clauses as in the

flies illustration above.�e propositional subsump-
tion relation de�nes a generality relation among clauses

and is de�ned through the adding condition rule ().

�e properties follow from this inference rule by apply-

ing the logical theory of generalization presented above.

More speci�cally, the generality relation ⊢a induced by
the adding condition rule states that a clause g is more

general than a clause s, if s can be derived from g by

adding a sequence of conditions to g. Observing that

a clause h ← a, . . . , an is a disjunction of literals h ∨
¬a ∨ ⋯ ∨ ¬an allows us to write it in set notation as
{h,¬a, . . . ,¬an}.�e soundness and completeness of
propositional subsumption then follow from

g ⊢a s if and only if g ⊆ s if and only if g ⊧ s, ()

which also states that g subsumes s if and only if g ⊆ s.

�e propositional subsumption relation induces a

complete lattice on the space of possible clauses. A com-

plete lattice is a partial order – a re�exive, antisymmet-

ric, and transitive relation – where every two elements

posses a unique least upper and greatest lower bound.

An example lattice for rules de�ning the predicate

flies in terms of bird, normal, and small is
illustrated in the Hasse diagram depicted in Fig. .

�eHasse diagram also visualizes the di�erent oper-

ators that can be used. �e generalization operator ρg

maps a clause to the set of its parents in the diagram,

whereas the specialization operator ρs maps a clause to

the set of its children. So far, we have de�ned such oper-

ators implicitly through their corresponding inference

rules. In the literature, they are o�en de�ned explicitly:

ρg(h← a, . . . , an)
= {h← a, . . . , ai−, ai+, . . . , an∣i = , . . . ,n}. ()

In addition to using the inference rules directly,

some systems such as Golem (Muggleton & Feng,)

Logic of Generality L

L

flies.

flies :- normal. flies :- small.

flies :-bird, normal. flies :- bird, small. flies :- small, normal.

flies :-bird, normal, small.

flies :- bird.

Logic of Generality. Figure . The Hasse diagram for the predicate flies

also exploit the properties of the underlying lattice by

computing the least upper bound of two formulae.�e

least upper bound operator is known under the name of

least general generalization (lgg) in the machine learn-

ing literature. It returns the least common ancestor in

the Hasse diagram. Using a set notation for clauses, the

de�nition of the lgg is:

lgg(c, c) = c ∩ c. ()

�e least general generalization operator is used by

machine learning systems that follow a cautious gener-

alization strategy.�ey take two clauses corresponding

to positive examples and minimally generalize them.

θ-Subsumption

�e most popular framework for generality within

inductive logic programming is θ-subsumption (Plotkin,

). It provides a generalization relation for clausal

logic and it extends propositional subsumption to �rst

order logic.

A de�nite clause is an expression of the form

h ← a, . . . , an where h and the ai are logical atoms. An

atom is an expression of the form p(t, . . . , tm) where
p is a predicate name (or, the name of a relation) and

the ti are terms. A term is either a constant (denot-

ing an object in the domain of discourse), a variable, or

a structured term of the form f (u, . . . ,uk) where f is
a functor symbol (denoting a function in the domain

of discourse) and the ui are terms, see Flach () for

more details. Consider for instance the clauses

likes(X,Y) :- neighbours(X,Y).
likes(X,husbandof(Y)) :- likes(X,Y).

likes(X,tom) :- neighbours(X,tom),
male(X).

�e �rst clause states that X likes Y if X is a
neighbour of Y.�e second one that X likes the
husband of Y if X likes Y.�e third one that all
male neighbours of tom like tom.

θ-Subsumption is based not only on the adding

condition rule () but also on the substitution rule:

g

gθ
. ()

�e substitution rule applies a substitution θ to the def-

inite clause g. A substitution {V/t, . . . ,Vn/tn} is an
assignment of terms to variables. Applying a substitu-

tion to a clause c yields the instantiated clause, where

all variables are simultaneously replaced by their corre-

sponding terms.

θ-subsumption is then the generality relation induced

by the substitution and the adding condition rules.

Denoting this set of inference rules by t, we obtain our

de�nition of θ-subsumption:

g θ-subsumes s if and only if g ⊢t s if and only if
∃θ : gθ ⊆ s. ()

For instance, the �rst clause for likes subsumes the
third one with the substitution {Y/tom}.

θ-subsumption has some interesting properties:

● θ-subsumption is sound.

● θ-subsumption is complete for clauses that are not

self-recursive. It is incomplete for self-recursive

clauses such as

 L Logic of Generality

nat(s(X)) :- nat(X)
nat(s(s(Y))) :- nat(Y)

for which one can use resolution to prove that the

�rst clause logically entails the second one, even

though it does not θ-subsume it.

● Deciding θ-subsumption is an NP-complete prob-

lem.

Because θ-subsumption is relatively simple and

decidable whereas logical entailment between single

clauses is undecidable, it is used as the generality rela-

tion by the majority of inductive logic programming

systems.�ese systems typically employ a specialization

or re�nement operator to traverse the search space. To

guarantee systematic enumeration of the search space,

the specialization operator ρs can be employed. ρs(c) is
obtained by applying the adding condition or substitu-

tion rule with the following restrictions.

● �e adding condition rule only adds atoms of the

form p(V, . . . ,Vn), where the Vi are variables not

yet occurring in the clause c.

● �e substitution rule only employs elementary sub-

stitutions, which are of the form

– {X/Y}, where X and Y are two variables appear-
ing in c

– {V/ct}, where V is a variable in c and ct a con-
stant

– {V/f (V, . . . ,Vn)}, whereV is a variable in c, f a
functor of arity n and the Vi are variables not yet

occurring in c.

A generalization operator can be obtained by invert-

ing ρs, which requires one to invert substitutions.

Inverting substitutions is not easy. While applying a

substitution θ = {V/a} to a clause c replaces all occur-
rences of V by a and yields a unique clause cθ, apply-
ing the substitution rule in the inverse direction does

not necessarily yield a unique clause. If we assume the

elementary substitution applied to c with

c

q(a,a)
. ()

was {V/a}, then there are at least three possibilities for
c: q(a,V), q(V,a), and q(V,V).

θ-subsumption is re�exive, transitive but unfortu-

nately not anti-symmetric, which can be seen by con-

sidering the clauses

parent(X,Y) :- father(X,Y).
parent(X,Y) :- father(X,Y),

father(U,V).

�e �rst clause clearly subsumes the second one because

it is a subset.�e second one subsumes the �rst with the

substitution {X/U, V/Y}. �e two clauses are there-
fore equivalent under θ-subsumption, and hence also

logically equivalent.�e loss of the anti-symmetry com-

plicates the search process.�e naive application of the

specialization operator ρs may yield syntactic special-

izations that are logically equivalent.�is is illustrated

above where the second clause for parent is a re�ne-
ment of the �rst one using the adding condition rule. In

this way, useless clauses are generated, and if the result-

ing clauses are further re�ned, there is a danger that the

search will end up in an in�nite loop.

Plotkin () has studied the quotient set induced

by θ-subsumption and proven various interesting

properties. �e quotient set consists of classes of

clauses that are equivalent under θ-subsumption. �e

class of clauses equivalent to a given clause c is

denoted by

[c] = {c′∣c′ is equivalent with c under
θ-subsumption}. ()

Plotkin proved that

● �e quotient set iswell-de�nedw.r.t. θ-subsumption.

● �ere is a representative, a canonical form, of each

equivalence class, the so-called reduced clause.�e

reduced clause of an equivalence class is the short-

est clause belonging to class. It is unique up to

variable renaming. For instance, in the parent
example above, the �rst clause is in reduced

form.

● �e quotient set forms a complete lattice, which

implies that there is a least general generalization of

two equivalence classes. In the inductive logic pro-

gramming literature, one o�en talks about the least

general generalization of two clauses.

Logic of Generality L

L

Several variants of θ-subsumption have been devel-

oped. One of the most important ones is that of

OI-subsumption (Esposito, Laterza, Malerba, & Semer-

aro,). For functor-free clauses, it modi�es the sub-

stitution rule by disallowing substitutions that unify

two variables or that substitute a variable by a constant

already appearing in the clause. �e advantage is that

the resulting relation is anti-symmetric, which avoids

some of the abovementioned problemswith re�nement

operators. On the other hand, the minimally general

generalization of two clauses is not necessary unique,

and hence, there exists no least general generalization

operator.

Inverse Resolution

Applying resolution is a sound deductive inference rule

and therefore realizes specialization. Reversing it yields

inductive inference rules or generalization operators

(Muggleton, ; Muggleton & Buntine,).�is is

typically realized by combining the resolution princi-

ple with a copy operator.�e resulting rules are called

absorption () and identi�cation ().�ey start from

the clauses below and induce the clause above the line.

�ey are shown here only for the propositional case, as

the �rst order case requires one to deal with substitu-

tions as well as inverse substitutions.

h← g, a, . . . , an and g ← b, . . . , bm

h← b, . . . , bm, a, . . . , an and g ← b, . . . , bm
, ()

h← g, a, . . . , an and g ← b, . . . , bm

h← b, . . . , bm, a, . . . , an and h← g, a, . . . , an
. ()

Other interesting inverse resolution operators per-

form predicate invention, that is, they introduce new

predicates that were not yet present in the original data.

�ese operators invert two resolution steps. One such

operator is the intra-construction operator (). Apply-

ing this operator frombottom to top introduces the new

predicate q that was not present before.

q← l , . . . , lk and p← k , . . . , kn , q and q← l
′, . . . , lm

′

p← k , . . . , kn , l , . . . , lk and p← k , . . . , kn , l′, . . . , lm′
. ()

�e idea of inverting the resolution operator is very

appealing because it aims at inverting the most popular

deductive inference operator, but is also rather com-

plicated due to the non-determinism and the need to

invert substitutions. Due to these complications, there

are only few systems that employ inverse resolution

operators.

Background Knowledge
Inductive logic programming systems employ back-

ground knowledge during the learning process. Back-

ground knowledge typically takes the form of a set

of clauses B, which is then used by the covers rela-

tion. When learning from entailment in the presence of

background knowledge B an example e is covered by a

hypothesis h if and only if B∪ h ⊧ e.�is notion of cov-

erage is employed inmost of thework on inductive logic

programming. In the intial flies example, the two
clauses de�ning bird would typically be considered
background knowledge.

�e incorporation of background knowledge in the

induction process has resulted in the frameworks for

generality relative to a background theory. More for-

mally, a hypothesis g is more general than a hypothesis

s relative to the background theory B if and only if

B ∪ g ⊧ s. �e only inference rules that deal with

multiple clauses are those based on (inverse) resolu-

tion. �e other frameworks can be extended to cope

with this generality relation following the logical the-

ory of generalization. Various frameworks have been

developed along these lines. Some of the most impor-

tant ones are relative subsumption (Plotkin,) and

generalized subsumption (Buntine,), which extend

θ-subsumption and the notion of least general general-

ization toward the use of background knowledge. Com-

puting the least general generalization of two clauses

relative to the background theory is realized by �rst

computing the most speci�c clauses covering the exam-

ples with regard to the background theory and then

generalizing them using the least general generalization

operator of θ-subsumption.

�e �rst step is the most interesting one, and has

been tackled under the name of saturation (Rouveirol,

) and bottom-clauses (Muggleton,). We illus-

trate it within the framework of inverse entailment due

toMuggleton ().�e bottom clause �(c) of a clause
c with regard to a background theory B is the most

speci�c clause �(c) such that

B ∪ �(c) ⊧ c. ()

 L Logic of Generality

If B consist of

polygon :- rectangle.
rectangle :- square.
oval :- circle.

and the example c is

positive :- red, square.

�en the bottom-clause �(c) is

positive :- red, rectangle, square,
polygon.

�e bottom-clause is useful because it only lists those

atoms that are relevant to the example, and only gener-

alizations (under θ-subsumption) of �(c)will cover the
example. For instance, in the illustration, the bottom-

clause mentions neither oval nor circle as clauses
for pos containing these atoms will never cover the
example clause c. Once the bottom-clause covering an

example has been found the search process continues as

if no background knowledge were present. Either spe-

cialization operators (typically under θ-subsumption)

would search the space of clauses more general than

�(c), or the least general generalization of multiple
bottom-clauses would be computed.

Equation () is equivalent to

B ∪ ¬c ⊧ ¬�(c), ()

which explains why the bottom-clause is computed by

�nding all factual consequences of B ∪ ¬c and then
inverting the resulting clause again. On the example:

¬c = {¬ positive, red, square}

and the set of all consequences is

¬�(c) = ¬c∪{rectangle, polygon}

which then yields �(c) mentioned above. When deal-
ing with �rst order logic, bottom-clauses can become

in�nite, and therefore, one typically imposes further

restrictions on the atoms that appear in bottom-clauses.

�ese restrictions are part of the language bias.

�e textbook by Nienhuys-Cheng and De Wolf

() is the best reference for an in-depth formal

description of various frameworks for generality in

logic, in particular, for θ-subsumption and some of

its variants. �e book by De Raedt () contains

a more complete introduction to inductive logic pro-

gramming and relational learning, and also introduces

the key frameworks for generality in logic. An early

survey of inductive logic programming and the log-

ical theory of generality is contained in Muggleton

and De Raedt (). Plotkin (,) pioneered the

use θ-subsumption and relative subsumption (under

a background theory) for machine learning. Buntine

() extended these frameworks toward generalized

subsumption, and Esposito et al. () introduced OI-

subsumption. Inverse resolution was �rst used in the

system Marvin (Sammut & Banerji,), and then

elaborated by Muggleton () for propositional logic

and byMuggleton and Buntine () for de�nite clause

logic. Various learning settings are studied by De Raedt

() and discussed extensively by De Raedt ().

�ey are also relevant to 7probabilistic logic learning
and7statistical relational learning.

Recommended Reading
Buntine, W. (). Generalized subsumption and its application to

induction and redundancy. Artificial Intelligence, , –.

De Raedt, L. (). Logical settings for concept learning. Artificial

Intelligence, , –.

De Raedt, L. (). Logical and relational learning. New York:

Springer.

Semeraro, G., Esposito, F., & Malerba, D. (). Ideal Refinement of

Datalog Programs. In Proceedings of the th International Work-

shop on Logic Program Synthesis and Transformation, Lecture

notes in computer science (Vol. , pp. –). Springer.

Flach, P. A. (). Simply logical: Intelligent reasoning by example.

New York: Wiley.

Michalski, R. S. (). A theory and methodology of inductive

learning. Artificial Intelligence, (), –.

Muggleton, S. (). Duce, an oracle based approach to constructive

induction. In Proceedings of the th International Joint con-

ference on Artificial Intelligence (pp. –). San Francisco:

Morgan Kaufmann.

Muggleton, S. (). Inverse entailment and Progol. New Genera-

tion Computing, (–), –.

Muggleton, S., & Buntine, W. (). Machine invention of first

order predicates by inverting resolution. In Proceedings of the

th International Workshop on Machine Learning (pp. –).

San Francisco: Morgan Kaufmann.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, /, –

.

Muggleton, S., & Feng, C. (). Efficient induction of logic pro-

grams. In Proceedings of the st conference on Algorithmic Learn-

ing Theory (pp. –). Ohmsma, Tokyo, Japan.

Logit Model L

L

Nienhuys-Cheng, S.-H., & de Wolf, R. (). Foundations of induc-

tive logic programming. Berlin: Springer.

Plotkin, G. D. (). A note on inductive generalization. InMachine

intelligence (Vol. , pp. –). Edinburgh: Edinburgh Univer-

sity Press.

Plotkin, G. D. (). A further note on inductive generalization.

In Machine Intelligence (Vol. , pp. –). Edinburgh: Edin-

burgh University Press.

Rouveirol, C. (). Flattening and saturation: Two represen-

tation changes for generalization. Machine Learning, (),

–.

Sammut, C., & Banerji, R. B. (). Learning concepts by

asking questions. In R. S. Michalski, J. G. Carbonell, &

T. M. Mitchell (Eds.), Machine learning: An artificial intelli-

gence approach (Vol. , pp. –). San Francisco: Morgan

Kaufmann.

Logic Program

A logic program is a set of logical rules or 7clauses.
Logic programs are employed to answer queries using

the 7resolution inference rule. For example, consider
the following logic program:

grandparent(X,Y) :- parent(X,Z),
parent(Z,Y).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

father(charles, william).
mother(diana, william).

father(philip, charles).
mother(elizabeth, charles).

father(john, diana).
mother(frances, diana).

Using resolution we obtain the following answers to the

query :-grandparent(X,Y):

X = philip, Y = william ;
X = john, Y = william ;
X = elizabeth, Y = william ;
X = frances, Y = william.

Cross References
7Clause
7First-Order Logic
7Prolog

Logical Consequence

7Entailment

Logical Regression Tree

7First-Order Regression Tree

Logistic Regression

Synonyms
Logit model

Definition
Logistic regression provides a mechanism for applying

the techniques of 7linear regression to 7classi�cation
problems. It utilizes a linear regression model of

the form

z = β + βx + βx +⋯ + βnxn

where x to xn represent the values of the n attributes

and β to βn represent weights.�is model is mapped

onto the interval [,] using

P(c ∣ x . . . xn) =

 + e−z

where c represents class .

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of

statistical learning (nd ed.). New York: Springer.

Logit Model

7Logistics Regression

 L Log-Linear Models

Log-Linear Models

7Maximum Entropy Models for Natural Language

Processing

Long-Term Potentiation of Synapses

By a suitable induction protocol, the connection bet-

ween two neurons can be strengthened. If this change

persists for hours, the e�ect is called a long-term

potentation.

LOO Error

7Leave-One-Out Error

Loopy Belief Propagation

Loopy belief propagation is a heuristic inference algo-

rithm for7Bayesian networks. See7Graphical Models
for details.

Loss

Synonyms
Cost

Definition
�e cost or loss of a prediction y′, when the correct value

is y, is a measure of the relative utility of that prediction

given that correct value. A common loss function used

with 7classi�cation learning is 7zero-one loss. Zero-

one loss assigns to loss for a correct classi�cation and

 for an incorrect classi�cation. 7Cost sensitive clas-
si�cation assigns di�erent costs to di�erent forms of

misclassi�cation. For example, misdiagnosing a patient

as having appendicitis when he or she does not might

be of lower cost than misdiagnosing the patient as not

having it when he or she does. A common loss func-

tion used with 7regression is 7error squared. �is is
the square of the di�erence between the predicted and

true values.

Loss Function

Synonyms
Cost function

Definition
A loss function is a function used to determine7loss.

LWPR

7Locally Weighted Regression for Control

LWR

7Locally Weighted Regression for Control

M

m-Estimate

7Rule Learning

Machine Learning and Game
Playing

Johannes Fürnkranz
Darmstadt, Germany

Definition
Game playing is a major application area for research
in arti�cial intelligence in general (Schae�er & van den
Herik,) and for machine learning in particular
(Fürnkranz & Kubat,). Traditionally, the �eld is
concerned with learning in strategy games such as tic-
tac-toe (Michie,), checkers (7Samuel’s Checkers
Player), backgammon (7TD-Gammon), chess (Baxter
et al., ; Björnsson & Marsland, ; Donninger
& Lorenz, ; Sadikov & Bratko,), Go (Stern
et al.,), Othello (Buro,), poker (Billings,
Peña, Schae�er, & Szafron,), or bridge (Amit &
Markovitch,). However, recently computer and
video games have received increased attention (Laird
& van Lent, ; Ponsen, Muñoz-Avila, Spronck, &
Aha, ; Spronck, Ponsen, Sprinkhuizen-Kuyper, &
Postma,).

Motivation and Background
Since the early days of the �eld, game playing applica-
tions have been popular testbeds for machine learning.
�is has several reasons:

● Games allow to focus on intelligent reasoning: Other
components of intelligence, such as perception or
physical actions can be ignored.

● Games are easily accessible: A typical game-playing
environment can be implemented within a few

days, o�en hours. Exceptions are real-time computer
games, for which only a few open-source test beds
exist.

● Games are very popular: It is not very hard to
describe the agent’s task to the general public, and
they can easily appreciate the achieved level of intel-
ligence.

�ere are various types of problems that keep reoc-
curring in game-playing applications, for which solu-
tions with machine learning methods are desirable,
including opening book learning, learning of evaluation
functions, player modeling, and others, which will be
dealt with here.

Structure of the Learning System
Game-playing applications o�er various challenges for
machine learning. Awide variety of learning techniques
have been used for tackling these problems. We cannot
provide details on the learning algorithms here but will
instead focus on the problems and give some of themost
relevant and recent pointers to the literature. A more
detailed survey can be found in Fürnkranz ().

Learning of Evaluation Functions

�e most extensively studied learning problem in game
playing is the automatic adjustment of the weights of
an evaluation function. Typically, the situation is as fol-
lows: the game programmer has provided the program
with a library of routines that compute important fea-
tures of the current board position (e.g., the number of
pieces of each kind on the board, the size of the ter-
ritory controlled, etc.). What is not known is how to
combine these pieces of knowledge and how to quantify
their relative importance.Most frequently, these param-
eters are combined linearly, so that the learning task is
to adjust the weights of a weighted sum.�emain prob-
lem is that there are typically no direct target values that
could be used as training signals. Exceptions are games

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 M Machine Learning and Game Playing

or endgames that have been solved completely, which
are treated further below. However, in general, algo-
rithms use7Preference Learning (where pairs ofmoves
or positions are labeled according to which one is pre-
ferred by an expert player) or7Reinforcement Learning
(where moves or positions are trained based on infor-
mation about the eventual outcome of the game) for
tuning the evaluation functions.

�e key problem with reinforcement learning
approaches is the 7Credit Assignment problem, i.e.,
even though a game has been won (lost), there might
be bad (good)moves in the game. Reinforcement learn-
ing takes a radical stance at this problem, giving all
positions the same reinforcement signal, hoping that
erroneous signals will be evened out over time. An early
classic in this area is MENACE (Michie,), a tic-tac-
toe player who simulates reinforcement learning with
delayed rewards using a stack of matchboxes, one for
each position. Each box contains a number of beads
in di�erent colors, which represent the di�erent legal
moves in the position. Moves are selected by randomly
drawing a bead out of the box that represents the cur-
rent position. A�er a game is won, all played moves
are reinforced by adding beads of the corresponding
colors to these boxes, and in the case of a lost game,
corresponding beads are removed, thereby decreas-
ing the probability that the same move will be played
again.

�e premier example of a system that has tuned
its evaluation function to expert strength by play-
ing millions of games against itself is the backgam-
mon program 7TD-Gammon. Its key innovation was
the use of a 7Neural Network instead of a posi-
tion table, so that the reinforcement signal can be
generalized to new unseen positions. Many authors
have tried to copy TD-Gammon’s learning method-
ology to other games (Ghory,). None of these
successors, however, achieved a performance that was
as impressive as TD-Gammon’s. �e reason for this
seems to be that backgammon has various character-
istics that make it perfectly suited for learning from
self-play. Foremost among these are the fact that the
dice rolls guarantee su�cient variability, which allows
to use training by self-play without the need for an
explicit exploration/exploitation trade-o�, and that it
only requires a very limited amount of search, which
allows to ignore the dependencies of search algorithm

and search heuristic. �ese points have, for example,
been addressed with limited success in the game of
chess, where the program KnightCap (Baxter et al.,
), which integrates 7Temporal Di�erence Learn-
ing into a game tree search by using the �nal positions
of the principal variation for updates, and by using play
on a game server for exploration.
Many aspects of evaluation function learning are

still discussed in the current literature, includingwhether
there are alternatives to reinforcement learning (e.g.,
evolutionary algorithms), which training strategies
should be used (e.g., self-play vs. play against a teacher),
etc. One of the key problems, which has already
been mentioned in Samuel’s Checkers Player, namely
the automated construction of useful features remains
largely unsolved. Some progress has, e.g., been made
in the game of Othello, where a simple algorithm, very
much like 7APriori has been shown to produce valu-
able conjunctions of basic features (Buro,).

Learning Search Control

A more challenging, but considerably less investigated
task is to automatically tune the various parameters
that control the search in game-playing programs.
�ese parameters in�uence, for example, the degree to
which the search algorithm is aggressive in pruning the
unpromising parts of the search tree and the lines that
are explored inmore depth.�e key problemhere is that
these parameters are intertwined with the search algo-
rithm, and cannot be optimized independently, making
the process very tedious and expensive.

�ere have been a few attempts to use7Explanation-
Based Learning to automatically learn predicates that
indicate which branches of the search tree are the most
promising to follow.�ese approaches are quite related
to various uses of 7Explanation-Based Learning in
Planning, but these could not be successfully be carried
over to game-tree search.
Björnsson & Marsland () present a gradient

descent approach that minimizes the total number of
game positions that need to be searched in order to suc-
cessfully solve a number of training problems.�e idea
is to adjust each parameter in proportion to its sensitiv-
ity to changes in the number of searched nodes, which
is estimated with additional searches. �e amount of
positions that can be searched for each training position

Machine Learning and Game Playing M

M

is bounded to avoid in�nite solution times for individ-
ual problems, and simulated annealing is used to ensure
convergence.

Opening Book Learning

Human game players not only rely on their ability to
estimate the value of moves and positions but are o�en
also able to play certain positions “by heart,” i.e., without
having to think about their next move.�is is the result
of home preparation, opening study, and rote learning
of important lines and variations. As computers do not
forget, the use of an opening book provides an easy
way for increasing their playing strength. However, the
construction of such opening books can be quite labo-
rious, and the task of keeping it up-to-date is even more
challenging.
Commercial game-playing programs, in particular

chess programs, have thus resorted to tools that sup-
port the automatic construction of opening from large
game databases.�e key challenge here is that one can-
not rely on statistical information alone: amove that has
been successfully employed in hundreds of games may
be refuted in a single game. (Donninger&Lorenz,)
describe an approach that evaluates the “goodness” of
a move based on a heuristic formula that has been
found by experimentation. �is value is then added
to the result of a regular alpha-beta search. �e tech-
nique has been so successful, that the chess program
Hydra, probably the strongest chess program today, has
abandoned conventional large man-made (and there-
fore error-prone) error books. Similar techniques have
also been used in games like Othello (Buro,).

Pattern Discovery

In addition to databases of common openings and huge
game collections, which are mostly used for the tuning
of evaluation functions or the automatic generation of
opening books (see above), many games or subgames
have already been solved, i.e., databases in which the
game-theoretic value of positions of these subgames can
be looked up are available. For example, all endgames
with up to six pieces in chess have been solved. Other
games, such as Connect-, are solved completely, i.e., all
possible positions have been evaluated and the game-
theoretic value of the starting position has been deter-
mined. �e largest game that has been solved so far

is checkers Many of these databases are readily avail-
able, some of them (in the domains of chess, Connect-,
and tic-tac-toe) are part of the 7UCI Repository for
machine-learning databases.

�e simplest learning task is to train a classi�er that
is able to decide whether a given game position is a
game-theoretical win or loss (or draw). In many cases,
this is insu�cient. For example, in the chess endgame
king-rook-king, any position in which the white rook
cannot be immediately captured, and in which black is
not stalemate is, in principle, won by white. However,
in order to actually win the game it is not su�cient
to simply make moves that avoid rook captures and
stalemates.�us, most databases contain the maximal
number of moves that are needed for winning the posi-
tion. Predicting this is a much harder, largely unsolved
problem (some recent work can be found in (Sadikov &
Bratko,)). In addition to the game-speci�c knowl-
edge that could be gained by the extraction of pat-
terns that are indicative of won positions, anothermajor
application could be a knowledge-based compression of
these databases (the collection of all perfect-play chess
endgame databases with up to sixmen is . Terabytes in
a very compressed database format, the win/loss check-
ers databases with up to ten men contain about ×
 positions compressed into GB (Schae�er et al.,
)).

Player Modeling

Player modeling is an important research area in game
playing, which can serve several purposes.�e goal of
opponent modeling is to improve the capabilities of the
machine player by allowing it to adapt to its opponent
and exploit his weaknesses. Even if a game-theoretical
optimal solution to a game is known, a system that
has the capability to model its opponent’s behavior may
obtain a higher reward. Consider, for example, the game
of rock-paper-scissors aka RoShamBo, in which either
player can expect to win one third of the game (with
one third of draws) if both players play their opti-
mal strategies (i.e., randomly select one of their three
moves). However, against a player who always plays
rock, a player who is able to adapt his strategy to always
playing paper can maximize his reward, while a player
who sticks with the “optimal” random strategy will still
win only one third of the game. One of the grand chal-
lenges in this line of work are games such as poker, in

 M Machine Learning and Game Playing

which opponent modeling is crucial to improve over
game-theoretical optimal play (Billings et al.,).
Player modeling is also of increasing importance

in commercial computer games (see below). For one,
7Behavioral Cloning techniques could be used to
increase the playing strength or credibility of arti�cial
characters by copying the strategies of expert human
players. Moreover, the playing strength of the char-
acters can be adapted to the increasing skill level of
the human player. Finally, agents that can be trained
by non-programmers can also play an important role.
For example, inmassivemultiplayer online role-playing
games (MMORGs), an avatar that is trained to simulate
a user’s game-playing behavior could take his creator’s
place at times when the human player cannot attend to
his game character.

Commercial Computer Games

In recent years, the computer games industry has dis-
covered Arti�cial Intelligence as a necessary ingredi-
ent to make games more entertaining and challenging
and, vice versa, AI has discovered computer games as
an interesting and rewarding application area (Laird &
van Lent,). In comparison to conventional strategy
games, computer game applications are more demand-
ing, as the agents in these game typically have to interact
with a large number of partner or enemy agents in a
highly dynamic, real-time environment, with incom-
plete knowledge about its states. Tasks include o�-line
or on-line player modeling (see above), virtual agents
with learning capabilities, optimization of plans and
processes, etc.
Computer players in games are o�en controlled

with scripts. Dynamic scripting (Spronck et al.,)
is an on-line 7Reinforcement Learning technique that
is designed to be integrated into scripting languages
of game playing agents. Contrary to conventional rein-
forcement learning agents, it updates the weights of all
actions for a given state simultaneously.�is sacri�ces
guaranteed convergence, but this is desirable in a highly
dynamic game environment.�e approachwas success-
fully applied to improving the strength of computer-
controlled characters and increasing the entertainment
value of the game by automated scaling of the di�-
cult level of the game AI to the human player’s skill
level. Similar to the problem of constructing suitable
features for the use in evaluation functions, the basic

tactics of the computer player had to be handcoded.
Ponsen et al. () extend dynamic scripting with an
7Evolutionary Algorithm for automatically construct-
ing the tactical behaviors.
Machine learning techniques are not only used for

controlling players, but also for tasks like skill estima-
tion. For example, TrueSkillTM (Herbrich et al.,),
a Bayesian skill rating system which is used for ranking
players in games on the Microso�’s Xbox . SAGA-
ML (Southey et al.,) is a machine learning sys-
tem for supporting game designers in improving the
playability of a game.
Despite the large commercial potential, research in

this area has just started, and the number of workshops
and publications on this topic is rapidly increasing. For
more information on AI Game Development we refer
to http://aigamedev.com.

Cross References
7Samuel’s Checkers Player
7TD-Gammon

Recommended Reading
Amit, A., & Markovitch, S. (). Learning to bid in bridge.

Machine Learning, (), –.
Baxter, J., Tridgell, A., & Weaver, L. (). Learning to play chess

using temporal differences. Machine Learning, (), –.
Billings, D., Peña, L., Schaeffer, J., & Szafron, D. (). The chal-

lenge of poker. Artificial Intelligence, (–), –. Special
issue on games, computers and artificial intelligence.

Björnsson, Y., & Marsland, T. A. (). Learning extension parame-
ters in game-tree search. Information Sciences, (–), –.

Bowling, M., Fürnkranz, J., Graepel, T., & Musick, R. (). Special
issue on machine learning and games.Machine Learning, (),
–.

Buro, M. (). Improving heuristic mini-max search by supervised
learning. Artificial Intelligence, (–), –. Special issue on
games, computers and artificial intelligence.

Donninger, C., & Lorenz, U. (). Innovative opening-book han-
dling. In H. J. van den Herik, S.-C. Hsu, & H. H. L. M. Donkers,
(Eds.), Advances in computer games. Berlin: Springer.

Fürnkranz, J. (). Machine learning in games: A survey. In
J. Fürnkranz & M. Kubat (Eds.), Machines that learn to play
games (Chap. , pp. –). Huntington, NY: Nova Science
Publishers.

Fürnkranz, J., & Kubat, M. (Eds.). ().Machines that learn to play
games. Huntington, NY: Nova Science Publishers.

Ghory, I. (). Reinforcement learning in board games. Techni-
cal Report CSTR--. Department of Computer Science,
University of Bristol, Bristol, UK. http://www.cs.bris.ac.uk/
Publications/pub_info.jsp?id=.

Herbrich, R., Minka, T., & Graepel, T. (). TrueskillTM: A
bayesian skill rating system. In B. Schölkopf, J. C. Platt, &

Machine Learning for IT Security M

M

T. Hoffman (Eds.), Advances in neural information process-
ing systems (NIPS-) (Vol. , pp. –). Vancouver, BC,
Canada: MIT Press.

Laird, J. E., & van Lent, M. (). Human-level AI’s killler applica-
tion: Interactive computer games. AI Magazine, (), –.

Michie, D. (). Experiments on the mechanization of game-
learning – Part I. Characterization of the model and its param-
eters. The Computer Journal, , –.

Ponsen, M., Muñoz-Avila, H., Spronck, P., & Aha, D. W. ().
Automatically generating game tactics via evolutionary learn-
ing. AI Magazine, (), –.

Sadikov, A., & Bratko, I. (). Learning long-term chess strategies
from databases. Machine Learning, (), –.

Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., & Sutphen, S.
(). Building the checkers -piece endgame databases. In
H. J. van den Herik, H. Iida, & E. A. Heinz (Eds.), Advances in
computer games (Vol. , pp. –). Graz, Austria: Springer.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M.,
Lake, R., Lu, P., Sutphen, S. (). Checkers is solved. Science
():–.

Schaeffer, J., & van den Herik, H. J. (Eds.) (). Chips challenging
champions: Games, computers and artificial intelligence. Ams-
terdam: North-Holland. (Reprint of a special issue of Artificial
Intelligence, (–)).

Southey, F., Xiao, G., Holte, R. C., Trommelen, M., & Buchanan, J. W.
(). Semi-automated gameplay analysis by machine learn-
ing. In R. M. Young & J. E. Laird (Eds.), Proceedings of the st
artificial intelligence and interactive digital entertainment con-

ference (AIIDE-) (pp. –). AAAI Press: Marina del Rey,
CA.

Spronck, P., Ponsen, M. J. V., Sprinkhuizen-Kuyper, I. G., & Postma,
E. O. (). Adaptive game AI with dynamic scripting. Mach-
ine Learning, (), –.

Stern, D., Herbrich, R., & Graepel, T. (). Bayesian pattern rank-
ing for move prediction in the game of Go. In Proceedings of the
rd international conference on machine learning (ICML-)

(pp. –). New York: ACM.

Machine Learning for IT Security

Philip K. Chan
Florida Institute of Technology, Melbourne, FL, USA

Definition
�e prevalence of information technology (IT) across
all segments of society, greatly improves the accessibility
of information, however, it also provides more oppor-
tunities for individuals to act with malicious intent.
Intrusion detection is the task of identifying attacks
against computer systems and networks. Based on
data/behavior observed in the past, machine learning
methods can automate the process of building detectors
for identifying malicious activities.

Motivation and Background
Cyber security o�en focuses on preventing attacks
using authentication, �ltering, and encryption tech-
niques, but another important facet is detecting attacks
once the preventive measures are breached. Consider a
bank vault: thick steel doors prevent intrusions, while
motion and heat sensors detect intrusions. Prevention
and detection complement each other to provide amore
secure environment.
How do we know if an attack has occurred or

has been attempted?�is requires analyzing huge vol-
umes of data gathered from the network, host, or
�le systems to �nd suspicious activities. Two general
approaches exist for this problem: misuse detection
(also known as signature detection), where we look for
patterns signaling well-known attacks, and anomaly
detection, where we look for deviations from normal
behavior.
Misuse detection usually works reliably on known

attacks (though false alarms and missed detections are
not uncommon), but has the obvious disadvantage of
not being capable of detecting new attacks. �ough
anomaly detection can detect novel attacks, it has the
drawback of not being capable of discerning intent;
it can only signal that some event is unusual, but
not necessarily hostile, thus generating false alarms. A
desirable system would employ both approaches. Mis-
use detection methods are more well understood and
widely applied; however, anomaly detection ismuch less
understood and more challenging.
Can we automate the process of building so�ware

for misuse and anomaly detection? Machine learning
techniques hold promise in e�ciently analyzing large
amounts of recent activities, identifying patterns, and
building detectors.
Besides computer attacks, spam email messages,

though not intended to damage computer systems
or data, are annoying and waste system resources.
To construct spam detectors from large amounts of
emailmessages,machine learning techniques have been
used (see References and Recommended Reading for
more).

Structure of Learning System
Machine learning can be used to construct models for
misuse as well as anomaly detection.

 M Machine Learning for IT Security

Misuse Detection

For misuse detection, the machine learning goal is to
identify characteristics of known attacks. One approach
is to learn the di�erence between attacks and normal
events, which can be casted as a classi�cation problem.
Given examples of labeled attacks and normal events, a
learning algorithm constructs a model that di�erenti-
ates attacks from normal events.
Lee, Stolfo, and Mok () apply machine learn-

ing to detect attacks in computer networks.�ey �rst
identify frequent episodes, associations of features that
frequently appear within a time frame, in attack and
normal data separately. Frequent episodes that only
appear in attack data help construct features for the
models. For example, if the SYN�ag is set for a http con-
nection is a frequent episode within s and the episode
only appears in the attack data, a feature is constructed
for the number of http connections with the SYN �ag
set within a period of s. Using RIPPER and based on
di�erent sets of features, they construct three models:
tra�c, host-based tra�c, and contentmodels.�e three
models are then combined using meta-learning.
Ghosh and Schwartzbard () use neural net-

works to identify attacks in operating systems. Based
on system calls in the execution traces of normal and
attack programs, they �rst identify a number of “exam-
plar” sequences of system calls. For each system call
sequence, they calculate the distance from the examplar
sequences. �e number of input nodes for the neural
network is equal to the number of examplars and values
for the input nodes are distances from those examplar
sequences. �e value for the output node is whether
the system call sequence is from an attack or normal
program.

Anomaly Detection

For anomaly detection, the machine learning goal is
to characterize normal behavior. �e learned models
of normal behavior are then used to identify events
that are anomalies, events that deviate from the models.
Since anomalies are not always attacks, to reduce false
alarms, the learned models usually provide a scoring
mechanism to indicate the degree of anomaly.
Warrender, Forrest, and Pearlmutter () identify

anomalies in system calls in the operating systems.�e
model is a table of system call sequences from execu-
tion traces of normal programs. During detection, a

sequence that is not in the table or occurs less than
.% in the training data is considered a mismatch.
�e number of mismatches within a locality frame of
 sequences is the anomaly score.
Mahoney and Chan () introduce the LERAD

algorithm for learning rules that identify anomalies in
network tra�c. LERAD �rst uses a randomized algo-
rithm to generate candidate rules that represent asso-
ciations. It then �nds a set of high quality rules that
can succinctly cover the training data. Each rule has
an associated probability of violating the rule. During
detection, based on the probability, LERAD provides a
score for anomalous events that do not conform to the
rules in the learned model.
Misuse Detection: Schultz, Eskin, Zadok, and

Stolfo () with program executables, Maxion and
Townsend () with user commands.
Anomaly Detection: Sekar, Bendre, Dhurjati, and

Bollinen () with program execution, Apap, Honig,
Hershkop, Eskin, and Stolfo () withWindows Reg-
istry, Anderson, Lunt, Javitz, Tamaru, and Valdes ()
with system resources, Lane and Brodley () with
user commands.
Spam detection: Bratko, Filipic, Cormack, Lynam,

and Zupan () with text, Fumera, Pillai, and Roli
() with text and embedded images.

Cross References
7Association
7Classi�cation

Recommended Reading
Anderson, D., Lunt, T., Javitz, H., Tamaru, A., & Valdes, A. ().

Detecting unusual program behavior using the statistical com-
ponent of the next-generation intrusion detection expert sys-
tem (NIDES). Technical Report SRI-CSL--, SRI.

Apap, F., Honig, A., Hershkop, S., Eskin, E., & Stolfo, S. ().
Detecting malicious software by monitoring anomalous win-
dows registry accesses. In Proceeding of fifth international
symposium on recent advances in intrusion detection (RAID),
(pp. –). Zurich, Switzerland.

Bratko, A., Filipic, B., Cormack, G., Lynam, T., & Zupan, B. ().
Spam filtering using statistical data compression models. Jour-
nal of Machine Learning Research, , –.

Fumera, G., Pillai, I., & Roli, F. (). Spam filtering based on the
analysis of text information embedded into images. Journal of
Machine Learning Research, , –.

Ghosh, A., & Schwartzbard, A. (). A study in using neural net-
works for anomaly and misuse detection. In Proceeding of th
USENIX security symposium (pp. –). Washington, DC.

Markov Chain Monte Carlo M

M

Lane, T., & Brodley, C. (). Temporal sequence learning and
data reduction for anomaly detection. ACM Transactions on

Information and System Security, (), –.
Lee, W., Stolfo, S., & Mok, K. (). A data mining framework

for building intrusion detection models. In IEEE symposium on
security and privacy (pp. –).

Mahoney, M., & Chan, P. (). Learning rules for anomaly detec-
tion of hostile network traffic. In Proceeding of IEEE interna-
tional conference data mining (pp. –). Melbourne, FL.

Maxion, R., & Townsend, T. (). Masquerade detection using
truncated command lines. In Proceeding of international con-
ferernce dependable systems and networks (DSN) (pp. –).
Washington, DC.

Schultz, M., Eskin, E., Zadok, E., & Stolfo, S. (). Data mining
methods for detection of new malicious executables. In Pro-
ceeding of IEEE symposium security and privacy (pp. –).
Oakland, CA.

Sekar, R., Bendre, M., Dhurjati, D., & Bollinen, P. (). A fast
automaton-based method for detecting anomalous program
behaviors. In Proceeding of IEEE symposium security and privacy
(pp. –). Oakland, CA.

Warrender, C., Forrest, S., & Pearlmutter, B. (). Detecting
intrusions using system calls: Alternative data models. In
IEEE symposium on security and privacy (pp. –). Los
Alamitos, CA.

Manhattan Distance

Susan Craw
�e Robert Gordon University, Scotland, UK

Synonyms
City Block distance; L-distance; -norm distance; Taxi-
cab norm distance

Definition
�e Manhattan distance between two points x =

(x, x, . . . , xn) and y = (y, y, . . . , yn) inn-dimensional
space is the sum of the distances in each dimension.

d(x, y) =
n

∑
i=

∣ xi − yi ∣ .

It is called the Manhattan distance because it is the
distance a car would drive in a city (e.g., Manhattan)
where the buildings are laid out in square blocks and
the straight streets intersect at right angles.�is explains
the other terms City Block and taxicab distances.�e
terms L and -norm distances are the mathematical
descriptions of this distance.

Cross References
7Case-Based Reasoning
7Nearest Neighbor

Margin

Definition
In a7Support Vector Machine, amargin is the distance
between a hyperplane and the closest example.

Cross References
7Support Vector Machines

Market Basket Analysis

7Basket Analysis

Markov Blanket

7Graphical Models

Markov Chain

7Markov Process

Markov Chain Monte Carlo

Claude Sammut
University of New South Wales
Sydney, Australia

Synonyms
MCMC

Definition
A Markov Chain Monte Carlo (MCMC) algorithm
is a method for sequential sampling in which each
new sample is drawn from the neighborhood of its
predecessor. �is sequence forms a 7Markov chain,

 M Markov Chain Monte Carlo

since the transition probabilities between sample val-
ues are only dependent on the last sample value.
MCMC algorithms are well suited to sampling in high-
dimensional spaces.

Motivation
Sampling from a probability density function is nec-
essary in many kinds of approximation, including
Bayesian inference and other applications in Machine
Learning. However, sampling is not always easy, espe-
cially in high-dimensional spaces. Mackay () gives
a simple example to illustrate the problem. Suppose we
want to �nd the average concentration of plankton in a
lake, whose pro�le looks like this:

If we do not know the depth pro�le of the lake, how
would we knowwhere to sample from? If we take a boat
out, would we have to sample almost exhaustively by
�xing a grid on the surface of the lake and sinking our
instrumentprogressivelydeeper, samplingat�xed inter-
vals until we hit the bottom?�is would be prohibitively
expensive and ifwehada similarproblem,butwithmore
dimensions, the problem becomes intractable. If we try
to simplify the problem by drawing a random sample,
how do we ensure that enough samples are taken from
the canyons in the lake and not just the shallows, which
account for most of the surface area?

The Algorithm
�e general approach adopted in MCMC algorithms
is as follows. We start sampling in some random ini-
tial state, represented by vector, x. At each state, we
can evaluate the probability density function, P(x). We
then choose a candidate next state, x′, near the current
state and evaluate P(x′). Comparing the two, we decide
whether to accept or reject the candidate. If we accept
it, the candidate becomes the new current state and the
process repeats for a �xed number of steps or until some
convergence criterion is satis�ed.

Algorithm �e Metropolis Algorithm
Given: target probability density function P(x)

a proposal distribution, Q, e.g., a Gaussian
the number of iterations, N

Output: a set of samples {xi} drawn from P(x)
Randomly select initial state vector, x
for i = to N −

create a new candidate x′ = xi + ∆x,
where ∆x is randomly chosen fromQ(∆x)

set α =
P(x′)
P(xi)

if α ≥ or with probability α

accept the new candidate and set xi+ = x′

else
reject the candidate and set xi+ = xi

The Metropolis Algorithm
�ere are several variants of the general algorithm pre-
sented above. Each variant must specify how a can-
didate state is proposed and what criterion should be
used to accept or reject the candidate. �e Metropo-
lis algorithm assumes that the next candidate is drawn
from a symmetric distribution, Q(x), centered on the
current state, for example, a Gaussian distribution
(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
; Metropolis & Ulam,). �is distribution is
called the proposal distribution. �e Metropolis algo-
rithm is shown in Algorithm .
To decide if a candidate should be accepted or

rejected, the algorithm calculates,

α =
P (x′)

P (xi)

where xi is the current state and x′ is the candidate
state. If α > , the candidate is immediately accepted.
If α < , then a stochastic choice is made with the candi-
date being accepted with probability α, otherwise, it is
rejected.
Hastings () introduced a variant, theMetropolis–

Hastings algorithm, which allows the proposal distri-
bution to be asymmetric. In this case, the accept/reject
calculation is:

α =
P(x′)Q(xi; x′)
P(xi)Q(x′; xi)

Markov Chain Monte Carlo M

M

Burn-in and Convergence
It can be di�cult to decide how many iterations are
needed before an MCMC algorithm achieves a sta-
ble distribution. Several factors a�ect the length of the
Markov chain needed. Depending on the start state,
many of the initial samples may have to be discarded,
called burn-in, as illustrated below.�e ellipses repre-
sent contours of the distribution.

�e variance of the proposal distribution can also
a�ect the chain length. If the variance is large, the
jumps are large, meaning that there is varied sam-
pling. However, this is also likely to mean that fewer
samples are accepted. Narrowing the variance should
increase acceptance but may require a long chain to
ensure wide sampling, which is particularly necessary
if the distribution has several peaks. See Andrieu et al.
() for a discussion of methods for improving con-
vergence times.

Gibbs Sampling
An application of MCMC is inference in a 7Bayesian
network, also known as 7Graphical Models. Here, we
sample from evidence variables to �nd a probability
for non-evidence variables. �at is, we want to know
what unknowns we can derive from the knowns and
with what probability. Combining the evidence across a
large network is intractable because we have to take into
account all possible interactions of all variables, sub-
ject to the dependencies expressed in the network. Since
there are too many combinations to compute in a large
network, we approximate the solution by sampling.

�e Gibbs sampler is a special case of the Metropolis–
Hastings algorithm that is well suited to sampling from
distributions over two or more dimensions. It proceeds
as in Algorithm , except that when a new candidate
is generated, only one dimension is allowed to change
while all the others are held constant. Suppose we have
n dimensions and x = (x, . . . , xn). One complete pass
consists of jumping in one dimension, conditioned on
the values for all the other dimensions, then jumping in
the next dimension, and so on.�at is, we initialise x to
some value, and then for each xi we resample P(xi∣xj=i)
for j in . . . n. �e resulting candidate is immediately
accepted. We then iterate, as in the usual Metropolis
algorithm.

Cross References
7Bayesian Network
7Graphical Models
7Learning Graphical Models
7Markov Chain

Recommended Reading
MCMC is well covered in several text books. Mackay () gives a
thorough and readable introduction to MCMC and Gibbs Sampling.
Russell and Norvig () explain MCMC in the context of approx-
imate inference for Bayesian networks. Hastie et al. () also give
a more technical account of sampling from the posterior. Andrieu
et al. () Machine Learning paper gives a thorough introduction
to MCMC for Machine Learning. There are also some excellent tuto-
rials on the web including Walsh () and Iain Murray’s video
tutorial (Murray,) for machine learning summer school.
Andrieu, C., DeFreitas, N., Doucet, A., & Jordan, M. I. (). An

introduction to MCMC for machine learning. Machine Learn-
ing, (), –.

Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of sta-
tistical learning: data mining, inference and perception (nd ed.).
New York: Springer.

Hastings, W. K. (). Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, ,
–.

Mackay, D. J. C. (). Information theory, inference and learning
algorithms. Cambridge: Cambridge University Press.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A., & Teller, H. (). Equations of state calculations by
fast computing machines. Journal of Chemical Physics, ,
–.

Metropolis, N., & Ulam, S. (). The Monte Carlo method. Journal
of the American Statistical Association, (), –.

Murray, I. (). Markov chain Monte Carlo. http://
videolectures.net/mlssuk_murray_mcmc/. Retrieved
July .

 M Markov Decision Processes

Russell, S., & Norvig, P. (). Artificial intelligence: a modern
approach (rd ed.). NJ: Prentice Hall.

Walsh, B. (). Markov chain Monte Carlo and Gibbs sam-
pling. http://nitro.biosci.arizona.edu/courses/EEB-/
handouts/Gibbs.pdf. Retrieved July .

Markov Decision Processes

William Uther
NICTA and the University of New South Wales

Synonyms
Policy search

Definition
AMarkov Decision Process (MDP) is a discrete, stochas-
tic, and generally �nitemodel of a system towhich some
external control can be applied. Originally developed
in the Operations Research and Statistics communities,
MDPs, and their extension to 7Partially Observable
Markov Decision Processes (POMDPs), are now com-
monly used in the study of 7reinforcement learning
in the Arti�cial Intelligence and Robotics communities
(Bellman, ; Bertsekas & Tsitsiklis, ; Howard,
; Puterman,). When used for reinforcement
learning, �rstly the parameters of an MDP are learned
from data, and then the MDP is processed to choose a
behavior.
Formally, anMDP is de�ned as a tuple:< S ,A,T,R >,

where S is a discrete set of states, A is a discrete set of
actions, T : S × A → (S → R) is a stochastic transi-
tion function, and R : S ×A→ R speci�es the expected
reward received for performing the given action in each
state.
An MDP carries theMarkov label because both the

transition function, T, and the reward function, R, are
Markovian; i.e., they are dependent only upon the cur-
rent state and action, not previous states and actions.
To be a valid transition function, the distribution over
the resulting states, (S → R), must be a valid prob-
ability distribution, i.e., non-negative and totalling .
Furthermore, the expected rewards must be �nite.

�e usual reason for specifying an MDP is to �nd
the optimal set of actions, or policy, to perform. We

formalize the optimality criteria below. Let us �rst con-
sider how to represent a policy. In its most general
form the action, a ∈ A, indicated by a policy, π, might
depend upon the entire history of the agent; π : (S×
A)∗ × S → A. However, for each of the common opti-
mality criteria considered below a Markov policy, π :
S → A, will be su�cient. i.e., for every MDP, for each
of the optimality criteria below, there exists a Markov
policy that performs as well as the best full policy. Sim-
ilarly, there is no requirement for an MDP that a policy
be stochastic or mixed.

Optimality Criteria

Informally, one wants to choose a policy so as to max-
imise the long term sum of immediate rewards. Unfor-
tunately the naive sum,∑∞t= rt where rt is the expected
immediate reward received at time t, usually diverges.
�ere are di�erent optimality criteria that can than be
used as alternatives.

Finite Horizon �e easiest way to make sure that the
sum of future expected rewards is bounded is to only
consider a �xed, �nite time into the future; i.e., �nd a
policy that maximises∑nt= rt for each state.

Infinite Horizon Discounted Rather than limiting the
distance we look into the future, another approach is
to discount rewards we will receive in the future by a
multiplicative factor, γ, for each time-step.�is can be
justi�ed as an in�ation rate, as an otherwise unmodelled
probability that the simulation ends each time-step, or
simply as a mathematical trick to make the criteria
converge. Formally we want a policy that maximises
∑
∞
t= γtrt for each state.

Average Reward Unfortunately, the in�nite horizon
discounted optimality criterion adds another parame-
ter to our model: the discount factor. Another approach
is to optimize the average reward per time-step, or gain,
by �nding a policy that maximizes limn→∞

n ∑
n
t= rt for

each state.�is is very similar to using sensitive discount
optimality; �nding a policy that maximizes the in�-
nite horizon discounted reward as the discount factor
approaches , limγ→∑

∞
t= γtrt , for each state.

When maximizing average reward, any �nite devia-
tion from the optimal policy will have negligible e�ect
on the average over an in�nite timeframe. �is can

Markov Decision Processes M

M

make the agent “lazy.” To counteract this, o�en a series
of increasingly strict optimality criteria are used. �e
�rst is the “gain” optimality criterion given above –
optimizing the long term average reward. �e next is
a “bias” optimality which selects from among all gain
optimal policies the ones that also optimize transient
initial rewards.

Value Determination

For the �nite horizon, in�nite horizon discounted, or
bias optimality criteria, the optimality criteria can be
calculated for each state, or for each state-action pair,
giving a value function. Once found, the value function
can then be used to �nd an optimal policy.

Bellman Equations �e standard approach to �nd-
ing the value function for a policy over an MDP is
a dynamic programming approach using a recursive
formulation of the optimality criteria. �at recursive
formulation is known as the Bellman Equation.

�ere are two, closely related, common forms for a
value function; the state value function, V : S → R and
the state-action value function, Q : S × A → R. For
a �nite horizon undiscounted optimality criterion with
time horizon n and policy π:

Qπ
n(s, a) =

n

∑
t=
rt

= R(s, a) +Es′∈T(s,a)Vπ
n−(s

′
)

= R(s, a) + ∑
s′∈S
T(s, a)(s′)Vπ

n−(s
′
)

Vπ
n (s) = Q

π
n(s, π(s))

For the in�nite horizon discounted case:

Qπ
(s, a) = R(s, a) + γ ∑

s′∈S
T(s, a)(s′)Vπ

(s′)

Vπ
(s) = Qπ

(s, π(s))

�ese equations can be turned into a method for
�nding the value function by replacing the equality with
an assignment:

Qπ
(s, a)← R(s, a) + γ ∑

s′∈S
T(s, a)(s′)Qπ

(s′, π(s′))

As long as this update rule is followed in�nitely o�en
for each state/action pair, the Q-function will converge.

Prioritised sweeping: Rather than blindly updating each
state/action, intelligent choice of where to update will
signi�cantly speed convergence. One technique for this
is called Prioritized Sweeping (Andre et al., ;Moore
& Atkeson,).
A priority queue of states is kept. Initially one

complete pass of updates over all states is performed,
but therea�er states are updated in the order they
are pulled from the priority queue. Any time the
value of a state, Vπ(s), changes, the priorities of all
states, s′, that can reach state s are updated; we update
{s′ ∣ T(s′, π(s′))(s) ≠ }.�e priorities are increased
by the absolute change in Vπ(s).

�e e�ect of the priority queue is to focus computa-
tion where values are changing rapidly.

Linear Programming Solutions Rather than using the
Bellman equation and dynamic programming, an alter-
native approach is to set up a collection of inequalities
and use linear programming to �nd an optimal value
function. In particular if we minimize,

∑
s∈S
Vπ

(s)

subject to the constraints

∀s∈S ≤ Vπ
(s) − [R(s, a) + γ ∑

s′∈S
T(s, a)(s′)Vπ

(s′)] ,

then the resulting Vπ accurately estimates the expected
sum of discounted reward.

Bellman Error Minimization A third approach to value
determination is similar to the dynamic programming
solution above. Rather than replacing the equality in the
Bellman equationwith an assignment, it turns the equa-
tion into an error function and adjusts theQ function to
minimise the sum of squared Bellman residuals (Baird,
):

Residual(s) = Qπ
(s, a) − [R(s, a) + γ ∑

s′∈S
T(s, a)(s′)

Qπ
(s′, π(s′))] Err =∑

s∈S
Residual(s)

 M Markov Decision Processes

Control Methods

�e previous section gave us a way to obtain a value
function for a particular policy, but what we usually
need is a good policy, not a value function for the policy
we already have. For an optimal policy, for each state:

π(s) = argmaxa∈AQ
π
(s, a)

If a policy, π, is not optimal then its value function
can be used to �nd a better policy, π′. It is common to
use the greedy policy for the value function:

π′(s)← argmaxa∈AQ
π
(s, a)

�is process can be used iteratively to �nd the opti-
mal policy.
Policy iteration: Policy iteration alternates between
value determination and greedy policy updating steps
until convergence is achieved.�e algorithm starts with
a policy, π. �e value function is calculated for that
policy, Vπ . A new policy is then found from that
value function, π. �is alternation between �nding
the optimal value function for a given policy and then
improving the policy continues until convergence. At
convergence the policy is optimal.
Value iteration: Rather than explicitly updating the pol-
icy, value iteration works directly with the value func-
tion. We de�ne an update,

Q(s, a)← R(s, a) + γ ∑
s′∈S
T(s, a)(s′)max

a′∈A
Q(s′, a′),

with a maximization step included. As long as this
update is performed o�en enough in each state, Q will
converge. Once Q has converged, the greedy policy will
be optimal.
Mixed policy iteration:�e two previous methods, pol-
icy and value iteration, are two extremes of a spectrum.
In practice updates to the policy and value function can
occur asynchronously as long as the value and policy in
each state are updated o�en enough.

Representations

In the above discussion we have discussed a number
of functions, but not discussed how these functions are
represented. �e default representation is an array or
tabular form which has no constraints on the function
it can represent. However, the 7curse of dimension-
ality suggests that the number of states will, in gen-
eral, be exponential in the problem size.�is can make

even a single complete iteration over the state space
intractable. One solution is to represent the functions
in a more compact form so that they can be updated
e�ciently.�is approach is known as function approxi-
mation. Here we review some common techniques.
A class of representations is chosen to represent the

functions we need to process: e.g., the transition, T,
reward, R, Value, V or Q, and/or policy, π, functions.
A particular function is selected from the chosen class
by a parameter vector, θ.

�ere are two important questions that must be
answered by any scheme using function approximation;
does the resulting algorithm converge to a solution, and
does the resulting solution bear any useful relationship
with the optimal solution?
A simple approachwhen using a di�erentiable func-

tion to represent the value function is to use a form of
7temporal di�erence learning. For a given state, s, and
action, a, the Bellman equation is used to calculate a
new value, Qnew(s, a), and then θ is updated to move
the value function toward this new value.�is gradient
based approach usually has a learning rate, α ∈ [,], to
adjust the speed of learning.

Qnew(s, a)← R(s, a) + γ ∑
s′∈S
T(s, a)(s′)Vold(s′)

∆s,aθ = α
∂Q

∂θ
(Qnew(s, a) −Qold(s, a))

�is approach is known not to converge in general,
although it does converge in some special cases. A simi-
lar approach with full Bellman Error minimization will
not oscillate, but it may cause the θ to diverge even as
the Bellman residual converges.
Contraction mappings: �e �rst class of function
approximators that was shown to converge with the
above update, apart from a complete tabular represen-
tation, was the class of contraction mappings (Gordon,
). Simply put, these are function approximation
classes where changing one value by a certain amount
changes every other value in the approximator by no
more than that amount. For example, linear interpo-
lation and tile coding (Tile codings are also known
as Cerebellar Motor Action Controllers (CMAC) in
early work (Albus,)) are each contractionmappings
whereas linear extrapolation is not.

Markov Decision Processes M

M

Formally, let S be a vector space with max norm
∣∣.∣∣∞. A function f is a contraction mapping if,

∀a, b ∈ S , ∣∣ f (a) − f (b)∣∣∞ < ∣∣a − b∣∣∞

�e class of function approximations that form
contraction mappings includes a number of common
approximation techniques including tile coding. Tile
coding represents a function as a linear combination of
basis functions, φ(s, a),

Q̂(s, a) = θ . φ(s, a),

where the individual elements of φ are binary features
on the underlying state.
Linear approximations:�e linear combination of basis
functions can be extended beyond binary features.�is
will converge when temporal di�erencing updates are
performed in trajectories through the state space fol-
lowing the policy being evaluated (Tsitsiklis & Van Roy,
).
Variable resolution techniques: One technique for rep-
resenting value functions over large state spaces is use
a non-parametric representation. Munos gives a tech-
nique that introduces more basis functions for their
approximation over time as needed (Munos & Moore,
).
Dynamic Bayesian networks: 7Bayesian Networks are
an e�cient representation of a factored probability dis-
tribution.DynamicBayesianNetworks use the Bayesian
Network formalism to represent the transition func-
tion, T , in an MDP (Guestrin et al.,).�e reward
and value functions are usually represented with lin-
ear approximations. �e policy is usually represented
implicitly by the value function.
Decision diagrams: Arithmetic Decision Diagrams
(ADDs) are a compact way of representing functions
from a factored discrete domain to a real range. ADDs
can also be e�ciently manipulated, with operators for
the addition and multiplication of ADDs as well as
taking the maximum of two ADDs. As the Bellman
equation can be re-written using operators, it is possible
to implement mixed policy iteration using this e�cient
representation (St-Aubin et al.,).
Hierarchical representations: 7Hierarchical Reinforce-
ment Learning factors out common substructure in the
functions that represent an MDP in order to solve it

e�ciently.�is has been done in many di�erent ways.
Dietterich’s MAXQ hierarchy allowed a prespeci�ed
hierarchy to re-use common elements in a value func-
tion (Dietterich,). Sutton’s Options framework
focussed on temporal abstraction and re-use of policy
elements (Sutton et al.,). Moore’s Airports hier-
archy allowed automatic decomposition of a problem
where the speci�c goal could change over time, and
so was made part of the state (Moore et al.,).
Andre’s A-Lisp system takes the hierarchical represen-
tation to an extreme by building in a Turing complete
programming language (Andre & Russell,).

Greedy Algorithms Versus Search

In the previous sections the control problem was solved
using a greedy policy for a value function. If the value
function was approximate, then the resulting policy
may be less than optimal. Another approach to improv-
ing the policy is to introduce search during execution.
Given the current state, the agent conducts a forward
search looking for the sequence of actions that produces
the best intermediate reward and resulting state value
combination.

�ese searches can be divided into two broad cat-
egories: deterministic and stochastic searches. Deter-
ministic searches, such as LAO∗ (Hansen & Zilberstein,
), expand through the state space using the supplied
model of the MDP. In contrast stochastic, or Monte-
Carlo, approaches sample trajectories from the model
and use statistics gathered from those samples to choose
a policy (Kocsis & Szepesvári,).

Cross References
7Bayesian Network
7Curse of Dimensionality
7Monte-Carlo Simulation
7Partially Observable Markov Decision Processes
7Reinforcement Learning
7Temporal Di�erence Learning

Recommended Reading
Albus, J. S. (). Brains, behavior, and robotics. Peterborough:

BYTE. ISBN: .
Andre, D., Friedman, N., & Parr, R. (). Generalized prioritized

sweeping. Neural and Information Processing Systems, pp. –
.

 M Markov Model

Andre, D., Russell, S. J. (). State abstraction for programmable
reinforcement learning agents. Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI).

Baird, L. C. (). Residual algorithms: reinforcement learning with
function approximation. In A. Prieditis & S. Russell (Eds.),
Machine Learning: Proceedings of the Twelfth International Con-

ference (ICML) (pp. –). San Mateo: Morgan Kaufmann.
Bellman, R. E. (). Dynamic programming. Princeton: Princeton

University Press.
Bertsekas, D. P., & Tsitsiklis, J. (). Neuro-dynamic programming.
Dietterich, T. G. (). Hierarchical reinforcement learning with

the MAXQ value function decomposition. Journal of Artificial
Intelligence Research , –.

Gordon, G. J. (). Stable function approximation in dynamic
programming (Technical report CMU-CS--). School of
Computer Science, Carnegie Mellon University.

Guestrin, C., et al. (). Efficient solution algorithms for fac-
tored MDPs. Journal of Artificial Intelligence Research, ,
–.

Hansen, E. A., & Zilberstein, S. (). Heuristic search in
cyclic AND/OR graphs. Proceedings of the Fifteenth National
Conference on Artificial Intelligence. http://rbr.cs.umass.edu/
shlomo/papers/HZaaai.html

Howard, R. A. (). Dynamic programming and Markov processes.
Cambridge: MIT Press.

Kocsis, L., & Szepesvári, C. (). Bandit based Monte-Carlo plan-
ning. European Conference on Machine Learning (ECML).
Lecture Notes in Computer Science , Springer, pp.
–.

Moore, A. W., & Atkeson, C. G. (). Prioritized sweeping: rein-
forcement learning with less data and less real time. Machine
Learning, , –.

Moore, A. W., Baird, L., & Pack Kaelbling, L. (). Multi-value-
functions: efficient automatic action hierarchies for multiple
goal MDPs. International Joint Conference on Artificial Intelli-
gence (IJCAI).

Munos, R., & Moore, A. W. (). Variable resolution discretization
in optimal control. Machine Learning, , –.

Puterman, M. L. (). Markov decision processes: discrete
stochastic dynamic programming. Wiley series in probability
and mathematical statistics. Applied probability and statistics
section. New York: Wiley. ISBN: ---.

St-Aubin, R., Hoey, J., & Boutilier, C. (). APRICODD: approxi-
mate policy construction using decision diagrams. NIPS-.

Sutton, R. S., Precup, D., & Singh, S. (). Intra-option learning
about temporally abstract actions. Machine Learning: Proceed-
ings of the Fifteenth International Conference (ICML), Morgan
Kaufmann, Madison, pp. –.

Tsitsiklis, J. N., & Van Roy, B. (). An analysis of temporal-
difference learning with function approximation. IEEE Trans-
actions on Automatic Control, (), –.

Markov Model

7Markov Process

Markov Net

7Markov Network

Markov Network

Synonyms
Markov net; Markov random �eld

Definition
A Markov network is a form of undirected 7graphical
model for representing multivariate probability
distributions.

Cross References
7Graphical Models

Markov Process

Synonyms
Markov chain; Markov model

A stochastic process in which the conditional probabil-
ity distribution of future states of the process, given the
present state and all past states, depends only upon the
present state. A process with this propertymay be called
Markovian. �e best known Markovian processes are
Markov chains, also known as Markov Models, which
are discrete-time series of states with transition proba-
bilities. Markov chains are named a�er Andrey Markov
(–), who introduced several signi�cant new
notions to the concept of stochastic processes. Brown-
ianmotion is another well-known phenomenon that, to
close approximation, is a Markov process.

Recommended Reading
Meyn, S. P., & Tweedie, R. L. (). Markov chains and stochastic

stability. Springer-Verlag, London

Maximum Entropy Models for Natural Language Processing M

M

Markov Random Field

7Markov Network

Markovian Decision Rule

Synonyms
Randomized decision rule

Definition
In a7Markov decision process, a decision rule, dt , deter-
mines what action to take, based on the history to date
at a given decision epoch and for any possible state. It is
deterministic if it selects a single member of A(s) with
probability for each s ∈ S and for a given ht , and it
is randomized if it selects a member of A(s) at random
with probability qdt(ht)(a). It isMarkovian if it depends
on ht only through st .�at is, dt(ht) = dt(st).

Maxent Models

7Maximum Entropy Models for Natural Language
Processing

Maximum Entropy Models for
Natural Language Processing

Adwait Ratnaparkhi
Yahoo! Labs, Santa Clara
California, USA

Synonyms
Log-linear models; Maxent models; Statistical natural
language processing

Definition
�e term maximum entropy refers to an optimization
framework in which the goal is to �nd the probability
model that maximizes entropy over the set of models
that are consistent with the observed evidence.

�e information-theoretic notion of entropy is a
way to quantify the uncertainty of a probability model;

higher entropy corresponds to more uncertainty in the
probability distribution.�e rationale for choosing the
maximum entropy model – from the set of models that
meet the evidence – is that any other model assumes
evidence that has not been observed (Jaynes,).
In most natural language processing problems,

observed evidence takes the form of co-occurrence
counts between some prediction of interest and some
linguistic context of interest.�ese counts are derived
from a large number of linguistically annotated exam-
ples, known as a corpus. For example, the frequency in
a large corpus with which the word that co-occurs with
the tag corresponding to determiner, or DET, is a piece
of observed evidence. A probability model is consistent
with the observed evidence if its calculated estimates
of the co-occurrence counts agree with the observed
counts in the corpus.

�e goal of the maximum entropy framework is to
�nd a model that is consistent with the co-occurrence
counts, but is otherwise maximally uncertain. It pro-
vides a way to combine many pieces of evidence into
a single probability model. An iterative parameter esti-
mation procedure is usually necessary to �nd the max-
imum entropy probability model.

Motivation and Background
�e early s saw a resurgence in the use of statisti-
cal methods for natural language processing (Church &
Mercer,). In particular, the IBM TJ Watson
Research Center was a prominent advocate in this �eld
for statistical methods such as the maximum entropy
framework. Language modeling for speech recognition
(Lau, Rosenfeld, & Roukos,) and machine trans-
lation (Berger, Della Pietra, & Della Pietra,) were
among the early applications of this framework.

Structure of Learning System
�e goal of a typical natural language processing appli-
cation is to automatically produce linguistically moti-
vated categories or structures over freely occurring text.
In statistically based approaches, it is convenient to pro-
duce the categorieswith a conditional probabilitymodel
p such that p(a∣b) is the probability of seeing a pre-
diction of interest a (e.g., a part-of-speech tag) given a
linguistic context of interest b (e.g., a word).

 M Maximum Entropy Models for Natural Language Processing

�e maximum entropy framework discussed here
follows the machine learning approach to NLP, which
assumes the existence of a large corpus of linguistically
annotated examples. �is annotated corpus is used to
create a training set, which in turn is used to estimate
the probability model p.

Representing Evidence

Evidence for the maximum entropy model is derived
from the training set. �e training set is a list of
(prediction, linguistic context) pairs that are generated
from the annotated data. However, in practice, we do
not record the entire linguistic context. Instead, lin-
guistically motivated Boolean-valued questions reduce
the entire linguistic context to a vector of question
identi�ers. �erefore, each training sample looks like:

Prediction Question vector

a q . . . qn
where a is the prediction and where q . . . qn is a vector
of questions that answered true for the linguistic context
corresponding to this training sample. �e questions
must be designed by the experimenter in advance, and
are speci�cally designed for the annotated data and the
problem space.
In the framework discussed here, any piece of evi-

dence is represented with a feature. A feature fj corre-
lates a prediction awith an aspect of a linguistic context
b, captured by some question:

fj(a, b) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 if a = x and q(b) =true

 otherwise

Combining the Evidence

�e maximum entropy framework provides a way to
combine all the features into a probability model. In
the conditional maximum entropy formulation (Berger
et al.,), the desired model p∗ is given by:

P = {p∣Epfj = Ep̃fj, j = . . . k}, ()

H(p) = −∑
a,b
p̃(b)p(a∣b) log p(a∣b),

p∗ = argmaxp∈PH(p),

where H(p) is the conditional entropy of p, p̃(b) is the
observed probability of the linguistic context b in the

training set, andP is the set ofmodels that are consistent
with the observed data. Amodel p is consistent if its own
feature expectation Epfj is equal to the observed feature
expectation Ep̃fj, for all j = . . . k features. Ep̃fj can be
interpreted as the observed count of fj in the training
sample, normalized by the training sample size. Both are
de�ned as follows:

Epfj =∑
a,b
p̃(b)p(a∣b)fj(a, b),

Ep̃fj =∑
a,b
p̃(a, b)fj(a, b).

According to themaximum entropy framework, the
optimal model p∗ is the most uncertain model among
those that satisfy the feature constraints. It is possible to
show that the form of the optimal model must be log-
linear:

p∗(a∣b) =

Z(b)
∏
j=. . .k

α
fj(a, b)
j , ()

Z(b) =∑
a′
∏
j=. . .k

α
fj(a′ , b)
j .

Here Z(b) is a normalization factor, and αj > . Each
model parameter αj can be viewed as the “strength” of
its corresponding feature fj; the conditional probability
is the normalized product of the feature weights of the
active features.

Relationship to Maximum Likelihood

�e maximum entropy framework described here has
an alternate interpretation under the more commonly
used technique of maximum likelihood estimation.

Q =

⎧⎪⎪
⎨
⎪⎪⎩

p∣p(a∣b) =

Z(b)
∏
j=. . .k

α
fj(a,b)
j

⎫⎪⎪
⎬
⎪⎪⎭

,

L(p) =∑
a,b
p̃(a, b) log p(a∣b),

q∗ = argmaxp∈QL(p).

Here Q is the set of models of form (), p̃(a, b) is
the observed probability of prediction a together with
linguistic context b, L(p) is the log-likelihood of the
training set, and q∗ is the maximum likelihood model.
It can be shown that p∗ = q∗; maximum likelihood esti-
mation for models of the form () gives the same
answer as maximum entropy estimation over the con-
straints on feature counts (). �e di�erence between

Maximum Entropy Models for Natural Language Processing M

M

approaches is that the maximum likelihood approach
assumes the form of the model, whereas the maximum
entropy approach assumes the constraints on feature
expectations, and derives the models form.

Parameter Estimation

�e Generalized Iterative Scaling (GIS) algorithm
(Darroch & Ratcli�,) is the easiest way to esti-
mate the parameters for this kind ofmodel.�e iterative
updates are given below:

α
()
j = ,

α
(n)
j = α

(n−)
j [

Ep̃fj

Epfj
]

C

.

GIS requires the use of a “correction” feature g and con-
stant C > , which are de�ned so that g(a, b) = C −

∑j=. . .k fj(a, b) for any (a, b) pair in the training set.
Normally, the correction feature gmust be trained in the
model along with the k original features, although Cur-
ran and Clark () show that GIS can converge even
without the correction feature. �e number of itera-
tions needed to achieve convergence depends on certain
aspects of the data, such as the training sample size
and the feature set size, and is typically tuned for the
problem at hand.
Other algorithms for parameter estimation include

the Improved Iterative Scaling (Berger et al.,) algo-
rithm and the Sequential Conditional GIS (Goodman,
) algorithm. �e list given here is not complete;
many other numerical algorithms can be applied to
maximum entropy parameter estimation, see (Malouf,
) for a comparison.
It is usually di�cult to assess the reliability of fea-

tures that occur infrequently in the training set, espe-
cially those that occur only once. When the parameters
are trained from low frequency feature counts, maxi-
mum entropy models – as well as many other statistical
learning techniques – have a tendency to “over�t” the
training data. In this case, performance on training data
appears very high, but performance on the intended test
data usually su�ers. Smoothing algorithms are designed
to alleviate this problem for statistical models; some
smoothing techniques for maximum entropy models
are reviewed in (Chen & Rosenfeld,).

Applications
�is framework has been used as a generic machine
learning toolkit for many problems in natural language

processing. Like other generic machine learning tech-
niques, the core of the maximum entropy framework
is invariant across di�erent problem spaces. However,
some information is speci�c to each problem space:

. Predictions:�e space of predictions for thismodel.
. Questions:�e space of questions for this model.
. Feature Selection: Any possible (question, predic-
tion) pair can be used as a feature. In complex mod-
els, only a small subset of all the possible features
are used in a model.�e feature selection strategy
speci�es how to choose the subset.

For a given application, it su�ces to give the above
three pieces of information to fully specify a maximum
entropy probability model.

Part-of-Speech Tagging

Part-of-speech tagging is a well-known task in compu-
tational linguistics in which the goal is to disambiguate
the part-of-speech of all the words in a given sentence.
For example, it can be non trivial for a computer to dis-
ambiguate the part-of-speech of the word �ies in the
following famous examples:

● Fruit �ies like a banana
● Time �ies like an arrow

�e word �ies behaves like a noun in the �rst case, and
like a verb in the second case. In the machine learn-
ing approach to this problem, co-occurrence statistics
of tags and words in the linguistic context are used to
create a predictive model for part-of-speech tags.

�e computational linguistics community has cre-
ated annotated corpora to help build and test algorithms
for tagging. One such corpus, known as the Penn tree-
bank (Marcus, Santorini, & Marcinkiewicz,), has
been used extensively by machine learning and statisti-
cal NLP practitioners for problems like tagging. In this
corpus, roughly M words from the Wall Street Journal
have manually been assigned part-of-speech tags.�is
corpus can be converted into a set of training samples,
which in turn can be used to train a maximum entropy
model.

Model Specification For tagging, the goal is amaximum
entropy model p that will produce a probability of see-
ing a tag at position i, given the linguistic context of

 M Maximum Entropy Models for Natural Language Processing

the ith word, the surrounding words, and the previ-
ously predicted tags, written as p(ti∣ti− . . . t,w . . .wn).
�e intent is to use the model le�-to-right, one word
at a time. �e maximum entropy model for tagging
(Ratnaparkhi,) is speci�ed as:

. Predictions:�e part-of-speech tags of the Penn
treebank

. Questions: Listed below are the questions and ques-
tion patterns. A question pattern has a placeholder
variable (e.g., X,Y) that is instantiated by scanning
the annotated corpus for examples in which the pat-
terns match. Let i denote the position of the current
word in the sentence, and let wi and ti denote the
word and tag at position i, respectively.
● Does wi = X?
● Does wi− = X?
● Does wi− = X?
● Does wi+ = X?
● Does wi+ = X?
● Does ti− = X?
● Does ti−ti− = X,Y?
● For words that occur fewer than times in the
training set:
– Are the �rstK (forK ≤) charactersX . . .XK?
– Are the lastK (forK ≤) charactersX . . .XK?
– Does the current word contain a number?
– Does the current word contain a hyphen?
– Does the current word contain an uppercase
character?

. Feature Selection: Any (question, prediction) pair
whose count in the training data is ≥ is retained
as a feature.

While the features for each probability decision could
in theory look at the entire linguistic context, they actu-
ally only look at a small window of words surround-
ing the current word, and a small window of tags to
the le�. �erefore each decision e�ectively makes the
Markov-like assumption given in ().

p(ti∣ti− . . . t,w . . .wn)

= p(ti∣ti−ti−wi−wi−wiwi+wi+) ()

=
∏j=. . .k α

fj(ti ,ti− ti−wi−wi−wiwi+wi+)
j

Z(ti−ti−wi−wi−wiwi+wi+)
()

Equation () is the maximum entropy model for tag-
ging. Each conditional probability of a prediction ti
given some context ti−ti−wi−wi−wiwi+wi+ is the
product of the features that are active for that (predic-
tion, context) pair.

Training Data �e training set is created by applying the
questions to each word in the training set. For example,
when scanning the word �ies in the sentence “Time �ies
like an arrow” the training example would be:

Prediction Question vector

verb wi = �ies,wi− = Time,wi− = *bd*,

wi+ = like,wi+ = an,

ti− = noun, ti−ti− = noun, *bd*
Here *bd* is a special symbol for boundary. �e tags
have been simpli�ed for this example; the actual tags in
the Penn treebank are more �ne-grained than noun and
verb.
Hundreds of thousands of training samples are used

to create candidate features. Any possible (prediction,
question) pair that occurs in training data is a candi-
date feature. �e feature selection strategy is a way to
eliminate unreliable or noisy features from the candi-
date set. For the part-of-speech model described here, a
simple frequency threshold is used to implement feature
selection.
Given a selected feature set, the GIS algorithm is

then used to �nd the optimal value for the correspond-
ing αj parameters. For this application, roughly iter-
ations of GIS su�ced to achieve convergence.

Search for Best Sequence �e probability model
described thus far will produce a distribution over tags,
given a linguistic context including and surrounding
the current word. In practice we need to tag entire
sentences, which means that the model must produce
a sequence of tags. Tagging is typically performed
le�-to-right, so that each decision has the le� context
of previously predicted tags.�e probability of the best
tag sequence for an n-word sentence is factored as:

p(t . . . tn∣w . . .wn)

= ∏
i=. . .n

p(ti∣ti−ti−wi−wi−wiwi+wi+).

McDiarmid’s Inequality M

M

�e desired tag sequence is the one with the highest
conditional sequence probability:

t∗ . . . t
∗
n = argt . . .tnmaxp(t . . . tn∣w . . .wn).

A dynamic programming procedure known as the
Viterbi algorithm is typically used to �nd the highest
probability sequence.

Other NLP Applications

Other NLP applications have used maximum entropy
models to predict a wide variety of linguistic struc-
ture.�e statistical parser in (Ratnaparkhi,) uses
separate maximum entropy models for part-of-speech,
chunk, and parse structure prediction. �e system in
(Borthwick,) uses maximum entropy models for
named entity detection, while the system in (Itty-
cheriah, Franz, Zhu, & Ratnaparkhi,) uses them as
sub-components for both answer type prediction and
named entity detection. Typically, such applications do
not need to change the core framework, but instead
need to modify the meaning of the predictions, ques-
tions, and feature selection to suit the intended task of
the application.

Future Directions
Conditional random �elds (La�erty, McCallum, &
Pereira,), or CRFs, are an alternative to maximum
entropy models that address the label bias issue. Label
bias a�ects sequence models that predict one element
at a time, in which features at a given state (or word, in
the case of POS tagging) compete with each other, but
do not compete with features at any other state in the
sequence. In contrast, a CRF model has a single model
for the probability of the entire sequence, and therefore
allows global competition of features across the entire
sequence. Parameter estimation for CRFs is related to
the GIS algorithm used for maximum entropy models.
See Sha&Pereira () for an example of CRFs applied
to noun phrase chunking.

Recommended Reading
Berger, A. L., Della Pietra, S. A., & Della Pietra, V. J. (). A

maximum entropy approach to natural language processing.
Computational Linguistics, (), –.

Borthwick, A. (). A maximum entropy approach to named entity
recognition. Unpublished doctoral dissertation, New York Uni-
versity.

Chen, S., & Rosenfeld, R. (). A Gaussian prior for smooth-
ing maximum entropy models (Tech. Rep. No. CMUCS--).
Carnegie Mellon University.

Church, K. W., & Mercer, R. L. (). Introduction to the spe-
cial issue on computational linguistics using large corpora.
Computational Linguistics, (), –.

Curran, J., & Clark, S. (). Investigating GIS and smoothing for
maximum entropy taggers. In Proceedings of the th annual
meeting of the european chapter of the association for compu-

tational linguistics (EACL’) (pp. –). Budapest, Hungary.
Darroch, J., & Ratcliff, D. (). Generalized iterative scaling

for log-linear models. The Annals of Statistics, (), –
.

Goodman, J. (). Sequential conditional generalized iterative
scaling. In Proceedings of the Association for Computational
Linguistics (ACL) (pp. –). Philadelphia, Pennsylvania.

Ittycheriah, A., Franz, M., Zhu, W., & Ratnaparkhi, A. (). Ques-
tion answering using maximum-entropy components. In Pro-
ceedings of the North American association for computational

linguistics. (NAACL), Pittsburgh, Pennsylvania.
Jaynes, E. T. (, May). Information theory and statistical mechan-

ics. Physical Review, (), –.
Lafferty, J., McCallum, A., & Pereira, F. (). Conditional ran-

dom fields: Probabilistic models for segmenting and label-
ing sequence data. In Proceedings th international conference
on machine learning (pp. –). San Francisco: Morgan
Kaufmann.

Lau, R., Rosenfeld, R., & Roukos, S. (). Adaptive language mod-
eling using the maximum entropy principle. In Proceedings of
the ARPA Human Language Technology Workshop (pp. –).
San Francisco: Morgan Kaufmann.

Malouf, R. (). A comparison of algorithms for maximum
entropy parameter estimation. In Sixth conference on natural
language learning (CoNLL) (pp. –). Taipei, Taiwan.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (). Build-
ing a large annotated corpus of english: “The Penn Treebank”.
Computational Linguistics, (), -.

Ratnaparkhi, A. (). A maximum entropy model for part-of-
speech tagging. In E. Brill & K. Church (Eds.), Proceedings of
the conference on empirical methods in natural language process-

ing (pp. –). Somerset, NJ: Association for Computational
Linguistics.

Ratnaparkhi, A. (). Learning to parse natural language with
maximum entropy models. Machine Learning, (–), –.

Sha, F., & Pereira, F. (). Shallow parsing with conditional ran-
dom fields. In Proceedings of the human language technology
conference (HLT-NAACL) (pp. –). Edmonton, Canada.

McDiarmid’s Inequality

Synonyms
Bounded di�erences inequality

Definition
McDiarmid’s inequality shows how the values of a
bounded function of independent random variables

 M MCMC

concentrate about its mean. Speci�cally, suppose f :
X n → R satis�es the bounded di�erences property.�at
is, for all i = , . . . ,n there is a ci ≥ such that for all
x, . . . , xn, x′ ∈ X

∣ f (x, . . . , xn) − f (x, . . . , xi−, x′, xi+, . . . , xn)∣ ≤ ci.

If X = (X, . . . ,Xn) ∈ X n is a random variable drawn
according to Pn and µ = EPn[f (X)] then for all є >

Pn (f (X) − µ ≥ є) ≤ exp(
є

∑
n
i= c

i

) .

McDiarmid’s is a generalization of Hoe�ding’s inequal-
ity, which can be obtained by assuming X = [a, b]
and choosing f (X) = ∑ni= Xi. When applied to empir-
ical risks this inequality forms the basis of many
7generalization bounds.

MCMC

7Markov Chain Monte Carlo

MDL

7Minimum Description Length Principle

Mean Absolute Deviation

7Mean Absolute Error

Mean Absolute Error

Synonyms
Absolute error loss; Mean absolute deviation; Mean
error

Definition
Mean Absolute Error is a 7model evaluation metric
used with7regressionmodels.�emean absolute error
of a model with respect to a 7test set is the mean of
the absolute values of the individual prediction errors
on over all7instances in the7test set. Each prediction

error is the di�erence between the true value and the
predicted value for the instance.

mae =
∑
n
i= abs (yi − λ(xi))

n

where yi is the true target value for test instance xi, λ(xi)
is the predicted target value for test instance xi, and n is
the number of test instances.

Cross References
7Mean Squared Error

Mean Error

7Mean Absolute Error

Mean Shift

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Mean shi� (Comaniciu &Meer,) is a nonparamet-
ric algorithm for7partitional clusteringwhich does not
require specifying the number of clusters, and can form
any shape of clusters.
Given n data points xi, i= , . . . ,n, in the d-dimens-

ional spaceRd, themultivariate kernel density estimator
obtainedwith kernelK(x) andwindow radius h is given
by

f (x) =

nhd

n

∑
i=
K (
x − xi

h
). ()

Given the gradient of the density estimator, themean
shi� is de�ned as the di�erence between the weighted
(using the kernel as weights) mean and x, the center of
the kernel,

mh(x) =

∑
n
i= xig(∣∣

x−xi
h

∣∣

)

∑
n
i= g(∣∣

x−xi
h

∣∣

)

− x. ()

�emean shi� vector is proportional to the normal-
ized density gradient estimate, and thus points to the

Measurement Scales M

M

direction of the maximum increase in the density. By
successively computing themean shi� vector and trans-
lating the kernel (window) by the vector, the mean shi�
procedure can guarantee converging at a nearby point
where the gradient of density function is zero.

Recommended Reading
Comaniciu, D., & Meer, P. (). Mean shift: A robust approach

toward feature space analysis. IEEE Transactions of the Pattern
Analysis and Machine Intelligence, (), –.

Mean Squared Error

Synonyms
Quadratic loss; Squared error loss

Definition
Mean Squared Error is a 7model evaluation metric
o�en used with7regressionmodels.�e mean squared
error of a model with respect to a 7test set is the mean
of the squared prediction errors over all 7instances
in the 7test set.�e prediction error is the di�erence
between the true value and the predicted value for an
instance.

mse =
∑
n
i= (yi − λ(xi))

n

where yi is the true target value for test instance xi, λ(xi)
is the predicted target value for test instance xi, and n is
the number of test instances.

Cross References
7Mean Absolute Error

Measurement Scales

Ying Yang
Australian Taxation O�ce, Box Hill, Australia

Definition
Turning to the authority of introductory statistical text-
books (Bluman, ; Samuels & Witmer,), there
are two parallel ways to classify data into di�erent
types. Data can be classi�ed into either 7categorical
or 7numeric. Data can also be classi�ed into di�erent
levels of7measurement scales.

�ere are two parallel ways to classify data into dif-
ferent types. Data can be classi�ed into either categori-
cal or numeric. Data can also be classi�ed into di�erent
levels of measurement scales.

Categorical versus Numeric
Variables can be classi�ed as either categorical or
numeric. Categorical variables, also o�en referred to
as qualitative variables, are variables that can be placed
into distinct categories according to some character-
istics. Categorical variables sometimes can be arrayed
in a meaningful rank order. But no arithmetic opera-
tions can be applied to them. Examples of categorical
variables are

● Gender of a �sh: male and female
● Student evaluation: fail, pass, good, and excellent

Numeric variables, also o�en referred to as quantitative
variables, are numerical in nature.�ey can be ranked in
order.�ey can also have meaningful arithmetic oper-
ations. Numeric variables can be further classi�ed into
two groups, discrete or continuous.
A discrete variable assumes values that can be

counted.�e variable cannot assume all values on the
number line within its value range. An example of a
discrete variable is the number of children in a family.
A continuous variable can assume all values on the

number line within the value range. �e values are
obtained by measuring. An example of a continuous
variable is Fahrenheit temperature.

Levels of Measurement Scales
In addition to being classi�ed as either categorical or
numeric, variables can also be classi�ed by how they
are categorized, counted, or measured. �is type of
classi�cation uses measurement scales, and four com-
mon types of scales are used: nominal, ordinal, interval,
and ratio.

�e nominal level of measurement scales classi�es
data into mutually exclusive (nonoverlapping), exhaus-
tive categories in which no order or ranking can be
imposed on the data. An example of a nominal variable
is gender of a �sh: male and female.

�e ordinal level of measurement scales classi�es
data into categories that can be ranked. However, the
di�erences between the ranks cannot be calculated by
arithmetic. An example of an ordinal variable is student

 M Medicine: Applications of Machine Learning

evaluation, with values fail, pass, good, and excellent. It
is meaningful to say that the student evaluation of pass
ranks is higher than that of fail. It is not meaningful in
the same way to say that the gender female ranks higher
than the gender male.

�e interval level of measurement scales ranks the
data, and the di�erences between units of measure can
be calculated by arithmetic. However, zero in the inter-
val level of measurementmeans neither “nil” nor “noth-
ing” as zero in arithmetic means. An example of an
interval variable is Fahrenheit temperature. It is mean-
ingful to say that the temperature A is two points higher
than the temperature B. It is not meaningful in the same
way to say that the student evaluation of pass is two
points higher than that of fail. Besides, ○F does not
mean the absence of heat.

�e ratio level of measurement scales possesses all
the characteristics of interval measurement, and there
exists a zero that, the same as arithmetic zero, means
“nil” or “nothing.” In consequence, true ratios exist
between di�erent units of measure. An example of a
ratio variable is number of children in a family. It is
meaningful to say that the number of children in the
familyA is twice that of the family B. It is notmeaningful
in the same way to say that the Fahrenheit temperature
A is twice that of B.

�e nominal level is the lowest level of measure-
ment scales. It is the least powerful in terms of including
data information.�e ordinal level is higher.�e inter-
val level is even higher. �e ratio level is the high-
est level. Any data conversion from a higher level of
measurement scales to a lower level of measurement
scales, such as 7discretization, will lose information.
Table gives a summary of the characteristics of di�er-
ent levels of measurement scales.

Measurement Scales. Table Characteristics of

different levels of measurement scales

Level Ranking?
Arithmetic
Operation?

Arithmetic
Zero?

Nominal No No No

Ordinal Yes No No

Interval Yes Yes No

Ratio Yes Yes Yes

Summary
In summary, the following taxonomy applies to variable
types:

● Categorical (qualitative) variables:
Nominal
Ordinal

● Numeric (quantitative) variables:
Interval, either discrete or continuous
Ratio, either discrete or continuous

Recommended Reading
Bluman, A. G. (). Elementary statistics: A step by step approach.

Wm. C. Brown Publishers Dubuque, Iowa, USA.
Samuels, M. L. & Witmer, J. A. (). Statistics for the life sciences

(nd ed.). Upper Saddle River, NJ: Prentice-Hall Publishers,
USA.

Medicine: Applications of Machine
Learning

KatharinaMorik
Technische Universität Dortmund, Dortmund,
Germany

Motivation
Health care has been an important issue in computer
science since the s. In addition to databases stor-
ing patient records, library resources (e.g., PubMed, a
service of the U.S. National Library of Medicine that
includes over million citations from journals for
biomedical articles back to the s), administrative
and �nancial systems, more sophisticated support of
health care has been the aim of arti�cial intelligence
(AI) from the very beginning on. Starting with expert
systems which abstract laboratory �ndings and other
vital parameters of a patient before they heuristically
classify the patient into one of the modeled diagnoses
(Shortli�e,), knowledge acquisition was discov-
ered to be the bottleneck of systems for the automatic
medical diagnosis. Machine learning came into play as
a means of knowledge acquisition. Learning rules for
(medical) expert systems focused on the heuristic classi-
�cation step within expert systems. Given conveniently
abstracted measurements of the patient’s state, the clas-
si�cation was learned in terms of rules or 7decision

Medicine: Applications of Machine Learning M

M

trees. Since the early days, the use of machine learning
for health care progressed in two ways:

● �e abstraction of measurements of a patient’s vital
parameters is a learning task in its own right. Diverse
kinds of data are to be handled: laboratory data,
online measurements at the bedside, x-rays or other
imaging data, genetic data,... Machine learning is
confronted with a diversity of representations for the
examples.

● Diagnosis is just one task in which physicians are
to be supported.�ere are many more tasks which
machine learning can ease. In intensive care, the
addressee of the learning results can be a machine,
e.g., the respirator. Financing health care and plan-
ning the medical resources (e.g., for a predicted epi-
demia) are yet another important issue. Machine
learning is placed in a diversity of medical tasks.

�e urgent need for sophisticated support of health
care follows from reports which estimate up to ,
deaths in theUSAeach year due tomedical error (Kohn,
Corrigan, & Donaldson,).

Structure of the Problem
�e overall picture of the medical procedures shows the
kinds of data and how they are entered into the database
of health records (a synonym is “patient database.”)
A monitoring system is given in intensive care units,
which acquires 7time series from minute measure-
ments. �e observations at the bedside are entered
manually into the system. �e information from the
hospital is entered via a local area network.�e physi-
cian accesses information from libraries and research
databases (dashed lines). Libraries, research databases,
and biomedical research also in�uence the develop-
ment of guidelines, protocols, and clinical pathways
(dotted lines). Guidelines are rather abstract. Proto-
cols of certain actions are integrated to become a clin-
ical pathway which is a plan of both diagnostic and
therapeutical actions for a typical patient with a spe-
ci�c diagnosis. �e bold arrow shows the intended
high-quality therapy. Guidelines and protocols promote
evidence-based practices, reduce inter-clinician prac-
tice variations and support decision-making in patient
care while constraining the costs of care. Computer-
ized protocols can be generated based on guidelines.
�ey have been proved useful in improving the quality

and consistency of healthcare but the protocol develop-
ment process is time-consuming (Ten Teije, Lucas, &
Miksch,). �is is where machine learning o�ers
support. Usually, ontologies (e.g., in description logic)
or other knowledge-based techniques (in medicine-
speci�c formats like the Arden Syntax, GuideLine Inter-
change Format (GLIF), PROforma, Asbru, and EON)
are used to support the development of protocols
(de Clercq, Blomb, Korstenb, & Hasman,). By
contrast, machine learning induces the current prac-
tices and their outcome from the health records (Smith,
Doctor, Meyer, Kalet & Philips,). To re�ect such
use of Machine Learning, the bold arrows of the picture
would need to be turned the other way around, proto-
cols are learned from the data or evaluated based on the
data. All (reversed) arrows mark possible applications
of machine learning.

Diversity of Representations
�e overall health record of a patient includes several
types of data, not all of them are digital.

● Laboratory data consist of attributes almost always
with numerical values, sometimes with discrete
ordinal values, sometimes just binary values like
“positive,” “negative.”

● Plain text states anamneses, diagnosis, and observa-
tions. From the text, key words can be transformed
into attributes for machine learning.

● Online measurements at the bedside are time series.
�ey are analyzed in order to �nd level changes
or trends (Gather, Schettlinger, & Fried,) and
alarm the physician (Sieben & Gather,). In
order to exploit the time series for further learn-
ing tasks, they o�en are abstracted (e.g., Bellazzi,
Larizza, Magni, & Bellazi ()). Recently, online
measurements from body sensors have raised atten-
tion in the context of monitoring patients at home
(Am� & Tröster,).

● Sequences can also be considered time series, but the
measurements are not equidistant and not restricted
to numerical values. Examples are data gathered at
doctors’ visits and long-term patient observations.

● X-rays or other imaging data (e.g., ultrasound imag-
ing ormore novelmolecular imaging techniques like
positron emission tomography, magnetic resonance
imaging, or computer tomography) cannot be

 M Medicine: Applications of Machine Learning

Therapeutical interventions

Health records,
patient database

Respirator, heart assistance, ...
Vital signs

Monitor

NALtupni launaM
Nursing procedures
Plan of care
Medication
Intake
Output

X-Rays
microbiology
laboratory
blood bank
pharmacy
administration

Regional, national
registries

Research databases

Library resources

Guidelines, protocols, clinical pathways

Biomedical
research

analyzed directly by machine learning algorithms.
�ey require the extraction of features. It has been
shown that the adequate extraction of features is
more important than the selection of the best
suited learning algorithm (Mavroforakis, Georgiou,
Dimitropoulos, Cavouras, & �eodoridis,).
�e number of extracted features can become quite
large. For instance, from , images of skin lesion,
each × pixels, features were extracted
in order to detect melanoma using diverse learn-
ing algorithms (Dreiseitl et al.,). Hence, feature
selection is also an important task in medical appli-
cations (Lucaces, Taboada, Albaiceta, Domingues,
Enriques&Bahamonde, ;Withayachumnankul
et al.,). O�en, di�erent techniques are applied
to gather data for the detection of the same dis-
ease. For instance, glaucoma detection uses stan-
dard automated perimetry or scanning laser or
Heidelberg Retina Tomograph or stratus optical
coherence tomography. It is not yet clear how impor-
tant the choice among measurement types (devices)
is with respect to feature extraction and machine
learning.

● Tissue and blood: In vitro “data” also belong to
health records. Immediately a�er biopsy or surgery,
the tissue is transferred to the pathology depart-
ment. A�er the pathologist has taken the sample

needed for proper diagnosis, a representative tis-
sue sample will be snap frozen and stored in liq-
uid nitrogen or at −○C. Also blood cells are
stored in a blood bank. From the specimen, the
RNA is extracted and the so-called microarrays of
gene expressions are developed and then scaled.�e
huge prognostic value of gene expression in patients
with breast cancer has been shown by van’t Veer
et al. (). Genome research aims at revealing the
impact of gene regulation and protein expression-
regulation (taking into account the regulation of
protein synthesis, protein ubiquitination, and post-
translational modi�cation) on, e.g., cancer diagnosis
and response to therapies. Machine learning, par-
ticularly clustering, frequent itemset mining, and
classi�cation have been applied successfully (see
7learning from gene expression microarray data).

In addition to patient records, there are knowledge
bases describing particular diseases or computerized
protocols for particular therapies.

Medical Tasks
Diagnosis and Medication

Diagnosis is primarily a classi�cation task. Given the
description of the patient’s state and a set of dis-
eases, the learning algorithm outputs the classi�cation

Medicine: Applications of Machine Learning M

M

into one of the classes. If physicians want to inspect
the learned classi�er, logic-based algorithms are pre-
ferred. Decision trees and the conceptual clustering
algorithmAQwere used to diagnose breast cancer from
nine abstracted descriptions like tumor size: −,
− ,⋯, − , − (Cestnik, Kononenko,&Bratko,
; Michalski, Mozetic, Hong, & Lavrac,).

7Bayesian methods were used to classify, e.g.,
diseases of the lymph node. Based on the examina-
tion of the extracted tissue, a pathologist enters the
description. �e Bayesian network (BN) outputs not
only just one diagnosis, but the conditional probabili-
ties for the diseases (Heckerman,). In particular,
diagnosis for rather vague symptoms such as abdomi-
nal pain or lower back pain is well supported by BNs
(McNaught, Cli�ord, Vaughn, Foggs, & Foy,). BNs
are capable of incorporating given expert knowledge as
priors. In order to combine textbook knowledge with
empirical data, electronic literature was transformed
into priors for BN structures.�en, fromhealth records,
the BNwas learned as amodel of ovarian tumors (Antal,
Fannes, Timmerman, Moreau, & De Moor,).

7Inductive logic programming (ILP) also allows
to take into account background knowledge.�is was
used for an enhanced learning of medical diagnos-
tic rules (Lavrac, Dzeroski, Prinat, & Krizman,).
�e identi�cation of glaucomatous eyes was e�ectively
learned by ILP (Mizoguchi,Ohwada,Daidoji, & Shirato,
). One advantage of ILP is that the learned logic
clauses can easily be integrated into a knowledge-based
system and, hence, become operational for clinical
practice.
Since some tests which deliver information about

the patient’s state can be costly – both, �nancially and in
terms of a risk for the patient –7cost-sensitive learning
may be applied.
Since the error of classifying a patient as ill where

he or she is not (false positives) is less harmful than
classifying a patient as healthy where he or she is not
(false negatives), the evaluation of the learning result
most o�en is used in a biased way.�e evaluation can
be summarized in Table .
Precision is the proportion A

A+B , and recall is the
proportion A

A+C . Sensitivity is synonymous to recall.
In medical applications, sensitivity is balanced with
respect to speci�city being the proportion B

B+D (syn-
onym false positives rate).�e analysis of the Receiver

Medicine: Applications of Machine Learning. Table

Evaluation measures

True + False −

Predicted + A B

Predicted − C D

OperatorCharacteristic (ROC) allows to evaluate learn-
ing according to sensitivity and speci�city (see 7ROC
analysis).
If not the understandability but only sensitivity

and speci�city are important, numerical learning algo-
rithms are used to classify the patient’s data. In par-
ticular, if the patient’s state is described by numerical
features, no discretization is necessary for numerical
learners as is needed for the logic-based ones. Multi-
layer perceptrons (see 7Neural Networks), 7support
vector machines (SVM), 7mixtures of Gaussians, and
mixture of generalized Gaussian classi�ers were trained
on the numerical data of normal eyes and glau-
comatous eyes (Goldbaum et al.,).�e numerical
description of the visual �eld is given by standard auto-
mated threshold perimetry.�e medical standard pro-
cedure to interpret the visual �eld is to derive global
indices.�e authors compared performance of the clas-
si�ers with these global indices, using the area under
theROCcurve. Twohuman expertswere judged against
themachine classi�ers and the global indices by plotting
their sensitivity–speci�city pairs.�e mixture of Gaus-
sian had the greatest area under the ROC curve of the
machine classi�ers, and human experts were not better
at classifying visual �elds than themachine classi�ers or
the global indices.
Other approaches to glaucoma detection use di�er-

ent features describing the patient’s state (Zangwill et al.,
) or other numerical learners, e.g.,7logistic regres-
sion (Huang, Chen, & Hung,). For testing the
learning from numerical attributes, the UCI Machine
Learning Repository o�ers the arrhythmia database.
�e aim is to distinguish between the presence and
absence of cardiac arrhythmia and to classify it in one
of the groups. About attributes are given, of
them being numerical ones.
As has been shown in an application to intensive

care, medication can be transformed into a set of classi-
�cation tasks (Morik, Imho�, Brockhausen, Joachims,

 M Medicine: Applications of Machine Learning

& Gather,). Given measurements of eight vital
signs, a decision is made for each of six drugs, whether
to increase or to decrease it. �is gives a set of clas-
si�cation tasks, which the 7SVM learned. Depending
on the drug, the accuracy ranged from .% with .
standard error to .%with standard error. Addition-
ally, on cases, the SVM decision was compared with
an expert’s decisions when confronted with the same
data. In cases the expert chose the same direction
of change as did the learned decision function. In
cases the learned decision was equal to the actual ther-
apy. Another set of classi�cation tasks were to decide
every minute whether to increase, decrease, or leave
the doses as it is. Again, each of these classi�ers was
learned by the SVM. From , examples decision func-
tions were learned and tested on examples. For
training, an unbalanced cost function was used. �e
SVM cost factor for error was chosen according to
C+
C−

=
number of negative examples

number of positive examples
.�e results again di�ered

depending on the drug. For adrenaline, % of the test
cases were equally handled by the physician and the
decision function. For adrenaline as well as for dobu-
tamine, only in .% of the test cases the learned rule
recommended the opposite direction of change. Again,
a blind test with an expert showed that the learned
recommendations’ deviation from actual therapy was
comparable to that of the human expert. Combining
the two sets of classi�cations, for each minute and each
patient, the support vector machine’s decision func-
tion outputs a recommendation of treatment (Morik,
Imho�, Brockhausen, Joachims, & Gather,).

Prognosis and Quality of Care Assessment

Prognosis or outcome prediction is important for the
evaluation of the quality of care provided.�e standard
statistical models use only a small set of covariates and
a score variable, which indicates the severity of the ill-
ness. Machine learning may also rely on the aggregated
score features, but is in addition capable of handling the
features underlying the scores. Given health records of
patients including the therapy, machine learning is to
predict the outcome of care, e.g., classi�es into mor-
tal or surviving cases.�e prediction of breast cancer
survivability has been tested on a very large database
comparing three learning methods (Delen, Walker, &
Kadam,).�e results indicated that decision trees

(here: C) result in the best predictor with .% accu-
racy on the holdout sample (this prediction accuracy
is better than any reported in the literature), arti�-
cial neural networks came out to be the second with
.% accuracy, and the 7logistic regression models
came out to be the worst of the three with .%
accuracy.
Prediction of survival is a hard task for patients with

serious stroke, because there is a long-term risk a�er
the stay at the hospital.�e scoring schemes (e.g., the
Glasgow coma scale and the Ranking score) are not suf-
�cient for predicting the outcome. In a data situation
where attributes (or features) were given for only
 patient records, BNs were learned and compared
with a handmade causal network. �e results were
encouraging – as soon asmore electronic health records
become available, the BNswill become closer tomedical
knowledge. Moreover, the discovery of relations on the
basis of empirical datamay enhancemedical knowledge
(Wu, Lucas, Kerr, & Dijkhuisen,).
Carcinogenesis prediction was performed using ILP

methods. As has become usual with cancer diagno-
sis and prognosis, there is a close link with micro-
biology (Srinivasan, Muggleton, King, & Sternberg,
)(see Learning from gene expression microarray
data).
Prognosis need not be restricted to mortality rates.

In general, it is a means of quality assessment of clini-
cal treatments. For instance, hemodialysis services have
been assessed through temporal datamining by Bellazzi
et al. ().
Finding subgroups of patients with devious reac-

tions to a therapy might lead to a better understanding
of a certain medical process (Atzmueller, Baumeister,
Hensing, Richter, & Puppe,). While the before
mentioned study aims at an enhanced expert – system
interaction, a Dutch study aims at a more precise mod-
eling of prognoses (Abu-Hanna & Lucas,). In an
extensive study for eight di�erent hospitals and ,
patients, two di�erent models were combined: one for
determining the subgroups and the other for build-
ing a model for each subgroup. For the prognoses of
patients in an intensive care unit, subgroups have been
detected using decision trees. �e decision tree was
trained to classify patients into the survival class and
the mortality class on the basis of the nonaggregated
features underlying the illness score.�e leaves of the

Medicine: Applications of Machine Learning M

M

tree become subgroups.�ese are then used for training
a logistic regression model of mortality based on the
aggregated features.

Verification and Validation

Veri�cation is the process of testing a model against a
speci�cation. In medicine, this o�en means to check
clinical practice against expert protocols, or to check
an actual diagnosis against one derived from textbook
knowledge. Since many logic-based machine learning
algorithms consist of a generalization and a specializa-
tion step, they can be used for veri�cation. Generaliza-
tion delivers rules from clinical data which can then be
compared with given expert rules (protocols). Special-
ization is triggered by facts that contradict a learning
hypothesis. Hence, using an expert rule as hypothesis,
the learning algorithm counts the contradicting clin-
ical cases and specializes the rule. For an early case
study on veri�cation and rule enhancement see, e.g.,
(Morik, Potamias, Moustakis, & Charissis,). A
more recent study compares a given clinical protocol
for intensive care with actual therapies at another hospi-
tal (Scholz,). Decision trees and association rules
have been learned in order to inspect and enhance
the knowledge base of a web-based teledermatology
system (Ou, West, Lazarescu, & Clay,). While
veri�cation means to build the system right, valida-
tion means to build the right system. �e borderline
between veri�cation and validation is fuzzy. On the
one hand, medical practice is investigated with respect
to the guidelines (veri�cation), on the other hand, the
guidelines are enhanced on the basis ofmedical practice
(validation).
Moreover, learned models can be veri�ed with

respect to expert knowledge and validated with respect
to clinical practice. A study on the hemodynamic mon-
itoring of the critically ill integrated machine learning
into a knowledge-based approach to evidence-based
medicine. A knowledge base on drug e�ects was ver-
i�ed using patient records. Only % of the observa-
tions showed vital signs of patients in the opposite
direction than predicted by the knowledge base.�en,
the knowledge base was used to validate therapeuti-
cal interventions proposed by a learned model. Accu-
racy measures of a model only re�ect how well the
learning result �ts actual behavior of the physician and

not how well it �ts the “gold standard.” Hence, a pro-
posed intervention should be validated with respect
to its e�ects on the patient. If the known e�ects push
vital signs in the direction of the desired value range,
the recommendation is considered sound, otherwise
it is rejected. Using past data, the learned model was
found to recommend an intervention with the desired
e�ects in % of the cases (Morik, Joachims, Imho�,
Brockhausen, & Rüping,).

Intelligent Search in Medical Literature

Intelligent search in the overwhelming number of
research publications supplies the information when
it is needed. ILP has been successfully put to use for
�nding relevant medical documents (Dimec, Dze-
roski, Todorovski, & Hristovski,). Also the intel-
ligent search in clinical free-text guidelines is an issue
(Moskovitch et al.,).�e techniques for text cate-
gorization can be applied to medical texts in the usual
way. If the search engine not only labels the overall doc-
ument but, in addition, phrases within it, the search
could becomemore focused and also deliver paragraphs
instead of complete texts.�e biomedical challenge for
named entity recognition requires the automatic extrac-
tion and classi�cation of words referring to DNA, RNA,
proteins, cell types, and cell lines from texts (Kim, Ohta,
Tsuruoka, Tateisi, & Collier,). Even more di�-
cult is the discovery of medical knowledge from texts
(Sanchez & Moreno,).

Epidemiology and Outbreak Detection

Understanding the transmission of infectious dis-
eases and forecasting epidemics is an important task,
since infections are distributed globally. Statistical
approaches to spatio-temporal analysis of scan data are
regularly used. �ere, a grid partitions the map into
regions where occurrences of the disease are shown
as points. “Hot spot” partitions are those of high den-
sity. By contrast, clustering detects hot spot regions
depending on the data, hence, the shape of regions
is �exible. Taking into account the a priori density of
the population, a risk-adjusted nearest neighbor hier-
archical clustering discovers “hot spot” regions. Also
a risk-adjusted support vector machine with Gaussian
kernel has successfully been applied to the problem of
detecting regions with infectious disease outbreak.�e

 M Medicine: Applications of Machine Learning

discovery of hot spot regions can be exploited for pre-
dicting virus activity, if an indicator is known which
can easily be observed. For instance, dead crows indi-
cate activity of the West Nile virus. An overview of
infectious disease informatics is given by (Zeng, Chen,
Lynch, Eidson, & Gotham,).
Machine learning can also contribute to the under-

standing of the transmission of infectious diseases.
A case study on tuberculosis epidemiology uses BNs
to identify the distribution of tuberculosis patient
attributes.�e learning results captured the known sta-
tistical relationships. A relational model learned from
the database directly using structured statistical mod-
els revealed several novel associations (Getoor, Rhee,
Koller, & Small,).

Cross References
7Class Imbalance Problem
7Classi�cation
7Classi�er Systems
7Cost-Sensitive Learning
7Decision Trees
7Feature Selection
7Inductive Logic Programming
7ROC Analysis
7Support Vector Machine
7Time Series

Recommended Reading
Abu-Hanna, A., & Lucas, P. J. F. (). Prognostic models in

medicine: AI and statistical approaches [Editorial]. Methods of
Information in Medicine, (), –.

Amft, O., & Tröster, G. (). Recognition of dietary events
using on-body sensors. Artifical Intelligence in Medicine, (),
–.

Antal, P., Fannes, G., Timmerman, D., Moreau, Y., & De Moor, B.
(). Using literature and data to learn BNs as clinical mod-
els of ovarian tumors. Artificial Intelligence in Medicine, (),
–.

Atzmueller, M., Baumeister, J., Hensing, A., Richter, E.-J., &
Puppe, F. (). Subgroup mining for interactive knowl-
edge refinement. In Artificial intelligence in medicine (AIME)
(pp. –). Berlin/Heidelberg: Springer.

Bellazzi, R., Larizza, C., Magni, P., & Bellazi, R. (). Quality
assessment of dialysis services through intelligent data analy-
sis and temporal data mining. InWorkshop at the th European
conference on AI about intelligent data analysis in medicine and

pharmacology (pp. –). Lyon, France.
Cestnik, B., Kononenko, I., & Bratko, I. (). ASSISTANT

: A knowledge-elicitation tool for sophisticated users. In
I. Bratko, & N. Lavrac (Eds.), Progress in machine learning
(pp. –). Wilmslow, GB: Sigma Press.

de Clercq, P. A., Blomb, J. A., Korstenb, H. H., & Hasman, A. ().
Approaches for creating computer-interpretable guidelines that
facilitate decision support. Artificial Intelligence in Medicine,
(), –.

Delen, D., Walker, G., & Kadam, A. (). Predicting breast can-
cer survivability: A comparison of three data mining methods.
Artificial Intelligence in Medicine, (), –.

Dimec, B., Dzeroski, S., Todorovski, L., & Hristovski, D. ().
WWW search engine for slovenian and english medi-
cal documents. In Proceedings of the th international

congress for medical informatics (pp. –). Amsterdam:
IOS Press.

Dreiseitl, S., Ohn-Machado, L., Kittler, H., Vinterbo, S.,
Billhardt, H., & Binder, M. (). A comparison of machine
learning methods for the diagnosis of pigmented skin lesions.
Journal of Biomedical Informatics, , –.

Gather, U., Schettlinger, K., & Fried, R. (). Online signal extrac-
tion by robust linear regression. Computational Statistics, (),
–.

Getoor, L., Rhee, J. T., Koller, D., & Small, P. (). Understanding
tuberculosis epidemiology using structured statistical models.
Artificial Intelligence in Medicine, (), –.

Goldbaum, M. H., Sample, P. A., Chan, K., Williams, J., Lee, T-W.,
Blumenthal, E., et al. (). Comparing machine learning
classifiers for diagnosing glaucoma from standard automated
perimetry. Investigative Ophthalmology and Visual Science, ,
–.

Heckerman, D. (). Probabilistic similarity networks. Technical
report STAN-CS-, Department of Computer Science and
Medicine at Stanford.

Huang, M. L., Chen, H. Y., & Hung, P. T. (). Analysis of glau-
coma diagnosis with automated classifiers using stratus opti-
cal coherence tomography. Optical Quantum Electronics, ,
–.

Kim, J. D., Ohta, T., Tsuruoka, Y., Tateisi, Y., & Collier, N. ().
Introduction to the bio-entity recognition task at JNLPBA. In
N. Collier, P. Ruch, & A. Nazarenko, (Eds.), Proceedings of the
international joint workshop on natural language processing in

biomedicine and its applictions (pp. –). Morristown, NJ:
ACL.

Kohn, L. T., Corrigan, J. M., & Donaldson, M. (Eds.) (). To
err is human – building a safer health system. Washington, DC:
National Academic Press.

Lavrac, N., Dzeroski, S., Prinat, V., & Krizman, V. (). The utility
of background knowledge in learning medical diagnostic rules.
Applied Artificial Intelligence, , –.

Lucaces, O., Taboada, F., Albaiceta, G., Domingues, L. A.,
Enriques, P., & Bahamonde, A. (). Predicting the probabil-
ity of survival in intensive care unit patients from a small num-
ber of variables and training examples. Artificial Intelligence in
Medicine, (), –.

Mavroforakis, M., Georgiou, H., Dimitropoulos, N., Cavouras, D., &
Theodoridis, S. (). Mammographic masses characteriza-
tion based on localized texture and dataset fractal analysis using
linear, neural and support vector machine classifiers. Artificial
Intelligence in Medicine, (), –.

McNaught, K., Clifford, S., Vaughn, M., Foggs, A., & Foy, M. ().
A Bayesian belief network for lower back pain diagnosis. In
P. Lucas, L. C. van der Gaag, & A. Abu-Hanna (Eds.),
Bayesian models in medicine – Workshop at AIME. Caseais,
Portugal.

Message M

M

Michalski, R., Mozetic, I., Hong, J., & Lavrac, N. (). The multi-
purpose incremental learning system AQ and its testing appli-
cation on three medical domains. In Proceedings of the th
national conference on artificial intelligence (pp. –). San
Mateo,CA: Morgan Kaufmann.

Mizoguchi, F., Ohwada, H., Daidoji, M., & Shirato, S. ().
Using inductive logic programming to learn classification
rules that identify glaucomatous eyes. In N. Lavrač, E. Ker-
avnou, & B. Zupan, (Eds.), Intelligent data analyis in

medicine and pharmacology (pp. –). Norwell, MA:
Kluwer.

Morik, K., Imhoff, M., Brockhausen, P., Joachims, T., & Gather, U.
(). Knowledge discovery and knowledge validation
in intensive care. Artificial Intelligence in Medicine, (),
–.

Morik, K., Joachims, T., Imhoff, M., Brockhausen, P., & Rüping, S.
(). Integrating kernel methods into a knowledge-based
approach to evidence-based medicine. In M. Schmitt, H. N.
Teodorescu, A. Jain, A. Jain, S. Jain, & L. C. Jain, (Eds.), Com-
putational intelligence processing in medical diagnosis, (Vol.)
Studies in fuzziness and soft computing, (pp. –). New York:
Physica-Verlag.

Morik, K., Potamias, G., Moustakis, V. S., & Charissis, G. ().
Knowledgeable learning using MOBAL: A medical case study.
Applied Artificial Intelligence, (), –.

Moskovitch, R., Cohen-Kashia, S., Drora, U., Levya, I., Maimona,
A., & Shahar, Y. (). Multiple hierarchical classification of
free-text clinical guidelines. Artificial Intelligence in Medicine,
(), –.

Ou, M., West, G., Lazarescu, M., & Clay, C. (). Dynamic
knowledge validation and verification for CBR teleder-
matology system. Artificial Intelligence in Medicine, (),
–.

Sanchez, D., & Moreno, A. (). Web mining techniques for auto-
matic discovery of medical knowledge. In Proceedings of the
th conference on artificial intelligence in medicine. Aberdeen,
Scotland.

Scholz, M. (). Using real world data for modeling a protocol
for ICU monitoring. In P. Lucas, L. Asker, & S. Miksch, (Eds.),
Working notes of the IDAMAP workshop, (pp. –). Lyon,
France.

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar,
R. C., et al. (). Diffuse large B-cell lymphoma outcome pre-
diction by gene-expression profiling and supervised machine
learning. Nature Medicine, (), –.

Shortliffe, E. H. (). Computer based medical consultations:
MYCIN. New York, Amsterdam: Elsevier.

Sieben, W., & Gather, U. (). Classifying alarms in inten-
sive care–analogy to hypothesis testing. In th conference on
artifical intelligence in medicine (AIME) (pp. –). Berlin:
Springer.

Smith, W. P., Doctor, J., Meyer, J., Kalet, I. J., & Philips, M. H. ().
A decision aid for intensity-modulated radiation-therapy plan
selection in prostate cancer based on a prognostic Bayesian net-
work and a Markov model. Artificial Intelligence in Medicine,
(), –.

Srinivasan, A., Muggleton, S. H., King, R. D., & Sternberg, M.
J. E. (). Carcinogenesis prediction using inductive logic
programming. In B. Zupan, E. Keravnou, & N. Lavrac (Eds.),
Intelligent data analysis in medicine and pharmacology (pp. –
). Norwell, MA: Kluwer.

Ten Teije, A., Lucas, P., & Miksch, S. (Eds.), (). Workshop on
AI techniques in healthcare: Evidence-based guidelines and pro-

tocols, held in conjunction with ECAI-. Italy.
van’t Veer, L. J., Dai, H. Y., van de Vijver, M. J., He, Y. D. D., Hart,

A. A., Mao, M., et al. (). Gene expression profiling predicts
clinical outcome of breast cancer. Nature, , –.

Withayachumnankul, W., Ferguson, B., Rainsford, T., Findlay, D.,
Mickan, S. P., & Abbott, D. (). T-ray relevant frequen-
cies for osteosarcoma classification. In D. Abbott, Y. S. Kivshar,
H. H. Rubinstein-Dunlop, & S.-H. Fan, (Eds.), Proceedings of
SPIE. Brisbane, Australia.

Wu, X., Lucas, P., Kerr, S., & Dijkhuisen, R. (). Learning
bayesian-network topologies in realistic medical domains.
In Intelligent data analysis in medicine and pharmacology.
Medical Data Analysis, (pp. –). Berlin/Heidelberg:
Springer.

Zangwill, L. M., Chan, K., Bowd, C., Hao, J., Lee, T. W.,
Weinreb, R. N., et al. (). Heidelberg retina tomograph
measurements of the optic disc and parapillary retina for
detecting glaucoma analyzed by machine learning classifiers.
Investigative Ophthalmology and Visual Science, (), –
.

Zeng, D., Chen, H., Lynch, C., Eidson, M., & Gotham, I. ().
Infectious disease informatics and outbreak detection. In
H. Chen, S. Fuller, C. Friedman, & W. Hersh, (Eds.), Med-
ical informatics: knowledge management and data mining in

biomedicine (pp. –). New York: Springer.

Memory Organization Packets

7Dynamic Memory Model

Memory-Based

7Instance-Based Learning

Memory-Based Learning

7Case-Based Reasoning

Merge-Purge

7Entity Resolution

Message

In 7Minimum Message Length inference, a binary
sequence conveying information is called a message.

 M Meta-Combiner

Meta-Combiner

A meta-combiner is a form of 7ensemble learn-
ing technique used with 7missing attribute val-
ues. Its common topology involves base learners and
classi�ers at the �rst level, and meta-learner and meta-
classi�er at the second level. �e meta-classi�er com-
bines the decisions of all the base classi�ers.

Metaheuristic

Marco Dorigo, Mauro Birattari,
Thomas Stützle

A metaheuristic is a set of concepts that can be used to
de�ne heuristic methods that can be applied to a wide
set of di�erent problems. In other words, a metaheuris-
tic can be seen as a general algorithmic framework that
can be applied to di�erent optimization problems with
relatively few modi�cations. Examples of metaheuris-
tics include simulated annealing, tabu search, iterated
local search, evolutionary algorithms, and ant colony
optimization.

Metalearning

Pavel Brazdil, Ricardo Vilalta,
Christophe Giraud-Carrier, Carlos Soares
University of Porto, Porto, Portugal
University of Houston,
Houston TX, USA
Brigham Young University, UT, USA

Synonyms
Adaptive learning; Dynamic selection of bias; Learn-
ing to learn; Ranking learning methods; self-adaptive
systems

Definition
Metalearning allows machine learning systems to ben-
e�t from their repetitive application. If a learning sys-
tem fails to perform e�ciently, one would expect the
learning mechanism itself to adapt in case the same

task is presented again. Metalearning di�ers from base-
learning in the scope of the level of adaptation; whereas
learning at the base-level is focused on accumulating
experience on a speci�c task (e.g., credit rating, medical
diagnosis, mine-rock discrimination, fraud detection,
etc.), learning at the metalevel is concerned with accu-
mulating experience on the performance of multiple
applications of a learning system.
Brie�y stated, the �eld of metalearning is focused

on the relation between tasks or domains, and learn-
ing algorithms. Rather than starting afresh on each new
task, metalearning facilitates evaluation and compari-
son of learning algorithms on many di�erent previous
tasks, establishes bene�ts and disadvantages, and then
recommends the learning algorithm, or combination of
algorithms that maximizes some utility function on the
new task. �is problem can be seen as an algorithm
selection task (Rice,).

�e utility or usefulness of a given learning algo-
rithm is o�en determined through a mapping between
characterization of the task and the algorithm’s estimated
performance (Brazdil & Henery,). In general, met-
alearning can recommend more than one algorithm.
Typically, the number of recommended algorithms is
signi�cantly smaller than the number of all possible
(available) algorithms (Brazdil, Giraud-Carrier, Soares,
& Vilalta,).

Motivation and Background
�e application of machine learning systems to
7classi�cation and 7regression tasks has become a
standard, not only in research but also in commerce
and industry (e.g., �nance, medicine, and engineering).
However, most successful applications are custom-
designed, the result of skillful use of human exper-
tise. �is is due, in part, to the large, ever increasing
number of available machine learning systems, their
relative complexity, and the lack of systematic meth-
ods for discriminating among them. �e problem is
further compounded by the fact that, in 7Knowledge
Discovery fromDatabases, each operational phase (e.g.,
preprocessing, model generation) may involve a choice
among various possible alternatives (e.g., progressive
vs. random sampling, neural network vs. decision tree
learning), as observed by Bernstein, Provost, and Hill
().

Metalearning M

M

Current data mining systems are only as power-
ful as their users. �ese tools provide multiple algo-
rithms within a single system, but the selection and
combination of these algorithms must be performed
before the system is invoked, generally by an expert
user. For some researchers, the choice of learning and
data transformation algorithms should be fully auto-
mated if machine learning systems are to be of any use
to nonspecialists. Others claim that full automation of
the data mining process is not within the reach of cur-
rent technology. An intermediate solution is the design
of assistant systems aimed at helping to select the right
learning algorithm(s). Whatever the proposed solution,
there seems to be an implicit agreement that meta-
knowledge should be integrated seamlessly into the data
mining system.Metalearning focuses on the design and
application of learning algorithms to acquire and use
metaknowledge to assist machine learning users with
the process ofmodel selection. A general framework for
this purpose, together with a survey of approaches, is in
(Smith-Miles,).
Metalearning is o�en seen as a way of rede�ning the

space of inductive hypotheses searched by the learning
algorithm(s).�is issue is related to the idea of7search
bias, that is, search factors that a�ect the de�nition
or selection of inductive hypotheses (Mitchell,).
In this sense, metalearning studies how to choose the
right bias dynamically and thus, di�ers from base-level
learning, where the bias is �xed or user-parameterized.
Metalearning can also be viewed as an important fea-
ture of self-adaptive systems, that is, learning systems
that increase in e�ciency through experience (Vilalta
& Drissi,).

Structure of the Metalearning System
A metalearning system is essentially composed of two
parts. One part is concerned with the acquisition of
metaknowledge for machine learning systems. �e
other part is concerned with the application of meta-
knowledge to new problems, with the objective of iden-
tifying an optimal learning algorithm or technique.�e
latter part – application of metaknowledge – can be
used to help select or adopt suitable machine learn-
ing algorithms. So, for instance, if we are dealing with
a 7classi�cation task, metaknowledge can be used to
select a suitable 7classi�er for the new problem. Once

this has been done, one can train the classi�er and apply
it to some unclassi�ed sample for the purpose of class
prediction.
In the following sections we begin by describing

scenarios corresponding to the case when metaknowl-
edge has already been acquired. We then provide an
explanation of how this knowledge is acquired.

Employing Metaknowledge to Select Machine

Learning Algorithms

�e aim of this section is to show that metaknowledge
can be useful in many di�erent settings. We start by
considering the problem of selecting suitable machine
learning algorithms from a given set.�e problem can
be seen as a search problem.�e search space includes
the individual machine learning algorithms, and the
aim is to identify the best algorithm.�is process can
be divided into two separate phases (see Fig.). In the
�rst phase the aim is to identify a suitable subset of
machine learning algorithms based on an input dataset.
�e selection method used in this process can exploit
metaknowledge. �is is in general advantageous, as it
o�en leads to better choices. In some work the result
of this phase is represented in the form of a ranked
subset of machine learning algorithms. �e subset of
algorithms represents the reduced bias space.�e rank-
ing (i.e., ordering of di�erent algorithms) represents the
procedural search bias.

�e second phase is used to search through the
reduced space. Each option is evaluated using a given
performance criteria (e.g., accuracy). Typically, cross-
validation will be used to identify the best alternative.
We note that metaknowledge does not completely

eliminate the need for the search process, but rather
provides amore e�ective search.�e e�ectiveness of the
search depends on the quality of metaknowledge.

How the Subset of Algorithms Is Identified

Let us return to the algorithm selection problem.Amet-
alearning approach to solving this problem relies on
dataset characteristics or metafeatures to provide some
information that would di�erentiate the performance of
a set of given learning algorithms.�ese include various
types of measures discussed in detail below.
Much previous work in dataset characterization has

concentrated on extracting statistical and information-
theoretic parameters estimated from the training set.

 M Metalearning

Metalearning. Figure . Selection of machine learning algorithms: Determining the reduced space and selecting the

best alternative

Measures include number of classes, number of features,
ratio of examples to features, degree of correlation
between features and target concept, average class
entropy, etc. (Engels & �eusinger,). �e disad-
vantage of this approach is that there is a limit to how
much information these features can capture, given that
all these measures are uni- or bi-lateral measures only
(i.e., they capture relationships between two attributes
only or between one attribute and the class).
Another idea is based on what are called landmark-

ers; these are simple and fast learners (Pfahringer, Ben-
susan & Giraud-Carrier,).�e accuracy of these
simpli�ed algorithms is used to characterize a dataset
and to identify areas where each type of learner can be
regarded as an expert. An important class of measures
related to landmarkers uses information obtained on
simpli�ed versions of the data (e.g., samples). Accuracy
results on these samples serve to characterize individual
datasets and are referred to as subsampling landmarks.
One di�erent class of techniques does not acquire

the information in one step, but rather uses a kind
of 7active learning approach.�is approach has been
used to characterize algorithms by exploiting perfor-
mance results on samples. �e process of obtaining a
characterization is divided into several steps.�e result

of one step a�ects what is done in the next step. In each
step, a decision as to whether the characterization pro-
cess should be continued is made �rst. If the answer
is positive, the system determines which characteristics
should be obtained in the next step (Brazdil et al.,).
All the measures discussed above are used to iden-

tify a subset of learning algorithms to reduce the search
space (Fig.).�e second phase in the algorithm selec-
tion problem can be done using a metalevel system
that maps data characteristics to learning algorithms.
One particular approach uses the k-NN method at the
metalevel. �e k-NN method is used to identify the
most similar datasets. For each of these datasets, a rank-
ing of the candidate algorithms is generated based on
user-de�ned performance criteria, such as accuracy and
learning time (Nakhaeizadeh & Schnabl,). �e
rankings obtained are aggregated to generate a �nal
recommended ranking of algorithms.

Acquisition of Metaknowledge

We now address how metaknowledge can be acquired.
One possibility is to rely on expert knowledge. Another
possibility is to use an automatic procedure. We explore
both alternatives brie�y below.

Metalearning M

M

One way of representing metaknowledge is in the
form of rules that match domain (dataset) character-
istics with machine learning algorithms. Such rules
can be hand-cra�ed, taking into account theoretical
results, human expertise, and empirical evidence. For
example, in decision tree learning, a heuristic rule can
be used to switch from univariate tests to linear tests
if there is a need to construct nonorthogonal parti-
tions over the input space. �is method has serious
disadvantages, however. First, the resulting rule set is
likely to be incomplete. Second, timely and accurate
maintenance of the rule set as new machine learning
algorithms become available is problematic. As a result,
most research has focused on automatic methods, dis-
cussed next.
One other way of acquiring metaknowledge relies

on automatic experimentation. For this we need a pool
of problems (datasets) and a set of machine learning
algorithms that we wish to consider.�en we need to
de�ne also the experimental method which determines
which alternatives we should experiment with and in
which order (see Fig. for details).

Suppose that we have a dataset (characterized
using certain metafeatures), in combination with cer-
tain machine learning algorithms. �e combination
is assessed using an evaluation method (e.g., cross-
validation) to produce performance results.�e results,
together with the characterization, represent a piece
of metadata that is stored in the metaknowledge base.
�e process is then repeated for other combinations of
datasets and algorithms.
In this context it is useful to distinguish between two

di�erent types of methods potentially available at the
metalevel. One group involves7lazy learning methods.
�ese delay the generalization of metadata to the appli-
cation phase. �e other group involves learning algo-
rithms whose aim is to generate a generalization model
(e.g., a decision tree or decision rules).�is generaliza-
tion model, applied to the metadatabase, represents in
e�ect the acquired metaknowledge.

Inductive Transfer

As wementioned before, learning should not be viewed
as an isolated task that starts from scratch on every

Metalearning. Figure . Acquisition of metadata for the metaknowledge base

 M Minimum Cuts

new problem. As experience accumulates, the learning
mechanism is expected to perform increasingly better.
One approach to simulate the accumulation of experi-
ence is by transferring metaknowledge across domains
or tasks.�is process is known as inductive transfer. In
many cases the goal is not simply to generate explicit
metaknowledge, but rather to incorporate it in the
given base-level system(s).�e resulting base-level sys-
tem thus becomes a generic solution applicable across
domains. More details about this can be found in a
separate entry on this topic.

Cross References
7Inductive Transfer

Recommended Reading
Bernstein, A., Provost, F., & Hill, S. (). Toward intelligent assis-

tance for a data mining process: An ontology-based approach
for cost-sensitive classification. IEEE Transactions on Knowl-
edge and Data Engineering, (), –.

Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. ().
Metalearning – applications to data mining. Berlin: Springer.

Brazdil, P., & Henery, R. (). Analysis of results. In D. Michie, D. J.
Spiegelhalter, & C. C. Taylor (Eds.), Machine learning, neural
and statistical classification. England: Ellis Horwood.

Engels, R., & Theusinger, C. (). Using a data metric for offering
preprocessing advice in data-mining applications. In H. Prade
(Ed.), Proceedings of the th European conference on artificial
intelligence (pp. –). Chichester, England: Wiley.

Mitchell, T. (). Machine learning. New York: McGraw Hill.
Nakhaeizadeh, G., & Schnabl, A. (). Development of multi-

criteria metrics for evaluation of data mining algorithms. In
Proceedings of the rd international conference on knowledge dis-

covery and data mining (pp. –). Newport Beach, CA: AAAI
Press.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (). Meta-
learning by landmarking various learning algorithms. In Pro-
ceedings of the th international conference on machine learning

(pp. –).
Rice, J. R. (). The algorithm selection problem. Advances in

Computers, , –.
Smith-Miles, K. A. (). Cross-disciplinary perpectives on meta-

learning for algorithm selection. ACM Computing Surveys,

(), Article No. .
Vilalta, R., & Drissi, Y. (). A perspective view and survey of

metalearning. Artificial Intelligence Review, (), –.

Minimum Cuts

7Graph Clustering

Minimum Description Length
Principle

Jorma Rissanen
Helsinki Institute of Information Technology, Helsinki,
Finland
Tampere University of Technology, Finland
University of London, England

Synonyms
Information theory; MDL; Minimum encoding
inference

Definition
�e original “general” minimum description length
(MDL) principle for estimation of statistical properties
in observed data yn, or themodel f (yn; θ, k), represented
by parameters θ = θ, . . . , θk, can be stated thus,

● “Find the model with which observed data and the
model can be encoded with shortest code length”:

min
θ ,k

[log /f (yn; θ, k) + L(θ, k)],

where L(θ, k) denotes the code length for the para-
meters.

�e principle is very general and produces a model
de�ned by the estimated parameters. It leaves the selec-
tion of L(θ, k) open, and in complex applications the
code length can be calculated by visualizing a coding
process.�e only requirement is that the data must be
decodable.

Motivation and Background
�e MDL principle is based on the fact that it is not
possible to compress data well without taking advan-
tage of the regular features in them. Hence, estimation
and data compression have similar goals although they
are not identical. In estimation, we must describe the
model explicitly, while the algorithm to compress the
data may take advantage of regular features implicitly
without isolating them.�is means that such an algo-
rithm does not produce any model that could be used
for machine learning.

Minimum Description Length Principle M

M

We describe here a new sharper Complete MDL
principle, which corrects the shortcomings of the old
principle. It also separates estimation from data com-
pression and delivers an explicit model.�e objective in
this entry is to show that the complete MDL principle is
not only intuitively appealing but it plays a fundamental
role in all estimations, and in all inductive inferences for
that matter, since any meaningful inference about data
must be based on a good model of it. In fact, we argue
that there cannot be a rational comprehensive theory of
estimation unless it is founded on theMDL principle or
some of its equivalent forms.

Theory
We begin by outlining the problem of model building
and estimation.�e objective is to �t parametricmodels
of type f (yn∣xn, θ) to data yn = y, . . . , yn, given explana-
tory variables xn = x, . . . , xn, where θ = θ, . . . , θk
are real-valued parameters. To simplify the notations
we drop the explanatory variables and consider classes
of models Mk = {f (yn; θ)}. For �xed number k
of parameters the �tting is done by some estimator
function

θ̄(⋅) : yn ↦ θ̄(yn)

taking data to parameter values, which in turn pick
out estimated models of data. For simplicity we discuss
�rst the estimation of the real-valued parameters. We
do not assume the existence of a special “true” model
de�ned by a parameter θ∗, which raises the problem
of how to assess the goodness of the estimators and the
estimated models. Clearly, it cannot be done by any dis-
tance measure between the estimate θ̄(yn) and θ∗. We
think that the only way the assessment can be done in
general without narrow and special criteria is in terms
of the probability which the estimator θ̄(⋅) assigns to
the observed data. A large probability means a good
�t while a small probability means a bad �t. How do
we calculate this probability? Importantly, notice that it
cannot be the number f (yn; θ̄(yn)), bearing the mysti-
cal name “likelihood,” because its integral over all data
yn is not unity. However, by normalizationwe get a valid
yardstick for the goodness measure

f̄ (yn; k) =
f (yn; θ̄(yn), k)

C̄k

C̄k = ∫ f (yn; θ̄(yn), k)dyn,

where we now show the number of parameters k. When
even the number of parameters is to be estimated, the
yardstick is as follows

f̄ (yn) = f̄ (yn; k̄(yn))/C̄ ()

C̄ =∑
k
∫
k̄(yn)=k

f̄ (yn; k)dyn, ()

where k̄(yn) denotes an estimator for k.

Optimal Yardstick
We view estimation as analogous to measuring a physi-
cal property like weight or mass of an object:�e object
here is the observed data and the property is the model
in a selected class de�ned by the parameters, while
the probability an estimated model assigns to the data
corresponds to the accuracy.
We need a yardstick as the instrument like the scale

with which the measuring is done. It will be de�ned
by a special estimator and the distribution it de�nes.
Clearly, the yardstick must not depend on the data set
whose property we want to measure no more than the
scale for weighing an object must not depend on the
object.�e requirement then is that it should be deter-
mined by the model class. We also want a yardstick that
assigns a large probability to the data, or, equivalently,
a small negative logarithm of the probability, which can
be interpreted as code length. However, there is the fun-
damental di�culty that no distribution f̄ (yn; k) exists
which assigns the largest probability to all data. Quite
remarkably, there is a unique yardstick that satis�es the
two requirements, repeated here:

. f̄ (⋅; k) to be determined by the model classMk

. Minimal code length log /f̄ (yn; k) for all data yn

and, similarly, when even the number of parameters is
to be estimated.

�e unique yardstick when the real-valued para-
meters are estimated is de�ned by the ML (maximum
Likelihood) estimator, θ̂(yn), which maximizes the
probability the model assigns to data, or maxθ f (y

n;
θ, k):

f̂ (yn; k) =
f (yn; θ̂(yn), k)

Ĉk
()

Ĉk = ∫ f (yn; θ̂(yn), k)dyn

= ∫ dθ̂ ∫
θ̂(yn)=θ̂

f (yn; θ̂, k)dyn. ()

 M Minimum Encoding Inference

�e proof of that there is a unique distribution
f̄ (yn; k)= f̂ (yn; k) satisfying the two requirements amo-
unts to noticing that the ratio f̄ (yn; k) cannot be maxi-
mum unless the numerator is maximized. Notice that
the famous maximized likelihood, the numerator of
f̂ (yn; k), in itself means nothing.

�e unique yardstick when even the number of
parameters is estimated is

f̂ (yn) =
maxk f (yn; θ̂(yn), k)/Ĉk

Ĉ
()

Ĉ =∑
k
∫
k̂(yn)=k

f̂ (yn; k)dyn, ()

where k̂(yn), or the maximizing k, is not the maximum
likelihood estimator.

�e evaluation of these yardsticks on an observed
data string yn gives the MDL criterion. �e calcu-
lation of the normalizing coe�cients is the main
problem. It can be evaluatedmost easily for �nite alpha-
bets. Asymptotically the optimal estimation criterion
amounts to this

min
k

[log /f (yn; θ̂(yn), k) +
k

log

n

π

+ log∫ ∣J(θ)∣/dθ] ,

where

J(θ) = limn−E{
∂ log /f (yn; θ, k)

∂θ i∂θ j
} .

is the Fisher information matrix. Hence, this term is a
positive constant and can be ignored for large amounts
of data.

Cross References
7MinimumMessage Length

Recommended Reading
Grünwald, P. D. (). The minimum description length principle

(pp.). Cambridge/London: The MIT Press.
Rissanen, J. (). Information and complexity in statistical model-

ing (pp.). Springer: New York.
Rissanen, J. (September). Optimal estimation. IEEE Informa-

tion Theory Society Newsletter, ().

Minimum Encoding Inference

7Minimum Description Length Principle
7MinimumMessage Length

Minimum Message Length

Rohan A. Baxter
Australian Taxation O�ce, ACT, Australia

Synonyms
Minimum encoding inference

Definition
Minimum message length (MML) is a theory of
7inductive inference whereby the preferred model
is the one minimizing the expected message length
required to explain the data with the prior
information.
Given data, represented in a �nite binary string, E,

is an “7explanation” of the data which is a two-part
7message or binary string encoding the data to be sent
between a sender and receiver. �e �rst part of the
message (the “7assertion”) states a hypothesis, model,
or theory about the source of the data.�e second part
(the “7detail”) states those aspects of E which cannot
be deduced from this assertion and prior knowledge.
�e sender and receiver are assumed to have agreed
on the prior knowledge, the assertion code, and the
detail code before the message is constructed and sent.
�e shared prior knowledge captures their belief about
the data prior to seeing the data and is needed to pro-
vide probabilities or, equivalently, optimum codes, for
the set of models. �e assertion and detail codes can
be equivalently considered to be the shared language
for describing models (for the assertion code) and for
describing data (for the detail code).
Out of all possible models whichmight be advanced

about the data, MML considers the best inference as
that model which leads to the shortest explanation.
�e length of the explanation can be calculated using
7Shannon’s information, L(E) = − log(P(E)), where
L(E) is the length of the shortest string encoding an

Minimum Message Length M

M

Minimum Message Length. Figure . A view of model

selection by minimum message length (MML). The

data is coded assuming a model and parameters in the

assertion. The model and parameters are coded in the

assertion. As shown here, often different models have

same probability, while the code lengths for model

parameters and data detail differ between the models

event, E, and P() is the probability of a message con-
taining E.
To compare models, we calculate the explanation

length for each and prefer the one with shortest expla-
nation length. Figure shows three models being evalu-
ated and the di�erent lengths of the assertion and details
for each. Model is preferred as it has the MML.

Motivation and Background
�e original motivation for MML inductive inference
is the idea that the best explanation of the facts is the
shortest (Wallace & Boulton,). By inductive infer-
ence, we mean the selection of a best model of truth.
�is goal is distinct from a best model for prediction
of future data or for choosing a model for making the
most bene�cial decisions. In the �eld ofMachine Learn-
ing, greater focus has been onmodels for prediction and
decision, but inferences of the best models of truth have
an important separate application.
For discrete models, MML looks like Bayesian

model selection since choosing H to minimize the
explanation length of data X:

− logP(H) − logP(X∣H) = − log(P(H)P(X∣H),

is o�en, but not always, as discussed below, equivalent
to choosing H to maximize the probability

P(H∣X) :

P(H∣X) =
P(H)P(X∣H)

P(X)
,

where P(X) is a constant for a given detail code.
For models with real-valued parameters, the equiv-

alence between MML and Bayesian model selection
always breaks down (Wallace, , p.). Stating
the P(H) in a message requires real-valued param-
eters in H to be stated to a limited precision. �e
MML coding approach replaces a continuum of pos-
sible hypotheses with a discrete subset of values, and
assigns a nonzero prior probability to each discrete the-
ory. �e discrete subsets are chosen to optimize the
expected message length given the prior knowledge
assumptions.
For models with only discrete-valued parameters,

the equivalence between MML and Bayesian model
selection may break down if the discrete values cho-
sen involve the merging of values in the assumed prior
distribution, P(H) (Wallace, , p.). �is may
occur with a small dataset if the data is insu�cient to
justify a codebook distinguishing individual members
of H.
Other than a discretized hypothesis space, MML

shares many properties of Bayesian learning such
as su�ciency, avoidance of over�tting, and consis-
tency (Wallace,). One di�erence arising from
the discretized hypothesis space is that MML allows
inductive inference to be invariant under arbitrary
monotonic transformations of parameter spaces. �e
Bayesian learning options for model choice such as
the maximum a posteriori (MAP) estimate are not
invariant under such transformations. Other theoreti-
cal bene�ts include consistency and guarantees against
over�tting.
Message lengths of an explanation can be based

on the theory of algorithmic complexity (AC) (Wal-
lace & Dowe,), instead of Shannon’s information.
�e AC of a string with respect to a Universal Turing
Machine, T, can be related to Shannon’s information by

 M Minimum Message Length

regarding T as de�ning a probability distribution over
binary strings, P(S), such that:

PT(S) = −AC(S) ∀S.

�e connection with AC has some appeal for applica-
tions involving data that are not random in a probabilis-
tic sense, such as function approximation where data
seems to be from a deterministic source. In these cases,
a�er �tting a model, the data residuals can be encoded
using AC randomness, since the probabilistic sense of
randomness does not apply (Wallace, , p.).

Theory
Strict MML (SMML) estimators refer to the estimator
functionswhich exactlyminimize the expectedmessage
length (Wallace & Boulton,). Most practical MML
estimators are not strict and are discussed in a separate
section on Approximations.
An SMML estimator requires (Dowe, Gardner, &

Oppy,):

● X, a data space, and a set of observations from the
dataspace, {xi : i ∈ N}

● p(x∣h), a conditional probability function over data
given a model, h

● H is a model space. For example, H can be a simple
continuum of known dimension k

● P(h): a prior probability density on the parameter
space H : ∫H P(h)dh =

X, H, and the functions P(h), p(x∣h) are assumed to be
known a priori by both sender and receiver of the expla-
nation message. Both sender and receiver agree on a
code for X, using knowledge of X, H, p(h), and f (x∣h)
only.

�e marginal prior probability of the data x follows
from the assumed background knowledge:

r(x) = ∫
H
p(x∣h)P(h)dh.

�e SMMLestimator is a functionm : X→H : m(x)=h,
which names the model to be selected.

�e assertion, being a �nite string, can name
at most a countable subset of H. Call the subset
H∗ ={hj : j = , , , . . .}. �e choice of H∗ implies a

coding distribution over H∗ : f (hj)= qj > : j= , , , . . .
with∑j qj = . So choice of H∗ and qj lead to a message
length:

− log qj − log p(x∣hj).

�e sender, given x, will choose an h to make the expla-
nation short.�is choice is described by an estimator
function: m(x) :X→H so that the length of the expla-
nation is:

I(x) = − log q(m(x)) − log p(x∣m(x)),

and the expected length is (Wallace, , p.)

I = −∑
x∈X
r(x)[log q(m(x)) + log p(xi∣m(xi))].

Consider how to choose H∗ and coding distribution
qj to minimize I. �is will give the shortest explana-
tion on average, prior to the sender seeing the actual
data.
De�ne tj ={x :m(x)=hj}, so that tj is the set of

data which results in assertion hj being used in the
explanation. I can now be written as two terms:

I = − ∑
hj∈Hstart

⎛

⎝
∑
xi∈tj
ri
⎞

⎠
log qj − ∑

hj∈Hstart
∑
xi∈tj
ri log p(xi∣hj).

�e �rst term of I is minimized by choosing:

qj = ∑
xi∈tj
rj.

So the coding probability assigned to estimate hj is the
sum of the marginal probabilities of the data values
resulting in hj. It is the probability that estimate hj will
be used in the explanation based on the assumptions
made.

�e second term of I is the average of the log
likelihood over the data values used in hj.

Example with Binomial Distribution

�is section describes the SMMLestimator for the bino-
mial distribution. For this problem with indepen-
dent trials giving success or failure, we have p(x∣p) =

pn(− p) − s,h(p) = , where s is the observed num-
ber of successes and p is the unknown probability of
success.

Minimum Message Length M

M

Minimum Message Length. Table A strict MML (SMML)

estimator for binomial distribution (Farr & Wallace, ;

Wallace, , p.)

j s p_ j

 – .

 – .

 – .

 – .

 – .

 – .

 – .

 – .

We have an SMML estimator minimizing I in
Table . I has . nits. Note that the partition pj
in Table is not unique due to asymmetry in having
 partitions of success counts. Note the di�erence
between the SMML estimate, pj, and the MAP estimate
s/ in this case. For example of observed successes,
the MAP estimate is . while SMML estimate is ..
With successes, the SMML estimate jumps to .,
so it is very discrete.�e SMML estimate spacings are
consistent with the expected error and so theMAP esti-
mates are arguably overly precise and smooth. �is is
less than . nits more than the optimal one-part code
based on themarginal probability of the data − log r(x).

Approximations

SMML estimators are hard to �nd in practice and vari-
ous approximations of SMMLestimators have been sug-
gested. We focus on the quadratic approximation here,
o�en called the MML estimator or MML (Wallace &
Freeman). Other useful approximations have been
developed and are described in Wallace, (). �e
use of approximations in applications requires careful
checking of the assumptions made by the approxima-
tion (such as various regularity conditions) to ensure

that the desirable theoretical properties of MML induc-
tive inference still apply.

I(x) ≈ − log
f (h′)

√
F(h′)

+ [− log p(x∣h′)] +
.F(h′, x)
F(h′)

,

where F(h) is the Fisher Information:

F(h′) = −E
∂

(∂h′)
log p(x∣h′)

= −∑x∈X p(x∣h
′
)

∂

(∂h′)
log p(x∣h′).

�e assumptions are (Wallace, ; Wallace & Free-
man,):

● f (x∣h) is approximately quadratic on theta near its
maximum

● H has a locally Euclidean metric
● Fisher information is de�ned everywhere in H
● f (h)and F(h) vary little over theta of order /

√
F(h)

A further approximation has the third term simplify to
. only (Wallace, , p.)which assumes F(h, x) ≈
F(h).

�e MML estimator is a discretized MAP estimator
with the prior P(h) being discretized as:

f (h′) ≈
P(h′)

√
F(h′)

.

In practice, note that the Fisher Information may be
di�cult to evaluate. Various approximations have been
made for the Fisher Information where appropriate for
particular applications.

Applications
MML estimators have been developed for various prob-
ability distributions such as binomial, multinomial, and
Poisson. MML estimators have also been developed for
probability densities such as Normal, von-Mises, and
Student’s t (Wallace,).�ese estimators and asso-
ciated coding schemes are then useful components for
addressing more complex model selection problems in
Machine Learning.

 M Minimum Message Length

�ere have beenmany applications of MML estima-
tors to model spaces from Machine Learning (Allison,
; O’Donnell, Allison, &Korb, ;Wallace,).
We will now brie�y note MML applications for mix-
ture models, regular grammars, decision trees, and
causal nets. MML estimators have also been developed
for multiple 7linear regression (Wallace,), poly-
nomial regression (Wallace,), 7neural networks
(Allison,), ARMA time series, Hidden Markov
Models (Edgoose & Allison,), sequence alignment
(Allison,), phylogenetic trees (Allison,), fac-
tor analysis (Wallace,), cut-point estimation (Wal-
lace,), and image segmentation.

Model-Based Clustering or Mixture Models

Clustering was the �rst MML application fromWallace
and Boulton’s paper (Wallace & Boulton,).
Some changes to the coding scheme have occurred over
the decades. A key development was the switch from
de�nite assignment of classes to things to probabilis-
tic assignment in the s.�e MML model selection
and a particularly e�cient search involving dynamic
splitting and merging of clusters was implemented in a
FORTRANprogram called Snob (since it discriminated
between things).

�e assertion code consists of:

. �e number of classes
. For each class
(a) �e population proportion
(b) Parameters of the statistical distribution for

each attribute (or an insigni�cant �ag)

�e detail code consists of, for each datum the class
to which it belongs and attribute values assuming the
distribution parameters of the class. Bits-back coding
is used to partially or probabilistically assign a class to
each datum.�is e�ciency is needed to get consistent
estimates.

Probabilistic Finite State Machines

Probabilistic �nite statemachines (PFSM) can represent
probabilistic regular grammars (Wallace,). A sim-
ple assertion code for the discrete �nite state machines
(FSM) structure, as developed byWallace and George�,
is as follows:

● Provide number of states, S, using a prior P(S)
● For each state, code the number of arcs leaving the
state, log(K +)where K + is maximum number of
arcs possible

● Code the symbols labeling the arcs, log(
K+
c
as

)

● For each arc, code the destination state, as log S

�e number of all states other than state is arbitrary, so
the code permits (S−)!, equal length, di�erent descrip-
tions of the same FSM.�is ine�ciency can be adjusted
for by subtracting log(S −)!
A candidate detail code used to code the sentences

is an incremental code where each transition from state
to state is coded incrementally, using lognsk + /vs + as,
where nsk is the number of times this arc has already
been followed and vs is the number of times the state
has already been le�.

�is application illustrates some general issues
about assertion codes for discrete structures:

. �ere can be choices about what to include in the
assertion code. For example, the transition proba-
bilities are not part of the assertion code above, but
could be included, with adjustments, in an alterna-
tive design (Wallace,).

. Simple approaches with interpretable priors may
be desirable even if using non-optimal codes.�e
assumptions made should be validated. For exam-
ple, arcs between states in FSMs are usually rela-
tively sparse (a_s = S) so a uniform distribution is
not a sensible prior here.

. Redundancy comes from being able to code equiv-
alent models with di�erent descriptions. For some
model spaces, determining equivalence is either not
possible or very expensive computationally.

. Redundancy can come from the code allowing
description of models that cannot arise. For exam-
ple, the example assertion code could describe a
FSM with states with no arcs.

. Exhaustive search of model space can only be done
for small FSMs. For larger applications, the perfor-
mance of the MML model selection is con�ated
with performance of the necessary search space
heuristics.�is issue also occurs with decision trees,
causal nets, etc.

Minimum Message Length M

M

In a particular application, it may be appropriate to
trade-o� redundancy with interpretability in assertion
code design.

Decision Trees

Assertion codes forDecision trees and graphs have been
developed (Wallace, ; Wallace & Patrick,).
An assertion describes the structure of the tree, while
the detail code describes the target labels. �e num-
ber of attributes, the arity of each attribute, an agreed
attribute order, and probability that a node is a leaf or
split node are assumed known by sender and receiver.
Like the PFSM transition probabilities, the leaf class
distributions are not explicitly included in the decision
tree model (a point of distinction from Bayesian tree
approaches).
An assertion code can be constructed by perform-

ing a pre�x traversal of the tree describing each node.
Describing a node requires −log_ P_L if it is a leaf
and −log_ P_s if it is a split node. If it is a split node,
the attribute that it splits on must be speci�ed, requir-
ing log_ (number of available attributes). If it is a leaf
node, the data distribution model should be speci�ed,
for example, the parameters of a binomial distribution
if the data consists of two classes.

Causal Nets

(Dai, Korb,Wallace, &Wu, ; Neil, Wallace, & Korb,
; O’Donnell et al.,)
�e assertion code has two parts.
First part: DAG:

. Specify an ordering of variables, logN!
. Specify which of M_a possible arcs are present,
log(N(N −)/) bits on assumption probability an
arc is present is .

Second part: Parameters:

. For each variable, state form of conditional distri-
bution, then parameters of the distribution. �en
encode all N values of v_j according to the distri-
bution (Fig.)

Note that the assertion code is intermixed with the
detail code for each variable (Wallace,). Further

Minimum Message Length. Figure . Assertion code len-

gths for different DAGS using the example coding scheme

adjustments are made to deal with grouping of causal
nets with various equivalences or near-equivalences.
�is requires a further approximation because no
attempt is made to code the best representative causal
net from the group of causal nets described.

Future Directions
�ere seems potential for further development of
feasible approximations that maintain the key SMML
properties. Crossover of exciting new developments
in coding theory may also help with development of
MMLestimators. Examples include stochastic encoding
such as bits-back coding, discovered by Wallace ()
and since expanded to many new application areas
showing connections between MML with variational
learning and ensemble learning (Honkela & Valpola,

 M Missing Attribute Values

). Another area is the relationship between opti-
mum hypothesis discretization and indices of resolv-
ability and rate-distortion optimization (Lanterman,
).
MML estimators will continue to be developed for

the new model spaces that arise in Machine Learning.
MML relevance seems assured because with complex
models, such as social networks, the best model is the
useful outcome, rather than a prediction or posterior
distribution of networks.
Open source so�ware using MML estimators for

di�erence machine learning models is available (MML
so�ware).

Cross References
7Bayesian Methods
7Inductive Inference
7Minimum Description Length

Recommended Reading
Allison, L. (). // MML website, http://www.

allisons.org/ll/MML/
Dai, H., Korb, K. B., Wallace, C. S., & Wu, X. (). A study

of causal discovery with weak links and small samples. In
Proceedings of the fifteenth international joint conference on

artificial intelligence (pp. –). San Francisco: Morgan
Kaufman.

Dowe, D. L., Gardner, S. B., & Oppy, G. (). Bayes not bust!: Why
simplicity is no problem for Bayesians. The British Journal for
the Philosophy of Science, , –.

Edgoose, T., & Allison, L. (). MML Markov classifica-
tion of sequential data. Statistics and Computing, (),
–.

Farr, G. E, & Wallace, C. S. (). The complexity of strict min-
imum message length inference. The Computer Journal, (),
–.

Honkela, A., & Valpola, H. (). Variational learning and
bits-back coding: An information-theoretic view to Bayesian
learning. IEEE Transactions on Neural Networks, (),
–.

Lanterman, A. D. (). Schwarz, Wallace and Rissanen: Inter-
twining themes in theories of model selection. International
Statistical Review, (), –.

MMLsoftware:www.datamining.monash.edu.au/software,//
http://allisons.org/ll/Images/People/Wallace/FactorSnob/

Neil, J. R., Wallace, C. S., & Korb, K. B. (). Learning Bayesian net-
works with restricted interactions. In K. B. Laskey & H. Prade
(Eds.), Proceedings of the fifteenth conference of uncertainty in
artificial intelligence (UAI-) (pp. –). San Francisco:
Morgan Kaufmann.

O’Donnell, R., Allison, L., & Korb, K. () Learning hybrid
Bayesian networks by MML. Lecture notes in computer sci-

ence: AI – advances in artificial intelligence (Vol. ,
pp. –). Berlin: Springer.

Wallace, C. S. (). Classification by minimum-message length
inference. In S. G. Akl, et al. (Eds.), Advances in computing and
information-ICCI , No. in Lecture notes in computer

science. Berlin: Springer.
Wallace, C. S. (). Statistical and inductive inference by MML:

Information sciences and statistics. Berlin: Springer.
Wallace, C. S., & Boulton, D. M. (). An information measure for

classification. Computer Journal, , –.
Wallace, C. S., & Boulton, D. M. (). An information mea-

sure for single-link classification. The Computer Journal, (),
–.

Wallace, C. S., & Dowe, D. L. (). Minimum message length and
Kolmogorov complexity. Computer Journal, (), –.

Wallace, C. S., & Freeman, P. R. (). Estimation and infer-
ence by compact coding. Journal of the Royal Statistical Society
(Series B), , –.

Wallace, C. S., & Patrick, J. D. (). Coding decision trees.Machine
Learning, , –.

Missing Attribute Values

Ivan Bruha
McMaster University, Hamilton, ON, Canada

Synonyms
Missing values; Unknown attribute values; Unknown
values

Definition
When inducing 7decision trees or 7decision rules
from real-world data, many di�erent aspects must be
taken into account. One important aspect, in particu-
lar, is the processing of missing (unknown) 7attribute
values. In machine learning (ML), instances (objects,
observations) are usually represented by a list of
attribute values; such a list commonly has a �xed length
(i.e., a �xed number of attributes).

�e topic of missing attribute values has been ana-
lyzed in the �eld of ML in many papers (Brazdil &
Bruha, ; Bruha and Franek, ; Karmaker &
Kwer, ; Long & Zhang, ; Quinlan, ,).
Grzymala-Basse () and Li and Cercone () dis-
cuss the treatment of missing attribute values using the
rough set strategies.

Missing Attribute Values M

M

�ere are a few directions in which missing
(unknown) attribute values as well as the corre-
sponding routines for their processing may be stud-
ied and designed. First, the source of “unknownness”
should be investigated; there are several such sources
(Kononenko,):

● A value ismissing because it was forgotten or lost
● A certain attribute is not applicable for a given
instance (e.g., it does not exist for a given observa-
tion)

● An attribute value is irrelevant in a given context
● For a given observation, the designer of a training
database does not care about the value of a certain
attribute (the so-called dont-care value)

�e �rst source may represent a random case, while the
remaining ones are of structural character.
Moreover, it is important to de�ne formulas for

matching instances (examples) containing missing attri-
bute values with decision trees and decision rules as
di�erent matching routines vary in this respect.

Strategies for Missing Value Processing
�e aim of this section is to survey the well-known
strategies for the processing of missing attribute val-
ues. Quinlan () surveys and investigates quite a
few techniques for processing unknown attribute val-
ues processing for the TDIDT family.�is chapter �rst
introduces the seven strategies that are applied in many
ML algorithms. It then discusses particular strategies
for the four paradigms: Top Down Induction Deci-
sion Trees (TDIDT), (also known as the decision tree
paradigm, or divide-and-conquer), covering paradigm
(also known as the decision rules paradigm), Naive
Bayes, and induction of 7association rules. �e con-
clusion compares the above strategies and then portrays
possible directions in combining these strategies into a
more robust system.
To deal with real-world situations, it is necessary

to process incomplete data – i.e., data with miss-
ing (unknown) attribute values. Here we introduce
the seven strategies (routines) for processing missing-
attribute-values.�ey di�er in the style of the solution
of their matching formulae.�ere are the following nat-
ural ways of dealing with unknown attribute values:

. Ignore the example (object, observation) withmiss-
ing values: strategy Ignore (I)

. Consider the missing (unknown) value as an addi-
tional regular value for a given attribute: strategy
Unknown (U) or

. Substitute the missing (unknown) value for match-
ing purposes by a suitable value which is either
● �e most common value: strategy Common (C)
● A proportional fraction: strategy Fraction (F)
● Any value: strategy Anyvalue (A)
● Random value: strategy Random (Ran)
● A value determined by a ML approach: strat-
egyMeta-Fill-In (M) of the known values of the
attribute that occur in the training set

Dealing with missing attribute values is in fact deter-
mined by matching a selector (see the corresponding
de�nitions below) with an instance. A matching proce-
dure of a selector with a fully speci�ed instance returns
the uniform solution: the instance eithermatches or not.
Dilemmas arise when a partially de�ned instance is to
be matched.
We now informally introduce a couple of de�ni-

tions. An inductive algorithm generates a knowledge
base (decision tree or a set of decision rules) from
a training set of K training examples, each accom-
panied by its desired 7class Cr, r = , . . .,R. Exam-
ples are formally represented by N 7attributes, which
are either discrete (symbolic) or numerical (continu-
ous). A discrete attribute An,n = . . .,N, comprises
J(n) distinct values V, . . .,VJ(n). A numerical attribute
may attain any value from a continuous interval. �e
symbolic/logical ML algorithms usually process the
numerical attributes by 7discretization/fuzzi�cation
procedures, either on-line or o�-line; see e.g., Bruha and
Berka ().
An example (object, observation) can thus be

expressed as an N-tuple x = [x, . . ., xN], involving N
attribute values. A selector Sn is de�ned as an attribute-
value pair of the form xn = Vj, where Vj is the jth value
of the attribute An (or the jth interval of a numerical
attribute An).
To process missing values, we should know in

advance (for r = , . . . ,R,n = , . . . ,N, j = , . . . , J(n)):

● �e overall absolute frequencies Fn,j that express the
number of examples exhibiting the valueVj for each
attribute An

 M Missing Attribute Values

● �e class-sensitive absolute frequencies Fr,n,j that
express the number of examples of the class Cr
exhibiting the value Vj for each attribute An

● �e overall relative frequencies fn,j of all known val-
ues Vj for each attribute An

● �e class-sensitive relative frequencies fr,n,j of all
known valuesVj for each attributeAn and for a given
class Cr

�e underlying idea for learning relies on the class dis-
tribution; i.e., the class-sensitive frequencies (overall
and class-sensitive frequencies) are utilized. As soon as
we substitute a missing value by a suitable one, we take
the desired class of the example into consideration in
order not to increase the noise in the data set. On the
other hand, the overall frequencies are applied within
classi�cation.
We can now de�ne the matching of an example x

with a selector Sn by the so-calledmatching ratio = if
xn ≠ Vj

µ(x, Sn){= if xn = Vj ()

∈ [;] if xn is unknown (missing)

A particular value of the matching ratio is deter-
mined by the selected routine (strategy) for missing
value processing.

(I) Strategy Ignore: Ignore Missing Values: �is strat-
egy simply ignores examples (instances) with at least
one missing attribute value before learning. Hence,
no dilemma arises when determining matching ratios
within learning. However, this approach does not con-
tribute to any enhancement of processing of noisy or
partly speci�ed data.
As for classi�cation, a missing value does not match

any regular (known) value of a selector.�us, a selec-
tor’s matching ratio is equal to for any missing value.
Consequently, only a path of nodes in a decision tree
or a decision rule that tests only the regular values dur-
ing classi�cation may succeed. If there is no such path
of nodes in a decision tree or such a rule has not been
found, then the default principle is applied; i.e., the
instance with missing value(s) is classi�ed as belonging
to the majority class.

(U) Strategy Unknown: Unknown Value as a Regular

One: An unknown (missing) value is considered as an

additional attribute value. Hence, the number of val-
ues is increased by one for each attribute that depicts an
unknown value in the training set.�e matching ratio
of a selector comprising the test of the selector Sn and an
instancewith thenth attributemissing is equal to if this
test (selector) is of the form xn =? where “?,” represents
the missing (unknown) value.
Note that selectors corresponding to the numeri-

cal (continuous) attributes are formed by tests xn ∈ Vj
(where Vj is a numerical interval) or xn =?.

(C) Strategy Common: �e Most Common Value: �is
routine needs the class-sensitive absolute frequencies
Fr,n,j to be known before the actual learning process,
and the overall frequencies Fn,j before the classi�cation.
A missing value of a discrete attribute An of an example
belonging to the classCr is replaced by the class-sensitive
common value, whichmaximizes the Laplacian formula
Fr,n,j +
Fn,j +R over j for the given r and n. If the maximum is
reached for more than one value of An, then the value
Vj with the greatest frequency Fr,n,j is selected as the
common value.
A missing value within the classi�cation is replaced

by the overall common value, whichmaximizes Fn,j over
the subscript j. Consequently, the matching ratio yields
 or , as everymissing value is substituted by a concrete,
known value.

�e Laplacian formula utilized within the learn-
ing phase prefers those attribute values that are more
predictive for a given class, contrary to the conven-
tional “maximum frequency” scheme. For instance, let
an attribute have two values: the value V with the
absolute frequencies [,] for the classes C and C,
and the value V with frequencies [,] for these two
classes.�en, when looking for themost common value
of this attribute for the class C, the maximum fre-
quency chooses the valueV as themost common value,
whereas the Laplacian formula prefers the value V as
the more predictive for the class C.

(F) Strategy Fraction: Split into Proportional Fractions:

● Learning phase

�e learning phase requires that the relative frequen-
cies fr,n,j above the entire training set be known. Each
example x of class Cr with a missing value of a discrete
attribute An is substituted by a collection of examples

Missing Attribute Values M

M

before the actual learning phase, as follows: the miss-
ing value of An is replaced by all known values Vj of An
and Cr.�e weight of each split example (with the value
Vj) is

wj = w(x) ∗ fr,n,j, j = , . . ., J(n)

where w(x) is the weight of the original example x.�e
weight is assigned by the designer of the training set
and represents the designer’s subjective judgment of the
importance of that particular example within the entire
training set.�e matching ratio of the split examples is
accomplished by () in a standard way.
If a training example involvesmoremissing attribute

values, then the above splitting is done for each missing
value. �us, the matching ratio may rapidly decrease.
�erefore, this strategy, Fraction, should involve a
methodology to avoid explosion of examples, so that
only a prede�ned number of split examples with the
largest weights is used for replacement of the original
example.

● Classi�cation phase

�e routine Fraction works for each paradigm in a dif-
ferent way. In case of a decision tree, the example with
a missing value for a given attribute An is split along all
branches, with the weights equal to the overall relative
frequencies fn,j.
As for the decision rules, the matching ratio for a

selector xn = Vj is de�ned by () as µ = fn,j for a missing
value of An. An instance with a missing value is tested
with the conditions of all the rules, and is attached to
the rule whose condition yields themaximummatching
ratio – i.e., it is assigned to the class of this rule.
(A) Strategy Anyvalue: Any Value Matches: A miss-
ing value matches any existing attribute value, both
in learning and classi�cation. �erefore, a matching
ratio µ of any selector is equal to for any missing
value.
It should be noticed that there is no uniform scheme

in machine learning for processing the “any-value.” In
some systems, an example with a missing value for
attribute An is replaced by J(n) examples in which the
missing value is in turn substituted by each regular value
Vj, j = , . . ., J(n). In other systems, the missing “any-
value” is substituted by any �rst attribute value involved
in a newly generated rule when covered examples are

being removed from the training set; see Bruha and
Franek () for details.

(Ran) Strategy Random: Substitute by Random Value

A missing value of an attribute An is substituted by
a randomly selected value from the set of its values
Vj, j = , . . ., J(n). In case of the numerical attributes, the
process used in the routine Common is �rst applied,
i.e., the entire numerical range is partitioned into
a pre-speci�ed number of equal-length intervals. A
missing value of the numerical attribute is then sub-
stituted by the mean value of a randomly selected
interval.
At least two possibilities exist in the random proce-

dure. Either

● A value is randomly chosen according to the uni-
form distribution – i.e., all the values have the same
chance

● Avalue is chosen in conformitywith the value distri-
bution – i.e., themost frequent value has the greatest
chance of being selected

To illustrate the di�erence of the strategies Anyvalue
and Random, consider this scheme. Let the attribute A
have three possible values, V, V, V with the relative
distribution [., ., .]. (Here, of course, we con-
sider class-sensitive distribution for the learning phase,
overall one for classi�cation.)
Strategy Anyvalue for TDIDT replaces the miss-

ing value A =? by each possible value A = Vj, j =
, , , and these selectors (attribute-value pairs) are uti-
lized for selecting a new node (during learning), or
pushed down along an existing decision tree (classi-
�cation).
Strategy Anyvalue for covering algorithms: if the

corresponding selector in a complex is for example,
A = V then the selector A =? in an instance is
replaced by A = V, so that the matching always
succeeds.
Let the pseudo-random number be for example, .

in the strategy Random. �en, in the �rst case – i.e.,
uniform distribution (one can consider the relative dis-
tribution has been changed to [., ., .]) – the
missing value A =? is replaced by A = V. In the second
possibility – i.e., the actual distribution – the missing
value is replaced by A = V.

 M Missing Attribute Values

(M) Strategy Meta Fill In: Use Another Learning Topol-

ogy for Substitution: �is interesting strategy utilizes
another ML algorithm in order to �ll in the miss-
ing attribute values. �is second (or meta) learning
algorithm uses the remaining attribute values of a
given example (instance, observation) for determining
(inducing) the missing value of the attribute An.�ere
are several approaches to this strategy.

�e �rst one was designed by Breiman; it uses a sur-
rogate split in order to determine the missing attribute
value. We can observe that a surrogate attribute has the
highest correlation with the original one.
Quinlan () was the �rst to introduce the meta-

�ll-in strategy; in fact, this method was proposed by A.
Shapiro during their private communication. It builds a
decision tree for each attribute that attempts to derive
a value of the attribute with a missing value for a given
instance in terms of the values of other attributes of the
given instance.
Lakshminarayan et al. () introduced a more

robust approach where a ML technique (namely, C.)
is used to �ll in the missing values.
Ragel and Cremilleux () developed a �ll-in

strategy by using the association rules paradigm. It
induces a set of association rules according to the entire
training set. �is method is able to e�ciently process
the missing attribute values.

Missing Value Processing Techniques in
Various ML Paradigms
As mentioned above, various missing value process-
ing techniques have been embedded into various ML
paradigms. We introduce four such systems.
Quinlan (,) applied missing value tech-

niques into ID, themost famous TDIDT (decision tree
inducing) algorithm. His list exhibits two additional
routines that were not discussed above:

– �e evaluation of an attribute uses the routines I,
C, M, and R (i.e., reduce the apparent information
gain from evaluating an attribute by the proportion
of training examples with the missing value for this
attribute)

– When partitioning a training set using the selected
attribute, the routines I, U, C, F, A,M were used

– �e classi�cation phase utilizes the strategies U, C,
F, M, and H (i.e., halt the classi�cation and assign
the instance to the most likely class)

Quinlan then combined the above routine into triples
each representing a di�erent overall strategy; however,
not all the possible combinations of these routinesmake
sense.
His experiments revealed that the strategies starting

with R or C behave reasonably accurately among them
the strategy RFF is the best. Brazdil and Bruha ()
improved this strategy for partitioning a training set.
�ey combined the strategies U and F; therefore, they
call it R(UF)(UF) strategy.
Bruha and Franek () discusses the embedding

of missing value strategies into the covering algorithm
CN (Bruha andKockova), a large extension of the
well-known CN (Clark and Niblett). A condition
of a decision rule has the form:

Cmplx = Sq&. . .&SqM

where Sqm, m = , . . .,M, is the mth selector testing the
jth value Vj of the qmth attribute, (i.e., exhibiting the
form xqm = Vj). For the purposes of processing missing
values, we need to de�ne thematching ratio of the exam-
ple x and the rule’s condition Cond. (Bruha and Franek
) uses two de�nitions:

– �e product of matching ratios of its selectors:

µ(x, Cmplx) = w(x)
M

∏
m=
µ(x, Sqm) ()

– or their average:

µ(x, Cmplx) =
w(x)

M

M

∑
m=
µ(x, Sqm), ()

where w(x) is the weight of the example x (by default),
and µ on the right-hand side is the selector’s matching
ratio ().

�e Naive Bayes algorithm can process missing
attribute values in a very simple way, because the prob-
abilities it works with are, in fact, the relative frequen-
cies discussed above: the class-sensitive relative fre-
quencies fr,n,j (for the learning phase) and the overall

Missing Attribute Values M

M

relative frequencies fn,j (for the purposes of classi�-
cation). When learning relative frequencies, all strate-
gies can by applied. Only routine Fraction is useless
because it copies the distribution of the rest of a train-
ing set.When classifying an instance withmissing value
An =?, all strategies can be applied as well. Section
Fraction substitutes this instances with J(n) instances
by each known attribute value, and each “fractioned”
instance is attached by the weight fn,j, and classi�ed
separately.
Ragel and Cremilleux () present the missing

value processing strategy for the algorithm that induced
7association rules. �eir algorithm uses a modi�ed
version of the routine Ignore.�e instances with miss-
ing attribute values are not removed from the train-
ing database but the missing values are ignored (or
“hidden”).

�e experiments with the above techniques for
handling missing values have revealed the following.
In both decision tree and decision rules inducing algo-
rithms, the routine Ignore is evidently theworst strategy.
An Interesting issue is that the association rule induc-
ing algorithms use its modi�ed version. In case of the
decision tree inducing algorithms, the strategy Fraction
is one of the best; however, the decision rules induc-
ing algorithms found it not so e�cient.�e explanation
for this fact is based on di�erent ways of processing
examples in these two paradigms: in TDIDT, all training
examples are eventually incorporated into the decision
tree generated by the learning algorithm; on the other
hand, the covering paradigm algorithm generates rules
that may not cover all of the examples from the train-
ing set (as some of the examples are found not to be
representable).
Although the routine Unknown is one of the “win-

ners” (at least in the rule inducing algorithms and
Brazdil and Bruha (), it is not quite clear how one
can interpret, on a philosophical as well as a semantic
level, a branch in a decision tree or a decision rule that
involves a selector with an attribute equal to “?” (miss-
ing value). Strategy Fraction can be faced by “problems”:
if an example /instance exhibits too many missing val-
ues, then this strategy generates too many “fractioned”
examples with very negligible weights.
One can �nd out that each dataset has more or

less its own “favorite” routine for processing missing
attribute values. It evidently depends on the magnitude

of noise and the source of unknownness in each dataset.
�e problem of a “favorite” strategy can be solved by
various approaches. One possibility is to create a small
“window” within a training set, and to check the e�-
ciency of each strategy in this window, and then choose
the most e�cient one. Bruha () discusses another
possibility: investigating the advantages of utilizing the
external background (domain-speci�c, expert) knowl-
edge on an attribute hierarchical tree.
Also, the concept of the so-called 7meta-combiner

(Fan, Chan & Stolfo,) can be utilized. A learn-
ing algorithm processes a given training base for each
strategy for missing values independently; thus, all the
missing value strategies are utilized in parallel and the
meta-classi�er makes up its decision from the results of
the base level (Bruha,).

�e above issue – i.e., selection or combination of
various strategies for missing value processing – is an
open �eld for future research.

Recommended Reading
Brazdil, P. B., & Bruha, I. (). A note on processing missing

attribute values: A modified technique. Workshop on Machine
learning, Canadian Conference AI, Vancouver.

Bruha, I. (). Unknown attribute value processing by domain-
specific external expert knowledge. th WSEAS international
conference on systems, Corfu, Greek.

Bruha, I. (). Meta-learner for unknown attribute values pro-
cessing: Dealing with inconsistency of meta-databases. Journal
of Intelligent Information Systems, (), –.

Bruha, I., & Franek, F. (). Comparison of various routines
for unknown attribute value processing: covering paradigm.
International Journal of Pattern Recognition and Artificial Intel-

ligence, (), –.
Bruha, I., & Berka, P. (). Discretization and fuzzifica-

tion of numerical attributes in attribute-based learning. In
P. S. Szczepaniak, P. J. G. Lisboa, & J. Kacprzyk (Eds.), Fuzzy
systems in medicine (pp. –). Physica, Springer.

Bruha, I., & Kockova, S. (). A support for decision making: Cost-
sensitive learning system. Artificial Intelligence in Medicine, ,
–.

Clark, P., & Niblett, T. (). The CN induction algorithm.
Machine Learning, , –.

Fan, D. W., Chan, P. K., & Stolfo, S. J. (). A comparative
evaluation of combiner and stacked generalization. Workshop
integrating multiple learning models, AAAI, Portland.

Grzymala-Busse, J. W. (). Rough set strategies to date with miss-
ing attribute values, Proceedings of workshop on foundations and
new directions in data mining, IEEE Conference on data mining

(pp. –).
Karmaker, A., & Kwer, S. (). Incorporating an EM-approach

for handling missing attribute-values in decision tree induc-
tion. International Conference on Hybrid Intelligent Systems,
–.

 M Missing Values

Kononenko, I. (). Combining decisions of multiple rules. In
B. du Boulay & V. Sgurev (Eds.), Artificial intelligence V:
Methodology, systems, applications (pp. –). Elsevier.

Lakshminarayan, K. et al. (). Imputation of missing data using
machine learning techniques. Conference Knowledge Discovery
in Databases (KDD-), –.

Li, J., & Cercone, N. (). Assigning missing attribute values based
on rough sets theory. IEEE international conference on granular
computing (pp. –). Atlanta.

Long, W. J., & Zhang, W. X. (). A novel measure of compat-
ibility and methods of missing attribute values treatment in
decision tables. International Conference on Machine Learning
and Cybernetics, –.

Quinlan, J. R. (). Induction of decision trees.Machine Learning,
, –.

Quinlan, J. R. (). Unknown attribute values in ID. Proceedings
of International Workshop on Machine Learning, –.

Ragel, A., & Cremilleux, B. (). Treatment of missing values
for association rules. Lecture Notes in Computer Science, ,
–.

Missing Values

7Missing Attribute Values

Mistake-Bounded Learning

7Online Learning

Mixture Distribution

7Mixture Model

Mixture Model

Rohan A. Baxter
Australian Taxation O�ce

Synonyms
Finite mixture model; Latent class model; Mixture dis-
tribution; Mixture modeling

Definition
A mixture model is a collection of probability distri-
butions or densities D, . . . ,Dk and mixing weights or

proportions w, . . . ,wk, where k is the number of
component distributions (Duda, Hart, & Stork, ;
Lindsey, ; McLachlan & Peel,).

�e mixture model, P(x ∣D, . . . ,Dk,w, . . . ,wk) =
k

∑
j=
wjP(x ∣Dj), is a probability distribution over the

data conditional on the component distributions of the
mixture and their mixing weights. It can be used for
density estimation, model-based clustering or unsuper-
vised learning, and classi�cation.
Figure shows one-dimensional data plotted along

the x-axis with tick marks and a histogram of that data.
�e probability densities of two mixture models �tted
to that data are then shown.�e one-component mix-
ture model is a Gaussian density with mean around
and standard deviation of ..�e two-componentmix-
ture model has one component with mean around
and the other with mean around , which re�ects how
these simple example data was arti�cially generated.
�is model can be used for clustering by considering
each of its components as a cluster and assigning cluster
membership based on the relative probability of a data
item belonging to that component. Data less than will
have higher probability of belonging to the Gaussian
with mean component.

Mixture models fitted to 50 samples from
Gaussian(1,1) and 50 samples from Gaussian(4,1)

Two–component mixture model
0.25

0.20

0.15

0.10

0.05

0.00

One–component mixture model

–2 0 2
X

4 6 8

 |
m

ix
tu

re
 m

od
el

)
P

(X

Mixture Model. Figure . Mixture model example for

one-dimensional data

Mixture Model M

M

Motivation and Background
Mixture models are easy and convenient to apply.�ey
trade o� good power in data representationwith relative
ease in building the models. When used in clustering,
a mixture model will have a component distribution
covering each cluster, while the mixing weights re�ect
the relative proportion of a cluster’s population. For
example, a two-component mixture model of seal skull
lengths from two di�erent seal species may have one
component with relative proportion . and the other
with . re�ecting the relative frequency of the two
components.

Estimation
In order to use mixture models, the following choices
need to bemade by themodeler or by themixturemodel
so�ware, based on the characteristics of a particular
problem domain and its datasets:

. �e type of the component distributions (e.g., Gaus-
sian, multinomial etc.)

. �e number of component distributions, k
. �e parameters for the component distributions
(e.g., a one-dimensional Gaussian has a mean
and standard deviation as parameters, a higher-
dimensional Gaussian has a mean vector and
covariance matrix as parameters)

. Mixing weights, wi
. (Optional) component labels, cj for each datum xj,
where j = . . . n and n is the number of data

�e ��h item above, component labels, are optional,
because they are only used in latent class mixture
model frameworks where a de�nite component mem-
bership is part of the model speci�cation. Other mix-
ture model frameworks use probabilistic membership
of each datum to each component distribution and so
do not need explicit component labels.

�e most common way of �tting distribution
parameters andmixtureweights is to use the expectation-
maximization (EM) algorithm to �nd the maximum
likelihood estimates.�e EM algorithm is an iterative
algorithm that, startingwith initial guesses of parameter
values, computes the mixing weights (the expectation
step). �e next step is to then compute the parame-
ter values based on these weights (the maximization
step).�e Expectation and Maximization steps iterate

and convergence is assured (Redner & Walker,).
However, there is no guarantee that a global optimum
has been found and so a number of random restarts
may be required to �nd what other optima exist (Xu &
Jordan,).
As an alternative to random restarts, a good search

strategy can be used to modify the current best solu-
tion, perhaps by choosing to split, merge, delete, or add,
component distributions at random.�is can also be a
way to explore mixture models with di�erent number
of components (Figueiredo & Jain,).
Sincemixturemodels are a probabilisticmodel class,

besides EM, other methods such as Bayesian methods
or methods for graphical models can be used. �ese
includeMarkov ChainMonte Carlo inference and Vari-
ational learning (Bishop,).

Choosing the Number of Components
�e number of components in a mixture model is o�en
unknown when used for clustering real-world data.
�ere have been many methods for choosing the num-
ber of components. �e global maximum for maxi-
mum likelihood chooses a component for every data
item, which is usually undesirable. Criteria based on
information theory or Bayesian model selection choose
reasonable numbers of components in many domains
(McLachlan & Peel, , Chap. ,). �ere is no
universally accepted method, because there is no uni-
versally accepted optimality criteria for clustering or
density estimation. Use of an in�nite mixture model, by
using an in�nite number of components, is one way to
avoid the number of components problem (Rasmussen,
).

Types of Component Distributions
Besides Gaussian, other distributions can be used such
as Poisson (for count data), von Mises (for data involv-
ing directions or angles), and Weibull. Heavy-tailed
distributions require particular care, because standard
estimationmay not work whenmean or variance is in�-
nite (Dasgupta, Hopcro�, Kleinberg, & Sandler,).
Another commonly needed variation is a mixture

model to handle a mix of continuous and categorical
features (McLachlan&Peel,). For example, a bino-
mial distribution can be used to model male/female

 M Mixture Modeling

gender proportions and Gaussian to model length for
data relating to a seal species sample.
A further extension is to allow components to

depend on covariates, leading to mixtures of regression
models (McLachlan & Peel,).�is leads to models
such asmixtures of experts and hierarchical mixtures of
experts (Bishop, ; McLachlan & Peel,), which
are �exiblemodels for nonlinear regression.�e combi-
nation of mixture models with Hidden Markov models
allows the modeling of dependent data (McLachlan &
Peel,).

Large Datasets
�e EM algorithm can be modi�ed to �nd mix-
ture models for very large datasets (Bradley, Reina, &
Fayyad,). �e modi�cation allows for a single
scan of the data and involves identifying compressible
regions of the data.

Theory
A key issue for mixture models is learnability (Chaudri,
).�e more the component distributions overlap,
the harder they are to learn. Higher-dimensional data
also makes learning harder. Sometimes, these prob-
lems can be overcome by increasing the data quantity,
but, in extremely hard cases, this will not work (Srebo,
Shakhnarovich, & Roweis, ; Xu & Jordan,).
Another issue is the relationship between adequate

sample size and the number of components. A prag-
matic policy is to set minimum mixing weights for
component distributions. For example, for a dataset of
size , if mixing weights are required to be greater
than ., this implies amaximum of ten components are
possible to be learnt from the data with these parameter
settings.

Applications
Mixture model so�ware is o�en available in the cluster-
ing or density estimation parts of general statistical and
data mining so�ware. More specialized mixture mod-
eling so�ware for clustering data have included Auto-
class (Autoclass,), Snob (Snob,), and mclust
(Mclust,).

Cross References
7Density-Based Clustering
7Density Estimation
7Gaussian Distribution
7Graphical Models
7Learning Graphical Models
7Markov Chain Monte Carlo
7Model-Based Clustering
7Unsupervised Learning

Recommended Reading
Autoclass, http://ti.arc.nasa.gov/project/autoclass/. Accessed

March .
Bishop, C. M. (). Pattern recognition and machine learning.

New York: Springer.
Bradley, P. S., Reina, C. A., & Fayyad, U. M. (). Clustering

very large databases using EM mixture models. Fifteenth Inter-
national Conference on Pattern Recognition, (ICPR-),
(Vol. ., p.), Barcelona, Spain.

Chaudri, K. (). Learning mixture models. http://themachine
learningforum.org/index.php/overviews/-colt-overviews/-
learning-mixture-models.html. Accessed March .

Dasgupta, A., Hopcroft, J., Kleinberg, J., & Sandler, M. ().
On learning mixtures of heavy-tailed distributions. In: Pro-
ceedings of the th Annual IEEE symposium on foundations
of computer science, (FOCS ‘), Pittsburgh, Pennsylvania,
USA.

Duda, R. O., Hart, P. E., & Stork, D. G. (). Pattern classification
(nd ed.). New York: Wiley-Interscience.

Figueiredo, M. A. T., & Jain, A. T. (). Unsupervised learning of
finite mixture models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, , –.

Lindsey, B. G. (). Mixture models: Theory, geometry and appli-
cations. Hayward, CA: IMS.

McLachlan, G. J., & Peel, D. (). Finite mixture models. New York:
Wiley.

Mclust, http://www.stat.washington.edu/mclust/. Accessed
March .

Rasmussen, C. E. (). The infinite Gaussian mixture model, NIPS
 (pp. –). Cambridge, MA: MIT Press.

Redner, R. A., & Walker, H. F. (). Mixture densities, max-
imum likelihood and the EM algorithm. SIAM Review, ,
–.

Snob, http://www.datamining.monash.edu.au/software/snob/. Acc-
essed March .

Srebo, N., Shakhnarovich, G., & Roweis, S. (). An investiga-
tion of computational and informational limits in Gaussian
mixture modeling. In Proceedings of the rd international
conference on machine learning (ICML), Pittsburgh,
Pennsylvania.

Xu, L., & Jordan, M. I. (). On convergence properties of the
EM algorithm for Gaussian mixtures. Neural Computation, ,
–.

http://themachinelearningforum.org/index.php/overviews/%C3%A7%C2%A5-colt-overviews/%E2%82%AC%C3%A7-learning-mixture-models.html
http://themachinelearningforum.org/index.php/overviews/%C3%A7%C2%A5-colt-overviews/%E2%82%AC%C3%A7-learning-mixture-models.html

Model Space M

M

Mixture Modeling

7Mixture Model

Mode Analysis

7Density-Based Clustering

Model Evaluation

Geoffrey I. Webb
Monash University, Victoria, Australia

Model evaluation is the process of assessing a property
or properties of a7model.

Motivation and Background
It is o�en valuable to assess the e�cacy of a model
that has been learned. Such assessment is frequently
relative—an evaluation of which of several alternative
models is best suited to a speci�c application.

Processes and Techniques
�ere are many metrics by which a model may be
assessed.�e relative importance of each metric varies
from application to application.

�e primary considerations o�en relate to predic-
tive e�cacy—how useful will the predictions be in the
particular context it is to be deployed.Measures relating
to predictive e�cacy include7Accuracy,7Li�,7Mean
Absolute Error,7Mean Squared Error,7Negative Pre-
dictive Value, 7Positive Predictive Value, 7Precision,
7Recall,7Sensitivity,7Speci�city, and variousmetrics
based on7ROC analysis.
Computational issues may also be important, such

as a model’s size or its execution time.
In many applications one of the most important

considerations is the ease with which the model can be
understood by the users or how consistent it is with the
users’ prior beliefs and understanding of the application
domain.

When assessing the predictive e�cacy of a model
learned from data, to obtain a reliable estimate of its
likely performance on new data, it is essential that it
is not assessed by considering its performance on the
data from which it was learned. A learning algorithm
must interpolate appropriate predictions for regions of
the 7instance space that are not included in the train-
ing data. It is probable that the inferred model will
be more accurate for those regions represented in the
training data than for those that are not, and hence
predictions are likely to be less accurate for instances
that were not included in the training data. Estimates
that have been computed on the training data are called
7resubstitution estimates. For example, the error of a
model on the training data from which it was learned
is called resubstitution error.
Algorithm evaluation techniques such as 7cross-

validation, 7holdout evaluation, and 7bootstrap sam-
pling are designed to provide more reliable estimates
of the accuracy of the models learned by an algorithm
than would be obtained by assessing them on the train-
ing data.

Cross References
7Algorithm Evaluation
7Over�tting
7ROC Analysis

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of

statistical learning. New York: Springer.
Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.
Witten, I. H., Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco: Morgan
Kaufmann.

Model Selection

Model selection is the process of choosing an appropri-
ate mathematical model from a class of models.

Model Space

7Hypothesis Space

 M Model Trees

Model Trees

Luís Torgo
University of Porto,
Porto, Portugal

Synonyms
Functional trees; Linear regression trees; Piecewise lin-
ear models

Definition
Model trees are supervised learning methods that
obtain a type of tree-based7Regression model, similar
to 7Regression Trees, with the particularity of having
functional models in the leaves instead of constants.
�ese methods address multiple regression problems.
In these problemswe are usually given a training sample
of n observations of a target continuous variable Y and
of a vector of k predictor variables, x = X,⋯,Xk. Model
trees provide an approximation of an unknown regres-
sion function Y = f (x)+ ε with Y ∈ R and ε, a normally
distributed noise component with mean and σ vari-
ance.�e leaves of these trees usually contain 7linear
regression models, although some works also consider
other types of models.

Motivation and Background
Model trees are motivated by the purpose of over-
coming some of the known limitations of regression
trees caused by their piecewise constant approxima-
tion. In e�ect, by using constants at the leaves, regres-
sion trees provide a coarse grained function approx-
imation leading to poor accuracy in some domains.
Model trees try to overcome this by using more com-
plex models on the leaves. Trees with linear models
in the leaves were �rst considered in Breiman and
Meisel () and Friedman (). Torgo () has
extended the notion of model trees to other types of
models in the tree leaves, namely, kernel regression,
later extended to other types of local regression mod-
els (Torgo, ,). �e added complexity of the
models used in the leaves increases the computational
complexity ofmodel trees when compared to regression
trees, and also decreases their interpretability. In this
context, several works Chaudhuri, Huang, Loh, & Yao

(); Dobra & Gehrke (); Loh (); Malerba,
Appice, Ceci, &Monopoli (); Natarajan& Pednault
(); Torgo ();Malerba, Esposito, Ceci, &Appice
(); Potts & Sammut (); Vogel, Asparouhov, &
Sche�er () have focused on obtaining model trees
in a computationally e�cient form.

Structure of Learning System
Approaches to model trees can be distinguished along
two dimensions: the criterion used to select the best
splits at each node, that is, the criterion guiding the par-
titioning obtained by the tree; and the type of models
used in the leaves. �e choices along the �rst dimen-
sion are mainly driven by considerations of computa-
tional e�ciency. In e�ect, the selection of the best split
node involves evaluating many candidate splits. �e
evaluation of a binary split (the most common splits
in tree-based models) consists in calculating the error
reduction produced by the split, that is,

∆(s, t) = Err(t) − (
ntL
nt

× Err(tL) +
ntR
nt

× Err(tR)) ()

where t is a tree node with sub-nodes tL and tR origi-
nated by the split test s, while nt , ntL , ntR are the cardi-
nalities of the respective sets of observations on each of
these nodes, and Err() is a function that estimates the
error on a node being de�ned as,

Err(t) =

nt

∑
⟨xi ,yi⟩∈Dt

(yi − g(Dt))
 ()

where Dt is the sample of cases in node t, nt is the car-
dinality of this set, and g(Dt) is a function of the cases
in node t.
In standard regression trees the function g() is the

average of the target variable Y , that is,
nt
∑⟨xi ,yi⟩∈Dt yi.

�is corresponds to assuming a constant model on each
leaf of the tree.�e evaluation of each candidate split
requires obtaining the models at the respective le� and
right branches (Eq.). If this model is an average, rather
e�cient incremental algorithms can be used to evaluate
all candidate splits. On the contrary, if g() is a 7linear
regression model or even other more complex models,
this evaluation is not so simple and it is computation-
ally very demanding, as a result of which systems that
use this strategy (Karalic,) become impractical for

Model Trees M

M

large problems. In this context, several authors have
adopted the alternative of growing the trees assuming
constant values in the leaves and then �tting the com-
plex models on each of the obtained leaves (e.g., Quin-
lan, ; Torgo, , ,). �is only requires
�tting as many models as there are leaves in the �nal
tree. �e main drawback of this approach is that the
splits for the tree nodes are selected assuming the leaves
will have averages instead of the models that in e�ect
will be used.�is may lead to splits that are suboptimal
for the models that will �t on each leaf (Malerba et al.,
,). Several authors have tried to maintain the
consistency of the split selection step with the models
used in the leaves by proposing e�cient algorithms for
evaluating the di�erent splits. In Malerba et al. (,
) linear models are obtained in a stepwise man-
ner during tree growth. In Chaudhuri et al. (),
Loh (), and Dobra and Gehrke () the com-
putational complexity is reduced by transforming the
original regression problem into a classi�cation prob-
lem. In e�ect, the best split is chosen by looking at the
distribution of the sign of the residuals of a linearmodel
�tted locally. In Natarajan and Pednault (); Torgo
(); Vogel et al. () the problem is addressed by
proposing more e�cient algorithms to evaluate all can-
didate splits. Finally, Potts and Sammut () proposes
an incremental algorithm to obtain model trees that
�ghts the complexity of this task by imposing a limit
on the number of splits that are considered for each
node.

�e most common form of model used in leaves is
7linear regression. Still, there are systems considering
kernelmodels (Torgo,), local linearmodels (Torgo,
), and partial linear models (Torgo,). �ese
alternatives provide smoother function approximation,
although with increased computational costs and less
interpretable models.

7Pruning in model trees does not bring any addi-
tional challenges when compared to standard regres-
sion trees and so similar methods are used for this
over-�tting avoidance task. �e same occurs with the
use of model trees for obtaining predictions for new
test cases. Each case is “dropped-down” the tree from
the root node, following the branches according to the
logical tests in the nodes, till a leaf is reached. �e
model in this leaf is used to obtain the prediction for the
test case.

Cross References
7Random Forests
7Regression
7Regression Trees
7Supervised Learning
7Training Sample

Recommended Reading
Breiman, L., & Meisel, W. S. (). General estimates of the intrinsic

variability of data in nonlinear regression models. Journal of the
American Statistical Association, , –.

Chaudhuri, P., Huang, M., Loh, W., & Yao, R. ().
Piecewise-polynomial regression trees. Statistica Sinica, ,
–.

Dobra, A., & Gehrke, J. E. (). Secret: A scalable linear regression
tree algorithm. In Proceedings of the eighth ACM SIGKDD inter-
national conference on knowledge discovery and data mining.
Edmonton, Alberta, Canada: ACM.

Friedman, J. (). A tree-structured approach to nonpara-
metric multiple regression. In T. Gasser & M. Rosenblatt
(Eds.), Smoothing techniques for curve estimation. Lecture
notes in mathematics (Vol. , pp. –). Berlin/Heidelberg:
Springer.

Karalic, A. (). Employing linear regression in regression tree
leaves. In Proceedings of ECAI-. New York, NY, USA: John
Wiley & Sons, Inc.

Loh, W. (). Regression trees with unbiased variable selection
and interaction detection. Statistica Sinica, , –.

Malerba, D., Appice, A., Ceci, M., & Monopoli, M. (). Trading-
off local versus global effects of regression nodes in model trees.
In ISMIS ’: Proceedings of the th international symposium on
foundations of intelligent systems (pp. –). Springer.

Malerba, D., Esposito, F., Ceci, M., & Appice, A. (). Top-down
induction of model trees with regression and splitting nodes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,

(), –.
Natarajan, R., & Pednault, E. (). Segmented regression estima-

tors for massive data sets. In Proceedings of the second SIAM
international conference on data mining (SDM’). Arlington,
VA, USA: SIAM.

Potts, D., & Sammut, C. (). Incremental learning of linear model
trees. Machine Learning, (–), –.

Quinlan, J. (). Learning with continuous classes. In Adams
& Sterling (Ed.), Proceedings of AI’ (pp. –). World
Scientific.

Torgo, L. (). Functional models for regression tree leaves. In
D. Fisher (Ed.), Proceedings of the th international confer-
ence on machine learning. San Francisco, CA, USA: Morgan
Kaufmann.

Torgo, L. (). Inductive learning of tree-based regression models.
PhD thesis, Faculty of Sciences, University of Porto.

Torgo, L. (). Partial linear trees. In P. Langley (Ed.), Proceed-
ings of the th international conference on machine learning

(ICML) (pp. –). San Francisco, CA, USA: Morgan
Kaufmann.

 M Model-Based Clustering

Torgo, L. (). Computationally efficient linear regression trees.
In K. Jajuga, A. Sokolowski, & H. Bock (Eds.), Classification,
clustering and data analysis: Recent advances and applications

(Proceedings of IFCS). Studies in classification, data analy-

sis, and knowledge organization (pp. –). Heidelberg/New
York: Springer.

Vogel, D., Asparouhov, O., & Scheffer, T. (). Scalable look-ahead
linear regression trees. In KDD ’: Proceedings of the th ACM
SIGKDD international conference on knowledge discovery and

data mining (pp. –). ACM.

Model-Based Clustering

Arindam Banerjee, Hanhuai Shan
University of Minnesota, Minneapolis, MN, USA

Definition
Model-based clustering is a statistical approach to data
clustering.�e observed (multivariate) data is assumed
to have been generated from a �nite mixture of com-
ponent models. Each component model is a probability
distribution, typically a parametric multivariate distri-
bution. For example, in amultivariate Gaussianmixture
model, each component is a multivariate Gaussian dis-
tribution.�e component responsible for generating a
particular observation determines the cluster to which
the observation belongs. However, the component gen-
erating each observation as well as the parameters for
each of the component distributions are unknown.
�e key learning task is to determine the component
responsible for generating each observation, which in
turn gives the clustering of the data. Ideally, observa-
tions generated from the same component are inferred
to belong to the same cluster. In addition to infer-
ring the component assignment of observations, most
popular learning approaches also estimate the param-
eters of each component in the process. �e strength
and popularity of the methods stem from the fact that
they are applicable for a wide variety of data types,
such asmultivariate, categorical, sequential, etc., as long
as suitable component generative models can be con-
structed. Such methods have found applications in sev-
eral domains such as text clustering, image processing,
computational biology, and climate sciences.

Structure of Learning System
Generative Model

LetX ={x, . . . , xn} be a dataset on which a k-clustering
is to be performed. Let p(x∣θ), . . . , p(x∣θk) be k dis-
tributions which form the components of the mixture
model from which the observed data is assumed to
have been generated, and let π = (π, . . . , πk) denote a
prior distribution over the components.�enΘ= (π, θ)
constitutes the (unknown) parameters of the gen-
erative mixture model, where θ ={θ, . . . , θk} and
π = {π, . . . , πk}.
Given the model, an observation is assumed to be

generated by the following two-step process: () ran-
domly pick a component following the discrete distri-
bution π over the components, i.e., the hth component
is chosen with the probability of πh; () the observa-
tion is sampled from the component distribution, e.g.,
if the hth component was chosen, we draw a sam-
ple x ∼ p(x∣θh). Each observation is assumed to be
statistically independent so that they are all generated
independently following the same two-step process.
Figure gives an example of data drawn from

a mixture of three (k=) -dimentional multivari-
ate Gaussians. In the example, the discrete distri-
bution over the component Gaussians is given by
π = (., ., .).�e parameter set θh,h= , , for any
individual multivariate Gaussian consists of the mean
vector µh and the covariance matrix Σh. For the exam-
ple, we have µ = [,], µ = [,], µ = [,], and Σ =
[.
.], Σ = [−.

−.], Σ = [.
.].

0 5 10 15

−2

0

2

4

6

8

10

12

x1

x 2

1

2

3

Model-Based Clustering. Figure . Three -dimensional

Gaussians

Model-Based Clustering M

M

π

z1 z2 zn

x1 x2 xn

θ1...k

Model-Based Clustering. Figure . Bayesian network for

a finite mixture model

�e generative process could be represented as a
Bayesian network as shown in Fig. , where the arrows
denote the dependencies among variables/parameters.
In the Bayesian network, (π, θ) are the parameters of
themixturemodel, xi are the observations and zi are the
latent variables corresponding to the component which
generates xi, i = , . . . ,n. To generate an observation xi,
the model �rst samples a latent variable zi from the dis-
crete distribution π, and then samples the observation
xi from component distribution p(x∣θzi).

Learning

Given a set of observations X = {x, . . . , xn} assumed
to have been generated from a �nite mixture model, the
learning task is to infer the latent variables zi for each
observation as well as estimate the model parameters
Θ = (π, θ). In the Gaussian mixture model example,
the goal would be to infer the component responsible
for generating each observation and estimate the mean
and covariance for each component Gaussian as well
as the discrete distribution π over the three Gaussians.
A�er learning model parameters, the posterior prob-
ability p(h∣xi, Θ) of each observation xi belonging to
each component Gaussian gives a (so�) clustering for
the observation.

�e most popular approach for learning mixture
models is based on maximum likelihood estimation
(MLE) of the model parameters. In particular, given the
set of observations X, one estimates the set of model
parameters which maximizes the (log-)likelihood of
observing the entire dataset X. For the �nite mixture
model, the likelihood of observing any data point xi is
given by

p(xi∣Θ) =
k

∑
h=

πhp(xi∣θh) . ()

Since the data points in X are assumed to be sta-
tistically independent, the log-likelihood. (In practice,
one typically focuses on maximizing the log-likelihood
log p(X∣Θ) instead of the likelihood p(X∣Θ) due to
both numerical stability and analytical tractability). of
observing the entire dataset X is given by

log p(X∣Θ) = log(
n

∏
i=
p(xi∣π, θ))

=
n

∑
i=
log(

k

∑
h=

πhp(xi∣θh)) . ()

A direct application of MLE is di�cult since the log-
likelihood cannot be directly optimized with respect
to the model parameters. �e standard approach to
work around this issue is to use the expectation max-
imization (EM) algorithm which entails maximizing a
tractable lower bound to the log-likelihood log p(X∣Θ).
To this end, a latent variable zi is explicitly introduced
for each xi to inform the component that xi is generated
from.�e joint distribution of (xi, zi) is p(xi, zi∣π, θ) =
πzip(xi∣θzi). Let Z = {z, . . . , zn} denote the set of latent
variables corresponding to X = {x, . . . , xn}.�e joint
log-likelihood of (X,Z) then becomes

log p(X,Z∣Θ) =
n

∑
i=
log p(xi, zi∣Θ)

=
n

∑
i=

(log πzi + log p(xi∣θzi)) . ()

For a given set Z, it is easy to directly optimize () with
respect to the parameters Θ = (π, θ). However, Z is
actually a randomvectorwhose exact value is unknown.
Hence, the log-likelihood log p(X,Z∣Θ) is a random
variable depending on the distribution of Z. As a result,
EM focuses on optimizing the following lower bound
based on the expectation of log p(X,Z∣Θ) where the
expectation is taken with respect to some distribution
p(Z) over the latent variable set Z. In particular, for any
distribution q(Z), we consider the lower bound

L(q, Θ) = EZ∼q[log p(X,Z∣θ)] +H(q(Z)) , ()

 M Model-Based Clustering

where the expectation on the �rst term is with respect
to the posterior distribution q(Z) andH(q(Z)) denotes
the Shannon entropy of the latent variable set Z ∼ q(Z).
A direct calculation shows that the di�erence between
the true log-likelihood in () and the lower bound in
() is exactly the relative entropy between q(Z) and the
posterior distribution p(Z∣X, Θ), i.e.,

log p(X∣Θ) − L(q, Θ) = KL(q(Z)∣∣p(Z∣X, Θ)) ≥ ()

⇒ log p(X∣Θ) ≥ L(q, Θ) , ()

where KL(∣∣) denotes the KL-divergence or relative
entropy. As a result, when q(Z) = p(Z∣X, Θ), the lower
bound is exactly equal to the log-likelihood log p(X∣Θ).
EM algorithms for learning mixture models work by
alternately optimizing the lower bound L(q, Θ) over
q and Θ. Starting with an initial guess Θ() of the
parameters, in iteration t such algorithms perform the
following two steps:

E-stepMaximize L(q, Θ(t−)) with respect to q(Z) to
obtain

q(t)(Z) = argmax
q(Z)

L(q(Z), Θ(t−))

= p(Z∣X, Θ(t−)) . ()

M-stepMaximize L(q(t), Θ) with respect to Θ, i.e.,

Θ(t) = argmax
Θ

L(q(t)(Z), Θ) , ()

which is equivalent to

Θ(t) = argmax
Θ

n

∑
i=
Ezi[log p(xi, zi∣Θ)]

since the second term in () does not depend
on Θ.

Model-based clustering of multivariate data is o�en
performed by learning a Mixture of Gaussians (MoG)
using the EM algorithm. In a MoG model, the param-
eters corresponding to each component are the mean
and covariance for each Gaussian given by (µh, Σh),
h = , . . . , k. For a given dataset X, the EM algo-
rithm for learningMoG starts with an initial guess Θ()

for the parameters where Θ() ={(π
()
h
, µ()
h
, Σ()
h

),
h= , . . . , k}. At iteration t, the following updates are
done:

E-step Update distributions over latent variables
zi, i =
, . . . ,n as

q(t)(zi = h) = p(zi = h∣xi, Θ(t−))

=
π
(t−)
h

p(xi∣µ
(t−)
h

, Σ(t−)
h

)

∑
k
h′= π

(t−)
h′

p(xi∣µ
(t−)
h

, Σ(t−)
h′

)
. ()

M-step Optimizing the lower bound over {(πh, µh, Σh),
h = , . . . , k} yields

π
(t)
h

=

n

n

∑
i=
p(h∣xi, Θ(t−)) , ()

µ
(t)
h

=
∑
n
i= xip(h∣xi, Θ(t−))

nπ
(t)
h

, ()

Σ(t)
h

=
∑
n
i=(xi − µ

(t)
h

)(xi − µ
(t)
h

)Tp(h∣xi, Θ(t−))

nπ
(t)
h

. ()

�e iterations are guaranteed to lead to monotoni-
cally non decreasing improvements of the lower bound
L(q, Θ). �e iterations are typically run till a suitable
convergence criterion is satis�ed. On convergence, one
gets the estimates Θ = {(πh, µh, Σh),h = , . . . , k} of
the component parameters as well as the so� cluster-
ing p(h∣xi, Θ) of individual data points.�e alternating
maximization algorithm outlined above can get stuck in
a local minima or saddle point of the objective function.
In general, the iterations are not guaranteed to converge
to a global optima. In fact, di�erent initializations Θ()

of parameters can yield di�erent �nal results. In prac-
tice, one typically tries a set of di�erent initializations
and picks the best among them according to the �nal
value of the lower bound obtained. Extensive empiri-
cal research has gone into devising good initialization
schemes for EM algorithm in the context of learning
mixture models.
Recent years have seen progress in the design and

analysis of provably correct algorithms for learning
mixture models for certain well behaved distributions,
where the component distributions are assumed to be

Model-Based Control M

M

separated from each other in a well-de�ned sense. Such
algorithms typically involve projecting data to a suit-
able lower-dimensional space where the components
separate out and the clustering becomes simpler. One
family of algorithms rely on random projections and
are applicable to variety of problems including that
of learning mixture of Gaussians. More recent devel-
opments include algorithms based on spectral pro-
jections and are applicable to any log-concave distri-
butions.

Related Work

Model-based clustering is intimately related to a wide
variety of centroid-based partitional clustering algo-
rithms. In particular, the popular kmeans clustering
algorithm can be viewed as a special case of learning
mixture of Gaussians with a speci�c covariance struc-
ture. Given a dataset X, the kmeans problem is to �nd
a partitioning C = {Ch,h = , . . . , k} of X such that the
following objective is minimized:

J(C) =
k

∑
h=
∑
x∈Ch

∥x − µh∥
 ,

where µh is the mean of the points in Ch. Starting from
an initial guess at the cluster means, the kmeans algo-
rithm alternates between assigning points to the nearest
cluster and updating the cluster means till convergence.
Consider the problem of learning a mixture of Gaus-
sians on X such that each Gaussian has a �xed covari-
ance matrix Σh = βI, where I is the identity matrix and
β > is a constant.�en, as β → , maximizing the
scaled lower bound βL(q, Θ) corresponding to themix-
turemodeling problembecomes equivalent tominimiz-
ing the kmeans objective. Further, the EM algorithm
outlined above reduces to the popular kmeans algo-
rithm. In fact, such a reduction holds for a much larger
class of centroid-based clustering algorithms based on
Bregman divergences, which are a general class of diver-
gence measures derived from convex function and have
popular divergences such as squared Euclidean distance
and KL-divergence as special cases. Centroid-based
clustering with Bregman divergences can be viewed as
a special case of learning mixtures of exponential fam-
ily distributions with a reduction similar to the one

frommixture of Gaussians to kmeans. Further, non lin-
ear clustering algorithms such as kernel kmeans can be
viewed as a special case of learningmixture ofGaussians
in a Hilbert space.
Recent years have seen generalizations of mixture

models to mixed membership models and their non
parametric extensions. Latent Dirichlet allocation is an
example of such a mixed membership model for topic
modeling in text corpora. �e key novelty of mixed
membership models is that they allow a di�erent com-
ponent proportions πx for each observation x instead of
a �xed proportion π as in mixture models.�e added
�exibility yields superior performance in certain prob-
lem domains.

Recommended Reading
Banerjee, A., Merugu, S., Dhillon, I., & Ghosh, J. (). Cluster-

ing with Bregman divergences. Journal of Machine Learning
Research, , –.

Bilmes, J. (). A gentle tutorial on the EM algorithm and its
application to parameter estimation for Gaussian mixture and
hidden Markov models. Technical Report ICSI-TR--, Uni-
versity of Berkeley.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (). Latent dirichlet allo-
cation. Journal of Machine Learning Research, , –.

Dasgupta, S. (). Learning mixtures of Gaussians. IEEE Sympo-
sium on foundations of Computer Science (FOCS). Washing-
ton, DC: IEEE Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society. Series B (Methodological), (),
–.

Kannan, R., Salmasian, H., & Vempala, S. (). The spectral
method for general mixture models. Conference on Learning
Theory (COLT).

McLachlan, G. J., & Krishnan, T. (). The EM algorithm and

extensions. NewYork: Wiley-Interscience.
McLachlan, G. J., & Peel, D. (). Finite mixture models. Wiley

series in probability and mathematical statistics: Applied proba-

bility and statistics section. New York: Wiley.
Neal, R. M., & Hinton, G. E. (). A view of the EM algorithm that

justifies incremental, sparse, and other variants. In M. I. Jordan
(Ed.), Learning in graphical models (pp. –). Cambridge,
MA: MIT Press.

Redner, R., & Walker, H. (). Mixture densities, maximum like-
lihood and the EM algorithm. SIAM Review, (), –.

Model-Based Control

7Internal Model Control

 M Model-Based Reinforcement Learning

Model-Based Reinforcement
Learning

Soumya Ray, Prasad Tadepalli
Case Western Reserve University, Cleveland,
OH, USA
Oregon State University, Corvallis, OR, USA

Synonyms
Indirect reinforcement learning

Definition
Model-basedReinforcement Learning refers to learning
optimal behavior indirectly by learning a model of the
environment by taking actions and observing the out-
comes that include the next state and the immediate
reward.�emodels predict the outcomes of actions and
are used in lieu of or in addition to interaction with the
environment to learn optimal policies.

Motivation and Background
7Reinforcement Learning (RL) refers to learning to
behave optimally in a stochastic environment by taking
actions and receiving rewards (Sutton & Barto,).
�e environment is assumed Markovian in that there
is a �xed probability of the next state given the cur-
rent state and the agent’s action.�e agent also receives
an immediate reward based on the current state and
the action. Models of the next-state distribution and
the immediate rewards are referred to as “action mod-
els” and, in general, are not known to the learner.
�e agent’s goal is to take actions, observe the out-
comes including rewards and next states, and learn a
policy or a mapping from states to actions that opti-
mizes some performancemeasure. Typically the perfor-
mance measure is the expected total reward in episodic
domains, and the expected average reward per time step
or expected discounted total reward in in�nite-horizon
domains.

�e theory of7Markov Decision Processes (MDPs)
implies that under fairly general conditions, there is a
stationary policy, i.e., a time-invariant mapping from
states to actions, which maximizes each of the above
reward measures. Moreover, there are MDP solution
algorithms, e.g., value iteration and policy iteration
(Puterman,), which can be used to solve the MDP

exactly given the action models. Assuming that the
number of states is not exceedingly high, this suggests
a straight-forward approach formodel-based reinforce-
ment learning.�emodels can be learned by interacting
with the environment by taking actions, observing the
resulting states and rewards, and estimating the param-
eters of the actionmodels throughmaximum likelihood
methods. Once the models are estimated to a desired
accuracy, the MDP solution algorithms can be run to
learn the optimal policy.
One weakness of the above approach is that it seems

to suggest that a fairly accurate model needs to be
learned over the entire domain to learn a good policy.
Intuitively it seems that we should be able to get by
without learning highly accurate models for subopti-
mal actions. A related problem is that the method does
not suggest how best to explore the domain, i.e., which
states to visit and which actions to execute to quickly
learn an optimal policy. A third issue is one of scaling
these methods, including model learning, to very large
state spaces with billions of states.

�e remaining sections outline some of the app-
roaches explored in the literature to solve these
problems.

Theory and Methods
Systems that solve MDPs using value-based methods
can take advantage of models in at least two ways. First,
with an accurate model, they can use o�ine learning
algorithms that directly solve the modeled MDPs. Sec-
ond, in an online setting, they can use the estimated
models to guide exploration and action selection. Algo-
rithmshave been developed that exploitMDPmodels in
each of these ways. We describe some such algorithms
below.
Commonapproaches to solvingMDPs given amodel

are value or policy iteration (Kaelbling, Littman, &
Moore, ; Sutton & Barto,). In these app-
roaches, the algorithms start with a randomly ini-
tialized value function or policy. In value iteration,
the algorithm loops through the state space, updat-
ing the value estimates of each state using Bellman
backups, until convergence. In policy iteration, the
algorithm calculates the value of the current pol-
icy and then loops through the state space, updating
the current policy to be greedy with respect to the

Model-Based Reinforcement Learning M

M

backed up values. �is is repeated until the policy
converges.
When the model is unknown but being estimated

as learning progresses, we could use value or policy
iteration in the inner loop: a�er updating our current
model estimate using an observed sample from the
MDP, we could solve the updated MDP o�ine and
take an action based on the solution. However, this
is computationally very expensive. To gain e�ciency,
algorithms such as7Adaptive Real-time Dynamic Pro-
gramming (ARTDP) (Barto, Bradtke, & Singh,)
andDYNA (Sutton,) performone ormore Bellman
updates using the action models a�er each real-world
action and corresponding update to either a state-based
or state-action-based value function. Other approaches,
such as prioritized sweeping (Moore & Atkeson,)
andQueue-Dyna (Peng&Williams,), have consid-
ered the problem of intelligently choosing which states
to update a�er each iteration.
A di�erent approach to discovering the optimal pol-

icy is to use algorithms that calculate the gradient of the
utility measure with respect to some adjustable policy
parameters. �e standard policy gradient approaches
that estimate the gradient from immediate rewards suf-
fer from high variance due to the stochasticity of the
domain and the policy. Wang and Dietterich propose
a model-based policy gradient algorithm that allevi-
ates this problem by learning a partial model of the
domain (Wang&Dietterich,).�e partial model is
solved to yield the value function of the current policy
and the expected number of visits to each state, which
are then used to derive the gradient of the policy in
closed form. �e authors observe that their approach
converges in many fewer exploratory steps compared
withmodel-free policy gradient algorithms in a number
of domains including a real-world resource-controlled
scheduling problem.
One of the many challenges in model-based rein-

forcement learning is that of e�cient exploration of
the MDP to learn the dynamics and the rewards. In
the “Explicit Explore and Exploit” or E algorithm, the
agent explicitly decides between exploiting the known
part of the MDP and optimally trying to reach the
unknown part of the MDP (exploration) (Kearns &
Singh,). During exploration, it uses the idea of
“balanced wandering,” where the least executed action
in the current state is preferred until all actions are

executed a certain number of times. In contrast, the R-
Max algorithm implicitly chooses between exploration
and exploitation by using the principle of “optimism
under uncertainty” (Brafman & Tennenholtz,).
�e idea here is to initialize the model parameters opti-
mistically so that all unexplored actions in all states are
assumed to reach a �ctitious state that yields maximum
possible reward from then on regardless of which action
is taken. Both these algorithms are guaranteed to �nd
modelswhose approximate policies are close to the opti-
mal with high probability in time polynomial in the size
and mixing time of the MDP.
Since a table-based representation of the model

is impractical in large state spaces, e�cient model-
based learning depends on compact parameterization
of the models. Dynamic Bayesian networks o�er an
elegant way to represent action models compactly by
exploiting conditional independence relationships, and
have been shown to lead to fast convergence of mod-
els (Tadepalli & Ok,). In some cases, choosing an
appropriate prior distribution over model parameters
can be important and lead to faster learning. In recent
work, the acquisition of a model prior has been inves-
tigated in a multi-task setting (Wilson, Fern, Ray, &
Tadepalli,). In this work, the authors use a hier-
archical Bayesian model to represent classes of MDPs.
Given observations from a new MDP, the algorithm
uses the model to infer an appropriate class (creat-
ing a new class if none seem appropriate). It then
uses the distributions governing the inferred class as
a prior to guide exploration in the new MDP. �is
approach is able to signi�cantly speed up the rate of
convergence to optimal policy as more environments
are seen.
In recent work, researchers have explored the pos-

sibility of using approximate models coupled with pol-
icy gradient approaches to solve hard control prob-
lems (Abbeel, Quigley, & Ag,). In this work, the
approximate model is used to calculate gradient direc-
tions for the policy parameters. When searching for
an improved policy, however, the real environment is
used to calculate the utility of each intermediate pol-
icy. Observations from the environment are also used
to update the approximate model. �e authors show
that their approach improves upon model-based algo-
rithms which only used the approximate model while
learning.

 M Model-Based Reinforcement Learning

Applications
In this section, we describe some domains where
model-based reinforcement learning has been applied.
Model-based approaches have been commonly used

in RL systems that play two-player games (Baxter,
Tridgell, & Weaver, ; Tesauro,). In such sys-
tems, themodel corresponds to legalmoves in the game.
Such models are easy to acquire and can be used to
perform lookahead search on the game tree. For exam-
ple, the TD-Leaf(λ) system (Baxter et al.,) uses the
values at the leaves of an expanded game tree at some
depth to update the estimate of the value of the cur-
rent state. A�er playing a few hundred chess games, this
algorithmwas able to reach the play level of aUSMaster.
Model-based reinforcement learning has been used

in a spoken dialog system (Singh, Kearns, Litman, &
Walker,). In this application, a dialog is modeled
as a turn-based process, where at each step the system
speaks a phrase and records certain observations about
the response and possibly receives a reward.�e system
estimates a model from the observations and rewards
and uses value iteration to compute optimal policies
for the estimated MDP. �e authors show empirically
that, among other things, the system �nds sensible poli-
cies and is able to model situations that involve “distress
features” that indicate the dialog is in trouble.
It was shown that in complex real-world control

tasks such as pendulum swing-up task on a real anthro-
pomorphic robot arm, model-based learning is very
e�ective in learning from demonstrations (Atkeson &
Schaal,). A model is learned from the human
demonstration of pendulum swing-up, and an opti-
mal policy is computed using a standard approach
in control theory called linear quadratic regulation.
Direct imitation of the human policy would not work
in this case due to the small di�erences in the tasks
and the imperfections of the robot controller. On the
other hand, model-based learning was able to learn
successfully from short demonstrations of pendulum
swing up. However, on a more di�cult swing-up task
that includes pumping, model-based learning by itself
was inadequate due to the inaccuracies in the model.
�ey obtained better results by combiningmodel-based
learningwith learning appropriate task parameters such
as the desired pendulum target angle at an interme-
diate stage where the pendulum was at its highest
point.

Inmore recent work,model-based RL has been used
to learn to �y a remote-controlled helicopter (Abbeel,
Coates, Quigley, & Ng,). Again, the use of model-
free approaches is very di�cult, because almost any
random exploratory action results in an undesirable
outcome (i.e., a crash). To learn a model, the system
bootstraps from a trajectory that is observed by watch-
ing an expert human �y the desired maneuvers. In each
step, the system learns a model with the observed tra-
jectory and �nds a controller that works in simulation
with themodel.�is controller is then triedwith the real
helicopter. If it fails to work well, the model is re�ned
with the new observations and the process is repeated.
Using this approach, the system is able to learn a con-
troller that can repeatedly perform complex aerobatic
maneuvers, such as �ips and rolls.
Model-based RL has also been applied to other

domains, such as robot juggling (Schaal & Atkeson,
) and job-shop scheduling (Zhang & Dietterich,
). Some work has also been done that compares
model-free and model-based RL methods (Atkeson &
Santamaria,). From their experiments, the authors
conclude that, for systems with reasonably simple
dynamics, model-based RL is more data e�cient, �nds
better policies, and handles changing goals better than
model-free methods. On the other hand, model-based
methods are subject to errors due to inaccurate model
representations.

Future Directions
Representing and learning richer action models for sto-
chastic domains that involve relations, numeric quanti-
ties, and parallel, hierarchical, and durative actions is a
challenging open problem. E�cient derivation of opti-
mal policies from such rich representations of action
models is another problem that is partially explored in
7symbolic dynamic programming. Constructing good
policy languages appropriate for a given action model
or class of models might be useful to accelerate learning
near-optimal policies for MDPs.

Cross References
7Adaptive Real-Time Dynamic Programming
7Autonomous Helicopter Flight Using Reinforcement
Learning

7Bayesian Reinforcement Learning

Most General Hypothesis M

M

7E�cient Exploration in Reinforcement Learning
7Symbolic Dynamic Programming

Recommended Reading
Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (). An appli-

cation of reinforcement learning to aerobatic helicopter flight.
In Advances in neural information processing systems (Vol. ,
pp. –). Cambridge, MA: MIT Press.

Abbeel, P., Quigley, M., & Ng, A. Y. (). Using inaccurate models
in reinforcement learning. In Proceedings of the rd interna-
tional conference on machine learning (pp. –). ACM Press, New
York, USA.

Atkeson, C. G., & Santamaria, J. C. (). A comparison of direct
and model-based reinforcement learning. In Proceedings of the
international conference on robotics and automation (pp. –).
IEEE Press.

Atkeson, C. G., & Schaal, S. (). Robot learning from demonstra-
tion. In Proceedings of the fourteenth international conference
on machine learning (Vol. , pp. –). San Francisco: Morgan
Kaufmann.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (). Learning to act
using real-time dynamic programming. Artificial Intelligence,
(), –.

Baxter, J., Tridgell, A., & Weaver, L. (). TDLeaf(λ): Combining
temporal difference learning with game-tree search. In Pro-
ceedings of the ninth Australian conference on neural networks

(ACNN’) (pp. –).
Brafman, R. I., & Tennenholtz, M. (). R-MAX – a general poly-

nomial time algorithm for near-optimal reinforcement learn-
ing. Journal of Machine Learning Research, , –.

Kaelbling, L. P., Littman, M. L., &Moore, A. P. (). Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, ,
–.

Kearns, M., & Singh, S. (). Near-optimal reinforcement learning
in polynomial time. Machine Learning, (/), –.

Moore, A. W., & Atkeson, C. G. (). Prioritized sweeping: Rein-
forcement learning with less data and less real time. Machine
Learning, , –.

Peng, J., & Williams, R. J. (). Efficient learning and planning
within the dyna framework. Adaptive Behavior, (), –.

Puterman, M. L. ().Markov decision processes: Discrete dynamic
stochastic programming. New York: Wiley.

Schaal, S., & Atkeson, C. G. (). Robot juggling: Implementation
of memory-based learning. IEEE Control Systems Magazine,
(), –.

Singh, S., Kearns, M., Litman, D., & Walker, M. () Reinforce-
ment learning for spoken dialogue systems. In Advances in
neural information processing systems (Vol. , pp. –).
MIT Press.

Sutton, R. S. (). Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic program-
ming. In Proceedings of the seventh international conference
on machine learning (pp. –). San Francisco: Morgan
Kaufmann.

Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An
introduction. Cambridge, MA: MIT Press.

Tadepalli, P., & Ok, D. (). Model-based average-reward rein-
forcement learning. Artificial Intelligence, , –.

Tesauro, G. (). Temporal difference learning and TD-Gammon.
Communications of the ACM, (), –.

Wang, X., & Dietterich, T. G. (). Model-based policy gradient
reinforcement learning. In Proceedings of the th international
conference on machine learning (pp. –). AAAI Press.

Wilson, A., Fern, A., Ray, S., & Tadepalli, P. (). Multi-task
reinforcement learning: A hierarchical Bayesian approach. In
Proceedings of the th international conference on machine

learning (pp. –). Madison, WI: Omnipress.
Zhang, W., & Dietterich, T. G. (). A reinforcement learning

approach to job-shop scheduling. In Proceedings of the interna-
tional joint conference on artificial intelligence (pp. –).
Morgan Kaufman.

Modularity Detection

7Group Detection

MOO

7Multi-Objective Optimization

Morphosyntactic Disambiguation

7POS Tagging

Most General Hypothesis

Synonyms
Maximally general hypothesis

Definition
A hypothesis, h, is a most general hypothesis if it cov-
ers none of the negative examples and there is no other
hypothesis h′ that covers no negative examples, such
that h is strictly more speci�c than h′.

Cross References
7Learning as Search

 M Most Similar Point

Most Similar Point

7Nearest Neighbor

Most Specific Hypothesis

Synonyms
Maximally speci�c hypothesis

Definition
A hypothesis, h, is a most speci�c hypothesis if it cov-
ers none of the negative examples and there is no other
hypothesis h′ that covers no negative examples, such
that h is strictly more general than h′.

Cross References
7Learning as Search

Multi-Agent Learning I: Problem
Definition

Yoav Shoham, Rob Powers
Stanford University,
Stanford, CA, USA

Definition
Multi-agent learning (MAL) refers to settings in which
multiple agents learn simultaneously. Usually de�ned in
a game theoretic setting, speci�cally in repeated games
or stochastic games, the key feature that distinguishes
multi-agent learning from single-agent learning is that
in the former the learning of one agent impacts the
learning of others. As a result, neither the problem
de�nition for multi-agent learning nor the algorithms
o�ered follow in a straightforward way from the single-
agent case. In this �rst of two entries on the subject we
focus on the problem de�nition.

Background
�e topic ofmulti-agent learning (MALhenceforth) has
a long history in game theory, almost as long as the

history of game theory itself (Anothermore recent term
for the area within game theory is interactive learning).
In arti�cial intelligence (AI) the history of single-agent
learning is of course as rich if not richer; one need not
look further than this Encyclopedia for evidence. And
while it is only in recent years that AI has branched
into the multi-agent aspects of learning, it has done so
with something of a vengeance. If in one could
describe the AI literature on MAL by enumerating the
relevant articles, today this is no longer possible. �e
leading conferences routinely feature articles on MAL,
as do the journals (We acknowledge a simpli�cation of
history here. �ere is de�nitely MAL work in AI that
predates the last few years, though the relative deluge
is indeed recent. Similarly, we focus on AI since this
is where most of the action is these days, but there
are also other areas in computer science that feature
MAL material; we mean to include that literature here
as well).
While the AI literature maintains a certain �avor

that distinguishes it from the game theoretic litera-
ture, the commonalities are greater than the di�er-
ences. Indeed, alongside the area of mechanism design,
and perhaps the computational questions surrounding
solution concepts such as the Nash equilibrium, MAL
is today arguably one of the most fertile interaction
grounds between computer science and game theory.
�e key aspect of MAL, which ties the work together,
and which distinguishes it from single-agent learning,
is the fact that in MAL one cannot separate the process
of learning from the process of teaching. �e learn-
ing of one agent causes it to change its behavior; this
causes other agents to adapt their behavior, which in
turn causes the �rst agent to keep adapting too. Such
reciprocal – or interactive – learning calls not only for
di�erent types of learning algorithms, but also for dif-
ferent yardsticks by which to evaluate learning. For this
reason, the literature on MAL can be confusing. Not
only do the learning techniques vary, but the goal of
learning and the evaluation measures are diverse, and
o�en le� only implicit.
We will couch our discussion in the formal setting

of stochastic games (a.k.a. Markov games). Most of the
MAL literature adopts this setting, and indeed most of
it focuses on the even more narrow class of repeated
games. Furthermore, stochastic games also generalize
Markov decision problems (MDPs), the setting from

Multi-Agent Learning I: Problem Definition M

M

which much of the relevant learning literature in AI
originates.�ese are de�ned as follows.
A stochastic game can be represented as a tuple:

(N, S, A⃗, R⃗,T). N is a set of agents indexed , . . . ,n. S is
a set of n-agent stage games. A⃗ = A, . . . ,An, with Ai the
set of actions (or pure strategies) of agent i (note that
we assume the agent has the same strategy space in all
games; this is a notational convenience, but not a sub-
stantive restriction). R⃗ = R, . . . ,Rn, with Ri : S× A⃗→R
giving the immediate reward function of agent i for
stage game S. T : S × A⃗ → Π(S) is a stochastic tran-
sition function, specifying the probability of the next
stage game to be played based on the game just played
and the actions taken in it.
We also need to de�ne a way for each agent to aggre-

gate the set of immediate rewards received in each state.
For �nitely repeated games we can simply use the sum
or average, while for in�nite games the most common
approaches are to use either the limit average or the sum
of discounted awards ∑∞t= δtrt , where rt is the reward
received at time t.
A repeated game is a stochastic game with only one

stage game, while an MDP is a stochastic game with
only one agent. (Note: While most of the MAL litera-
ture lives happily in this setting, we would be remiss
not to acknowledge the literature that does not. Cer-
tainly, one could discuss learning in the context of
extensive-form games of incomplete and/or imperfect
information. Even farther a�eld, interesting studies of
learning exist in large population games and evolution-
ary models, particularly replicator dynamics (RD) and
evolutionary stable strategies (ESS).)
What is there to learn in stochastic games? Here

we need to be explicit about some aspects of stochas-
tic games that were glossed over so far. Do the agents
know the stochastic game, including the stage games
and the transition probabilities? If not, do they at least
know the speci�c game being played at each stage, or
only the actions available to them? What do they see
a�er each stage game has been played – only their own
rewards, or also the actions played by the other agent(s)?
Do they perhapsmagically see the other agent(s)’ mixed
strategy in the stage game? And so on.
In general, gamesmay be known or not, playmay be

observable or not, and so on. We will focus on known,
fully observable games, where the other agent’s strat-
egy (or agents’ strategies) is not known a priori (though

in some cases there is a prior distribution over it).
In our restricted setting there are two possible things
to learn. First, the agent can learn the opponent’s (or
opponents’) strategy (or strategies), so that the agent
can then devise a best (or at least a good) response.
Alternatively, the agent can learn a strategy of his own
that does well against the opponents, without explicitly
learning the opponent’s strategy.�e �rst is sometimes
called model-based learning, and the second model-free
learning.
In broader settings there is more to learn. In par-

ticular, with unknown games, one can learn the game
itself. Some will argue that the restricted setting is not a
true learning setting, but (a) much of the current work
on MAL, particularly in game theory, takes place in
this setting, and (b) the foundational issues we wish to
tackle surface already here. In particular, our comments
are intended to also apply to the work in the AI lit-
erature on games with unknown payo�s, work which
builds on the success of learning in unknown MDPs.
We will have more to say about the nature of “learn-
ing” in the setting of stochastic games in the following
sections.

Problem Definition
When one examines the MAL literature one can iden-
tify several distinct agendas at play, which are o�en
le� implicit and con�ated. A prerequisite for success
in the �eld is to be very explicit about the problem
being addressed.Herewe list �ve distinct coherent goals
of MAL research. �ey each have a clear motivation
and a success criterion. �ey can be caricatured as
follows:

. Computational
. Descriptive
. Normative
. Prescriptive, cooperative
. Prescriptive, non-cooperative

�e �rst agenda is computational in nature. It views
learning algorithms as an iterative way to compute
properties of the game, such as solution concepts. As
an example, �ctitious play was originally proposed as a
way of computing a sample Nash equilibrium for zero-
sum games, and replicator dynamics has been proposed

 M Multi-Agent Learning II: Algorithms

for computing a sample Nash equilibrium in symmetric
games. �ese tend not to be the most e�cient com-
putation methods, but they do sometimes constitute
quick-and-dirty methods that can easily be understood
and implemented.

�e second agenda is descriptive – it asks how natu-
ral agents learn in the context of other learners.�e goal
here is to investigate formal models of learning that
agree with people’s behavior (typically, in laboratory
experiments), or possibly with the behaviors of other
agents (e.g., animals or organizations).�is problem is
clearly an important one, andwhen taken seriously calls
for strong justi�cation of the learning dynamics being
studied. One approach is to apply the experimental
methodology of the social sciences.

�e centrality of equilibria in game theory under-
lies the third agenda we identify in MAL, which for
lack of a better term we called normative, and which
focuses on determining which sets of learning rules are
in equilibrium with each other. More precisely, we ask
which repeated-game strategies are in equilibrium; it
just so happens that in repeated games, most strategies
embody a learning rule of some sort. For example, we
can ask whether �ctitious play and Q-learning, appro-
priately initialized, are in equilibriumwith each other in
a repeated Prisoner’s Dilemma game.

�e last two agendas are prescriptive; they ask how
agents should learn. �e �rst of these involves dis-
tributed control in dynamic systems. �ere is some-
times a need or desire to decentralize the control of
a system operating in a dynamic environment, and in
this case the local controllers must adapt to each other’s
choices. �is direction, which is most naturally mod-
eled as a repeated or stochastic common-payo� (or
“team”) game. Proposed approaches can be evaluated
based on the value achieved by the joint policy and the
resources required, whether in terms of computation,
communication, or time required to learn the policy.
In this case there is rarely a role for equilibrium anal-
ysis; the agents have no freedom to deviate from the
prescribed algorithm.
In our �nal agenda, termed “prescriptive, non-

cooperative,” we ask how an agent should act to obtain
high reward in the repeated (and more generally,
stochastic) game. It thus retains the design stance of AI,
asking how to design an optimal (or at least e�ective)
agent for a given environment. It just so happens that

this environment is characterized by the types of agents
inhabiting it, agents who may do some learning of their
own. �e objective of this agenda is to identify e�ec-
tive strategies for environments of interest. An e�ective
strategy is one that achieves a high reward in its envi-
ronment, where one of the main characteristics of this
environment is the selected class of possible opponents.
�is class of opponents should itself be motivated as
being reasonable and containing opponents of interest.
Convergence to an equilibrium is not a goal in and of
itself.

Recommended Reading
Requisite background in game theory can be obtained from the
many introductory texts, and most compactly from Leyton-Brown
and Shoham (). Game theoretic work on multi-agent learning
is covered in Fudenberg and Levine () and Young (). An
expanded discussion of the problems addressed under the header
of MAL can be found in Shoham et al. (), and the responses
to it in Vohra and Wellman (). Discussion of MAL algorithms,
both traditional and more novel ones, can be found in the above
references, as well as in Greenwald and Littman ().
Fudenberg, D., & Levine, D. (). The theory of learning in games.

Cambridge: MIT Press.
Greenwald, A., & Littman, M. L. (Eds.). (). Special issue on

learning and computational game theory. Machine Learning
(–).

Leyton-Brown, K., & Shoham, Y. (). Essentials of game theory.
San Rafael, CA: Morgan and Claypool.

Shoham, Y., Powers, W. R., & Grenager, T. (). If multiagent
learning is the answer, what is the question? Artificial Intelli-
gence, (), –. Special issue on foundations of multi-
agent learning.

Vohra, R., & Wellman, M. P. (Eds.). (). Special issue on founda-
tions of multiagent learning. Artificial Intelligence, ().

Young, H. P. (). Strategic learning and its limits. Oxford: Oxford
University Press.

Multi-Agent Learning II: Algorithms

Yoav Shoham, Rob Powers
Stanford University, Stanford, CA, USA

Definition
Multi-agent learning (MAL) refers to settings in which
multiple agents learn simultaneously. Usually de�ned in
a game theoretic setting, speci�cally in repeated games
or stochastic games, the key feature that distinguishes

Multi-Agent Learning II: Algorithms M

M

MAL from single-agent learning is that in the for-
mer the learning of one agent impacts the learning of
others. As a result, neither the problem de�nition for
multi-agent learning nor the algorithms o�ered follow
in a straightforward way from the single-agent case. In
this second of two entries on the subject we focus on
algorithms.

Some MAL Techniques
We will discuss three classes of techniques – one repre-
sentative of work in game theory, one more typical of
work in arti�cial intelligence (AI), and one that seems
to have drawn equal attention from both communities.

Model-Based Approaches

�e �rst approach to learning we discuss, which is com-
mon in the game theory literature, is the model-based
one. It adopts the following general scheme:

. Start with some model of the opponent’s strategy.
. Compute and play the best response.
. Observe the opponent’s play and update yourmodel
of his/her strategy.

. Go to step .

Among the earliest, and probably the best-known,
instance of this scheme is �ctitious play.�e model is
simply a count of the plays by the opponent in the
past.�e opponent is assumed to be playing a station-
ary strategy, and the observed frequencies are taken to
represent the opponent’s mixed strategy.�us a�er �ve
repetitions of the Rochambeau game (R) in which the
opponent played (R, S,P,R,P), the current model of
his/her mixed strategy is R = .,P = ., S = ..

�ere exist many variants of the general scheme, for
example, those in which one does not play the exact
best response in step .�is is typically accomplished
by assigning a probability of playing each pure strat-
egy, assigning the best response the highest probability,
but allowing some chance of playing any of the strate-
gies. A number of proposals have been made of di�er-
ent ways to assign these probabilities such as smooth
�ctitious play and exponential �ctitious play.
A more sophisticated version of the same scheme

is seen in rational learning.�e model is a distribution
over the repeated-game strategies. One starts with some

prior distribution; for example, in a repeated Rocham-
beau game, the prior could state thatwith probability .
the opponent repeatedly plays the equilibrium strategy
of the stage game, and, for all k > , with probability −k

she playsR k times and then reverts to the repeated equi-
librium strategy. A�er each play, the model is updated
to be the posterior obtained by Bayesian conditioning of
the previous model. For instance, in our example, a�er
the �rst non-Rplay of the opponent, the posterior places
probability on the repeated equilibrium play.

Model-Free Approaches

An entirely di�erent approach that has been commonly
pursued in theAI literature is themodel-free one, which
avoids building an explicit model of the opponent’s
strategy. Instead, over time one learns how well one’s
own various possible actions fare.�is work takes place
under the general heading of reinforcement learning (we
note that the term is used somewhat di�erently in the
game theory literature), andmost approaches have their
roots in the Bellman equations. We start our discussion
with the familiar single-agent Q-learning algorithm for
computing an optimal policy in an unknown Markov
Decision Problem (MDP).

Q(s, a)← (− αt)Q(s, a) + αt[R(s, a) + γV(s′)]

V(s)← max
a∈A
Q(s, a).

As is well known, with certain assumptions about
the way in which actions are selected at each state over
time and constraints on the learning rate schedule, αt ,
Q-learning can be shown to converge to the optimal
value function V∗.

�e Q-learning algorithm can be extended to the
multi-agent stochastic game setting by having each
agent simply ignore the other agents and pretend that
the environment is passive:

Qi(s, ai)← (− αt)Qi(s, ai) + αt[Ri(s, a⃗) + γVi(s
′
)]

Vi(s)← max
ai∈Ai

Qi(s, ai).

Several authors have tested variations of the basic
Q-learning algorithm forMAL. However, this approach
ignores the multi-agent nature of the setting entirely.
�eQ-values are updated without regard for the actions
selected by the other agents. While this can be justi-
�ed when the opponents’ distributions of actions are

 M Multi-Agent Learning II: Algorithms

stationary, it can fail when an opponent may adapt its
choice of actions based on the past history of the game.
A �rst step in addressing this problem is to de�ne

the Q-values as a function of all the agents’ actions:

Qi(s, a⃗)← (− α)Qi(s, a⃗) + α[Ri(s, a⃗) + γVi(s
′
)].

We are, however, le� with the question of how to
update V , given the more complex nature of the Q-
values.
For (by de�nition, two-player) zero-sum Stochas-

tic Games (SGs), the minimax-Q learning algorithm
updates V with the minimax of the Q-values:

V(s)← max
P∈Π(A)

min
a∈A

∑
a∈A

P(a)Q(s, (a, a)).

Later work proposed other update rules for the
Q and V functions focusing on the special case of
common-payo� (or “team”) games. A stage game is
common-payo� if at each outcome all agents receive
the same payo�. �e payo� is, in general, di�erent in
di�erent outcomes, and thus the agents’ problem is that
of coordination; indeed, these are also called games of
pure coordination.

�e work on zero-sum and common-payo� games
continues to be re�ned and extended;much of this work
has concentrated onprovably optimal tradeo�s between
exploration and exploitation in unknown, zero-sum
games. Other work attempted to extend the “Bellman
heritage” to general-sum games (as opposed to zero-
sum or common-payo� games), but the results here
have been less conclusive.

Regret Minimization Approaches

Our third and �nal example of prior work in MAL is
no-regret learning. It is an interesting example for two
reasons. First, it has some unique properties that distin-
guish it from the work above. Second, both the AI and
game theory communities appear to have converged on
it independently.�e basic idea goes back to early work
on how to evaluate the success of learning rules in the
mid-s, and has since been extended and rediscov-
ered numerous times over the years under the names of
universal consistency, no-regret learning, and the Bayes’
envelope. �e following algorithm is a representative
of this body of work. We start by de�ning the regret,
rti(aj, si) of agent i for playing the sequence of actions

si instead of playing action aj, given that the opponents
played the sequence s−i.

rti(aj, si∣s−i) =
t

∑
k=
R (aj, sk−i) − R (ski , s

k
−i) .

�e agent then selects each of its actions with proba-
bility proportional tomax(rti(aj, si),) at each time step
t + .

Some Typical Results
One sees at least three kinds of results in the literature
regarding the learning algorithms presented above, and
others similar to them.�ese are:

. Convergence of the strategy pro�le to an (e.g., Nash)
equilibriumof the stage game in self-play (i.e., when
all agents adopt the learning procedure under con-
sideration).

. Successful learning of an opponent’s strategy (or
opponents’ strategies).

. Obtaining payo�s that exceed a speci�ed threshold.

Each of these types comes in many �avors; here
are some examples.�e �rst type is perhaps the most
common in the literature, in both game theory and AI.
For example, while �ctitious play does not in general
converge to a Nash equilibrium of the stage game, the
distribution of its play can be shown to converge to
an equilibrium in zero-sum games, × games with
generic payo�s, or games that can be solved by iter-
ated elimination of strictly dominated strategies. Sim-
ilarly in AI, minimax-Q learning is proven to converge
in the limit to the correct Q-values for any zero-sum
game, guaranteeing convergence to a Nash equilibrium
in self-play.�is result makes the standard assumptions
of in�nite exploration and the conditions on learning
rates used in proofs of convergence for single-agent
Q-learning.
Rational learning exempli�es results of the second

type.�e convergence shown is to correct beliefs about
the opponent’s repeated game strategy; thus it follows
that, since each agent adopts a best response to their
beliefs about the other agent, in the limit the agents
will converge to a Nash equilibrium of the repeated
game. �is is an impressive result, but it is limited by
two factors: the convergence depends on a very strong

MultiBoosting M

M

assumption of absolute continuity; and the beliefs con-
verged to are correct only with respect to the aspects
of history that are observable given the strategies of
the agents.�is is an involved topic, and the reader is
referred to the literature for more details.

�e literature on no-regret learning provides an
example of the third type of result, and has perhaps been
the most explicit about criteria for evaluating learn-
ing rules. For example, one pair of criteria that have
been suggested are as follows.�e �rst criterion is that
the learning rule should be “safe,” which is de�ned as
the requirement that the learning rule must guarantee
at least the minimax payo� of the game. (�e mini-
max payo� is the maximum expected value a player
can guarantee against any possible opponent.)�e sec-
ond criterion is that the rule should be “consistent.”
In order to be “consistent,” the learning rule must guar-
antee that it does at least as well as the best response to
the empirical distribution of play when playing against
an opponent whose play is governed by independent
draws from a�xed distribution. “Universal consistency”
is then de�ned as the requirement that a learning rule
does at least as well as the best response to the empirical
distribution regardless of the actual strategy the oppo-
nent is employing (this implies both safety and consis-
tency).�e requirement of “universal consistency” is in
fact equivalent to requiring that an algorithm exhibits
no-regret, generally de�ned as follows, against all oppo-
nents.

∀є > ,(limt→inf [

t
max
aj∈Ai

rti(aj, si∣s−i)] < є)

In both game theory and arti�cial intelligence, a
large number of algorithms have been shown to satisfy
universal consistency or no-regret requirements.

Recommended Reading
Requisite background in game theory can be obtained from the
many introductory texts, and most compactly from Leyton-Brown
and Shoham (). Game theoretic work on multiagent learning
is covered in Fudenberg and Levine () and Young (). An
expanded discussion of the problems addressed under the header
of MAL can be found in Shoham, Powers, and Grenager (), and
the responses to it in Vohra and Wellman (). Discussion of MAL
algorithms, both traditional and more novel ones, can be found in
the above references, as well as in Greenwald and Littman ().
Fudenberg, D., & Levine, D. (). The theory of learning in games.

Cambridge: MIT Press.

Greenwald, A., & Littman, M. L. (Eds.). (). Special issue on
learning and computational game theory. Machine Learning,
(–).

Leyton-Brown, K., & Shoham, Y. (). Essentials of game theory.
San Rafael, CA: Morgan and Claypool.

Shoham, Y., Powers, W. R., & Grenager, T. (). If multiagent
learning is the answer, what is the question? Artificial Intelli-
gence, (), –. Special issue on foundations of multia-
gent learning.

Vohra, R., & Wellman, M. P. (Eds.). (). Special issue on founda-
tions of multiagent learning. Artificial Intelligence, ().

Young, H. P. (). Strategic learning and its limits. Oxford: Oxford
University Press.

Multi-Armed Bandit

7k-Armed Bandit

Multi-Armed Bandit Problem

7k-Armed Bandit

MultiBoosting

Geoffrey I. Webb
Monash University,
Victoria, Australia

Definition
MultiBoosting (Webb,) is an approach to 7multi-
strategy ensemble learning that combines features of
7AdaBoost and 7Bagging. �e insight underlying
MultiBoosting is that the primary e�ect of AdaBoost
is 7bias reduction, while the primary e�ect of bagging
is 7variance reduction. By combining the two tech-
niques, it is possible to obtain both bias and variance
reduction, the cumulative e�ect o�en being a greater
reduction in error than can be obtained with the equiv-
alent amount of computation by either AdaBoost or
Bagging alone. Viewed from another perspective, as
the size of an ensemble formed by either AdaBoost or
Bagging is increased, each successive addition to the
ensemble has decreasing e�ect.�us, if the bene�t of the
�rst few applications ofAdaBoost can be combinedwith

 M MultiBoosting

the bene�t of the �rst few applications of Bagging, the
combined bene�tmay be greater than simply increasing
the number of applications of one or the other.

Algorithm
MultiBoosting operates by dividing the ensemble of
classi�ers that is to be created into a number of sub-
committees. Each of these subcommittees is formed
by Wagging (Baner & Kohavi,), a variant of Bag-
ging that utilizes weighted instances and, hence, is

more readily integrated with AdaBoost.�e ensemble
is formed by applying AdaBoost to these subcommit-
tees.�e resulting algorithm is presented in Table .�e
learned ensemble classi�er is C, and the tth member of
the ensemble is Ct . Each St is a vector of n weighted
training objects whose weights always sum to n. �e
weights change from turn to turn (the turns indicated
by the subscript t). �e base training algorithm Base-
Learn should more heavily penalize errors on training
instances with higher weights. єt is the weighted error

MultiBoosting. Table MultiBoost Algorithm

MultiBoost

input:

● S, a sequence ofm labeled examples ⟨(x, y), . . . , (xm, ym)⟩ with labels yi ∈ Y .
● base learning algorithm BaseLearn.
● integer T specifying the number of iterations.
● vector of integers Ii specifying the iteration at which each subcommittee i ≥ should terminate.

. S = S with instance weights assigned to be .
. set k = .
. For t = to T
. If Ik = t then
. reweight St .
. increment k.
. Ct = BaseLearn(S

′).

. єt =
∑xj∈St :Ct(xj)≠yj weight(xj)

m
.

. if єt > . then
. reweight St .
. increment k.
. go to .
. otherwise if єt = then
. set βt to −.
. reweight St .
. increment k.
. otherwise,

. βt =
єt

(− єt)
.

. St+ = St .
. For each xj ∈ St+,
. divide weight(xj) by єt if Ct(xj) ≠ yj and (− єt) otherwise.
. if weight(xj) < −, set weight(xj) to −.

Output the �nal classi�er: C∗(x) = argmax
y∈Y

∑
t:Ct(x)=y

log

βt
.

Multi-Instance Learning M

M

of Ct on Si. βt is a weight assigned to the tth classi-
�er,Ct .�e operation rewieght St sets the weights of the
objects in St to random values drawn from the contin-
uous Poisson distribution and then standardizes them
to sum to n.�e code set with a grey background is the
code added to AdaBoost in order to create MultiBoost.

Cross References
7AdaBoost
7Bagging
7Ensemble Learning
7Multistrategy Ensemble Learning

Recommended Reading
Bauer, E., & Kohavi, R. (). An empirical comparison of vot-

ing classification algorithms: Bagging, boosting, and variants.
Machine Learning, (), –.

Webb, G. I. (). MultiBoosting: A technique for combining
boosting and wagging. Machine Learning, (), –.

Multi-Criteria Optimization

7Multi-Objective Optimization

Multi-Instance Learning

Soumya Ray, Stephen Scott, Hendrik Blockeel
Case Western Reserve University, Cleveland,
OH, USA
University of Nebraska, Lincoln, NE, USA
K. U. Leuven, Heverlee, Belgium

Synonyms
Multiple-instance learning

Definition
Multiple-Instance (MI) learning is an extension of the
standard supervised learning setting. In standard super-
vised learning, the input consists of a set of labeled
instances each described by an attribute vector. �e
learner then induces a concept that relates the label of
an instance to its attributes. In MI learning, the input

consists of labeled examples (called “bags”) consisting
of multisets of instances, each described by an attribute
vector, and there are constraints that relate the label of
each bag to the unknown labels of each instance.�eMI
learner then induces a concept that relates the label of a
bag to the attributes describing the instances in it.�is
setting contains supervised learning as a special case: if
each bag contains exactly one instance, it reduces to a
standard supervised learning problem.

Motivation and Background
�e MI setting was introduced by Dietterich, Lathrop,
and Lozano-Perez () in the context of drug activ-
ity prediction. Drugs are typically molecules that ful�ll
some desired function by binding to a target. If we wish
to learn the characteristics responsible for binding, a
possible representation of the problem is to represent
each molecule as a set of low energy shapes or confor-
mations, and describe each conformation using a set of
attributes. Each such bag of conformations is given a
label corresponding to whether the molecule is active
or inactive. To learn a classi�cationmodel, an algorithm
assumes that every instance in a bag labeled negative is
actually negative, whereas at least one instance in a bag
labeled positive is actually positive with respect to the
underlying concept.
From a theoretical viewpoint, MI learning occu-

pies an intermediate position between standard propo-
sitional supervised learning and �rst-order relational
learning. Supervised learning is a special case of MI
learning, while MI learning is a special case of �rst-
order learning. It has been argued that the MI setting
is a key transition between standard supervised and
relational learning DeRaedt (). At the same time,
theoretical results exist that show that, under certain
assumptions, certain concept classes that are probably
approximately correct (PAC)-learnable (see PACLearn-
ing) in a supervised setting remain PAC-learnable in an
MI setting.�us, the MI setting is able to leverage some
of the rich representational power of relational learn-
ers while not sacri�cing the e�ciency of propositional
learners. Figure illustrates the relationships between
standard supervised learning, MI learning, and rela-
tional learning.
Since its introduction, a wide variety of tasks

have been formulated as MI learning problems. Many

 M Multi-Instance Learning

new algorithms have been developed, and well-known
supervised learning algorithms extended, to learn MI
concepts. A great deal of work has also been done to
understand what kinds of concepts can and cannot be
learned e�ciently in this setting. In the following sec-
tions, we discuss the theory, methods, and applications
of MI learning in more detail.

Structure of the Problem
�e general MI classi�cation task in shown in Fig. .
�eMI regression task is de�ned analogously by substi-
tuting a real-valued response for the classi�cation label.
In this case, the constraint used by the learning algo-
rithm is that the response of any bag is equal to the

Multi-Instance Learning. Figure . The relationship between supervised, multiple-instance (MI), and relational learn-

ing. (a) In supervised learning, each example (geometric figure) is labeled. A possible concept that explains the example

labels shown is “the figure is a rectangle.” (b) In MI learning, bags of examples are labeled. A possible concept that

explains the bag labels shown is “the bag contains at least one figure that is a rectangle.” (c) In relational learning,

objects of arbitrary structure are labeled. A possible concept that explains the object labels shown is “the object is a

stack of three figures and the bottom figure is a rectangle”

Multi-Instance Learning. Figure . Statement of the multiple-instance classification problem

Multi-Instance Learning M

M

response of at least one of the instances in it, for exam-
ple, it could be equal to the largest response over all the
instances.
Notice the following problem characteristics:

● �e number of instances in each bag can vary inde-
pendently of other bags. �is implies in particu-
lar that an MI algorithm must be able to handle
bags with as few as one instance (this is a super-
vised learning setting) to bags with large numbers
of instances.

● �e number of instances in any positive bag that are
“truly positive” could be many more than one – in
fact, the de�nition does not rule out the case where
all instances in a positive bag are “truly positive.”

● �e problem de�nition does not specify how the
instances in any bag are related to each other.

Theory and Methods
In this section we discuss some of the key algorithms
and theoretical results in MI learning. We �rst discuss
the methods and results for MI classi�cation.�en we
discuss the work on MI regression.

Multiple-Instance Classification

Axis-Parallel Rectangles (APRs) are a concept class that
early work in MI classi�cation focused on.�ese gen-
erative concepts specify upper and lower bounds for all
numeric attributes describing each instance. An APR is
said to “cover” an instance if the instance lies within it.
An APR covers a bag if it covers at least one instance
within it.�e learning algorithm tries to �nd an APR
such that it covers all positive bags and does not cover
any negative bags.
An algorithm called “iterated-discrimination” was

proposed by Dietterich et al. () to learn APRs from
MI data. �is algorithm has two phases. In the �rst
phase, it iteratively chooses a set of “relevant” attributes
and grows an APR using this set. �is phase results
in the construction of a very “tight” APR that covers
just positive bags. In the second phase, the algorithm
expands this APR so that with high probability a new
positive instance will fall within the APR.�e key steps
of the algorithm are outlined below. Note that initially,
all attributes are considered to be “relevant.”

�e algorithm starts by choosing a random instance
in a positive bag. Let us call this instance I.�e smallest

APR covering this instance is a point. �e algorithm
then expands this APR by �nding the smallest APR
that covers any instance from a yet uncovered positive
bag; call the newly covered instance I. �is process
is continued, identifying new instances I, . . . , Ik, until
all positive bags are covered. At each step, the APR is
“back�tted” in a way that is reminiscent of the later
Expectation-Maximization (EM) approaches: each ear-
lier choice is revisited, and Ij is replacedwith an instance
from the same bag that minimizes the current APR
(which may or may not be the same as the one that
minimized it at step j).

�is process yields an APR that imposes maxi-
mally tight bounds on all attributes and covers all pos-
itive bags. Based on this APR, a new set of “relevant”
attributes is selected as follows. An attribute’s relevance
is determined by how strongly it discriminates against
negative instances, i.e., given the current APR bounds,
how many negative instances the attribute excludes.
Features are then chosen iteratively and greedily accord-
ing to how relevant they are until all negative instances
have been excluded. �is yields a subset of (presum-
ably relevant) attributes.�e APR growth procedure in
the previous paragraph is then repeated, with the size
of an APR rede�ned as its size along relevant attributes
only.�e APR growth and attribute selection phases are
repeated until the process converges.

�e APR thus constructed may still be too tight,
as it �ts narrowly around the positive bags in the
dataset. In the second phase of the algorithm, the APR
bounds are further expanded using a kernel density
estimate approach. Here, a probability distribution is
constructed for each relevant attribute using Gaussian
distributions centered at each instance in a positive
bag.�en, the bounds on that attribute are adjusted so
that with high probability, any positive instance will lie
within the expanded APR.

�eoretical analyses of APR concepts have been
performed along with the empirical approach, using
Valiant’s “probably approximately correct” (PAC) learn-
ing model (Valiant,). In early work (Long & Tan,
), it was shown that if each instance was drawn
according to a �xed, unknown product distribution
over the rational numbers, independently from every
other instance, then an algorithm could PAC-learn
APRs. Later, this result was improved in twoways (Auer,
Long, & Srinivasan,). First, the restriction that the

 M Multi-Instance Learning

individual instances in each bag come from a prod-
uct distribution was removed. Instead, each instance
is generated by an arbitrary probability distribution
(though each instance in a bag is still generated inde-
pendently and identically distributed (iid) according to
that one distribution). Second, the time and sample
complexities for PAC-learning APRs were improved.
Speci�cally, the algorithm described in this work PAC-
learns APRs in

O(
dn

є
log
nd log(/δ)

є
log
d

δ
)

using

O(
dn

є
log
d

δ
)

time-labeled training bags. Here, d is the dimension of
each instance, n is the (largest) number of instances
per training bag, and є and δ are parameters to the
algorithm. A variant of this algorithm was empirically
evaluated and found to be successful (Auer,).
Diverse Density (Maron, ; Maron & Lozano-

Pérez,) is a probabilistic generative framework for
MI classi�cation. �e idea behind this framework is
that, given a set of positive and negative bags, we wish
to learn a concept that is “close” to at least one instance
from each positive bag, while remaining “far” from
every instance in every negative bag.�us, the concept
must describe a region of instance space that is “dense”
in instances from positive bags, and is also “diverse” in
that it describes every positive bag. More formally, let

DD(t) =

Z

(∏
i

Pr(t∣B+i)∏
i

Pr(t∣B−i)) ,

where t is a candidate concept, B+i represents the ith
positive bag, and B−i represents the ith negative bag. We
seek a concept that maximizesDD(t).�e concept gen-
erates the instances of a bag, rather than the bag itself.
To score a concept with respect to a bag, we combine
t’s probabilities for instances using a function based on
noisy-OR Pearl ():

Pr(t∣B+i)∝ (−∏
j

(− Pr(B+ij ∈ t))) ()

Pr(t∣B−i)∝∏
j

(− Pr(B−ij ∈ t)) ()

Here, the instances B+ij and B
−
ij belonging to t are the

“causes” of the “event” that “t is the target.”�e concept
class investigated by Maron () is the class of gener-
ative Gaussian models, which are parameterized by the
mean µ and a “scale” s =

σ
:

Pr(Bij ∈ t)∝ e−∑k(sk(Bijk−µk)
),

where k ranges over attributes. Figure illustrates a
concept that Diverse Density might learn when applied
to an MI dataset.
Diverse Density with k disjuncts is a variant of

Diverse Density that has also been investigated (Maron,
).�is is a class of disjunctive Gaussian concepts,
where the probability of an instance belonging to a con-
cept is given by the maximum probability of belonging
to any of the disjuncts.
EM-DD (Zhang & Goldman,) is an example

of a class of algorithms that try to identify the “cause”
of a bag’s label using EM. �ese algorithms some-
times assume that there is a single instance in each
bag that is responsible for the bag’s label (though vari-
ants using “so� EM” are possible).�e key idea behind
this approach is as follows: from each positive bag, we
take a random instance and assume that this instance
is the relevant one. We learn a hypothesis from these
relevant instances and all negative bags. Next, for each
positive bag, we replace the current relevant instance by
the instance most consistent with the learned hypoth-
esis (which will initially not be the chosen instance
in general). We then relearn the hypothesis with these
new instances. �is process is continued until the set
of chosen instances does not change (or alternatively,
the objective function of the classi�er reaches a �xed
point).�is procedure has the advantage of being com-
putationally e�cient, since the learning algorithm only
uses one instance from each positive bag.�is approach
has also been used in MI regression described later.
“Upgraded” supervised learning algorithms can be

used in a MI setting by suitably modifying their objec-
tive functions. Below, we summarize some of the algo-
rithms that have been derived in this way.

. 7Decision Tree induction algorithms have been
adapted to the MI setting (Blockeel, Page, &
Srinivasan,).�e standard algorithmmeasures

Multi-Instance Learning M

M

A

B

C

f 1

f 2
Multi-Instance Learning. Figure . An illustration of the concept that Diverse Density searches for on a simple MI

dataset with three positive bags and one negative bag, where each instance (represented by the geometric figures)

is described by two attributes, f and f. Each type of figure represents one bag, i.e., all triangles belong to one bag, all

circles belong to a second bag, and so forth. The bag containing the red circles is negative, while the other bags are

positive. Region C is a region of high density, because several instances belong to that region. Region A is a region of

high “Diverse Density,” because several instances from different positive bags belong to that region, and no instances

from negative bags are nearby. Region B shows a concept that might be learned if the learning algorithm assumed that

all instances in every positive bag are positive. Figure adapted from Maron ()

the quality of a split on an attribute by considering
the class label distribution in the child nodes pro-
duced. In theMI case, this distribution is uncertain,
because the true instance labels in positive bags are
unknown. However, some rules have been identi-
�ed that lead to empirically good MI trees: () use
an asymmetric heuristic that favors early creation of
pure positive (rather than negative) leaves, () once
a positive leaf has been created, remove all other
instances of the bags covered by this leaf; () aban-
don the depth-�rst or breadth-�rst order in which
nodes are usually split, adopting a best-�rst strat-
egy instead (indeed, because of (), the result of tree
learning is now sensitive to the order in which the
nodes are split).

. 7Arti�cial Neural Networks have been adapted
to the MI setting by representing the bag classi-
�er as a network that combines several copies of
a smaller network, which represents the instance
classi�er, with a smooth approximation of the
max combining function (Ramon & DeRaedt,
). Weight update rules for a backpropaga-
tion algorithm working on this network have been
derived. Later work on MI neural networks has
been performed independently by others (Zhou &
Zhang,).

. 7Logistic Regression has been adapted to theMI set-
ting by using it as an instance-based classi�er and
combining the instance-level probabilities using
functions like so�max (Ray & Craven,) and

 M Multi-Instance Learning

arithmetic and geometric averages (Xu & Frank,
).

. �e 7k-Nearest Neighbor algorithm has been
adapted to the MI setting by using set-based
distance metrics, such as variants based on the
Hausdor� distance. However, this alone does not
solve the problem – it is possible for a positive bag
to be mistakenly classi�ed negative if it contains a
“true negative” instance that happens to be much
closer to negative instances in other negative bags.
To solve this, a “Citation-kNN” (Wang & Zucker,
) approach has been proposed that also con-
siders, for each bag B, the labels of those bags for
which B is a nearest neighbor.

. 7Support Vector Machines have been adapted to
the MI setting in several ways. In one method, the
constraints in the quadratic program for SVMs is
modi�ed to account for the fact that certain instance
labels are unknown but have constraints relat-
ing them (Andrews, Tsochantaridis, & Hofmann,
). In anothermethod, new kernels are designed
forMI data bymodifying standard supervised SVM
kernels (Gartner, Flach, Kowalczyk, & Smola,)
or designing new kernels (Tao, Scott, & Vinod-
chandran,). �e modi�cation allows these
MI kernels to distinguish between positive and
negative bags if the supervised kernel could dis-
tinguish between (“true”) positive and negative
instances.

. 7Rule learning algorithms have been adapted to the
MI setting in two ways. One method has investi-
gated upgrading a supervised rule-learner, the rip-
per system (Cohen,), to the MI setting by
modifying its objective function to account for bags
and addressing several issues that resulted. Another
methodhas investigated using general purpose rela-
tional algorithms, such as foil (Quinlan,) and
tilde (Blockeel & De Raedt,), and provid-
ing them with an appropriate 7inductive bias so
that they learn the MI concepts. Further, it has
been observed that techniques from MI learning
can also be used inside relational learning algo-
rithms (Alphonse & Matwin,).

A large-scale empirical analysis of several such
propositional supervised learning algorithms and their
MI counterparts has been performed (Ray & Craven,

). �is analysis concludes that () no single MI
algorithm works well across all problems.�us, di�er-
ent inductive biases are suited to di�erent problems, ()
some MI algorithms consistently perform better than
their supervised counterparts but others do not (hence
for these biases there seems room for improvement),
and () assigning a larger weight to false positives than
to false negatives is a simple but e�ective method to
adapt supervised learning algorithms to the MI setting.
It was also observed that the advantages of MI learn-
ers may bemore pronounced if they would be evaluated
on the task of labeling individual instances rather than
bags.
Along with “upgrading” supervised learning algo-

rithms, a theoretical analysis of supervised learners learn-
ing with MI data has been carried out (Blum & Kalai,
). In particular, the MI problem has been related
to the problem of learning in the presence of classi�-
cation noise (i.e., each training example’s label is �ipped
with some probability < /).�is implies that any con-
cept class that is PAC-learnable in the presence of such
noise is also learnable in the MI learning model when
each instance of a bag is drawn iid. Since many con-
cept classes are learnable under this noise assumption
(using e.g., statistical queries Kearns,), Blum and
Kalai’s result implies PAC learnability of many concept
classes. Further, they improved on previous learnabil-
ity results (Auer et al.,) by reducing the number
of training bags required for PAC learning by about a
factor of n with only an increase in time complexity of
about logn/є.
Besides these positive results, a negative learnabil-

ity result describing when it is hard to learn concepts
from MI data is also known (Auer et al.,). Speci�-
cally, if the instances of each bag are allowed collectively
to be generated according to an arbitrary distribution,
learning from MI examples is as hard as PAC-learning
disjunctive normal form (DNF) formulas from single-
instance examples, which is an open problem in learn-
ing theory that is believed to be hard. Further, it has
been showed that if an e�cient algorithm exists for
the non-iid case that outputs as its hypothesis an axis-
parallel rectangle, then NP = RP (Randomized Polyno-
mial time, see e.g., Papadimitriou,), which is very
unlikely.
Learning from structured MI data has received some

attention (McGovern & Jensen,). In this work,

Multi-Instance Learning M

M

each instance is a graph, and a bag is a set of graphs
(e.g., a bag could consist of certain subgraphs of a larger
graph). To learn the concepts in this structured space,
the authors use a modi�ed form of the Diverse Density
algorithmdiscussed above. As before, the concept being
searched for is a point (which corresponds to a graph
in this case). �e main modi�cation is the use of the
size of the maximal common subgraph to estimate the
probability of a concept – i.e., the probability of a con-
cept given a bag is estimated as proportional to the size
of themaximal common subgraph between the concept
and any instance in the bag.

Multiple-Instance Regression

Regression problems in an MI setting have received
less attention than the classi�cation problem. Two key
directions have been explored in this setting. One direc-
tion extends the well-known standard 7linear regres-
sion method to the MI setting. �e other direction
considers extending various MI classi�cation methods
to a regression setting.
InMI Linear Regression (Ray & Page,) (referred

to as multiple-instance regression in the cited work),
it is assumed that the hypothesis underlying the data
is a linear model with Gaussian noise on the value of
the dependent variable (which is the response). Fur-
ther, it is assumed that it is su�cient to model one
instance from each bag, i.e., that there is some primary
instance which is responsible for the real-valued label.
Ideally, one would like to �nd a hyperplane that mini-
mizes the squared error with respect to these primary
instances. However, these instances are unknown dur-
ing training.�e authors conjecture that, given enough
data, a good approximation to the ideal is given by the
“best-�t” hyperplane, de�ned as the hyperplane that
minimizes the training set squared error by �tting one
instance from each bag such that the response of the
�tted instance most closely matches the bag response.
�is conjecture will be true if the nonprimary instances
are not a better �t to a hyperplane than the primary
instances. However, exactly �nding the “best-�t” hyper-
plane is intractable. It is shown that the decision prob-
lem “Is there a hyperplane which perfectly �ts one
instance from each bag?” is NP-complete for arbitrary
numbers of bags, attributes, and at most three instances
per bag. �us, the authors propose an approximation
algorithm which iterates between choosing instances

and learning linear regression models that best �t
them, similar to the EM-DD algorithm described
earlier.
Another direction has explored extending MI clas-

si�cation algorithms to the regression setting. �is
approach (Dooly, Zhang, Goldman, & Amar,)
uses algorithms like Citation-kNN and Diverse Density
to learn real-valued concepts. To predict a real value,
the approach uses the average of the nearest neighbor
responses or interprets the Gaussian “probability” as a
real number for Diverse Density.
Recent work has analyzed the Diverse Density-

based regression in the online model (Angluin, ;
Littlestone,) (see 7online learning). In the online
model, learning proceeds in trials, where in each trial
a single example is selected adversarially and given to
the learner for classi�cation. A�er the learner predicts
a label, the true label is revealed and the learner incurs
a loss based on whether its prediction was correct.�e
goal of the online learner is to minimize the loss over
all trials. Online learning is harder than PAC learning in
that there are some PAC-learnable concept classes that
are not online learnable.
In the regression setting above (Dooly, Goldman, &

Kwek,), there is a point concept, and the label of
each bag is a function of the distance between the con-
cept and the point in the bag closest to the target. It is
shown that similar to Auer et al.’s lower bound, learn-
ing in this setting using labeled bags alone is as hard
as learning DNF.�ey then de�ne an MI membership
query (MI-MQ) in which an adversary de�nes a bag
B = {p, . . . , pn} and the learner is allowed to ask an ora-
cle for the label of bag B+ v⃗ = {p+ v⃗, . . . , pn+ v⃗} for any
d-dimensional vector v⃗.�eir algorithm then uses this
MI-MQ oracle to online learn a real-valuedMI concept
in time O(dn).

Applications
In this section, we describe domains where MI learning
problems have been formulated.
Drug activity was the motivating application for the

MI representation (Dietterich et al.,). Drugs are
typically molecules that ful�ll some desired function
by binding to a target. In this domain, we wish to pre-
dict how strongly a given molecule will bind to a tar-
get. Each molecule is a three-dimensional entity and

 M Multi-Instance Learning

takes on multiple shapes or conformations in solution.
We know that for every molecule showing activity, at
least one of its low energy conformations possesses the
right shape for interacting with the target. Similarly,
if the molecule does not show drug-like activity, none
of its conformations possess the right shape for inter-
action. �us, each molecule is represented as a bag,
where each instance is a low energy conformation of the
molecule. A well-known example from this domain is
theMUSK dataset.�e positive class in this data consists
of molecules that smell “musky.” �is dataset has two
variants, MUSK and MUSK, both with similar num-
bers of bags, with MUSK having many more instances
per bag.
Content-Based Image Retrieval is another domain

where the MI representation has been used
(Maron & Lozano-Pérez, ; Zhang, Yu, Goldman, &
Fritts,). In this domain, the task is to �nd images
that contain objects of interest, such as tigers, in a
database of images. An image is represented by a bag.
An instance in a bag corresponds to a segment in the
image, obtained by some segmentation technique.�e
underlying assumption is that the object of interest is
contained in (at least) one segment of the image. For
example, if we are trying to �nd images of mountains
in a database, it is reasonable to expect most images of
mountains to have certain distinctive segments charac-
teristic of mountains. AnMI learning algorithm should
be able to use the segmented images to learn a con-
cept that represents the shape of amountain and use the
learned concept to collect images ofmountains from the
database.

�e identi�cation of protein families has been framed
as anMI problem (Tao et al.,).�e objective in that
work is to classify given protein sequences according
to whether they belong to the family of thioredoxin-
fold proteins.�e given proteins are �rst aligned with
respect to a motif that is known to be conserved in the
members of the family. Each aligned protein is repre-
sented by a bag. A bag is labeled positive if the pro-
tein belongs to the family, and negative otherwise. An
instance in a bag corresponds to a position in a �xed
length sequence around the conservedmotif. Each posi-
tion is described by a vector of attributes; each attribute
describes the properties of the amino acid at that posi-
tion, and is smoothed using the same properties from
its neighbors.

Text Categorization is another domain that has used
the MI representation (Andrews et al., ; Ray &
Craven). In this domain, the task is to classify a
document as belonging to a certain category or not.
O�en, whether the document belongs to the speci�ed
category is the function of a few passages in the doc-
ument. �ese passages are however not labeled with
the category information. �us, a document could be
represented as a set of passages. We assume that each
positive document (i.e., that belongs to the speci�ed
category) has at least one passage that contains words
that indicate category membership. On the other hand,
a negative document (that does not belong to the cat-
egory) has no passage that contain words indicating
category membership.�is formulation has been used
to classify whether MEDLINE documents should be
annotated with speci�c MeSH terms (Andrews et al.)
and to determine if speci�c documents should be anno-
tated with terms from the Gene Ontology (Ray &
Craven,).
Time-series data from the hard drives have been

used to de�ne an MI problem (Murray, Hughes, &
Kreutz-Delgado,).�e task here is to distinguish
drives that fail from others. Each hard drive is a bag.
Each instance in the bag is a �xed-size window over
timepoints when the drive’s state was measured using
certain attributes. In the training set, each drive is
labeled according to whether it failed during a window
of observation. An interesting aspect to prediction in
this setting is that it is done online, i.e., the algorithm
learns a classi�er for instances, which is applied to each
instance as it becomes available in time. �e authors
learn a naïve Bayes model using an EM-based approach
to solve this problem.
Discovering useful subgoals in reinforcement learning

has been formulated as an MI problem (McGovern &
Barto,). Imagine that a robot has to get from one
room to another by passing through a connecting door.
If the robot knew of the existence of the door, it could
decompose the problem into two simpler subproblems
to be solved separately: getting from the initial location
in the �rst room to the door, and then getting from the
door to its destination. How could the robot discover
such a “useful subgoal?” One approach formulates this
as an MI problem. Each trajectory of the robot, where
the robot starts at the source and then moves for some
number of time steps, is considered to be a bag. An

Multi-Instance Learning M

M

instance in a bag is a state of the world, that records
observations such as, “is the robot’s current location a
door?” Trajectories that reach the destination are pos-
itive, while those that do not are negative. Given this
data, we can learn a classi�er that predicts which states
aremore likely to be seen on successful trajectories than
on unsuccessful ones.�ese states are taken to be use-
ful subgoals. In the previous example, the MI algorithm
could learn that the state “location is a door” is a useful
subgoal, since it appears on all successful trajectories,
but infrequently on unsuccessful ones.

Future Directions
MI learning remains an active research area. One direc-
tion that is being explored relaxes the “Constraints” in
Fig. in di�erent ways (Tao et al., ; Weidmann,
Frank, & Pfahringer). For example, one could con-
sider constraints where at least a certain number (or
fraction) of instances have to be positive for a bag to
be labeled positive. Similarly, it may be the case that
a bag is labeled positive only if it does not contain a
speci�c instance. Such relaxations are o�en studied as
“generalized multiple-instance learning.”
One such generalization of MI learning has been

formally studied under the name “geometric patterns.”
In this setting, the target concept consists of a col-
lection of APRs, and a bag is labeled positive if and
only if () each of its points lies in a target APR, and
() every target APR contains a point. Noise-tolerant
PAC algorithms (Goldman & Scott,) and online
algorithms (Goldman, Kwek, & Scott,) have been
presented for such concept classes. �ese algorithms
make no assumptions on the distribution used to gen-
erate the bags (e.g., instances might not be generated
by an iid process). �is does not violate Auer et al.’s
lower bound since these algorithms do not scale with
the dimension of the input space.
Another recent direction explores the connections

between MI and semi-supervised learnings. Semi-
supervised learning generally refers to learning from
a setting where some instance labels are unknown.
MI learning can be viewed as one example of this
setting. Exploiting this connection between MI learn-
ing and other methods for semi-supervised learning,
recent work (Rahmani & Goldman,) proposes an
approach where an MI problem is transformed into a

semi-supervised learning problem. An advantage of the
approach is that it automatically also takes into account
unlabeled bags.

Cross References
7Arti�cial Neural Network
7Attribute
7Classi�cation
7Data Set
7Decision Trees
7Expectation-Maximization
7First-Order Rule
7Gaussian Distribution
7Inductive Logic Programming
7Kernel Methods
7Linear Regression
7Nearest Neighbor
7Noise
7On-Line Learning
7PAC Learning
7Relational Learning
7Supervised Learning

Recommended Reading
Alphonse, E., & Matwin, S. (). Feature subset selection and

inductive logic programming. In Proceedings of the th Inter-
national Conference on Machine Learning (pp. –). Morgan
Kaufmann, San Francisco, USA.

Andrews, S., Tsochantaridis, I., & Hofmann, T. (). Support
vector machines for multiple-instance learning. In S. Becker,
S. Thrun, & K. Obermayer, (Eds.), Advances in neural informa-
tion processing systems. (Vol. , pp. –). Cambridge, MA:
MIT Press.

Angluin, D. (). Queries and concept learning.Machine Learning,
(), –.

Auer, P. (). On learning from multi-instance examples: Empir-
ical evaluation of a theoretical approach. In Proceeding of th
international conference on machine learning (pp. –). San
Francisco: Morgan Kaufmann.

Auer, P., Long, P. M., & Srinivasan, A. (). Approximating
hyper-rectangles: Learning and pseudorandom sets. Journal of
Computer and System Sciences, (), –.

Blockeel, H., & De Raedt, L. (). Top-down induction of first
order logical decision trees. Artificial Intelligence, (–),
–.

Blockeel, H., Page, D., & Srinivasan, A. (). Multi-instance tree
learning. In Proceedings of nd international conference on
machine learning (pp. –). Bonn, Germany.

Blum, A., & Kalai, A. (). A note on learning from multiple-
instance examples. Machine Learning Journal, (), –.

Cohen, W. W. (). Fast effective rule induction. In Proceedings
of the th international conference on machine learning. San
Francisco: Morgan Kaufmann.

 M Multi-Objective Optimization

DeRaedt, L. (). Attribute-value learning versus inductive
logic programming: The missing links. In Proceedings of the
eighth international conference on inductive logic programming

(pp. –). New York: Springer.
Dietterich, T., Lathrop, R., & Lozano-Perez, T. (). Solving the

multiple-instance problem with axis-parallel rectangles. Artifi-
cial Intelligence, (–), –.

Dooly, D. R., Goldman, S. A., & Kwek, S. S. (). Real-valued
multiple-instance learning with queries. Journal of Computer
and System Sciences, (), –.

Dooly, D. R., Zhang, Q., Goldman, S. A., & Amar, R. A. ().
Multiple-instance learning of real-valued data. Journal of
Machine Learning Research, , –.

Gartner, T., Flach, P. A., Kowalczyk, A., & Smola, A. J. (). Multi-
instance kernels. In C. Sammut, & A. Hoffmann, (Eds.), Pro-
ceedings of the th international conference on machine learning

(pp. –). San Francisco: Morgan Kaufmann.
Goldman, S. A., Kwek, S. K., & Scott, S. D. (). Agnostic learning

of geometric patterns. Journal of Computer and System Sciences,
(), –.

Goldman, S. A., & Scott, S. D. (). A theoretical and empirical
study of a noise-tolerant algorithm to learn geometric patterns.
Machine Learning, (), –.

Kearns, M. (). Efficient noise-tolerant learning from statistical
queries. Journal of the ACM, (), –.

Long, P. M., & Tan, L. (). PAC learning axis-aligned rectangles
with respect to product distributions from multiple-instance
examples. Machine Learning, (), –.

Littlestone, N. (). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
(), –.

Maron, O. (). Learning from ambiguity. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, MIT,
Cambridge, MA.

Maron, O., & Lozano-Pérez, T. (). A framework for multiple-
instance learning. In M. I. Jordan, M. J. Kearns, & S. A. Solla,
(Eds.), Advances in neural information processing systems

(Vol. , pp. –). Cambridge, MA: MIT Press.
McGovern, A., & Barto, A. G. (). Automatic discovery of sub-

goals in reinforcement learning using diverse density. In Pro-
ceedings of the th international conference on machine learning

(pp. –). San Francisco: Morgan Kaufmann.
McGovern, A., & Jensen, D. (). Identifying predictive structures

in relational data using multiple instance learning. In Proceed-
ings of the th international conference on machine learning

(pp. –). Menlo Park, USA: AAAI Press.
Murray, J. F., Hughes, G. F., & Kreutz-Delgado, K. (). Machine

learning methods for predicting failures in hard drives:
A multiple-instance application. Journal of Machine Learning
Research, , –.

Papadimitriou, C. (). Computational complexity. Boston, MA:
Addison-Wesley.

Pearl, J. (). Probabilistic reasoning in intelligent systems: Net-
works of plausible inference. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (). Learning logical definitions from relations.
Machine Learning, , –.

Rahmani, R., & Goldman, S. A. (). MISSL: Multiple-instance
semi-supervised learning. In Proceedings of the rd interna-
tional conference on machine learning (pp. –). New York,
USA: ACM Press.

Ramon, J., & DeRaedt, L. (). Multi instance neural networks.
In Proceedings of ICML- workshop on attribute-value and
relational learning.

Ray, S., & Craven, M. (). Supervised versus multiple-instance
learning: An empirical comparison. In Proceedings of the nd
international conference on machine learning (pp. –).
New York: ACM Press.

Ray, S., & Page, D. (). Multiple instance regression. In Proceed-
ings of the th international conference on machine learning.
Williamstown, MA: Morgan Kaufmann.

Tao, Q., Scott, S. D., & Vinodchandran, N. V. (). SVM-based
generalized multiple-instance learning via approximate box
counting. In Proceedings of the st international conference
on machine learning (pp. –). San Francisco: Morgan
Kaufmann.

Valiant, L. G. (). A theory of the learnable. Communiactions of
the ACM, (), –.

Wang, J., & Zucker, J. D. (). Solving the multiple-instance
problem: A lazy learning approach. In Proceedings of the th
international conference on machine learning (pp. –).
San Francisco: Morgan Kaufmann.

Weidmann, N., Frank, E., & Pfahringer, B. (). A two-level
learning method for generalized multi-instance problems. In
Proceedings of the European conference on machine learning

(pp. –). Berlin/Heidelberg: Springer.
Xu, X., & Frank, E. (). Logistic regression and boosting for

labeled bags of instances. In Proceedings of the Pacific-Asia con-
ference on knowledge discovery and data mining (pp. –).
Sydney, Australia.

Zhang, Q., & Goldman, S. (). EM-DD: An improved multiple-
instance learning technique. In Advances in Neural Information
Processing Systems (pp. –). MIT Press.

Zhang, Q., Yu, W., Goldman, S., & Fritts, J. (). Content-based
image retrieval using multiple-instance learning. In Proceed-
ings of the th international conference on machine learning

(pp. –). San Francisco: Morgan Kaufmann.
Zhou, Z. H., & Zhang, M. L. (). Neural networks for multi-

instance learning. Technical Report, Nanjing University, Nan-
jing, China.

Multi-Objective Optimization

Synonyms
MOO;Multi-criteria optimization; Vector optimization

Definition
Multi-criteria optimization is concerned with the opti-
mization of a vector of objectives, which can be the
subject of a number of constraints or bounds.�e goal
of multi-objective optimization is usually to �nd or to
approximate the set of Pareto-optimal solutions. A solu-
tion is Pareto-optimal if it cannot be improved in one
objective without getting worse in another one.

Must-Link Constraint M

M

Multiple Classifier Systems

7Ensemble Learning

Multiple-Instance Learning

7Multi-Instance Learning

Multi-Relational Data Mining

Luc De Raedt
Katholieke Universiteit Leuven,
Heverlee, Belgium

Synonyms
Inductive logic programming; Relational learning;
Statistical relational learning

Definition
Multi-relational data mining is the sub�eld of knowl-
edge discovery that is concerned with the mining of
multiple tables or relations in a database. �is allows
it to cope with structured data in the form of com-
plex data that cannot easily be represented using a sin-
gle table, or an 7attribute as is common in machine
learning.
Relevant techniques of multi-relational data min-

ing include those from relational learning, statistical
relational learning, and inductive logic programming.

Cross References
7Inductive Logic Programming

Recommended Reading
Dzeroski, S., & Lavrac, N. (Eds.). (). Relational data mining.

Berlin: Springer.

Multistrategy Ensemble Learning

Definition
Every 7ensemble learning strategy might be expected
to have unique e�ects on the base learner. Combining
multiple ensemble learning algorithms might hence
be expected to provide bene�t. For example, 7Multi-
Boosting combines 7AdaBoost and a variant of
7Bagging, obtaining most of AdaBoost’s 7bias reduc-
tion coupled with most of Bagging’s 7variance reduc-
tion. Similarly, 7Random Forests combines Bagging’s
variance reduction with 7Random Subspaces’ bias
reduction.

Cross References
7Ensemble Learning
7MultiBoosting
7Random Forests

Recommended Reading
Webb, G. I., & Zheng, Z. (). Multistrategy ensemble learning:

Reducing error by combining ensemble learning techniques.
IEEE Transactions on Knowledge and Data Engineering, (),
–.

Must-Link Constraint

Apairwise constraint between two items indicating that
they should be placed into the same cluster in the �nal
partition.

N

Naïve Bayes

Geoffrey I. Webb

Monash University, Melbourne, Victoria

Synonyms
Idiot’s bayes; Simple bayes

Definition
Naïve Bayes is a simple learning algorithm that uti-

lizes 7Bayes rule together with a strong assumption
that the attributes are conditionally independent, given

the class. While this independence assumption is o�en

violated in practice, naïve Bayes nonetheless o�en deliv-

ers competitive classi�cation accuracy. Coupled with its

computational e�ciency and many other desirable fea-

tures, this leads to naïve Bayes being widely applied in

practice.

Motivation and Background
Naïve Bayes provides a mechanism for using the infor-

mation in sample data to estimate the posterior proba-

bility P(y | x) of each class y, given an object x. Once we
have such estimates, we can use them for7classi�cation
or other decision support applications.

Naïve Bayes’ many desirable properties include:

● Computational e�ciency: 7Training time is lin-
ear with respect to both the number of 7training
examples and the number of 7attributes, and
7classi�cation time is linear with respect to the
number of attributes and una�ected by the number

of training examples.

● Low variance: Because naïve Bayes does not utilize
search, it has low7variance, albeit at the cost of high
7bias.

● Incremental learning: Naïve Bayes operates from
estimates of low order probabilities that are derived

from the training data.�ese can readily be updated

as new training data are acquired.

● Direct prediction of posterior probabilities.
● Robustness in the face of noise: Naïve Bayes always
uses all attributes for all predictions and hence is

relatively insensitive to 7noise in the examples to
be classi�ed. Because it uses probabilities, it is also

relatively insensitive to noise in the7training data.
● Robustness in the face ofmissing values: Because naïve
Bayes always uses all attributes for all predictions,

if one attribute value is missing, information from

other attributes is still used, resulting in grace-

ful degradation in performance. It is also rel-

atively insensitive to 7missing attribute values
in the 7training data due to its probabilistic
framework.

Structure of Learning System
Naïve Bayes is based on7Bayes rule

P(y ∣ x) = P(y)P(x ∣ y)/P(x) ()

together with an assumption that the attributes are con-

ditionally independent given the class. For 7attribute-
value data, this assumption entitles

P(x ∣ y) =
n

∏
i=
P(xi ∣ y) ()

where xi is the value of the ith attribute in x, and n is the
number of attributes.

P(x) =
k

∏
i=
P(ci)P(x ∣ ci) ()

where k is the number of classes and ci is the ith class.
�us, () can be calculated by normalizing the numera-

tors of the right-hand-side of the equation.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 N NC-Learning

For 7categorical attributes, the required proba-
bilities P(y) and P(xi ∣ y) are normally derived from
frequency counts stored in arrays whose values are cal-

culated by a single pass through the training data at

training time.�ese arrays can be updated as new data

are acquired, supporting 7incremental learning. Prob-
ability estimates are usually derived from the frequency

counts using smoothing functions such as the7Laplace
estimate or an7m-estimate.
For 7numeric attributes, either the data are dis-

cretized (see 7discretization), or probability density
estimation is employed.

In 7document classi�cation, two variants of naïve
Bayes are o�en employed (McCallumandNigam,).

�e multivariate Bernoulli model utilizes naïve Bayes
as described above, with each word in a corpus repre-

sented by a binary variable that is true if and only if

the word is present in a document. However, only the

words that are present in a document are considered

when calculating the probabilities for that document.

In contrast, themultinomial model uses information
about the number of times a word appears in a docu-

ment. It treats each occurrence of a word in a document

as a separate event.�ese events are assumed indepen-

dent of each other. Hence the probability of a document

given a class is the product of the probabilities of each

word event given the class.

Cross References
7Bayes Rule
7Bayesian Methods
7Bayesian Networks
7Semi-Naïve Bayesian Learning

Recommended Reading
Lewis, D. () Naive Bayes at forty: the independence assumption

in information retrieval. In Machine Learning: ECML-, Pro-
ceedings of the th European Conference on Machine Learning,
Chemnitz, Germany (pp. –). Berlin: Springer.

McCallum, A., & Nigam, K. (). A comparison of event mod-

els for Naive Bayes text classification. In AAAI- Workshop on
Learning for Text Categorization (pp. –). CA: AAAI Press.

NC-Learning

7Negative Correlation Learning

NCL

7Negative Correlation Learning

Nearest Neighbor

Eamonn Keogh

University California-Riverside

Synonyms
Closest point; Most similar point

Definition
In a data collection M, the nearest neighbor to a data
object q is the data objectMi, which minimizes dist (q,
Mi), where dist is a distance measure de�ned for the
objects in question. Note that the fact that the objectMi

is the nearest neighbor to q does not imply that q is the
nearest neighbor toMi.

Motivation and Background
Nearest neighbors are useful in many machine learning

and data mining tasks, such as classi�cation, anomaly

detection, and motif discovery and in more gen-

eral tasks such as spell checking, vector quantization,

plagiarism detection, web search, and recommender

systems.

�e naive method to �nd the nearest neighbor to a

point q requires a linear scan of all objects in M. Since
this may be unacceptably slow for large datasets and/or

computationally demanding distance measures, there

is a huge amount of literature on speeding up near-

est neighbor searches (query-by-content). �e fastest

methods depend on the distancemeasure used, whether

the data is disk resident or in main memory, and the

structure of the data itself. Many methods are based

on the R-tree (Guttman,) or one of its vari-

ants (Manolopoulos, Nanopoulos, Papadopoulos, and

�eodoridis,). However, in recent years there has

been an increased awareness that for many applications

Negative Predictive Value N

N

approximate nearest neighbors may su�ce.�is has led

to the development of techniques like locality sensitive
hashing, which �nds high-quality approximate nearest
neighbors in constant time.

�e de�nition of nearest neighbor allows for the def-

inition of one of the simplest classi�cation schemes, the

nearest neighbor classi�er.
�e major database (SIGMOD, VLDB, and PODS)

and data mining (SIGKDD, ICDM, and SDM) con-

ferences typically feature several papers on novel dis-

tance measures and techniques for speeding up near-

est neighbor search. Pavel et al.’s book provides an

excellent overview on the state-of-the-art techniques in

nearest neighbor searching.

Recommended Reading
Guttman, A. (). R-trees: A dynamic index structure for spatial

searching. In Proceedings of the ACM SIGMOD interna-
tional conference on management of data (pp. –). New York:
ACM. ISBN ---

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., &

Theodoridis, Y. (). R-trees: Theory and applications. Berlin:
Springer.

Zezula, P., Amato, G., Dohnal, V., & Batko, M. (). Sim-

ilarity search: The metric space approach. In Advances in
database systems (Vol. , p.). New York: Springer.

ISBN ---

Nearest Neighbor Methods

7Instance-Based Learning

Negative Correlation Learning

Synonyms
NC-learning; NCL

Definition
Negative correlation learning (Liu & Yao,) is

an 7ensemble learning technique. It can be used for
regression or classi�cation problems, though with clas-

si�cation problems the models must be capable of pro-

ducing posterior probabilities. �e model outputs are

combined with a uniformly weighted average. �e

squared error is augmented with a penalty term which

takes into account the diversity of the ensemble. �e

error for the ith model is,

E(fi(x)) =

(fi(x) − d) − λ(fi(x) − f̄ (x)). ()

�e coe�cient λ determines the balance between opti-
mizing individual accuracy, and optimizing ensemble

diversity. With λ = , the models are trained indepen-

dently, with no emphasis on diversity. With λ = , the

models are tightly coupled, and the ensemble is trained

as a single unit. �eoretical studies (Brown, Wyatt, &

Tino,) have shown that NCworks by directly opti-

mizing the7bias-variance-covariance trade-o�, thus it
explicitly manages the ensemble diversity. When the
complexity of the individuals is su�cient to have high

individual accuracy, NC provides little bene�t. When

the complexity is low, NCwith a well-chosen λ can pro-
vide signi�cant performance improvements. �us the

best situation to make use of the NC framework is with

a large number of low accuracy models.

Recommended Reading
Brown, G., Wyatt, J. L., & Tino, P. (). Managing diversity in

regression ensembles. Journal of Machine Learning Research, ,
–.

Liu, Y., & Yao, X. (). Ensemble learning via negative correlation

Neural Networks, (), –.

Negative Predictive Value

Negative Predictive Value (NPV) is de�ned as a ratio of

true negatives to the total number of negatives predicted

by a model.�is is de�ned with reference to a special

case of the 7confusion matrix with two classes – one
designated the positive class and the other the negative
class – as indicated in Table .

NPV can then be de�ned in terms of true negatives

and false negatives as follows.

NPV = TN/(TN + FN)

 N Network Analysis

Negative Predictive Value. Table The outcomes of

classification into positive and negative classes

Assigned Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

A
ct

ua
l

C
la

ss

Negative False Positive (FP) True Negative (TN)

Network Analysis

7LinkMining and Link Discovery

Network Clustering

7Graph Clustering

Networks with Kernel Functions

7Radial Basis Function Networks

Neural Networks

Neural networks are learning algorithms based on a

loose analogy of how the human brain functions. Learn-

ing is achieved by adjusting the weights on the connec-

tions between nodes, which are analogous to synapses

and neurons.

Cross References
7Radial Basis Function Networks

Neural Network Architecture

7Topology of a Neural Network

Neuro-Dynamic Programming

7Value Function Approximation

Neuroevolution

RistoMiikkulainen

�e University of Texas at Austin

Austin, TX, USA

Synonyms
Evolving neural networks; Genetic neural networks

Definition
Neuroevolution is a method for modifying 7neural
network weights, topologies, or ensembles in order to

learn a speci�c task. Evolutionary computation (see

7Evolutionary Algorithms) is used to search for net-
work parameters that maximize a �tness function that

measures performance in the task. Compared to other

neural network learning methods, neuroevolution is

highly general, allowing learning without explicit tar-

gets, with non di�erentiable activation functions, and

with recurrent networks. It can also be combined with

standard neural network learning, e.g. to biological

adaptation. Neuroevolution can also be seen as a pol-

icy search method for reinforcement-learning prob-

lems, where it is well suited to continuous domains

and to domains where the state is only partially

observable.

Motivation and Background
�e primarymotivation for neuroevolution is to be able

to train neural networks in sequential decision tasks

with sparse reinforcement information. Most neural

network learning is concerned with supervised tasks,

where the desired behavior is described in terms of a

corpus of input to output examples. However, many

learning tasks in the real world do not lend themselves

to the supervised learning approach. For example, in

game playing, vehicle control, and robotics, the opti-

mal actions at each point in time are not always known;

only a�er performing several actions, it is possible to get

information about how well they worked, such as win-

ning or losing the game. Neuroevolution makes it pos-

sible to �nd a neural network that optimizes behavior

given only such sparse information about how well the

networks are doing, without direct information about

what exactly they should be doing.

Neuroevolution N

N

�e main bene�t of neuroevolution compared

with other reinforcement learning (RL) methods in

such tasks is that it allows representing continu-

ous state and action spaces and disambiguating hid-

den states naturally. Network activations are contin-

uous, and the network generalizes well between con-

tinuous values, largely avoiding the state explosion

problem that plagues many reinforcement-learning

approaches. 7Recurrent networks can encode memo-
ries of past states and actions, making it possible to

learn in7partially observable Markov decision process
(POMDP) environments that are di�cult for many RL

approaches.

Compared to other neural network learning meth-

ods, neuroevolution is highly general. As long as the

performance of the networks can be evaluated over

time, and the behavior of the network can be modi-

�ed through evolution, it can be applied to a wide range

of network architectures, including those with non

di�erentiable activation functions and recurrent and

higher-order connections. While most neural learning

algorithms focus on modifying only the weights, neu-

roevolution can be used to optimize other aspects of

the networks as well, including activation functions and

network topologies.

�ird, neuroevolution allows combining evolution

over a population of solutions with lifetime learn-

ing in individual solutions: the evolved networks can

each learn further through, e.g., backpropagation or

Hebbian learning.�e approach is therefore well suited

for understanding biological adaptation and building

arti�cial life systems.

Structure of the Learning System
Basic methods

In neuroevolution, a population of genetic encodings of

neural networks is evolved to �nd a network that solves

the given task.Most neuroevolutionmethods follow the

usual generate-and-test loop of evolutionary algorithms

(Fig.). Each encoding in the population (a genotype)

is chosen in turn and decoded into the correspond-

ing neural network (a phenotype).�is network is then

employed in the task and its performance measured

over time, obtaining a �tness value for the correspond-

ing genotype. A�er all members of the population have

been evaluated in this manner, genetic operators are

Neuroevolution. Figure . Evolving neural networks.

A population of genetic neural networks encodings

(genotypes) is first created. At each iteration of evolution

(generation), each genotype is decoded into a neural

network (phenotype), which is evaluated in the task,

resulting in a fitness value for the genotype. Crossover

and mutation among the genotypes with the highest

fitness is then used to generate the next generation

used to create the next generation of the population.

�ose encodings with the highest �tness are mutated

and crossed over with each other, and the resulting o�-

spring replaces the genotypes with the lowest �tness

in the population.�e process therefore constitutes an

intelligent parallel search towards better genotypes and

continues until a network with a su�ciently high �tness

is found.

Several methods exist for evolving neural networks

depending on how the networks are encoded.�e most

straightforward encoding, sometimes called conven-

tional neuroevolution (CNE), is formed by concatenat-

ing the numerical values for the network weights (either

binary or �oating point; Floreano, Dürr, & Mattiussi,

; Scha�er, Whitley, & Eshelman, ; Yao,).

�is encoding allows evolution to optimize the weights

of a �xed neural network architecture, an approach

that is easy to implement and is practical in many

domains.

In more challenging domains, the CNE approach

su�ers from three problems. �e method may cause

the population to converge before a solution is found,

making further progress di�cult (i.e., premature con-

vergence); similar networks, such as those where the

order of nodes is di�erent,may have di�erent encodings

and much e�ort is wasted in trying to optimize them in

parallel (i.e., competing conventions); a large number

 N Neuroevolution

of parameters need to be optimized at once, which is

di�cult through evolution.

More sophisticated encodings have been devised

to alleviate these problems. One approach is to run

the evolution at the level of solution components

instead of full solutions. �at is, instead of a popu-

lation of complete neural networks, a population of

network fragments, neurons, or connection weights is

evolved (Gomez, Schmidhuber, & Miikkulainen, ;

Moriarty, Schultz, & Grefenstette, ; Potter & Jong,

). Each individual is evaluated as part of a full net-

work, and its �tness re�ects how well it cooperates with

other individuals in forming a full network. Speci�ca-

tions for how to combine the components into a full

network can be evolved separately, or the combination

can be based on designated roles for subpopulations. In

this manner, the complex problem of �nding a solution

network is broken into several smaller subproblems;

evolution is forced to maintain diverse solutions, and

competing conventions and the number of parameters

is drastically reduced.

Another approach is to evolve the network topology,

in addition to the weights.�e idea is that topology can

have a large e�ect on function, and evolving appropri-

ate topologies can achieve good performance faster than

evolving weights only (Angeline, Saunders, Pollack, &

An, ; Floreano et al., ; Stanley &Miikkulainen,

; Yao,). Since topologies are explicitly spec-

i�ed, competing conventions are largely avoided. It is

also possible to start evolution with simple solutions

and gradually make themmore complex, a process that

takes place in biology and is a powerful approach in

machine learning in general. Speciation according to

the topology can be used to avoid premature conver-

gence, and to protect novel topological solutions until

their weights have been su�ciently optimized.

All of the above methods map the genetic encod-

ing directly to the corresponding neural network, i.e.,

each part of the encoding corresponds to a part of the

network, and vice versa. Indirect encoding, in contrast,

speci�es a process through which the network is con-

structed, such as cell division or generation through

a grammar (Floreano et al., ; Gruau, Whitley, &

Adding, ; Stanley &Miikkulainen, ; Yao,).

Such an encoding can be highly compact and also take

advantage of modular solutions. �e same structures

can be repeated with minor modi�cations, as they o�en

are in biology. It is, however, di�cult to optimize solu-

tions produced by indirect encoding, and realizing its

full potential is still future work.

�e ��h approach is to evolve an ensemble of neural

networks to solve the task together, instead of a sin-

gle network (Liu, Yao, & Higuchi,).�is approach

takes advantage of the diversity in the population. Dif-

ferent networks learn di�erent parts or aspects of the

training data, and together the whole ensemble can

perform better than a single network. Diversity can

be created through speciation and negative correla-

tion, encouraging useful specializations to emerge.�e

approach can be used to design ensembles for classi�-

cation problems, but it can also be extended to control

tasks.

Extensions

�e basic mechanisms of neuroevolution can be aug-

mented in several ways, making the process more e�-

cient and extending it to various applications. One of

the most basic ones is incremental evolution or shap-

ing. Evolution is started on a simple task and once

that is mastered, the solutions are evolved further on

a more challenging task, and through a series of such

transfer steps, eventually on the actual goal task itself

(Gomez et al.,). Shaping can be done by chang-

ing the environment, such as increasing the speed of the

opponents, or by changing the �tness function, e.g., by

rewarding graduallymore complex behaviors. It is o�en

possible to solve challenging tasks by approaching them

incrementally evenwhen they cannot be solved directly.

Many extensions to evolutionary computationmeth-

ods apply particularly well to neuroevolution. For

instance, intelligent mutation techniques such as those

employed in evolutionary strategies are e�ective because

the weights o�en have suitable correlations (Igel,).

Networks can also be evolved through coevolution

(Chellapilla & Fogel, ; Stanley & Miikkulainen,

). A coevolutionary arms race can be established,

e.g., based on complexi�cation of network topology: as

the network becomes gradually more complex, evolu-

tion is likely to elaborate on existing behaviors instead

of replacing them.

On the other hand, several extensions utilize the

special properties of the neural network phenotype. For

Neuroevolution N

N

instance, neuron activation functions, initial states, and

learning rules can be evolved to �t the task (Floreano

et al., ; Yao, ; Scha�er et al.,). Most sig-

ni�cantly, evolution can be combined with other neural

network learning methods (Floreano et al.,). In

such approaches, evolution usually provides the initial

network, which then adapts further during its evalua-

tion in the task.�e adaptation can take place through

Hebbian learning, thereby strengthening those exist-

ing behaviors that are invoked o�en during evaluation.

Alternatively, supervised learning such as backpropaga-

tion can be used, provided targets are available. Even

if the optimal behaviors are not known, such training

can be useful. Networks can be trained to imitate the

most successful individuals in the population, or part

of the network can be trained in a related task such as

predicting the next inputs, or evaluating the utility of

actions based on values obtained through Q-learning.

�e weight changes may be encoded back into the

genotype, implementing Lamarckian evolution; alter-

natively, they may a�ect selection through the Baldwin

e�ect, i.e., networks that learn well will be selected for

reproduction even if the weight changes themselves

are not inherited (Ackley & Littman, ; Bryant &

Miikkulainen, ; Gruau et al.,).

�ere are also several ways to bias and direct

the learning system using human knowledge. For

instance, human-coded rules can be encoded in partial

network structures and incorporated into the evolv-

ing networks as structural mutations. Such knowl-

edge can be used to implement initial behaviors in

the population, or it can serve as an advice during

evolution (Miikkulainen, Bryant, Cornelius, Karpov,

Stanley, & Yong,). In cases where rule-based

knowledge is not available, it may still be possible

to obtain examples of human behavior. Such exam-

ples can then be incorporated into evolution, either

as components of �tness or by explicitly training the

evolved solutions towards human behavior through,

e.g., backpropagation (Bryant & Miikkulainen,).

Similarly, knowledge about the task and its compo-

nents can be utilized in designing e�ective shaping

strategies. In this manner, human expertise can be

used to bootstrap and guide evolution in di�cult

tasks, as well as direct it towards the desired kinds of

solutions.

Applications
Neuroevolution methods are powerful especially in

continuous domains of reinforcement learning, and

those that have partially observable states. For instance,

in the benchmark task of balancing the inverted pen-

dulum without velocity information (making the prob-

lem partially observable), the advanced methods have

been shown to �nd solutions two orders of magni-

tude faster than value-function-based reinforcement-

learning methods (measured by number of evaluations;

Gomez et al.,). �ey can also solve harder ver-

sions of the problem, such as balancing two poles

simultaneously.

�e method is powerful enough to make many real-

world applications of reinforcement learning possible.

�e most obvious area is adaptive, nonlinear control

of physical devices. For instance, neural network con-

trollers have been evolved to drive mobile robots, auto-

mobiles, and even rockets (Gomez & Miikkulainen,

; Nol� & Floreano, ; Togelius & Lucas,).

�e control approach have been extended to optimize

systems such as chemical processes, manufacturing sys-

tems, and computer systems. A crucial limitation with

current approaches is that the controllers usually need

to be developed in simulation and transferred to the real

system. Evolution is the strongest as an o�-line learning

method where it is free to explore potential solutions in

parallel.

Evolution of neural networks is a natural tool for

problems in arti�cial life. Because networks imple-

ment behaviors, it is possible to design neuroevolu-

tion experiments on how behaviors such as foraging,

pursuit and evasion, hunting and herding, collabora-

tion, and even communication may emerge in response

to environmental pressure (Werner & Dyer,). It

is possible to analyze the evolved circuits and under-

stand how they map to function, leading to insights

into biological networks (Keinan, Sandbank, Hilgetag,

Meilijson, & Ruppin,). �e evolutionary behav-

ior approach is also useful for constructing characters

in arti�cial environments, such as games and simu-

lators. Non-player characters in current video games

are usually scripted and limited; neuroevolution can

be used to evolve complex behaviors for them, and

even adapt them in real time (Miikkulainen et al.,

).

 N Neuron

Programs and Data
So�ware for, e.g., the NEAT method for evolving net-

work weights and topologies, and the ESP method

for evolving neurons to form networks is available at

http://nn.cs.utexas.edu/keyword?neuroevolution.

�e TEEM so�ware for evolving neural networks for

robotics experiments is available at http://teem.ep�.ch.

�e OpenNERO so�ware for evolving intelligent mul-

tiagent behavior in simulated environments is at

http://nn.cs.utexas.edu/?opennero.

Cross References
7Evolutionary Algorithms
7Reinforcement Learning

Recommended Reading
Ackley, D., & Littman, M. (). Interactions between learning

and evolution. In C. G. Langton, C. Taylor, J. D. Farmer, &

S. Rasmussen (Eds.), Artificial life II (pp. –). Reading,
MA: Addison-Wesley.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (). An evolution-

ary algorithm that constructs recurrent neural networks. IEEE
Transactions on Neural Networks, , –.

Bryant, B. D., & Miikkulainen, R. (). Acquiring visibly

intelligent behavior with example-guided neuroevolu-

tion http://nn.cs.utexas.edu/keyword?bryant:aaai. In

Proceedings of the twenty-second national conference on
artificial intelligence (pp. –). Menlo Park, CA: AAAI
Press.

Chellapilla, K., & Fogel, D. B. (). Evolution, neural networks,

games, and intelligence. Proceedings of the IEEE, , –.
Floreano, D., Dürr, P., & Mattiussi, C. (). Neuroevolution: From

architectures to learning. Evolutionary Intelligence, , –.
Gomez, F., & Miikkulainen, R. (). Active guidance for

a finless rocket using neuroevolution http://nn.

cs.utexas.edu/keyword?gomez:gecco. In Proceedings of
the genetic and evolutionary computation conference (pp.
–). San Francisco: Morgan Kaufmann.

Gomez, F., Schmidhuber, J., & Miikkulainen, R. (). Acceler-

ated neural evolution through cooperatively coevolved syn-

apses http://nn.cs.utexas.edu/keyword?gomez:jmlr. Journal
of Machine Learning Research, , –.

Gruau, F., & Whitley, D. (). Adding learning to the cellular

development of neural networks: Evolution and the Baldwin

effect. Evolutionary Computation, , – .
Igel, C. (). Neuroevolution for reinforcement learning using

evolution strategies http://www.neuroinformatik.ruhr-uni-

bochum.de/ini/PEOPLE/igel/NfRLUES.pdf. In R. Sarker,

R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, &

T. Gedeon, (Eds.), Proceedings of the congress on evolu-
tionary computation (pp. –). Piscataway, NJ: IEEE
Press.

Keinan, A., Sandbank, B., Hilgetag, C. C., Meilijson, I., & Rup-

pin, E. (). Axiomatic scalable neurocontroller analysis via

the Shapley value. Artificial Life, , –.

Liu, Y., Yao, X., & Higuchi, T. (). Evolutionary ensembles with

negative correlation learning. IEEE Transactions on Evolution-
ary Computation, , –.

Miikkulainen, R., Bryant, B. D., Cornelius, R., Karpov,

I. V., Stanley, K. O., & Yong, C. H. (). Compu-

tational intelligence in games http://nn.cs.utexas.edu/

keyword?miikkulainen:cigames. In G. Y. Yen & D. B.

Fogel (Eds.), Computational intelligence: Principles and practice
(–). Piscataway, NJ: IEEE Computational Intelligence

Society.

Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (). Evolution-

ary algorithms for reinforcement learning. Journal of Artificial
Intelligence Research, , –.

Nolfi, S., & Floreano, D. (). Evolutionary robotics. Cambridge,
MA: MIT Press.

Potter, M. A., & Jong, K. A. D. (). Cooperative coevolu-

tion: An architecture for evolving coadapted subcomponents

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve

&db=pubmed&dopt=abstract&list_uids=.

Evolutionary Computation, , –.
Schaffer, J. D., Whitley, D., & Eshelman, L. J. (). Combinations

of genetic algorithms and neural networks: A survey of the

state of the art. In D. Whitley & J. Schaffer (Eds.), Proceedings
of the international workshop on combinations of genetic algo-
rithms and neural networks (pp. –). Los Alamitos, CA: IEEE
Computer Society Press.

Stanley, K. O., & Miikkulainen, R. (). A taxonomy for artificial

embryogeny http://nn.cs.utexas.edu/keyword?stanley:alife.

Artificial Life, , –.
Stanley, K. O., & Miikkulainen, R. (). Competitive

coevolution through evolutionary complexification

http://nn.cs.utexas.edu/keyword?stanley:jair. Journal of
Artificial Intelligence Research, , –.

Togelius, J., & Lucas, S. M. (). Evolving robust

and specialized car racing skills http://algoval.essex.

ac.uk/rep/games/TogeliusEvolving.pdf. In IEEE congress
on evolutionary computation (pp. –). Piscataway, NJ:
IEEE.

Werner, G. M., & Dyer, M. G. (). Evolution of communication in

artificial organisms. In C. G. Langton, C. Taylor, J. D. Farmer, &

S. Rasmussen (Eds.) Proceedings of the workshop on artifi-
cial life (ALIFE ’) (pp. –). Reading, MA: Addison-
Wesley.

Yao, X. (). Evolving artificial neural networks. Proceedings of the
IEEE, (), –.

Neuron

RistoMiikkulainen

�e University of Texas at Austin

Austin, TX, USA

Synonyms
Node; Unit

Definition
Neurons carry out the computational operations of a

network; together with connections (see 7Topology

http://nn.cs.utexas.edu/keyword?miikkulainen:cigames06
http://nn.cs.utexas.edu/keyword?gomez:gecco03
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/igel/NfRLUES.pdf
http://algoval.essex.ac.uk/rep/games/Togelius2006Evolving.pdf

Noise N

N

of a Neural Network, 7Weights), they constitute the
neural network. Computational neurons are highly

abstracted from their biological counterparts. In most

cases, the neuron forms a weighted sum of a large num-

ber of inputs (activations of other neurons), applies a

nonlinear transfer function to that sum, and broad-

casts the resulting output activation to a large number

of other neurons. Such activation models the �ring rate

of the biological neuron, and the nonlinearity is used

to limit it to a certain range (e.g., / with a threshold,

(..) with a sigmoid, (− ..) with a hyperbolic tangent,

or (..∞) with an exponential function). Each neuron

may also have a bias weight, i.e., a weight from a vir-

tual neuron that is always maximally activated, which

the learning algorithm can use to adjust the input sum

quickly into the most e�ective range of the nonlin-

earity. Alternatively to �ring rate neurons, the �ring

events (i.e., spikes or action potentials) of the neuron

can be represented explicitly. In such an integrate-and-

�re approach, each spike causes a change in the neuron’s

membrane potential that decays over time; an output

spike is generated if the potential exceeds a threshold

(see 7Biological Learning). In contrast, networks such
as7Self-Organizing Maps and7Radial Basis Function
Networks abstract the �ring rate further into a measure

of similarity (or distance) between the neuron’s input

weight vector and the vector of input activities. Learn-

ing in neural networks usually takes place by adjusting

the weights on the input connections of the neuron, and

can also include adjusting the parameters of the non-

linear transfer function, or the neuron’s connectivity

with other neurons. In this manner, the neuron con-

verges information from other neurons, makes a simple

decision based on it, broadcasts the result widely, and

adapts.

Node

7Neuron

No-Free-Lunch Theorem

A theorem establishing that performance on test data

cannot be deduced from performance on training data.

It follows that the justi�cation for any particular learn-

ing algorithm must be based on an assumption that

nature is uniform in some way. Since di�erent machine

learning algorithms make such di�erent assumptions,

no-free-lunch theorems have been used to argue that it

not possible to deduce that any algorithm is superior to

any other from �rst principles.�us “good” algorithms

are those whose 7inductive bias matches the way the
world happens to be.

Nogood Learning

Nogood learning is a 7deductive learning technique
used for the purpose of 7intelligent backtracking in
constraint satisfaction. �e approach analyzes failures

at backtracking points and derives sets of variable bind-

ings, or nogoods, that will never lead to a solution.�ese
nogood constraints can then be used to prune later

search nodes.

Noise

�e training data for a learning algorithm is said to be

noisy if the data contain errors. Errors can be of two
types:

● A measurement error occurs when some attribute
values are incorrect or inaccurate. Note that mea-

surement of physical properties by continuous val-

ues is always subject to some error.

● In supervised learning, classi�cation error means
that a training example has an incorrect class label.

In addition to errors, training examples may have

7missing attribute values. �at is, the values of some
attribute values are not recorded.

Noisy data can cause learning algorithms to fail

to converge to a concept description or to build a

concept description that has poor classi�cation accu-

racy on unseen examples. �is is o�en due to 7over
�tting.

For methods to minimize the e�ects of noise, see

7Over Fitting.

 N Nominal Attribute

Nominal Attribute

A nominal attribute assumes values that classify data
into mutually exclusive (nonoverlapping), exhaustive,

unordered categories. See 7Attribute and 7Measure-
ment Scales.

Nonparametric Bayesian

7Gaussian Process

Nonparametric Cluster Analysis

7Density-Based Clustering

Non-Parametric Methods

7Instance-Based Learning

Nonstandard Criteria in
Evolutionary Learning

Michele Sebag

Université Paris-Sud, Orsay, France

Introduction
Machine learning (ML), primarily concerned with

extracting models or hypotheses from data, comes into

three main �avors: 7supervised learning also known
as 7classi�cation or 7regression (Bishop, ; Duda
et al., ; Han and Kamber,), 7unsupervised
learning also known as 7clustering (Ben-David et al.,
), and7reinforcement learning (Sutton and Barto,
).

All three types of problems can be viewed as opti-

mization problems. �e ML core task is to de�ne a

learning criterion (i.e., the function to be optimized)
such that it enforces (i) the statistical relevance of the

solution; (ii) the well-posedness of the underlying opti-

mization problem. Since evolutionary computation (see

7Evolutionary Algorithms) makes it possible to handle
ill-posed optimization problems, the �eld of evolution-

ary learning (Holland,) has investigated quite a

few nonstandard learning criteria and search spaces.

Only supervisedMLwill be considered in the following.

Unsupervised learning has hardly been touched upon in

the evolutionary computation (EC) literature; regarding

reinforcement learning, the interested reader is referred

to the entries related to 7evolutionary robotics and
control.

�e entry will �rst brie�y summarize the formal

background of supervised ML and its two mainstream

approaches for the last decade, namely support vec-

tor machines (SVMs) (Cristianini and Shawe-Taylor,

; Schölkopf et al., ; Vapnik,) and ensem-

ble learning (Breiman ; Dietterich, ; Schapire,

).�erea�er and without pretending to exhaustiv-

ity, this entry will illustrate some innovative variants of

these approaches in the literature, building upon the

evolutionary freedom of setting and tackling optimiza-

tion problems.

Formal Background

Supervised learning exploits a dataset E = {(xi, yi), xi ∈
X, yi ∈ Y , i = . . . n}, where X stands for the instance
space (e.g., IRd), Y is the label space, and (xi, yi)
is a labeled example, as depicted in Table . Super-

vised learning is referred to as classi�cation (respec-
tively regression) when Y is a �nite set (respectively
when Y = IR).

�e ML goal is to �nd a hypothesis or classi�er h :
X ↦ Y such that h(x) is “su�ciently close” to the true
label y of x for any x ranging in the instance domain.
It is generally assumed that the available examples are

independently and identically distributed (iid) a�er a

probability distribution PXY on X × Y . Letting ℓ(y′, y)
denote the loss incurred by labeling x as y′ instead of
its true label y, the learning criterion is most naturally
de�ned as the expectation of the loss, or generalization

Nonstandard Criteria in Evolutionary Learning N

N

Nonstandard Criteria in Evolutionary Learning. Table

Excerpt of a dataset in a failure identification prob-

lem (binary classification). Instance space X is the cross

product of all attribute domains: for example, attribute

Temperature ranges in IR, attribute Material ranges in

{Ni, Fe, . . .}. Label space Y is binary

Temperature Material Aging Label

x . Ni No Failure

x . Fe Yes OK

error, to beminimized, whereH denotes the hypothesis
space:

Find h∗ = argmin{F(h)

= ∫ ℓ(h(x), y)dP(x, y), h ∈H}

�e generalization error however is not computable,

since the joint distribution PXY of instances and labels

is unknown; only its approximation on the training

set, referred to as empirical error, can be computed as
follows:

Fe(h) =

n

n

∑
i=
ℓ(h(xi), yi)

Using results from the theory of measure and inte-

gration, the generalization error is upper bounded by

the empirical error, plus a term re�ecting the num-

ber of examples and the regularity of the hypothesis

class (Fig.).

Note that minimizing the empirical error alone

leads to the infamous over�tting problem: while the pre-
dictive accuracy on the training set is excellent, the error

on a (disjoint) test set is much higher. All learning crite-

ria thus involve a trade-o� between the empirical error

and a so-called regularization term, providing good

guarantees (upper bound) on the generalization error.

In practice, learning algorithms also involve hyper-

parameters (e.g., the weight of the regularization term).

�ese are adjusted using cross-validation using a grid

search (EC approaches have also been used to �nd opti-

mal learning hyperparameters, ranging from the topol-

ogy of neural nets [Miikkulainen et al.,], to the

kernel parameters in SVM [Friedrichs and Igel, ;

Mierswa,].)�e dataset is divided into K subsets
with same class distribution; hypothesis hi is learned
from the training set made of all subsets except the

i-th and the empirical error of hi is measured on the ith
subset. An approximation of the generalization error is

provided by the average of the hi errors when i = . . .K,
referred to as cross-fold error, and the hyperparame-

ter setting is empirically determined to minimize the

cross-fold error.

Support Vector Machines

Considering a real-valued instance space (X = IRD), a

linear 7support vector machine (SVM) (Boser et al.,
) constructs the separating hyperplane (where

< a, b > stands for the dot product of vectors

a and b):

h(x) = < w, x > +b

which maximizes the margin that is, the minimal dis-

tance between the examples and the hyperplane, when

such separating hyperplanes exists (Fig.). A slightly

more complex formulation, involving the so-called

slack variables xii, is de�ned to deal with noise (Cortes
and Vapnik,).

�e function to be optimized, the L norm of

the hyperplane normal vector w, is quadratic; using
Lagrangemultipliers to account for the constraints gives

rise to the so-called dual formulation. Let us call support
vectors those examples for which the constraint is active
(Lagrange multiplier αi >), then it becomes

h(x) =∑ yiαi < xi, x > +b with αi > ; ∑ αiyi =

Aswill be seen in section “EvolutionaryRegularization,”

this formulation de�nes a search space, which can be

directly explored by EC (Mierswa,).

Obviously however, linear classi�ers are limited.

�e power of SVMs comes from the so-called ker-

nel trick, naturally exporting the SVM approach to

nonlinear hypothesis spaces. Let us map the instance

space X onto some feature space X′ via mapping Φ. If
the scalar product on X′ can be computed in X (e.g.,
< Φ(x), Φ(x′) >=def K(x, x′)) then a linear classi-
�er in X′ (nonlinear with reference to X) is given as

 N Nonstandard Criteria in Evolutionary Learning

For an iid. sample x, . . . xn, for g ∈ G

∫ g(x)dx <

n ∑
n
i= g(xi) + C(n,G)

Nonstandard Criteria in Evolutionary Learning. Figure . Bounding the integral from the empirical average depending

on the uniform sample size and the class of functions G at hand

+

+

+

+

+

−

−

−

−
−

Optimal hyperplane

Separating hyperplane

Margin

without noise

Minimize

∣∣w∣∣

s.t. for i = to n

yi(< w, xi > +b) ≥

with noise

Minimize

∣∣w∣∣ + C∑n

i= xii

s.t. for i = to n

yi(< w, xi > +b) ≥ − xii; xii ≥
Nonstandard Criteria in Evolutionary Learning. Figure . Linear support vector machines. The optimal hyperplane is

the one maximizing the minimal distance to the examples

h(x)= ∑i yiαiK(xi, x)+ b. �e only requirement is to
use a positive de�nite kernel (ensuring that the under-

lying optimization problem is well posed). Again, this

requirement can be relaxed in the evolutionary learning

framework (Mierswa,).

Among the most widely used kernels are the Gaus-

sian kernel (K(x, x′) = exp{− ∣∣x−x
′∣∣

σ }) and the poly-

nomial kernel (K(x, x′)= (<x, x′>+ c)d). �e kernel
parameters σ , c,d, referred to as learning hyper-
parameters, have been tuned by some authors using EC,

as well as the kernel itself (see among others (Friedrichs

and Igel, ; Gagné et al., ; Mierswa,)).

Ensemble methods

�e other mainstream approach in supervised learning,

7ensemble learning (EL), relies on somewhat di�er-
ent principles. Schapire’s seminal paper,�e strength of
weak learnability, exploring the relationship between
weak learnability (ability of building a hypothesis
slightly better than random guessing, whatever the

distribution of the dataset is (C)) and strong learn-
ability (ability of building a hypothesis with arbitrar-
ily high predictive accuracy), established a major and

counterintuitive result: strong and weak learnability are

equivalent (Schapire,).�e idea behind the proof

Nonstandard Criteria in Evolutionary Learning N

N

is that combiningmany weak hypotheses learned under

di�erent distributions yields an arbitrarily accurate

hypothesis. As the errors of the weak hypotheses should

not concentrate in any particular region of the instance

space (for condition C to hold), the law of large num-

bers states that averaging them leads to exponentially

decrease the empirical error.

Two main EL approaches have been investigated in

the literature.�e �rst one, 7bagging (Breiman,),
builds a large number of independent hypotheses; the

source of variations is bootstrapping (uniformly select-

ing the training set with replacement from the initial

dataset); or varying the parameters of the learning algo-

rithm; or subsampling the features considered at each

step of the learning process (Amit et al., ; Breiman,

).�e �nal classi�er is usually obtained by averag-

ing these solutions.

�e other EL approach, 7boosting (Freund and
Shapire,), iteratively builds a sequence of hypothe-

ses, where each hi somehow is in charge of correcting
themistakes of h, . . . hi−. Speci�cally, a distributionWt

is de�ned on the training set at step t, with W being

the uniform distribution. At step t, the weight of every
example misclassi�ed by ht is increased (multiplied by
exp{−ht(xi).hi}; then a normalization step follows to
ensure that Wt+ still sums to); hypothesis ht+ will
thus focus on the examples misclassi�ed by ht . Finally,
the classi�er is de�ned as the weighted vote of all ht .

�e intuition behind boosting is that not all exam-

ples are equal: some examples are more di�cult than

others (more hypotheses misclassify them) and the

learning process should thus focus on these examples

(with the caveat that a di�cult example might be so

because it is noisy). Interestingly, the intuition that

examples are not equal has been formalized in terms

of coevolution (When designing a program, the �tness

of the candidate solutions is computed a�er some test

cases; for the sake of accuracy and feasability, the di�-

culty and number of test cases must be commensurate

with the competence of the current candidate solu-

tions. Hillis de�ned a competitive coevolution setting

between the program species and the test case species:

while programs aim at solving test cases, test cases aim

at defeating candidate programs. �is major line of

research however is outside the scope of evolutionary

learning as it assumes that the whole distribution PXY is

known.) by D. Hillis in the early s (Hillis,).

Many empirical studies suggest that boosting is

more e�ective than bagging (with some caveat in the

case of noisy domains), thanks to the higher diversity of

the boosting ensemble (Dietterich, ; Margineantu

and Dietterich,).

In the ensemble learning framework, the margin of
an example x is de�ned as the di�erence between the
(cumulated weight or number) of hypotheses labeling x
as positive, and those labeling x as negative. Like in the
SVM framework, the margin of an example re�ects the

con�dence of its classi�cation (how much this example

should be perturbed for its label to be modi�ed).

Learning Criteria
Learning criterion and �tness functionwill be used inter-
changeably in the following. Since Holland’s seminal

papers on evolutionary learning (Holland, ,),

the most used learning criterion is the predictive accu-

racy on the available dataset. A�er the early s

however, drawbacks related to either learning or evo-

lutionary issues motivated the design of new �tness

functions.

Evolutionary Regularization

In the 7genetic programming �eld, the early use of
more sophisticated learning criteria was motivated by

the so-called bloat phenomenon (Banzhaf and Lang-

don, ; Poli,), that is, the uncontrolled growth

of the solution size as evolution goes on. Two main

approaches have been considered. �e �rst one boils

down to regularization (section “Formal Background”):

the �tness function is composed of the predictive accu-

racy plus an additional term meant to penalize large-

sized solutions (Blickle,).�e tricky issue of course

is how to adjust the weight of the penalization term;

the statistical ML theory o�ers no principled solution

to this issue (except in an asymptotic perspective, when

the number of training examples goes to in�nity (Gelly

et al.,)); thus, the weight is adjusted empirically

using cross-validation (section “Formal Background”).

Another approach (Blickle,) is based on the

use of two �tness functions during the same evolution

run, a�er the so-called behavioral memory paradigm

(Schoenauer and Xanthakis,). In a �rst phase, the

population is evolved to maximize the predictive accu-

racy. In a second phase, the optimization goal becomes

 N Nonstandard Criteria in Evolutionary Learning

tominimize the solution sizewhile preserving the predic-
tive accuracy reached in the former phase. As could have
been expected, this second approach also depends upon

the careful empirical adjustment of hyper-parameters

(when to switch from one phase to another one).

Another approach is to consider regularized learn-

ing as amulti-objective optimization problem, avoiding

the computationally heavy tuning of the regularization

weight (Note however that in the case where the reg-

ularization involves the L norm of the solution, the
Pareto front can be analytically derived using the cele-

brated LASSO algorithm (Hastie et al., ; Tibshirani,

).). Mierswa () applies multi-objective evolu-

tionary optimization, speci�cally NSGA-II ([Deb et al.,

]; see the Multi-Objective Evolutionary Optimiza-

tion entry in this encyclopedia), to the simultaneous

optimization of the margin and the error. �e search

space is nicely and elegantly derived from the dual form

of SVMs (section “Support Vector Machines”): it con-

sists of vectors (α, . . . αn), where most αi are zero and

∑i αiyi = . A customized mutation operator, similar
in spirit to the sequential minimization optimization

proposed by Platt [], enables to explore the solu-

tions with few support vectors.�e Pareto front shows

the trade-o� between the regularization term and the

training error. At some point however, a hold-out (test

set) needs be used to detect and avoid over�tting solu-

tions, boiling down to cross-validation. Another multi-

objective optimization learning is proposed by Suttorp

and Igel () (see section “AUC Area Under the Roc

Curve”).

Ensemble Learning and Boosting

Ensemble learning and evolutionary computation share

two main original features. Firstly, both rely on a

population of candidate solutions; secondly, the diver-

sity of these solutions commands the e�ectiveness

of the approach. It is no surprise therefore that

evolutionary ensemble learning, tightly coupling EC

and EL, has been intensively investigated in the last

decade (Another exploitation of the hypotheses built

along independent evolutionary learning runs concerns

feature selection (Jong et al.,), which is outside the

scope of this entry.)

A family of diversity-oriented learning criteria

has been investigated by Xin Yao and collaborators,

switching the optimization goal from “learning the

best hypothesis” toward “learning the best ensemble”

(Monirul Islam and Yao,). �e hypothesis space

is that of neural networks (NNs). Nonparametric and

parametric operators are used to simultaneously opti-

mize the neural topology and the NN weights. Among

parametric operators is the gradient-based backpropa-

gation (BP) algorithm to locally optimize the weights

(Rumelhart andMcClelland,), combinedwith sim-

ulated annealing to escape BP local minima.

Liu et al. () enforce the diversity of the networks

using a negative correlation learning criterion. Specif-
ically, the BP algorithm is modi�ed by replacing the

error of the t-thNNon the i-th example with aweighted
sum of this error and the error of the ensemble of the

other NNs; denotingH−t the ensemble made of all NNs
but the tth one:

(ht(xi)−yi) → (−λ)(ht(xi)−yi)+λ(H−t(xi)−yi))

Moreover, ensemble negative correlation–based learn-

ing exploits the fact that not all examples are equal,

along the same line as boosting (section “Ensemble

Methods”): to each training example is attached a

weight, re�ecting the number of hypotheses that mis-

classify it; �nally the �tness associated to each network

is the sumof theweights of all examples it correctly clas-

si�es.While this approach nicely suggests that ensemble

learning is a multiple objective optimization (MOO)

problem (minimize the error rate and maximize the

diversity), it classically handles the MOO problem as

a �xed weighted sum of the objectives (the value of

parameter λ is �xed by the user).
�e MOO perspective is further investigated by

Chandra and Yao in the DIVACE system, enforcing the

multilevel evolution of ensemble of classi�ers (Chandra

and Yao, a,b). In (Chandra and Yao, b), the

top-level evolution simultaneously minimizes the error

rate (accuracy) and maximizes the negative correlation

(diversity). In (Chandra and Yao, a), the negative

correlation-inspired criterion is replaced by a pairwise
failure crediting; the di�erence concerns the misclassi�-
cation of examples that are correctly classi�ed by other

classi�ers. Several heuristics have been investigated

to construct the ensemble from the last population,

based on averaging the hypothesis values, using the

(weighted) vote of all hypotheses, or selecting a sub-

set of hypotheses, for example, by clustering the �nal

Nonstandard Criteria in Evolutionary Learning N

N

hypothesis population a�er their phenotypic distance,

and selecting a hypothesis in each cluster.

Gagné et al. () tackle both the construction of

a portfolio of classi�ers, and the selection of a sub-

set thereof, either from the �nal population only as

in (Chandra and Yao, a,b), or from all genera-

tions. In order to do so, a reference set of classi�ers

is used to de�ne a dynamic optimization problem: the

�tness of a candidate hypothesis re�ects whether h
improves on the reference set; in the meantime, the

reference set is updated every generation. Speci�cally,

noting wi the fraction of reference classi�ers misclas-

sifying the i-th example, F(h) is set to the sum of
wγ
i , taken over all examples correctly classi�ed by h.
Parameter γ is used to mitigate the in�uence of noisy
examples.

Boosting and Large-Scale Learning

Another keymotivation for designing new learning cri-

teria is to yield scalable learning algorithms, copingwith

giga or terabytes of data (see [Sonnenburg et al.,]).

Song et al. (,) presented an elegant genetic

programming approach to tackle the intrusion detec-

tion challenge (Lippmann et al.,); this challenge

o�ers a , pattern training set, exceeding stan-

dard available RAM capacities.�e proposed approach

relies on the dynamic subset selection method �rst pre-

sented byGathercole andRoss ().�ewhole dataset

is equally and randomly divided into subsets Ei with

same distribution as the whole dataset, where each Ei

�ts within the available RAM. Iteratively, some subset

Ei is selected with uniform probability, and loaded in

memory; it is used for a number of generations set to

Gmax × Err(i) where Gmax is the user-supplied maxi-

mum number of generations, and Err(i) is the mini-
mum number of patterns in Ei misclassi�ed the previ-

ous time Ei was considered. Within Ei, a competition is

initiated between training patterns to yield a frugal yet

challenging assessment of the hypotheses. Speci�cally,

every generation or so, a restricted subset is selected

by tournament in Ei, considering both the di�culty

of the patterns (the di�culty of pattern xj being the
number of hypotheses misclassifying xj last time xj was
selected) and its age (the number of generations since

xj was last selected). With some probability (% in the

experiments), the tournament returns the pattern with

maximum age; otherwise, it returns the pattern with

maximum di�culty.

�e dynamic selection subset (DSS) heuristics can

thus be viewed as a mixture of uniform sampling (mod-

eled by the age-based selection) and boosting (corre-

sponding to the di�culty-based selection).�is mixed

distribution gets the best of both worlds: it speeds up

learning by putting the stress on the most challeng-

ing patterns, akin boosting; in the meanwhile, it pre-

vents noisy examples from leading learning astray as

the training set always includes a su�cient proportion

of uniformly selected examples.�e authors report that

the approach yields accurate classi�ers (though out-

performed by the Challenge winning entry), while one

trial takes min on a modest laptop computer (GHz

Pentium, MB RAM).

Gagné et al., aiming at the scalable optimization

of SVM kernels, proposed another use of dynamic

selection subset in a coevolutionary perspective (Gagné

et al.,). Speci�cally, any kernel induces a similarity

on the training set

s(x, x′) = K(x, x′) − K(x, x) − K(x′, x′)

�is similarity directly enables the classi�cation of

examples along the k-nearest neighbor approach (Duda
et al.,) (see7Nearest Neighbor), labeling an exam-
ple a�er the majority of its neighbors. Inspired from

(Gilad-Bachrach et al.,), the margin of an exam-

ple is de�ned as the rank of its closest neighbor in the

same class, minus the rank of its closest neighbor in the

other class (the closer a neighbor, the higher its rank is).

�e larger themargin of an example, themore con�dent

one can be it will be correctly classi�ed; the �tness of the

kernel could thus be de�ned as the sum of the example

margins. Computed naively however, this �tness would

be quadratic in the size of the training set, hindering the

scalability of the approach.

A three-species coevolutionary framework was thus

de�ned. �e �rst species is that of kernels; the sec-

ond species includes the candidate neighbor instances,

referred to as prototypes; the third species includes the

training instances, referred to as test cases. Kernels and

prototypes undergo a cooperative co-evolution: they

 N Nonstandard Criteria in Evolutionary Learning

cooperate to yield the underlying metric (similarity)

and the reference points (prototypes) enabling to clas-

sify all training instances.�e test cases, in the mean-

while, undergo a competitive coevolutionwith the other

two species: they present the learning process withmore

and more di�cult training examples, aiming at a good

coverage of the whole instance space. �e approach

reportedly yields accurate kernels at a moderate com-

putational cost.

AUC: Area Under the ROC Curve

�e misclassi�cation rate criterion is notably ill-suited

to problem domains with a minority class. If the goal is

to discriminate a rare disease (< % of the training set)

from a healthy state, the default hypothesis (“everyone

is healthy” with % misclassi�ed examples) can hardly

be outperformed in terms of predictive accuracy. Stan-

dard heuristics accommodating ill-balanced problems

involve the oversampling of the minority class, under-

sampling of the majority class, or cost-sensitive loss

function (e.g., misclassifying a healthy person for an ill

one costs , whereas the opposite costs) (Domingos,

).

Another principled approach is based on the so-

called area under the receiver-operating characteristics

curve (see 7ROC Analysis). Let us consider a con-
tinuous hypothesis h, mapping the instance space on
the real-value space IR. For each threshold τ let the
binary classi�er hτ be de�ned as instance x is positive i�
h(x) > τ. To each τ value can be associated the true pos-
itive (TP) rate (fraction of ill persons that are correctly

classi�ed) and the false positive (FP) rate (fraction of

healty persons misclassi�ed as ill ones). In the (FP,TP)

plane, the curve drawn as τ varies de�nes the ROC
curve (Fig.).

Noting that the ideal classi�er lies in the upper le�

corner (% false positive rate, % true positive rate),

it comes naturally to optimize the area under the ROC

curve.�is criterion, also referred to as Wilcoxon rank

test, has been intensively studied in both theoretical

and algorithmic perspectives (see among many others

(Cortes and Mohri, ; Ferri et al., ; Joachims,

; Rosset,)).

�e AUC criterion has been investigated in the EC

literature since the s (Fogel et al.,), for it de�nes

a combinatorial optimization problem. Considering the

search space of real-valued functions, mapping instance

ROC Curve

1

0.5

0

5.00
False positive rate

T
ru

e
po

si
tiv

e
ra

te

1

ROC Curve
Best Tradeoff

Nonstandard Criteria in Evolutionary Learning. Figure .

The receiver operating characteristic (ROC) Curve depicts

how the true positive (TP) rate increases vs the false

positive (FP) rate. Random guessing corresponds to the

diagonal line. The ROC curve is insensitive to ill-balanced

distributions as TP and FP rates are normalized

space X onto IR, the AUC (Wilcoxon) criterion is

de�ned as

F(h) = Pr(h(x) > h(x′)∣y > y′)

Fe(h)∝ #{(xi, xj) s.t. h(xi) > h(xj), yi = , yj = }

Speci�cally, hypothesis h is used to rank the
instances; any ranking such that all positive instances

are ranked before the negative ones gets the optimal

AUC.�e �tness criterion can be computed with com-

plexity O(n logn) where n stands for the number of
training instances, by showing that

Fe(h)∝ ∑
i=. . .n,yi=

i × rank(i)

Interestingly, the optimization of the AUC criterion

can be dealt with in the SVM framework, as shown by

Joachims (), replacing class constraints by inegality

constraints (Fig.):

yi(< w, xi > +b) ≥ i = . . . n

→ < w, xi − xj > ≥ i, j = . . . n, s.t. yi > yj

In practice, the quadratic optimization process intro-

duces gradually the violated constraints only, to avoid

dealing with a quadratic number of constraints.

Nonstandard Criteria in Evolutionary Learning N

N

�e �exibility of EC can still allow for more speci�c

and application-driven interpretation of the AUC cri-

terion. Typically in medical applications, the physician

is most interested in the beginning of the AUC curve,

trying to �nd a threshold τ retrieving a high fraction of
ill patients for a very low false positive rate.�e same

situation occurs in customer relationship management,

replacing positive cases by potential churners.�e AUC

criterion can be easily adapted to minimize the number

of false positive within the top k-ranked individuals, as
shown by Mozer et al., ().

In a statistical perspective however (and contrar-

ily to a common practice in the ML and data mining

communities), it has been argued that selecting a clas-

si�er based on its AUC was not appropriate (David J.

Hand,).�e objection is that the AUC maximiza-

tion yields the best hypothesis under a uniform distri-
bution of the misclassi�cation costs, whereas hypothesis
h is used with a speci�c threshold τ, corresponding to a
particular point of the ROC curve (Fig.).

Still, ROC curves convey very clear intuitions about

the trade-o� between TP and FP rates; analogous to

a Pareto front, they enable one to select a posteriori

the best trade-o� according to a one’s implicit prefer-

ences. An interesting approach along these lines has

been investigated by Suttorp and Igel () to learn

SVMs, using a multi-objective optimization setting to

simultaneously minimize the FP rate, and maximize

the TP rate, and maximize the number of support

vectors.

�e last objective actually corresponds to a regu-

larization term: the empirical error plus the number

of support vectors upper-bounds the so-called leave-

one-out error (when the number of folds in cross-

fold validation is set to the number of examples),

since the hypothesis is not modi�ed when removing

a non-support vectors. (see Zhang [] for more

detail).

Conclusions
Unsurprisingly, the bottom line of evolutionary learn-

ing matches that of EC: any e�ort to customize the

�tness function is highly rewarded; a good knowl-

edge of the domain application enables to choose

appropriate, frugal yet e�ective, search space and varia-

tion operators.

Another message concerns the validation of the

proposed approaches. In early decades, hypotheses

were assessed from their training error, with poor

applicative relevance due to over�tting. Better prac-

tices are now widely used (e.g., training, validation,

and test sets); as advocated by Dietterich (), good

practices are based on cross-validation. Taking into

account early remarks about the University of Cali-

fornia Irvine (UCI) repository (Holte,), experi-

mental validation should consider actually challenging

problems.

Due to space limitations, this entry has excluded

some nice and elegant work at the crossroad of machine

learning and evolutionary computation, among others,

interactive optimization and modelisation of the user’s

preferences (Llorà et al.,), interactive feature con-

struction (Krawiec and Bhanu, ; Venturini et al.,

), or ML-based heuristics for noisy optimization

(Heidrich-Meisner and Igel,).

Recommended Reading
Amit, Y., Geman, D., & Wilder, K. (). Joint induction of shape

features and tree classifiers. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, (), –.

Banzhaf, W., & Langdon, W. B. (). Some considerations on the

reason for bloat. Genetic Programming and Evolvable Machines,
(), –.

Ben-David, S., von Luxburg, U., Shawe-Taylor, J., & Tishby, N. (Eds.).

(). Theoretical foundations of clustering. NIPS Workshop.
Bishop, C. (). Pattern recognition and machine learning.

Springer.

Blickle, T. (). Evolving compact solutions in genetic program-

ming: a case study. In H.-M. Voigt et al. (Eds.), Proceedings
of the th international inference on parallel problem solving
from nature. Lecture notes in computer science (vol. , pp.
–). Berlin: Springer.

Boser, B., Guyon, I., & Vapnik, V. (). A training algorithm for

optimal margin classifiers. Proceedings of the th annual ACM
conference on Computational Learning Theory, COLT’, (pp.
–). Pittsburgh, PA.

Breiman, L. (). Arcing classifiers. Annals of Statistics, (),
–.

Breiman, L. (). Random forests. Machine Learning, (), –.
Chandra, A., & Yao, X. (). Ensemble learning using multi-

objective evolutionary algorithms. Journal of Mathematical
Modelling and Algorithms, (), –.

Chandra, A., & Yao X. (). Evolving hybrid ensembles of learn-

ing machines for better generalisation. Neurocomputing, ,
–.

Cortes, C., & Vapnik, V. N. (). Support-vector networks.

Machine Learning, , –.

 N Nonstandard Criteria in Evolutionary Learning

Cortes, C., & Mohri, M. (). Confidence intervals for the area

under the ROC curve. Advances in Neural Information Process-
ing Systems, NIPS, .

Cristianini, N., & Shawe-Taylor, J. (). An introduction to sup-
port vector machines and other kernel-based learning methods.
Cambridge: Cambridge University Press.

David J. Hand. (). Measuring classifier performance: a coher-

ent alternative to the area under the ROC curve. Machine
Learning, (), –. http://dx.doi.org/./S--
-, DBLP, http://dblp.uni- trier.de

Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (). A fast elitist

non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II. In M. Schoenauer et al. (Eds.), Pro-
ceedings of the parallel problem solving from nature VI confer-
ence, Paris, France, pp. –. Springer. Lecture Notes in
Computer Science No. .

Dietterich, T. G. (). Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Computa-
tion, , –.

Dietterich, T. (). Ensemble methods in machine learning. In

J. Kittler & F. Roli (Eds.), First International Workshop on
Multiple Classifier Systems, Springer, pp. –.

Domingos, P. (). Meta-cost: a general method for making clas-

sifiers cost sensitive. In Proceedings of the th ACM SIGKDD
International Conference on Knowledge discovery and data min-
ing, (pp. –). San Diego, CA: ACM.

Duda, R. O., Hart, P. E., & Stork, D. G. (). Pattern classification
(nd ed.). New York: Wiley.

Ferri, C., Flach, P. A., & Hernndez-Orallo, J. (). Learning deci-

sion trees using the area under the ROC curve. In C. Sammut

& A. G. Hoffman (Eds.), Proceedings of the Nineteenth Inter-
national Conference on Machine Learning (ICML), (pp.
–). Morgan Kaufmann.

Fogel, D. B., Wasson, E. C., Boughton, E. M., Porto, V. W., and

Angeline, P. J. (). Linear and neural models for classify-

ing breast cancer. IEEE Transactions on Medical Imaging, (),
–.

Freund, Y., & Shapire, R. E. (). Experiments with a new boosting

algorithm. In L. Saitta (Ed.), Proceedings of the Thirteenth Inter-
national Conference on Machine Learning (ICML), (pp.
–). Bari: Morgan Kaufmann.

Friedrichs, F., & Igel, C. (). Evolutionary tuning of multiple

SVM parameters. Neurocomputing, (C), –.
Gagné, C., Schoenauer, M., Sebag, M., & Tomassini, M. ().

Genetic programming for kernel-based learning with co-

evolving subsets selection. In T. P. Runarsson, H.-G. Beyer, E.

K. Burke, J. J. Merelo Guervós, L. Darrell Whitley, & X. Yao

(Eds.), Parallel problem solving from nature – PPSN IX, vol-
ume of Lecture Notes in Computer Science (pp. –).
Springer.

Gagné, C., Sebag, M., Schoenauer, M., & Tomassini, M. ().

Ensemble learning for free with evolutionary algorithms? In

H. Lipson (Ed.), Genetic and Evolutionary Computation Con-
ference, GECCO , (pp. –). ACM.

Gathercole, C., & Ross, P. (). Dynamic training subset selec-

tion for supervised learning in genetic programming. In Parallel
problem solving from nature – PPSN III, volume of lecture
notes in computer science (pp. –). Springer.

Gelly, S., Teytaud, O., Bredeche, N., & Schoenauer, M. ().

Universal consistency and bloat in GP: Some theoretical

considerations about genetic programming from a statisti-

cal learning theory viewpoint. Revue d’Intelligence Artificielle,
(), –.

Gilad-Bachrach, R., Navot, A., & Tishby, N. (). Margin based

feature selection – theory and algorithms. Proceedings of the
Twenty-First International Conference on Machine Learning
(ICML), ACM Press, p. .

Han, J., & Kamber, M. (). Data mining: concepts and techniques.
New York: Morgan Kaufmann.

Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (). The entire

regularization path for the support vector machine. Advances
in Neural Information Processing Systems, NIPS .

Heidrich-Meisner, V., & Igel, C. (). Hoeffding and Bernstein

races for selecting policies in evolutionary direct policy search.

Proceedings of the Twenty-Sixth International Conference on
Machine Learning (ICML), ACM, pp. –.

Hillis, W. D. (). Co-evolving parasites improve simulated evo-

lution as an optimization procedure. Physica D, , –.
Holland, J. (). Escaping brittleness: The possibilities of general

purpose learning algorithms applied to parallel rule-based sys-

tems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),

Machine learning: an artificial intelligence approach (vol. , pp.
–). Morgan Kaufmann.

Holland, J. H. (). Adaptation in natural and artificial systems.
Ann Arbor: University of Michigan Press.

Holte, R. C. (). Very simple classification rules perform well on

most commonly used datasets. Machine Learning, , –.
Monirul Islam, M., & Yao, X. Evolving artificial neural network

ensembles. In J. Fulcher & L. C. Jain (Eds.), Computational intel-
ligence: a compendium, volume of studies in computational
intelligence (pp. –). Springer.

Joachims, T. (). A support vector method for multivariate per-

formance measures. In L. De Raedt & S. Wrobel (Eds.), Proceed-
ings of the Twenty-second International Conference on Machine
Learning (ICML), volume of ACM International Con-
ference Proceeding Series (pp. –). ACM.

Jong, K., Marchiori, E., & Sebag, M. (). Ensemble learning

with evolutionary computation: application to feature ranking.

In X. Yao et al. (Eds.), Parallel problem solving from nature –
PPSN VIII, volume of lecture notes in computer science (pp.
–). Springer.

Miikkulainen, R., Stanley, K. O., & Bryant, B. D. (). Evolving

adaptive neural networks with and without adaptive synapses.

Evolutionary Computation, , –.
Krawiec, K., & Bhanu, B. (). Visual learning by evolution-

ary and coevolutionary feature synthesis. IEEE Transactions on
Evolutionary Computation, (), –.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. ().

Analysis and results of the DARPA on-line intrusion detec-

tion evaluation. In H. Debar, L. Mé, & S. F. Wu (Eds.), Recent
advances in intrusion detection, volume of lecture notes in
computer science (pp. –). Springer.

Liu, Y., Yao, X., & Higuchi, T. (). Evolutionary ensembles with

negative correlation learning. IEEE Transactions on Evolution-
ary Computation, (), –.

Llorà, X., Sastry, K., Goldberg, D. E., Gupta, A., & Lakshmi, L.

(). Combating user fatigue in igas: partial ordering, sup-

port vector machines, and synthetic fitness. In H.-G. Beyer &

U.-M. O’Reilly (Eds.), Genetic and Evolutionary Computation
Conference (GECCO), ACM, pp. –.

http://dx.doi.org/10.1007/S10994-009-5119-5

NP-Completeness N

N

Margineantu, D., & Dietterich, T. G. (). Pruning adaptive

boosting. Proceedings of the Fourteenth International Confer-
ence on Machine Learning (ICML), Morgan Kaufmann,
pp. –.

Mierswa, I. Evolutionary learning with kernels: a generic solu-

tion for large margin problems. In M. Cattolico (Ed.), Genetic
and Evolutionary Computation Conference (GECCO), ACM,
pp. –.

Mierswa, I. (). Controlling overfitting with multi-objective

support vector machines. In H. Lipson (Ed.), Genetic
and Evolutionary Computation Conference (GECCO),
pp. –.

Mozer, M. C., Dodier, R., Colagrosso, M. C., Guerra-Salcedo, C., &

Wolniewicz, R. (). Prodding the ROC curve: constrained

optimization of classifier performance. Advances in Neural
Information Processing Systems, NIPS, MIT Press.

Platt, J. (). Fast training of support vector machines using

sequential minimal optimization. In B. Schölkopf et al. (Eds.),

Advances in kernel methods – support vector learning. Morgan
Kaufmann.

Poli, R. (). Genetic programming theory. In C. Ryan &

M. Keijzer (Eds.), Genetic and evolutionary computation confer-
ence, GECCO , (Companion), ACM, pp. –.

Rosset, S. (). Model selection via the auc. Proceedings of
the Twenty-First International Conference on Machine Learn-
ing (ICML), volume of ACM International Conference
Proceeding Series. ACM.

Rumelhart, D. E., & McClelland, J. L. (). Parallel distributed
processing. Cambridge: MIT Press.

Schapire, R. E. (). The strength of weak learnability. Machine
Learning, , .

Schoenauer, M., & Xanthakis, S. Constrained GA optimiza-

tion. In S. Forrest (Ed.), Proceedings of the th Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann,
pp. –.

Schölkopf, B., Burges, C., & Smola, A. (). Advances in Kernel
methods: support vector machines. Cambridge: MIT Press.

Song, D., Heywood, M. I., & Nur Zincir-heywood, A. (). A

linear genetic programming approach to intrusion detection.

Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO), Springer, pp. –, LNCS .

Song, D., Heywood, M. I., & Nur Zincir-Heywood, A. (). Train-

ing genetic programming on half a million patterns: an example

from anomaly detection. IEEE Transactions on Evolutionary
Computation, (), –.

Sonnenburg, S., Franc, V., Yom-Tov, E., & Sebag, M. (Eds.). ().

Large scale machine learning challenge. ICML Workshop.
Sutton, R. S., & Barto, A. G. (). Reinforcement learning. Cam-

bridge: MIT Press.

Suttorp, T., & Igel, C. (). Multi-objective optimization of sup-

port vector machines. In Y. Jin (Ed.), Multi-objective Machine
Learning, volume of Studies in Computational Intelligence
(pp. –). Springer.

Tibshirani, R. (). Regression shrinkage and selection via the

lasso. Royal Statistical Society, B, (), –.
Vapnik, V. N. (). The nature of statistical learning. New York:

Springer.

Venturini, G., Slimane, M., Morin, F., & Asselin de Beauville, J.

P. (). On using interactive genetic algorithms for knowl-

edge discovery in databases. In Th. Bäck, (Ed.), International

Conference on Genetic Algorithms (ICGA), Morgan Kaufmann,
pp. –.

Zhang, T. (). Leave-one-out bounds for kernel methods. Neural
Computation, (), –.

Nonstationary Kernels

7Local Distance Metric Adaptation

Nonstationary Kernels
Supersmoothing

7Locally Weighted Regression for Control

Normal Distribution

7Gaussian Distribution

NP-Completeness

Definition
A decision problem consists in identifying symbol

strings, presented as inputs, that have some speci�ed

property.�e output consists in a yes/no or / answer.

A decision problem belongs to the class P if there exists

an algorithm, that is, a deterministic procedure, for

deciding any instance of the problem in a length of time

bounded by a polynomial function of the length of the

input.

A decision problem is in the class NP if it is pos-

sible for every yes-instance of the problem to verify

in polynomial time, a�er having been supplied with a

polynomial-length witness, that the instance is indeed
of the desired property.

An example is the problem to answer the question

for two given numbers n andm whether n has a divisor
d strictly between m and n. �is problem is in NP: if
the answer is positive, then such a divisor d will be a
witness, since it can be easily checked that d lies between
the required bounds, and that n is indeed divisible by d.
However, it is not knownwhether this decision problem

is in P or not, as it may not be easy to �nd a suitable

divisor d, even if one exists.

 N Numeric Attribute

�e class of NP-complete decision problems con-
tains such problems in NP for which if some algorithm

decides it, then every problem in NP can be decided

in polynomial time. A theorem of Stephen Cook and

Leonid Levin states that such decision problems exist.

Several decision problems of this class are problems on

7graphs.

Recommended Reading
Stephen Cook (). The complexity of theorem proving proce-

dures. Proceedings of the third annual ACM symposium on

theory of computing, –.

Leonid Levin (). Universal’nye pereborne zadachi. Problemy
Peredachi Informatsii (): –.

English translation, Universal Search Problems, in B. A. Trakhten-

brot (). A Survey of Russian Approaches to Perebor (Brute-

Force Searches) Algorithms. Annals of the History of Computing
(): –.

Numeric Attribute

Synonyms
Quantitative attribute

Definition
Numeric attributes are numerical in nature.�eir val-
ues can be ranked in order and can be subjected to

meaningful arithmetic operations. See 7Attribute and
7Measurement Scales.

O

Object

7Instance

Object Consolidation

7Entity Resolution

Object Space

7Example Space

Observation Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science
�e Netherlands

Synonyms
Instance language

Definition
�e observation language used by a machine learning
system is the language in which the observations it
learns from are described.

Motivation and Background
Most machine learning algorithms can be seen as a pro-
cedure for deriving one or more hypotheses from a set
of observations. Both the input (the observations) and
the output (the hypotheses) need to be described in
some particular language and this language is called
the observation language or the7Hypothesis Language

respectively. �ese terms are mostly used in the con-
text of symbolic learning, where these languages are
o�en more complex than in subsymbolic or statistical
learning.

�e following sections describe some of the key
observation languages.

Attribute-Value Learning

Probably the most used setting in machine learn-
ing is the attribute-value setting (see 7Attribute-Value
Learning). Here, an example (observation) is described
by a �xed set of attributes, each of which is given a value
from the domain of the attribute. Such an observation is
o�en called a vector or, in relational database terminol-
ogy, a tuple.�e attributes are usually atomic (i.e., not
decomposable in component values) and single-valued
(i.e., an attribute has only one value, not a set of values).
So we have an instance space (or space of observations)

O = A ×⋯ ×An,

elements of which are denoted using an observation
language that typically has the same structure:

LO = LA ×⋯ ×LAn

(the language contains tuples of objects that represent
the attribute values).

�e attribute-value framework easily allows for both
supervised and unsupervised learning; in the super-
vised learning setting, the label of an instance is sim-
ply included as an attribute in the tuple, where as for
unsupervised learning, it is excluded.

�e attribute-value setting assumes that all instances
can be represented using the same �xed set of attributes.
When instances can be of di�erent types or are variable-
sized (e.g., when an instance is set-valued), this assump-
tion may not hold, and more powerful languages may
have to be used instead.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 O Observation Language

Learning from Graphs, Trees, or Sequences

We here consider the case in which a single instance
is a graph, or a node in a graph. Note that trees and
sequences are special cases of graphs.
A graph is de�ned as a pair (V ,E), where V is a set

of vertices and E a set of edges each edge being a pair
of vertices. If the pair is ordered, the graph is directed;
otherwise it is undirected. For simplicity, we restrict
ourselves to undirected graphs.
A graph can, in practice, not be encoded in attribute-

value format without the loss of information. �at is,
one could use a number of properties of graphs as
attributes in the encoding, but several graphs may then
still map onto the same representation, which implies
loss of information. In theory, one could imagine de�n-
ing a total order on (certain classes of) graphs and
representing each graph by its rank in that order (which
is a single numerical attribute), thus representing graphs
as numbers without loss of information; but then it is
not obvious how to map patterns in this numerical rep-
resentation to patterns in the original representation.
No such approaches have been proposed till now.
Describing the instance space is more di�cult here

than in the attribute value case. Consider a task of
graph classi�cation, where in observations are of the
form (G, y) with G a graph and y a value for a target
attribute Y .�en we can de�ne the instance space as

O = {(V ,E)∣V ⊆ N ∧ E ⊆ V} × Y ,

where N is the set of all natural numbers. (For each
graph, there exists a graph de�ned over N that is iso-
morphic with it, soO contains all possible graphs up to
isomorphism.)
A straightforward observation language in the case

of graph classi�cation is then

{(G, y)∣G = (V ,E) ∧V ⊆ LV ∧ E ⊆ V ∧ y ∈ Y},

where LV is some alphabet for representing nodes.
In learning from graphs, there are essentially two

settings: those where a prediction is made for entire
graphs, and those where a prediction is made for sin-
gle nodes in a graph. In the �rst case, observations are
of the form (G, y), where as, in the second case, they
are of the form (G, v, y), where G = (V ,E) and v ∈ V .
�at is, a node is given together with the graph in which
it occurs (its “environment”), and a prediction is to be
made for this speci�c node, using the information about
its environment.

In many cases, the set of observations one learns
from is of the form (G, vi, yi), where each instance is a
di�erent node of exactly the same graph G.�is is the
case when, for instance, classifying web pages, we take
the whole web as their environment.
In a labeled graph, labels are associated with each

node or edge. O�en these are assumed atomic, being
elements of a �nite alphabet or real numbers, but they
can also be vectors of reals.

Relational Learning

In7relational learning, it is assumed that relationships
may exist between di�erent instances of the instance
space, or an instance may internally consist of multiple
objects among which relationships exist.

�is essentially corresponds to learning fromgraphs,
except that in a graphonly one binary relation exists (the
edges E), whereas here there may be multiple relations
and they may be non binary.�e expressiveness of the
two settings is the same, however, as any relation can be
represented using only binary relations.
In the attribute-value setting, one typically uses one

table where each tuple represents all the relevant infor-
mation for one observation. In the relational setting,
there may be multiple tables, and information on a sin-
gle instance is contained in multiple tuples, possibly
belonging to multiple relations.

Example Assume we have a database about students,
courses, and professors (see Fig.). We can de�ne a single
observation as all the information relevant to one student,
that is: the name, year of entrance, etc. of the student and
also the courses they take and the professors teaching these
courses.

Algebra

Calculus
Databases

Biology
Adams
Baeck
Cools

Adams
Adams Calculus
Baeck
Cools Calculus

DatabasesCools

Biology

Algebra

1999
1998
1999
1999
1998

Anne
Bernard
Celine
Daniel
Elisa
Fabian

1997

1996
1999

1999
1997
1999

Algebra
Calculus
Databases
Biology
Databases
Calculus

1999
2000

1998
A

B

A
B

2000 A
Anne
Anne

Bernard
Celine
Celine
Celine

B

1998

1998

Observation Language. Figure . A small database of

students

Observation Language O

O

�e most obvious link to the graph representation
is as follows: create one node for each tuple, labeled
with that tuple, and create a link between two nodes if
the corresponding tuples are connected by a foreign key
relationship.
De�ning a single observation as a set of tuples that

are connected through foreign keys in the database cor-
responds to representing each observation (G, v, y) as
(G′, v, y), where G′ is the connected component of G
that contains v.�e actual links are usually not explicitly
written in this representation, as they are implicit: there
is an edge between two tuples if they have the same value
for a foreign key attribute.

Inductive Logic Programming

In 7inductive logic programming, a language based
on �rst order logic is used to represent the observa-
tions. Typically, an observation is then represented by
a ground fact, which basically corresponds to a sin-
gle tuple in a relational database. In some settings an
observation is represented by an interpretation, a set
of ground facts, which corresponds to the set of tuples
mentioned in the previous subsection.
While the target variable can always be represented

as an additional attribute, ILP systems o�en learn from
examples and counterexamples of a concept.�e target
variable is then implicit: it is true or false depending on
whether the example is in the positive or negative set,
but it is not explicitly included in the fact.
Typical for the inductive logic programming setting

is that the input of a system may contain, besides the
observations, background knowledge about the appli-
cation domain.�e advantage of the ILP setting is that
no separate language is needed for such background
knowledge: the same �rst order logic-based language
can be used for representing the observations as well as
the background knowledge.

Example Take the following small dataset:

sibling(bart,lisa).
sibling(lisa,bart).
:- sibling(bart, bart).
:- sibling(lisa, lisa).
father(homer, bart).
mother(marge, bart).
father(homer, lisa).
mother(marge, lisa).

�ere are positive and negative (preceded by :-)
examples of the Sibling relation.�e following hypothesis
might be learned:

sibling(X,Y) :- father(Z,X),
father(Z,Y), X /= Y.

sibling(X,Y) :- mother(Z,X),
mother(Z,Y), X /= Y.

If the following clauses as included as background knowl-
edge:

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

then the same ILP system might learn the following more
compact de�nition:

sibling(X,Y) :- parent(Z,X),
parent(Z,Y), X /= Y.

Further Reading
Most of the literature on hypothesis and observation
languages is found in the area of inductive logic pro-
gramming. Excellent starting points to become familiar
with this �eld are Relational Data Mining by Lavrač and
Džeroski () and Logical and Relational Learning by
De Raedt ().
De Raedt () compares a number of di�er-

ent observation and hypothesis languages with respect
to their expressiveness, and indicates relationships
between them.

Cross References
7Hypothesis Language
7Inductive Logic Programming
7Relational Learning

Recommended Reading
De Raedt, L. (). Attribute-value learning versus inductive logic

programming: the missing links (extended abstract). In D. Page
(Ed.), Proceedings of the eighth international conference on
inductive logic programming. Lecture notes in artificial intelli-
gence (Vol. , pp. –). Berlin: Springer.

De Raedt, L. (). Logical and relational learning. Berlin:
Springer.

Džeroski, S., & Lavrač, N. (Eds.). (). Relational data mining.
Berlin: Springer. vfill

 O Occam’s Razor

Occam’s Razor

Geoffrey I. Webb
Monash University, Victoria , Australia

Synonyms
Ockham’s razor

Definition
Occam’s Razor is the maxim that “entities are not to be
multiplied beyond necessity,” or as it is o�en interpreted
in the modern context “of two hypotheses H and H’,
both of which explain E, the simpler is to be preferred”
(Good,).

Motivation and Background
Most attempts to learn a 7model from 7data con-
front the problem that there will be many models that
are consistent with the data. In order to learn a single
model, a choice must be made between the available
models. �e factors taken into account by a learner
in choosing between models are called its 7inductive
biases (Mitchell,). A preference for simple models
is a common inductive bias and is embodied in many
learning techniques including 7pruning, 7minimum
message length and 7minimum description length.
7Regularization is also sometimes viewed as an appli-
cation of Occams’ Razor.
Occam’s Razor is an imperative, rather than a propo-

sition.�at is, it is neither true nor false. Rather, it is a
call to act in a particular way without making any claim
about the consequences of doing so. In machine learn-
ing the so-called Occam thesis is sometimes assumed,
that

▸ given a choice between two plausible classifiers that

perform identically on the training set, the simpler

classifier is expected to classify correctly more objects

outside the training set (Webb,).

While there are many practical advantages in hav-
ing an inductive bias toward simple models, there
remains controversy as to whether the Occam thesis is
true (Blumer, Ehrenfeucht, Haussler, &Warmuth, ;
Domingos, ; Webb,).

Recommended Reading
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K.

(). Occam’s razor. Information Processing Letters, (),
–.

Domingos, P. (). The role of Occam’s razor in knowl-
edge discovery. Data Mining and Knowledge Discovery, (),
–.

Good, I. J. (). Explicativity: A mathematical theory of expla-
nation with statistical applications. Proceedings of the Royal
Society of London Series A, , –.

Mitchell, T. M. (). The need for biases in learning generaliza-
tions. Tech. Rep. CBM-TR-. Rutgers University, Department
of Computer Science.

Webb, G. I. (). Further experimental evidence against the utility
of Occams razor. Journal of Artificial Intelligence Research, ,
–; Menlo Park: AAAI Press.

Ockham’s Razor

7Occam’s Razor

Offline Learning

7Batch Learning

One-Step Reinforcement Learning

7Associative Reinforcement Learning

Online Learning

Peter Auer
University of Leoben,
Leoben, Austria

Synonyms
Mistake-bounded learning; Perceptron; Predictionwith
expert advice; Sequential prediction

Definition
In the online learning model the learner needs to make
predictions about a sequence of instances, one a�er
the other, and receives a reward or loss a�er each pre-
diction. Typically, the learner receives a description of

Online Learning O

O

the instance before making a prediction. �e goal of
the learner is to maximize the accumulated reward (or
equivalently minimize the accumulated losses).

�e online learningmodel is essentially a worst-case
model of learning, as itmakes no statistical assumptions
on how the sequence of inputs and rewards is generated.
In particular, it is not assumed that inputs and obser-
vations are generated by a probability distribution. In
contrast, they might be generated by an adversary who
tries to fool the learner.
To compensate for the adversarial nature of the

model, in most cases the performance guarantees for
online learning algorithms are relative to the perfor-
mance of the best predictor from a certain class. O�en
these performance guarantees are quite strong, show-
ing that the learner can do nearly as well as the best
predictor from a large class of predictors.

Motivation and Background
Online learning is one of the main models of learning
theory, complementing the statistical approach of the
7PAC learningmodel bymaking no statistical assump-
tions.�e distinctive properties of the online learning
model are:

● Learning proceeds in trials.
● �ere is no designated learning phase, but perfor-
mance of the learner is evaluated for each trial.

● No assumptions on the generation of the inputs to
the learner are made; they may depend even on
previous predictions of the learner.

● In most cases no assumptions on the losses or
rewards are made; they may be selected by an adver-
sary.

● �e sequential predictions model an interaction
between the learner and its environment.

● Performance guarantees for learning algorithms are
typically in terms of the performance of the best pre-
dictor from some given class, a�er some number of
observations.

�e �rst explicit models of online learning were
proposed by Angluin () and Littlestone (), but
related work on repeated games by Hannan () dates
back to . Littlestone proposed online learning as a
sequence of trials, in each of which the learner receives
some input,makes a prediction of the associated output,

and receives the correct output. It was assumed that
some function from a known class maps the inputs to
correct outputs.�e performance of the learner is mea-
sured by the number of mistakes made by a learner,
before it converges to the correct predictor. Angluin’s
equivalence query model of learning is formulated
di�erently but is essentially equivalent to Littlestone’s
model.
Many (including Littlestone (), Vovk (), and

Littlestone and Warmuth ()) later removed the
restriction that there must be a function that correctly
predicts all the outputs. In their setting the learner com-
petes with the best predictor from a given class. As the
class of predictors can be seen as a set of experts advis-
ing the learner about the correct predictions, this led
to the term “prediction with expert advice.” A com-
prehensive treatment of binary predictions with expert
advice can be found in Cesa-Bianchi et al. (). Rela-
tions of online learning to several other �elds (e.g.,
compression, competitive analysis, game theory, and
portfolio selection) are discussed in the excellent book
on sequential prediction by Cesa-Bianchi and Lugosi
().

Structure of Learning System
�e online learning model is formalized as follows. In
each trial t = , , . . . , the learner

. Receives input xt ∈ X
. Makes prediction yt ∈ Y
. Receives response zt ∈ Z
. Incurs loss ℓt = ℓ(yt , zt)

where ℓ : Y × Z ↦ R is some loss function.�e per-
formance of a learner up to trial T is measured by its
accumulated loss LT = ∑T

t= ℓt .
Performance bounds for online learning algo-

rithms are, typically, in respect to the performance
of an optimal predictor (or expert) E∗ from some
class E , E∗ ∈E . A predictor E maps the past given by
(x, y, z), . . . , (xt−, yt−, zt−) and the current input xt
to a prediction yEt . As for the learner, the performance
of a predictor is measured by its accumulated loss LET =
∑T

t= ℓEt , where ℓEt = ℓ (yEt , zt). Most bounds for the loss
of online algorithms are of the form

LT ≤ amin
E∈E

LET + bC(E),

 O Online Learning

where the constants a and b depend on the loss function
and C(E) measures the complexity of the class of pre-
dictors. (e.g., the complexity C(E) could be log ∣E ∣ for a
�nite class E .) O�en it is possible to trade the constant
a against the constant b such that bounds

LT ≤ L∗T + o (L∗T)

can be achieved, where L∗T = minE∈E LET is the loss of the
best predictor up to time T.�ese bounds are of partic-
ular interest as they show that the loss of the learning
algorithm is only little larger than the loss of the best
predictor. For such bounds the regret RT of the learning
algorithm,

RT = LT − L∗T ,

is the relevant quantity that measures the cost of not
knowing the best predictor in advance. Again, it needs
to be emphasized that these bounds hold for any
sequence of inputs and responses without any addi-
tional assumptions. Such bounds are achieved by online
learning algorithms that rely on the outputs of the pre-
dictors in E to form their own predictions.

�e next section makes this general de�nition of
online learning more concrete by presenting some
important online learning algorithms, and it also dis-
cusses the related equivalence query model.

Theory/Solution
The Weighted Majority Algorithm

�e weighted majority algorithm developed by Little-
stone and Warmuth () is one of the fundamental
online learning algorithms, with many relatives using
similar ideas. It will be presented for the basic scenario
with a �nite set of experts E , binary predictions yt ∈
{, }, binary responses zt ∈ {, }, and the discrete loss
which just counts mistakes, ℓ(y, z) = ∣y − z∣, such that
ℓ(y, z) = if y = z and ℓ(y, z) = if y ≠ z. (We will
use the terms experts and predictors interchangeably. In
the literature �nite sets of predictors are mostly called
experts.)

�eweightedmajority algorithmmaintains aweight
wE
t for each expert E ∈ E that are initialized as wE

 = .
�e weights are used to combine the predictions yEt
of the experts by a weighted majority vote: yt = if
∑E wE

t yEt ≥
 ∑E wE

t , and yt = otherwise. A�er receiv-
ing the response zt , the weights of experts that made
incorrect predictions are reduced by multiplying with

some constant β < , wE
t+ = βwE

t if yEt ≠ zt , and
wE
t+ = wE

t if yEt = zt . As a performance bound for the
weighted majority algorithm one can achieve

LT ≤ L∗T +
√
L∗T log ∣E ∣ + log ∣E ∣

with L∗T = minE∈E LET and an appropriate β. (Better con-
stants on the square root and the logarithmic term are
possible.)
While in this bound the loss of the deterministic

weighted majority algorithm is twice the loss of the best
expert, the randomized version of the weighted major-
ity algorithm almost achieves the loss of the best expert.
Instead of using a deterministic prediction, the ran-
domized weighted majority algorithm tosses a coin and
predicts yt = with probability∑E wE

t yEt /∑E wE
t .

Since a prediction of the randomized algorithm
matches the prediction of the deterministic algorithm
with probability at least /, an incorrect prediction of
the deterministic algorithm implies that the random-
ized algorithm will predict incorrectly with probability
at least /. �us, the loss of the deterministic algo-
rithm is at most twice the expected loss of the ran-
domized algorithm.�is can be used to transfer bounds
for the randomized algorithm to the deterministic
algorithm.
Below, the following bound will be proved on the

expected loss of the randomized algorithm,

E [LT] ≤
log(/β)
 − β

L∗T +

 − β

log ∣E ∣. ()

Approximately optimizing for β yields β = − ε, where
ε = min{/,

√
(log ∣E ∣)/L∗T}, and

E [LT] ≤ L∗T +
√
L∗T log ∣E ∣ + log ∣E ∣. ()

�e expectation in these bounds is only in respect to
the randomization of the algorithm, no probabilistic
assumptions on the experts or the sequence of responses
are made.�ese bounds hold for any set of experts and
any �xed sequence of responses. �is type of bounds
assumes that the sequence of inputs and responses does
not depend on the randomization of the algorithm.
If the inputs xt and the responses zt may depend on
the past predictions of the algorithm, y, . . . , yt−, then

Online Learning O

O

L∗T also becomes a random variable and the following
bound is achieved:

E [LT] ≤ E [L∗T] +
√
E [L∗T] log ∣E ∣ + log ∣E ∣.

It can be even shown that the following similar bound
holds with probability − δ (in respect to the random-
ization of the algorithm):

LT ≤ L∗T +
√
T log(∣E ∣/δ).

�e proof of bound () showsmany of the ideas used
in the proofs for online learning algorithms. Key ingre-
dients are a potential function and how the changes
of the potential function relate to losses incurred by
the learning algorithm. For the weighted majority algo-
rithm a suitable potential function is the sum of the
weights,Wt = ∑E wE

t .�en, since the losses are or ,

Wt+
Wt

= ∑E wE
t+

∑E wE
t

= ∑E βℓ
E
t wE

t

∑E wE
t

= ∑E [− (− β)ℓEt]wE
t

∑E wE
t

= − (− β)∑E ℓEt wE
t

∑E wE
t
.

Since the probability that the randomized weighted
majority algorithmmakes a mistake is given by E [ℓt] =
∑E ℓEt wE

t /∑E wE
t , we get by taking logarithms that

logWt+−logWt = log(−(−β)E [ℓt]) ≤ −(−β)E [ℓt]

(since log(− x) ≤ −x for x ∈ (,)). Summing over all
trials t = , . . . ,T we �nd

logWT+ − logW ≤ −(− β)E [Lt] .

SinceW = ∣E ∣ andWT+ = ∑E wE
T+ = ∑E βLET ≥ βL∗T ,

rearranging the terms gives ().

Extensions and Modifications of the Weighted Major-

ity Algorithm Variants and improved versions of the
weighed majority algorithm have been analyzed for
various learning scenarios. An excellent coverage of
the material can be found in Cesa-Bianchi and Lugosi
().�is section mentions a few of them.

General loss functions. �e analysis of the weighted
majority algorithm can be generalized to any convex set
of predictions Y and any set of outcomes Z, as long as

the loss function ℓ(y, z) is bounded and convex in the
�rst argument. Vovk () analyzed for quite general
Y ,Z, and loss functions ℓ, which constants a and b allow
a learning algorithm with loss bound

LT ≤ aL∗T + b log ∣E ∣.

Of particular interest is the smallest b for which a loss
bound with a = can be achieved.

Tracking the best expert and other structured experts.

For a large number of experts, the loss bound of the
weighted majority algorithm is still interesting since it
scales only logarithmically with the number of experts.
Nevertheless, the weighted majority algorithm and
other online learning algorithms become computation-
ally demanding as they need to keep track of the perfor-
mance of all experts (computation time scales linearly
with the number of experts). If the experts exhibit a suit-
able structure, then this computational burden can be
avoided.
As an example, the problem of tracking the best

expert is considered. Let E be a small set of base
experts. �e learning algorithm is required to com-
pete with the best sequence of at most S experts from
E: the trials are divided into S periods, and in each
period another expert might predict optimally. �us,
the minimal loss of a sequence of S experts is given by

L∗T ,S = min
=T≤T≤T≤⋯≤TS=T

S

∑
i=
min
E∈E

Ti

∑
t=Ti−+

ℓEt ,

where the trials are optimally divided into S peri-
ods [Ti− + ,Ti], and the best base expert is chosen for
each period. Such sequences of base experts can be seen
as experts themselves, but the number of such com-
pound experts is (T−S−)∣E∣

S and thus computationally
prohibitive. Fortunately, a slightly modi�ed weighted
majority algorithm applied to the base experts, achieves
almost the same performance as the weighted majority
algorithm applied to the compound experts (Herbster
& Warmuth,). �e modi�cation of the weighted
majority algorithm just lower bounds the relativeweight
of each base expert. �is allows the relative weight of
a base expert to grow large quickly if this expert pre-
dicts best in the current period. Hence, also the learning
algorithm will predict almost optimally in each period.

 O Online Learning

Other examples of structured experts include tree
experts and shortest path problems (see Cesa-Bianchi
and Lugosi () for further references).

The doubling trick. �e optimal choice of β in the per-
formance bound () requires knowledge about the loss
of the best expert L∗T . If such knowledge is not available,
the doubling trick can be used.�e idea is to start with
an initial guess L̂∗ and choose β according to this guess.
When the loss of the best expert exceeds this guess, the
guess is doubled, β is modi�ed, and the learning algo-
rithm is restarted.�e bound () increases only slightly
when L∗T is not known and the doubling trick is used. It
can be shown that still

E [LT] ≤ L∗T + c
√

L∗T log ∣E ∣ + c log ∣E ∣

for suitable constants c and c. A thorough analysis of
the doubling trick can be found in Cesa-Bianchi et al.
(). Variations of the doubling trick can be used for
many online learning algorithms to “guess” unknown
quantities. A drawback of the doubling trick is that it
restarts the learning algorithm and forgets about all
previous trials. An alternative approach is an iterative
adaptation of the parameter β, which can be shown to
give better bounds than the doubling trick.�e advan-
tage of the doubling trick is that its analysis is quite
simple.

Follow the perturbed leader. Follow the perturbed leader
is a simple prediction strategy that was originally pro-
posed by Hannan (). In each trial t, it gener-
ates identically distributed random values ψE

t for every
expert E, adds these random values to the losses of the
experts so far, and predicts with the expert that achieves
the minimum sum,

Êt = argmin
E∈E

LEt− + ψE
t ,

yt = yÊt
t .

For suitably chosen distributions of the ψE
t , this simple

prediction strategy achieves loss bounds similar to the
more involved weighted majority like algorithms.

Prediction with limited feedback and the multiarmed

bandit problem. In some online learning scenarios,
the learner might not receive the original response zt

but only a projected version z̃t = ζ(yt , zt) for some
ζ : Y × Z → Z̃. �e value of the incurred loss
ℓ(yt , zt) might be unknown to the learner. A general
model for this situation is called prediction with partial
monitoring. With suitable assumptions there are pre-
diction strategies for partial monitoring that achieve a
regret of order O(T/).
A special case of partial monitoring is the multi-

armed bandit problem. In the multiarmed bandit prob-
lem the learner chooses a prediction yt ∈ Y = {, . . . ,K}
and receives the loss of the chosen prediction ℓt(yt) =
ℓ(yt , zt). �e losses of the other predictions, ℓt(y),
y ≠ yt , are not revealed to the learner. �e goal of
the learner is to compete with the loss of the single
best prediction, L∗T = miny∈Y LyT , L

y
T = ∑T

t= ℓt(y).�e
multiarmed bandit problem looks very much like the
original online learning problem with the predictions
y ∈ Y as experts. But the main di�erence is that in the
multiarmed bandit problem only the loss of the cho-
sen expert/prediction is revealed, while in the original
online learning problem the losses of all experts can be
calculated by the learner.�erefore, algorithms for the
multiarmed bandit problem estimate the unseen losses
and use these estimates to make their predictions. Since
accurate estimates need a su�cient amount of data,
this leads to a trade-o� between choosing the (appar-
ently) best prediction to minimize loss, and choosing
another prediction for which more data need to be
collected. �is exploration–exploitation trade-o� also
appears elsewhere in online learning, but it is most
clearly displayed in the bandit problem. An algorithm
that deals well with this trade-o� is again a simple vari-
ant of the weighted majority algorithm.�is algorithm
does exploration trials with some small probability, and
in such exploration trials it chooses a prediction uni-
formly at random. �is algorithm has been analyzed
in Auer, Cesa-Bianchi, Freund, and Schapire () for
gains instead of losses. Formally, this is equivalent to
considering negative losses, ℓ ∈ [−,], with the equiv-
alent gain g = −ℓ. For losses ℓ ∈ [−,] a bound for the
algorithm is

E [LT] ≤ L∗T +
√

K ∣L∗T ∣ logK,

which for gains translates into

E [GT] ≥ G∗T −
√
KG∗T logK

Online Learning O

O

where GT and G∗T denote the accumulated gains. Com-
pared with (), the regret increases only by a factor
of

√
K. Auer et al. () show that the order of the

regret is essentially optimal. �ey also present similar
bounds that hold with high probability, and analyze
several extensions of the bandit problem.

The Perceptron Algorithm �is section considers an
example for an online learning algorithm that competes
with a continuous set of experts, in contrast to the �nite
sets of experts considered so far.�is algorithm – the
perceptron algorithm (Rosenblatt)– was among
the �rst online learning algorithms developed. Another
of this early online learning algorithms with a con-
tinuous set of experts is the Winnow algorithm by
Littlestone (). A uni�ed analysis of these algorithms
can be found in Cesa-Bianchi and Lugosi ().�is
analysis covers a large class of algorithms, in particular
the p-norm perceptrons (Grove, Nittlestone & Schuur-
mans,), which smoothly interpolate between the
perceptron algorithm and Winnow.

�e perceptron algorithm aims at learning a linear
classi�cation function.�us inputs are fromaEuclidean
space,X = Rd, the predictions and responses are binary,
Y = Z = {, }, and the discrete misclassi�cation loss is
used. Each expert is a linear classi�er, represented by its
weight vector v ∈ Rd, whose linear classi�cation is given
by Φv : X → {, }, Φv(x) = if v ⋅x ≥ and Φv,θ(x) =
if v ⋅ x < .

�e perceptron algorithm maintains a weight vec-
tor wt ∈ Rd that is initialized as w = (, . . . ,).
A�er receiving input xt , the perceptron’s prediction is
calculated using this weight,

yt = Φwt(xt),

and the weight vector is updated,

wt+ = wt + η(zt − yt)xt ,

where η > is a learning rate parameter.�us, if the
prediction is correct, yt = zt , then the weights are
not changed. Otherwise, the product wt+ ⋅ xt is moved
into the correct direction: since wt+ ⋅ xt = wt ⋅ xt+
η(zt − yt)∣∣xt ∣∣, wt+ ⋅ xt > wt ⋅ xt if yt = but zt = ,
and wt+ ⋅ xt < wt ⋅ xt if yt = but zt = .
It may be assumed that the inputs are normalized,

∣∣xt ∣∣ = , otherwise a normalized xt can be used in the

update of the weight vector. Furthermore, it is noted
that the learning rate η is irrelevant for the performance
of the perceptron algorithm, since it scales only the size
of the weights but does not change the predictions. Nev-
ertheless, the learning rate is kept since it will simplify
the analysis.

Analysis of the perceptron algorithm. To compare the
perceptron algorithm with a �xed (and optimal) linear
classi�er v a potential function ∣∣wt − v∣∣ is again used.
For the change of the potential function when yt ≠ zt ,
one �nds

∣∣wt+ − v∣∣ − ∣∣wt − v∣∣

= ∣∣wt + η(zt − yt)xt − v∣∣ − ∣∣wt − v∣∣

= ∣∣wt − v∣∣ + η(zt − yt)(wt − v) ⋅ xt
+ η(zt − yt)∣∣xt ∣∣ − ∣∣wt − v∣∣

= η(zt − yt)(wt ⋅ xt − v ⋅ xt) + η.

Since wt ⋅ xt < if yt = and wt ⋅ xt ≥ if yt = , we get
(zt − yt)(wt ⋅ xt) ≤ and

∣∣wt+ − v∣∣ − ∣∣wt − v∣∣ ≤ −η(zt − yt)(v ⋅ xt) + η.

Analogously, the linear classi�er v makes a mistake
in trial t if (zt − yt)(v ⋅ xt) < , and in this case
−(zt − yt)(v ⋅ xt) ≤ ∣∣v∣∣. Hence, summing over all trials
(where yt ≠ zt) gives

∣∣wT+ − v∣∣ − ∣∣w − v∣∣

≤ −η ∑
t:ℓt=,ℓvt =

∣v ⋅ xt ∣ + η∣∣v∣∣LvT + ηLT ,

where the sum is over all trials where the perceptron
algorithm makes a mistake but the linear classi�er v
makes nomistake. To proceed, it is assumed that for the
correct classi�cations of the linear classi�er v, the prod-
uct v ⋅ xt is bounded away from (which describes the
decision boundary). It is assumed that ∣v ⋅ xt ∣ ≥ γv > .
�en

∣∣wT+ − v∣∣ − ∣∣w − v∣∣ ≤ − ηγv (LT − LvT)
+ η∣∣v∣∣LvT + ηLT ,

and

LT(ηγv − η) ≤ ∣∣v∣∣ + LvT(ηγv + η∣∣v∣∣),

 O Online Learning

since ∣∣wT+ − v∣∣ ≥ and w = (, . . . ,). For η = γv

the following loss bound for the perceptron algorithm
is achieved:

LT ≤ ∣∣v∣∣/γv + LvT(+ ∣∣v∣∣/γv).

�us, the loss of the perceptron algorithm does not
only depend on the loss of a (optimal) linear classi�er v,
but also on the gap by which the classi�er can separate
the inputs with zt = from the inputs with zt = .�e
size of this gap is essentially given by γv/∣∣v∣∣.

Relation between the perceptron algorithm and support

vector machines. �e gap γv/∣∣v∣∣ is the quantity max-
imized by support vector machines, and it is the main
factor determining the prediction accuracy (in a prob-
abilistic sense) of a support vector machine. It is not
coincidental that the same quantity appears in the per-
formance bound of the perceptron algorithm, since it
measures the di�culty of the classi�cation problem.
As for support vector machines, kernels K(⋅, ⋅) can

be used in the perceptron algorithm. For that, the dot
product wt ⋅ xt is replaced by the kernel representation
∑t−

τ=(zτ −yτ)K(xτ , x). Obviously this has the disadvan-
tage that all previous inputs for which mistakes were
made must be kept available.

Learning with Equivalence Queries In the learning with
equivalence queries model (Angluin,) the learner
has to identify a function f : X → {, } from a class
F by asking equivalence queries. An equivalence query
is a hypothesis h : X → {, } about the function f . If
h = f then the answer to the equivalence query is YES,
otherwise a counterexample x ∈ X with f (x) ≠ h(x)
is returned.�e performance of a learning algorithm is
measured by the number of counter examples received
as response to equivalence queries.

�e equivalence query model is essentially equiva-
lent to the online learning model with F as the set of
experts, Y = Z = {, }, and the discrete misclassi�ca-
tion loss. First, it is considered how a learner for the
equivalence query model can be used as a learner in
the online learning model: For making a prediction yt ,
the equivalence query learner uses its current hypothe-
sis, yt = ht(xt). If the prediction is correct, the hypoth-
esis is not changed. If the prediction is incorrect, the
input xt is used as a counterexample for the hypo-
thesis ht .

Second, it is considered how a deterministic online
learner can be used in the equivalence querymodel.�e
current prediction function of the online learner that
maps inputs to predictions, can be used as a hypothesis
ht in the equivalence querymodel. A counterexample xt
is interpreted as an input for which the response zt dis-
agrees with the prediction yt of the online learner.�us
the online learner might update its prediction function,
which gives a new hypothesis for an equivalence query.

�ese reductions show that the counterexamples of
the equivalence query learner and the mistakes of the
online learner coincide.�us, the performance bounds
for the equivalence query model and the online model
are the same. (Here it is assumed that there is an expert
that incurs no loss. If this is not the case, then an
extension of the equivalence query model can be con-
sidered, where a number of equivalence queries might
be answered with incorrect counterexamples.)

Cross References
7Incremental Learning

Recommended Reading
Angluin, D. (). Queries and concept learning.Machine Learning,

, –.
Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. (). The

nonstochastic multiarmed bandit problem. SIAM Journal on
Computing, , –.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D., Schapire,
R., & Warmuth, M. (). How to use expert advice. Journal of
the ACM, , –.

Cesa-Bianchi, N., & Lugosi, G. (). Prediction, learning, and
games. New York, USA: Cambridge University Press.

Grove, A. J., Nittlestone, N., & Schuurmans, D. (). General
convergence results for linear discriminant updates. Machine
Learning, , –.

Hannan, J. (). Approximation to Bayes risk in repeated play.
Contributions to the Theory of Games, , –.

Herbster, M., & Warmuth, M. (). Tracking the best expert.
Machine Learning, , –.

Littlestone, N. (). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
, –.

Littlestone, N. (). Redundant noisy attributes, attribute errors,
and linear-threshold learning using winnow. In Proceedings of
the fourth annual workshop on computational learning theory,
Santa Cruz, California (pp. –). San Francisco: Morgan
Kaufmann.

Littlestone, N., & Warmuth, M. (). The weighted majority algo-
rithm. Information and Computation, , –.

Rosenblatt, F. (). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, , –.

Overall and Class-Sensitive Frequencies O

O

Vovk, V. (). Aggregating strategies. In Proceedings of third
annual workshop on computational learning theory, Rochester,
New York (pp. –). San Francisco: Morgan Kaufmann.

Vovk, V. (). A game of prediction with expert advice. Journal of
Computer and System Sciences, , –.

Ontology Learning

Di�erent approaches have been used for building
ontologies, most of them to date mainly using man-
ual methods (7Text Mining for the Semantic Web).
An approach to building ontologies was set up in the
CYC project, where the main step involved manual
extraction of common sense knowledge from di�erent
sources. Ontology construction methodologies usually
involve several phases including identifying the purpose
of the ontology (why to build it, how will it be used, the
range of the users), building the ontology, evaluation and
documentation. Ontology learning relates to the phase
of building the ontology using semiautomatic methods
based on text mining or machine learning.

Opinion Mining

Opinion mining is the application of mining methods
concerned not with the topic a document is about, but
with the opinion it expresses. Opinionmining builds on
techniques from7text mining,7information retrieval,
and computational linguistics. It is especially popular
for analyzing documents that are o�en or even by def-
inition opinionated, including blogs (7text mining for
news and blogs analysis) and online product reviews.
Opinion mining is also known as sentiment anal-

ysis (sentiment mining, sentiment classi�cation, . . .) or
opinion extraction.

Optimal Learning

7Bayesian Reinforcement Learning

OPUS

7Rule Learning

Ordered Rule Set

7Decision List

Ordinal Attribute

An ordinal attribute classi�es data into categories
that can be ranked. However, the di�erences between
the ranks cannot be calculated by arithmetic. See
7Attribute and7Measurement Scales.

Out-of-Sample Data

Out-of-sample data are data that were not used to learn
a 7model. 7Holdout evaluation creates out-of-sample
data for evaluation purposes.

Out-of-Sample Evaluation

Definition
Out-of-sample evaluation refers to 7algorithm evalua-
tion whereby the learned model is evaluated on 7out-
of-sample data. Out-of-sample evaluation provides an
unbiased estimate of learning performance, in contrast
to7in-sample evaluation.

Cross References
7Algorithm Evaluation

Overall and Class-Sensitive
Frequencies

�e underlying idea for learning strategies processing
7missing attribute values relies on the class distribu-
tion; i.e., the class-sensitive frequencies are utilized. As
soon as we substitute a missing value by a suitable one,
we take the desired class of the example into consid-
eration in order not to increase the noise in the data
set. On the other hand, the overall (class-independent)
frequencies are applied within classi�cation.

 O Overfitting

Overfitting

Geoffrey I. Webb
Monash University, Victoria, Australia

Synonyms
Overtraining

Definition
A7model over�ts the7training data when it describes
features that arise from noise or variance in the data,
rather than the underlying distribution from which the
data were drawn. Over�tting usually leads to loss of
7accuracy on7out-of-sample data.

Discussion
In general there is a trade-o� between the size of the
space of distinct models that a 7learner can produce
and the risk of over�tting. As the space of models
between which the learner can select increases, the risk
of over�tting will increase. However, the potential for
�nding a model that closely �ts the true underling dis-
tribution will also increase.�is can be viewed as one
facet of the7bias and variance trade-o�.
Figure illustrates over�tting.�e points are drawn

randomly from a distribution in which y= x + ε, where
ε is random noise. �e best single line �t to this dis-
tribution is y= x. 7Linear regression �nds a model
y = . + . × x, shown as the solid line in
Fig. . In contrast, second degree polynomial regres-
sion �nds the model −. + . × x + . × x,
shown as the dashed line.�e space of second degree
polynomial models is greater than that of linearmodels,
and so the second degree polynomial more closely �ts
the example data, returning the lower 7squared error.
However, the linear model more closely �ts the true
distribution and is more likely to obtain lower squared
error on future samples.
While this example relates to7regression, the same

e�ect also applies to 7classi�cation problems. For
example, an over�tted7decision treemay include splits
that re�ect noise rather than underlying regularities in
the data.

−2−4 0 2 4

−4

−2

0

2

4

x

y

Overfitting. Figure . Linear and polynomial models fit-

ted to random data drawn from a distribution for which

the linear model is a better fit

�emany approaches to avoiding over�tting include

● Using low7variance learners;
● 7Minimum Description Length and 7Minimum
Message Length techniques

● 7Pruning
● 7Regularization
● 7Stopping criteria

Cross References
7Bias and Variance
7Minimum Description Length
7MinimumMessage Length
7Pruning
7Regularization

Overtraining

7Over�tting

P

PAC Identification

7PAC Learning

PAC Learning

Thomas Zeugmann
Hokkaido University
Sapparo, Japan

Synonyms
Distribution-free learning; Probably approximately cor-
rect learning; PAC identi�cation

Motivation and Background
A very important learning problem is the task of learn-
ing a concept. 7Concept learning has attracted much
attention in learning theory. For having a running
example, we look at humans who are able to distinguish
between di�erent “things,” e.g., chair, table, car, airplane,
etc.�ere is no doubt that humans have to learn how
to distinguish “things.”�us, in this example, each con-
cept is a thing. To model this learning task, we have
to convert “real things” into mathematical descriptions
of things. One possibility to do this is to �x some lan-
guage to express a �nite list of properties. A�erward, we
decidewhich of these properties are relevant for the par-
ticular things we want to deal with and which of them
have to be ful�lled or not to be ful�lled, respectively.
�e list of properties comprises qualities or traits such as
“has four legs,” “has wings,” “is green,” “has a backrest,”
“has a seat,” etc. So, these properties can be regarded
as Boolean predicates and, provided the list of proper-
ties is large enough, each thing can be described by a
conjunction of these predicates. For example, a chair is
described as “has four legs and has a backrest and has a

seat andhas nowings.”Note that the color is not relevant
and thus, “is green” has been omitted.
Assume that we have n properties, where n is a

natural number. In the easiest case, we can denote
the n properties by Boolean variables x, . . . , xn, where
range(xj) ⊆ {, } for j = , . . . ,n.�e semantics is then
obviously de�ned as follows: Setting xj = means prop-
erty j is ful�lled, while xj = refers property j is not
ful�lled. Now, settingLn = {x, x̄, x, x̄ . . . , xn, x̄n} (set
of literals), we can express each thing as a conjunction of
literals. As usual, we refer to any conjunction of literals
as amonomial.

�erefore, formally we have as learning domain (also
called 7instance space), the set of all Boolean vectors
of length n, i.e., {, }n and, in the learner’s world, each
thing (concept) is just a particular subset of {, }n. As
far as our example is concerned, the concept chair is
then the set of all Boolean vectors for which the mono-
mial “has four legs and has a backrest and has a seat and
has no wings” evaluates to .
Furthermore, it is usually assumed that the concept c

to be learned (the target concept) is taken from a pre-
speci�ed class C of possible concepts called the concept
class. In our example above, the concept class is the
set of all concepts describable by a monomial. Con-
sequently, we see that formally learning a concept is
equivalent to identifying (exact or approximately) a set
from a given set of possibilities by learning a suitable
description (synonymously called representation) of it.
As in complexity theory, we usually assume that the

representations are reasonable ones.�en they can be
considered as strings over some �xed alphabet, and the
set of representations constitutes the 7representation
language. Note that a concept may have more than one
representation in a given representation language (and
should have at least one), and that there may be dif-
ferent representation languages for one and the same
concept class. For example, every Boolean function can
be expressed as a7conjunctive normal form (CNF) and
7disjunctive normal form (DNF), respectively. For a

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 P PAC Learning

�xed representation language, the size of a concept is
de�ned to be the length of a shortest representation
for it. Since we are interested in a model of e�cient
learning, usually the following additional requirements
are made: Given any string over the underlying alpha-
bet, one can decide in time polynomial in the length of
the string whether or not it is a representation. Further-
more, given any element x from the underlying learning
domain and a representation r for any concept, one can
uniformly decide in time polynomial in the length of
both inputs whether or not x belongs to the concept c
described by r.
So, we always have a representation language used

to de�ne the concept class. As we shall see below, it may
be advantageous to choose a possibly di�erent repre-
sentation language used by the learner.�e class of all
sets described by this representation language is called
hypothesis space (denoted by H) and the elements of it
are said to be hypotheses (commonly denoted by h).

�e learner is speci�ed to be an algorithm. Further
details are given below.We still have to specify the infor-
mation source, the criterion of success, the hypothesis
space, and the prior knowledge in order to de�ne what
PAC learning is.

�e abbreviation PAC stands for probably approx-
imately correct and the corresponding learning model
has been introduced by Valiant (), while its name
was dubbed by Angluin (). Valiant’s () pio-
neering paper triggered a huge amount of research, the
results of which are commonly called Computational
Learning�eory (COLT) (see also the COLT and ALT
conference series). Comprehensive treatises of this topic
include Anthony and Biggs (), Kearns and Vazirani
() as well as Natarajan ().
Informally, this means that the learner has to �nd,

on input a randomly drawn set of labeled examples
(called sample), with high probability, a hypothesis such
that the error of it is small. Here, the error is measured
with respect to the same probability distributionDwith
respect to which the examples are drawn.
Let X ≠ ∅ be any learning domain and let C ⊆ ℘(X)

be any nonempty concept class (here ℘(X) denotes the
power set of X). If X is in�nite we need somemild mea-
sure theoretic assumptions to ensure that the probabili-
ties de�ned below exist.We refer to such concept classes
aswell-behaved concept classes. In particular, each c ∈ C

has to be a Borel set. For a more detailed discussion see
Blumer, Ehrenfeucht, Haussler, & Warmuth ().
Next, we formally de�ne the information source.

We assume any unknown probability distribution D
over the learning domain X. No assumption is made
concerning the nature of D and the learner has no
knowledge concerning D. �ere is a sampling oracle
EX(), which has no input. Whenever EX() is called, it
draws an element x ∈ X according to D and returns the
element x together with an indication of whether or not
x belongs to the target concept c.�us, every example
returned by EX() may be written as (x, c(x)), where
c(x) = if x ∈ c (positive examples) and c(x) = oth-
erwise (negative examples). If we make s calls to the
example EX() then the elements x, . . . xs are drawn
independently from one another. �us, the resulting
probability distribution over all s-tuples of elements
from X is the s-fold product distribution of D, i.e.,

Pr(x, . . . , xs) =
s

∏
i=
D(xi), ()

where Pr(A) denotes the probability of event A.
Hence, the information source for a target con-
cept c is any randomly drawn s-sample S(c, x̄) =

(x, c(x), . . . , xs, c(xs)) returned by EX().
�e criterion of success, i.e., probably approximately

correct learning, is parameterized with respect to two
quantities, the accuracy parameter ε and the con�dence
parameter δ, where ε, δ ∈ (,]. Next, we de�ne the dif-
ference between two sets c, c′ ⊆ X with respect to the
probability distribution D as

d(c, c′) = ∑
x∈c△c′

D(x),

where c △ c′ denotes the symmetric di�erence, i.e.,
c △ c′ = c ∖ c′ ∪ c′ ∖ c. We say that hypothesis h is an
ε approximation of a concept c, if d(c,h) ≤ ε. A learner
is successful, if it computes an ε approximation of the
target concept and it should do so with a probability at
least − δ.

�e7hypothesis spaceH is any set such that C ⊆H,
and the only prior knowledge is that the target concept
is from the concept class.
A further important feature of the PAC learning

model is the demand to learn e�ciently. Usually, in the

PAC Learning P

P

PAC learning model, the e�ciency is measured with
respect to the number of examples needed and the
amount of computing time needed, and in both cases,
the requirement is to learn with an amount that is poly-
nomial in the “size of the problem.” In order to arrive at
a meaningful de�nition, one has to discuss the problem
size and in addition, look at the asymptotic di�culty of
the learning problem. �at is, instead of studying the
complexity of some �xed learning problems, we always
look at in�nite sequences of similar learning problems.
Such in�nite sequences are obtained by allowing the size
(dimension) of the learning domain to growor by allow-
ing the complexity of the concepts considered to grow.
In both cases, we use n to denote the relevant parameter.

Definition
A learning method A is said to probably approximately
correctly learn a target concept c with respect to a
hypothesis space H and with sample complexity s =

s(ε, δ) (or s = s(ε, δ,n)), if for any distribution D over
X and for all ε, δ ∈ (,), it makes s calls to the oracle
EX(), and a�er having received the answers produced
by EX() (with respect to the target c), it always stops and
outputs a representation of a hypothesis h ∈H such that

Pr(d(c,h) ≤ ε) ≥ − δ.

A learning method A is said to probably approxi-
mately correctly identify a target concept class C with
respect to a hypothesis space H and with sample com-
plexity s = s(ε, δ), if it probably approximately correctly
identi�es every concept c ∈ C with respect toH and with
sample complexity s.
A learning method A is said to be e�cient, if there

exists a polynomial pol such that the running time
of A and the number s of examples seen is at most
pol(/ε, /δ,n).

Remarks

�is looks complicated, and so, some explanation is in
order. First, the inequality

Pr(d(c,h) ≤ ε) ≥ − δ

says that with high probability (quanti�ed by δ), there
is not toomuch di�erence (quanti�ed by ε) between the

conjectured concept (described by h) and the target c.
Formally, let A be any �xed learning method, and let c
be any �xed target concept. For any �xed ε, δ ∈ (,],
let s = s(ε, δ) be the actual sample size. We have
to consider all possible outcomes of A when run on
every labeled s-sample S(c, x̄)= (x, c(x), . . . , xs, c(xs))
returned by EX(). Let h(S(c, x̄)) be the hypothesis
produced byA when processing S(c, x̄).�en, we have
to consider the set W of all s-tuples over X such that
d(c,h(S(c, x̄))) ≤ ε.�e condition Pr(d(c,h) ≤ ε) ≥

 − δ can now be formally rewritten as Pr(W) ≥ − δ.
Clearly, one has to require that Pr(W) is well de�ned.
Note that the sample size is not allowed to depend on
the distribution D.
To exemplify this approach, recall that our set of

all concepts describable by a monomial over Ln refers
to the set of all things. We consider a hypothetical
learner (e.g., a student, a robot) that has to learn the
concept of a chair. Imagine that the learner is told
by a teacher whether or not particular things visible
by the learner are instances of a chair. What things
are visible depends on the environment the learner is
in. �e formal description of this dependence is pro-
vided by the unknown distribution D. For example, the
learner might be led to a kitchen, a sitting room, a book
shop, a beach, etc. Clearly, it would be unfair to teach
the concept of a chair in a book shop and then test-
ing the learning success at a beach.�us, the learning
success is measured with respect to the same distribu-
tion D with respect to which the sampling oracle has
drawn its examples. However, the learner is required
to learn with respect to any distribution.�at is, inde-
pendently of whether the learner is led to a kitchen, a
book shop, a sitting room, a beach, etc., it has to learn
with respect to the place it has been led to.�e sample
complexity refers to the amount of information needed
to ensure successful learning. Clearly, the smaller the
required distance of the hypothesis produced and the
higher the con�dence desired, the more examples are
usually needed. But there might be atypical situations.
To have an extreme example, the kitchen the learner is
led to turned out to be empty. Since the learner is
required to learn with respect to a typical kitchen
(described by the distribution D), it may well fail under
this particular circumstance. Such failure has to be
restricted to atypical situations, and this is expressed

 P PAC Learning

by demanding the learner to be successful with
con�dence − δ.

�is corresponds to real-life situations. For exam-
ple, a student who has attended a course in learning
theory might well suppose that she is examined in
learning theory and not in graph theory. However, a
good student, say in computer science, has to pass all
examinations successfully, independently of the par-
ticular course attended. �at is, she must successfully
pass examinations in computability theory, complexity
theory, cryptology, parallel algorithms, etc. Hence, she
has to learn a whole concept class. �e sample com-
plexity refers to the time of interaction performed by
the student and teacher. Also, the student may come up
with a di�erent representation of the concepts taught
than the teacher. If we require C =H, then the resulting
model is referred to as proper PAC learning.

The Finite Case
Having reached this point, it is natural to ask which
concept classes are (e�ciently) PAC learnable. We start
with the �nite case, i.e., learning domains X of �nite
cardinality. As before, the s-sample of c generated by
x̄ is denoted by S(c, x̄) = (x, c(x), . . . , xm, c(xs)). A
hypothesis h ∈ H is called consistent for an s-sample
S(c, x̄), if h(xi) = c(xi) for all ≤ i ≤ s. A learner is said
to be consistent if all its outputs are consistent hypothe-
ses.�en the following strategy may be used to design
a PAC learner:

. Draw a su�ciently large sample from the oracle
EX(), say s examples.

. Find some h ∈ H that is consistent with all the s
examples drawn.

. Output h.

�is strategy has a couple of remarkable features.
First, provided the learner can �nd a consistent hypoth-
esis, it allows for a uniform bound of the number of
examples needed.�at is,

s ≥

ε
(ln ∣H∣ + ln(

δ
)) ()

examples will always su�ce (here ∣S∣ denotes the cardi-
nality of any set S).

�e �rst insight obtained here is that increasing the
con�dence is exponentially cheaper than reducing the
error.
Second, we see why we have to look at the asymp-

totic di�culty of the learning problem. If we �x {, }n

as learning domain and de�ne C to be the set of all con-
cepts describable by a Boolean function, then there are

n
many concepts over {, }n. Consequently, ln ∣H∣ =

O(n) resulting in a sample complexity that is for sure
infeasible if n ≥ .�us, we set Xn = {, }n, consider
Cn ⊆ ℘(Xn), and study the relevant learning problem
for (Xn,Cn)n≥. So, �nite means that all Xn are �nite.

�ird, using inequality (), it is not hard to see that
the set of all concepts over {, }n that are describ-
able by a monomial is e�ciently PAC learnable. Let
Hn be the set of all monomials containing each literal
from Ln at most once plus the conjunction of all liter-
als (denoted bymall) (representing the empty concept).
Since there are n + monomials in Hn, by (), we see
that O(/ε ⋅ (n+ ln(/δ)))many examples su�ce. Note
that n is also an upper bound for the size of any concept
fromHn.

�us it remains to deal with the problem to �nd a
consistent hypothesis. �e learning algorithm can be
informally described as follows. A�er having received
the s examples, the learner disregards all negative exam-
ples received and uses the positive ones to delete all
literals from mall that evaluate to on at least one pos-
itive example. It then returns the conjunction of the
literals not deleted from mall. A�er a bit of re�ection,
one veri�es that this hypothesis is consistent. �is is
essentially Haussler’s () Wholist algorithm and its
running time is O(/ε ⋅ (n + ln(/δ))). Also note that
the particular choice of the representation for the empty
concept was crucial here. It is worth noticing that the
sample complexity is tight up to constant factors.
Using similar ideas, one can easily show that the

class of all concepts over {, }n describable by a k-
CNF or k-DNF (where k is �xed) is e�ciently PAC
learnable by using all k-CNF and k-DNF, respectively
as hypothesis space (cf. Valiant,).
So, what can we say in general concerning the prob-

lem to �nd a consistent hypothesis? Answering this
question gives us the insight to understand why it is
sometimes necessary to choose a hypothesis space that
is di�erent from the target concept class. �is phe-
nomenon was discovered by Pitt and Valiant ().

PAC Learning P

P

First, we look at the case where we have to e�ciently
PAC learn any Cn with respect to Cn. Furthermore, an
algorithm is said to solve the consistency problem for Cn
if, on input any s-sample S(c, x̄), where c ⊆ Xn, it outputs
a hypothesis consistent with S(c, x̄) provided there is
one, and “there is no consistent hypothesis,” otherwise.
Since we are interested in e�cient PAC learning, we

have to make the assumption that ∣Cn∣ ≤ pol(n) (cf.
inequality ()). Also, it should be noted that for the
proof of the following result, the requirement that h(x)
is polynomial time computable is essential (cf. our dis-
cussion of representations). Furthermore, we need the
notion of an RP-algorithm (randomized polynomial
time).�e input is any s-sample S(c, x̄), where c ⊆ Xn
and the running time is uniformly bounded by a poly-
nomial in the length of the input. In addition to its
input, the algorithm can �ip a coin in every step of its
computation and then branch in dependence of the out-
come of the coin-�ip. If there is no hypothesis consistent
with S(c, x̄), the algorithmmust output “there is no con-
sistent hypothesis,” independently of the sequence of
coin-�ips made. If there is a hypothesis consistent with
S(c, x̄), then theRP-algorithm is allowed to fail with a
probability at most δ.
Interestingly, under the assumptions made above,

one can prove the following equivalence for e�cient
PAC learning.
PAC learning Cn with respect to Cn is equivalent

to solving the consistency problem for Cn by an RP-
algorithm.
We continue by looking at the class of all concepts

describable by a k-term DNFn. A term is conjunction
of literals from Ln, and a k-term DNFn is a disjunction
of at most k terms. Consequently, there are (n +)k

many k-termDNFs and thus the condition ∣Cn∣ ≤ pol(n)

is ful�lled. �en one can show the following: For all
integers k ≥ , if there is an algorithm that e�ciently
learns k-term DNFn with respect to k-term DNFn, then
RP = NP .
For a formal de�nition of the complexity classesRP

andNP we refer the reader to Arora and Barak ().
�is result is proved by showing that deciding the con-
sistency problem for k-term DNFn is NP-complete
for every k ≥ . �e di�erence between deciding and
solving the consistency problem is that we only have
to decide if there is a consistent hypothesis in k-term
DNFn. However, by the equivalence established above,

we know that an e�cient proper PAC learner for k-term
DNFn can be transformed into an RP-algorithm even
solving the consistency problem. It should be noted that
we currently do not know whether or not RP = NP

(only RP ⊆ NP has been shown) but it is widely
believed that RP ≠ NP . On the other hand, it easy to
see that every concept describable by a k-term DNFn
is also describable by a k-CNFn (but not conversely).
�us, we can �nally conclude that there is an algorithm
that e�ciently PAC learns k-term DNFn with respect to
k-CNFn.
For more results along this line of research, we refer

the reader to Pitt and Valiant (). As long as we
do not have more powerful lower bound techniques
allowing one to separate the relevant complexity classes
RP andNP or P andNP , no unconditional negative
result concerning PAC learning can be shown. Another
approach to show hardness results for PAC learning is
based on cryptographic assumptions, and recently, one
has also tried to base cryptographic assumptions on the
hardness of PAC learning (cf., e.g., Xiao and the
references therein).
Further, positive results comprise the e�cient

proper PAC learnability of k-decision lists for any
�xed k.
Finally, it must be noted that the bounds on the

sample size obtained via inequality () are not the best
possible. Sometimes, better bounds can be obtained by
using the VC Dimension (see inequality ()).

The Infinite Case
Let us start our exposition concerning in�nite concept
classes with an example due to Blumer, Ehrenfeucht,
Haussler, & Warmuth (). Consider the problem
of learning concepts such as “medium built” animals.
For the sake of presentation, we restrict ourselves
to the parameters “weight” and “length.” To describe
“medium built” we use intervals “from–to.” For exam-
ple, a medium built cat might have a weight rang-
ing from to kg and a length ranging from
to cm. By looking at a �nite database of ran-
domly chosen animals, giving their respective weight
and length and their classi�cation (medium built or
not), we want to form a rule that approximates the
true concept of “medium built” for each animal under
consideration.

 P PAC Learning

�is learning problem can be formalized as follows.
Let X = E be the two-dimensional Euclidean space,
and let C ⊆ ℘(E) be the set of all axis-parallel rect-
angles, i.e., products of intervals on the x-axis with
intervals on the y-axis. Furthermore, letD be any prob-
ability distribution over X. Next, we show that C is
e�ciently PAC learnable with respect to C by the fol-
lowing Algorithm LR

Algorithm LR: On input any ε, δ ∈ (,], call the
oracle EX() s times, where s = /ε ⋅ ln(/δ).
Let (r, c(r), r, c(r), . . . , rs, c(rs)) be the s-sample
returned by EX(), where ri = (xi, yi), i = , . . . s.
Compute xmin = min{xi ∣ ≤ i ≤ s, c(ri) = }

xmax = max{xi ∣ ≤ i ≤ s, c(ri) = }

ymin = min{yi ∣ ≤ i ≤ s, c(ri) = }

ymax = max{yi ∣ ≤ i ≤ s, c(ri) = }
Output h = [xmin, xmax] × [ymin, ymax]. In case there
is no positive example, return h = ∅.
end.

It remains to show thatAlgorithmLRPAC learns the
concept class C with respect to C. Let c = [a, b] × [c,d]
be the target concept. Since LR computes its hypothe-
sis from positive examples, only, we get h ⊆ c.�at is,
h is consistent. We have to show that d(c,h) ≤ ε with
probability at least − δ. We distinguish the following
cases.
Case . D(c) ≤ ε
�en d(c,h) = ∑

r ∈ c△h
D(r) = ∑

r ∈ c∖h
D(r) ≤ D(c) ≤ ε.

Hence, in this case we are done.
Case . D(c) > ε
We de�ne fourminimal side rectangles within c that

each cover an area of probability of at least ε/. Let
Le� = [a, x] × [c,d], where x = inf{x̃ ∣ D([a, x̃] ×

[c,d]) ≥ ε/}

Right = [z, b] × [c,d], where z = inf{x̃ ∣ D([x̃, b] ×
[c,d]) ≥ ε/}

Top = [a, b] × [y,d], where y = inf{x̃ ∣ D([a, b] ×
[x̃,d]) ≥ ε/}

Bottom = [a, b] × [c, t], where t = inf{x̃ ∣ D([a, b] ×
[c, x̃]) ≥ ε/}

All those rectangles are contained in c, since
D(c)> ε. If the sample size is s, the probability that
a particular rectangle from {Le�, Right, Top, Bottom}

contains no positive example is at most (− ε/)s.�us,
the probability that some of those rectangles does not
contain any positive example is at most (− ε/)s.
Hence, incorporating s = /ε ⋅ ln(/δ) gives:

(− ε/)s < e−(ε/)s = e− ln(/δ) = δ.

�erefore, with probability at least −δ, each of the four
rectangles Le�, Right, Top, Bottom contains a positive
example. Consequently, we get:

d(c,h) = ∑
r∈c△h

D(r) = ∑
r∈c∖h

D(r) = D(c) −D(h).

Furthermore, by construction

D(h) ≥ D(c) −D(Le�) −D(Right) −D(Top)

−D(Bottom) ≥ D(c) − ε

and hence d(c,h) ≤ ε.
Having reached this point, it is only natural to

ask what makes in�nite concept classes PAC learn-
able. Interestingly, there is a single parameter telling us
whether or not a concept class is PAC learnable. �is
is the so-called Vapnik–Chervonenkis dimension com-
monly abbreviated as 7VC Dimension. In our exam-
ple of axis-parallel rectangles, the VC Dimension of C
is .
In order to state this result, we have to exclude trivial

concept classes. A concept class C is said to be trivial if
∣C∣ = or C = {c, c} with c ∩ c = ∅ and X = c ∪ c.
C is called nontrivial i� C is not trivial. �en Blumer,
Ehrenfeucht, Haussler, & Warmuth () showed the
following:
A nontrivial well-behaved concept class is PAC learn-

able if and only if its VC dimension is �nite.
Moreover, if the VC dimension is �nite, essentially

the same strategy as in the �nite case applies, i.e., it suf-
�ces to construct a consistent hypothesis from C (or
from a suitably chosen hypothesis spaceH which must
be well behaved) in random polynomial time.

PAC Learning P

P

So, it remains to estimate the sample complexity.
Let d be the VC dimension ofH. Blumer, Ehrenfeucht,
Haussler, & Warmuth () showed that

s ≥ max{

ε
log

δ
,
d
ε
log

ε
} ()

examples do su�ce. �is upper bound has been
improved by Anthony et al. () to

s ≥

ε(−
√

ε)
[log(

d/(d −)
δ

) + d log(

ε
)] . ()

Based on the work of Blumer et al. () (and the
lower bound they gave), Ehrenfeucht, Haussler, Kearns,
& Valiant () showed that if C is nontrivial, then no
learning function exists (for any H) if s < −ε

ε log

δ +

d−
ε .�ese results give a precise characterization of the
number of examples needed (apart from the gap of a
factor of O (log ε)) in terms of the VC dimension. Also
note the sharp dichotomy here either any consistent
learner (computable or not) will do or no learner at all
exists.
Two more remarks are in order here. First, these

bounds apply to uniform PAC learning, i.e., the learner
is taking ε and δ as input, only. As outlined in our dis-
cussion just before we gave the formal de�nition of PAC
learning, it is meaningful to look at the asymptotic di�-
culty of learning. In the in�nite case, we can increment
the dimension n of the learning domain as we did in
the �nite case. We may set Xn = En and then con-
sider similar concept classes Cn ⊆ ℘(Xn). For example,
the concept classes similar to axis-parallel rectangles
are axis-parallel parallelepipeds in En. �en the VC
dimension of Cn is n and all what is le� is to add
n as input to the learner and to express d as a func-
tion of n in the bound (). Clearly, the algorithm LR
can be straightforwardly generalized to a learner for
(Xn,Cn)n≥.
Alternatively, we use n to parameterize the com-

plexity of the concepts to be learned. As an example,
consider X = E and let Cn be the set of all unions of
at most n (closed or open) intervals. �en the 7VC
Dimension of Cn is n, and one can design an e�cient

learner for (X,Cn)n≥. Another example is obtained for
X = E by de�ning Cn to be the class of all convex
polygons having at most n edges (cf. Linial, Mansour,
& Rivest,).
Second, all the results discussed so far are deal-

ing with static sampling, i.e., any sample containing
the necessary examples is drawn before any com-
putation is performed. So, it is only natural to ask
what can be achieved when dynamic sampling is
allowed. In dynamic sampling mode, a learner alter-
nates between drawing examples and performing com-
putations. Under this sampling mode, even concepts
classes having an in�nite VC dimension are learn-
able (cf. Linial, Mansour, & Rivest, and the refer-
ences therein).�e main results in this regard are that
enumerable concepts classes and decomposable con-
cept classes are PAC learnable when using dynamic
sampling.
Let us �nish the general exposition of PAC learning

by pointing to another interesting insight, i.e., learn-
ing is in some sense data compression. As we have
seen, �nding consistent hypotheses is a problem of
fundamental importance in the area of PAC learning.
Clearly, the more expressive the representation lan-
guage for the hypothesis space, the easier it may be to
�nd a consistent hypothesis, but it may be increasingly
di�cult to say something concerning its accuracy (in
machine learning this phenomenon is also known as
the over-�tting problem). At this point, Occam’s Razor
comes into play. If there is more than one explanation
for a phenomenon, thenOccam’s Razor requires to “pre-
fer simple explanations.” So, an Occam algorithm is an
algorithm which, given a sample of the target concept,
outputs a consistent and relatively simple hypothesis.
�at is, it is capable of some data compression. Let
us �rst look at the Boolean case, i.e., Xn = {, }n.
�en an Occam algorithm is a randomized polyno-
mial time algorithm A such that there is a polynomial
p and a constant α ∈ [,) ful�lling the following
demands.
For every n ≥ , every target concept c ∈ Cn of size

at most m and every ε ∈ (,), on input any s-sample
for c, algorithm A outputs with probability at least
− ε, the representation of a consistent hypothesis from
Cn having size at most p(n,m, /ε) ⋅ sα.

 P PAC Learning

So, the parameter α < expresses the amount
of compression required. If we have such an Occam
algorithm, then (Xn,Cn) is properly PAC learnable (cf.
Blumer, Ehrenfeucht, Haussler, & Warmuth,).�e
proof is based on the observations that a hypothesis
with large error is unlikely to be consistent with a large
sample, and that there are only few short hypotheses.
If we replace in the de�nition of an Occam algorithm
the demand on the existence of a short hypotheses by
the existence of a hypothesis space having a small VC
dimension, then a similar result can be obtained for
the continuous case (cf. Blumer, Ehrenfeucht, Haussler,
& Warmuth,). To a certain extend, the converse
is also true, i.e., under quite general conditions, PAC
learnability implies the existence of an Occam algo-
rithm.We refer the reader toKearns andVazirani ()
for further details.

Variations
Further variations of PAC learning are possible and
have been studied. So far, we have only considered one
sampling oracle. So, a natural variation is to have two
sampling oracles EX+() and EX−() and two distri-
butions D+ and D−, i.e., one for positive examples and
one for negative examples. Clearly, further natural vari-
ations are possible. A larger number of them has been
shown to be roughly equivalent and we refer the reader
to Haussler, Kearns, Littlestone, & Warmuth () for
details.
We continue with another natural variation that

turned out to have a fundamental impact to the whole
area of machine learning, i.e., weak learning.

Weak Learning

An interesting variation of PAC learning is obtained
if we weaken the requirements concerning the con�-
dence and the error. �at is, instead of requiring the
PAC learner to succeed for every ε and δ, one may relax
this demand as follows. We only require the learner
to succeed for ε = / − /pol(n) (n is as above) and
δ = /poly(n) (n is as above), where pol and poly are
any two �xed polynomials.�e resultingmodel is called
weak PAC learning.
Quite surprisingly, Schapire () could prove that

every weak learner can be e�ciently transformed into
an ordinary PAC learner. While it is not too di�cult
to boost the con�dence, boosting the error is much

more complicated and has subsequently attracted a lot
of attention. We refer the reader to Schapire () as
well as Kearns and Vazirani () and the references
therein for a detailed exposition. Interesting enough,
the techniques developed to prove the equivalence of
weak PAC learnability and PAC learnability have an
enormous impact to machine learning and may be sub-
sumed under the title7Boosting.

Relations to Other Learning Models
Finally, we point out some relations of PAC learning
to other learning models. Let us start with the mis-
take bound model also called online prediction model.
�e mistake-bound model has its roots in 7Inductive
Inference and was introduced by Littlestone (). It is
conceptionallymuch simpler than the PACmodel, since
it does not involve probabilities. For the sake of presen-
tation, we assume a �nite learning domain Xn and any
Cn ⊆ ℘(Xn) here.
In this model the following scenario is repeated

inde�nitely.�e learner receives an instance x and has
to predict c(x).�en it is given the true label c(x). If
the learner’s prediction was incorrect, then a mistake
occurred.�e learner is successful if the total number of
mistakes is �nite. In order to make this learning prob-
lem non-trivial, one additionally requires a polynomial
pol such that for every c ∈ Cn and any ordering of the
examples, the total number of mistakes is bounded by
pol(n, size(c)). In the mistake-bound model, a learner
is said to be e�cient if its running time per stage is
uniformly polynomial in n and size(c).

�en, the relation to PAC learning is as follows:
If algorithmA learns a concept class C in the mistake-

bound model, then A also PAC learn C. Moreover, if A
makes atmostMmistakes, then the resulting PAC learner
needs Mε ⋅ ln

M
δ many examples.

So, e�cient mistake-bound learning translates into
e�cient PAC learning.
Another interesting relation is obtained when look-

ing at the 7Query-Based Learning model, where
the only queries allowed are equivalence queries. As
pointed out by Angluin (,), any learning
method that uses equivalence queries only and achieves
exact identi�cation can be transformed into a PAC
learner.�e number of equivalence queries necessary to

PAC-MDP Learning P

P

achieve success in the query learning model is polyno-
mially related to the number of calls made to the sample
oracle.
However, the converse is not true. �is insight

led to the de�nition of a minimally adequate teacher
(cf. Angluin, and the references therein). In this
setting, the teacher answers equivalence queries and
membership queries. Maas and Turan () provide
a detailed discussion of the relationship between the
di�erent models.

�ese results in turn led to another modi�cation
of the PAC model, where the learner is, in addition to
the s-sample returned, also allowed to ask membership
queries, i.e., PAC learning with membership queries.
Let us �nish this article by mentioning that the PAC

model has been criticized for two reasons.�e �rst one
is the independence assumption, i.e., the requirement to
learn with respect to any distribution.�is is, however,
also a very strong part of the theory, since it provides
universal performance guarantees. Clearly, if one has
additional information concerning the underlying dis-
tributions, one may be able to prove better bounds.
�e second reason is the “noise-free” assumption, i.e.,
the requirement to the sample oracle to return exclu-
sively correct labels. Clearly, in practice, we never have
noise-free data. So, one has also studied learning in the
presence of noise and we refer the reader to Kearns and
Vazirani () aswell as to conference series COLT and
ALT for results along this line.

Cross References
7Statistical Machine Learning
7Stochastic Finite Learning
7VC Dimension

Recommended Reading
Angluin, D. (). Queries and concept learning.Machine Learning,

(), –.
Angluin, D. (). Computational learning theory: Survey and

selected bibliography. In Proceedings of the twenty-fourth
annual ACM symposium on theory of computing (pp. –).
New York: ACM Press.

Anthony, M., & Biggs, N. (). Computational learning theory:
Cambridge tracts in theoretical computer science (No.). Cam-
bridge: Cambridge University Press.

Anthony, M., Biggs, N., & Shawe-Taylor, J. (). The learnability
of formal concepts. In M. A. Fulk & J. Case (Eds.), Proceedings

of the third annual workshop on computational learning theory
(pp. –). San Mateo, CA: Morgan Kaufmann.

Arora, S., & Barak, B. (). Computational complexity: A modern
approach. Cambridge: Cambridge University Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K.
(). Occam’s razor. Information Processing Letters, (),
–.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().
Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM, (), –.

Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L. (). A
general lower bound on the number of examples needed for
learning. In D. Haussler & L. Pitt (Eds.), COLT ’, Proceed-
ings of the workshop on computational learning theory,
August –, , MIT (pp. –). San Francisco: Morgan
Kaufmann.

Haussler, D. (). Bias, version spaces and Valiant’s learning
framework. In P. Langley (Ed.), Proceedings of the fourth inter-
national workshop on machine learning (pp. –). San
Mateo, CA: Morgan Kaufmann.

Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. K. ().
Equivalence of models for polynomial learnability. Information
and Computation, (), –.

Kearns, M. J., & Vazirani, U. V. (). An introduction to computa-
tional learning theory. Cambridge, MA: MIT Press.

Linial, N., Mansour, Y., & Rivest, R. L. (). Results on learnabil-
ity and the Vapnik–Chervonenkis dimension. Information and
Computation, (), –.

Littlestone, N. (). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
(), –.

Maas, W., & Turan, G. (). On the complexity of learning from
counterexamples and membership queries. In Proceedings of
the thirty-first annual symposium on Foundations of Computer
Science (FOCS), St. Louis, Missouri, October –,
(pp. –). Los Alamitos, CA: IEEE Computer Society.

Natarajan, B. K. ().Machine learning: A theoretical approach. San
Mateo, CA: Morgan Kaufmann.

Pitt, L., & Valiant, L. G. (). Computational limitations on learn-
ing from examples. Journal of the ACM, (), –.

Schapire, R. E. (). The strength of weak learnability. Machine
Learning, (), –.

Valiant, L. G. (). A theory of the learnable. Communications of
the ACM, (), –.

Xiao, D. (). On basing ZK ≠ BPP on the hardness of PAC learn-
ing. In Proceedings of the twenty-fourth annual IEEE Conference
on Computational Complexity, CCC , Paris, France, July
–, (pp. –). Los Alamitos, CA: IEEE Computer
Society.

PAC-MDP Learning

7E�cient Exploration in Reinforcement Learning

 P Parallel Corpus

Parallel Corpus

A parallel corpus (pl. corpora) is a document collection
composed of two or more disjoint subsets, each writ-
ten in a di�erent language, such that documents in each
subset are translations of documents in each other sub-
set. Moreover, it is required that the translation relation
is known, i.e., that given a document in one of the sub-
set (i.e., languages), it is known what documents in the
other subset are its translations.�e statistical analysis
of parallel corpora is at the heart of most methods for
7cross-language text mining.

Part of Speech Tagging

7POS Tagging

Partially Observable Markov
Decision Processes

Pascal Poupart
University of Waterloo

Synonyms
POMDPs; Belief state Markov decision processes;
Dynamic decision networks; Dual control

Definition
A partially observable Markov decision process
(POMDP) refers to a class of sequential decision-
making problems under uncertainty.�is class includes
problems with partially observable states and uncertain
action e�ects. A POMDP is formally de�ned by a tuple
⟨S , A, O, T, Z, R, b, h, γ⟩where S is the set of states
s, A is the set of actions a, O is the set of observations
o, T(s, a, s′) = Pr(s′∣s, a) is the transition function indi-
cating the probability of reaching s′ when executing a
in s,Z(a, s′, o′) = Pr(o′∣a, s′) is the observation func-
tion indicating the probability of observing o′ in state
s′ a�er executing a, R(s, a) ∈ R is the reward function
indicating the (immediate) expected utility of executing
a in s, b = Pr(s) is the distribution over the initial state
(also known as initial belief), h is the planning horizon

(which may be �nite or in�nite), and γ ∈ [,] is a dis-
count factor indicating by how much rewards should
be discounted at each time step. Given a POMDP, the
goal is to �nd a policy to select actions that maximize
rewards over the planning horizon.

Motivation and Background
Partially observable Markov decision processes
(POMDPs) were �rst introduced in the Operations
Research community (Drake, ; Aström,) as
a framework to model stochastic dynamical systems
and to make optimal decisions. �is framework was
later considered by the arti�cial intelligence commu-
nity as a principled approach to planning under uncer-
tainty (Kaelbling et al.,). Compared to other
methods, POMDPs have the advantage of a well-
founded theory. �ey can be viewed as an extension
of the well-known, fully observable 7Markov deci-
sion process (MDP) model (Puterman,), which
is rooted in probability theory, utility theory, and
decision theory. POMDPs do not assume that states
are fully observable, but instead that only part of
the state features are observable, or more generally,
that the observable features are simply correlated with
the underlying states. �is naturally captures the fact
that in many real-world problems, the information
available to the decision maker is o�en incomplete
and typically measured by noisy sensors. As a result,
the decision process is much more di�cult to opti-
mize. POMDP applications include robotics (Pineau &
Gordon,), assistive technologies (Hoey et al.,
), health informatics (Hauskrecht & Fraser,),
spoken dialogue systems (�omson & Young,),
and fault recovery (Shani & Meek,).

Structure of Model and Solution
Algorithms
We describe below the POMDP model, some policy
representations, the properties of optimal value func-
tions, and some solution algorithms.

POMDP Model

Figure shows the graphical representation of a
POMDP, using the notation of in�uence diagrams: cir-
cles denote random variables (e.g., state variables St and
observation variablesOt), squares denote decision vari-
ables (e.g., action variables At), and diamonds denote

Partially Observable Markov Decision Processes P

P

utility variables (e.g., Ut ’s). �e variables are indexed
by time and grouped in time slices, re�ecting the fact
that each variable may take a di�erent value at each
time step. Arcs indicate how nodes in�uence each other
over time. �ere are two types of arcs: probabilistic
and informational arcs. Arcs pointing to a chance node
or a utility node indicate a probabilistic dependency
between a child and its parents, whereas arcs pointing
to a decision node indicate the information available
to the decision maker (i.e., which nodes are observable
at the time of each decision). Probabilistic dependen-
cies for the state and observation variables are quanti-
�ed by the conditional distributions Pr(St+∣St ,At) and
Pr(Ot+∣St+,At), which correspond to the transition
and observation functions. Note that the initial state
variable S does not have any parent, hence its dis-
tribution Pr(S) is unconditioned and corresponds to
the initial belief b of the decision maker. Probabilistic
dependencies for the utility variables are also quanti�ed
by a conditional distribution Pr(Ut ∣St ,At) such that its
expectation ∑u Pr(u∣St ,At)u = R(St ,At) corresponds
to the reward function.
Fully observableMDPs are a special case of POMDPs

since they arise when the observation function deter-
ministically maps each state to a di�erent unique
observation. POMDPs can also be viewed as 7hidden
Markovmodels (HMMs) (Rabiner,) extendedwith
decision and utility nodes since the transition and
observation distributions essentially de�ne an HMM.
POMDPs also correspond to a special case of deci-
sion networks called dynamic decision networks (Buede,
) where it is assumed that the transition, observa-
tion, and reward functions are stationary (i.e., they do
not depend on time) andMarkovian (i.e., the parents of

Z2

A1 A2 A3
Z1 Z3

U1 U2 U3

S1 S2 S3

Partially Observable Markov Decision Processes. Figure .

POMDP represented as an influence diagram

each variable are in the same time slice or immediately
preceding time slice).

Policies

Given a tuple ⟨S , A, O, T, Z, R, b, h, γ⟩ specify-
ing a POMDP, the goal is to �nd a policy π to select
actions that maximize the rewards.�e informational
arcs indicate that each action at can be selected based
on the history of past actions and observations. Hence,
in its most general form, a policy π : ⟨b,ht⟩ → at
is a mapping from initial beliefs b and histories ht =
⟨o, a, o, a, . . . , ot−, at−, ot⟩ to actions at . For a �xed
initial belief, the mapping can be represented by a tree
such as the one in Fig. . We will refer to such pol-
icy trees as conditional plans since in general a policy
may consist of several conditional plans for di�erent ini-
tial beliefs.�e execution of a conditional plan follows
a branch from the root to some leaf by executing the
actions of the nodes traversed and following the edges
labeled by the observations received.
Unfortunately, as the number of steps increases,

the number of histories grows exponentially and it is
infeasible to represent mappings over all such histories.
Furthermore, in�nite-horizon problems require map-
pings over arbitrarily long histories, which limit the use
of trees to problems with a short horizon. Note, how-
ever, that it is possible to have mappings over in�nite
cyclic histories. Such mappings can be represented by
a �nite state controller (Hansen,), which is essen-
tially a cyclic graph of nodes labeled by actions and
edges labeled by observations (see Fig. for an exam-
ple). Similar to conditional plans, �nite state controllers
are executed by starting at an initial node, executing the
actions of the nodes traversed, and following the edges
of the observations received.

a1

a3

a6a5a4 a7

a2

o1

o2

o2

o1 o2
o1

Conditional plan

2

1

3

Stages to go

Partially Observable Markov Decision Processes. Figure .

Three representation of a three-step conditional plan

 P Partially Observable Markov Decision Processes

a1

a2

o1
o2

o2

o2

o2

o1
o1

o1 a2a1

Partially Observable Markov Decision Processes. Figure .

Finite state controller for a simple POMDP with two

actions and two observations

Alternatively, it is possible to summarize histories
by a su�cient statistic that encodes all the relevant
information from previous actions and observations for
planning purposes. Recall that the transition, reward,
and observation functions exhibit the Markov prop-
erty, which means that the outcome of future states,
rewards, and observations depend only on the current
state and action. If the decisionmaker knew the current
state of the world, then she would have all the desired
information to make an optimal action choice. �us,
histories of past actions and observations are only rel-
evant to the extent that they provide information about
the current state of the world. Let bt be the belief of
the decision maker about the state of the world at time
step t, which we represent by a probability distribution
over the state spaceS . Using Bayes theorem (see7Bayes
Rules), one can compute the current belief bt from the
previous belief bt−, previous action at−, and current
observation ot :

bt(s′) = k∑
s∈S
bt−(s)Pr(s′∣s, at−)Pr(ot ∣at−, s′) ()

where k denotes a normalizing constant. Hence, a pol-
icy π can also be represented as a mapping from beliefs
bt to actions at . While this gets around the exponen-
tially large number of histories, the space of beliefs is
an ∣S ∣ − -dimensional continuous space, which is also
problematic. However, a key result by Smallwood and
Sondik () allows us to circumvent the continuous
nature of the belief space. But �rst, let us introduce value
functions and then discuss Smallwood and Sondik’s
solution.

Value Functions Given a set of policies, we need a
mechanism to evaluate and compare them. Roughly
speaking, the goal is to maximize the amount of reward

earned over time. �is loosely de�ned criterion can
be formalized in several ways: one may wish to maxi-
mize total (accumulated) or average reward, expected or
worst-case reward, discounted or undiscounted reward.
�e rest of this article assumes an expected total dis-
counted reward criterion, since it is by far the most
popular in the literature. We de�ne the value Vπ(b)
of executing some policy π starting at belief b to be the
expected sum of the discounted rewards earned at each
time step:

Vπ
(b) =

h

∑
t=

γt∑
s∈S
bt(s)R(s, π(bt)) ()

where π(bt) denotes the action prescribed by policy π at
belief bt . A policy π∗ is optimal when its value function
V∗ is at least as high as any other policy for all beliefs
(i.e., V∗(b) ≥ Vπ(b)∀b).
As with policies, representing a value function can

be problematic because its domain is an (∣S ∣ −)-
dimensional continuous space corresponding to the
belief space. However, Smallwood and Sondik ()
showed that optimal value functions for �nite-horizon
POMDPs are piecewise-linear and convex. �e value
of executing a conditional plan from any state is con-
stant. If we do not know the precise underlying state,
but instead we have a belief corresponding to a distri-
bution over states, then the value of the belief is simply
a weighted average (according to b) of the values of the
possible states.�us, the value functionV β(b) of a con-
ditional plan β is linear with respect to b.�is means
that V β(b) can be represented by a vector αβ of size ∣S ∣
such that V β(b) = Σsb(s)αβ(s).
For a �nite horizon h, an optimal policy πh con-

sists of the best conditional plans for each initial belief.
More precisely, the best conditional plan β∗ for some
belief b is the one that yields the highest value: β∗ =

argmaxβV
β(b). Although there are uncountably many

beliefs, the set of h-step conditional plans is �nite and
therefore an h-step optimal value function can be rep-
resented by a �nite collection Γh of α-vectors. For in�-
nite horizon problems, the optimal value function may
require an in�nite number of α-vectors.
Figure shows an optimal value function for a

simple two-state POMDP. �e horizontal axis repre-
sents the belief space and the vertical axis indicates the
expected total reward. Assuming the two world states

Partially Observable Markov Decision Processes P

P

are s and s̄, then a belief is completely determined by the
probability of s.�erefore, the horizontal axis represents
a continuum of beliefs determined by the probability
b(s). Each line in the graph is an α-vector, which corre-
sponds to the value function of a conditional plan.�e
upper surface of those α-vectors is a piecewise-linear
and convex function corresponding to the optimal value
function V∗(b) = maxα∈Γh α(b).
Note that an optimal policy can be recovered from

the optimal value function represented by a set Γ of
α-vector. Assuming that an action is stored with each
α-vector (this would typically be the root action of the
conditional plan associated with each α-vector), then
the decision maker simply needs to look up the maxi-
mal α-vector for the current belief to retrieve the action.
Hence, value functions represented by a set of α-vectors,
each associated with an action, implicitly de�ne a map-
ping from beliefs to actions.
Optimal value functions also satisfy Bellman’s equa-

tion

Vh+(b) = maxaR(b, a)+γ∑
o′
Pr(o′∣b, a)Vh(bao

′

) ()

where R(b, a) = Σsb(s)R(s, a), Pr(o′∣b, a) = Σs,s′b(s)
Pr(s′∣s, a)Pr(o′∣s′, a), and bao

′

is the updated belief a�er
executing a and observing b according toBayes theorem
(Eq.). Intuitively, this equation says that the optimal
value for h + steps to go consists of the highest sum
of the current reward with the future rewards for the
remaining h steps. Since we do not know exactly what
rewards will be earned in the future, an expectation
(with respect to the observations) is used to estimate

Optimal value function

a3

a4

a5

a2

a1

E
xp

ec
te

d
to

ta
l r

ew
ar

d

10 b(s)

Belief space

Partially Observable Markov Decision Processes. Figure .

Geometric view of value function

future rewards. For discounted in�nite horizon prob-
lems, the optimal value function V∗ is a �xed point of
Bellman’s equation:

V∗(b) = maxaR(b, a) + γ∑
o′
Pr(o′∣b, a)V∗(bao

′

)

Solution Algorithms

�ere are two general classes of solution algorithms
to optimize a policy. �e �rst class consists of online
algorithms that planwhile executing the policy by grow-
ing a search tree. �e second class consists of o�ine
algorithms that precompute a policy which can be exe-
cuted with minimal online computation. In practice, it
is best to combine online and o�ine techniques since
we may as well obtain the best policy possible in an
o�ine phase and then re�ne it with an online search at
execution time.

Forward Search Online search techniques generally
optimize a conditional plan for the current belief by
performing a forward search from that belief. �ey
essentially build an expecti-max search tree such that
expectations over observations andmaximizations over
actions are performed in alternation. Figure illustrates
such a tree for a two-step horizon (i.e., two alterna-
tions of actions and observations). An optimal policy is
obtained by computing the beliefs associated with each
node in a forward pass, followed by a backward pass
that computes the optimal value at each node. A recur-
sive form of this approach is described in Algorithm .

1

Stages to go

2

Expecti-max search tree

o1 o2o2o1

a2a1

a1 a2 a1 a2a1 a2 a1 a2

o1 o2o1 o2o1 o2o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

max

expexp

maxmax max max

expexpexpexp exp exp exp exp

Partially Observable Markov Decision Processes. Figure .

Two-step expecti-max search tree

 P Partially Observable Markov Decision Processes

Algorithm Forward Search

Inputs: Belief b and horizon h
Outputs: Optimal value V∗

if h = then
V∗ ←

else
for all a, o do
bao

′

(s′)← k∑s b(s)Pr(s′∣s, a)Pr(o′∣s′, a′)∀s′

Vao
′

← forward Search(bao
′

,h −)
end for
V∗ ← maxa R(b, a) + γ∑o′ Pr(o′∣b, a)Vao

′

end if

Beliefs are propagated forward according to Bayes the-
orem, while rewards are accumulated backward accord-
ing to Bellman’s equation.
Since the expecti-max search tree grows exponen-

tially with the planning horizon h, in practice, the com-
putation can o�en be simpli�ed by pruning suboptimal
actions by branch and bound and sampling a small set
of observations instead of doing an exact expectation
(Ross et al.,). Also, the depth of the search can be
reduced by using an approximate value function at the
leaves instead of .

�e value functions computed by o�ine techniques
can o�en be used for this purpose.

Value Iteration Value iteration algorithms form an
important class of o�ine algorithms that iteratively esti-
mate the optimal value function according to Bellman’s
equation (). Most algorithms exploit the piecewise-
linear and convex properties of optimal value functions
to obtain a �nite representation. In other words, opti-
mal value functions Vh are represented by a set Γh of
α-vectors that correspond to conditional plans. Algo-
rithm shows how to iteratively compute Γt by dynamic
programming for an increasing number of time
steps t.
Unfortunately, the number of α-vectors in each Γt

increases exponentially with ∣O∣ and doubly exponen-
tially with t. While several approaches can be used to
prune α-vectors that are not maximal for any belief,
the number of α-vectors still grows exponentially for
most problems. Instead, many approaches compute a
parsimonious set of α-vectors, which de�nes a lower

Algorithm Value Iteration

Inputs: Horizon h
Outputs: Optimal value function Γh

Γ ← {}
for t = to h do
for all a ∈ A, ⟨α, . . . , α∣O∣⟩ ∈ (Γt−)∣O∣ do

α′(s)← R(s, a)+
γ∑o′ ,s′ Pr(s′∣s, a)Pr(o′∣s′, a)αo′(s′)∀s
Γt ← Γt ∪ {α′}

end for
end for

Algorithm Point Based Value Iteration

Inputs: Horizon h and set of beliefs B
Outputs: Value function Γh

Γ ← {}
for t = to h do
for all b ∈ B do
for all a ∈ A, o′ ∈ O do
bao

′

(s′)← k Σs b(s)Pr(s′∣s, a)Pr(o′∣s′, a)∀s′

αao
′

← argmaxalpha∈Γt−α(b
ao′)

end for
a∗ ← argmaxa R(b, a) + γΣo′Pr(o′∣b, a)αao

′

α′(s)R(s, a) + γΣo′ ,s′ Pr(s′∣s, a) Pr(o′∣s′, a)
αo′(s′)∀s
Γt ← Γt ∪ {α′}

end for
end for

bound on the optimal value function.�e class of point-
based value iteration (Pineau et al.,) algorithms
computes the maximal α-vectors only for a set B of
beliefs. Algorithm describes how the parsimonious
set Γh of α-vectors associated with a given set B of
beliefs can be computed in time linear with h and
∣O∣ by dynamic programming. Most point-based tech-
niques di�er in how they choose B (which may vary
at each iteration), but the general rule of thumb is to
include beliefs reachable from the initial belief b since
these are the beliefs that are likely to be encountered at
execution time.

Policy Search Another important class of o�ine algo-
rithms consists of policy search techniques.�ese tech-
niques search for the best policy in a prede�ned space
of policies. For instance, �nite state controllers are

Partially Observable Markov Decision Processes P

P

a popular policy space due to their generality and
simplicity. �e search for the best (stochastic) con-
troller of N nodes can be formulated as a non-convex
quadratically constrained optimization problemAmato
et al., :

max
x,y,z
∑
s
b(s) α(s)

²
x

s.t. αn(s)
²
x

=∑
a

[Pr(a∣n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

y

R(s, a)

+ γ ∑
s′ ,o′ ,n′

Pr(s′∣s, a)

Pr(o′∣s′, a)Pr(a,n′∣n, o′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z

αn′(s′)]
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

x

∀s,n

Pr(a,n′∣n, o′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x

≥ ∀a,n′,n, o′

∑
n′ ,a
Pr(a,n′∣n, o)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z

= ∀n, o

∑
n′
Pr(a,n′∣n, o′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z

= Pr(a∣n)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

y

∀a,n, o′

�e variables of the optimization problem are
the α-vectors and the parameters of the controller
(Pr(a∣n) and Pr(a,n′∣n, o′)). Here, Pr(a∣n) is the action
distribution for each node n and Pr(a,n′∣n, o′) =

Pr(a∣n)Pr(n′∣a,n, o′) is the product of the action distri-
bution and successor node distribution for each n, o′-
pair. While there does not exist any algorithm that
reliably �nds the global optimum due to the non-
convex nature of the problem, several techniques can be
used to �nd locally optimal policies, including sequen-
tial quadratic programming, bounded policy iteration,
expectation maximization, stochastic local search, and
gradient descent.

Related Work

Although this entry assumes that states, actions, and
observations are de�ned by a single variable, multi-
ple variables can be used to obtain a factored POMDP
(Boutilier & Poole,). As a result, the state, obser-
vation, and action spaces o�en become exponentially
large. Aggregation (Shani et al., ; Sim et al.,)
and compression techniques (Poupart & Boutilier,
; Roy et al.,) are then used to speed up compu-
tation. POMDPs can also be de�ned for problems with

continuous variables. �e piecewise-linear and con-
vex properties of optimal value functions still hold in
continuous spaces, which allows value iteration algo-
rithms to be easily extended to continuous POMDPs
Porta et al., . When a planning problem can nat-
urally be thought as a hierarchy of subtasks, hierarchical
POMDPs (�eocharous & Mahadevan, ; Pineau
et al., ; Toussaint et al.,) can be used to exploit
this structure.
In this article, we also assumed that the transition,

observation, and reward functions are known, but in
many domains they may be (partially) unknown and
therefore the decision maker needs to learn about them
while acting.�is is a problem of reinforcement learn-
ing. While several policy search techniques have been
adapted to simultaneously learn and act (Meuleau et al.,
; Aberdeen & Baxter,), it turns out that one
can treat the unknown parameters of the transition,
observation, and reward functions as hidden state vari-
ables, which lead to a Bayes-adaptive POMDP (Ross
et al., ; Poupart & Vlassis,). We also assumed
a single decision maker, however POMDPs have been
extended for multiagent systems. In particular, decen-
tralized POMDPs (Amato et al.,) can model mul-
tiple cooperative agents that share a common goal and
interactive POMDPs Gmytrasiewicz & Doshi, can
model multiple competing agents.

Cross References
7Markov Decision Process

Recommended Reading
Aberdeen, D., & Baxter, J. (). Scalable internal-state policy-

gradient methods for POMDPs. In International Conference on
Machine Learning, pp. –.

Amato, C., Bernstein, D. S., & Zilberstein, S. (). Optimizing
fixed-size stochastic controllers for POMDPs and decentral-
ized POMDPs. Journal of Autonomous Agents and Multi-Agent
Systems, , –.

Amato, C., Bernstein, D. S., & Zilberstein, S. (). Solving
POMDPs using quadratically constrained linear programs. In
International Joint Conferences on Artificial Intelligence, pp.
–.

Aström, K. J. (). Optimal control of Markov decision processes
with incomplete state estimation. Journal of Mathematical Anal-
ysis and Applications, , –.

 P Particle Swarm Optimization

Boutilier, C., & Poole, D. (). Computing optimal policies for
partially observable decision processes using compact repre-
sentations. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pp. –

Buede, D. M. (). Dynamic decision networks: An approach for
solving the dual control problem. Cincinnati: Spring INFORMS.

Drake, A. (). Observation of a Markov Process through a noisy
channel. PhD thesis, Massachusetts Institute of Technology.

Hansen, E. (). An improved policy iteration algorithm for
partially observable MDPs. In Neural Information Processing
Systems, pp. –.

Hauskrecht, M., & Fraser, H. S. F. (). Planning treatment of
ischemic heart disease with partially observable Markov deci-
sion processes. Artificial Intelligence in Medicine, , –.

Hoey, J., Poupart, P., von Bertoldi, A., Craig, T., Boutilier, C., &
Mihailidis, A. (). Automated handwashing assistance for
persons with dementia using video and a partially observable
markov decision process. Computer Vision and Image Under-
standing, , –.

Kaelbling, L. P., Littman, M., & Cassandra, A. (). Planning
and acting in partially observable stochastic domains. Artificial
Intelligence, , –.

Meuleau, N., Peshkin, L., Kim, K.-E., & Kaelbling, L. P. ().
Learning finite-state controllers for partially observable envi-
ronments. In Uncertainty in Artificial Intelligence, pp. –.

Pineau, J. & Gordon, G. (). POMDP planning for robust
robot control. In International Symposium on Robotics Research,
pp. –.

Pineau, J., Gordon, G. J., & Thrun, S. (). Policy-contingent
abstraction for robust robot control. In Uncertainty in Artificial
Intelligence, pp. –.

Pineau, J., Gordon, G., & Thrun, S. (). Anytime point-based
approximations for large pomdps. Journal of Artificial Intelli-
gence Research, , –.

Piotr, J. (). Gmytrasiewicz and Prashant Doshi. A framework for
sequential planning in multi-agent settings. Journal of Artificial
Intelligence Research, , –.

Porta, J. M., Vlassis, N. A., Spaan, M. T. J., & Poupart, P. ().
Point-based value iteration for continuous POMDPs. Journal of
Machine Learning Research, , –.

Poupart, P., & Boutilier, C. (). VDCBPI: An approximate scal-
able algorithm for large POMDPs. In Neural Information Pro-
cessing Systems, pp. –.

Poupart, P., & Vlassis, N. (). Model-based Bayesian reinforce-
ment learning in partially observable domains. In International
Symposium on Artificial Intelligence and Mathematics (ISAIM).

Puterman, M. L. ().Markov decision processes. New York: Wiley.
Rabiner, L. R. (). A tutorial on hidden markov models and

selected applications in speech recognition. Proceedings of the
IEEE, , –.

Ross, S., Chaib-Draa, B., & Pineau, J. (). Bayes-adaptive
POMDPs. In Advances in Neural Information Processing Systems
(NIPS).

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (). Online plan-
ning algorithms for POMDPs. Journal of Artificial Intelligence
Research, , –.

Roy, N., Gordon, G. J., & Thrun, S. (). Finding approximate
POMDP solutions through belief compression. Journal of Arti-
ficial Intelligence Research, , –.

Shani, G., & Meek, C. (). Improving existing fault recovery
policies. In Neural Information Processing Systems.

Shani, G., Brafman, R. I., Shimony, S. E., & Poupart, P. ().
Efficient ADD operations for point-based algorithms. In Inter-
national Conference on Automated Planning and Scheduling, pp.
–.

Sim, H. S., Kim, K.-E., Kim, J. H., Chang, D.-S., & Koo, M.-W. ().
Symbolic heuristic search value iteration for factored POMDPs.
In Twenty-Third National Conference on Artificial Intelligence
(AAAI), pp. –.

Smallwood, R. D., & Sondik, E. J. (). The optimal control of
partially observable Markov decision processes over a finite
horizon. Operations Research, , –.

Theocharous, G., & Mahadevan, S. (). Approximate planning
with hierarchical partially observable Markov decision process
models for robot navigation. In IEEE International Conference
on Robotics and Automation, pp. –.

Thomson, B., & Young, S. (). Bayesian update of dialogue state:
A pomdp framework for spoken dialogue systems. Computer
Speech & Language, , –.

Toussaint, M., Charlin, L., & Poupart, P. (). Hierarchical
POMDP controller optimization by likelihood maximization.
In Uncertainty in Artificial Intelligence, pp. –.

Particle Swarm Optimization

James Kennedy
U.S. Bureau of Labor Statistics
Washington, DC, USA

The Canonical Particle Swarm
�e particle swarm is a population-based stochas-
tic algorithm for optimization which is based on
social–psychological principles. Unlike 7evolutionary
algorithms, the particle swarm does not use selec-
tion; typically, all populationmembers survive from the
beginning of a trial until the end. �eir interactions
result in iterative improvement of the quality of problem
solutions over time.
A numerical vector of D dimensions, usually ran-

domly initialized in a search space, is conceptualized
as a point in a high-dimensional Cartesian coordinate
system. Because it moves around the space testing new
parameter values, the point is well described as a parti-
cle. Because a number of them (usually < N <)
perform this behavior simultaneously, and because they
tend to cluster together in optimal regions of the search
space, they are referred to as a particle swarm.

Particle Swarm Optimization P

P

Besides moving in a (usually) Euclidean problem
space, particles are typically enmeshed in a topologi-
cal network that de�nes their communication pattern.
Each particle is assigned a number of neighbors to
which it is linked bidirectionally.

�e most common type of implementation de�nes
the particles’ behaviors in two formulas.�e �rst adjusts
the velocity or step size of the particle, and the second
moves the particle by adding the velocity to its previous
position.
On each dimension d:

υ(t+)id ← αυ(t)id +U(, β) (pid − x
(t)
id)

+U(, β) (pgd − x
(t)
id) ()

x(t+)id ← x(t)id + υ(t+)id ()

where i is the target particle’s index, d is the dimension,
x⃗i is the particle’s position, v⃗i is the velocity, p⃗i is the best
position found so far by i, g is the index of i’s best neigh-
bor, α and β are constants, and U(, β) is a uniform
random number generator.

�ough there is variety in the implementations of
the particle swarm, the most standard version uses α =

. and β = ψ/, where ψ = ., following
an analysis published in Clerc and Kennedy ().
�e constant α is called an inertia weight or constric-
tion coe�cient, and β is known as the acceleration
constant.

�e program evaluates the parameter vector of par-
ticle i in a function f (x⃗) and compares the result to the
best result attained by i thus far, called pbesti. If the cur-
rent result is i’s best so far, the vector p⃗i is updated with
the current position x⃗i, and the previous best function
result pbesti is updated with the current result.
When the system is run, each particle cycles around

a region centered on the centroid of the previous bests
p⃗i and p⃗g ; as these variables are updated, the particle’s
trajectory shi�s to new regions of the search space, the
particles begin to cluster around optima, and improved
function results are obtained.

The Social–Psychological Metaphor

Classical social psychology theorists considered the
pursuit of cognitive consistency to be an importantmoti-
vation for human behavior (Abelson et al., ; Fes-
tinger, ; Heider,). Cognitive elements might

have emotional or logical aspects to them which could
be consistent or inconsistent with one another; sev-
eral theorists identi�ed frameworks for describing the
degree of consistency and described the kinds of pro-
cesses that an individual might use to increase consis-
tency or balance, or decrease inconsistency or cognitive
dissonance.
Contemporary social and cognitive psychologists

frequently cast these same concepts in terms of con-
nectionist principles. Cognitive elements are conceptu-
alized as a network with positive and negative vertices
among a set of nodes. In some models, the elements are
given and the task is to reduce error by adjusting the
signs and values of the connections between them, and
in other models the connections are given and the goal
of optimization is to �nd activation values that maxi-
mize coherence (�agard,), harmony (Smolensky,
), or some other measure of consistency. Typically,
this optimization is performed by gradient-descent pro-
grams which psychologically model processes that are
private to the individual and are perfectly rational, that
is, the individual always decreases error or increases
consistency among elements.�e particle swarm sim-
ulates the optimization of these kinds of structures
through social interaction; it is commonly observed, not
only in the laboratory but in everyday life, that a person
faced with a problem typically solves it by talking with
other people.
A direct precursor of the particle swarm is seen in

Nowak, Szamrej, and Latané’s () cellular automaton
simulation of social impact theory’s predictions about
interaction in human social populations. Social impact
theory predicted that an individual was in�uenced to
hold an attitude or belief in proportion to the Strength,
Immediacy, and Number of sources of in�uence hold-
ing that position, where Strength was a measure of the
persuasiveness or prestige of an individual, Immedi-
acy was their proximity, and Number was literally the
number of sources of in�uence holding a particular
attitude or belief. In the simulation, individuals iter-
atively interacted, taking on the prevalent state of a
binary attitude in their neighborhood, until the system
reached equilibrium.

�e particle swarm extends this model by suppos-
ing that various states can be evaluated, for instance,
that di�erent patterns of cognitive elements may be
more or less dissonant; it assumes that individuals hold

 P Particle Swarm Optimization

more than one attitude or belief, and that they are
not necessarily binary; and Strength is replaced with a
measure of self-presented success. One feature usually
found in particle swarms and not in the paper byNowak
et al. is the phenomenon of persistence or momen-
tum, the tendency of an individual to keep changing
or moving in the same direction from one time-step to
the next.

�us, the particle swarm metaphorically represents
the interactions of a number of individuals, none know-
ing what the goal is, each knowing its immediate state
and its best performance in the past, each presenting its
neighbors with its best success-so-far at solving a prob-
lem, each functioning as both source and target of in�u-
ence in the dynamically evolving system. As individuals
emulate the successes of their neighbors, the population
begins to cluster in optimal regions of a search space,
reliably discovering good solutions to di�cult problems
featuring, for instance, nonlinearity, high dimension,
deceptive gradients, local optima, etc.

The Population Topology

Several kinds of topologies have been most widely used
in particle swarm research; the topic is a current focus
of much research. In the gbest topology, the popula-
tion is conceptually fully connected; every particle is
linked to every other. In practice, with the best neigh-
bor canonical version, this is simpler to implement than
it sounds, as it only means that every particle receives
in�uence from the best performing member of the
population.

�e lbest topology of degree Ki comprises a ring
lattice, with the particle linked to its Ki nearest
neighbors on both sides in the wrapped population
array.
Another structure commonly used in particle

swarm research is the von Neumann or “square” topol-
ogy. In this arrangement, the population is laid out in
rows and columns, and each individual is connected
to the neighbors above, below, and on each side of it
in the toroidally wrapped population. Numerous other
topologies have been used, including random (Sugan-
than,), hierarchical (Janson & Middendorf,),
and adaptive ones (Clerc,).

�e most important e�ect of the population topol-
ogy is to control the spread of proposed problem solu-
tions through the population. As a particle �nds a good

region of the search space, it may become the best
neighbor to one of the particles it is connected to.
�at particle then will tend to explore in the vicinity
of the �rst particle’s success, and may eventually �nd
a good solution there, too; it could then become the
best neighbor to one of its other neighbors. In this way,
information about good regions of the search space
migrates through the population.
When connections are parallel, e.g., when the mean

degree of particles is relatively high, then information
can spread quickly through the population. On uni-
modal problems this may be acceptable, but where
there are local optima there may be a tendency for
the population to converge too soon on a subopti-
mal solution. �e gbest topology has repeatedly been
shown to be vulnerable to the lure of locally optimal
attractors.
On the other hand, where the topology is sparse, as

in the lbestmodel, problem solutions spread slowly, and
subpopulationsmay search diverse regions of the search
space in parallel.�is increases the probability that the
population will end up near the global optimum. It also
means that convergence will be slower.

Vmax and Convergence

�e particle swarm has evolved very much since it
was �rst reported by Kennedy and Eberhart () and
Eberhart and Kennedy (). Early versions required a
system constantVmax to limit the velocity.Without this
limit, the particles’ trajectories would swing wildly out
of control.
Following presentation of graphical representa-

tions of a deterministic form of the particle swarm
by Kennedy (), early analyses by Ozcan and
Mohan () led to some understanding of the nature
of the particle’s trajectory. Analytical breakthroughs
by Clerc (reported in Clerc and kennedy ()),
and empirical discoveries by Shi and Eberhart (),
resulted in the application of the α constant in concert
with appropriate values of the acceleration constant β.
�ese parameters brought the particle under control,
allowed convergence under appropriate conditions, and
made Vmax unnecessary. It is still used sometimes, set
to very liberal values such as a half or third of the ini-
tialization range of a variable for more e�cient swarm
behavior, but it is not necessary.

Particle Swarm Optimization P

P

Step Size and Consensus

Step size in the particle swarm is inherently scaled to
consensus among the particles. A particle goes in one
direction on each dimension until the sign of its veloc-
ity is reversed by the accumulation of (p − x) di�er-
ences; then it turns around and goes the other way.
As it searches back and forth, its oscillation on each
dimension is centered on themean of the previous bests
(pid+pgd)/, and the standard deviation of the distribu-
tion of points that are tested is scaled to the di�erence
between them. In fact this function is a very simple
one: the standard deviation of a particle’s search, when
pid and pgd are constants, is approximately ∣(pid − pgd)∣.
�is means that when the particles’ previous best points
are far from one another in the search space, the par-
ticles will take big steps, and when they are nearer the
particles will take little steps.
Over time, this usually means that exploring behav-

ior is seen in early iterations and exploiting behavior
later on as particles come to a state of consensus. If
it happens, however, that a particle that has begun to
converge in one part of the search space receives infor-
mation about a good region somewhere else, it can
return to the exploratory mode of behaving.

The Fully Informed Particle Swarm (FIPS)

Mendes () reported a version of swarm that fea-
tured an alternative to the best neighbor strategy.While
the canonical particle is in�uenced by its own previous
success and the previous success of its best neighbor,
the fully informed particle swarm (FIPS) allowed in�u-
ence by all of a particle’s neighbors. �e acceleration
constants were set to β = ψ/ in the traditional ver-
sion; it was de�ned in this way because what mattered
was their sum, which could be distributed among any
number of di�erence terms. In the standard algorithm
there were two of them, and thus the sum was divided
by . In FIPS a particle of Ki degree has coe�cients
β = ψ/Ki.

�e FIPS particle swarm removed two aspects that
were considered standard features of the algorithm.
First of all, the particle i no longer in�uenced itself
directly, e.g., there is no p⃗i in the formula. Second, the
best neighbor is now averaged in with the others; it was
not necessary to compare the successes of all neighbors
to �nd the best one.

Mendes found that the FIPS swarm was more sen-
sitive than the canonical versions to the di�erences in
topology. For instance, while in the standard versions
the fully connected gbest topology meant in�uence
by the best solution known to the entire population,
in FIPS gbest meant that the particle was in�uenced
by a stochastic average of the best solutions found by
all members of the population; the result tended to
be near-random search.

�e lesson to be learned is that the meaning of a
topology depends on the mode of interaction. Topo-
logical structure (and Mendes tested more than ,
of them) a�ects performance, but the way it a�ects the
swarm’s performance depends on how information is
propagated from one particle to another.

Generalizing the Notation
Equation above shows that the position is derived
from the previous iteration’s position plus the current
iteration’s velocity. By rearranging the terms, it can be
shown that the current iteration’s velocity υ⃗(t+)i is the
di�erence between the new position and the previous
one: υ⃗(t+)i = x⃗(t+)i − x⃗(t)i . Since this happened on the
previous time-step as well, it can be shown that υ⃗(t)i =

x⃗(t)i − x⃗(t−)i ; this fact makes it possible to combine the
two formulas into one:

x(t+)id ← x(t)id + α (x(t)id − x(t−)id)

+∑U (,
ψ
Ki

)(pkd − x
(t)
id) ()

where Ki is the degree of node i, k is the index of i’s kth
neighbor, and adapting Clerc’s (Clerc &Kennedy,)
scheme α = . and ψ = ..
In the canonical best neighbor particle swarm, Ki =

, ∀ i : i = , , . . . ,N and k ∈ (i, g), that is, k takes the
values of the particle’s own index and its best neighbor’s
index. In FIPS,Ki may vary, depending on the topology,
and k takes on the indexes of each of i’s neighbors.�us,
Eq. is a generalized formula for the trajectories of the
particles in the particle swarm.

�is notation can be interpreted verbally as:

NEW POSITION = CURRENT POSITION

+ PERSISTENCE

+ SOCIAL INFLUENCE ()

 P Particle Swarm Optimization

�at is, on every iteration, every particle on every
dimension starts at the point it last arrived at, persists
some weighted amount in the direction it was previ-
ously going, thenmakes some adjustments based on the
di�erences between the best previous positions of its
sources of in�uence and its own current position in the
search space.

The Evolving Paradigm
�e particle swarm paradigm is young, and investiga-
tors are still devising new ways to understand, explain,
and improve the method. A divergence or bifurcation
of approaches is observed: some researchers seek ways
to simplify the algorithm (Owen & Harvey, ; Peña,
Upegui, & Eduardo Sanchez,), to �nd its essence,
while others improve performance by adding features
to it, e.g., (Clerc,).�e result is a rich unfolding
research tradition with innovations appearing on many
fronts.
Although the entire algorithm is summarized in

one simple formula, it is di�cult to understand how
it operates or why it works. For instance, while the
Social In�uence terms point the particle in the direction
of the mean of the in�uencers’ successes, the Persis-
tence termo�sets thatmovement, causing the particle to
bypass what seems to be a reasonable target.�e result
is a spiral-like trajectory that goes past the target and
returns to pass it again, with the spiral tightening as
the neighbors come to consensus on the location of the
optimum.
Further, while authors o�en talk about the parti-

cle’s velocity carrying it “toward the previous bests,” in
fact the velocity counterintuitively carries it away from
the previous bests as o�en as toward them. It is more
accurate to say the particle “explores around” the pre-
vious bests, and it is hard to describe this against-the-
grain movement as “gradient descent,” as some writers
would like.
It is very di�cult to visualize the e�ect of ever-

changing sources of in�uence on a particle. A di�erent
neighbor may be best from one iteration to the next;
the balance of the random numbers may favor one or
another or some compromise of sources; the best neigh-
bor could remain the same one, but may have found a
better p⃗i since the last turn; and so on.�e result is that

the particle is pulled and pushed around in a complex
way, with many details changing over time.

�e paradoxical �nding is that it is best not to
give the particle information that is too good, espe-
cially early in the search trial. Premature convergence
is the result of ampli�ed consensus resulting from too
much communication or overreliance on best neigh-
bors, especially the population best. Various researchers
have proposed ways to slow the convergence or cluster-
ing of particles in the search space, such as occasional
reinitialization or randomization of particles, repelling
forces among them, etc., and these techniques typically
have the desired e�ect. In many cases, however, implicit
methods work as well and more parsimoniously; the
e�ect of topology on convergence rate has been men-
tioned here, for instance.

Binary Particle Swarms

A binary particle swarm is easily created by treating
the velocity as a probability threshold (Kennedy &
Eberhart,). Velocity vector elements are squashed
in a sigmoid or other function, for instance S(υ) = /(+
exp(−υ)), producing a result in (..). A random num-
ber is generated and compared to S(υid) to determine
whether xid will be a or a .�ough discrete systems
of higher cardinality have been proposed, it is di�cult
to de�ne such concepts as distance and direction in a
meaningful way within nominal data.

Alternative Probability Distributions

As was noted above, the particle’s search is centered
around the mean of the previous bests that in�uence it,
and its variance is scaled to the di�erences among them.
�is has suggested to several researchers that perhaps
the trajectory formula can be replaced, wholly or partly,
by some type of random number generator that directly
samples the search space in a desirable way.
Kennedy () suggested simple Gaussian sam-

pling, using a random number generator (RNG)
G(mean, s.d.) with the mean centered between p⃗i and
p⃗g , and with the standard deviation de�ned on each
dimension as s.d. = ∣(pid − pgd)∣. �is “bare bones”
particle swarm eliminated the velocity component; it
performed rather well on a set of test functions, but not
as well as the usual version.

Particle Swarm Optimization P

P

Krohling () simply substituted the absolute val-
ues of Gaussian-distributed random numbers for the
uniformly distributed values in the canonical parti-
cle swarm. He and his colleagues have had success on
a range of problems using this approach. Richer and
Blackwell () replaced the Gaussian distribution of
bare bones with a Lévy distribution. �e Lévy distri-
bution is bell-shaped like the Gaussian but with fatter
tails. It has a parameter α which allows interpolation
between the Cauchy distribution (α =) and Gaussian
(α =) and can be used to control the fatness of the
tails. In a series of trials, Richer and Blackwell ()
were able to emulate the performance of a canonical
particle swarm using α = .. Kennedy () used a
Gaussian RNG for the social in�uence term of the usual
formula, keeping the “persistence” term found in the
standard particle swarm. Variations on this format pro-
duced results that were competitive with the canonical
version.
Numerous other researchers have begun exploring

ways to replicate the overall behavior of the particle
swarm by replacing the traditional formulas with alter-
native probability distributions. Such experiments help
theorists understand what is essential to the swarm’s
behavior and how it is able to improve its performance
on a test function over time.
Simulation of the canonical trajectory behavior with

RNGs is a topic that is receiving a great deal of atten-
tion at this time, and it is impossible to predict where
the research is leading. As numerous versions have been
published showing that the trajectory formulas can be
replaced by alternative strategies for selecting a series of
points to sample, it becomes apparent that the essence
of the paradigm is not to be found in the details of the
movements of the particles, but in the nature of their
interactions over time, the structure of the social net-
work in which they are embedded, and the function
landscape with which they interact, with all these fac-
tors working together gives the population the ability to
�nd problem solutions.

Recommended Reading
Abelson, R. P., Aronson, E., McGuire, W. J., Newcomb, T. M.,

Rosenberg, M. J., & Tannenbaum, R. H. (Eds.), (). Theories
of cognitive consistency: A sourcebook. Chicago: Rand McNally.

Clerc, M. (). Particle swarm optimization. London: Hermes
Science Publications.

Clerc, M., & Kennedy, J. (). The particle swarm: Explo-
sion, stability, and convergence in a multi-dimensional com-
plex space. IEEE Transactions on Evolutionary Computation, ,
–.

Eberhart, R.C., & Kennedy, J. (). A new optimizer using
particle swarm theory. In Proceedings of the th interna-
tional symposium on micro machine and human science,
(Nagoya, Japan) (pp. –). Piscataway, NJ: IEEE Service
Center.

Festinger, L. (). A theory of cognitive dissonance. Stanford, CA:
Stanford University Press.

Heider, F. (). The psychology of interpersonal relations. New
York: Wiley.

Janson, S., & Middendorf, M. (). A hierarchical particle swarm
optimizer and its adaptive variant. IEEE Transactions on Sys-
tems, Man, and Cybernatics – Part B: Cybernatics, (), –
.

Kennedy, J. (). The behavior of particles. In V. W. Porto,
N. Saravanan, D. Waagen, & A. E. Eiben (Eds.), Evolutionary
programming VII. Proceedings of the th annual conference on
evolutionary programming.

Kennedy, J. (). Bare bones particle swarms. In Proceedings of
the IEEE swarm intelligence symposium (pp. –). Indianapo-
lis, IN.

Kennedy, J. (). Dynamic-probabilistic particle swarms. In Pro-
ceedings of the genetic and evolutionary computation conference
(GECCO-) (pp. –). Washington, DC.

Kennedy, J., & Eberhart, R. C. (). Particle swarm optimization.
In Proceedings of the IEEE international conference on neu-
ral networks (Perth, Australia) (pp. –). Piscataway, NJ:
IEEE Service Center.

Kennedy, J., & Eberhart, R. C. (). A discrete binary version
of the particle swarm algorithm. In Proceedings of the
conference on systems, man, and cybernetics (pp. –).
Piscataway, NJ: IEEE Service Center.

Krohling, R. A. (). Gaussian Swarm. A novel particle
swarm optimization algorithm. Proceedings of the IEEE
conference on cybernetics and intelligent systems (vol. ,
pp. –).

Mendes, R. (). Population topologies and their influence in parti-
cle swarm performance. Doctoral thesis, Escola de Engenharia,
Universidade do Minho, Portugal.

Nowak, A., Szamrej, J., & Latané, B. (). From private atti-
tude to public opinion: A dynamic theory of social impact.
Psychological Review, , –.

Owen, A., & Harvey, I. (). Adapting particle swarm optimisation
for fitness landscapes with neutrality. In Proceedings of the
IEEE swarm intelligence symposium (pp. –). Honolulu,
HI: IEEE Press.

Ozcan, E., & Mohan, C. K. (). Particle swarm optimization:
Surfing the waves. In Proceedings of the congress on evolution-
ary computation, Mayflower hotel, Washington D.C. (pp. –
). Piscataway, NJ: IEEE Service Center.

Peña, J., Upegui, A., & Eduardo Sanchez, E. (). Particle swarm
optimization with discrete recombination: An online optimizer
for evolvable hardware. In Proceedings of the st NASA/ESA
conference on adaptive hardware and systems (AHS-),
Istanbul, Turkey (pp. –). Piscataway, NJ: IEEE Service
Center.

 P Partitional Clustering

Richer, T. J., & Blackwell, T. M. (). The Levy particle swarm.
In Proceedings of the congress on evolutionary computation
(CEC-). Piscataway, NJ: IEEE Service Center.

Shi, Y., & Eberhart, R. C. (). Parameter selection in particle
swarm optimization. In Evolutionary Programming VII: Proc.
EP (pp. –). New York: Springer.

Smolensky, P. (). Information processing in dynamical sys-
tems: Foundations of harmony theory. In D. E. Rumelhart,
J. L. McClelland, & the PDP Research Group, (Eds.), Paral-
lel distributed processing: Explorations in the microstructure of
cognition. Vol. , Foundations (pp. –). Cambridge, MA:
MIT Press.

Suganthan, P. N. (). Particle swarm optimisation with a neigh-
bourhood operator. In Proceedings of congress on evolutionary
computation.Washington DC, USA.

Thagard, P. (). Coherence in thought and action. Cambridge,
MA: MIT Press.

Partitional Clustering

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Definition
Partitional clustering decomposes a data set into
a set of disjoint clusters. Given a data set of N
points, a partitioning method constructs K (N ≥K)
partitions of the data, with each partition repre-
senting a cluster. �at is, it classi�es the data into
K groups by satisfying the following requirements:
() each group contains at least one point, and () each
point belongs to exactly one group. Notice that for fuzzy
partitioning, a point can belong tomore than one group.
Many partitional clustering algorithms try to min-

imize an objective function. For example, in K-means
and K-medoids the function (also referred to as the
distortion function) is

K

∑
i=

∣Ci ∣
∑
j=
Dist(xj, center(i)), ()

where ∣Ci∣ is the number of points in cluster i,
Dist(xj, center(i)) is the distance between point xj and
center i. Many distance functions can be used, such as
Euclidean distance and L norm.

�e following entries describe several representative
algorithms for partitional data clustering - 7K-means

clustering, 7K-medoids clustering, 7Quality �resh-
old Clustering, 7Expectation Maximization Cluster-
ing, 7mean shi�, 7Locality Sensitive Hashing Based
Clustering, and 7K-way Spectral Clustering. In the
K-means algorithm, each cluster is represented by
the mean value of the points in the cluster. For the
K-medoids algorithm, each cluster is represented by
one of the points located near the center of the clus-
ter. Instead of setting cluster number K, the Quality
�reshold algorithm uses the maximum cluster diam-
eter as a parameter to �nd clusters with guaranteed
quality. Expectation Maximization clustering performs
expectation-maximization analysis based on statistical
modeling of the data distribution, and it has more
parameters. Mean Shi� is a nonparameter algorithm to
�nd any shape of clusters using density estimator. Local-
ity Sensitive Hashing performs clustering by hashing
similar points to the same bin. K-way spectral cluster-
ing represents the data as a graph and performs graph
partitioning to �nd clusters.

Recommended Reading
Han, J., & Kamber, M. (). Data mining: Concepts and techniques

(nd ed.). San Francisco: Morgan Kaufmann Publishers.

Passive Learning

A 7passive learning system plays no role in the selec-
tion of its 7training data. Passive learning stands in
contrast to7active learning.

PCA

7Principal Component Analysis

PCFG

7Probabilistic Context-Free Grammars

Phase Transitions in Machine Learning P

P

Phase Transitions in Machine
Learning

Lorenza Saitta, Michele Sebag
Università del Piemonte Orientale, Alessandria, Italy
CNRS − INRIA − Université Paris-Sud, Orsay, France

Synonyms
Statistical Physics of learning;�reshold phenomena in
learning; Typical complexity of learning

Definition
Phase transition (PT) is a termoriginally used in physics
to denote the transformation of a system from a liq-
uid, solid, or gas state (phase) to another. It is used, by
extension, to describe any abrupt and sudden change
in one of the order parameters describing an arbitrary
system, when a control parameter approaches a critical
value (While early studies on PTs in computer science
inverted the notions of order and control parameters,
this article will stick to the original de�nition used in
Statistical Physics.).
Far from being limited to physical systems, PTs

are ubiquitous in sciences, notably in computational
science. Typically, hard combinatorial problems dis-
play a PT with regard to the probability of exis-
tence of a solution. Note that the notion of PT can-
not be studied in relation to single-problem instances:
it refers to emergent phenomena in an ensemble of
problem instances, governed by a given probability
distribution.

Motivation and Background
Cheeseman, Kanefsky, and Taylor () were most
in�uential in starting the study of PTs in Arti�cial Intel-
ligence, experimentally showing the presence of a PT
containing the most di�cult instances for various NP-
complete problems. Since then, the literature �ourished
both in breadth and depth, witnessing an increasing
transfer of knowledge and results between Statistical
Physics and Combinatorics.
As far as machine learning (ML) can be formulated

as a combinatorial optimization problem (Mitchell,
), it is no surprise that PTs emerge in many of
its facets. Early results have been obtained in the �eld
of relational learning, either logic- (Botta, Giordana,

Saitta, & Sebag, ; Giordana & Saitta,) or
kernel- (Gaudel, Sebag, & Cornuéjols,) based. PTs
have been studied in Neural Networks (Demongeot &
Sené, ; Engel & Van den Broeck,), Grammati-
cal inference (Cornuéjols & Sebag,), propositional
classi�cation (Baskiotis & Sebag, ; Rückert & De
Raedt,), and sparse regression (Donoho & Tanner,
).
Two main streams of research work emerge from

the study of PT in computational problems. On the
one hand, locating the PT enables to generate very dif-
�cult problem instances, most relevant to benchmark
and comparatively assess new algorithms. On the other
hand, PT studies stimulate the analysis of algorith-
mic typical case complexity, as opposed to the standard
worst-case analysis of algorithmic complexity. It is well
known that while many algorithms require exponential
resources in the worst case, they are e�ective for a vast
majority of problem instances. Studying their typical
runtime thus makes sense in a probabilistic perspective
(�e typical runtime not only re�ects the most proba-
ble runtime; overall, the probability of deviating from
this typical complexity goes to as the problem size
increases.).

Relational Learning
In a seminal paper, Mitchell characterized ML as a
search problem (Mitchell,). Much attention has
ever since been devoted to every component of a search
problem: the search space, the search goal, and the
search engine.

�e search space H re�ects the language L chosen
to express the target knowledge, termed 7hypothesis
language.�e reader is referred to other entries of the
encyclopedia (7Attribute-value representation, 7First-
order logic, 7Relational learning, and 7Inductive Logic
Programming) for a comprehensive presentation of the
hypothesis languages and related learning approaches.
Typically, a learner proceeds iteratively: given a set E

of examples labeled a�er a target concept ω, the learner
maintains a list of candidate hypotheses, assessing their
completeness (the proportion of positive examples they
cover) and their consistency (the proportion of nega-
tive examples they do not cover) using a7covering test.
�e covering test, checking whether some hypothesis
h covers some example e, thus is a key component of

 P Phase Transitions in Machine Learning

the learning process, launched a few hundred thou-
sand times in each learning run on medium-size
problems.
While in propositional learning the covering test is

straightforward and computationally e�cient, in First-
Order Logics one must distinguish between learning
from interpretation (h covers a set of facts e i� e is a
model for h) and learning from entailment (h covers
a clause e i� h entails e) (De Raedt,). A correct
but incomplete covering test, the 7θ-subsumption test
de�ned by Plotkin () is most o�en used for its
decidability properties, and much attention has been
paid to optimizing it (Maloberti & Sebag,).
As shown by Giordana and Saitta (), the

θ-subsumption test is equivalent to a constraint satis-
faction problem (CSP). A �nite CSP is a tuple (X, R,
D), where X = {x, . . . xn} is a set of variables, R =

{R, . . .Rc} is a set of constraints (relations), and D is
the variable domain. Each relation Rh involves a sub-
set of variables xi , . . . , xik in X; it speci�es all tuples
of values (ai , . . . , aik) in D

k such that the assignment
([xi = ai] ∧ . . . ∧ [xik = aik]) satis�es Rh. A CSP is
satis�able if there exists a tuple (a, . . . , an) ∈ Dn such
that the assignment ([xi = ai], i = , . . . ,n) satis�es all
relations in R. Solving a CSP amounts to �nding such a
tuple (solution) or showing that none exists.

�e probability for a randomCSP instance to be sat-
is�able shows a PTwith respect to the constraint density
(control parameter p = c

n(n−)) and constraint tight-
ness (p = − N

L), where N denotes the cardinality of
each constraint (assumed to be equal for all constraints)
and L is the number of constants in the example (the
universe).

�e relational covering test being a CSP, a PT was
expected; it has been con�rmed from ample empirical
evidence (Botta, Giordana, & Saitta, ; Giordana &
Saitta,).�e order parameter is the probability for
hypothesis h to cover example e; the control parame-
ters are the number m of predicates and the number n
of variables in h, on the one hand, and the numberN of
literals built on each predicate symbol (relation) and the
number L of constants in example e, on the other hand.
As shown in Fig. a, the covering probability is close
to (YES region) when h is general comparatively to e;
it abruptly decreases to (NO region) as the number
m of predicates in h increases and/or the number L of
constants in e decreases. In the PT region a high peak
of empirical complexity of the covering test is observed
(Fig. b).

�e PT of the covering test has deep and far reach-
ing e�ects on relational learning. By de�nition, non-
trivial hypotheses (covering some examples but not all)

Psol

100

50

0

5000

10000

0

15 20 25 30
M

(a) (b)

c

L
35 40 45 15

20
25

30
35

40
45

15 20 25
30

M

L

35
40

45
15

20
25

30
35

40
45

Phase Transitions in Machine Learning. Figure . PT of the covering test (h, e) versus the number m of predicates in h

and the number L of constants in e. The number n of variables is set to and the number N of literals per predicate is

set to . (a) Percentage of times the covering test succeeds. (b) Runtime of the covering test, averaged over pairs

(h, e) independently generated for each pair (m, L)

Phase Transitions in Machine Learning P

P

mostly belong to the PT region.�e learner, searching
for hypotheses covering the positive and rejecting the
negative examples, is bound to explore this region and
thus cannot avoid the associated computational cost.
More generally, the PT region acts as an attractor for any
learner aimed at complete and consistent hypotheses.
Secondly, top-down learners are bound to traverse

the plateau of overly general hypotheses (YES region)
before arriving at the PT region. In the YES region, as all
hypotheses cover most examples, the learner does not
have enough information to make relevant choices; the
chance of gradually arriving at an accurate description
of the target concept thus becomes very low. Actually,
a blind spot has been identi�ed close to the PT (Botta
et al.,): when the target concept lies in this region
(relatively to the available examples) every state-of-the-
art top-down relational learner tends to build random
hypotheses, that is, the learned hypotheses behave like
random guessing on the test set (Fig).

�is negative result has prompted the design of new
relational learners, aimed at learning in the PT region
and using either prior knowledge about the size of the
target concept (Ales Bianchetti, Rouveirol, & Sebag,
) or near-miss examples (Alphonse & Osmani,
).

Relational Kernels and MIL Problems
Relational learning has been revisited through the so-
called kernel trick (Cortes & Vapnik,), �rst pio-
neered in the context of 7Support Vector Machines.
Relational kernels, inspired from Haussler’s convolu-
tional kernels (Haussler,), have been developed
for, e.g., strings, trees, or graphs. For instance, K(x, x′)
might count the number of patterns shared by relational
structures x and x′. Relational kernels thus achieve
a particular type of 7propositionalization (Kramer,

45

40

35

30

L

m

25

20

15

10
5 10 15 20 25 30

Phase Transitions in Machine Learning. Figure . Competence map of FOIL versus numbermof predicates in the target

concept and number L of constants in the examples. The target concept involves n = variables and each example

contains N = literals built on each predicate symbol. For each pair (m, L), a target concept ω has been generated

independently, balanced -example training and test sets have been generated and labeled after ω. FOIL has been

launched on the training set and the predictive accuracy of the hypothesis has been assessed on the test set. Symbol

“−” indicates a predictive accuracy greater than %; symbol “−” indicates a predictive accuracy close to % (akin

random guessing)

 P Phase Transitions in Machine Learning

Lavrac, & Flach,), mapping every relational exam-
ple onto a propositional space de�ned a�er the training
examples.

�e question of whether relational kernels enable
avoiding the PT faced by relational learning, described
in the previous section, was investigated by Gaudel,
Sebag, and Cornuéjols (), focusing on the so-
called 7multi-instance learning (MIL) setting. �e
MIL setting, pioneered by Dietterich, Lathrop, and
Lozano-Perez (), is considered to be the “missing
link” between relational and propositional learning (De
Raedt,).

Multi-Instance Learning: Background and Kernels

Formally, an MI example x is a bag of (propositional)
instances noted x(), . . ., x(N), where x(j) ∈ IRd. In the
original MI setting (Dietterich et al.,), an exam-
ple is labeled positive i� it includes at least one instance
satisfying some target concept C:

pos(x) i� ∃ i ∈ . . .N s.t. C(x(i)).

More generally, in application domains such as image
categorization, the example label might depend on the
properties of several instances:

pos(x) i� ∀ j = . . .m, ∃ ij ∈ . . .N s.t. Cj(x(ij)).

In this more general setting, referred to as presence-
based setting, it has been shown that MIL kernels do
have a PT too (Gaudel et al.,).
Let us consider bag kernels K, built on the top of

propositional kernels k on IRd as follows, where x =

(x(), . . . , x(N)) and xp = (x′ (), . . . , x′ (N
′)) denote two

MI examples:

K(x, x′) = f (x).f (x′)
N
∑
k=

N′
∑
ℓ=
k(x(k), x′ (ℓ)) ()

where f (x) corresponds to a normalization term, e.g.,
f (x) = or /N or /

√
K(x, x).

By construction, such MI-kernels thus consider the
average similarity among the example instances while
relational learning is usually concerned with �nding
existential concepts.

The MI-SVM PT

A�er Botta et al. () and Giordana and Saitta
(), the competence of MI-kernels was experimen-
tally assessed using arti�cial problems. Each problem
involvesm sub-concept s Ci: a given sub-concept corre-
sponds to a region of the d-dimensional space, and it is
satis�ed by an MI example x if at least one instance in x
belongs to this region. An instance is said to be relevant
if it belongs to some Ci region.
Let n (respectively n′) denote the number of relevant

instances in positive (respectively negative) examples.
Let further τ denote the number of sub-concept s not
satis�ed by negative examples (by de�nition, a positive
example satis�es all sub-concept s).
Ample empirical investigations (Gaudel et al.,)

show that:

● �e n = n′ region is a failure region, where hypothe-
ses learned by relationalMI-SVMs do no better than
random guessing (Fig). In other words, while MI-
SVMs grasp the notion of relevant instances, they
still fail in the “truly relational region”where positive
and negative examples only di�er in the distribution
of the relevant instances.

● �e width of the failure region increases as τ
increases, i.e., when fewer sub-concept s are satis-
�ed by negative examples. �is unexpected result
is explained from the variance of the kernel-
based propositionalization: the larger τ, the more
the distribution of the positive and negative pro-
positionalized examples overlap, hindering the
discrimination.

0
0.1
0.2
0.3
0.4
0.5

n

n¢

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Phase Transitions in Machine Learning. Figure . MI-

SVM Failure Region in the (n, n′) plane. Each (n, n′) point

reports the test error, averaged on artificial problems

Phase Transitions in Machine Learning P

P

Propositional Learning and Sparse Coding
Interestingly, the emergence of a PT is not limited
to relational learning. In the case of (Context Free)
7Grammar induction for instance (Cornuéjols & Sebag,
), the coverage of the candidate grammar was
found to abruptly go to along (uniform) generaliza-
tion, as depicted in Fig. .
Propositional learning also displays some PTs both

in the classi�cation (Baskiotis & Sebag, ; Rückert
& De Raedt,) and in the regression (Cands, ;
Donoho & Tanner,) context.

Propositional Classification

Given a target hypothesis language, classi�cation in dis-
crete domains most o�en aims at the simplest expres-
sion complying with the training examples.
Considering randomly generated positive and neg-

ative examples, Rückert and De Raedt () investi-
gated the existence of k-term DNF solutions (disjunc-
tion of at most k conjunctions of literals) and showed
that the probability of solution abruptly drops as the
number of negative examples increases.�ey proposed
a combinatorial optimization algorithm to �nd a k-term
DNF complying with the training examples except at
most ε% of them (Rückert & De Raedt,).

100

90

80

70

60

50

40

30

20

10

0

Number of states PTAUA

Generalization

C
ov

er
ag

e
ra

te

0 200 400 600 800 1000 1200

Phase Transitions in Machine Learning. Figure . Gap

emerging during learning in the relationship between

the number of nodes of the inferred grammar and the

coverage rate

Considering positive and negative examples gener-
ated a�er some k-term DNF target concept ω, Baskiotis
and Sebag examined the solutions built by C.-Rules
(Quinlan,), among the oldest and still most used
discrete learning algorithms. �e observed variable is
the generalization error on a test set; the order variables
are the coverage of ω and the average coverage of the
conjuncts in ω. Interestingly, C. displays a PT behav-
ior (Fig.): the error abruptly increases as the coverage
and average coverage decrease.

Propositional Regression

7Linear regression aims at expressing the target vari-
able as the weighted sum of the N descriptive variables
according to some vector w. When the number N of
variables is larger than the number n of examples, one
is interested in �nding the most sparse w complying
with the training examples (s.t. < w, xi >= yi). �e
sparsity criterion consists of minimizing the L norm
of w (number of nonzero coe�cients in w), which
de�nes an NP optimization problem. A more tractable
formulation is obtained by minimizing the L norm
instead:

Find arg min
w∈IRN

{∣∣w∣∣ subject to < w, xi > = yi,

i = . . . n}. ()

A major result in the �eld of sparse coding can be
stated as: Let w∗ be the solution of Eq. (); if it
is su�ciently sparse, w∗ also is the most sparse vec-
tor subject to < w, xi > = yi (Donoho & Tanner,
). In such cases, the L norm minimization can
be solved by L norm minimization (an NP optimiza-
tion problem is solved using linear programming).
More generally, the equivalence between L and L
norm minimization shows a PT behavior: when the
sparsity of the solution is lower than a given thresh-
old w.r.t the problem size (lower curve in Fig.),
the NP/LP equivalence holds strictly; further, there
exists a region (between the upper and lower curves in
Fig.) where the NP/LP equivalence holds with high
probability.

�is highly in�uential result bridges the gap between
the statistical and algorithmic objectives. On the sta-
tistical side, the importance of sparsity in terms of
robust coding (hence learning) is acknowledged since

 P Phase Transitions in Machine Learning

Coverage P_c

C
4.

5
E

rr
or

0.1 0.3 0.5 0.7 0.9
0

10

20

30
k=10
k=15
k=20
k=25

Error vs coverage (K=10)

Average term coverage

C
4.

5
E

rr
or

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30
k=10
k=15
k=20
k=25

Error vs average term coverage (K=100)

Phase Transitions in Machine Learning. Figure . C. error versus concept coverage (a) and average term coverage

(b) in k-term DNF languages. The reported curve is obtained by Gaussian convolution with empirical data (,

learning problems, each one involving a -example dataset)

1

0.9

0.8

0.7

0.6

0.5
k–n

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n /N

Phase Transitions in Machine Learning. Figure . Strong and weak PT in sparse regression (Donoho & Tanner,).

The x-axis is the ratio between the number n of constraints and the number N of variables; the y-axis is the ratio

between the number k of variables involved in the solution, and n

the beginnings of Information �eory; on the algo-
rithmic side, the sparsity criterion cannot be directly
tackled as it boils down to solving a combinatorial opti-
mization problem (minimizing a L norm).�e above
result reconciles sparsity and tractability by noting that
under some conditions the solution of the Lminimiza-
tion problem can be found by solving the (tractable)
L minimization problem: whenever the solution of
the latter problem is “su�ciently” sparse, it is also the
solution of the former problem.

Perspectives
Since the main two formulations of ML involve con-
straint satisfaction and constrained optimization, it is
no surprise that CSP PTs manifest themselves in ML.
�e diversity of thesemanifestations, ranging from rela-
tional learning (Botta et al.,) to sparse regression

(Donoho & Tanner,), has been illustrated in this
entry, without pretending to exhaustivity.
Along this line, the research agenda and methodol-

ogy of ML can bene�t from the lessons learned in the
CSP �eld. Firstly, algorithms must be assessed on prob-
lems lying in the PT region; results obtained on prob-
lems in the easy regions are likely to be irrelevant
(playing in the sandbox Hogg, Huberman, & Williams,
).
In order to do so, the PT should be localized through

de�ning control and order parameters, thus delineat-
ing several regions in the control parameter space (ML
landscape).�ese regions expectedly correspond to dif-
ferent types of ML di�culty, beyond the classical com-
putational complexity perspective.
Secondly, the response of a given algorithm to these

di�culties can bemade available through a competence

Piecewise Linear Models P

P

map, depicting its average performance conditionally
to the value of the control parameters as shown in
Figs. –.
Finally, such competence maps can be used to tell

whether a given algorithm is a priori relevant in a given
region of the control parameter space, and support the
algorithm selection task (a.k.a. meta-learning; see e.g.,
http:// www.cs.bris.ac.uk/ Research/MachineLearning/
metal.html).

Recommended Reading
Ales Bianchetti, J., Rouveirol, C., & Sebag, M. (). Constraint-

based learning of long relational concepts. In C. Sammut
(Ed.), Proceedings of international conference on machine
learning, ICML’, (pp. –). San Francisco, CA: Morgan
Kauffman.

Alphonse, E., & Osmani, A. (). On the connection between the
phase transition of the covering test and the learning success
rate. Machine Learning, (–), –.

Baskiotis, N., & Sebag, M. (). C. competence map: A
phase transition-inspired approach. In Proceedings of interna-
tional conference on machine learning, Banff, Alberta, Canada
(pp. –). Morgan Kaufman.

Botta, M., Giordana, A., & Saitta, L. (). An experimental study
of phase transitions in matching. In Proceedings of the th
international joint conference on artificial intelligence, Stock-
holm, Sweden (pp. –).

Botta, M., Giordana, A., Saitta, L., & Sebag, M. (). Relational
learning as search in a critical region. Journal of Machine
Learning Research, , –.

Cands, E. J. (). The restricted isometry property and its impli-
cations for compressed sensing. Compte Rendus de l’Academie
des Sciences, Paris, Serie I, , –.

Cheeseman, P., Kanefsky, B., & Taylor, W. (). Where the really
hard problems are. In R. Myopoulos & J. Reiter (Eds.), Pro-
ceedings of the th international joint conference on artificial
intelligence, Sydney, Australia (pp. –). San Francisco, CA:
Morgan Kaufmann.

Cornuéjols, A., & Sebag, M. (). A note on phase transitions and
computational pitfalls of learning from sequences. Journal of
Intelligent Information Systems, (), –.

Cortes, C., & Vapnik, V. N. (). Support-vector networks.
Machine Learning, , –.

De Raedt, L. (). Logical setting for concept-learning. Artificial
Intelligence, , –.

De Raedt, L. (). Attribute-value learning versus inductive logic
programming: The missing links. In Proceedings inductive
logic programming, ILP, LNCS, (Vol. , pp. –). London:
Springer.

Demongeot, J., & Sené, S. (). Boundary conditions and phase
transitions in neural networks. Simulation results. Neural Net-
works, (), –.

Dietterich, T., Lathrop, R., & Lozano-Perez, T. (). Solving the
multiple-instance problem with axis-parallel rectangles. Artifi-
cial Intelligence, (–), –.

Donoho, D. L., & Tanner, J. (). Sparse nonnegative solu-
tion of underdetermined linear equations by linear program-
ming. Proceedings of the National Academy of Sciences, (),
–.

Engel, A., & Van den Broeck, C. (). Statistical mechanics of
learning. Cambridge: Cambridge University Press.

Gaudel, R., Sebag, M., & Cornuéjols, A. (). A phase transition-
based perspective on multiple instance kernels. In Proceedings
of international conference on inductive logic programming, ILP,
Corvallis, OR (pp. –).

Gaudel, R., Sebag, M., & Cornuéjols, A. (). A phase transition-
based perspective on multiple instance kernels. Lecture notes in
computer sciences, (Vol. , pp. –).

Giordana, A., & Saitta, L. (). Phase transitions in relational
learning. Machine Learning, (), –.

Haussler, D. (). Convolutional kernels on discrete struc-
tures. Tech. Rep., Computer Science Department, University of
California at Santa Cruz.

Hogg, T., Huberman, B. A., & Williams, C. P. (Eds.). ().
Artificial intelligence: Special Issue on frontiers in prob-
lem solving: Phase transitions and complexity, (Vol. (–)).
Elsevier.

Kramer, S., Lavrac, N., & Flach, P. (). Propositionalization
approaches to relational data mining. In S. Dzeroski & N. Lavrac
(Eds.), Relational data mining, (pp. –). New York:
Springer.

Maloberti, J., & Sebag, M. (). Fast theta-subsumption with con-
straint satisfaction algorithms. Machine Learning Journal, ,
–.

Mitchell, T. M. (). Generalization as search. Artificial Intelli-
gence, , –.

Plotkin, G. (). A note on inductive generalization. In Machine
Intelligence, (Vol.). Edinburgh University Press.

Quinlan, J. R. (). C.: Programs for machine learning. San
Francisco, CA: Morgan Kaufmann.

Rückert, U., & De Raedt, L. (). An experimental evaluation
of simplicity in rule learning. Artificial Intelligence, (),
–.

Perceptron

7Online Learning

Piecewise Constant Models

7Regression Trees

Piecewise Linear Models

7Model Trees

http://www.cs.bris.ac.uk/Research/MachineLearning/metal.html

 P Plan Recognition

Plan Recognition

7Inverse Reinforcement Learning

Policy Gradient Methods

Jan Peters, J. Andrew Bagnell
Max Planck Institute for Biological Cybernetics,
Tuebingen, Baden-Wuertemberg, Germany
Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Policy search

Definition
A policy gradient method is a7reinforcement learning
approach that directly optimizes a parametrized control
policy by a variant of gradient descent.�ese methods
belong to the class of 7policy search techniques that
maximize the expected return of a policy in a �xed pol-
icy class, in contrast with traditional 7value function
approximation approaches that derive policies from a
value function. Policy gradient approaches have various
advantages: they enable the straightforward incorpora-
tion of domain knowledge in policy parametrization
and o�en an optimal policy is more compactly repre-
sented than the corresponding value function; many
such methods guarantee to convergence to at least a
locally optimal policy; the methods naturally handle
continuous states and actions and o�en even imper-
fect state information. �e counterveiling drawbacks
include di�culties in o�-policy settings, the potential
for very slow convergence and high sample complexity,
as well as identifying local optima that are not globally
optimal.

Structure of the Learning System
Policy gradient methods center around a parametrized
policy πθ , also known as a direct controller, with param-
eters θ that de�ne the selection of actions a given
the state s. Such a policy may be either deterministic
a = πθ(s) or stochastic a ∼ πθ(a∣s).�is choice also
a�ects the policy gradient approach (e.g., a determin-
istic policy requires a model-based formulation when

used for likelihood ratio policy gradients), chooses
how the exploration–exploitation dilemma is addressed
(e.g., a stochastic policy tries new actions while a
deterministic policy requires the perturbation of pol-
icy parameters or su�cient stochasticity in the system),
and may a�ect the optimal solution (e.g., for a time-
invariant or stationary policy, the optimal policy can
be stochastic (Sutton, McAllester, Singh, & Mansour,
)). Frequently used policies include Gibbs distri-
butions πθ(a∣s) = exp(ϕ(s, a)Tθ)/∑b exp(ϕ(s, b)Tθ)
for discrete problems (Bagnell, ; Sutton et al.,
) and, for continuous problems, Gaussian poli-
cies πθ(a∣s) = N (ϕ(s, a)Tθ, θ) with an explo-
ration parameter θ (Peters & Schaal, ; Williams,
).

Expected Return

Policy gradient methods seek to optimize the expected
return of a policy πθ ,

J(θ) = ZγE{
H

∑
k=

γkrk} ,

where γ ∈ [,] denotes a discount factor, Zγ a normal-
ization constant, andH the planning horizon. For �nite
H, we have an episodic reinforcement learning scenario
where the truly optimal policy is non-stationary and the
normalization does not matter. For an in�nite horizon
H =∞, we choose the normalization to be Zγ ≡ (− γ)
for γ < and Z ≡ limγ→(− γ) = /H for 7average
reward reinforcement learning problem where γ = .

Gradient Descent in Policy Space

Policy gradient methods follow an estimate of the gra-
dient of the expected return

θk+ = θk + αkg(θk)

where g(θk) ≈ ∇θ J(θ)∣θ=θk is a gradient estimate
at the parameters θ = θk a�er update k with ini-
tial policy θ and αk denotes a learning rate. If the
gradient estimator is unbiased, ∑∞k= αk → ∞ while
∑
∞
k= αk remains bounded, convergence to a local min-
imum can be guaranteed. In optimal control, model-
based policy gradient methods have been used since
the s, see the classical textbooks by Jacobson &

Policy Gradient Methods P

P

Mayne () and by Hasdor� (). While these
are used machine learning community (e.g., di�eren-
tial dynamic programming with learned models), they
may be numerically brittle and must rely on accurate,
deterministic models. Hence, they may su�er signi�-
cantly from optimization biases and are not generally
applicable, particularly not in a model-free case nor in
problems that include discrete elements. Severalmodel-
free alternatives can be found in the simulation opti-
mization literature (Fu,), including, for example,
�nite-di�erence gradients, likelihood ratio approaches,
response-surface methods, and mean-valued, “weak”
derivatives.�e advantages and disadvantages of these
di�erent approaches are still a �ercely debated topic (Fu,
). In machine learning, the �rst two approaches
have been dominating the �eld.

Finite Difference Gradients

�e simplest policy gradient approaches with perhaps
the most practical applications (see Peters & Schaal,
 for robotics application of this method) estimate
the gradient by perturbing the policy parameters. For
a current policy θk with expected return J(θk), this
approach will create explorative policies θ̂ i = θk +
δθ i with the approximated expected returns given by
J(θ̂ i) ≈ J(θk) + δθTi g where g = ∇θ J(πθ)∣θ=θk . In this
case, it su�ces to determine the gradient by 7linear
regression, that is, we obtain

g = (∆ΘT∆Θ)
−∆ΘT∆J,

with parameter perturbations ∆Θ = [δθ, . . . , δθn] and
the mean-subtracted rollout returns δJn = J(θ̂ i)− J(θk)
form ∆J = [δJ, . . . , δJn]. �e choice of the param-
eter perturbation largely determines the performance
of the approach (Spall,). Limitations particular to
this approach include the following: the need for many
exploratory samples; the sensitivity of the system with
respect to each parameter may di�er by orders of mag-
nitude; small changes in a single parameter may render
a system unstable; and stochasticity requires particu-
lar care in optimization (e.g., multiple samples, �xed
random seeds, etc.) (see Glynn, ; Spall,).�is
method is also referred to as the naive Monte-Carlo
policy gradient.

Likelihood-Ratio Gradients

�e likelihood-ratio method relies on the stochasticityll
of either the policy for model-free approaches or the
system in the model-based case, and, hence, requires
no explicit exploration and may cope better with noise
and the parameter perturbation sensitivity problems.
Denoting a time-indexed sequence of states, actions,
and rewards of the joint system composed of the pol-
icy and environment as a path, a parameter setting
induces a path distribution pθ(τ) and rewards R(τ) =

Zγ∑
H
k= γkrk along a path τ. �us, you may write the

gradient of the expected return as

∇θ J(θ) = ∇θ ∫ pθ(τ)R(τ)dτ

= ∫ pθ(τ)∇θ log pθ(τ)R(τ)dτ

= E{∇θ log pθ(τ)R(τ)}.

If our system p(s′∣s, a) is Markovian, we may use
pθ(τ) = p(s)∏Hh= p(sk+∣sk, ak)πθ(ak∣sk) for a
stochastic policy a ∼ πθ(a∣s) to obtain the model-
free policy gradient estimator known as episodic REIN-
FORCE (Williams,)

∇θ J(θ) = ZγE{
H

∑
h=

γk∇θ log πθ(ak∣sk)
H

∑
k=h

γk−hrk} ,

and for the deterministic policy a = πθ(s), the model-
based policy gradient

∇θ J(θ) = ZγE{
H

∑
h=

γk(∇ak log p(sk+∣sk, ak)
T

∇θ πθ(sk))
H

∑
k=h

γk−hrk}

follows from pθ(τ) = p(s)∏Hh= p(sk+∣sk, πθ(sk)).
Note that all rewards preceeding an actionmay be omit-
ted as the cancel out in expectation. Using a state–action
value function Qπθ (s, a,h) = E{∑Hk=h γk−hrk∣ s, a, πθ}

(see 7Value Function Approximation), we can rewrite
REINFORCE in its modern form

∇θ J(θ) = ZγE{
H

∑
h=

γk∇θ log πθ(ak∣sk)

(Qπθ (s, a,h) − b(s,h))} ,

 P Policy Search

known as the policy gradient theorem where the base-
line b(s,h) is an arbitrary function that may be used
to reduce the variance, and Qπθ (s, a,h) represents the
action–value function.
While likelihood-ratio gradients have been known

since the late s, they have recently experienced an
upsurge of interest due to their demonstrated e�ective-
ness in applications (see, for example, Peters & Schaal,
), progress toward variance reduction using opti-
mal baselines (Lawrence, Cowan, & Russell,), rig-
orous understanding of the relationships between value
functions and policy gradients (Sutton et al.,), pol-
icy gradients in reproducing kernel Hilbert space (Bag-
nell,) as well as faster, more robust convergence
using natural policy gradients (Bagnell, ; Peters &
Schaal,).

Cross References
7Markov Decision Process
7Reinforcement Learning
7Value Function Approximation

Recommended Reading
Bagnell, J. A. (). Learning decisions: Robustness, uncertainty,

and approximation. Doctoral dissertation, Robotics Institute,
Carnegie Mellon University, Forbes Avenue, Pittsburgh,
PA .

Fu, M. C. (). Handbook on operations research and management
science: Simulation (Vol. , pp. –) (Chapter : Stochastic
gradient estimation). ISBN : ---, Elsevier.

Glynn, P. (). Likelihood ratio gradient estimation for stochastic
systems. Communications of the ACM, (), –.

Hasdorff, L. (). Gradient optimization and nonlinear control.
John Wiley & Sons.

Jacobson, D. & H., Mayne, D. Q. (). Differential Dynamic
Programming. New York: American Elsevier Publishing
Company, Inc.

Lawrence, G., Cowan, N., & Russell, S. (). Efficient gradient
estimation for motor control learning. In Proceedings of the
international conference on uncertainty in artificial intelligence
(UAI), Acapulco, Mexico.

Peters, J., & Schaal, S. (). Reinforcement learning of motor skills
with policy gradients. Neural Networks, (), –.

Spall, J. C. (). Introduction to stochastic search and optimization:
Estimation, simulation, and control. Hoboken: Wiley.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (). Policy
gradient methods for reinforcement learning with function
approximation. In S. A. Solla, T. K. Leen, & K.-R. Mueller,
(Eds.), Advances in neural information processing systems
(NIPS), Denver, CO. Cambridge: MIT Press.

Williams, R. J. (). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
Learning, , –.

Policy Search

7Markov Decision Processes
7Policy Gradient Methods

POMDPs

7Partially Observable Markov Decision Processes

POS Tagging

Walter Daelemans
CLIPS University of Antwerp, Antwerpen, Belgium

Synonyms
Grammatical tagging; Morphosyntactic disambigua-
tion; Part of speech tagging; Tagging

Definition
Part-of-speech tagging (POS tagging) is a process in
which each word in a text is assigned its appropriate
morphosyntactic category (for example noun-singular,
verb-past, adjective, pronoun-personal, and the like). It
therefore provides information about bothmorphology
(structure of words) and syntax (structure of sentences).
�is disambiguation process is determined both by con-
straints from the lexicon (what are the possible cate-
gories for a word?) and by constraints from the context
in which the word occurs (which of the possible cate-
gories is the right one in this context?). For example,
a word like table can be a noun-singular, but also a
verb-present (as in I table this motion). �is is lexical
knowledge. It is the context of the word that should be
used to decide which of the possible categories is the
correct one. In a sentence like Put it on the table, the
fact that table is preceded by the determiner the, is a
good indication that it is used as a noun here. Systems
that automatically assign parts of speech to words in
text should take into account both lexical and contex-
tual constraints, and they are typically found in imple-
mentations as a lookup module and a disambiguation
module.

POS Tagging P

P

Motivation and Background
In most natural language processing (NLP) applica-
tions, POS tagging is one of the �rst steps to allow
abstracting away from individual words. It is not to
be confused with lemmatization, a process that reduces
morphological variants of words to a canonical form
(the citation form, for example, in�nitive for verbs
and singular for nouns). Whereas lemmatization allows
abstraction over di�erent forms of the same word, POS
tagging abstracts over sets of di�erent words that have
the same function in a sentence. It should also not be
confused with tokenization, a process that detects word
forms in text, stripping o� punctuation, handling abbre-
viations, and so on. For example, the string don’t could
be converted to do not. Normally, a POS tagging system
would take tokenized text as input. More advanced tok-
enizers may even handle multiword items, for example
treating in order to not as three separate words but as a
single lexical item.
Applications. A POS tagger is the �rst disambigua-

tion module in text analysis systems. In order to deter-
mine the syntactic structure of a sentence (and its
semantics), we have to know the parts of speech of
each word. In earlier approaches to syntactic analysis
(parsing), POS tagging was part of the parsing process.
However, individually trained and optimized POS tag-
gers have increasingly become a separate module in
shallow or deep syntactic analysis systems. By exten-
sion, POS tagging is also a foundational module in text
mining applications ranging from information extrac-
tion and terminology/ontology extraction to summa-
rization and question answering.
Apart from being one of the �rst modules in any

text analysis system, POS tagging is also useful in lin-
guistic studies (corpus linguistics) – for example for
computing frequencies of disambiguated words and of
super�cial syntactic structures. In speech technology,
knowing the part of speech of a word can help in speech
synthesis (the verb “subJECT” is pronounced di�erently
from the noun “SUBject”), and in speech recognition,
POS taggers are used in some approaches to language
modeling. In spelling and grammar checking, POS tag-
ging plays a role in increasing the precision of such
systems.
Part-of-speech tag sets. �e inventory of POS tags

can vary from tens to hundreds depending on the
richness of morphology and syntax that is represented

and on the inherent morphological complexity of a
language. For English, the tag sets most used are
those of the Penn Treebank (tags; Marcus, San-
torini, & Marcinkiewicz,), and the CLAWS C
tag set (tags; Garside & Smith,). Tag sets are
most o�en developed in the context of the construc-
tion of annotated corpora. �ere have been e�orts to
standardize the construction of tag sets to increase
translatability between di�erent tag sets, such as
Eagles. (http://www.ilc.cnr.it/EAGLES/browse.html)
and ISO/TC /SC . (http://www.tcsc.org/)

�e following example shows both tag sets. By con-
vention, a tagged word is represented by attaching the
POS tag to it, separated by a slash.
Pierre/NNP Vinken/NNP ,/, /CD years/NNS old/

JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT
nonexecutive/JJ director/NNNov./NNP/CD ./. [Penn
Treebank]
Pierre/NP Vinken/NP ,/, /MC years/NNT old/

JJ ,/, will/VM join/VVI the/AT Board/NN as/II a/AT
nonexecutive/JJ director/NN Nov./NPM /MC ./.
[CLAWS C]
As can be seen, the tag sets di�er in level of detail.

For example, NNT in the C tag set indicates a plu-
ral temporal noun (as a specialization of the word class
noun), whereas the Penn Treebank tag set only special-
izes to plural noun (NNS).
Like most tasks in NLP, POS tagging is a dis-

ambiguation task, and both linguistic knowledge-
based handcra�ingmethods and corpus-based learning
methods have been proposed for this task. We will
restrict our discussion here to the statistical and
machine learning approaches to the problem, which
have become mainstream because of the availability
of large POS tagged corpora and because of better
accuracy in general than handcra�ed systems. A state
of the art system using a knowledge-based approach
is described in Karlsson, Voutilainen, Heikkilä, and
Anttila ().
A decade old now, but still a complete and infor-

mative book-length introduction to the �eld of POS
tagging is vanHalteren (). It discussesmany impor-
tant issues that are not covered in this article (perfor-
mance evaluation, history, handcra�ing approaches, tag
set development issues, handling unknown words, and
more.). A more recent introductory overview is Chap.
in Jurafsky and Martin ().

 P POS Tagging

Statistical and Machine Learning
Approaches to Tagging
In the late s, statistical approaches based on n-gram
probabilities (probabilities that sequences of n tags
occur in a corpus) computed on frequencies in tagged
corpora have already been proposed by the UCREL
team at the University of Lancaster (Garside & Smith,
).�ese earlymodels lacked a precisemathematical
framework and a principled solution to working with
zero- or low probability frequencies. It was realized that
HiddenMarkovModels (HMM) in use in speech recog-
nition were applicable to the tagging problem as well.

HMMs
HMMs are probabilistic �nite state automata that are
�exible enough to combine n-gram information with
other relevant information to a limited extent. �ey
allow supervised learning by computing the probabili-
ties of n-grams from tagged corpora, and unsupervised
learning using the Baum-Welch algorithm. Finding
the most probable tag sequence given a sequence of
words (decoding) is done using the Viterbi search. In
combinationwith smoothingmethods for low-frequency
events and special solutions for handling unknown
words, this approach results in a state-of-the-art tag-
ging performance. A good implementation is TnT (Tri-
grams’n Tags, Brants,).

Transformation-Based Error-Driven
Learning (Brill-Tagging)
Transformation-based learning is an eager learning
method in which the learner extracts a series of rules,
each of which transforms a tag into another tag given
a speci�c context. Learning starts with an initial anno-
tation (e.g., tag each word in a text by the POS tag it
is most frequently associated with in a training cor-
pus), and compares this annotationwith a gold standard
annotation (annotated by humans). Discrepancies trig-
ger the generation of rules (constrained by templates),
and in each cycle, the best rule is chosen.�e best rule is
the one thatmost o�en leads to a correct transformation
in the whole training corpus (Brill, a). An unsuper-
vised learning variant (using a lexicon with word-tag
probabilities) is described in Brill (b). Fully unsu-
pervised POS tagging can also be achieved using distri-
butional clustering techniques, as pioneered by Schütze
(). However, these methods are hard to evaluate
and compare to supervised approaches.�e best way to

evaluate them is indirectly, in an application-oriented
way, as in Ushioda ().

Other Supervised Learning Methods
As a supervised learning task, POS tagging has been
handled mostly as in a sliding window representation.
Instances are created by making each word in each sen-
tence a focus feature of an instance, and adding the le�
and right context as additional features. �e class to
be predicted is the POS tag of the focus word. Instead
of using the words themselves as features, information
about them can be used as features as well (e.g., capital-
ized or not, hyphenated or not, the POS tag of the word
for le� context words as predicted by the tagger previ-
ously, a symbol representing the possible lexical cate-
gories of the focus word and right context words, �rst
and last letters of the word in each position, and so on.).

�e following table lists the structure of instance
representations for part of the sentence shown earlier.
In this case the words themselves are feature values, but
most o�en other derived features would replace these
because of sparseness problems.

Focus Class

= = Pierre Vinken , NNP

= Pierre Vinken , NNP

Pierre Vinken , years ,

Vinken , years old CD

Most classi�cation-based, supervised machine learning
methods can be, and have been applied to this prob-
lem, including decision tree learning (Schmid, b),
memory-based learning (Daelemans, Zavrel, Berck,
& Gillis,), maximum entropy models (Ratna-
parkhi,), neural networks (Schmid, a), ensem-
ble methods (van Halteren et al.,), and many oth-
ers. All these methods seem to converge to a –%
accuracy rate on the Wall Street Journal corpus using
the Penn Treebank tag set. In a systematic compari-
son of some of the methods listed here, van Halteren
et al. () found that TnT outperforms maximum
entropy and memory-based learning methods, which
in turn outperform Brill tagging. Non-propositional
supervised learning methods have been applied to the
task as well (Cussens,) with grammatical structure

Positive Semidefinite P

P

as background knowledge with similar results.�e best
results reported on theWSJ corpus so far is bidirectional
perceptron learning (Shen, Satta, & Joshi,) with a
.% accuracy.
Because of these high scores, POS tagging (at least

for English) is considered by many a solved problem.
However, as for most machine-learning based NLP sys-
tems, domain adaptation is still a serious problem for
POS tagging. A tagger trained to high accuracy on
newspaper language will fail miserably on other types
of text, such as medical language.

Cross References
7Classi�cation
7Clustering
7Decision Trees
7ILP
7Information Extraction
7Lazy Learning
7Maxent Models
7Text Categorization
7Text Mining

Recommended Reading
Brants, T. (). TnT – A statistical part-of-speech tagger. In

Proceedings of the sixth applied natural language processing
conference ANLP-. Seattle, WA.

Brill, E. (a). Transformation-based error-driven learning and
natural language processing: a case study in part-of-speech
tagging. Computional Linguistics, (), –.

Brill, E. (b). Unsupervised learning of disambiguation rules for
part of speech tagging. In Proceedings of the third workshop on
very large corpora (pp. –). Ohio State University, Ohio.

Cussens, J. (). Part-of-speech tagging using progol. In
N. Lavrac, & S. Dzeroski (Eds.), Proceedings of the seventh
international workshop on inductive logic programming, Lec-
ture Notes in Computer Science (Vol. pp. –). London:
Springer.

Daelemans, W., Zavrel, J., Berck, P., & Gillis, S. (). MBT: A
memory-based part of speech tagger generator. In Proceed-
ings of the fourth workshop on very large corpora (pp. –).
Copenhagen, Denmark

Garside, R., & Smith, N. (). A hybrid grammatical tagger:
CLAWS. In R. Garside, G. Leech, & A. McEnery (Eds.), Corpus
annotation: Linguistic information from computer text corpora
(pp. –). London: Longman.

Jurafsky, D., & Martin, J. (). Speech and language processing: An
introduction to natural language processing, computational lin-
guistics, and speech recognition (nd ed.). Upper Saddle River,
NJ: Prentice Hall.

Karlsson, F., Voutilainen, A., Heikkilä, J., & Anttila, A. (). Con-
straint grammar. A language-independent system for parsing

unrestricted text (p.). Berlin and New York: Mouton de
Gruyter.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (). Building a
large annotated corpus of English: The Penn Treebank. Compu-
tational Linguistics, (), –.

Ratnaparkhi, A. (). A maximum entropy part of speech tag-
ger. In Proceedings of the ACL-SIGDAT conference on empirical
methods in natural language processing (pp. –). Philadel-
phia, PA.

Schmid, H. (a). Part-of-speech tagging with neural networks. In
Proceedings of COLING- (pp. –). Kyoto, Japan.

Schmid, H. (b). Probabilistic part-of-speech tagging using deci-
sion trees. In Proceedings of the international conference on
new methods in language processing (NeMLaP), (pp. –).
Manchester, UK.

Schutze, H. (). Distributional part-of-speech tagging. In Pro-
ceedings of EACL (pp. –). Dublin, Ireland.

Shen, L., Satta, G., & Joshi, A. (). Guided learning for bidirec-
tional sequence classification. In Proceedings of the th annual
meetings of the association of computational linguistics (ACL
) (pp. –). Prague, Czech Republic.

Ushioda, A. (). Hierarchical clustering of words and applica-
tions to NLP tasks. In Proceedings of the fourth workshop on very
large corpora (pp. –). Somerset, NJ.

van Halteren, H. (Ed.). (). Syntactic wordclass tagging. Boston:
Kluwer Academic Publishers.

van Halteren, H. Zavrel, J., & Daelemans, W. () Improving accu-
racy in NLP through combination of machine learning systems.
Computational Linguistics, (), –.

Positive Definite

7Positive Semide�nite

Positive Predictive Value

7Precision

Positive Semidefinite

Synonyms
Positive de�nite

Definition
A symmetric m × m matrix K satisfying ∀x ∈ cm :
x∗Kx ≥ is called positive semide�nite. If the equality
only holds for x = ⃗ the matrix is positive de�nite.
A function k : X × X → c, X ≠ ∅, is positive

(semi-) de�nite if for allm ∈ n and all x, . . . , xm ∈ X the
m×mmatrix K⃗ with elements Kij := k(xi, xj) is positive
(semi-) de�nite.

 P Posterior

Sometimes the term strictly positive de�nite is used
instead of positive de�nite, and positive de�nite refers
then to positive semide�niteness.

Posterior

7Posterior Probability

Posterior Probability

Geoffrey I. Webb
Monash University

Synonyms
Posterior

Definition
In Bayesian inference, a posterior probability of a value
x of a random variable X given a context a value y of a
random variable Y , P(X = x ∣ Y = y), is the probabil-
ity of X assuming the value x in the context of Y = y.
It contrasts with the 7prior probability, P(X = x), the
probability of X assuming the value x in the absence of
additional information.
For example, it may be that the prevalence of a par-

ticular form of cancer, exoma, in the population is .%,
so the prior probability of exoma, P(exoma = true), is
.. However, assume % of people who have skin
discolorations of greater than cmwidth (sd>cm) have
exoma. It follows that the posterior probability of exoma
given sd>cm, P(exoma= true ∣ sd>cm= true), is ..

Cross References
7Bayesian Methods

Post-Pruning

Definition
Post-pruning is a7Pruningmechanism that �rst learns
a possibly 7Over�tting hypothesis and then tries to
simplify it in a separate learning phase.

Cross References
7Over�tting
7Pre-Pruning
7Pruning

Postsynaptic Neuron

�e neuron that receives signals via a synaptic con-
nection. A chemical synaptic connection between two
neurons allows to transmit signals from a presynaptic
neuron to a postsynaptic neuron.

Precision

KaiMing Ting
Monash University, Victoria, Australia

Synonyms
Positive predictive value

Definition
Precision is de�ned as a ratio of true positives (TP)
and the total number of positives predicted by a model.
�is is de�ned with reference to a special case of the
7confusion matrix, with two classes; one designated
the positive class, and the other the negative class, as
indicated in Table .
Precision can then be de�ned in terms of true posi-

tives and false positives (FP) as follows.
Precision = TP/(TP + FP)

Cross References
7Precision and Recall

Precision. Table The outcomes of classification into

positive and negative classes

Assigned Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

A
ct

ua
l

C
la

ss

Negative False Positive (FP) True Negative (TN)

Predicate Invention P

P

Precision and Recall

KaiMing Ting
Monash University, Vic, Australia

Definition
7Precision and recall are the measures used in the
information retrieval domain to measure how well an
information retrieval system retrieves the relevant doc-
uments requested by a user.�e measures are de�ned
as follows:
Precision = Total number of documents retrieved

that are relevant/Total number of documents that are
retrieved.
Recall = Total number of documents retrieved that

are relevant/Total number of relevant documents in the
database.
We can use the same terminology used in a

7confusion matrix to de�ne these two measures. Let
relevant documents be positive examples and irrelevant
documents, negative examples.�e two measures can
be rede�ned with reference to a special case of the con-
fusion matrix, with two classes, one designated the pos-
itive class, and the other the negative class, as indicated
in Table .
Recall = True positives/Total number of actual pos-

itives = TP/(TP + FN)
Precision =True positives/Total number of positives

predicted = TP/(TP + FP)
Instead of twomeasures, they are o�en combined to

provide a singlemeasure of retrieval performance called
the7F-measure as follows:
F-measure = * Recall * Precision/(Recall + Preci-

sion)

Cross References
7Confusion Matrix

Precision and Recall. Table The outcomes of classifi-

cation into positive and negative classes

Assigned Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

A
ct

ua
l

C
la

ss

Negative False Positive (FP) True Negative (TN)

Predicate

A predicate or predicate symbol is used in logic to
denote properties and relationships. Formally, if P is a
predicate with arity n, and t, . . . , tn is a sequence of
n terms (i.e., constants, variables, or compound terms
built from function symbols), then P(t, . . . , tn) is an
atomic formula or atom. Such an atom represents a
statement that can be either true or false. Using logi-
cal connectives, atoms can be combined to build well-
formed formulae in 7�rst-order logic or 7clauses in
7logic programs.

Cross References
7Clause
7First-Order Logic
7Logic Program

Predicate Calculus

7First-Order Logic

Predicate Invention

Definition
Predicate invention is used in 7inductive logic pro-
gramming to refer to the automatic introduction of
new relations or predicates in the hypothesis language.
Inventing relevant new predicates is one of the hardest
tasks in machine learning, because there are so many
possible ways to introduce such predicates and because
it is hard to judge their quality. As an example, con-
sider a situation where in the predicates fatherof
and motherof are known.�en it would make sense
to introduce a new predicate that is true whenever
fatherof or motherof is true. �e new predi-
cate that would be introduced this way corresponds to
the parentof predicate. Predicate invention has been
introduced in the context of inverse resolution.

 P Predicate Logic

Cross References
7Inductive Logic Programming
7Logic of Generality

Predicate Logic

7First-Order Logic

Prior Probabilities

7Bayesian Nonparametric Models

Prior Probability

Geoffrey I. Webb
Monash University

Synonyms
Prior

Definition
In Bayesian inference, a prior probability of a value x of
a random variable X, P(X = x), is the probability of X
assuming the value x in the absence of (or before obtain-
ing) any additional information. It contrasts with the
7posterior probability, P(X = x ∣Y = y), the probability
of X assuming the value x in the context of Y = y.
For example, it may be that the prevalence of a par-

ticular form of cancer, exoma, in the population is .%,
so the prior probability of exoma, P(exoma = true), is
.. However, assume % of people who have skin
discolorations of greater than cmwidth (sd>cm) have
exoma. It follows that the posterior probability of exoma
given sd>cm, P(exoma= true ∣ sd>cm = true), is ..

Cross References
7Bayesian Methods

Prediction with Expert Advice

7Online Learning

Predictive Software Models

7Predictive Techniques in So�ware Engineering

Predictive Techniques in Software
Engineering

Jelber Sayyad Shirabad
University of Ottawa
Ottawa, ON, Canada

Synonyms
Predictive so�ware models

Introduction
So�ware engineering (SE) is a knowledge- anddecision-
intensive activity. From the initial stages of the so�ware
life cycle (i.e., requirement analysis), to the later stage of
testing the system, and �nally maintaining the so�ware
through its operational life, decisions need to be made
which impact both its success and failure. For instance,
during project planning one needs to be able to forecast
or predict the required resources to build the system.
At the later stages such as testing or maintenance it is
desirable to know which parts of the system may be
impacted by a change, or are more risky or will require
more intensive testing.

�e process of developing so�ware can potentially
create a large amount of data and domain knowledge.
�e nature of the data, of course, depends on the phase
in which the data were generated. During the require-
ment analysis, this data most times is manifested in the
formof documentations. As the processmoves forward,
other types of artifacts such as code and test cases are
generated. However, what, when, how accurately, and
how much is recorded varies from one organization to
the next. More mature organizations have a tendency
to maintain larger amount of data about the so�ware
systems they develop.

�e data generated as part of the so�ware engineer-
ing process captures a wide range of latent knowledge
about the system. Having such a source of information,
the question one needs to ask is that whether there is
any technology that can leverage this potentially vast
amount of data to:

Predictive Techniques in Software Engineering P

P

● Better understand a system
● Makemore informative decisions as needed through
the life of an existing system

● Apply lessons learned from building other systems
to the creation of a new system

As this chapter will show, machine learning (ML),
which provides us with a host of algorithms and tech-
niques to learn from data, is such a technology. In
preparing this entry we have drawn from over two
decades of research in applying ML to various so�ware
engineering problems.�e number of potential uses of
ML in SE is practically enormous and the list of applica-
tions is expanding over time.�e focus of this chapter is
a subset of these applications, namely the ones that aim
to create models for the purpose of making a prediction
regarding some aspect of a so�ware system. One could
dedicate a separate article for some of these prediction
tasks, as there is a large body of research covering dif-
ferent aspects of interest, such as algorithms, estimation
methods, features used, and the like. However, due to
space constraints, we will only mention a few repre-
sentative research examples.�e more general topic of
the application of ML in SE can be studied from dif-
ferent points of view. A good discussion of many such
aspects and applications can be found in Zhang and
Tsai ().
Traditionally, regression-based techniques have been

used in so�ware engineering for building predictive
models. However, this requires making a decision as
to what kind of regression method should be used
(e.g., linear or quadratic), or alternatively what kind of
curve should be �t to the data. �is means that the
general shape of the function is determined �rst, and
then the model is built. Some researcher, have used ML
as a way to delegate such decisions to the algorithm.
In other words, it is the algorithm that would pro-
duce the best �t to the data. Some of the most com-
mon replacements in the case of regression problems
have been neural networks (NN) and genetic pro-
gramming (GP). However, obviously the use of such
methods still requires other types of decisions, such as
the topology of the network, the number of generations,
or the probability of mutations to be made by humans.
Sometimes, a combination of di�erent methods such as
genetic algorithms and neural networks are used, where

one method explores possible parameters for the actual
method used to build the model.
So�ware engineering-related datasets, similar to

many other real world datasets, are known to contain
noise. Another justi�cation for the use of ML in so�-
ware engineering applications is that it provides algo-
rithms that are less sensitive to noise.

The Process of Applying ML to SE
To apply ML to SE, similar to other applications, one
needs to follow certain steps, which include:

Understanding the problem.�is is an essential step that
heavily in�uences the decisions to follow. Examples of
typical problems in the so�ware engineering domain
are the need to be able to estimate the cost or e�ort
involved in developing a so�ware, or to be able to char-
acterize the quality of a so�ware system, or to be able
to predict what modules in a system are more likely to
have a defect.

Casting the original problem as a learning problem. To
use ML technology, one needs to decide on how to for-
mulate the problem as a learning task. For instance,
the problem of �nding modules that are likely to be
faulty can be cast as a classi�cation problem, (e.g., is
the module faulty or not) or a numeric prediction prob-
lem (e.g., what the estimated fault density of a module
is). �is mapping is not always straightforward, and
may require further re�nement of the original problem
statement or breaking down the original problem into
sub-problems, for some of them ML may provide an
appropriate solution.

Collection of data and relevant background knowledge.
Once the ML problem for a particular SE application is
identi�ed, one needs to collect the necessary data and
background knowledge in support of the learning task.
In many SE applications data is much more abundant
or easier to collect than the domain theory or back-
ground knowledge relevant to a particular application.
For instance, collecting data regarding faults discov-
ered in a so�ware system and changes applied to the
source to correct a fault is a common practice in so�-
ware projects. On the other hand, there is no com-
prehensive and agreed upon domain theory describing
so�ware systems. Having said that, in the case of some

 P Predictive Techniques in Software Engineering

applications, if we limit ourselves to incomplete back-
ground knowledge, then it can be automatically gen-
erated by choosing a subset that is considered to be
relevant. For instance, in Cohen and Devanbu (),
the authors apply inductive logic programming to the
task of predicting faulty modules in a so�ware system.
�ey describe the so�ware system in terms of cohesion
and coupling-based relations between classes, which are
generated by parsing the source code.

Data preprocessing and encoding. Preprocessing the data
includes activities such as reducing the noise, selecting
appropriate subsets of the collected data, and deter-
mining a proper subset of features that describe the
concept to be learned. �is cleaner data will be input
to a speci�c algorithm and implementation. �ere-
fore, the data and background knowledge, if any, may
need to be described and formatted in a manner
that complies with the requirements of the algorithm
used.

Applying machine learning and evaluating the results.
Running a speci�c ML algorithm is fairly straightfor-
ward. However, one needs to measure the goodness
of what is learned. For instance, in the case of clas-
si�cation problems, models are frequently assessed in
terms of their accuracy by using methods such as hold-
out and cross-validation. In case of numeric prediction,
other standard measures such as mean magnitude of
relative error (MMRE) are commonly used. Addition-
ally, so�ware engineering researchers have sometimes
adopted other measures for certain applications. For
instance PRED(x), which is percentage of the examples
(or samples) with magnitude of relative error (MRE)
≤ x. According to P�eeger and Atlee (), most man-
agers use PRED() to assess cost, e�ort, and schedule
models, and consider the model to function well if the
value of PRED() is greater than %. As for MMRE,
a value of less than % is considered to be good; how-
ever, other researchers, such as Boehm, would recom-
mend a value of % or less. Assessing the usefulness
of what is learned sometimes requires feedback from
domain experts or from end users. If what is learned is
determined to be inadequate, one may need to either
retry this step by adjusting the parameters of the algo-
rithms used, or reconsider the decisions made in earlier
stages and proceed accordingly.

Field testing and deployment. Once what is learned is
assessed to be of value, it needs to actually be used by
the intended users (e.g., project managers and so�ware
engineers). Unfortunately, despite the very large body of
research in so�ware engineering in general and use of
ML in speci�c applications in SE, the number of articles
discussing the actual use and impact of the research in
industry is relatively very small. Very o�en, the reason
for this is the lack of desire to share what the indus-
try considers to be con�dential information. However,
there are numerous research articles that are based on
industrial data, which is an indication of the practical
bene�ts of ML in real-world SE.

Applications of Predictive Models in SE
�e development of predictive models is probably the
most common application of ML in so�ware engi-
neering.�is observation is consistent with �ndings of
previous research (Zhang & Tsai,). In this sec-
tion, we mention some of the predictive models one
can learn from so�ware engineering data. Our goal is
to provide examples of both well established and newer
applications. It should be noted that the terminology
used by researchers in the �eld is not always consistent.
As such, one may argue that some of these examples
belong to more than one category. For instance, in Fen-
ton and Neil () the authors consider predicting
faults as a way of estimating so�ware quality and main-
tenance e�ort.�e paper could potentially belong to any
of the categories of fault, quality, or maintenance e�ort
prediction.

Software size prediction

So�ware size estimation is the process of predicting the
size of a so�ware system. As so�ware size is usually
an input to models that estimate project cost schedule
and planning, an accurate estimation of so�ware size is
essential to proper estimation of these dependent fac-
tors. So�ware size can be measured in di�erent ways,
most common of which is the number of lines of code
(LOC); however, other alternatives, such as function
points, which are primarily for e�ort estimation, also
provide means to convert the measure to LOC.�ere
are di�erent methods for so�ware sizing, one of which
is the component-based method (CBM). In a study to
validate the CBM method, Dolado, () compared
models generated bymultiple7linear regression (MLR)

Predictive Techniques in Software Engineering P

P

with the ones obtained by neural networks and genetic
programming. He concluded that both NN- and GP-
based models perform as well or better than the MLR
models. One of the cited bene�ts of NNwas its ability to
capture non-linear relations, which is one of the weak-
nesses of MLR, while GP was able to generate models
that were interpretable. Regolin, de Souza, Pozo, and
Vergilio () also used NN- and GP-based models to
predict so�ware size in terms of LOC. �ey use both
function points and number of components metrics for
this task. Pendharkar () uses decision tree regres-
sion to predict the size of OO components. �e total
size of the system can be calculated a�er the size of its
components is determined.

Software quality prediction

�e ISO quality standard decomposes quality to
functionality, reliability, e�ciency, usability, maintain-
ability, and portability factors. Other models such as
McCall’s, also de�ne quality in terms of factors that
are themselves composed of quality criteria. �ese
quality criteria are further associated with measurable
attributes called quality metrics, for instance fault or
change counts (Fenton & P�eeger,) However, as
stated in Fenton and P�eeger (), many so�ware
engineers have a narrower view of quality as the lack
of so�ware defects. A de facto standard for so�ware
quality is fault density. Consequently, it is not surpris-
ing to see that in many published articles the problem
of predicting the quality of a system is formulated as
prediction of faults. To that end, there has been a large
body of work over the years that has applied various
ML techniques to build models to assess the quality of
a system. For instance, Evett and Khoshgo�ar ()
used genetic programming to build models that predict
the number of faults expected in each module. Neural
networks have appeared in a number of so�ware qual-
ity modeling applications such as Khoshgo�aar, Allen,
Hudepohl, andAud (), which applied the technique
to a large industrial system to classify modules as fault-
prone or not fault-prone, or Quah and �win ()
who used object-oriented design metrics as features in
developing the model. In El Emam, Benlarbi, Goel, and
Rai () the authors developed fault prediction mod-
els for the purpose of identifying high-risk modules.
In this study, the authors investigated the e�ect of vari-
ous parameter settings on the accuracy of these models.

�emodels were developed using data from a large real-
time system. More recently, Xing, Guo, and Lyu ()
used SVMs and Seliya and Khoshgo�aar () used
an EM semi-supervised learning algorithm to develop
so�ware quality models. Both these works cite the abil-
ity of these algorithms to generate models with good
performance in the presence of a small amount of
labeled data.

Software Cost Prediction

So�ware cost prediction typically refers to the process
of estimating the amount of e�ort needed to develop
a so�ware system. As this de�nition suggests, cost and
e�ort estimations are o�en used interchangeably. Var-
ious kinds of cost estimations are needed throughout
the so�ware life cycle. Early estimation allows one to
determine the feasibility of a project.More detailed esti-
mation allows managers to better plan for the project.
As there is less information available in the early stages
of the project, early predictions have a tendency to be
the least accurate. So�ware cost and e�ort estimation
models are among some of the oldest so�ware pro-
cess prediction models.�ere are di�erent methods of
estimating costs including:
() Expert opinion; () analogy based on similarity

to other projects; () decomposition of the project in
terms of components to deliver or tasks to accomplish,
and to generate a total estimate from the estimates of the
cost of individual components or activities; and () the
use of estimation models (Fenton & P�eeger,).
In general, organization-speci�c cost estimation

datasets tend to be small, as many organizations deal
with a limited number of projects and do not systemati-
cally collect process level data, including the actual time
and e�ort expenditure for completion of a project. As
cost estimationmodels are numeric predictors, many of
the original modeling techniques were based on regres-
sion methods.

�e study in Briand, El Emam, Surmann, and
Wieczorek () aims to identify methods that gener-
ate more accurate cost models, as well as to investigate
the e�ects of the use of organization-speci�c versus
multi-organization datasets.�e authors compared the
accuracy of models generated by using ordinary least
squares regression, stepwise ANOVA, CART, and anal-
ogy.�e measures used were MMRE, median of MRE
(MdMRE), and PRED(). While their results did not

 P Predictive Techniques in Software Engineering

show a statistical di�erence between models obtained
from thesemethods, they suggest that CARTmodels are
of particular interest due to their simplicity of use and
interpretation.
Shepperd and Scho�eld () describes the use of

analogies for e�ort prediction. In this method, projects
are characterized in terms of attributes such as the num-
ber of interfaces, the developmentmethod, or the size of
the functional requirements document.�e prediction
for a speci�c project is made based on the characteris-
tics of projectsmost similar to it.�e similaritymeasure
used in Shepperd and Scho�eld () is Euclidean dis-
tance in n-dimensional space of project features. �e
proposedmethodwas validated on nine di�erent indus-
trial datasets, covering a total of projects. In all
cases, the analogy-based method outperforms algorith-
mic models based upon stepwise regression when mea-
sured in terms of MMRE. When results are compared
using PRED() the analogy-based method generates
more accurate models in seven out of nine datasets.
Decision tree and neural network-based models are
also used in a number of studies on e�ort estimation
models.
In a more recent paper, (Oliveira,), a compar-

ative study of support vector regression (SVR), radial
basis function7neural networks (RBFNs), and7linear
regression-based models for estimation of a so�ware
project e�ort is presented. Both linear as well as RBF
kernels were used in the construction of SVR mod-
els. Experiments using a dataset of so�ware projects
fromNASA showed that SVR signi�cantly outperforms
RBFNs and linear regression in this task.

Software Defect Prediction

In research literature one comes across di�erent def-
initions for what constitutes a defect: fault and fail-
ure. According to Fenton and P�eeger () a fault is
a mistake in some so�ware product due to a human
error. Failure, on the other hand, is the departure of the
system from its required behavior. Very o�en, defects
refer to faults and failures collectively. In their study
of defect prediction models, Fenton and Neil observed
that, depending on the study, defect count could refer
to a post-release defect, the total number of known
defects, or defects that are discovered a�er some arbi-
trary point in the life cycle. Additionally, they note

that defect rate, defect density, and failure rate are used
almost interchangeably in the literature (Fenton & Neil,
).�e lack of an agreed-upon de�nition for such a
fundamental measure makes comparison of the mod-
els or published results in the literature di�cult. Two
major reasons cited in research literature for developing
defect detection models are assessing so�ware quality
and focusing testing or other needed resources onmod-
ules that are more likely to be defective. As a result, we
frequently �nd ourselves in a situation where a model
could be considered both a quality prediction model
and a defect prediction model.�erefore, most of the
publications we have mentioned under so�ware quality
prediction could also be referred to in this subsection.
Fenton andNeil suggest using Bayesian Belief Networks
as an alternative to other existing methods (Fenton &
Neil,).

Software Reliability Prediction

�e ANSI So�ware Reliability Standard de�nes so�-
ware reliability as:

▸ “the probability of failure-free operation of a computer

program for a specified time in a specified environ-

ment.”

So�ware reliability is an important attribute of so�-
ware quality. �ere are a number of publications on
the use of various neural network-based reliability pre-
diction models, including Sitte () where NN-based
so�ware reliability growth models are compared with
models obtained through recalibration of parametric
models. Results show that neural networks are not only
much simpler to use than the recalibration method, but
that they are equal or better trend predictors. In Pai
and Hong () the authors use SVMs to predict so�-
ware reliability.�ey use simulated annealing to select
the parameters of the SVMmodel. Results show that an
SVM-based model with simulated annealing performs
better than existing Bayesian models.

Software Reusability Prediction

�e use of existing so�ware artifacts or so�ware knowl-
edge is known as so�ware reuse. �e aim of so�-
ware reuse is to increase the productivity of so�ware
developers, and increase the quality of end product,

Predictive Techniques in Software Engineering P

P

both of which contribute to overall reduction in so�-
ware development costs. While the importance of so�-
ware reuse was recognized as early as by Douglas
McIlroy, applications ofML in predicting reusable com-
ponents are relatively few and far between.�e typical
approach is to label the reusable piece of code (i.e., a
module or a class) as one of reusable or non-reusable,
and to then use so�ware metrics to describe the exam-
ple of interest. An early work by Esteva () used
ID to classify Pascal modules from di�erent applica-
tion domains as either reusable or not-reusable.�ese
modules contained di�erent number of procedures.
Later work in Mao, Sahraoui, and Lounis () uses
models built using C. as a means to verify three
hypothesis of correlation between reusability and the
quantitative attributes of a piece of so�ware: inheri-
tance, coupling, and complexity. For each hypothesis,
a set of relevant metrics (e.g., complexity metrics for
a hypothesis on the relation between complexity and
reuse) is used to describe examples. Each example is
labeled as one of four classes of reusability, ranging
from “totally reusable” to “not reusable at all.” If the
learned model performs well then this is interpreted
as the existence of a hypothesized relation between
reuse and one of the abovementioned quantitative
attributes.

Other Applications

In this section, we discuss some of the more recent uses
ofML techniques in building predictivemodels for so�-
ware engineering applications that do not fall into one
the above widely researched areas.
In Padberg, Ragg, and Schoknecht () models

are learned to predict the defect content of documents
a�er so�ware inspection. Being able to estimate how
many defects are in a so�ware document (e.g., speci�-
cations, designs) a�er the inspection, allows managers
to decide whether to re-inspect the document to �nd
more defects or pass it on to the next development step.
To capture the non-linear relation between the inspec-
tion process metrics, such as total number of defects
found by the inspection team and the number of defects
in the document, the authors train a neural network.
�ey conclude that thesemodels yieldmuchmore accu-
rate estimates than standard estimation methods such
as capture-recapture and detection pro�le.

Predicting the stability of object-oriented so�ware,
de�ned as the ease by which a so�ware system or com-
ponent can be changed while maintaining its design,
is the subject of research in Grosser, Sahraoui, and
Valtchev (). More speci�cally, stability is de�ned as
preservation of the class interfaces through evolution of
the so�ware. To accomplish the above task, the authors
use Cased-Base Reasoning. A class is considered stable
if its public interface in revision J is included in revi-
sion J + . Each program class or case is represented by
structural so�ware metrics, which belong to one of the
four categories of coupling, cohesion, inheritance, and
complexity.
Models that predict which defects will be escalated

are developed in Ling, Sheng, Bruckhaus, and Mad-
havji (). Escalated defects are the ones that were not
addressed prior to release of the so�ware due to factors
such as deadlines and limited resources. However, a�er
the release, these defects are escalated by the customer
and must be immediately resolved by the vendor at a
very high cost.�erefore, the ability to predict the risk of
escalation for existing defect reports will prevent many
escalations, and result in large savings for the vendor.
�e authors in this paper showhow the problemofmax-
imizing net pro�t (the di�erence in cost of following
predictions made by the escalation prediction model
versus the existing alternative policy) can be converted
to cost-sensitive learning.�e assumption here is that
net pro�t can be represented as a linear combination
of true positive, false positive, true negative, and false
negative prediction counts, as is done for cost-sensitive
learning that attempts to minimize the weighted cost
of the abovementioned four factors.�e results of the
experiments performed by the authors show that an
improved version of the CSTree algorithm can produce
comprehensible models that generate a large positive
unit net pro�t.
Most predictivemodels developed for so�ware engi-

neering applications, including the ones cited in this
article, make prediction regarding a single entity – for
instance, whether a module is defective, how much
e�ort is needed to develop a system, is a piece of code
reusable, and so on. Sayyad Shirabad, Lethbridge, and
Matwin () introduced the notion of relevance rela-
tions amongmultiple entities in so�ware systems. As an
example of such relations, the authors applied historic

 P Predictive Techniques in Software Engineering

problem report and so�ware change data to learned
models for the Co-update relation among �les in a
large industrial telecom system. �ese models predict
whether changing one source �le may require a change
in another �le. Di�erent sets of attributes, includ-
ing syntax-based so�ware metrics as well as textual
attributes such as source �le comments and problem
reports, are used to describe examples of the Co-update
relation.�eC. decision tree induction algorithmwas
used to learn these predictive models.�e authors con-
cluded that text-based attributes outperform syntactic
attributes in this model-building task.�e best results
are obtained for text-based attributes extracted from
problem reports. Additionally, when these attributes are
combinedwith syntactic attributes, the resultingmodels
perform slightly better.

Future Directions
As we mentioned earlier due to its decision-intensive
nature, there is potential for learning a large number
of predictive models for so�ware engineering tasks. A
very rich area of research for future applications of pre-
dictive models in so�ware engineering is in Autonomic
Computing. Autonomic computing systems, as was put
forward in Ganek and Corbi (), should be:

● Self-con�guring: able to adapt to changes in the sys-
tem in a dynamic fashion.

● Self-optimizing: able to improve performance and
maximize resource allocation and utilization to
meet end users’ needs while minimizing human
intervention.

● Self-healing: able to recover frommistakes by detect-
ing improper operations proactively or reactively
and then initiate actions to remedy the problem
without disrupting system applications.

● Self-protecting: able to anticipate and take actions
against intrusive behaviors as they occur, so as to
make the systems less vulnerable to unauthorized
access.

Execution of actions in support of the capabilities
mentioned above follows the detection of a triggering
change of state in the environment. In some scenarios,
thismay entail a prediction about the current state of the
system; in other scenarios, the prediction may be about
the future state of the system. In a two-state scenario,

the system needs to know whether it is in a normal
or abnormal (undesired) state. Examples of undesired
states are needs optimization or needs healing.�e detec-
tion of the state of a system can be cast as a classi�cation
problem.�e decision as to what attributes should be
used to represent each example of a normal or an abnor-
mal state depends on the speci�c prediction model that
we would like to build and on the monitoring capabili-
ties of the system. Selecting the best attributes among a
set of potential attributes will require empirical analysis.
However, the process can be further aided by:

● Expert knowledge: Based on their past experience,
hardware and so�ware experts typically have evi-
dence or reasons to believe that some attributes are
better indicators of desired or undesired states of the
system.

● Documentation: System speci�cation and other doc-
uments sometimes include the range of acceptable
values for certain parameters of the system. �ese
parameters could be used as attributes.

● Feature selection:�is aims to �nd a subset of avail-
able features or attributes that result in improv-
ing a prede�ned measure of goodness, such as
the accuracy of the model. Reducing the number
of features may also result in a simpler model.
One of the bene�ts of such simpler models is the
higher prediction speed, which is essential for timely
responses by the autonomic system to changes in the
environment.

Obviously, given enough examples of di�erent system
states, one can build multi-class models, which can
make �ner predictions regarding the state of the system.
In the context of autonomic computing, besides

classi�cation models, numeric predictors can also be
used for resource estimation (e.g., what is the appro-
priate database cache size considering the current state
of the system). Furthermore, an autonomic system can
leverage the ability to predict the future value of a vari-
able of interest, such as the use of a particular resource
based on its past values. �is can be accomplished
through7time series predictions. Although researchers
have usedneural networks and support vectormachines
for time series prediction in various domains, we are not
aware of an example of the usage of such algorithms in
autonomic computing.

Preference Learning P

P

Recommended Reading
Briand, L., El Emam, K., Surmann, D., & Wieczorek, I. (). An

assessment and comparison of common software cost estima-
tion modeling techniques. In Proceedings of st international
conference on software engineering (pp. –).

Cohen, W., & Devanbu, P. (). Automatically exploring hypothe-
ses about fault prediction: A comparative study of inductive
logic programming methods. International Journal of Software
Engineering and Knowledge Engineering, (), –.

Dolado, J. J. (). A validation of the component-based method
for software size estimation. IEEE Transactions on Software
Engineering, (), –.

El Emam, K., Benlarbi, S., Goel, N., & Rai, S. (). Compar-
ing case-based reasoning classifiers for predicting high risk
software components. Journal of Systems and Software, (),
–.

Esteva, J. C. (). Learning to recognize reusable software mod-
ules using an inductive classification system. In Proceedings
of the fifth Jerusalem conference on information technology
(pp. –).

Evett, M., & Khoshgoftar, T. (). GP-based software quality pre-
diction. In Proceedings of the third annual conference on genetic
programming (pp. –).

Fenton, N. E., & Pfleeger, S. L. (). Software metrics: A rigorous
and practical approach (nd ed.). Boston: PWS.

Fenton, N., & Neil, M. (). A critique of software defect predic-
tion models. IEEE Transactions on Software Engineering, (),
–.

Ganek, A. G., & Corbi T. A. (). The dawning of autonomic
computing era. IBM Systems Journal, (), –.

Grosser, D., Sahraoui, H. A., & Valtchev, P. (). Predicting soft-
ware stability using case-based reasoning. In Proceedings of th
IEEE international conference on automated software engineer-
ing (ASE) (pp. –).

Khoshgoftaar, T., Allen, E., Hudepohl, J., & Aud, S. (). Applica-
tions of neural networks to software quality modeling of a very
large telecommunications system. IEEE Transactions on Neural
Networks, (), –.

Ling, C., Sheng, V., Bruckhaus, T., & Madhavji, N. (). Maxi-
mum profit mining and its application in software development.
In Proceedings of the th ACM international conference on
knowledge discovery and data mining (SIGKDD) (pp. –).

Mao, Y., Sahraoui, H., & Lounis, H. (). Reusability hypoth-
esis verification using machine learning techniques: A case
study. In Proceedings of the th IEEE international conference
on automated software engineering (pp. –).

Oliveira, A. (). Estimation of software project effort with sup-
port vector regression. Neurocomputing, (–), –.

Padberg, F., Ragg, T., & Schoknecht, R. (). Using machine learn-
ing for estimating the defect content after an inspection. IEEE
Transactions on Software Engineering, (), –.

Pai, P. F., & Hong, W. C. (). Software reliability forecasting by
support vector machines with simulated annealing algorithms.
Journal of Systems and Software, (), –.

Pendharkar, P. C. (). An exploratory study of object-oriented
software component size determinants and the application of
regression tree forecasting models. Information and Manage-
ment, (), –.

Pfleeger, S. L., & Atlee J. M. (). Software engineering: Theory and
practice. Upper Saddle River, NJ: Prentice-Hall.

Quah, T. S., & Thwin, M. M. T. (). Application of neural networks
for software quality prediction using object-oriented metrics. In
Proceedings of international conference on software maintenance
(pp. –).

Regolin, E. N., de Souza, G. A., Pozo, A. R. T., & Vergilio, S. R. ().
Exploring machine learning techniques for software size estima-
tion. In Proceedings of the rd international conference of the
Chilean computer science society (SCCC) (pp. –).

Sayyad Shirabad, J., Lethbridge, T. C., & Matwin, S. (). Mod-
eling relevance relations using machine learning techniques.
In J. Tsai & D. Zhang (Eds.), Advances in machine learning
applications in software engineering (pp. –). IGI.

Seliya, N. & Khoshgoftaar, T. M. (). Software quality estimation
with limited fault data: a semi-supervised learning perspective.
Software Quality Journal, (), –.

Shepperd, M., & Schofield, C. (). Estimating software project
effort using analogies. IEEE Transactions on Software Engineer-
ing, (), –.

Sitte, R. (). Comparison of software-reliability-growth pre-
dictions: neural networks vs parametric-recalibration. IEEE
Transactions on Reliability, (), –.

Xing, F., Guo, P., & Lyu, M. R. (). A novel method for early
software quality prediction based on support vector machine.
In Proceedings of IEEE international conference on software
reliability engineering (pp. –).

Zhang, Du., & Tsai, J. P. (). Machine learning and software
engineering. Software Quality Journal, (), –.

Preference Learning

Johannes Fürnkranz, EykeHüllermeier
TU Darmstadt
Philipps-Universität Marburg

Synonyms
Learning from preferences

Definition
Preference learning refers to the task of learning to
predict an order relation on a collection of objects
(alternatives). In the training phase, preference learn-
ing algorithms have access to examples for which the
sought order relation is (partially) known. Depend-
ing on the formal modeling of the preference context
and the alternatives to be ordered, one can distinguish
between object ranking problems and label ranking
problems. Both types of problems can be approached in
two fundamentally di�erent ways, either by modeling
the binary preference relation directly, or by inducing
this relation indirectly via an underlying (latent) utility
function.

 P Preference Learning

Motivation and Background
Preference information plays a key role in automated
decision making and appears in various guises in Arti-
�cial Intelligence (AI) research, notably in �elds such as
agents, non-monotonic reasoning, constraint satisfac-
tion, planning, and qualitative decision theory (Doyle,
). Preferences provide a means for specifying
desires in a declarative way, which is a point of critical
importance for AI. In fact, considering AI’s paradigm of
a rationally acting (decision-theoretic) agent, the behav-
ior of such an agent has to be driven by an underlying
preference model, and an agent recommending deci-
sions or acting on behalf of a user should clearly re�ect
that user’s preferences.�erefore, the formal modeling
of preferences can be considered an essential aspect of
autonomous agent design.
Drawing on past research on knowledge represen-

tation and reasoning, AI o�ers qualitative and sym-
bolic methods for modeling and processing preferences
that can reasonably complement standard approaches
from economic decision theory, namely numerical util-
ity functions and binary preference relations.
In practice, preference modeling can still become

a rather cumbersome task if it must be done by hand.
�is is an important motivation for preference learn-
ing, which ismeant to support and partly automatize the
design of preference models. Roughly speaking, prefer-
ence learning is concerned with the automated acquisi-
tion of preference models from data, that is, data from
which (possibly uncertain) preference information can
be deduced in a direct or indirect way.
Computerized methods for revealing the pref-

erences of individuals (users) are useful not only
in AI, but also in many related �elds, notably in
areas such as information retrieval, information sys-
tems, and e-commerce, where an increasing trend
toward personalization of products and services can be
recognized.Correspondingly, a number of methods and
tools, such as recommender systems and collaborative
�ltering, have been proposed in the recent literature,
which could in principle be subsumed under the head-
ing of preference learning. In fact, one should real-
ize that preference learning is a relatively recent and
emerging topic. A �rst attempt for setting a common
framework in this area can be found in Fürnkranz and
Hüllermeier (). In this article, we shall therefore
focus on two particular learning tasks that have been

studied in the realm of machine learning and can be
considered as extensions of classical machine learning
problems.
Before proceeding, we introduce some basic nota-

tion that will be used later on. A weak preference rela-
tion ⪰ on a set A is a re�exive and transitive binary
relation. Such a relation induces a strict preference ≻
and an indi�erence relation∼ as follows: a ≻ b i� (a ⪰ b)
and (b /⪰ a); moreover, a ∼ b i� (a ⪰ b) and (b ⪰ a).
In agreement with our preference semantics, we shall
interpret a ⪰ b as “alternative a is at least as good as
alternative b.” Let us note, however, that the term “pref-
erence” should not be taken literally and instead always
be interpreted in a wide sense as a kind of order rela-
tion.�us, a ≻ b may indeed mean that alternative a is
more liked by a person than b, but also, e.g., that a is an
algorithm that outperforms b on a certain problem, or
that a is a student �nishing her studies before another
student b.
Subsequently, we shall focus on an especially simple

type of preference structure, namely total strict orders
or rankings, that is, relations ≻ which are total, irre�ex-
ive, and transitive. If A is a �nite set {a, . . . , am}, a
ranking of A can be identi�ed with a permutation
τ of {, . . . ,m}, as there is a unique permutation τ such
that ai ≻ aj if and only if τ(i) < τ(j) (τ(i) is the posi-
tion of ai in the ranking). We shall denote the class
of all permutations of {, . . . ,m} by Sm. Moreover, by
abuse of notation, we shall sometimes employ the terms
“ranking” and “permutation” synonymously.

Structure of the Learning System
As mentioned before, a considerable number of diverse
approaches have been proposed under terms like rank-
ing and preference learning. In the following, we shall
distinguish between object ranking problems, where the
task is to order subsets of objects, and label ranking prob-
lems, where the task is to assign a permutation of a �xed
set of labels to a given instance. An important di�erence
between these problems concerns the formal represen-
tation of the preference context and the alternatives to
be ordered: In object ranking, the objects themselves
are characterized by properties, typically in terms of an
attribute-value representation.�us, the rankingmodel
can refer to properties of the alternatives and can there-
fore be applied to arbitrary sets of such alternatives. In

Preference Learning P

P

label ranking, the alternatives to be ranked are labels
as in classi�cation learning, i.e., mere identi�ers with-
out associated properties. Instead, the ranking context
is characterized in terms of a (ranking) instance from
a given instance space, and the task of the model is to
rank alternatives depending on properties of the context.
�us, the contextmay now change (as opposed to object
ranking, where it is implicitly �xed) but the objects to be
ranked remain the same. Or, stated di�erently, object
ranking is the problem to rank varying sets of objects
under invariant preferences, whereas label ranking is
the problem to rank an invariant set of objects under
varying preferences.
For both problem types, there are two principal ways

to approach them. One possibility is to learn a utility
function that induces the sought ranking by evaluating
individual objects.�e alternative is to compare pairs of
objects, that is, to learn a binary preference relation.
Note that the �rst approach implicitly assumes an

underlying total order relation, since numerical (or at
least totally ordered) utility scores enforce the compa-
rability of alternatives. �e second approach is more
general in this regard, as it also allows for partial
order relations. On the other hand, this approach
may lead to complications if the target is indeed a
total order, since a set of hypothetical binary prefer-
ences induced from empirical data is not necessarily
transitive.

Learning from Object Preferences

Given:
● A (potentially in�nite) set X of objects (each object
typically represented by a feature vector)

● A �nite set of pairwise preferences xi ≻ xj, (xi, xj) ∈
X ×X

Find:
● A ranking function r(⋅) that, given a set of objects
O ⊆ X as input, returns a permutation (ranking) of
these objects

�e most frequently studied problem in learning
from preferences is to induce a ranking function r(⋅)
that is able to order any subsetO of an underlying class
X of objects. �at is, r(⋅) assumes as input a subset
O = {x, . . . , xn} ⊆ X of objects and returns as output

a permutation τ of {, . . . ,n}.�e interpretation of this
permutation is that object xi is preferred to xj whenever
τ(i) < τ(j).�e objects themselves are typically char-
acterized by a �nite set of features as in conventional
attribute-value learning. �e training data consists of
a set of exemplary pairwise preferences. A survey of
object ranking approaches can be found in Kamishima
et al. ().
Note that, in order to evaluate the predictive perfor-

mance of a ranking algorithm, an accuracy measure is
needed that compares a predicted ranking with a given
reference. To this end, one can refer, for example, to
so-called 7rank correlation measures that have been
proposed in statistics. In the context of ranking, such
measures play the role of, say, the classi�cation rate in
classi�cation learning.
As an example of object ranking consider the prob-

lem of learning to rank query results of a search engine
(Joachims,). �e training information could be
provided implicitly by the user who clicks on some of
the links in the query result and not on others. �is
information can be turned into binary preferences by
assuming that the selected pages are preferred over
nearby pages that are not clicked on (Radlinski et al.,
).

Learning from Label Preferences

Given:
● A set of training instances {xk ∣ k= , . . . ,n} ⊆ X

(each instance typically represented by a feature vec-
tor)

● A set of labels L = {λi ∣ i = , . . . ,m}

● For each training instance xk: a set of associated
pairwise preferences of the form λi ≻xk λj

Find:
● A ranking function in the form of an X Ð→ Sm

mapping that assigns a ranking (permutation) ≻x of
L to every x ∈ X

In this learning scenario, the problem is to predict,
for any instance x (e.g., a person) from an instance space
X , a preference relation (ranking) ≻x ⊆ L × L among
a �nite set L = {λ, . . . , λm} of labels or alternatives,
where λi ≻x λj means that instance x prefers the label

 P Preference Learning

λi to the label λj. More speci�cally, as we are espe-
cially interested in the case where ≻x is a total strict
order, the problem is to predict a permutation ofL.�e
training information consists of a set of instances for
which (partial) knowledge about the associated prefer-
ence relation is available. More precisely, each training
instance x is associated with a subset of all pairwise
preferences.�us, despite the assumption of an under-
lying (“true”) target ranking, the training data is not
expected to provide full information about such rank-
ings. Besides, in order to increase the practical useful-
ness of the approach, learning algorithms should even
allow for inconsistencies, such as pairwise preferences
which are con�icting due to observation errors.

�e above formulation follows (Hüllermeier et al.
), similar formalizations have been proposed inde-
pendently by several authors (Dekel et al., ;
Fürnkranz and Hüllermeier, ; Har-Peled et al.,
). A survey can be found in Vembu and Gärtner
(). Aiolli and Sperduti () proposed an inter-
esting generalization of this framework that allows one
to specify both qualitative and quantitative preference
constraints on an underlying utility function. In addi-
tion to comparing pairs of alternatives, it is possible to
specify constraints of the form λi ⪰x t, whichmeans that
the utility score of alternative x reaches the numerical
threshold t.
Label ranking contributes to the general trend of

extending machine learning methods to complex and
structured output spaces (Fürnkranz and Hüllermeier,
; Tsochantaridis et al.,). Moreover, label rank-
ing can be viewed as a generalization of several stan-
dard learning problems. In particular, the following
well-known problems are special cases of learning label
preferences:

● 7Classi�cation: A single class label λi is assigned
to each example xk.�is is equivalent to the set of
preferences {λi ≻xk λj ∣ ≤ j ≠ i ≤ m}.

● 7Multi-label classi�cation: Each training example xk
is associated with a subset Lk ⊆ L of possible labels.
�is is equivalent to the set of preferences {λi ≻xk λj ∣
λi ∈ Lk, λj ∈ L ∖ Lk}.

In each of the former scenarios, the sought prediction
can be obtained by post-processing the output of a
ranking model f : X Ð→ Sm in a suitable way. For
example, in classi�cation learning, where only a single

label is requested, it su�ces to project a label ranking to
the top-ranked label.
Applications of this general framework can be found

in various �elds, for example in marketing research;
here, one might be interested in discovering depen-
dencies between properties of clients and their pref-
erences for products. Another application scenario is
7meta-learning, where the task is to rank learning algo-
rithms according to their suitability for a new dataset,
based on the characteristics of this dataset. Moreover,
every preference statement in the well-known CP-nets
approach (Boutilier et al.,), a qualitative graphi-
cal representation that re�ects conditional dependence
and independence of preferences under a ceteris paribus
interpretation, formally corresponds to a label ranking
function that orders the values of a certain attribute
depending on the values of the parents of this attribute
(predecessors in the graph representation).

Learning Utility Functions

A natural way to represent preferences is to evaluate
the alternatives by means of a utility function. In the
object preferences scenario, such a function is a map-
ping f : X Ð→ U that assigns a utility degree f (x) to
each object x and, thereby, induces a linear order on X ;
the utility scaleU is usually given by the real numbersR,
but sometimes an ordinal scale is preferred (note that an
ordinal scale will typically produce many ties, which is
undesirable if the target is a ranking). In the label prefer-
ences scenario, a utility function fi : X Ð→ U is needed
for every label λi, i = , . . . ,m. Here, fi(x) is the util-
ity assigned to alternative λi by instance x. To obtain
a ranking for x, the alternatives are ordered according
to their utility scores, i.e., a ranking ≻x is derived that
satis�es λi ≻x λj ⇒ fi(x)≥fj(x).
If the training data o�ers the utility scores directly,

preference learning reduces to a standard regression
(up to a monotonic transformation of the utility val-
ues) or an ordinal regression problem, depending on
the underlying utility scale.�is information can rarely
be assumed, however. Instead, usually only constraints
derived fromcomparative preference information of the
form “�is object (or label) should have a higher util-
ity score than that object (or label)” are given. �us,
the challenge for the learner is to �nd a function that
is as much as possible in agreement with a set of such
constraints.

Preference Learning P

P

For object ranking approaches, this idea has �rst
been formalized by Tesauro () under the name
comparison training. He proposed a symmetric neural-
network architecture that can be trained with represen-
tations of two states and a training signal that indicates
which of the two states is preferable.�e elegance of this
approach comes from the property that one can replace
the two symmetric components of the network with a
single network, which can subsequently provide a real-
valued evaluation of single states. Similar ideas have also
been investigated for training other types of classi�ers,
in particular support vectormachines.We alreadymen-
tioned Joachims () who analyzed “click-through
data” in order to rank documents retrieved by a search
engine according to their relevance. Earlier, Herbrich
et al. () have proposed an algorithm for train-
ing SVMs from pairwise preference relations between
objects.
For the case of label ranking, a corresponding

method for learning the functions fi(⋅), i = , . . . ,m,
from training data has been proposed in the frame-
work of constraint classi�cation (Har-Peled et al.,).
�e learning method proposed in this work constructs
two training examples, a positive and a negative one,
for each given preference λi ≻x λj, where the original
N-dimensional training example (feature vector) x is
mapped into an (m × N)-dimensional space.�e pos-
itive example copies the original training vector x into
the components ((i−)×N+) . . . (i×N) and its nega-
tion into the components ((j −) × N +) . . . (j × N)

of a vector in the new space; the remaining entries are
�lled with . �e negative example has the same ele-
ments with reversed signs. In this (m×N)-dimensional
space, the learner tries to �nd a hyperplane that sep-
arates the positive from the negative examples. For
classifying a new example x, the labels are ordered
according to the response resulting from multiplying
x with the ith N-element section of the hyperplane
vector.

Learning Preference Relations

As mentioned before, instead of learning a latent utility
function that evaluates individual objects, an alternative
approach to preference learning consists of comparing
pairs of objects (labels) in terms of a binary preference
relation. For object ranking problems, this pairwise
approach has been pursued in Cohen et al. ().�e
authors propose to solve object ranking problems by

learning a binary preference predicate Q(x, x′), which
predicts whether x is preferred to x′ or vice versa. A
�nal ordering is found in a second phase by deriv-
ing a ranking that is maximally consistent with these
predictions.
For label ranking problems, the pairwise approach

has been introduced in Fürnkranz and Hüllermeier
() as a natural extension of pairwise classi�cation, a
well-known 7class binarization technique.�e idea is
to train a separate model (base learner)Mi,j for each
pair of labels (λi, λj) ∈ L, ≤ i < j ≤ m; thus,
a total number of m(m −)/ models is needed. For
training, a preference information of the form λi ≻x λj
is turned into a (classi�cation) example (x, y) for the
learnerMa,b, where a = min(i, j) and b = max(i, j).
Moreover, y = if i < j and y = otherwise. �us,
Ma,b is intended to learn the mapping that outputs
 if λa ≻x λb and if λb ≻x λa:

x ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 if λa ≻x λb

 if λb ≻x λa
()

�e mapping () can be realized by any binary clas-
si�er. Instead of a {, }-valued classi�er, one can of
course also employ a scoring classi�er. For example, the
output of a probabilistic classi�er would be a number
in the unit interval [,] that can be interpreted as a
probability of the preference λa ≻x λb.
At classi�cation time, a query x ∈ X is submit-

ted to the complete ensemble of binary learners.�us,
a collection of predicted pairwise preference degrees
Mi,j(x), ≤ i, j ≤ m, is obtained. �e problem,
then, is to turn these pairwise preferences into a rank-
ing of the label set L. To this end, di�erent ranking
procedures can be used. �e simplest approach is to
extend the (weighted) voting procedure that is o�en
applied in pairwise classi�cation: For each label λi,
a score

Si = ∑
≤j≠i≤m

Mi,j(x)

is derived (where Mi,j(x) = − Mj,i(x) for
i > j), and then all labels are ordered according to these
scores. Despite its simplicity, this ranking procedure has
several appealing properties. Apart from its computa-
tional e�ciency, it turned out to be relatively robust
in practice and, moreover, it possesses some provable

 P Preference Learning

optimality properties in the case where Spearman’s rank
correlation is used as an underlying accuracy measure.
Roughly speaking, if the binary learners are unbiased
probabilistic classi�ers, the simple “ranking byweighted
voting” procedure yields a label ranking that maximizes
the expected Spearman rank correlation (Hüllermeier
and Fürnkranz,). Finally, it is worth mentioning
that, by changing the ranking procedure, the pairwise
approach can also be adjusted to accuracy measures
other than Spearman’s rank correlation.

Future Directions
As we already mentioned, preference learning is an
emerging topic and, as a sub�eld of machine learning,
still in its infancy. In particular, one may expect that,
apart from the object and label ranking problems, other
settings and frameworks will be studied in the future.
But even for object and label ranking as introduced
above, there are several open questions and promising
lines of future research. �e most obvious extension
concerns the type of preference structure predicted as
an output: For many applications, it is desirable to pre-
dict structures which are more general than rankings,
e.g., which allow for incomparability (partial orders)
or indi�erence between alternatives. In a similar vein,
the pairwise approach to label ranking has recently
been extended to the prediction of so-called “calibrated”
rankings in Fürnkranz et al. (). A calibrated rank-
ing is a ranking with an additional “zero-point” that
separates between a positive and a negative part, thereby
integrating the problems of label ranking and multi-
label classi�cation.

Cross References
7Classi�cation
7Meta-Learning
7Rank Correlation

Recommended Reading
Aiolli, F., & Sperduti, A. (). A preference optimization based

unifying framework for supervised learning problems. In J.
Fürnkranz & E. Hüllermeier (Eds.), Preference learning (pp. –
). Springer.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D.
(). CP-nets: a tool for representing and reasoning with

conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, , –.

Cohen, W. W., Schapire, R. E., & Singer, Y. (). Learning to
order things. Journal of Artificial Intelligence Research, ,
–.

Dekel, O., Manning, C. D., & Singer, Y. (). Log-linear models for
label ranking. In S. Thrun, L. K. Saul, & B. Schölkopf, (Eds.),
Advances in neural information processing systems (NIPS-)
(pp. –). Cambridge: MIT Press.

Doyle, J. (). Prospects for preferences. Computational Intelli-
gence, (), –.

Fürnkranz, J., & Hüllermeier, E. (). Pairwise preference learn-
ing and ranking. In N. Lavrač, D. Gamberger, H. Blockeel, &
L. Todorovski (Eds.), Proceedings of the th European Confer-
ence on Machine Learning (ECML-), volume of Lecture
Notes in Artificial Intelligence, Springer, Cavtat, Croatia, pp.
–.

Fürnkranz, J., & Hüllermeier, E. (Eds.). (). Preference learning.
Springer.

Fürnkranz, J., & Hüllermeier, E. (). Preference learning and
ranking by pairwise comparison. In J. Fürnkranz & E. Hüller-
meier (Eds.), Preference Learning (pp. –). Springer.

Fürnkranz, J., & Hüllermeier, E. (). Preference learning: an
introduction. In J. Fürnkranz & E. Hüllermeier (Eds.), Prefer-
ence Learning (pp. –). Springer.

Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., & Brinker, K. ().
Multilabel classification via calibrated label ranking. Machine
Learning, (), –.

Har-Peled, S., Roth, D., & Zimak, D. (). Constraint classifica-
tion: a new approach to multiclass classification. In N. Cesa-
Bianchi, M. Numao, & R. Reischuk, (Eds.), Proceedings of the
th International Conference on Algorithmic Learning Theory
(ALT-) (pp. –), Springer, Lübeck, Germany.

Herbrich, R., Graepel, T., Bollmann-Sdorra, P., & Obermayer, K.
(). Supervised learning of preference relations. Proceed-
ings des Fachgruppentreffens Maschinelles Lernen (FGML-),
pp. –.

Hüllermeier, E., & Fürnkranz, J. (). On predictive accuracy
and risk minimization in pairwise label ranking. Journal of
Computer and System Sciences, (), –.

Hüllermeier, E., Fürnkranz, J., Cheng, W., & Brinker, K. ().
Label ranking by learning pairwise preferences. Artificial Intel-
ligence, , –.

Joachims, T. (). Optimizing search engines using clickthrough
data. Proceedings of the th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-), ACM
Press, pp. –.

Kamishima, T., Kazawa, H., & Akaho, S. (). A survey and empir-
ical comparison of object ranking methods. In J. Fürnkranz & E.
Hüllermeier (Eds.), Preference learning (pp. –). Springer.

Radlinski, F., Kurup, M., & Joachims, T. (). Evaluating search
engine relevance with click-based metrics. In J. Fürnkranz & E.
Hüllermeier (Eds.), Preference learning (pp. –). Springer.

Tesauro, G. (). Connectionist learning of expert preferences by
comparison training. In D. Touretzky (Ed.), Advances in Neu-
ral Information Processing Systems (NIPS-) (pp. –),
Morgan Kaufmann.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. ().
Support vector machine learning for interdependent and struc-
tured output spaces. ICML.

Privacy-Related Aspects and Techniques P

P

Vembu, S., & Gärtner, T. (). Label ranking algorithms: a sur-
vey. In J. Fürnkranz & E. Hüllermeier (Eds.), Preference learning
(pp. –). Springer.

Pre-Pruning

Synonyms
Stopping criteria

Definition
Pre-pruning is a 7Pruning mechanism that monitors
the learning process and prevents further re�nements if
the current hypothesis becomes too complex.

Cross References
7Over�tting
7Post-Pruning
7Pruning

Presynaptic Neuron

�e neuron that sends signals across a synaptic con-
nection. A chemical synaptic connection between two
neurons allows to transmit signals from a presynaptic
neuron to a postsynaptic neuron.

Principal Component Analysis

Synonyms
PCA

Definition
Principal Component Analysis (PCA) is a
7dimensionality reduction technique. It is described in
7covariance matrix.

Prior

7Prior Probability

Privacy-Preserving Data Mining

7Privacy-Related Aspects and Techniques

Privacy-Related Aspects and
Techniques

StanMatwin
University of Ottawa, Ottawa, ON, Canada and Polish
Academy of Sciences, Warsaw, Poland

Synonyms
Privacy-preserving data mining

Definition
�e privacy-preserving aspects and techniques of
machine learning cover the family of methods and
architectures developed to protect the privacy of people
whose data are used by machine learning (ML) algo-
rithms. �is �eld, also known as privacy-preserving
data mining (PPDM), addresses the issues of data pri-
vacy in ML and data mining. Most existing methods
and approaches are intended to hide the original data
from the learning algorithm, while there is emerging
interest in methods ensuring that the learned model
does not reveal private information. Another research
direction contemplates methods in which several par-
ties bring their data into the model-building process
without mutually revealing their own data.

Motivation and Background
�e key concept for any discussion of the privacy
aspects of data mining is the de�nition of privacy. A�er
Alan Westin, we understand privacy as the ability “of
individuals. . . to determine for themselves when, how,
and to what extent information about them is com-
municated to others” (Westin,). One of the main
societal concerns about modern computing is that the
storing, keeping, and processing of massive amounts of
data may jeopardize the privacy of individuals whom
the data represent. In particular, ML and its power to
�nd patterns and infer new facts from existing data
makes it di�cult for people to control information

 P Privacy-Related Aspects and Techniques

about themselves. Moreover, the infrastructure nor-
mally put together to conduct large-scale model build-
ing (e.g., large data repositories and data warehouses),
is conducive to misuse of data. Personal data, amassed
in large collections that are easily accessed through
databases and o�en available online to the entire world,
become – as phrased by Moor in an apt metaphor
(Moor,) – “greased.” It is di�cult for people to
control the use of this data.

Theory/Solutions
Basic Dimensions of Privacy Techniques

Privacy-related techniques can be characterized by:
() the kind of source data modi�cation they perform,
e.g., data perturbation, randomization, generalization,
and hiding; () the ML algorithm that works on the
data and how is it modi�ed to meet the privacy require-
ments imposed on it; and () whether the data are
centralized or distributed among several parties, and –
in the latter case – on what the distribution is based.
But even at a more basic level, it is useful to view
privacy-related techniques along just two fundamental
dimensions.

�e �rst dimension de�nes what is protected as pri-
vate – is it the data itself, or themodel (the results of data
mining)? As we show below, the knowledge of the latter
can also lead to identifying and revealing information
about individuals. �e second dimension de�nes the
protocol of the use of the data: are the data centralized
and owned by a single owner, or are the data distributed
among multiple parties? In the former case, the owner
needs to protect the data from revealing information
about individuals represented in the data when that
data is being used to build a model by someone else.
In the latter case, we assume that the parties have lim-
ited trust in each other: they are interested in the results
of data mining performed on the union of the data of
all the parties, while not trusting the other parties to
see their own data without �rst protecting it against
disclosure of information about individuals to other
parties.
Moreover, work in PPDM has to apply a framework

that is broader than the standard ML methodology.
When privacy is an important goal, what matters in
performance evaluation is not only the standard ML
performance measures, but also some measure of the

privacy achieved, as well as some analysis of the robust-
ness of the approach to attacks.
In this article, we structure our discussion of the

current work on PPDM in terms of the taxonomy pro-
posed above.�is leads to the following bird’s-eye view
of the �eld.

Protecting Centralized Data

�is sub�eld emerged in with the seminal paper
by Agrawal and Srikant ().�ey stated the prob-
lem as follows: given data in the standard 7attribute-
value representation, how can an accurate 7decision
tree be built so that, instead of using original attribute
values xi, the decision tree induction algorithm takes
input values xi + r, where r belongs to a certain dis-
tribution (Gaussian or uniform). �is is a data per-
turbation technique: the original values are changed
beyond recognition, while the distributional properties
of the entire data set that decision tree7induction uses
remain the same, at least up to a small (empirically,
less than %) degradation in accuracy.�ere is a clear
trade-o� between the privacy assured by this approach
and the quality of the model compared to the model
obtained from the original data.�is line of research has
been continued in Ev�mievski, Srikant, Agrawal, and
Gehrke () where the approach is extended to asso-
ciation rule mining. As a note of caution about these
results, Kargupta, Datta, and Wang () have shown,
in , how the randomization approaches are sen-
sitive to attack. �ey demonstrate how the noise that
randomly perturbs the data can be viewed as a ran-
dommatrix, and that the original data can be accurately
estimated from the perturbed data using a spectral �l-
ter that exploits some theoretical properties of random
matrices.

�e simplest and most widely used privacy preser-
vation technique is anonymization of data (also called
de-identi�cation). In the context of de-identi�cation, it
is useful to distinguish three types of attributes.
Explicit identi�ers allowdirect linking of an instance

to a person (e.g., a cellular phone number or a driver’s
license number to its holder).
Quasi-identi�ers, possibly combined with other

attributes, may lead to other data sources capable of
unique identi�cation. For instance, Sweeney ()
shows that the quasi-identi�er triplet < date of birth,
 digit postal code, gender >, combined with the voters’

Privacy-Related Aspects and Techniques P

P

list (publicly available in the USA) uniquely identi�es
% of the population of the country. As a convincing
application of this observation, using quasi-identi�ers,
Sweeney was able to obtain health records of the gover-
nor of Massachusetts from a published dataset of health
records of all state employees in which only explicit
identi�ers have been removed.
Finally, non-identifying attributes are those for

which there is no known inference linking to an explicit
identi�er. Usually performed as part of data prepa-
ration, anonymization removes all explicit identi�ers
from the data.
While anonymization is by far the most common

privacy-preserving technique used in practice, it is also
the most fallible one. In August , for the bene�t of
the Web Mining Research community, AOL published
 million search records (queries and URLs the mem-
bers had visited) from , of its members. AOL
had performed what it believed was anonymization, in
the sense that it removed the names of the members.
However, based on the queries – which o�en contained
information that would identify a small set of mem-
bers or a unique person – it was easy, in many cases,
to manually re-identify the AOL member using sec-
ondary public knowledge sources. An inquisitive New
York Times journalist identi�ed onemember and inter-
viewed her.
L. Sweeney is to be credited with sensitizing the

privacy community to the fallacy of anonymization:
“Shockingly, there remains a common incorrect belief
that if the data look anonymous, it is anonymous”
(Sweeney,). Even if information is de-identi�ed
today, future data sources may make re-identi�cation
possible. As anonymization is very commonly used
prior to model building from medical data, it is inter-
esting that this type of data is prone to speci�c kinds of
re-identi�cation, and therefore anonymization ofmedi-
cal data should be done with particular skill and under-
standing of the data. Malin () shows how the four
main de-identi�cation techniques used in anonymiza-
tion of genomic data are prone to known, published
attacks that can re-identify the data. Moreover, he
points out that there will never be certainty about de-
identi�cation for quasi-identi�ers, as new attributes and
data sources that can lead to a linkage to explicitly iden-
tifying attributes are constantly being engineered as part
of genetics research.

Other perturbation approaches targeting binary
data involve changing (�ipping) values of selected
attributes with a given probability (Du & Zhan, ;
Zhan & Matwin,), or replacing the original
attribute with a value that is more general in some
pre-agreed taxonomy (Iyengar,). Generalization
approaches o�en use the concept of k-anonymity: any
instance in the database is indistinguishable from other
k− instances (for every row in the database there
are k− identical rows). Finding the least general k-
anonymous generalization of a database (i.e., mov-
ing the least number of edges upward in a given
taxonomy) is an optimization task, known to be
NP-complete. �ere are heuristic solutions proposed
for it; e.g., Iyengar () uses a 7genetic algorithm
for this task. Friedman, Schuster, and Wol� ()
shows how to build k-anonymity into the decision
tree induction. Lately, PPDM researchers have pointed
out some weaknesses of the k-anonymity approach.
In particular, attacks on data with some proper-
ties (e.g., skewed distribution of values of a sensi-
tive attribute, or speci�c background knowledge) have
been described, and techniques to prevent such attacks
have been proposed. �e notion of p-sensitivity or
l-diversity proposed inMachanavajjhala, Kifer, Gehrke,
and Venkitasubramaniam () addresses these weak-
nesses of k-anonymity by modifying k-anonymity
techniques so that the abovementioned attacks do not
apply. Furthermore, t-closeness (Ninghui, Tiancheng &
Venkatasubramanian,) shows certain shortcom-
ings of these techniques and the resulting potential
attacks, and proposes a data perturbation technique
which ensures that the distribution of the values of
the sensitive attribute in any group resulting from
anonymization is close to its distribution in the origi-
nal table. Some authors, e.g., Domingo-Ferrer, Sebé, and
Solanas (), propose the integration of several tech-
niques addressing shortcomings of k-anonymity into a
single perturbation technique. �e drawback of these
solutions is that they decrease the utility of the data
more than the standard k-anonymity approaches.

Protecting the Model (Centralized Data)

Is it true that when the data are private, there will be
no violation of privacy? �e answer is no. In some
circumstances, the model may reveal private informa-
tion about individuals. Atzori, Bonchi, Giannotti, and

 P Privacy-Related Aspects and Techniques

Pedreschi () gives an example of such a situation
for association rules: suppose the 7association rule
a∧a∧a⇒a has support sup = , con�dence conf =
.%.�is rule is -anonymous, but considering that

sup({a, a, a})=
sup({a, a, a, a})

conf
=

.

≈.

and given that the pattern a∧a∧a∧a holds for
 individuals, and the pattern a∧a∧a holds for
individuals, clearly the pattern a∧a∧a∧¬a holds
for just one person. �erefore, the rule unexpectedly
reveals private information about a speci�c person.
Atzori et al. () proposes to apply k-anonymity to
patterns instead of data, as in the previous section.�e
authors de�ne inference channels as 7itemsets from
which it is possible to infer other itemsets that are
not k-anonymous, as in the above example.�ey then
show an e�cient way to represent and compute infer-
ence channels, which, once known, can be blocked
from the output of an association rule �nder.�e infer-
ence channel problem is also discussed in Oliveira,
Zaïane, and Saygin (), where itemset “sanitiza-
tion” removes itemsets that lead to sensitive (non-k-
anonymous) rules.

�is approach is an interesting continuation of
Sweeney’s classical work (Sweeney,), and it
addresses an important threat to privacy ignored by
most other approaches based on data perturbation or
cryptographic protection of the data.

Distributed Data

Most of the work mentioned above addresses the case
of centralized data.�e distributed situation, however,
is o�en encountered and has important applications.
Consider, for example, several hospitals involved in
a multi-site medical trial that want to mine the data
describing the union of their patients. �is increases
the size of the population subject to data analysis,
thereby increasing the scope and the importance of
the trial. In another example, a car manufacturer per-
forming data analysis on the set of vehicles exhibiting
a given problem wants to represent data about di�er-
ent components of the vehicle originating in databases
of the suppliers of these components. In general, if
we abstractly represent the database as a table, there
are two collaborative frameworks in which data is dis-
tributed. Horizontally partitioned data is distributed by

rows (all parties have the same attributes, but di�erent
instances – as in the medical study example). Verti-
cally partitioned data is distributed by columns (all
parties have the same instances; some attributes belong
to speci�c parties, and some, such as the class, are
shared among all parties – as in the vehicle data analysis
example).
An important branch of research on learning from

distributed data while parties do not reveal their data
to each other is based on results from computer secu-
rity, speci�cally from cryptography and from the secure
multiparty computation (SMC). Particularly interesting
is the case when there is no trusted external party – all
the computation is distributed among parties that col-
lectively hold the partitioned data. SMC has produced
constructive results showing how any Boolean function
can be computed from inputs belonging to di�erent par-
ties, so that the parties never get to know input values
that do not belong to them.�ese results are based on
the idea of splitting a single data value between two
parties into “shares,” so that none of them knows the
value but they can still do computation on the shares
using a gate such as exclusive or Yao (). In par-
ticular, there is an SMC result known as secure sum:
k parties have private values xi and they want to com-
pute ΣI xi without disclosing their xi to any other party.
�is result, and similar results for value comparison
and other simple functions, are the building blocks of
many privacy-preservingML algorithms. On that basis,
a number of standard7classi�er induction algorithms,
in their horizontal and vertical partitioning versions,
have been published, including decision tree (7ID)
induction (Friedman, Schuster & Wol�,),7Naïve
Bayes, the 7Apriori association rule mining algorithm
(Kantarcioglu & Cli�on, ; Vaidya & Cli�on,),
and many others.
We can observe that data privacy issues extend to

the use of the learned 7model. For horizontal parti-
tioning, each party can be given the model and apply
it to the new data. For vertical partitioning, however,
the situation is more di�cult: the parties, all knowing
the model, have to compute their part of the decision
that the model delivers, and have to communicate with
selected other parties a�er this is done. For instance, for
decision trees, a node n applies its test and contacts the
party holding the attribute in the child c chosen by the
test, giving c the test to perform. In this manner, a single

Privacy-Related Aspects and Techniques P

P

party n only knows the result of its test (the correspond-
ing attribute value) and the tests of its children (but not
their outcomes). �is is repeated recursively until the
leaf node is reached and the decision is communicated
to all parties.
A di�erent approach involving cryptographic tools

other than Yao’s circuits is based on the concept of
homomorphic encryption (Paillier,). Encryption e
is homomorphic with respect to some operation ∗ in
the message space if there is a corresponding operation
∗′ in the ciphertext space, such that for any messages
m, m, e(m)∗′e(m) = e(m∗m).�e standard RSA
encryption is homomorphic with ∗′ being logical mul-
tiplication and ∗ logical addition on sequences of bytes.
To give a �avor of the use of homomorphic encryption,
let us see in detail how this kind of encryption is used
in computing the scalar product of two binary vectors.
Assume just two parties, Alice and Bob.�ey both

have their private binary vectors A,. . .,N , B,. . .,N . In asso-
ciation rule mining, Ai and Bi represent A’s and B’s
transactions projected on the set of items whose fre-
quency is being computed. In our protocol, one of the
parties is randomly chosen as a key generator. Assume
Alice is selected as the key generator. Alice generates an
encryption key (e) and a decryption key (d). She applies
the encryption key to the sum of each value of A and a
digital envelope R∗i X of Ai (i.e., e(Aii + Ri

∗X)), where
Ri is a random integer and X is an integer that is greater
thanN. She then sends e(Ai+Ri ∗X)s to Bob. Bob com-
putes the multiplicationM = ∏

N
j= [e(Aj + Ri ∗X)× Bj]

when Bj = (as when Bj = , the result of multiplica-
tion does not contribute to the frequency count). Now,

M = e(A + A + ⋯ + Aj + (R + R + ⋯ + R) ∗X) due
to the property of homomorphic encryption. Bob sends
the result of this multiplication to Alice, who computes
[d(e(A + A + ⋯ + Aj + (R + R + ⋯ + R) ∗X)])
modX = (A+A+⋯+A+(R+R+⋯+Rj) ∗X)mod
X and obtains the scalar product.�is scalar product is
directly used in computing the frequency count of an
itemset, where N is the number of items in the itemset,
and Ai, Bi are Alice’s and Bob’s transactions projected
on the itemset whose frequency is computed.
While more e�cient than the SMC-based

approaches, homomorphic encryption methods
are more prone to attack, as their security is based on
a weaker security concept (Paillier,) than Yao’s
approach. In general, cryptographic solutions have the
advantage of protecting the source data while leaving
it unchanged: unlike data modi�cation methods, they
have no negative impact on the quality of the learned
model. However, they have a considerable cost impact
in terms of complexity of the algorithms, compu-
tation cost of the cryptographic processes involved,
and the communication cost for the transmission
of partial computational results between the parties
(Subramaniam, Wright & Yang,).�eir practical
applicability on real-life-sized datasets still needs to be
demonstrated.

�e discussion above focuses on protecting the data.
In terms of our diagram in Table , we have to address
its right column. Here, methods have been proposed
to mainly address mainly the north-east entry of the
diagram. In particular, in Vaidya and Cli�on ()
propose a method to compute association rules in an

Privacy-Related Aspects and Techniques. Table Classification taxonomy to systematize the discussion of the current

work in PPDM

Data centralized Data distributed

Protecting the data Agrawal and Srikant (),

Evfimievski, Srikant, Agrawal, and

Gehrke (), Du and Zhan (),

and Iyengar ()

Vaidya and Clifton, (), Vaidya,

Clifton, Kantarcioglu and

Patterson, (), and Kantarcioglu

and Clifton, ()

Protecting the model Oliveira, Zaïane and Saygin, (),

Atzori, Bonchi, Giannotti, and

Pedreschi (), Felty and

Matwin (), Friedman, Schuster,

and Wolff ()

Jiang and Atzori ()

 P Privacy-Related Aspects and Techniques

environment where data is distributed. In particular,
theirmethod addresses the case of vertically partitioned
data, where di�erent parties hold di�erent attribute sets
for the same instances. �e problem is solved with-
out the existence of a trusted third party, using SMC.
Independently, we have obtained a di�erent solution
to this task using homomorphic encryption techniques
(Zhan, Matwin & Chang,). Many papers have pre-
sented solutions for both vertically and horizontally
partitioned data, and for di�erent data mining tasks,
e.g., Friedman, Schuster, and Wol� () and Vaidya,
Zhu, and Cli�on ().
Moreover, Jiang and Atzori () have obtained a

solution for the model-protection case in a distributed
setting (south-east quadrant in Table). �eir work
is based on a cryptographic technique, and addresses
the case of vertical partitioning of the data among
parties.

Evaluation
�e evaluation of privacy-related techniques must
be broader than standard ML evaluation. Besides
evaluating the performance of theML component using
the appropriate tool (e.g., 7accuracy, 7ROC, sup-
port/con�dence), one also needs to evaluate the various
privacy aspects of a learned model.�is is di�cult, as
there is no commonly accepted de�nition of privacy.
Even if there were one, it would not be in quantita-
tive, operational terms that can be objectivelymeasured,
but most certainly with references to moral and social
values. For instance, Cli�on () points out that a
de�nition of privacy as the “freedom from unautho-
rized intrusion” implies that we need to understand
what constitutes an intrusion and that we can measure
its extent. For these reasons, most de�nitions in current
privacy-preserving data mining research are method-
speci�c, without any comparison between di�erent
methods. For example, the classic work of Agrawal and
Srikant ()measures privacy a�er data perturbation
as the size of the interval to which the original value
can be estimated. If we know that the original value
was ., and following a perturbation its best estimate
is, with % con�dence, within the interval [., .],
then the amount of privacy is the size of this interval,
(i.e., ., with a con�dence of %). Later, Agrawal and
Aggrawal () proposed a more general measure of

data privacy measuring this property of a dataset that
has been subject to one of the data perturbation tech-
niques.�e idea is that if noise from a random variable
A is added to the data, we can measure the uncertainty
of the perturbed values using di�erential entropy inher-
ent in A. Speci�cally, if we add noise from a random
variable A, the privacy is

∏(A) = − ∫
fA (a) log fA (a) da
ΩA ,

where ΩA is the domain of A. Privacy is if the exact
value is known (the entropy is ∞); if it is known that
the data is in the interval of length a,∏(A) = a.
Cli�on () argues that if disclosure is only possi-

ble to a group of people rather than a single person, then
the size of the group is a naturalmeasure of privacy.�is
is the case for k-anonymity methods. He further argues
that a good evaluation measure should not only capture
the likelihood of linking an ML result to an individual,
but should also capture how intrusive this linking is.
For instance, an association rule with a support value
of and a con�dence level of % is -anonymous,
but it also reveals the consequent of the rule to all
participants.
Finally, the style of evaluation needs to take into

account attack analysis, as in Malin ().

Future Directions
One of the most pressing challenges for the commu-
nity is to work out a quanti�able and socially com-
prehensible de�nition of privacy for the purpose of
privacy-preserving techniques.�is is clearly a di�cult
problem, likely not solvable by ML or even computer
science alone. As privacy has basic social and economic
dimensions, economicsmay contribute to an acceptable
de�nition, as already explored in Rossi ().
Another important question is the ability to analyze

data privacy, including inference fromdata usingML, in
the context of speci�c rules and regulations, e.g., HIPAA
(Health and Services,) or the European Privacy
Directive (). First forays in this direction using
formal methods have already been made, e.g., Barth,
Datta, Mitchell, and Nissenbaum () and Felty and
Matwin ().
Finally, the increasing abundance and availability of

data tracking mobile devices will bring new challenges
to the �eld. People will become potentially identi�able

Privacy-Related Aspects and Techniques P

P

by knowing the trajectories their mobile devices leave
in �xed times and time intervals. Clearly such data,
already collected, present an important asset from the
public security point of view, but also a very consid-
erable threat from a privacy perspective.�ere is early
work in this area (Gianotti, Pedreschi). Such data
are already being collected.�is is an important asset
for public security, but also a considerable threat for
privacy.

Recommended Reading
Agrawal, D., & Aggarwal, C. C. (). On the design and quantifi-

cation of privacy preserving data mining algorithms. Proceed-
ings of the th ACM SIGMOD-SIGACT-SIGART symposium on
principles of database systems. Santa Barbara, CA: ACM.

Agrawal, R., & Srikant, R. (). Privacy-preserving data mining,
ACM SIGMOD record (pp. –).

Atzori, M., Bonchi, F., Giannotti, F., & Pedreschi, D. ().
k-Anonymous patterns. Proceedings of the ninth European
conference on principles and practice of knowledge discovery in
databases (PKDD). Porto, Portugal.

Barth, A., Datta, A., Mitchell, J. C., & Nissenbaum, H.
(). Privacy and contextual integrity: Framework and
applications. IEEE Symposium on Security and Privacy,
–.

Clifton, C. W. (). What is privacy? Critical steps for privacy-
preserving data mining, workshop on privacy and security aspects
of data mining.

Directive //EC of the European Parliament on the protection
of individuals with regard to the processing of personal data
and on the free movement of such data. Official Journal of the
European Communities. ().

Domingo-Ferrer, J., Sebé, F., & Solanas, A. (). An anonymity
model achievable via microaggregation VLDB workshop on
secure data management. Springer, (pp. –).

Du, W., & Zhan, Z. (). Using randomized response techniques
for privacy-preserving data mining. Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery
and data mining (Vol.).

Evfimievski, A., Srikant, R., Agrawal, R., & Gehrke, J. (). Privacy
preserving mining of association rules. Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. –).

Felty, A., &Matwin, S. (). Privacy-oriented data mining by proof
checking. Sixth European conference on principles of data mining
and knowledge discovery (Vol.) (pp. –).

Friedman, A., Schuster, A., & Wolff, R. (). k-Anonymous deci-
sion tree induction, PKDD (pp. –).

Health, U. D. o., & Services, H. (Eds.) (). Summary of HIPAA
privacy rule.

Gianotti, F., & Pedreschi, D. (). Mobility, Data Mining and
Privacy: Geographic Knowledge Discovery, Springer.

Iyengar, V. S. (). Transforming data to satisfy privacy con-
straints. Proceedings of the eighth ACM SIGKDD international
conference on knowledge discovery and data mining (pp. –
).

Jiang, W., & Atzori, M. (). Secure distributed k-Anonymous pat-
tern mining, proceedings of the sixth international conference
on data mining. IEEE Computer Society.

Kantarcioglu, M. & Clifton, C. (). Privacy-preserving dis-
tributed mining of association rules on horizontally partitioned
data. IEEE Transactions on Knowledge and Data Engineering, ,
–.

Kargupta, H., Datta, S., & Wang, Q. (). On the privacy pre-
serving properties of random data perturbation techniques.
Third IEEE international conference on data mining. ICDM
(pp. –).

Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubrama-
niam, M. (). L -diversity: Privacy beyond k-anonymity.
ACM Transactions on Knowledge Discovery from Data, , .

Malin, B. A. (). An evaluation of the current state of genomic
data privacy protection technology and a roadmap for the
future. Journal of the American Medical Informatics Association,
, .

Moor, J. (). Towards a theory of privacy in the information
age. In T. Bynum, & S. Rodgerson (Eds.), Computer Ethics and
Professional Responsibility. Blackwell.

Ninghui, L., Tiancheng, L., & Venkatasubramanian, S. ().
t-Closeness: Privacy beyond k-Anonymity and l-Diversity.
IEEE rd international conference on data engineering. ICDE
 (pp. –).

Oliveira, S. R. M., Zaïane, O. R., & Saygin, Y. (). Secure
association rule sharing. Proceedings of the eighth PAKDD
and advances in knowledge discovery and data mining (pp.
–).

Paillier, P. (). The th international conference on privacy and
personal data protection, advances in cryptography – EURO-
CRYPT’ (pp. –).

Rossi, G. (). Privacy as quality in modern economy, the th
international conference on privacy and personal data protection.

Subramaniam, H., Wright, R. N., & Yang, Z. (). Experimen-
tal analysis of privacy-preserving statistics computation. Pro-
ceedings of the VLDB worshop on secure data management
(pp. –).

Sweeney, L. (). Computational disclosure control: a primer on
data privacy protection. Cambridge, MA: Massachusetts Insti-
tute of Technology, Deptartment of Electrical Engineering and
Computer Science.

Vaidya, J., & Clifton, C. (). Privacy preserving association rule
mining in vertically partitioned data. Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. –) Edmonton, Alberta: ACM.

Vaidya, J., Clifton, C., Kantarcioglu, M., & Patterson, A. S. ().
Privacy-preserving decision trees over vertically partitioned
data. ACM Transactions on Knowledge Discovery from Data, ,
–.

Vaidya, J., Zhu, Y. M., & Clifton, C. W. (). Privacy preserving
data mining. New York: Springer.

Website of the GeoPKDD Project.().
Westin, A. (). Privacy and freedom. New York: Atheneum.
Yao, A. (). How to generate and exchange secrets. th FOCS.
Zhan, J., Matwin, S., & Chang, L. (). Privacy-preserving col-

laborative association rule mining. Journal of Network and
Computer Appliactions, , –.

Zhan, J. Z. & Matwin, S. (). Privacy-prteserving data mining in
electronic surveys, ICEB (pp. –).

 P Probabilistic Context-Free Grammars

Probabilistic Context-Free
Grammars

Yasubumi Sakakibara
Keio University, Hiyoshi, Kohoku-ku, Japan

Synonyms
PCFG

Definition
In formal language theory, formal grammar (phrase-
structure grammar) is developed to capture the gener-
ative process of languages (Hopcro� & Ullman,).
A formal grammar is a set of productions (rewrit-
ing rules) that are used to generate a set of strings,
that is, a language. �e productions are applied iter-
atively to generate a string, a process called deriva-
tion.�e simplest kind of formal grammar is a regular
grammar.
Context-free grammars (CFG) form a more pow-

erful class of formal grammars than regular grammars
and are o�en used to de�ne the syntax of programming
languages. Formally, a CFG consists of a set of non-
terminal symbols N, a terminal alphabet Σ, a set P of
productions (rewriting rules), and a special nontermi-
nal S called the start symbol. For a nonempty set X of
symbols, letX∗ denote the set of all �nite strings of sym-
bols in X. Every CFG production has the form S → α,
where S ∈ N and α ∈ (N∪Σ)∗.�at is, the le�-hand side
consists of one nonterminal and there is no restriction
on the number or placement of nonterminals and ter-
minals on the right-hand side.�e language generated
by a CFG G is denoted L(G).
A probabilistic context-free grammar (PCFG) is

obtained by specifying a probability for each production
for a nonterminal A in a CFG, such that a probability
distribution exists over the set of productions for A.
A CFG G = (N, Σ,P, S) is in Chomsky normal form

if each production rule is of the formA→ BC orA→ a,
where A,B,C ∈ N and a ∈ Σ.
Given a PCFGG and a stringw = a . . . am, there are

three basic problems:

. Calculating the probability Pr(w∣G) that the gram-
mar G assigns to w

. Finding the most likely derivation (parse tree) of
w by G

. Estimating the parameters of G to maximize
Pr(w∣G)

�e �rst two problems, calculating the probability
Pr(w∣G) of a given string w assigned by a PCFG
G and �nding the most likely derivation of w by
G, can be solved using dynamic programming meth-
ods analogous to the Cocke-Younger-Kasami or Early
parsing methods. A polynomial-time algorithm for
solving the second problem is known as Viterbi algo-
rithm, and a polynomial-time algorithm for the third
problem is known as the inside-outside algorithm (Lari
& Young,).

Derivation Process
A derivation is a rewriting of a string in (N ∪ Σ)∗

using the production rules of a CFG G. In each step of
the derivation, a nonterminal from the current string
is chosen and replaced with the right-hand side of a
production rule for that nonterminal.�is replacement
process is repeated until the string consists of terminal
symbols only. If a derivation begins with a nonterminal
A and derives a string α ∈ (N ∪ Σ)∗, we write A⇒ α.
For example, the grammar in Fig. generates

an RNA sequence AGAAACUUGCUGGCCU by the
following derivation: Beginning with the start symbol
S, any production with S le� of the arrow can be cho-
sen to replace S. If the production S→ AXU is selected
(in this case, this is the only production available), the
e�ect is to replace S with AXU. �is one derivation
step is written S ⇒ AXU, where the double arrow
signi�es application of a production. Next, if the pro-
duction X → GXC is selected, the derivation step is
AXU⇒ AGXCU. Continuing with similar derivation
operations, each time choosing a nonterminal symbol
and replacing it with the right-hand side of an appro-
priate production, we obtain the following derivation
terminating with the desired sequence:

S⇒ AXU ⇒ AGXCU ⇒ AGXXCU

⇒ AGAXUXCU ⇒ AGAAXUUXCU

⇒ AGAAACUUXCU ⇒ AGAAACUUGXCCU

⇒ AGAAACUUGCXGCCU

⇒ AGAAACUUGCUGGCCU.

Probabilistic Context-Free Grammars P

P

Probabilistic Context-Free Grammars. Figure . This set of productions P generates RNA sequences with a certain

restricted structure. S,X, . . . ,X are nonterminals; A, U, G, and C are terminals representing the four nucleotides. Note

that only for X is there a choice of productions

Such a derivation can be arranged in a tree structure
called a parse tree.

�e language generated by a CFGG is denoted L(G),
that is, L(G) = {w ∣ S ⇒ w,w ∈ Σ∗}. Two CFGs G and
G′ are said to be equivalent if and only if L(G) = L(G′).

Probability Distribution
A PCFG assigns a probability to each string which it
derives and hence de�nes a probability distribution on
the set of strings.�e probability of a derivation can be
calculated as the product of the probabilities of the pro-
ductions used to generate the string.�e probability of
a string w is the sum of probabilities over all possible
derivations that could generate w, written as follows:

Pr(w ∣ G) = ∑
all derivations d

Pr(S
d
⇒ w ∣ G)

= ∑
α , . . . ,αn

Pr(S⇒ α ∣ G) ⋅ Pr(α ⇒ α ∣ G)

⋅ ⋯ ⋅ Pr(αn ⇒ w ∣ G).

Parsing Algorithm
E�ciently computing the probability of a string w,
Pr(s ∣ G), presents a problem because the number of
possible derivations for w is exponential in the length
of the string. However, a dynamic programming tech-
nique analogous to the Cocke-Kasami-Young or Earley
methods for nonprobabilistic CFGs can accomplish this
task e�ciently (in time proportional to the cube of the
length of w).

�e CYK algorithm is a polynomial time algo-
rithm for solving the parsing (membership) problem
of CFGs using dynamic programming.�e CYK algo-
rithm assumes Chomsky normal form of CFGs, and the
essence of the algorithm is the construction of a trian-
gular parse table T. Given a CFGG = (N, Σ,P, S) and an

input string w = aa . . . an in Σ∗ to be parsed accord-
ing to G, each element of T, denoted ti,j, for ≤ i ≤ n
and ≤ j ≤ n − i + , has a value which is a subset
of N. �e interpretation of T is that a nonterminal A
is in ti,j if and only if A ⇒ aiai+ . . . ai+j−, that is, A
derives the substring ofw beginning at position i and of
length j. To determine whether the string w is in L(G),
the algorithm computes the parse table T and look to
see whether S is in entry t,n.
In the �rst step of constructing the parse table, the

CYK algorithm sets ti, = {A ∣ A → ai is in P}. In the
jth step, the algorithm assumes that ti,j′ has been com-
puted for ≤ i ≤ n and ≤ j′ < j, and it computes ti,j
by examining the nonterminals in the following pairs
of entries:

(ti,, ti+,j−), (ti,, ti+,j−), . . . , (ti,j−, ti+j−,)

and if B is in ti,k and C is in ti+k,j−k for some k (≤ k < j)
and the production A→ BC is in P, A is added to ti,j.
For example, we consider a simple CFG G = (N, Σ,

P, S) of Chomsky normal form where N = {S,A},
Σ = {a, b} and

P = {S→ AA, S→ AS, S→ b, A→ SA, A→ a}.

�is CFG generates a string “abaaa,” that is, S⇒ abaaa,
and the parse table T for abaaa is shown in Fig. .�e
parse table can e�ciently store all possible parse trees of
G for abaaa.

Learning
�e problem of learning PCFGs from example strings
has two aspects: determining a discrete structure (topol-
ogy) of the target grammar and estimating probabilistic
parameters in the grammar (Sakakibara,). Based

 P Probabilistic Context-Free Grammars

on the maximum likelihood criterion, an e�cient esti-
mation algorithm for probabilistic parameters has been
proposed: the inside-outside algorithm for PCFGs. On
the other hand, �nding an appropriate discrete structure
of a grammar is a harder problem.

�e procedure to estimate the probabilistic parame-
ters of a PCFG is known as the inside-outside algorithm.
Just like the forward-backward algorithm for HMMs,
this procedure is an expectation-maximization (EM)
method for obtainingmaximum likelihood of the gram-
mar’s parameters. However, it requires the grammar to
be in Chomsky normal form, which is inconvenient to
handle in many practical problems (and requires more
nonterminals). Further, it takes time at least propor-
tional to n, whereas the forward-backward procedure
for HMMs takes time proportional to n, where n is the
length of the string w.�ere are also many local max-
ima in which the method can get caught.�erefore, the
initialization of the iterative process is crucial since it
a�ects the speed of convergence and the goodness of the
results.

5 S, A
4 S, A S, A
3 S, A S S, A
2 S A S S

j = 1 A S A A A

i = 1 2 3 4 5
a b a a a

Probabilistic Context-Free Grammars. Figure . The

parse table T of G for “abaaa”

Application to Bioinformatics
An e�ective method for learning and building PCFGs
has been applied to modeling a family of RNA
sequences (Durbin, Eddy, Krogh, & Mitchison, ;
Sakakibara,). InRNA, the nucleotides adenine (A),
cytosine (C), guanine (G), and uracil (U) interact in
speci�cways to form characteristic secondary-structure
motifs such as helices, loops, and bulges. In general,
the folding of an RNA chain into a functional molecule
is largely governed by the formation of intramolecular
A-U andG-CWatson–Crick pairs. Such base pairs con-
stitute the so-called biological palindromes in a genome
and can be clearly described by a CFG. In particular,
productions of the forms X → A Y U, X → U Y A,
X → GY C, andX → CY Gdescribe a structure in RNA
due to Watson–Crick base pairing. Using productions
of this type, a CFG can specify a language of biological
palindromes.
For example, the application of productions in the

grammar shown in Fig. generates the RNA sequence
CAUCAGGGAAGAUCUCUUG and the derivation
can be arranged in a tree structure of a parse tree (Fig. ,
le�). A parse tree represents the syntactic structure of a
sequence produced by a grammar. For the RNA
sequence, this syntactic structure corresponds to the
physical secondary structure (Fig. , right). PCFGs
are applied to perform three tasks in RNA sequence
analysis: to discriminate RNA-family sequences from
nonfamily sequences, to produce multiple alignments,
and to ascertain the secondary structure of new
sequences.

A U

G C

A U

A U

A U

G C

A

U G

G C

C G

U G

G C

A U

A

G C

X1

X9

X10

X11

X12

X13

X14

X15

X16

X5

X3 X4

X6

X7 X8

X2

S

CG

U

A
A

A

A
C

G

C

C

G

C

G

G

U
U

U

U

U

U

A

A

A

G

G

G

C

X8

S

X7
X9

X10
X11

X12

X1

X2
X3 X4X5

X6

X13
X14

X15

X16

Probabilistic Context-Free Grammars. Figure . A parse tree (left) generated by a simple context-free grammar (CFG)

for RNA molecules and the physical secondary structure (right) of the RNA sequence which is a reflection of the parse

tree

Programming by Example P

P

Recommended Reading
Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (). Biological

sequence analysis. Cambridge, UK: Cambridge University Press.
Hopcroft, J. E., & Ullman, J. D. (). Introduction to automata the-

ory, languages and computation. Reading, MA: Addison-Wesley.
Lari, K., & Young, S. J. (). The estimation of stochastic context-

free grammars using the inside-outside algorithm. Computer
Speech and Language, , –.

Sakakibara, Y. (). Recent advances of grammatical inference.
Theoretical Computer Science, , –.

Sakakibara, Y. (). Grammatical inference in bioinformatics.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
, –.

Probably Approximately Correct
Learning

7PAC Learning

Process-Based Modeling

7Inductive Process Modeling

Program Synthesis From Examples

7Inductive Programming

Programming by Demonstration

Pierre Flener,, Ute Schmid
Sabancı University, Orhanlı, Tuzla, Turkey
Uppsala University, Uppsala, Sweden
University of Bamberg, Bamberg, Germany

Synonyms
Programming by example

Definition
Programming by demonstration (PBD) describes a
collection of approaches for the support of end-user
programming with the goal of making the power of
computers fully accessible to all users. �e general
objective is to teach computer systems new behavior by
demonstrating (repetitive) actions on concrete exam-
ples. A user provides examples of how a program should

operate, either by demonstrating trace steps or by show-
ing examples of the inputs and outputs, and the sys-
tem infers a generalized program that achieves those
examples and can be applied to new examples. Typical
areas of application are macro generation (e.g., for text
editing), simple arithmetic functions in spreadsheets,
simple shell programs, XML transformations, or query-
replace commands, as well as the generation of helper
programs for web agents, geographic information sys-
tems, or computer-aided design.�e most challenging
approach to PBD is to obtain generalizable examples by
minimal intrusion, where the user’s ongoing actions are
recorded without an explicit signal for the start of an
example and without explicit con�rmation or rejection
of hypotheses. An example of such a system is eager
(Cypher, a).
Current PBD approaches incorporate some simple

forms of 7generalization learning, but typically no or
only highly problem-dependent methods for the induc-
tion of loops or recursion from examples or traces
of repetitive commands. Introducing 7inductive pro-
gramming or7trace-based programmingmethods into
PBD applications could signi�cantly increase the possi-
bilities of end-user programming support.

Acknowledgement
Most of the work by this author was done while on leave
of absence in / as a Visiting Faculty Member
and Erasmus Exchange Teacher at Sabancı University.

Cross References
7Inductive Programming
7Trace-Based Programming

Recommended Reading
Cypher, A. (a). Programming repetitive tasks by demonstra-

tion. In A. Cypher (Ed.), Watch what I do: Programming by
demonstration (pp. –). Cambridge, MA: MIT Press.

Cypher A. (Ed.) (b). Watch what I do: Programming by demon-
stration. Cambridge, MA: MIT Press.

Lieberman, H. (Ed.) (). Your wish is my command: Programming
by example. San Francisco, CA: Morgan Kaufmann.

Programming by Example

7Programming by Demonstration

 P Programming from Traces

Programming from Traces

7Trace-Based Programming

Projective Clustering

CeciliaM. Procopiuc
AT&T Labs, Florham Park, NJ, USA

Synonyms
Local feature selection; Subspace clustering

Definition
Projective clustering is a class of problems in which the
input consists of high-dimensional data, and the goal is
to discover those subsets of the input that are strongly
correlated in subspaces of the original space. Each sub-
set of correlated points, together with its associated
subspace, de�nes a projective cluster. �us, although
all cluster points are close to each other when pro-
jected on the associated subspace, they may be spread
out in the full-dimensional space. �is makes projec-
tive clustering algorithms particularly useful whenmin-
ing or indexing datasets for which full-dimensional
clustering is inadequate (as is the case for most high-
dimensional inputs). Moreover, such algorithms com-
pute projective clusters that exist in di�erent subspaces,
making themmore general than global dimensionality-
reduction techniques.

Motivation and Background
Projective clustering is a type of data mining whose
main motivation is to discover correlations in the input
data that exist in subspaces of the original space.�is
is an extension of traditional full-dimensional clus-
tering, in which one tries to discover point subsets
that are strongly correlated in all dimensions. Fig-
ure a shows an example of input data for which
full-dimensional clustering cannot discover the three
underlying patterns. Each pattern is a projective
cluster.
It is well known (Beyer, Goldstein, Ramakrishnan,&

Sha�,) that for a broad class of data distributions, as
the dimensionality increases, the distance to the nearest

neigbor of a point approaches the distance to its farthest
neighbor.�is implies that full-dimensional clustering
will fail to discover signi�cantly correlated subsets on
such data, since the diameter of a cluster is almost the
same as the diameter of the entire dataset. In prac-
tice, many applications from text and image processing
generate data with hundreds or thousands of dimen-
sions, which makes them extremely bad candidates for
full-dimensional clustering methods.
One popular technique to classify high-dimensional

data is to �rst project it onto a much lower-dimensional
subspace, and then employ a full-dimensional cluster-
ing algorithm in that space. �e projection subspace
is the same for all points, and is computed so that
it best “�ts” the data. A widely used dimensionality-
reduction technique, called 7principal component
analysis (PCA), de�nes the best projection subspace to
be the one that minimizes least-square error. While this
approach has been proven successful in certain areas
such as text mining, its e�ectiveness depends largely on
the characteristics of the data.�e reason is that there
may be no way to choose a single projection subspace
without encountering a signi�cant error; or alterna-
tively, setting amaximumboundon the error results in a
subspace with high dimensionality. Figure b shows the
result of PCA on a good candidate set.�e points are
projected on the subspace spanned by vectors V and
V, along which they have greatest variance. However,
for the example in Fig.a, no plane or line �ts the data
well enough. Projective clustering can thus be viewed
as a generalized dimensionality-reduction method, in
which di�erent subsets of the data are projected on
di�erent subspaces.

�ere are many variants of projective clustering,
depending on what quality measure one tries to opti-
mize for the clustering. Most such measures, however,
are expressed as a function of the distances between
points in the clusters. �e distance between two clus-
ter points is computed with respect to the subspace
associated with that cluster. Alternative quality mea-
sures consider the density of cluster points inside the
associated subspace.
Meggido and Tamir () showed that it is NP-

Hard to decide whether a set of n points in the plane
can be covered by k lines. �is early result implies
not only that most projective clustering problems are
NP-Complete even in the planar case, but also that

Projective Clustering P

P

V3
V1 V2

(b)(a)
Projective Clustering. Figure . Dimensionality reduction via (a) projective clustering and (b) principal component

analysis

approximating the objective function within a constant
factor is NP-Complete. Nevertheless, several approxi-
mation algorithms have been proposed, with running
time polynomial in the number of points n and expo-
nential in the number of clusters k. Agrawal, Gehrke,
Gunopulos, and Raghavan () proposed a sub-
space clustering method based on density measure
that computes clusters in a bottom-up approach (from
lower to higher dimensions). Aggarwal, Wolf, Yu, Pro-
copiuc, and Park () designed a partitioning-style
algorithm.

Theory
Many variants of projective clustering problems use
a distance-based objective function and thus have a
natural geometric interpretation. In general, the opti-
mization problem is stated with respect to one or more
parameters that constrain the kind of projective clus-
ters one needs to investigate. Examples of such param-
eters are: the number of clusters, the dimensionality
(or average dimensionality) of the clusters, the max-
imum size of the cluster in its associated subspace,
the minimum density of cluster points, etc. Below we
present the most frequently studied variants for this
problem.

Distance-Based Projective Clustering Given a set S of n
points in Rd and two integers k < n and q ≤ d, �nd
k q-dimensional �ats h, . . . ,hk and partition S into k
subsets C, . . . ,Ck so that one of the following objective
functions is minimized:

max
≤i≤k

max
p∈Ci

d(p,hi) (k-center)

∑
≤i≤k
∑
p∈Ci
d(p,hi) (k-median)

∑
≤i≤k
∑
p∈Ci
d(p,hi) (k-means)

�ese types of problems are also referred to as geo-
metric clustering problems.�ey require all cluster sub-
spaces to have the same dimensionality, i.e., d − q (the
subspace associated with Ci is orthogonal to hi). �e
number of clusters is also �xed, and the clustering must
be a partitioning of the original points.
Further variants are de�ned by introducing slight

modi�cations in the above framework. For example,
one can allow the existence of outliers, i.e., points that
do not belong to any projective cluster.�is is generally
done by providing an additional parameter, which is the
maximumpercentage of outliers.�e problems can also
be changed to a dual formulation, in which a maximum
value for the objective function is speci�ed, and the goal
is to minimize the number of clusters k.
Special cases for the k-center objective function are

q = d − and q = . In the �rst case, the problem
is equivalent to �nding k hyper-strips that contain S
so that the maximum width of a hyper-strip is mini-
mized. If q = , then the problem is to cover S by k
congruent hyper-cylinders of smallest radius. Since this
is equivalent to �nding the k lines that are the axes of
the hyper-cylinders, this problem is also referred to as
k-line-center. Figure a is an example of -line-center.
In addition, k-median problems have also been

studied when cluster subspaces have di�erent dimen-
sionalities. In that case, distances computed in each
cluster are normalized by the dimensionality of the
corresponding subspace.

 P Projective Clustering

Density-Based Projective Clustering A convex region in
a subspace is called dense if the number of data points
that project inside it is larger than some user-de�ned
threshold. For a �xed subspace, the convex regions of
interest in that subspace are de�ned in one of sev-
eral ways, as detailed below. Projective clusters are then
de�ned to be connected unions of dense regions of
interest. �e di�erent variants for de�ning regions of
interest can be broadly classi�ed in three classes:
(ε-Neighborhoods)Regions of interest are Lp-balls of

radius ε centered at the data points. In general, Lp is
either L (hyper-spheres) or L∞ (hyper-cubes).
(Regular Grid Cells) Regions of interest are cells

de�ned by an axis-parallel grid in the subspace.�e grid
hyper-planes are equidistant along each dimension.
(Irregular Grid Cells) Regions of interest are cells

de�ned by an irregular grid in the subspace. Parallel
grid hyper-planes are not necessarily equidistant, and
they may also be arbitrarily oriented.
Another variant of projective clustering de�nes a

so-called quality measure for a projective cluster, which
depends both on the number of cluster points and the
number of dimensions in the associated subspace.�e
goal is to compute the clusters that maximize this mea-
sure. Projective clusters are required to be Lp-balls of
�xed radius in their associated subspace, which means
that clusters in higher dimensions tend to have fewer
points, and vice-versa. Hence, the quality measure pro-
vides a way to compare clusters that exist in di�erent
number of dimensions. It is related to the notion of
dense ε-neighborhoods.
Many other projective clustering problems are appli-

cation driven and do not easily �t in the above clas-
si�cation. While they follow the general framework of
�nding correlations among data in subspaces of the
original space, the notion of projective cluster is speci�c
to the application. One such example is presented later
in this section.

Algorithms

Distance-based projective clustering problems are NP-
Complete when the number of clusters k is an input
parameter. Moreover, k-center problems cannot be
approximated within a constant factor, unless P =

NP. �is follows from the result of Meggido and
Tamir (), who showed that it is NP-Hard to decide

whether a set of n points in the plane can be covered by
k lines.
Agarwal andProcopiuc () �rst proposed approx-

imation algorithms for k-center projective clustering in
two and three dimensions.�e algorithms achieve con-
stant factor approximation by generating more clusters
than required.
Subsequent work by several other authors led to the

development of a general framework in which (+ ε)-
approximate solutions can be designed for several types
of full-dimensional and projective clustering. In partic-
ular, k-center and k-means projective clustering can be
approximated in any number of dimensions.�e idea is
to compute a so-called coreset, which is a small subset
of the points, such that the optimal projective clusters
for the coreset closely approximate the projective clus-
ters for the original set. Computing the optimal solution
for the coreset has (super) exponential dependence on
the number of clusters k, but it is signi�cantly faster
than computing the optimal solution for the original
set of points. �e survey by Agarwal, Har-Peled, and
Varadarajan () gives a comprehensive overview of
these results.
While the above algorithms have approximation

guarantees, they are not practical even formoderate val-
ues of n, k, and d. As a result, heuristic methods have
also been developed for these problems. �e general
approach is to iteratively re�ne a current set of clus-
ters, either by re-assigning points among them, or by
merging nearby clusters. When the set of points in a
cluster changes, the new subspace associated with the
cluster is also recomputed, in away that tries to optimize
the objective function for the new clustering. Aggarwal
et al. () proposed the PROCLUS algorithm for k-
median projective clustering with outliers. �e clus-
ter subspaces can have di�erent dimensionalities, but
they must be orthogonal to coordinate axes. Aggar-
wal and Yu () subsequently extended the algo-
rithm to arbitrarily oriented clusters, but with the same
number of dimensions. Agarwal and Mustafa ()
proposed a heuristic approach for k-means projec-
tive clustering with arbitrary orientation and di�erent
dimensionalities.

�e �rst widely used method for density-based pro-
jective clustering was proposed by Agrawal et al. ().
�e algorithm, called CLIQUE, computes projective

Projective Clustering P

P

clusters based on regular grid cells in orthogonal sub-
spaces, starting from the lowest-dimensional subspaces
(i.e., the coordinate axes) and iterating to higher dimen-
sions. Pruning techniques are used to skip subspaces
in which a large fraction of points lie outside dense
regions. Subsequent strategies improved the running
time and accuracy by imposing irregular grids and
using di�erent pruning criteria.
Bohm, Kailing, Kroger, and Zimek () designed

an algorithmcalled C for computing density-connected
ε-neighborhoods in arbitrarily oriented subspaces.�e
method is agglomerative: It computes the local dimen-
sionality around each point p by using PCA on all
points inside the (full-dimensional) ε-neighborhood
of p. If the dimensionality is small enough and the
neighborhood is dense, then p and its neighbors
form a projective cluster. Connected projective clusters
with similarly oriented subspaces are then repeatedly
merged.

�e OptiGrid algorithm by Hinneburg and
Keim () was the �rst method to propose irregular
grid cells of arbitrary (but �xed) orientation. Along
each grid direction, grid hyper-planes are de�ned to
pass through the local minima of a probability density
function.�is signi�cantly reduces the number of cells
compared with a regular grid that achieves similar
overall accuracy. �e probability density function is
de�ned using the kernel-density estimation framework.
Input points are projected on the grid direction, and
their distribution is extrapolated to the entire line by
the density function

f (x) =

nh

n

∑
i=
K (
x − si
h

) ,

where s, . . . , sn denote the projections of the input
points, and h is a parameter.�e function K(x), called
the kernel, is usually the Gaussian function, although
other kernels can also be used.

�e DOC algorithm proposed by Procopiuc, Jones,
Agarwal, and Murali () approximates optimal
clusters for a class of quality measures. Orthogonal
projective clusters are computed iteratively via random
sampling. If a sample is fully contained in a cluster then
it can be used to determine the subspace of that cluster,
as well as (a superset of) the other cluster points. Such

a sample is called a discriminating set. Using the prop-
erties of the quality measure, the authors show that a
discriminating set is found with high probability a�er a
polynomial number of trials.
An overview of most of these practical methods,

as well as of subsequent work expanding their results,
can be found in the survey by Parsons, Haque, and
Liu ().

Applications

Similar to full-dimensional clustering, projective clus-
tering methods provide a way to e�ciently orga-
nize databases for searching, as well as for pattern
discovery and data compression. In a broad sense,
they can be used in any application that handles
high-dimensional data, and which can bene�t from
indexing or mining capabilities. In practice, addi-
tional domain-speci�c information is o�en neces-
sary. We present an overview of the generic database
usage �rst, and then discuss several domain-speci�c
applications.

Data Indexing An index tree is a hierarchical struc-
ture de�ned on top of a data set as follows. �e root
corresponds to the entire data set. For each internal
node, the data corresponding to that node is parti-
tioned in some pre-de�ned manner, and there is a child
of the node corresponding to each subset in the par-
tition. O�en, the partitioning method is a distance-
based clustering algorithm. In addition, each node
stores the boundary of a geometric region that contains
its points, to make searching the structure more e�-
cient. For many popular indexes, the geometric region
is theminimum axis-parallel bounding box. Index trees
built with full-dimensional clustering methods become
ine�cient for dimensionality about or higher, due
to the large overlap in the geometric regions of sib-
ling nodes. Chakrabarti and Mehrotra () �rst pro-
posed an index tree that uses projective clustering as a
partitioning method. In that case, each node also stores
the subspace associated with the cluster.

Pattern Discovery A projective cluster, by de�nition, is
a pattern in the data, so any of the above algorithms
can be used in a pattern discovery application. How-
ever, most applications restrict the projective clusters to

 P Projective Clustering

be orthogonal to coordinate axes, since the axes have
special interpretations. For example, in a database of
employees, one axis may represent salary, another the
length of employment, and the third one the employ-
ees’ age. A projective cluster in the subspace spanned
by salary and employment length has the following
interpretation: there is a correlation between salaries in
range A and years of employment in range B, which is
independent of employees’ age.

Data Compression As discussed in the introduction,
projective clusters can be used as a dimensionality-
reduction technique, by replacing each point with its
projection on a lower dimensional subspace.�e pro-
jection subspace is orthogonal to the subspace of the
cluster that contains the point. In general, this method
achieves smaller information loss and higher compres-
sion ratio than a global technique such as PCA.

Image Processing A picture can be represented as a
high-dimensional data point, where each pixel repre-
sents one dimension, and its value is equal to the RGB
color value of the pixel. Since this representation loses
pixel adjacency information, it is generally used in con-
nection with a smoothing technique, which replaces the
value of a pixel with a function that depends both on
the old pixel value, and the values of its neighbors. A
projective cluster groups images that share some simi-
lar features, while they di�er signi�cantly on others.�e
DOC algorithm has been applied to the face detection
problem as follows: Projective clusters were computed
on a set of (pre-labeled) human faces, then used in a
classi�er to determine whether a new image contained
a human face.

Document Processing Text documents are o�en repre-
sented as sparse high-dimensional vectors, with each
dimension corresponding to a distinct word in the doc-
ument collection. Several methods are used to reduce
the dimensionality, e.g., by eliminating so-called stop
words such as “and,” “the,” and “of.” A non zero entry
in a vector is usually a function of the correspond-
ing word’s frequency in the document. Because of the
inherent sparsity of the vectors, density-based clus-
tering, as well as k-center methods, are poor choices

for such data. However, k-means projective cluster-
ing has been successfully applied to several document
corpora (Li, Ma, & Ogihara,).

DNA Microarray Analysis A gene-condition expression
matrix, generated by a DNAmicroarray, is a real-valued
matrix, such that each row corresponds to a gene, and
each column corresponds to a di�erent condition. An
entry in a row is a function of the relative abundance
of the mRNA of the gene under that speci�c condition.
An orthogonal projective cluster thus represents several
genes that have similar expression levels under a subset
of conditions. Genetics researchers can infer connec-
tions between a disease and the genes in a cluster. Due to
the particularities of the data, di�erent notions of simi-
larity are o�en required. For example, order preserving
clusters group genes that have the same tendency on a
subset of attributes, i.e., an attribute has the same rank
(rather than similar value) in each projected gene. See
the results of Liu and Wang ().

Principal Component Analysis
PCA also referred to as the Karhunen-Loève Trans-
form, is a global7dimensionality reduction technique,
as opposed to projective clustering, which is a local
dimensionality reduction method. PCA is de�ned as an
orthogonal linear transformationwith the property that
it transforms the data into a new coordinate system,
such that the projection of the data on the �rst coordi-
nate has the greatest variance among all projections on
a line, the projection of the data on the second coordi-
nate has the second greatest variance, and so on. Let X
denote the data matrix, with each point written as a col-
umn vector in X, and modi�ed so that X has empirical
mean zero (i.e., themean vector is subtracted from each
data point).�en the eigenvectors of thematrixXXT are
the coordinates of the new system.To reduce the dimen-
sionality, keep only the eigenvectors corresponding to
the largest few eigenvalues.

Coresets
Let P ⊆ Rd be a set of points, and µ be a measure func-
tion de�ned on subsets of Rd, such that µ is monotone
(i.e., for P ⊆ P, µ(P) ≤ µ(P)). A subset Q ⊆ P is

Prolog P

P

an ε-coreset with respect to µ if (− ε)µ(P) ≤ µ(Q).
�e objective functions for k-center, k-median, and k-
means projective clustering are all examples of measure
functions µ.

Cross References
7Clustering
7Curse of Dimensionality
7Data Mining
7Dimensionality Reduction
7k-Means Clustering
7Kernel Methods
7Principal Component Analysis

Recommended Reading
Agarwal, P. K., Har-Peled, S., & Varadarajan, K. R. (). Geometric

approximation via coresets. Combinatorial and Computational
Geometry (pp. –).

Agarwal, P. K., & Mustafa, N. (). k-means projective clustering.
In Proceeding of ACM SIGMOD-SIGACT-SIGART symposium
principles of database systems (pp. –).

Agarwal, P. K., & Procopiuc, C. M. (). Approximation algo-
rithms for projective clustering. Journal of Algorithms, (),
–.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (). Auto-
matic subspace clustering of high dimensional data for data
mining applications. In Proceeding of ACM SIGMOD interna-
tional conference management of data (pp. –).

Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., Yu, P. S., & Park, J. S.
(). Fast algorithms for projected clustering. In Proceeding
of ACM SIGMOD international conference management of data
(pp. –).

Aggarwal, C. C., & Yu, P. S. (). Finding generalized pro-
jected clusters in high dimensional spaces. In Proceeding of
ACM SIGMOD international conference management of data
(pp. –).

Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (). When
is “nearest neighbour” meaningful? In Proceeding of th inter-
national conference data theory (Vol. , pp. –).

Böhm, C., Kailing, K., Kröger, P., & Zimek, A. (). Comput-
ing clusters of correlation connected objects. In Proceeding of
ACM SIGMOD international conference management of data
(pp. –).

Chakrabarti, K., & Mehrotra, S. (). Local dimensionality reduc-
tion: A new approach to indexing high dimensional spaces. In
Proceeding of th international conference very large data bases
(pp. –).

Hinneburg, A., & Keim, D. A. (). Optimal grid-clustering:
Towards breaking the curse of dimensionality in high-
dimensional clustering. In Proceeding of th international
conference very large data bases (pp. –).

Li, T., Ma, S., & Ogihara, M. (). Document clustering via
adaptive subspace iteration. In Proceeding of th international
ACM SIGIR conference research and development in information
retrieval (pp. –).

Liu, J., & Wang, W. (). Op-cluster: Clustering by tendency in
high dimensional space. In Proceeding of international confer-
ence on data mining (pp. –).

Megiddo, N., & Tamir, A. (). On the complexity of locating linear
facilities in the plane. Operations Research Letters, , –.

Parsons, L., Haque, E., & Liu, H. (). Subspace clustering for
high dimensional data: A review. ACM SIGKDD Explorations
Newsletter, (), –.

Procopiuc, C. M., Jones, M., Agarwal, P. K., & Murali, T. M. ().
A monte carlo algorithm for fast projective clustering. In Pro-
ceeding of ACM SIGMOD international conference management
of data (pp. –).

Prolog

Prolog is a declarative programming language based on
logic. It was conceived by French and British computer
scientists in the early s. A considerable number of
public-domain and commercial Prolog interpreters are
available today. Prolog is particularly suited for appli-
cations requiring pattern matching or search. Prolog
programs are also referred to as7logic programs.
In machine learning, classi�cation rules for struc-

tured individuals can be expressed using a subset of
Prolog. Learning Prolog programs from examples is
called 7inductive logic programming (ILP). ILP sys-
tems are sometimes – but not always – implemented in
Prolog.�is has the advantage that classi�cation rules
can be executed directly by the Prolog interpreter.

Cross References
7Clause
7First-Order Logic
7Inductive Logic Programming
7Logic Program

Recommended Reading
Colmerauer, A., Kanoui, H., Pasero, R., & Roussel, P. () Un

système de communication homme-machine an Français. Rep.,
Groupè d’Intelligence Artificielle, Univ. d’Aix Marseille II.
Luminy, France.

Kowalski, R. A. () The predicate calculus as a programming lan-
guage. In Proceedings of the International Symposium and Sum-

 P Property

mer School on Mathematical Foundations of Computer Science.
Jablonna, Poland.

Roussel, P. (). Prolog: Manual de reference et d’utilization.
Technical report, Groupe d’Intelligence Artificielle, Marseille-
Luminy.

Property

7Attribute

Propositional Logic

Propositional logic is the logic of propositions, i.e.,
expressions that are either true or false. Complex propo-
sitions are built from propositional atoms using logical
connectives. Propositional logic is a special case of pred-
icate logic, where all7predicates have zero arity; see the
entry on �rst-order logic for details.

Cross References
7First-Order Logic
7Propositionalization

Propositionalization

Nicolas Lachiche
University of Strasbourg, Strasbourg, France

Definition
Propositionalization is the process of explicitly trans-
forming a 7Relational dataset into a propositional
dataset.

�e input data consists of examples represented by
structured terms (cf.7Learning from StructuredData),
several predicates in 7First-Order Logic, or several
tables in a relational database.We jointly refer to these as
relational representations.�e output is an 7Attribute-
value representation in a single table, where each
example corresponds to one row and is described by its
values for a �xed set of attributes. New attributes are
o�en called features to emphasize that they are built
from the original attributes.�e aim of propositional-
ization is to pre-process relational data for subsequent

analysis by attribute-value learners. �ere are several
reasons for doing this, the most important of which are:
to reduce the complexity and speed up the learning; to
separate modeling the data from hypothesis construc-
tion; or to use familiar attribute-value (or propositional)
learners.

Motivation and Background
Most domains are naturally modeled by several tables
in a relational database or several classes in an object-
oriented language, for example: customers and their
transactions; molecules, their atoms and bonds; or
patients and their examinations. A proper relational
dataset involves at least two tables linked together. Typ-
ically, one table of the relational representation corre-
sponds to the individuals of interest for the machine
learning task, and the other tables contain related
information that could be useful.�e �rst table is the
individual, or the primary table, the other tables are
complementary tables.

Example Let us consider a simpli�edmedical domain
as an example.�is is inspired by a real medical dataset
(Tomečková, Rauch, & Berka,). It consists of four
tables.

�e patient table is the primary table. It contains data
on each patient such as the patient identi�er (pid), name,
date of birth, height, job, the identi�er of the company
where the patient works, etc.:

Patient

pid name birth height job company . . .

I Smith // . manager a . . .

II Blake // . salesman a . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .

�e company table contains its name, its location,
and so on. �ere is a many-to-one relationship from
the patient table to the company table: A patient works
for a single company, but a company may have several
employees.

�e examination table contains the information on
all examinations of all patients. For each examination,
its identi�er (eid), the patient identi�er (pid), the date,

Propositionalization P

P

Company

cid name location . . .

a Eiffel Paris . . .

⋮ ⋮ ⋮ . . .

the patient’s weight, whether the patient smokes, his or
her blood pressure, etc. are recorded. Of course, each
examination corresponds to a single patient, and a given
patient can have several examinations, i.e., there is a
one-to-many relationship from the patient table to the
examination table.
Additional tests can be prescribed at each examina-

tion.�eir identi�ers (tid), corresponding examinations
(eid), names, values, and interpretations are recorded in
the additional_test table:

Examination

eid pid date weight smokes BP . . .

 I // yes . . .

 I // yes . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .

 II // yes . . .

 II // no . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .

Additional_test

tid eid date name value

inter-

pretation

t // red blood cells bad

t // radiography nothing good

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

t // red blood cells good

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Several approaches exist to deal directly with
relational data, e.g., 7Inductive Logic Programming,
7Relational Data Mining (Džeroski & Lavrač,),

or 7Statistical Relational Learning. However, if the
relational representation does not require recursion or
complex quanti�ers, relational hypotheses can be trans-
formed into propositional expressions.
Generally, a richer representation language permits

the description of more complex concepts, however, the
cost of this representational power is that the search
space for learning greatly increases. �erefore, map-
ping a relational representation into a propositional one
generally reduces search complexity.
A second motivation of propositionalization is to

focus on the construction of features before combin-
ing them into an hypothesis (Srinivasan, Muggleton,
King, &�eories,).�is is related to Feature Con-
struction, and to the use of background knowledge.
One could say that propositionalization aims at building
an intermediate representation of the data in order to
simplify the hypothesis subsequently found by a propo-
sitional learner.
A third motivation is pragmatic. Most available

machine learning systems deal with propositional data
only, but tend to include a range of algorithms in a single
environment, whereas relational learning systems tend
to concentrate on a single algorithm. Propositional sys-
tems are therefore o�en more versatile and give users
the possibility to work with the algorithms they are
used to.

Solutions
�ere are various ways to propositionalize relational
data consisting of at least two tables linked together
through a relationship. We �rst focus on a single rela-
tionship between two tables. Most approaches can then
iteratively deal with several relationships as explained
below.
Propositionalizationmechanisms dependonwhether

that relationship is functional or non-determinate.�is
distinction explains most common mistakes made by
newcomers.

Functional Relationship (Many-To-One, One-To-One)

When the primary table has a many-to-one or one-to-
one relationship to the complementary table, each row
of the primary table links to one row of the comple-
mentary table. A simple join of the two tables results
in a single table where each row of the primary table

 P Propositionalization

is completed with the information derived from the
complementary table.

Example In our simpli�ed medical domain, there is
a many-to-one relationship from each patient to his or
her company. Let us focus on those two tables only. A
join of the two tables results in a single table where each
row describes a single patient and the company he or she
works for:

�e resulting table is suitable for any attribute-value
learner.

Non-Determinate Relationship (One-To-Many,

Many-To-Many)

Propositionalization is less trivial in a non-determinate
context, when there is a one-to-many or many-to-many
relationship from the primary table to the complemen-
tary table, i.e., when one individual of the primary table
is associated to a set of rows of the complementary
table.
A propositional attribute is built by applying an

aggregation function to a column of the complemen-
tary table over a selection of rows. Of course a lot of
conditions can be used to select the rows.�ose con-
ditions can involve other columns than the aggregated
column. Any aggregation function can be used, e.g., to
check whether the set is not empty, to count how many
elements there are, to �nd the mean (for numerical) or
the mode (for categorical) values, etc.

Example In our simpli�ed medical domain, there is
a one-to-many relationship from the patient to his or her
examinations. Let us focus on those two tables only.Many
features can be constructed. Simple features are aggrega-
tion functions applied to a scalar (numerical or categor-
ical) column.�e number of occurrences of the di�erent
values of every categorical attributes can be counted. For
instance, the f feature in the table below counts in how
many examinations the patient stated he or she smoked.
�e maximum, minimum, average, and standard devi-
ation of every numerical columns can be estimated, e.g.,
the f and f features in the table below respectively esti-
mates the average and the maximum blood pressure of
the patient over his or her examinations.�e aggregation
functions can be applied to any selection of rows, e.g., the

f feature in the table below estimates the average blood
pressure over the examinations when the patient smoked.

Patient and his/her examinations

pid name . . . f . . . f f . . . f . . .

I Smith

II Blake

⋮ ⋮ . . . ⋮ . . . ⋮ ⋮ . . . ⋮ . . .

From this example, it is clear that non-determinate rela-
tionships can easily lead to a combinatorial explosion of
the number of features.

Common Mistakes and Key Rules to Avoid them

Two mistakes are frequent when machine learning
practitioners face a propositionalization problem, i.e.,
when they want to apply a propositional learner to an
existing relational dataset (Lachiche,).

�e �rst mistake is to misuse the (universal) join.
Join is valid in a functional context, as explained ear-
lier. When applied to a non-determinate relationship,
it produces a table where several rows correspond to a
single individual, leading to a multiple instance prob-
lem (Dietterich, Lathrop, & Lozano-Pérez,) (cf.
7Multi-Instance Learning).

Example In our simpli�ed medical domain, there is
a one-to-many relationship from the patient table to the
examination table. If a join is performed, each row of
the examination table is completed with the information
on the examined patient, i.e., there are as many rows as
examinations.

Examination and its patient

eid date weight smokes BP . . . pid name . . .

 // yes . . . I Smith . . .

 // yes . . . I Smith . . .

⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮ . . .

 // yes . . . II Blake . . .

 // no . . . II Blake . . .

⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮ . . .

Propositionalization P

P

Patient and his/her company

pid name birth height job cid company location . . .

I Smith // . manager a Eiffel Paris . . .

II Blake // . salesman a Eiffel Paris . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .

In this example, the joined table deals with the exam-
inations rather than with the patients. An attribute-value
learner could be used to learn hypotheses about the exam-
inations, not about the patients.

�is example reinforces a key representation rule in
attribute-value learning: “Each row corresponds to a
single individual, and vice-versa.”

�e second mistake is a meaningless column con-
catenation. �is is more likely when a one-to-many
relationship can be misinterpreted as several one-to-
one relationships, i.e., when the practitioner is led to
think that a non-determinate relationship is actually
functional.

Example In our simpli�ed medical domain, let us
assume that the physician numbered the successive exam-
inations (, , , and so on) of each patient.�en given
that each patient has a �rst examination, it is tempting to
consider that there is a functional relationship from the
patient to his or her “�rst” examination, “second” exami-
nation, and so on .�is would result in a new patient table
with concatenated columns: weight at the �rst examina-
tion, whether he or she smoked at the �rst examination,
. . . , weight at the second examination, etc.

Patient and his or her examinations (incorrect represen-

tation!)

“first” examination “second” examination

pid name . . . weight smokes . . . weight smokes

I Smith . . . yes . . . yes

II Blake . . . yes . . . no

⋮ ⋮ . . . ⋮ . . . ⋮ ⋮ ⋮

�is could easily lead to an attribute-value learner
generalizing over a patient’s weight at their i-th exami-
nation, which is very unlikely to be meaningful.

Two aspects should warn the user of such a rep-
resentation problem: �rst, the number of columns
depends on the dataset, and as a consequence lots
of columns are not de�ned for all individuals. More-
over, when the absolute numbering does not make
sense, there is no functional relationship. Such a mis-
understanding can be avoided by remembering that
in an attribute-value representation, “each column is
uniquely de�ned for each row.”

Further Relationships

�e �rst complementary table can itself have a non-
determinate relationship with another complementary
table, and so on. Two approaches are available.
A �rst approach is to consider the �rst comple-

mentary table, the one having a one-to-many rela-
tionship, as a new primary table in a recursive
propositionalization.

Example In our simpli�ed medical domain, the
examination table has a one-to-many relationship with
the additional test table.�e propositionalization of the
examination and additional test tables will lead to a new
examination table completed with new features, such as
a count of how many tests were bad:

Examination and its additional_tests

eid pid date weight smokes BP . . . bad tests . . .

 I // yes

 I // yes

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ . . .

�en the propositionalization of the patient table and
the already propositionalized examination tables is per-
formed, producing a new patient table completed with
new features such as the mean value for each patient of

 P Propositionalization

the number of bad tests among all his or her examinations
(f):

Patient, his or her examinations and additional_tests

pid name . . . f . . . f . . .

I Smith

⋮ ⋮ . . . ⋮ . . . ⋮ . . .

It is not necessarily meaningful to aggregate at an
intermediate level. An alternative is to join comple-
mentary tables �rst, and apply the aggregation at the
individual level only.

Example In our simpli�ed medical domain, it is per-
haps more interesting to �rst relate all additional tests to
their patients, then aggregate on similar tests. First the
complementary tables are joined:

Additional_test and its examination

tid name value interpretation eid pid weight . . .

t red blood cells bad I . . .

t radiography nothing good I . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .

t red blood cells good I . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .

Let us emphasize the di�erence with the proposi-
tionalized examination and its additional_tests table of
example .

�ere is a one-to-many relationship from the patient
table to that new additional_test and its examination
table. Aggregation functions can be used to build features
such as the minimum percentage of red blood cells (f):

Finally, di�erent propositionalization approaches
can be combined, by a simple join.

Future Directions
Propositionalization explicitly aims at leaving attribute
selection to the propositional learner applied a�er-
ward. �e number of potential features is large. No
existing propositionalization system is able to enu-
merate all imaginable features. Historically existing
approaches have focused on a subset of potential
features, e.g., numerical aggregation functions without

selection (Knobbe, de Haas, & Siebes,), selection
based on a single elementary condition and existential
aggregation (Flach & Lachiche, ; Kramer, Lavrač, &
Flach,). Most approaches can be combined to pro-
vide more features.�e propositionalization should be
guided by the user.
Propositionalization is closely related to knowl-

edge representation. Speci�c representational issues
require appropriate propositionalization techniques,
e.g., Perlich and Provost () introduce new propo-
sitionalization operators to deal with high-cardinality
categorical attributes. New data sources, such as geo-
graphical or multimedia data, will need an appropriate
representation and perhaps appropriate propositional-
ization operators to apply o�-the-shelf attribute-value
learners.
Propositionalization raises three fundamental ques-

tions. �e �rst question is related to knowledge rep-
resentation. �e question is whether the user should
adapt to existing representations and accept a need to
propositionalize, or whether data can be mined from
the data sources, requiring the algorithms to be adapted
or invented. �e second question is whether proposi-
tionalization is needed. Propositionalization explicitly
allows the user to contribute to the feature elabora-
tion and invites him or her to guide the search thanks
to that 7language bias. It separates feature elaboration
frommodel extraction. Conversely, relational datamin-
ing techniques automate the elaboration of the relevant
attributes during the model extraction, but at the same
time leave less opportunity to select the features by
hand.

�e third issue is one of e�ciency. A more expres-
sive representation necessitates a more complex search.
Relational learning algorithms face the same dilemma
as attribute-value learning in the form of a choice
between an intractable search in the complete search
space and an ad hoc heuristic/search bias (cf. 7Search
Bias).�ey only di�er in the size of the search space (cf.
7Hypothesis Space). Propositionalization is concerned
with generating the search space. Generating all poten-
tial features is usually impossible. So practitioners have
to constrain the propositionalization, e.g., by choosing
the aggregation functions, the complexity of the selec-
tions, etc., by restricting the numbers of operations,
and so on. Di�erent operators �t di�erent problems
and might lead to di�erences in performance (Krogel,
Rawles, Železnéy, Flach, Lavrač, & Wrobel,).

Pruning Set P

P

Patient, his or her additional_tests and examinations

pid name . . . f . . . f . . .

I Smith

⋮ ⋮ . . . ⋮ . . . ⋮ . . .

Cross References
7Attribute
7Feature Construction
7Feature Selection
7Inductive Logic Programming
7Language Bias
7Learning from Structured Data
7Multi-Instance learning
7Relational Learning
7Statistical Relational Learning

Recommended Reading
Dietterich, T. G., Lathrop, R. H., & Lozano-Pérez, T. (). Solv-

ing the multiple-instance problem with axis-parallel rectangles.
Artificial Intelligence, (–), –.

Džeroski, S., & Lavrač, N. (Ed.). (). Relational data mining.
Berlin: Springer.

Flach, P., & Lachiche, N. (). BC: A first-order bayesian
classifier. In S. Džeroski & P. Flach (Eds.), Proceedings of
the ninth international workshop on inductive logic program-
ming (ILP’), Vol. of lecture notes in computer science
(pp. –). Berlin: Springer.

Knobbe, A. J., de Haas, M., & Siebes, A. (). Propositionalization
and aggregates. In Proceedings of the sixth European conference
on principles of data mining and knowledge discovery, Vol.
of lecture notes in artificial intelligence (pp. –). Berlin:
Springer.

Kramer, S., Lavrač, N., & Flach, P. (). Propositionalization
approaches to relational data mining. In S. Džeroski & N. Lavrač
(Eds.), Relational data mining (Chap. , pp. –). Berlin:
Springer.

Krogel, M.-A., Rawles, S., Železný, F., Flach, P. A., Lavrač, N., &
Wrobel, S. (). Comparative evaluation of approaches to
propositionalization. In T. Horváth & A. Yamamoto (Eds.),
Proceedings of the thirteenth international conference on induc-
tive logic programming, Vol. of lecture notes in artificial
intelligence (pp. –). Berlin: Springer.

Lachiche, N. (). Good and bad practices in propositionaliza-
tion. In S. Bandini & S. Manzoni (Eds.), Proceedings of advances
in artificial intelligence, ninth congress of the Italian association
for artificial intelligence (AI*IA’), Vol. of lecture notes in
computer science (pp. –). Berlin: Springer.

Perlich, C., & Provost, F. (). Distribution-based aggregation for
relational learning with identifier attributes.Machine Learning,
, –.

Srinivasan, A., Muggleton, S., King, R. D., & Stenberg, M. ().
Theories for mutagenicity: A study of first-order and feature
based induction. Artificial Intelligence, (–), –.

Tomečková, M., Rauch, J., & Berka, P. (). Stulong data
from longitudinal study of atherosclerosis risk factors.
In P. Berka (Ed.), Discovery challenge workshop notes.
ECML/PKDD’, Helsinki, Finland. http://lisp.vse.cz/l
challenge/ecmlpkdd/proceedings/Tomeckova.pdf

Pruning

Johannes Fürnkranz
TU Darmstadt, Fachbereich Informatik, Darmstadt,
Germany

Definition
Pruning describes the idea of avoiding 7Over�tting by
simplifying a learned concept, typically a�er the actual
induction phase.�e word originates from 7Decision
Tree learning, where the idea of improving the deci-
sion tree by cutting some of its branches is related to
the concept of pruning in gardening.
One can distinguish between 7Pre-Pruning, where

pruning decisions are taken during the learning process,
and7Post-Pruning, where pruning occurs in a separate
phase a�er the learning process. Pruning techniques are
particularly important for state-of-the-art decision tree
and7Rule Learning algorithms.

�e key idea of pruning is essentially the same as
7Regularization in statistical learning, with the key
di�erence that regularization incorporates a complex-
ity penalty directly into the learning heuristic, whereas
pruning uses a separate pruning criterion or pruning
algorithm.

Cross References
7Decision Tree
7Pre-Pruning
7Post-Pruning
7Regularization
7Rule Learning

Pruning Set

Definition
A pruning set is a subset of a 7training set contain-
ing data that are used by a7learning system to evaluate
models that are learned from a7growing set.

Cross References
7Data Set

http://lisp.vse.cz/challenge/ecmlpkdd����/proceedings/Tomeckova.pdf

Q

Q-Learning

Peter Stone
�e University of Texas at Austin, Austin, TX, USA

Definition
Q-learning is a form of 7temporal di�erence learn-
ing. As such, it is a model-free7reinforcement learning
method combining elements of 7dynamic program-
ming with Monte Carlo estimation. Due in part to
Watkins’ () proof that it converges to the optimal
value function, Q-learning is among the most com-
monly used and well-known reinforcement learning
algorithms.

Cross References
7Reinforcement Learning
7Temporal Di�erence Learning

Recommended Reading
Watkins, C. J. C. H. (). Learning from delayed rewards.

PhD thesis. Cambridge: King’s College.

Quadratic Loss

7Mean Squared Error

Qualitative Attribute

7Categorical Attribute

Quality Threshold Clustering

Xin Jin, JiaweiHan
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Synonyms
QT Clustering

Quality threshold (QT) clustering (Heyer, Kruglyak, &
Yooseph) is a partitioning clustering algorithm
originally proposed for gene clustering. �e focus of
the algorithm is to �nd clusters with guaranteed qual-
ity. Instead of specifying K, the number of clusters, QT
uses the maximum cluster diameter as the parameter.

�e basic idea of QT is as follows: Form a candidate
cluster by starting with a random point and iteratively
add other points, with each iteration adding the point
that minimizes the increase in cluster diameter. �e
process continues until no point can be added with-
out surpassing the diameter threshold. If surpassing
the threshold, a second candidate cluster is formed by
starting with a point and repeating the procedure. In
order to achieve reasonable clustering quality, already
assigned points are available for forming another can-
didate cluster.

For data partition, QT selects the largest candidate
cluster, removes the points which belong to the cluster
from consideration, and repeats the procedure on the
remaining set of data.

Recommended Reading
Heyer, L., Kruglyak, S., & Yooseph, S. (). Exploring expression

data: Identification and analysis of coexpressed genes. Genome
Research, , –.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 Q Quantitative Attribute

Quantitative Attribute

7Numeric Attribute

Query-Based Learning

Sanjay Jain, Frank Stephan
National University of Singapore, Republic of
Singapore

Definition
Most learning scenarios consider learning as a relatively
passive process where the learner observes a set of data
and eventually formulates a hypothesis that explains
the data observed. Query-based learning is an 7active
learning process where the learner has a dialogue with
a teacher, which provides on request useful information
about the concept to be learnt.

Detail
�is article will mainly focus on query-based learning
of �nite classes and of parameterized families of �nite
classes. In some cases, an in�nite class has to be learnt
where then the behaviour of the learner is measured
in terms of a parameter belonging to the concept. For
example, when learning the class of all singletons {x}
with x ∈ {, }∗, the parameter would be the length n
of x and an algorithm based on membership queries
would need up to n − queries of the form “Is y in
L?” to learn an unknown set L = {x} with x ∈ {, }n.
Query-based learning studies questions like the follow-
ing: Which classes can be learnt using queries of this or
that type? If queries of a given type are used to learn
a parameterized class ⋃Cn, is it possible to make a
learner which (with or without knowledge of n) suc-
ceeds to learn every L ∈ Cn with a number of queries
that is polynomial in n? What is the exact bound on
queries needed to learn a �nite classC in dependence of
the topology of C and the cardinality of C? If a query-
based learner using polynomially many queries exists
for a parameterized class ⋃Cn, can this learner also be
implemented such that it is computable in polynomial
time?

In the following, let C be the class of concepts to be
learnt and the concepts L ∈ C are subsets of some basic
set X. Now the learning process is a dialogue between
a learner and a teacher in order to identify a language
L ∈ C, which is known to the teacher but not to the
learner. �e dialogue goes in turns and follows a spe-
ci�c protocol that goes over a �nite number of rounds.
Each round consists of a query placed by the learner to
the teacher and the answer of the teacher to this query.
�e query and the answer have to follow a speci�c for-
mat and there are the following common types, where
a ∈ X and H ∈ C are data items and concepts chosen by
the learner and b ∈ X is a counterexample chosen by the
teacher:

Query-Name Precise Query Answer if
true

Answer if
false

Membership-
Query

Is a ∈ L? “Yes” “No”

Equivalence-
Query

Is H = L? “Yes” “No”plus b
(where
b ∈ H−L∪L−H)

Subset-Query Is H ⊆ L? “Yes” “No”plus b
(where
b ∈ H − L)

Superset-
Query

Is H ⊇ L? “Yes” “No”plus b
(where
b ∈ L − H)

Disjointness-
Query

Is H ∩ L = ∅? “Yes” “No”plus b
(where
b ∈ H ∩ L)

While, for subset queries and superset queries, it is
not required by all authors that the teacher provides a
counterexample in the case that the answer is “no,” this
requirement is quite standard for the case of equivalence
queries. Without counterexamples, a learner would not
have any real bene�t from these queries in settings
where faster convergence is required, than by just check-
ing “Is H = L?,” “Is H = L?,” “Is H = L?,” . . ., which
would be some trivial kind of algorithm.

Here is an example: Given the class C of all �nite
subsets of {, }∗, a learner using superset queries could

Query-Based Learning Q

Q

just work as follows to learn each set of the form L =
{x, x, . . . , xn} with n + queries:

Round Query Answer Counter
example

 Is L ⊆ ∅? “No” x

 Is L ⊆ {x}? “No” x

 Is L ⊆ {x, x}? “No” x

⋮ ⋮ ⋮ ⋮
n Is L ⊆ {x, x, . . . , xn−}? “No” xn

n + Is L ⊆ {x, x, . . . , xn−, xn}? “Yes” —

Here, of course, the order on how the counterex-
amples come up does not matter; the given order was
just preserved for the reader’s convenience. Note that
the same algorithmworks also with equivalence queries
in place of superset queries. In both cases, the algo-
rithm stops with outputting “L = {x, x, . . . , xn}” a�er
the last query. However, the given class is not learn-
able using membership and subset queries which can
be seen as follows: Assume that such a learner learns
∅ using the subset queries “Is H ⊆ L?,” “Is H ⊆ L?,”
“Is H ⊆ L?,” . . . , “Is Hm ⊆ L?” and the membership
queries “Is y ∈ L?,” “Is y ∈ L?,” “Is y ∈ L?,” . . . , “Is
yk ∈ L?” Furthermore, let D be the set of all counterex-
amples provided by the learner to subset queries. Now
let E = D ∪ H ∪ H ∪ . . . ∪ Hm ∪ {y, y, . . . , yk}. Note
that E is a �nite set and let x be an element of {, }∗−E.
If L = {x} then the answers to these queries are the same
to the case that L = ∅. Hence, the learner cannot distin-
guish between the sets∅ and {x}; therefore, the learner
is incorrect on at least one of these sets.

In the case that C is �nite, one could just ask what is
the number of queries needed to determine the target L
in the worst case.�is depends on the types of queries
permitted and also on the topology of the class C. For
example, if C is the power set of {x, x, . . . , xn}, then n
membership queries are enough; but if C is the set of all
singleton sets {x} with x ∈ {, }n, then n − member-
ship queries are needed to learn the concept, although
in both cases the cardinality of C is n.

Angluin () provides a survey of the prior results
on questions like howmany queries are needed to learn
a given �nite class. Maass and Turán () showed
that usage of membership queries in addition to equiv-
alence queries does not speed up learning too much
compared to the case of using equivalence queries alone.
If EQ is the number of queries needed to learn C from
equivalence queries alone (with counterexamples) and
EMQ is the number of queries needed to learn C with
equivalence queries and membership queries then

EQ
log(EQ +) ≤ EMQ ≤ EQ;

here the logarithm is base . �is result is based on a
result of Littlestone () who characterized the num-
ber of queries needed to learn from equivalence queries
alone and provided a “standard optimal algorithm” for
this task.

Angluin () showed that the class of all regu-
lar languages can be learnt in polynomial time using
queries and counterexamples. Here the learning time
is measured in terms of two parameters: the number n
of states that the smallest determinisitic �nite automa-
ton generating the language has and the number m of
symbols in the longest counterexample provided by the
teacher. Ibarra and Jiang () showed that the algo-
rithm can be improved to need at most dn equivalence
queries when the teacher always returns the shortest
counterexample; Birkendorf, Böker, and Simon ()
improved the bound todn. In these bounds,d is the size
of the alphabet used for de�ning the regular languages
to be learnt.

Much attention has been paid to the following ques-
tion:Which classes of Boolean formulas overn variables
can be learnt with polynomially many queries, uni-
formly in n (see, for example, Aizenstein et al. ();
Aizenstein (); Angluin, Hellerstein, and Karpinski
(); Hellerstein, Pillaipakkamnatt, Raghavan, and
Wilkins ())? Angluin, Hellerstein, and Karpinski
() showed that read-once formulas, in which every
variable occurs only once, are learnable in polyno-
mial time using membership and equivalence queries.
On the other hand, read-thrice DNF (disjunctive nor-
mal form) formulas cannot be learnt in polynomial time
using the same queries (Aizenstein et al.,) unless

 Q Query-Based Learning

P = NP. In other words, such a learner would not suc-
ceed because of the limited computational power of a
polymomial time learner; hence, equipping the learner
with an additional oracle that can provide this power
would permit to build such a learner. Here an oracle -
in contrast to a teacher - does not know the task to be
learnt but gives information which is di�cult or impos-
sible to compute. Such an oracle could, for example,
be the set SAT of all satis�able formulas and thus the
learner could gain additional power by asking the ora-
cle whether certain formulas are satis�able. A special
class of Boolean formulas is that of Horn clauses and
the study in this �eld is still active (see, for example,
Angluin, Frazier and Pitt (), Arias (), Arias &
Balcazar () and Arias & Khardon ()).

�ere are links to other �elds. Angluin (,)
investigated the relation between query learning and
7PAC Learning. She found that every class which is
learnable using membership queries and equivalence
queries is also PAC learnable (Angluin,); the PAC
learner alsoworks in polynomial time andneeds atmost
polynomially many examples. More recent research
on learning Boolean formulas also combines queries
with probabilistic aspects (Jackson,). Furthermore,
query learning has also been applied to 7Inductive
Inference (see, for example, Gasarch (,); Jain
et al (); Lange ()). Here the power of the
learner depends not only on the type of queries permit-
ted but also on whether queries of the corresponding
type can be asked �nitely o�en or in�nitely o�en; the
latter applies of course only to learning models where
the learner converges in the limit and may revise the
hypothesis from time to time. Furthermore, queries
to oracles have been studied widely, see the entry on
7Complexity of Inductive Inference.

Recommended Reading
Aizenstein, H., Hellerstein, L., & Pitt, L. (). Read-thrice DNF

is hard to learn with membership and equivalence queries.
In Thirty-third annual symposium on foundations of com-
puter science, Pittsburgh, – October (pp. –).
Washington, DC: IEEE Computer Society.

Aizenstein, H., & Pitt, L. (). On the learnability of disjunctive
normal form formulas. Machine Learning, (), –.

Angluin, D. (). Learning regular sets from queries and coun-
terexamples. Information and Computation, (), –.

Angluin, D. (). Queries and concept learning.Machine Learning,
(), –.

Angluin, D. (). Negative results for equivalence queries.
Machine Learning, , –.

Angluin, D. (). Queries revisited. Theoretical Computer Science,
, –.

Angluin, D., Frazier, M., & Pitt, L. (). Learning conjunctions of
Horn clauses. Machine Learning, , –.

Angluin, D., Hellerstein, L., & Karpinski, M. (). Learning read-
once formulas with queries. Journal of the Association for
Computing Machinery, , –.

Arias, M. (). Exact learning of first-order Horn expressions
from queries. Ph.D. Thesis, Tufts University.

Arias, M., & Balcázar, J. L. (). Canonical Horn representa-
tions and query learning. Algorithmic learning theory: Twen-
tieth international conference ALT , LNAI (Vol. ,
pp. –). Berlin: Springer.

Arias, M., & Khardon, R. (). Learning closed Horn expressions.
Information and Computation, (), –.

Birkendorf, A., Böker, A., & Simon, H. U. (). Learning deter-
ministic finite automata from smallest counterexamples. SIAM
Journal on Discrete Mathematics, (), –.

Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V. V., & Wilkins, D.
(). How many queries are needed to learn? Journal of the
Association for Computing Machinery, , –.

Gasarch, W., & Lee, A. C. Y. (). Inferring answers to queries.
Journal of Computer and System Sciences, (), –.

Gasarch, W., & Smith, C. H. (). Learning via queries. Journal of
the Association for Computing Machinery, (), –.

Ibarra, O. H., & Jiang, T. (). Learning regular languages from
counterexamples. In Proceedings of the first annual workshop on
computational learning theory, MIT, Cambridge (pp. –).
San Francisco: Morgan Kaufmann.

Jackson, J. (). An efficient membership-query algorithm for
learning DNF with respect to the uniform distribution. Journal
of Computer and System Sciences, (), –.

Jain, S., Lange, S., & Zilles, S. (). A general comparison of lan-
guage learning from examples and from queries. Theoretical
Computer Science, (), –.

Lange, S., & Zilles, S. (). Relations between Gold-style learning
and query learning. Information and Computation, , –.

Littlestone, N. (). Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Machine Learning,
, –.

Maass, W., & Turán, G. (). Lower bound methods and separa-
tion results for on-line learning models. Machine Learning, ,
–.

R

Rademacher Average

7Rademacher Complexity

Rademacher Complexity

Synonyms
Rademacher average

Definition
Rademacher complexity is a measure used in
7generalization bounds to quantify the “richness” of a
class of functions. Letting ρ, . . . , ρn denoteRademacher
variables – independent random variables that take the
values ± with equal probability – the empirical or con-
ditional Rademacher complexity of a class of real-valued
functions F on the points x = (x, . . . , xn) ∈ X n is the
conditional expectation

R̂x(F) = Ex,ρ

⎡
⎢
⎢
⎢
⎣
sup
f ∈F

n

n

∑
i=

ρif (xi)
RRRRRRRRRRR

x
⎤
⎥
⎥
⎥
⎦
.

Intuitively, the empirical Rademacher average Rn(F)

measures how well functions f ∈ F evaluated on x ∈

X can align with randomly chosen labels. �e (full)
Rademacher complexity Rn(F) with respect to a dis-
tribution P over X is the average empirical complexity
when the arguments x, . . . , xn are independent random
variables drawn from P.�at is,

Rn(F) = Ex [R̂x(F)] .

�ere are several properties of theRademacher aver-
age thatmake it a useful quantity in analysis: for any two
classes F ⊆ G we have Rn(F) ≤ Rn(G); when c ⋅ F :=
{cf : f ∈ F} for c ∈ R we have Rn(c ⋅ F) = ∣c∣Rn(F);
when F + g := { f + g : f ∈ G} for some �xed function

g we have Rn(F + g) = Rn(F); and if conv(F) is the
convex hull of F then Rn(conv(F)) = Rn(F).

Radial Basis Function
Approximation

7Radial Basis Function Networks

Radial Basis Function Networks

M.D. Buhmann
Justus-Liebig University,
Giessen, Germany

Synonyms
Networks with kernel functions; Radial basis function
approximation; Radial basis function neural networks;
Regularization networks

Definition
Radial basis function networks are a means of approx-
imation by algorithms using linear combinations of
translates of a rotationally invariant function, called the
radial basis function.�e coe�cients of these approx-
imations usually solve a minimization problem and
can also be computed by interpolation processes. �e
radial basis functions constitute the so-called reproduc-
ing kernels on certain Hilbert-spaces or – in a slightly
more general setting – semi-Hilbert spaces. In the latter
case, the aforementioned approximation also contains
an element from the nullspace of the semi-norm of the
semi-Hilbert space.�at is usually a polynomial space.

Motivation and Background
Radial basis function networks are a method to approx-
imate functions and data by applying7kernel methods
to7neural networks.More speci�cally, approximations

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 R Radial Basis Function Networks

of functions or data via algorithms that make use of
networks (or neural networks) can be interpreted as
either interpolation or minimization problems using
kernels of certain shapes, called radial basis functions
in the form in which we wish to consider them in this
chapter. In all cases, they are usually high-dimensional
approximations, that is the number of unknowns n in
the argument of the kernel may be very large. On the
other hand, the number of learning examples (“data”)
may be quite small.�e name neural networks comes
from the idea that this learning process simulates the
natural functioning of neurons.
At any rate, the purpose of this approach will be

the modelization of the learning process by mathemat-
ical methods. In most practical cases of networks, the
data from which we will learn in the method are rare,
i.e., we have few data “points.” We will consider this
learning approach as an approximation problem in this
description, essentially it is a minimizing (regression)
problem.

Structure of the Network/Learning System
To begin with, let φ : R+ → R be a univariate continu-
ous function and ∥ ⋅ ∥ be the Euclidean norm on Rn for
some n ∈ N, as used for approximation in the seminal
paper by Schoenberg (). Here,R+ denotes the set of
nonnegative reals.�erefore,

φ(∥ ⋅ ∥) : Rn → R, (x , x , . . . , xn)T ↦ φ(
√

x + x

 +⋯ + xn)

is a multivariate function and here the number n of
unknowns may be very large in practice.�is function
is rotationally invariant. Incidentally, much of what is
going to be said here will work if we replace this func-
tion by a general, n-variate function which need no
longer be rotationally invariant, but then, strictly speak-
ing, we are no longer talking about radial basis func-
tions.�en other conditions may replace the restriction
to radiality. Nonetheless, we stick to the simple case
(which is entirely su�cient for many practical applica-
tions) when the function really is radially symmetric.
We also require for the time being that this n-variate

function be positive de�nite, that is for all �nite sets Ξ
of pairwise di�erent the so-called centers or data sites
ξ ∈ Ξ ⊂ Rn, the symmetric matrix

A = {φ(∥ξ − ζ∥)}ξ,ζ∈Ξ

is a positive de�nite matrix.�e condition of pairwise
di�erent data in Ξ may, of course, in practice, not be
necessarily met.

�is property is usually obtained by requiring that
φ(∥ ⋅ ∥) be absolutely integrable and its Fourier trans-
form – which thereby exists and is continuous – is posi-
tive everywhere (“Bochner’s theorem”). An example for
such a useful function is the exponential (the “Gauß-
kernel”) φ(r) = exp(−cr), r ⩾ , where c is a positive
parameter. For this the above positive de�niteness is
guaranteed for all positive c and all n. Another exam-
ple is the Poisson-kernel φ(r) = exp(−cr). However, we
may also take the nonintegrable “inversemultiquadrics”
φ(r) = /

√
r + c, which has a Fourier transform in

the generalized or distributional sense that is also posi-
tive everywhere except at zero.�ere it has a singularity.
Nonetheless, the aforementioned matrices of the form
A are still always positive de�nite for these exponen-
tials and the inverse multiquadrics so long as c > and
n = , , . . .

�is requirement of positive de�niteness guarantees
that for all given �nite sets Ξ and “data” fξ ∈ R, ξ ∈ Ξ,
there is a unique linear combination

s(x) =∑
ξ∈Ξ

λξφ(∥x − ξ∥), x ∈ Rn,

which satis�es the linear interpolation conditions

s(ξ) = fξ , ∀ ξ ∈ Ξ.

�is is because the interpolation matrix which is used
to compute the coe�cients λξ is just the matrixA above
which is positive de�nite, thus regular.�e expression
in the pen-ultimate display is the network that approx-
imates the data given by the user. Of course the inter-
polation conditions are just what is meant by learning
from examples, the data being the ∣Ξ∣ examples. Here as
always, ∣Ξ∣ denotes the cardinality of the set Ξ. In the
learning theory the linear space spanned by the above
translates of φ(∥ ⋅ ∥) by ξ ∈ Ξ is called the feature space
with φ as activation function.
Incidentally, it is straightforward to generalize the

approximation method to an approximation to data in
Rm, m ∈ N, by approximating the data fξ ∈ Rm compo-
nentwise bym such expressions as the above, call them
s, s, . . . , sm.

Radial Basis Function Networks R

R

Applications
Applications include classi�cation of data, pattern
recognition, 7time series analysis, picture smoothing
similar to di�usion methods, and optimization.

Theory/Solution
Returning to interpolation, the problem may also
be reinterpreted as a minimization problem. If the
weighted L-integral is de�ned as

∥g∥φ :=

(π)n/

√

∫
Rn

φ̂(∥x∥)

∣ĝ(x)∣ dx,

with φ̂ still being the above positive Fourier transform,
for all g : Rn → R for which the Fourier transform in
the sense of L(Rn) is well-de�ned and for which the
above integral is �nite, we may ask for the approximant
to the above data – which still must satisfy the afore-
mentioned interpolation conditions – that minimizes
∥ ⋅ ∥φ . As Duchon noted, for example, for the thin-plate
spline case φ(r) = r log r in this seminal papers this is
just the above interpolant, i.e., that linear combination s
of translates of radial basis functions, albeit in the thin-
plate spline case with a linear polynomial added as we
shall see below.

�is works immediately both for the two examples
of exponential functions and the inverse multiquadrics.
Note the fact that the latter has a Fourier transform
with a singularity at the origin, does not matter as its
reciprocal appears as a weight function in the integral
above. �e important requirement is that the Fourier
transform has no zero. It also works for the positive
de�nite radial basis functions of compact support for
instance in Buhmann ().

Regularization and Generalizations
Generally, since the interpolation problem to data may
be ill-conditioned or unsuitable in the face of 7noise,
smoothing or 7regularization are appropriate as an
alternative. Indeed, the interpolation problem may be
replaced by a smoothing problem which is of the form

∣Ξ∣ ∑ξ∈Ξ

(s(ξ) − fξ) + µ∥s∥φ = min
s
!.

Here the L-integral is still the one used in the descrip-
tion above and µ is a positive smoothing parameter.

However, when there is only a trivial nullspace of the
∥ ⋅ ∥φ , i.e., g = is the only g with ∥g∥φ = , then it is
a norm and the solution of this problem will have the
form

s(x) =∑
ξ∈Ξ

λξφ(∥x − ξ∥), x ∈ Rn.

�is is where the name regularization network comes
from, regularization and smoothing being used synony-
mously.�e form used here in the pen-ultimate display
is a classical regularizing network problem or in the
spline-terminology a smoothing spline problem. For
7support vector machines, the square of the residual
term s(ξ)− fξ should be replaced by another expression,
for example, the one by Vapnik ()

∣s(ξ) − fξ ∣є :=
⎧⎪⎪
⎨
⎪⎪⎩

fξ − s(ξ) − є if ∣fξ − s(ξ)∣ ≥ є,
 otherwise,

and for the support vectormachines classi�cation by the
truncated power function (⋅)ν

+ which is a positive power
for positive argument and otherwise zero.
In the case of a classical regularizing network, the

coe�cients of the solution may be found by solving
a similar linear system to the standard interpolation
linear system mentioned above, namely

(A + µI)λ = f ,

where f is the vector (fξ)ξ∈Ξ in RΞ of the data given,
and λ = (λξ)ξ∈Ξ . �e I denotes the ∣Ξ∣ × ∣Ξ∣ identity
matrix and A is still the same matrix as above. Inciden-
tally, scaling mechanisms may also be introduced into
the radial basis function by replacing the simple trans-
late φ(∥x − ξ∥) by φ(∥x − ξ∥/δ) for a positive δ which
may even depend on ξ.

�e ideas of regularization and smoothing are of
course not new; for instance, regularization goes back to
Tichonov et al. () (“Tichonov regularization”) and
spline smoothing to Wahba (), especially when the
smoothing parameter is adjusted via cross-validation or
generalized cross-validation (GCV).
Now to the case of semi-norms ∥ ⋅ ∥φ with non-

trivial nullspaces: indeed, the same idea can be carried
through for other radial basis functions as well. In par-
ticular we are thinking here of those that do not provide
positive de�nite radial basis interpolation matrices but
strictly conditionally positive de�nite ones. We have

 R Radial Basis Function Networks

strictly positive de�nite radial basis functions of order
k + , k ≥ −, if the above interpolation matrices A are
still positive de�nite but only on the subspace of those
nonzero vectors λ = (λξ) in RΞ which satisfy

∑
ξ∈Ξ

λξp(ξ) = , ∀ p ∈ Pkn,

where Pkn denotes the linear space of polynomials in
n variables with total degree at most k. In other words,
the quadratic form, λTAλ, need only be positive for such
λ ≠ . For simplicity of the presentation, we shall let P−n
denote {}. In particular, if the radial basis function is
conditionally positive de�nite of order , its interpola-
tionmatricesA are always positive de�nite, i.e., without
condition. Also, we have the minimal requirement that
the sets of centers Ξ are unisolvent for this polynomial
space, i.e., the only polynomial p ∈ Pkn that vanishes
identically on Ξ is the zero-polynomial.

�e connection of this with a layered neural net-
work is that the approximation above is a weighted sum
(weighted by the coe�cients λξ) over usually nonlin-
ear activation functions φ. �e entries in the sum are
the radial basis function neurons and there are usu-
ally many of them.�e number of nodes in the model
is n. �e hidden layer of “radial basis function units”
consists of ∣Ξ∣ nodes, i.e., the number of centers in our
radial basis function approximation. �e output layer
has m responses if the radial basis function approxi-
mation above is generalized to m-variate data, then we
get s, s, . . . , sm instead of just s, as already described.
�is network here is of the type of a nonlinear, layered,
and feedforward network. More than one hidden layer
is unusual.�e choice of the radial basis functions (its
smoothness for instance) and the �exibility in the posi-
tioning of the centers in clusters, grids (Buhmann, ,
for example) or otherwise providemuch of the required
freedom for good approximations.

�e properties of conditional positive de�niteness
are ful�lled now for a much larger realm of radial
basis functions, which have still nowhere vanishing,
generalized Fourier transforms but with higher order
singularities at the origin. (Remember that this cre-
ates no problem for the well-de�neness of ∥ ⋅ ∥φ .) For
instance, the above properties are true for the thin-plate
spline function φ(r) = r log r, the shi�ed logarithm
φ(r) = (r + c) log(r + c), and for the multiquadric
φ(r) = −

√
r + c. Here we still have a parameter

c which may now be arbitrary real. �e order of the
above is one for the multiquadric and two for the thin-
plate spline. Another commonly used radial basis func-
tionwhich gives rise to conditional positive de�niteness
is the φ(r) = r.
Hence the norm becomes a semi-norm with

nullspace Pkn but it still has the same form as a square-
integral with the reciprocal of the Fourier transform of
the radial basis function as a weight.

�erefore, we have to include a polynomial from the
nullspace of the semi-norm to the approximant which
becomes

s(x) =∑
ξ∈Ξ

λξφ(∥x − ξ∥) + q(x), x ∈ Rn,

where q ∈ Pkn and the side conditions on the coe�cients

∑
ξ∈Ξ

λξp(ξ) = , ∀ p ∈ Pkn.

If we consider the regularization network problem
with the smoothing parameter µ again, then we have to
solve the linear system with a smoothing parameter µ

(A + µI)λ + PTb = f , Pλ = ,

where P = (pi(ξ))i=,. . .,L,ξ∈Ξ , and pi form a basis of Pkn,
bi being the components of b, and q(x) = ∑Li= bipi(x)
is the expression of the polynomial added to the radial
basis function sum. So in particular P is a matrix with
as many rows as the dimension L = (n+kn) of Pkn is and
∣Ξ∣ columns.
In all cases, the radial basis functions composed

with the Euclidean norm can be regarded as reproduc-
ing kernels in the semi-Hilbert spaces de�ned by the
set X of distributions g for which ∥g∥φ is �nite and the
semi-inner product

(h, g) =

(π)n ∫Rn

φ̂(∥x∥)
ĥ(x)ĝ(x)dx, h, g, ∈ X.

In particular, ∥g∥φ = (g, g). If the evaluation functional
is continuous (bounded) on that space X, there exists a
reproducing kernel, i.e., there is a K : X × X → R such
that

g(x) = (g,K(⋅, x)), ∀ x ∈ Rn, g ∈ X,

Random Decision Forests R

R

see, for example, Wahba (). If the semi-inner prod-
uct is actually an inner product, then the reproducing
kernel is unique.�e kernel gives rise to positive de�-
nite matrices {K(ξ, ζ)}ξ,ζ∈Ξ if and only if it is a positive
operator. For the spaces X de�ned by our radial basis
functions, it turns out that K(x, y) := φ(∥x − y∥), see,
e.g., the overview in Buhmann ().�en the matri-
ces A are positive de�nite if φ̂(∥ ⋅ ∥) is well-de�ned and
positive, but if it has a singularity at zero, the Amay be
only conditionally positive de�nite. Note here that
φ̂(∥ ⋅ ∥) denotes the n-variate Fourier transform of
φ(∥ ⋅ ∥), both being radially symmetric.

Advantages of the Approach
Why are we interested in using radial basis functions for
networks?�e radial basis functions have many excel-
lent approximation properties which make them useful
as general tools for approximation. Among them are
the variety of more or less smoothness as required (e.g.,
multiquadrics is C∞ for positive c and just continuous
for c =), the fast evaluation and computationmethods
available (see, e.g., Beatson & Powell,), the afore-
mentioned nonsingularity properties and their con-
nection with the theory of reproducing kernel Hilbert
spaces, and �nally their excellent convergence proper-
ties (see, e.g., Buhmann,). Generally, neural net-
works are a tried and tested approach to approximation,
modeling, and smoothing by methods from learning
theory.

Limitations
�e number of applications where the radial basis func-
tion approach has been used is vast. Also, the solutions
may be computed e�ciently by far �eld expansions,
approximated Lagrange functions, andmultipolemeth-
ods. However, there are still some limitations with these
important computationalmethods when the dimension
n is large. So far, most of the multipole and far �eld
methods have been implemented only for medium-
sized dimensions.

Cross References
7Neural Networks
7Regularization
7Support Vector Machines

Recommended Reading
Beatson, R. K., & Powell, M. J. D. (). An iterative method

for thin plate spline interpolation that employs approxima-
tions to Lagrange functions. In D. F. Griffiths & G. A. Wat-
son (Eds.), Numerical analysis (pp. –). Burnt Mill:
Longman.

Broomhead, D., & Lowe, D. (). Radial basis functions, multi-
variable functional interpolation and adaptive networks, Com-
plex Systems, , –.

Buhmann, M. D. (). Multivariate cardinal-interpolation
with radial-basis functions. Constructive Approximation, ,
–.

Buhmann, M. D. (). Radial functions on compact support.
Proceedings of the Edinburgh Mathematical Society, , –.

Buhmann, M. D. (). Radial basis functions: Theory and imple-
mentations. Cambridge: Cambridge University Press.

Duchon, J. (). Interpolation des fonctions de deux variables
suivant le principe de la flexion des plaques minces. RAIRO,
, –.

Evgeniou, T., Poggio, T., & Pontil, M. (). Regularization net-
works and support vector machines. Advances in Computational
Mathematics, , –.

Hardy, R. L. (). Theory and applications of the multiquadric-
biharmonic method. Computers and Mathematics with Applica-
tions, , –.

Micchelli, C. A. (). Interpolation of scattered data: Distance
matrices and conditionally positive definite functions. Con-
structive Approximation, , –.

Pinkus, A. (). TDI-subpaces of C(Rd) and some density prob-
lems from neural networks. Journal of Approximation Theory,
, –.

Schoenberg, I. J. (). Metric spaces and completely monotone
functions. Annals of Mathematics, , –.

Tichonov, A. N., & Arsenin, V. Y. (). Solution of ill-posed prob-
lems. Washington, DC: V.H. Winston.

Vapnik, V. N. (). Statistical learning theory. New York: Wiley.
Wahba, G. (). A comparison of GCV and GML for choosing

the smoothing parameter in the generalized splines smoothing
problem. Annals of Statistics, , –.

Wahba, G. (). Spline models for observational data. Series in
applied mathematics (Vol.). Philadelphia: SIAM.

Radial Basis Function Neural
Networks

7Radial Basis Function Networks

Random Decision Forests

7Random Forests

 R Random Forests

Random Forests

Synonyms
Random decision forests

Definition
Random Forests is an7ensemble learning technique. It
is a hybrid of the7Bagging algorithmand the7random
subspace method, and uses 7decision trees as the base
classi�er. Each tree is constructed fromabootstrap sam-
ple from the original dataset. An important point is that
the trees are not subjected to pruning a�er construc-
tion, enabling them to be partially over�tted to their
own sample of the data. To further diversify the classi-
�ers, at each branch in the tree, the decision of which
feature to split on is restricted to a random subset of
size n, from the full feature set.�e random subset is
chosen anew for each branching point. n is suggested
to be log(N +), where N is the size of the whole
feature set.

Random Subspace Method

Synonyms
Random subspaces; RSM

Definition
�e random subspace method is an 7ensemble learn-
ing technique. �e principle is to increase diversity
between members of the ensemble by restricting clas-
si�ers to work on di�erent random subsets of the full
7feature space. Each classi�er learns with a subset of
size n, chosen uniformly at random from the full set
of sizeN. Empirical studies have suggested good results
can be obtained with the rule-of-thumb to choose
n = N/ features. �e method is generally found to
perform best when there are a large number of fea-
tures (large N), and the discriminative information is
spread across them.�e method can underperform in
the converse situation, when there are few informative
features, and a large number of noisy/irrelevant features.
7RandomForests is an algorithm combining RSMwith
the7Bagging algorithm, which can provide signi�cant
gains over each used separately.

Random Subspaces

7Random Subspace Method

Randomized Decision Rule

7Markovian Decision Rule

Rank Correlation

Definition
Rank correlationmeasures the correspondence between
two rankings τ and τ′ of a set ofm objects. Various pro-
posals for such measures have been made, especially in
the �eld of statistics. Two of the best-known measures
are Spearman’s Rank Correlation and Kendall’s tau:
Spearman’s Rank correlation calculates the sum of
squared rank distances and is normalized such that
it evaluates to − for reversed and to + for identical
rankings. Formally, it is de�ned as follows:

(τ, τ′)↦ −
∑mi=(τ(i) − τ′(i))

m(m −)
()

Kendall’s tau is the number of pairwise rank inver-
sions between τ and τ′, again normalized to the range
[−,+]:

(τ, τ′)↦ −
 ∣{(i, j) ∣ i < j, τ(i) < τ(j) ∧ τ′(i) > τ′(j)}∣

m(m −)
()

Cross References
7Preference Learning
7ROC Analysis

Ratio Scale

A ratiomeasurement scale possesses all the characteris-
tics of intervalmeasurement, and there exists a zero that,
the same as arithmetic zero, means “nil” or “nothing.”
See7Measurement Scales.

Recommender Systems R

R

Real-Time Dynamic Programming

Real-Time Dynamic Programming (RTDP) is the
same as 7Adaptive Real-Time Dynamic Programming
(ARTDP)without the system identi�cation component.
It is applicable when an accurate model of the prob-
lem is available. It converges to an optimal policy of
a stochastic optimal path problem under suitable con-
ditions. RTDP was introduced by Barto, Bradtke, and
Singh () in their paper Learning toActUsingRTDP.

Recall

Recall is a measure of information retrieval perfor-
mance. Recall is the total number of documents
retrieved that are elevant/Total number of relevant doc-
uments in the database. See7Precision and Recall.

Cross References
7Sensitivity

Receiver Operating Characteristic
Analysis

7ROC Analysis

Recognition

7Classi�cation

Recommender Systems

PremMelville, Vikas Sindhwani
IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

Definition
�e goal of a recommender system is to generate mean-
ingful recommendations to a collection of users for

items or products that might interest them. Sugges-
tions for books on Amazon, or movies on Net�ix,
are real-world examples of the operation of industry-
strength recommender systems. �e design of such
recommendation engines depends on the domain and
the particular characteristics of the data available. For
example, movie watchers on Net�ix frequently provide
ratings on a scale of (disliked) to (liked). Such a data
source records the quality of interactions between users
and items. Additionally, the system may have access to
user-speci�c and item-speci�c pro�le attributes such as
demographics and product descriptions, respectively.
Recommender systems di�er in the way they ana-
lyze these data sources to develop notions of a�nity
between users and items, which can be used to identify
well-matched pairs. 7Collaborative Filtering systems
analyze historical interactions alone, while 7Content-
based Filtering systems are based on pro�le attributes;
and hybrid techniques attempt to combine both of these
designs.�e architecture of recommender systems and
their evaluation on real-world problems is an active area
of research.

Motivation and Background
Obtaining recommendations from trusted sources is
a critical component of the natural process of human
decision making. With burgeoning consumerism buo-
yed by the emergence of the web, buyers are being
presentedwith an increasing range of choices while sell-
ers are being faced with the challenge of personalizing
their advertising e�orts. In parallel, it has become com-
mon for enterprises to collect large volumes of trans-
actional data that allows for deeper analysis of how a
customer base interacts with the space of product o�er-
ings. Recommender systems have evolved to ful�ll the
natural dual need of buyers and sellers by automat-
ing the generation of recommendations based on data
analysis.

�e term “collaborative �ltering” was introduced
in the context of the �rst commercial recommender
system, called Tapestry (Goldberg, Nichols, Oki, &
Terry,), which was designed to recommend docu-
ments drawn from newsgroups to a collection of users.
�e motivation was to leverage social collaboration
in order to prevent users from getting inundated by
a large volume of streaming documents. Collabora-
tive �ltering, which analyzes usage data across users

 R Recommender Systems

to �nd well-matched user-item pairs, has since been
juxtaposed against the older methodology of content
�ltering, which had its original roots in information
retrieval. In content �ltering, recommendations are not
“collaborative” in the sense that suggestions made to
a user do not explicitly utilize information across the
entire user-base. Some early successes of collaborative
�ltering on related domains included the GroupLens
system (Resnick, Neophytos, Bergstrom, Mitesh, &
Riedl, b).
As noted in Billsus and Pazzani (), initial

formulations for recommender systems were based
on straightforward correlation statistics and predic-
tive modeling, not engaging the wider range of prac-
tices in statistics and machine learning literature.
�e collaborative �ltering problem was mapped to
classi�cation, which allowed dimensionality reduction
techniques to be brought into play to improve the
quality of the solutions. Concurrently, several e�orts
attempted to combine content-based methods with
collaborative �ltering, and to incorporate additional
domain knowledge in the architecture of recommender
systems.
Further researchwas spurred by the public availability

of datasets on the web, and the interest generated due
to direct relevance to e-commerce. Net�ix, an online
streaming video and DVD rental service, released a
large-scale dataset containing million ratings given
by about half-a-million users to thousands of movie
titles, and announced an open competition for the
best collaborative �ltering algorithm in this domain.
Matrix Factorization (Bell, Koren, & Volinsky,)
techniques rooted in numerical linear algebra and sta-
tistical matrix analysis emerged as a state-of-the-art
technique.
Currently, recommender systems remain an active

area of research, with a dedicated ACM conference,
intersecting several subdisciplines of statistics, machine
learning, data mining, and information retrievals. App-
lications have been pursued in diverse domains rang-
ing from recommending webpages to music, books,
movies, and other consumer products.

Structure of Learning System
�e most general setting in which recommender sys-
tems are studied is presented in Fig. . Known user

Items
1 2 ... i ... m

Users

1 5 3 1 2
2 2 4
: 5
u 3 4 2 1
: 4
n 3 2

a 3 5 ? 1

Recommender Systems. Figure . User ratings matrix,

where each cell ru,i corresponds to the rating of user u for

item i. The task is to predict the missing rating ra,i for the

active user a

preferences are represented as a matrix of n users and
m items, where each cell ru,i corresponds to the rating
given to item i by the user u.�is user ratings matrix is
typically sparse, as most users do not rate most items.
�e recommendation task is to predict what rating a
user would give to a previously unrated item. Typically,
ratings are predicted for all items that have not been
observed by a user, and the highest rated items are pre-
sented as recommendations. �e user under current
consideration for recommendations is referred to as the
active user.

�e myriad approaches to recommender systems
can be broadly categorized as:

● Collaborative Filtering (CF): In CF systems, a user is
recommended items based on the past ratings of all
users collectively.

● Content-based recommending: �ese approaches
recommend items that are similar in content to items
the user has liked in the past, or matched to pre-
de�ned attributes of the user.

● Hybrid approaches: �ese methods combine both
collaborative and content-based approaches.

Collaborative Filtering

Collaborative �ltering (CF) systems work by collect-
ing user feedback in the form of ratings for items
in a given domain and exploiting similarities in rat-
ing behavior amongst several users in determining
how to recommend an item. CF methods can be
further subdivided into neighborhood-based andmodel-
based approaches. Neighborhood-based methods are

Recommender Systems R

R

also commonly referred to asmemory-based approaches
(Breese, Heckerman, & Kadie,).

Neighborhood-based Collaborative Filtering In neigh-
borhood-based techniques, a subset of users are cho-
sen based on their similarity to the active user, and a
weighted combination of their ratings is used to pro-
duce predictions for this user. Most of these approaches
can be generalized by the algorithm summarized in the
following steps:

. Assign aweight to all users with respect to similarity
with the active user.

. Select k users that have the highest similarity with
the active user – commonly called the neighbor-
hood.

. Compute a prediction from a weighted combina-
tion of the selected neighbors’ ratings.

In step , the weight wa,u is a measure of similar-
ity between the user u and the active user a.�e most
commonly used measure of similarity is the Pearson
correlation coe�cient between the ratings of the two
users (Resnick, Iacovou, Sushak, Bergstrom, & Reidl,
a), de�ned below:

wa,u =
∑i∈I (ra,i − ra)(ru,i − ru)√

∑i∈I (ra,i − ra)

∑i∈I (ru,i − ru)

()

where I is the set of items rated by both users, ru,i is the
rating given to item i by user u, and ru is themean rating
given by user u.
In step , predictions are generally computed as

the weighted average of deviations from the neighbor’s
mean, as in:

pa,i = ra +
∑u∈K (ru,i − ru) ×wa,u

∑u∈K wa,u
()

where pa,i is the prediction for the active user a for
item i, wa,u is the similarity between users a and u,
and K is the neighborhood or set of most similar
users.
Similarity based on Pearson correlation measures

the extent towhich there is a linear dependence between
two variables. Alternatively, one can treat the ratings
of two users as a vector in an m-dimensional space,

and compute similarity based on the cosine of the angle
between them, given by:

wa,u = cos(ra, ru) =
ra ⋅ ru

∥ra∥ × ∥ru∥

=
∑
m
i= ra,iru,i√

∑
m
i= ra,i

√
∑
m
i= ru,i

()

When computing cosine similarity, one cannot have
negative ratings, and unrated items are treated as having
a rating of zero. Empirical studies (Breese et al.,)
have found that Pearson correlation generally performs
better. �ere have been several other similarity mea-
sures used in the literature, including Spearman rank
correlation, Kendall’s τ correlation, mean squared di�er-
ences, entropy, and adjusted cosine similarity (Herlocker,
Konstan, Borchers, & Riedl, ; Su & Khoshgo�aar,
).
Several extensions to neighborhood-basedCF,which

have led to improved performance are discussed below.

Item-based Collaborative Filtering: When applied to
millions of users and items, conventional neighborhood-
based CF algorithms do not scale well, because of
the computational complexity of the search for sim-
ilar users. As a alternative, Linden, Smith, and York
() proposed item-to-item collaborative �ltering
where rather than matching similar users, they match
a user’s rated items to similar items. In practice, this
approach leads to faster online systems, and o�en
results in improved recommendations (Linden et al.,
; Sarwar, Karypis, Konstan, & Reidl,).
In this approach, similarities between pairs of items

i and j are computed o�-line using Pearson correlation,
given by:

wi,j =
∑u∈U (ru,i − r̄i)(ru,j − r̄j)

√
∑u∈U (ru,i − r̄i)

√
∑u∈U(ru,j − r̄j)

()

whereU is the set of all users who have rated both items
i and j, ru,i is the rating of user u on item i, and r̄i is the
average rating of the ith item across users.
Now, the rating for item i for user a can be predicted

using a simple weighted average, as in:

pa,i =
∑j∈K ra,jwi,j
∑j∈K ∣wi,j∣

()

 R Recommender Systems

where K is the neighborhood set of the k items rated by
a that are most similar to i.
For item-based collaborative �ltering too, one may

use alternative similarity metrics such as adjusted cosine
similarity. A good empirical comparison of variations
of item-based methods can be found in Sarwar et al.
().

Signi�cance Weighting: It is common for the active
user to have highly correlated neighbors that are based
on very few co-rated (overlapping) items.�ese neigh-
bors based on a small number of overlapping items tend
to be bad predictors. One approach to tackle this prob-
lem is to multiply the similarity weight by a signi�cance
weighting factor, which devalues the correlations based
on few co-rated items (Herlocker et al.,).

Default Voting: An alternative approach to dealing
with correlations based on very few co-rated items is
to assume a default value for the rating for items that
have not been explicitly rated. In this way one can
now compute correlation (Eq.) using the union of
items rated by users being matched as opposed to the
intersection. Such a default voting strategy has been
shown to improve collaborative �ltering by Breese et al.
().

Inverse User Frequency:Whenmeasuring the similar-
ity between users, items that have been rated by all (and
universally liked or disliked) are not as useful as less
common items. To account for this Breese et al. ()
introduced the notion of inverse user frequency, which
is computed as fi = logn/ni, where ni is the number
of users who have rated item i out of the total number
of n users. To apply inverse user frequency while using
similarity-based CF, the original rating is transformed
for i by multiplying it by the factor fi.�e underlying
assumption of this approach is that items that are uni-
versally loved or hated are rated more frequently than
others.

Case Ampli�cation: In order to favor users with high
similarity to the active user, Breese et al. () intro-
duced case ampli�cation which transforms the original
weights in Eq. () to

w′a,u = wa,u ⋅ ∣wa,u∣
ρ−

where ρ is the ampli�cation factor, and ρ ≥ .

Other notable extensions to similarity-based col-
laborative �ltering include weighted majority predic-
tion (Nakamura & Abe,) and imputation-boosted
CF (Su, Khoshgo�aar, Zhu, & Greiner,).

Model-based Collaborative Filtering Model-based tech-
niques provide recommendations by estimating param-
eters of statistical models for user ratings. For example,
Billsus and Pazzani () describe an early approach to
mapCF to a classi�cation problem, and build a classi�er
for each active user representing items as features over
users and available ratings as labels, possibly in con-
junction with dimensionality reduction techniques to
overcome data sparsity issues. Other predictive model-
ing techniques have also been applied in closely related
ways.
More recently, 7latent factor and matrix factoriza-

tionmodels have emerged as a state-of-the-art method-
ology in this class of techniques (Bell et al.,).
Unlike neighborhood based methods that generate
recommendations based on statistical notions of sim-
ilarity between users, or between items, latent factor
models assume that the similarity between users and
items is simultaneously induced by some hidden lower-
dimensional structure in the data. For example, the
rating that a user gives to a movie might be assumed
to depend on few implicit factors such as the user’s
taste across various movie genres. Matrix factorization
techniques are a class of widely successful latent factor
models where users and items are simultaneously rep-
resented as unknown feature vectors (column vectors)
wu,hi ∈ Rk along k latent dimensions.�ese feature vec-
tors are learnt so that inner products wTuhi approximate
the known preference ratings ru,i with respect to some
loss measure.�e squared loss is a standard choice for
the loss function, in which case the following objective
function is minimized,

J (W,H) = ∑
(u,i)∈L

(ru,i −wTuhi)

()

where W = [w . . .wn]T is an n × k matrix, H =

[h . . . hm] is a k×mmatrix, and L is the set of user-item
pairs for which the ratings are known. In the imprac-
tical limit where all user-item ratings are known, the
above objective function is J(W,H) = ∥R − WH∥fro

Recommender Systems R

R

where R denotes the n × m fully known user-item
matrix. �e solution to this problem is given by tak-
ing the truncated SVD of R, R = UDVT and setting
W = UkD

k ,H = D

kV

T
k where Uk,Dk,Vk contain the

k largest singular triplets of R. However, in the realis-
tic setting where the majority of user-item ratings are
unknown and insu�cient number of matrix entries are
observed, such a nice globally optimal solution cannot
in general be directly obtained, and one has to explicitly
optimize the non-convex objective function J(W,H).
Note that in this case, the objective function is a par-
ticular form of weighted loss, that is, J(W,H) = ∥S ⊙
(R −WH)∥fro where ⊙ denotes elementwise products,
and S is a binary matrix that equals one over known
user-item pairs L, and otherwise.�erefore, weighted
low-rank approximations are pertinent to this discus-
sion (Srebro & Jaakkola,). Standard optimization
procedures include gradient-based techniques, or pro-
cedures like alternating least squares where H is solved
keepingW �xed and vice versa until a convergence cri-
terion is satis�ed. Note that �xing eitherW or H turns
the problem of estimating the other into a weighted
7linear regression task. In order to avoid learning a
model that over�ts, it is common tominimize the objec-
tive function in the presence of 7regularization terms,
J(W,H) + γ∥W∥ + λ∥H∥, where γ, λ are regular-
ization parameters that can be determined by cross-
validation. Once W,H are learnt, the product WH
provides an approximate reconstruction of the rating
matrix from where recommendations can be directly
read o�.
Di�erent choices of loss functions, regularizers, and

additional model constraints have generated a large
body of literature on matrix factorization techniques.
Arguably, for discrete ratings, the squared loss is not
the most natural loss function.�e maximum margin
matrix factorization (Rennie & Srebro,) approach
uses margin-based loss functions such as the hinge loss
used in7SVM classi�cation, and its ordinal extensions
for handlingmultiple ordered rating categories. For rat-
ings that span over K values, this reduces to �nding
K − thresholds that divide the real line into consecu-
tive intervals specifying rating bins to which the output
is mapped, with a penalty for insu�cient margin of sep-
aration. Rennie and Srebro () suggest a nonlinear
conjugate gradient algorithm to minimize a smoothed
version of this objective function.

Another class of techniques is the nonnegative
matrix factorization popularized by the work of Lee
and Seung () where nonnegativity constraints are
imposed on W,H. �ere are weighted extensions of
NMF that can be applied to recommendation problems.
�e rating behavior of each usermay be viewed as being
amanifestation of di�erent roles, for example, a compo-
sition of prototypical behavior in clusters of users bound
by interests or community.�us, the ratings of each user
are an additive sum of basis vectors of ratings in the
item space. By disallowing subtractive basis, nonnega-
tivity constraints lend a “part-based” interpretation to
the model. NMF can be solved with a variety of loss
functions, but with the generalized KL-divergence loss
de�ned as follows,

J(W,H) = ∑
u,i∈L

ru,i log
ru,i
wTuhi

− ru,i +wTuhi

NMF is in fact essentially equivalent to probabilis-
tic latent semantic analysis (pLSA) which has also
previously been used for collaborative �ltering tasks
(Hofmann,).

�e recently concluded million-dollar Net�ix com-
petition has catapulted matrix factorization techniques
to the forefront of recommender technologies in col-
laborative �ltering settings (Bell et al.,). While the
�nal winning solution was a complex ensemble of dif-
ferent models, several enhancements to basic matrix
factorization models were found to lead to improve-
ments.�ese included:

. �e use of additional user-speci�c and item-
speci�c parameters to account for systematic biases
in the ratings such as popular movies receiving
higher ratings on average.

. Incorporating temporal dynamics of rating behav-
ior by introducing time-dependent variables.

Inmany settings, only implicit preferences are avail-
able, as opposed to explicit like–dislike ratings. For
example, large business organizations, typically, metic-
ulously record transactional details of products pur-
chased by their clients.�is is a one-class setting since
the business domain knowledge for negative examples –
that a client has no interest in buying a product ever
in the future – is typically not available explicitly in

 R Recommender Systems

corporate databases. Moreover, such knowledge is dif-
�cult to gather and maintain in the �rst place, given
the rapidly changing business environment. Another
example is recommendingTV shows based onwatching
habits of users, where preferences are implicit in what
the users chose to see without any source of explicit
ratings. Recently, matrix factorization techniques have
been advanced to handle such problems (Pan & Scholz,
) by formulating con�dence weighted objective
function, J(W,H) = ∑(u,i) cu,i (ru,i −wTuhi)

, under

the assumption that unobserved user-item pairs may
be taken as negative examples with a certain degree of
con�dence speci�ed via cu,i.

�e problem of recovering missing values in a
matrix from a small fraction of observed entries is also
known as theMatrix Completion problem. Recent work
by Candès & Tao () and Recht () has shown
that under certain assumptions on the singular vectors
of the matrix, the matrix completion problem can be
solved exactly by a convex optimization problem pro-
vided with a su�cient number of observed entries.�is
problem involves �nding among all matrices consistent
with the observed entries, the one with the minimum
nuclear norm (sum of singular values).

Content-based Recommending

Pure collaborative �ltering recommenders only utilize
the user ratings matrix, either directly, or to induce a
collaborative model. �ese approaches treat all users
and items as atomic units, where predictions are made
without regard to the speci�cs of individual users or
items.However, one canmake a better personalized rec-
ommendation by knowing more about a user, such as
demographic information (Pazzani,), or about an
item, such as the director and genre of amovie (Melville,
Mooney, & Nagarajan,). For instance, given movie
genre information, and knowing that a user liked “Star
Wars” and “Blade Runner,” one may infer a predilection
for science �ction and could hence recommend “Twelve
Monkeys.” Content-based recommenders refer to such
approaches, that provide recommendations by compar-
ing representations of content describing an item to
representations of content that interests the user.�ese
approaches are sometimes also referred to as content-
based �ltering.
Much research in this area has focused on recom-

mending items with associated textual content, such

as web pages, books, and movies; where the web
pages themselves or associated content like descrip-
tions and user reviews are available. As such, several
approaches have treated this problem as an infor-
mation retrieval (IR) task, where the content associ-
ated with the user’s preferences is treated as a query,
and the unrated documents are scored with rele-
vance/similarity to this query (Balabanovic & Shoham,
). In NewsWeeder (Lang,), documents in each
rating category are converted into tf-idf word vectors,
and then averaged to get a prototype vector of each
category for a user. To classify a new document, it is
compared with each prototype vector and given a pre-
dicted rating based on the cosine similarity to each
category.
An alternative to IR approaches, is to treat rec-

ommending as a classi�cation task, where each exam-
ple represents the content of an item, and a user’s
past ratings are used as labels for these examples. In
the domain of book recommending, Mooney and Roy
() use text from �elds such as the title, author,
synopses, reviews, and subject terms, to train a multi-
nomial 7naïve Bayes classi�er. Ratings on a scale of
 to k can be directly mapped to k classes (Melville
et al.,), or alternatively, the numeric rating can
be used to weight the training example in a proba-
bilistic binary classi�cation setting (Mooney & Roy,
). Other classi�cation algorithms have also been
used for purely content-based recommending, includ-
ing7k-nearest neighbor,7decision trees, and7neural
networks (Pazzani & Billsus,).

Hybrid Approaches

In order to leverage the strengths of content-based and
collaborative recommenders, there have been several
hybrid approaches proposed that combine the two. One
simple approach is to allow both content-based and col-
laborative �ltering methods to produce separate ranked
lists of recommendations, and then merge their results
to produce a �nal list (Cotter & Smyth,). Claypool,
Gokhale, and Miranda () combine the two predic-
tions using an adaptive weighted average, where the
weight of the collaborative component increases as the
number of users accessing an item increases.
Melville et al. () proposed a general frame-

work for content-boosted collaborative �ltering, where
content-based predictions are applied to convert a

Recommender Systems R

R

sparse user ratings matrix into a full ratings matrix,
and then a CF method is used to provide recommen-
dations. In particular, they use a Naïve Bayes classi�er
trained on documents describing the rated items of
each user, and replace the unrated items by predictions
from this classi�er.�ey use the resulting pseudo ratings
matrix to �nd neighbors similar to the active user, and
produce predictions using Pearson correlation, appro-
priately weighted to account for the overlap of actually
rated items, and for the active user’s content predictions.
�is approach has been shown to perform better than
pure collaborative �ltering, pure content-based sys-
tems, and a linear combination of the two. Within this
content-boosted CF framework, Su, Greiner, Khoshgof-
taar, and Zhu () demonstrated improved results
using a stronger content-predictor, TAN-ELR, and
unweighted Pearson collaborative �ltering.
Several other hybrid approaches are based on tra-

ditional collaborative �ltering, but also maintain a
content-based pro�le for each user. �ese content-
based pro�les, rather than co-rated items, are used
to �nd similar users. In Pazzani’s approach (Pazzani,
), each user-pro�le is represented by a vector of
weighted words derived from positive training exam-
ples using theWinnow algorithm. Predictions are made
by applying CF directly to the matrix of user-pro�les
(as opposed to the user-ratings matrix). An alterna-
tive approach, Fab (Balabanovic & Shoham,), uses
7relevance feedback to simultaneouslymold a personal
�lter along with a communal “topic” �lter. Documents
are initially ranked by the topic �lter and then sent to
a user’s personal �lter.�e user’s relevance feedback is
used to modify both the personal �lter and the origi-
nating topic �lter. Good et al. () use collaborative
�ltering along with a number of personalized informa-
tion �ltering agents. Predictions for a user are made by
applying CF on the set of other users and the active
user’s personalized agents.
Several hybrid approaches treat recommending as

a classi�cation task, and incorporate collaborative ele-
ments in this task. Basu, Hirsh, and Cohen () use
Ripper, a 7rule induction system, to learn a function
that takes a user and movie and predicts whether the
movie will be liked or disliked. �ey combine collab-
orative and content information, by creating features
such as comedies liked by user and users who liked
movies of genre X. In other work, Soboro� and Nicholas

()multiply a term-documentmatrix representing all
item content with the user-ratings matrix to produce a
content-pro�le matrix. Using latent semantic Indexing,
a rank-k approximation of the content-pro�le matrix
is computed. Term vectors of the user’s relevant doc-
uments are averaged to produce a user’s pro�le.�en,
new documents are ranked against each user’s pro�le in
the LSI space.
Some hybrid approaches attempt to directly com-

bine content and collaborative data under a single
probabilistic framework. Popescul, Ungar, Pennock,
and Lawrence () extended Hofmann’s aspect mo-
del (Hofmann,) to incorporate a three-way
co-occurrence data among users, items, and item con-
tent.�eir generative model assumes that users select
latent topics, and documents and their content words
are generated from these topics. Schein, Popescul,
Ungar, and Pennock () extend this approach, and
focus on making recommendations for items that have
not been rated by any user.

Evaluation Metrics

�e quality of a recommender system can be evalu-
ated by comparing recommendations to a test set of
known user ratings.�ese systems are typical measured
using predictive accuracy metrics (Herlocker, Konstan,
Terveen, & Riedl,), where the predicted ratings
are directly compared to actual user ratings.�e most
commonly usedmetric in the literature is7MeanAbso-
lute Error (MAE) – de�ned as the average absolute
di�erence between predicted ratings and actual ratings,
given by:

MAE =
∑{u,i} ∣pu,i − ru,i∣

N
()

Where pu,i is the predicted rating for useru on item i, ru,i
is the actual rating, andN is the total number of ratings
in the test set.
A related commonly used metric, 7Root Mean

Squared Error (RMSE), puts more emphasis on larger
absolute errors, and is given by:

RMSE =

√
∑{u,i} (pu,i − ru,i)

N
()

Predictive accuracy metrics treat all items equally.
However, for most recommender systems the primary

 R Recommender Systems

concern is accurately predict the items a user will
like. As such, researchers o�en view recommending
as predicting good, that is, items with high ratings
versus bad or poorly rated items. In the context of
information retrieval (IR), identifying the good from
the background of bad items can be viewed as dis-
criminating between “relevant” and “irrelevant” items;
and as such, standard IR measures, like 7Precision,
7Recall and 7Area Under the ROC Curve (AUC)
can be utilized. �ese, and several other measures,
such as F-measure, Pearson’s product-moment cor-
relation, Kendall’s τ, mean average precision, half-
life utility, and normalized distance-based performance
measure are discussed in more detail by Herlocker et al.
().

Challenges and Limitations

�is section, presents some of the common hurdles
in deploying recommender systems, as well as some
research directions that address them.

Sparsity: Stated simply, most users do not rate most
items and, hence, the user ratings matrix is typically
very sparse. �is is a problem for collaborative �lter-
ing systems, since it decreases the probability of �nd-
ing a set of users with similar ratings. �is problem
o�en occurs when a system has a very high item-
to-user ratio, or the system is in the initial stages of
use. �is issue can be mitigated by using additional
domain information (Melville et al., ; Su et al.,
) ormaking assumptions about the data generation
process that allows for high-quality imputation (Su
et al.,).

�e Cold-Start Problem: New items and new users
pose a signi�cant challenge to recommender systems.
Collectively these problems are referred to as the cold-
start problem (Schein et al.,). �e �rst of these
problems arises in collaborative �ltering systems, where
an item cannot be recommended unless some user has
rated it before.�is issue applies not only to new items,
but also to obscure items, which is particularly detri-
mental to users with eclectic tastes. As such the new-
item problem is also o�en referred to as the �rst-rater
problem. Since content-based approaches (Mooney &
Roy, ; Pazzani & Billsus,) do not rely on rat-
ings from other users, they can be used to produce

recommendations for all items, provided attributes of
the items are available. In fact, the content-based pre-
dictions of similar users can also be used to further
improve predictions for the active user (Melville et al.,
).

�e new-user problem is di�cult to tackle, since
without previous preferences of a user it is not possible
to �nd similar users or to build a content-based pro-
�le. As such, research in this area has primarily focused
on e�ectively selecting items to be rated by a user so
as to rapidly improve recommendation performance
with the least user feedback. In this setting, classical
techniques from 7active learning can be leveraged to
address the task of item selection (Harpale & Yang,
; Jin & Si,).

Fraud:As recommender systems are being increasingly
adopted by commercial websites, they have started to
play a signi�cant role in a�ecting the pro�tability of sell-
ers.�is has led to many unscrupulous vendors engag-
ing in di�erent forms of fraud to game recommender
systems for their bene�t. Typically, they attempt to
in�ate the perceived desirability of their own products
(push attacks) or lower the ratings of their competitors
(nuke attacks).�ese types of attack have been broadly
studied as shilling attacks (Lam & Riedl,) or pro-
�le injection attacks (Burke, Mobasher, Bhaumik, &
Williams,). Such attacks usually involve setting
up dummy pro�les, and assume di�erent amounts of
knowledge about the system. For instance, the average
attack (Lam & Riedl,) assumes knowledge of the
average rating for each item; and the attacker assigns
values randomly distributed around this average, along
with a high rating for the item being pushed. Studies
have shown that such attacks can be quite detrimental to
predicted ratings, though item-based collaborative �l-
tering tends to be more robust to these attacks (Lam &
Riedl,). Obviously, content-based methods, which
only rely on a users past ratings, are una�ected by pro�le
injection attacks.
While pure content-based methods avoid some of

the pitfalls discussed above, collaborative �ltering still
has some key advantages over them. Firstly, CF can
perform in domains where there is not much content
associated with items, or where the content is di�-
cult for a computer to analyze, such as ideas, opinions,
etc. Secondly, a CF system has the ability to provide

Recommender Systems R

R

serendipitous recommendations, that is, it can recom-
mend items that are relevant to the user, but do not
contain content from the user’s pro�le.

Recommended Reading
Good surveys of the literature in the field can be found in Adomavi-
cius and Tuzhilin (); Bell et al. (); Su and Khoshgoftaar
(). For extensive empirical comparisons on variations of Col-
laborative Filtering refer to Breese (), Herlocker (), Sarwar
et al. ().
Adomavicius, G., & Tuzhilin, A. (). Toward the next generation

of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Transactions on Knowledge and Data
Engineering, (), –.

Balabanovic, M., & Shoham, Y. (). Fab: Content-based, collabo-
rative recommendation. Communications of the Association for
Computing Machinery, (), –.

Basu, C., Hirsh, H., & Cohen, W. (July). Recommendation as
classification: Using social and content-based information in
recommendation. In Proceedings of the fifteenth national con-
ference on artificial intelligence (AAAI-), Madison, Wisconsin
(pp. –).

Bell, R., Koren, Y., & Volinsky, C. (). Matrix factorization
techniques for recommender systems. IEEE Computer ():
–.

Billsus, D., & Pazzani, M. J. (). Learning collaborative infor-
mation filters. In Proceedings of the fifteenth international con-
ference on machine learning (ICML-), Madison, Wisconsin
(pp. –). San Francisco: Morgan Kaufmann.

Breese, J. S., Heckerman, D., & Kadie, C. (July). Empirical anal-
ysis of predictive algorithms for collaborative filtering. In Pro-
ceedings of the fourteenth conference on uncertainty in artificial
intelligence, Madison, Wisconsin.

Burke, R., Mobasher, B., Bhaumik, R., & Williams, C. ().
Segment-based injection attacks against collaborative filtering
recommender systems. In ICDM ’: Proceedings of the fifth
IEEE international conference on data mining (pp. –).
Washington, DC: IEEE Computer Society. Houston, Texas.

Candès, E. J., & Tao, T. (). The power of convex relaxation: Near-
optimal matrix completion. IEEE Trans. Inform. Theory, (),
–.

Claypool, M., Gokhale, A., & Miranda, T. (). Combining
content-based and collaborative filters in an online newspa-
per. In Proceedings of the SIGIR- workshop on recommender
systems: algorithms and evaluation.

Cotter, P., & Smyth, B. (). PTV: Intelligent personalized TV
guides. In Twelfth conference on innovative applications of arti-
ficial intelligence, Austin, Texas (pp. –).

Goldberg, D., Nichols, D., Oki, B., & Terry, D. (). Using col-
laborative filtering to weave an information tapestry. Commu-
nications of the Association of Computing Machinery, (),
–.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Her-
locker, J., et al. (July). Combining collaborative filtering
with personal agents for better recommendations. In Proceed-
ings of the sixteenth national conference on artificial intelligence
(AAAI-), Orlando, Florida (pp. –).

Harpale, A. S., & Yang, Y. (). Personalized active learning for
collaborative filtering. In SIGIR ’: Proceedings of the st

annual international ACM SIGIR conference on research and
development in information retrieval, Singapore (pp. –).
New York: ACM.

Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (). An algo-
rithmic framework for performing collaborative filtering. In
Proceedings of nd international ACM SIGIR conference on
research and development in information retrieval, Berkeley,
California (pp. –). New York: ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. ().
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, (), –.

Hofmann, T. (). Probabilistic latent semantic analysis. In Pro-
ceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, Stockholm, Sweden, July -August , Morgan
Kaufmann.

Hofmann, T. (). Latent semantic analysis for collaborative
filtering. ACM Transactions on Information Systems, (),
–.

Jin, R., & Si, L. (). A Bayesian approach toward active learning
for collaborative filtering. In UAI ’: Proceedings of the th
conference on uncertainty in artificial intelligence, Banff, Canada
(pp. –). Arlington: AUAI Press.

Lam, S. K., & Riedl, J. (). Shilling recommender systems for fun
and profit. In WWW ’: Proceedings of the th international
conference on World Wide Web, New York (pp. –). New
York: ACM.

Lang, K. (). NewsWeeder: Learning to filter netnews. In Proceed-
ings of the twelfth international conference on machine learning
(ICML-) (pp. –). San Francisco. Tahoe City, CA, USA.
Morgan Kaufmann, ISBN ---.

Lee, D. D., & Seung, H. S. (). Learning the parts of objects by
non-negative matrix factorization. Nature, , .

Linden, G., Smith, B., & York, J. (). Amazon.com recom-
mendations: Item-to-item collaborative filtering. IEEE Internet
Computing, (), –.

Melville, P., Mooney, R. J., & Nagarajan, R. (). Content-
boosted collaborative filtering for improved recommenda-
tions. In Proceedings of the eighteenth national confer-
ence on artificial intelligence (AAAI-), Edmonton, Alberta
(pp. –).

Mooney, R. J., & Roy, L. (June). Content-based book recom-
mending using learning for text categorization. In Proceedings
of the fifth ACM conference on digital libraries, San Antonio,
Texas (pp. –).

Nakamura, A., & Abe, N. (). Collaborative filtering using
weighted majority prediction algorithms. In ICML ’: Proceed-
ings of the fifteenth international conference on machine learning
(pp. –). San Francisco: Morgan Kaufmann. Madison,
Wisconsin.

Pan, R., & Scholz, M. (). Mind the gaps: Weighting the unknown
in large-scale one-class collaborative filtering. In th ACM
SIGKDD conference on knowledge discovery and data mining
(KDD), Paris, France.

Pazzani, M. J. (). A framework for collaborative, content-based
and demographic filtering. Artificial Intelligence Review,
(–), –.

Pazzani, M. J., & Billsus, D. (). Learning and revising user
profiles: The identification of interesting web sites. Machine
Learning, (), –.

Popescul, A., Ungar, L., Pennock, D. M., & Lawrence, S. (). Prob-
abilistic models for unified collaborative and content-based

 R Record Linkage

recommendation in sparse-data environments. In Proceedings
of the seventeenth conference on uncertainity in artificial intelli-
gence. University of Washington, Seattle.

Recht, B. (). A Simpler Approach to Matrix Completion.
Benjamin Recht. (to appear in Journal of Machine Learning
Research).

Rennie, J., & Srebro, N. (). Fast maximummargin matrix factor-
ization for collaborative prediction. In International conference
on machine learning, Bonn, Germany.

Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., & Reidl, J.
(a). GroupLens: An open architecture for collaborative fil-
tering of netnews. In Proceedings of the computer supported
cooperative work conference, New York. New York: ACM.

Resnick, P., Neophytos, I., Bergstrom, P., Mitesh, S., & Riedl, J.
(b). Grouplens: An open architecture for collaborative
filtering of netnews. In CSCW – Conference on computer
supported cooperative work, Chapel Hill (pp. –). Addison-
Wesley.

Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (). Item-based
collaborative filtering recommendation algorithms. In WWW
’: Proceedings of the tenth international conference on World
Wide Web (pp. –). New York: ACM. Hong Kong.

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. ().
Methods and metrics for cold-start recommendations. In SIGIR
’: Proceedings of the th annual international ACM SIGIR
conference on research and development in information retrieval
(pp. –). New York: ACM. Tampere, Finland.

Soboroff, I., & Nicholas, C. (). Combining content and collabo-
ration in text filtering. In T. Joachims (Ed.), Proceedings of the
IJCAI’ workshop on machine learning in information filtering
(pp. –).

Srebro, N., & Jaakkola, T. (). Weighted low-rank approxima-
tions. In International conference on machine learning (ICML).
Washington DC.

Su, X., Greiner, R., Khoshgoftaar, T. M., & Zhu, X. (). Hybrid
collaborative filtering algorithms using a mixture of experts. In
Web intelligence (pp. –).

Su, X., & Khoshgoftaar, T. M. (). A survey of collaborative
filtering techniques. Advances in Artificial Intelligence, ,
–.

Su, X., Khoshgoftaar, T. M., Zhu, X., & Greiner, R. ().
Imputation-boosted collaborative filtering using machine
learning classifiers. In SAC ’: Proceedings of the ACM
symposium on applied computing (pp. –). New York:
ACM.

Record Linkage

7Entity Resolution

Recurrent Associative Memory

7Hop�eld Network

Recursive Partitioning

7Divide-and-Conquer Learning

Reference Reconciliation

7Entity Resolution

Regression

Novi Quadrianto, Wray L. Buntine
RSISE, ANU and SML, NICTA, Canberra, Australia

Definition
Regression is a fundamental problem in statistics and
machine learning. In regression studies, we are typ-
ically interested in inferring a real-valued function
(called a regression function) whose values correspond
to the mean of a dependent (or response or output)
variable conditioned on one or more independent (or
input) variables. Many di�erent techniques for esti-
mating this regression function have been developed,
including parametric, semi-parametric, and nonpara-
metric methods.

Motivation and Background
Assume that we are given a set of data points sampled
from an underlying but unknown distribution, each of
which includes input x and output y. An example is
given in Fig. .�e task of regression is to learn a hidden
functional relationship between x and y from observed
and possibly noisy data points. In Fig. , the input–
output relationship is a Gaussian corrupted sinusoidal
relationship, that is y = sin(πx)+є where є is normally
distributed noise. Various lines show the inferred rela-
tionship based on a linear parametric regression model
with polynomial basis functions.�e higher the degree
of the polynomial, the more complex is the inferred
relationship, as shown in Fig. , as the function tries to
better �t the observed data points.
While the most complex polynomial here is an

almost perfect reconstruction of observed data points
(it has “low bias”), it gives a very poor representation of

Regression R

R

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

Sinusoidal observations
Degree–1 polynomial

Degree–5 polynomial

Degree–20 polynomial

x

y

Regression. Figure . data points (one-dimensional input x and output y variables) with a Gaussian corrupted sinu-

soidal input–output relationship, y = sin(πx)+єwhere є is normally distributed noise. The task is to learn the functional

relationship between x and y. Various lines show the inferred relationship based on a linear regression model with

polynomial basis functions having various degrees

the true underlying function sin(πx) that can change
signi�cantly with the change of a few data points (it has
“high variance”).�is phenomemon is called the7bias-
variance dilemma, and selecting a complex model with
too high a variance is called 7over-�tting. Complex
parametric models (like polynomial regression) lead to
low bias estimators with a high variance, while sim-
ple models lead to low variance estimators with high
bias. To sidestep the problem of trying to estimate or
select the model complexity represented for instance
by the degree of the polynomial, so-called nonpara-
metric methods allow a rich variety of functions from
the outset (i.e., a function class not �nitely parame-
terizable) and usually provide a hyperparameter that
tunes the regularity, curvature, or complexity of the
function.

Theory/Solution
Formally, in a regression problem, we are interested
in recovering a functional dependency yi = f (xi) + єi
from N observed training data points {(xi, yi)}Ni=,

where yi ∈R is the noisy observed output at input
location xi ∈Rd. For 7Linear Regression, we repre-
sent the regression function f () by a parameter w ∈

RH in the form f (xi) := ⟨ϕ(xi),w⟩ for H �xed
basis functions {ϕh(xi)}Hh=. With general basis func-
tions such as polynomials, exponentials, sigmoids, or
even more sophisticated Fourier or wavelets bases,
we can obtain a regression function which is non-
linear with regard to the input variables although still
linear with regard to the parameters.
In regression, many more methods are possible.

Some variations on these standard linear models are
piecewise linear models, trees, and splines (roughly,
piecewise polynomial models joined up smoothly)
(Hastie, Tibshirani, & Friedman,).�ese are called
semi-parametric models, because they have a linear
parametric component as well as a nonparametric
component.

Fitting In general, regression �ts a model to data using
an objective function or quality criterion in a form
such as

 R Regression

E(f) =
N

∑
i=

є(yi, f (xi)) ,

where smaller E(f) implies better quality.�is might be
derived as an error/loss function, or as a negative log
likelihood or log probability.�e squared error function
is the most convenient (leading to a least squares calcu-
lation), butmany possibilities exist. In general, methods
are distinguished by three aspects, () the representation
of the function f (), () the form of the term є(yi, f (xi)),
and () the penalty term discussed next.

Regularized/Penalized Fitting �e issue of over-�tting,
as mentioned already in the section Motivation and
Background, is usually addressed by introducing a
regularization or penalty term to the objective func-
tion. �e regularized objective function is now in the
form of

Ereg = E(f) + λR(f). ()

Here, E(f) measures the quality of the solution for f ()
on the observed data points, R(f) penalizes complex-
ity of f (), and λ is called the regularization parameter
which controls the relative importance between the two.
Measures of function curvature, for instance, can be
used for R(f). In standard 7Support Vector Machines,
the term E(f)measures the hinge loss, and penaltyR(f)
is the sum of squares of the parameters, also used in
ridge regression (Hastie et al.,).

Bias-Variance Dilemma

As we have seen in the previous section, the introduc-
tion of the regularization term can help avoid over-
�tting. However, this raises the question of determining
an optimal value for the regularization parameter λ.�e
speci�c choice of λ controls the bias-variance tradeo�
(Geman, Bienenstock, & Doursat,).
Recall that we try to infer a latent regression func-

tion f (x) based on N observed training data points
D = {(xi, yi)}Ni=.�e notation f (x;D) explicitly shows
the dependence of f on the data D.�e mean squared
error (MSE) which measures the e�ectiveness of f as a
predictor of y is

E[(y − f (x;D))∣x,D] = E[(y − E[y∣x])∣x,D]

+ (f (x;D) − E[y∣x]) ()

where E[.] means expectation with respect to a con-
ditional distribution p(y∣x).�e �rst term of () does
not depend on f (x;D) and it represents the intrinsic
noise on the data.�e MSE of f as an estimator of the
regression E[y∣x] is

ED[(f (x;D) − E[y∣x])] ()

where ED means expectation with respect to the train-
ing set D. �e estimation error in () can be decom-
posed into a bias and a variance terms, that is

ED[(f (x;D) − E[y∣x])]

= ED[(f (x;D) − ED[f (x;D)] + ED[f (x;D)]

− E[y∣x])]

= ED[(f (x;D) − ED[f (x;D)])] + (ED[f (x;D)]

− E[y∣x])

+ ED[(f (x;D) − ED[f (x;D)])](ED[f (x;D)]

− E[y∣x])

= ED[(f (x;D) − ED[f (x;D)])] + (ED[f (x;D)]

− E[y∣x])

= variance + bias.

�e bias termmeasures the di�erence between the aver-
age predictor over all datasets and the desired regression
function. �e variance term measures the adaptabil-
ity of the predictor to a particular dataset. �ere is a
tradeo� between the bias and variance contributions
to the estimation error, with very �exible models hav-
ing low bias but high variance (over-�tting) and rela-
tively rigid models having low variance but high bias
(under-�tting). Typically, variance is reduced through
“smoothing,” that is an introduction of the regulariza-
tion term. �is, however, will introduce bias as peaks
and valleys of the regression function will be blurred.
To achieve an optimal predictive capability, an estima-
tor with the best balance between bias and variance is
chosen by varying the regularization parameter λ. It is
crucial to note that bias-variance decomposition albeit
powerful is based on averages of datasets, however in
practice only a single dataset is observed. In this regard,
a Bayesian treatment of regression, such as Gaussian
process regression which will avoid over-�tting prob-
lem of maximum likelihood and which will also lead

Regression R

R

to automatic methods of determining model complex-
ity using the training data alone could be an attractive
alternative.

Nonparametric Regression

In the parametric approach, an assumption on the
mathematical form of the functional relationship
between input x and output y such as linear, polyno-
mial, exponential, or combination of them needs to be
chosen a priori. Subsequently, parameters are placed
on each of the chosen forms and the optimal values
learnt from the observed data. �is is restrictive both
in the �xed functional form and in the ability to vary
the model complexity. Nonparametric approaches try
to derive the functional relationship directly from the
data, that is, they do not parameterize the regression
function.

7Gaussian Processes for regression, for instance, is
well-developed. Another approach is the kernel method,
of which a rich variety exists (Hastie et al.,).�ese
can be viewed as a regression variant of nearest neighbor
classi�cation where the function is made up of a local
element for each data point:

f (x) =
∑i yiKλ(xi, x)
∑i Kλ(xi, x)

,

where the function Kλ(xi,) is a nonnegative “bump”
in x space centered at its �rst argument with diameter
approximately given by λ.�us, the function has a vari-
able contribution from each data point, and λ controls
the bias-variance tradeo�.

Generalized Linear Models

�e previous discussion about regression focuses on
continuous output/dependent variables.While this type
of regression problem is ubiquitous, there are however
some interests in cases of restricted output variables:

. �e output variable consists of two categories
(called binomial regression).

. �e output variable consists of more than two cate-
gories (calledmultinomial regression).

. �e output variable consists of more than two cat-
egories which can be ordered in a meaningful way
(called ordinal regression). and

. �e output variable is a count of the repetition of the
occurrence of an event (called poisson regression).

Nelder and Wedderburn () introduced the gen-
eralized linear model (GLM) by allowing the linear
model to be related to the output variables via a link
function. �is is a way to unify di�erent cases of
response variables under one framework, each only dif-
fers in the choice of the link function. Speci�cally, in
GLM, each output variable is assumed to be gener-
ated from the exponential family of distributions.�e
mean of this distribution depends on the input variables
through

E[y] = g(µ) = w +wϕ(xi) + . . . +wDϕD(xi), ()

where g(µ) is the link function (Table).�e param-
eters of the generalized linear model can then be esti-
mated by the maximum likelihood method, which can
be found by iterative re-weighted least squares (IRLS),
an instance of the expectation maximization (EM)
algorithm.

Other Variants of Regression

So far, we have focused on the problem of predicting a
single output variable y from an input variable x. Some
studies look at predicting multiple output variables
simultaneously.�e simplest approach for the multiple
outputs problem would be to model each output vari-
able with a di�erent set of basis functions. �e more
common approach uses the same set of basis functions
to model all of the output variables. Not surprisingly,

Regression. Table A table of Various Link Functions

Associated with the Assumed Distribution on the Output

Variable

Distribution of
Dependent

Variable Name Link Function

Gaussian Identity link g(µ) = µ

Poisson Log link g(µ) = log(µ)

Binomial

Multinomial
Logit link g(µ) = log (

µ
−µ)

Exponential

Gamma
Inverse link g(µ) = µ−

Inverse Inverse g(µ) = µ−

Gaussian squared link

 R Regression Trees

the solution to the multiple outputs problem decouples
into independent regression problems with shared basis
functions.
For some other studies, the focus of regression is on

computing several regression functions corresponding
to various percentage points or quantiles (instead of the
mean) of the conditional distribution of the dependent
variable given the independent variables. �is type of
regression is called quantile regression (Koenker,).
Sum of tilted absolute loss (called pinball loss) is being
optimized for this type of regression. Quantile regres-
sion hasmany important applicationswithin economet-
rics, data mining, social sciences, and ecology, among
other domains.
Instead of inferring one regression function corre-

sponding to the mean of a response variable, k regres-
sion functions can be computed with the assumption
that the response variable is generated by a mixture of
k components.�is is called the mixture of regressions
problem (Ga�ney & Smyth,). Applications include
trajectory clustering, robot planning, and motion seg-
mentation.
Another important variant is the heteroscedastic

regression model where the noise variance on the data
is a function of the input variable x.�e Gaussian pro-
cess framework can be used conveniently to model this
noise-dependent case by introducing a second Gaus-
sian process to model the dependency of noise variance
on the input variable (Goldberg, Williams, & Bishop,
). �ere are also attempts to make the regression
model more robust to the presence of a few problematic
data points called outliers. Sum of absolute loss (instead
of sum of squared loss) or student’s t-distribution
(instead of Gaussian distribution) can be used for robust
regression.

Cross References
7Gaussian Processes
7Linear Regression
7Support Vector Machines

Recommended Reading
Machine learning textbooks such as Bishop (), among oth-
ers, introduce different regression models. For a more statistical
introduction including an extensive overview of the many differ-
ent semi-parametric methods and non-parametric methods such as
kernel methods see Hastie et al. (). For a coverage of key statis-
tical issues including nonlinear regression, identifiability, measures

of curvature, autocorrelation, and such, see Seber and Wild ().
For a large variety of built-in regression techniques, refer to R
(http://www.r-project.org/).
Bishop, C. (). Pattern recognition and machine learning.

Springer.
Gaffney, S., & Smyth, P. (). Trajectory clustering with mixtures

of regression models. In ACM SIGKDD (Vol. , pp. –).
ACM

Geman, S., Bienenstock, E., & Doursat, R. (). Neural networks
and the bias/variance dilemma. Neural Computation, , –.

Goldberg, P., Williams, C., & Bishop, C. (). Regression with
input-dependent noise: A Gaussian process treatment. In Neu-
ral information processing systems (Vol.). The MIT Press

Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of
statistical learning: Data mining, inference, and prediction (Cor-
rected ed.). Springer.

Koenker, R. ().Quantile regression. Cambridge University Press.
Nelder, J. A., & Wedderburn, R. W. M. (). Generalized linear

models. Journal of the Royal Statistical Society: Series A, ,
–.

Seber, G., & Wild, C. (). Nonlinear regression. New York: Wiley.

Regression Trees

Luís Torgo
University of Porto, Rua Campo Alegre, Porto,
Portugal

Synonyms
Decision trees for regression; Piecewise constant
models; Tree-based regression

Definition
Regression trees are supervised learning methods that
address multiple regression problems. �ey provide a
tree-based approximation f̂ , of an unknown regression
function Y = f (x)+ ε with Y ∈R and ε ≈N(, σ), based
on a given sample of dataD = {⟨xi,, . . . , xi,p, yi⟩}ni=.�e
obtainedmodels consist of a hierarchy of logical tests on
the values of any of the p predictor variables.�e termi-
nal nodes of these trees, known as the leaves, contain
the numerical predictions of the model for the target
variable Y .

Motivation and Background
Work on regression trees goes back to the AID
system by Morgan and Sonquist Morgan ().

Regression Trees R

R

Nonetheless, the seminal work is the book Classi-
�cation and Regression Trees by Breiman and col-
leagues (Breiman, Friedman, Olshen, & Stone,).
�is book has established several standards in many
theoretical aspects of tree-based regression, including
over-�tting avoidance by post-pruning, the notion of
surrogate splits for handling unknown variable, and
estimating variable importance.
Regression trees have several features that make

them a very interesting approach to several multi-
ple regression problems. For example, regression trees
provide: (a) automatic variable selection making them
highly insensitive to irrelevant variables; (b) computa-
tional e�ciency that allows addressing large problems;
(c) handling of unknown variable values; (d) handling
of both numerical and nominal predictor variables; (e)
insensitivity to predictors’ scales; and (f) interpretable
models for most domains. In spite of all these advan-
tages, regression trees have poor prediction accuracy
in several domains because of the piecewise constant
approximation they provide.

Structure of Learning System
�e most common regression trees are binary with log-
ical tests in each node (an example is given on the le�
graph of Fig.). Tests on numerical variables usually
take the form xi < α, with α ∈ R, while tests on nom-
inal variables have the form xj ∈ {v, . . . , vm}. Each

path from the root (top) node to a leaf can be seen
as a logical assertion de�ning a region on the predic-
tors’ space. Any regression tree provides a full mutually
exclusive partition of the predictor space into L regions
with boundaries that are parallel to the predictors’ axes
due to the form of the tests. Figure illustrates these
ideas with a tree and the respective partitioning on the
right side of the graph. All observations in a partition
are predicted with the same constant value, and that is
the reason for regression trees sometimes being referred
to as piecewise constant models.
Using a regression tree for obtaining predictions

for new observations is straightforward. For each new
observation a path from the root node to a leaf is fol-
lowed, selecting the branches according to the variable
values of the observation.�e leaf contains the predic-
tion for the observation.

Learning a Regression Tree

A binary regression tree is obtained by a very e�-
cient algorithm known as recursive partitioning (Algo-
rithm).
If the termination criterion is not met by the input

sample D, the algorithm selects the best logical test on
one of the predictor variables according to some cri-
terion. �is test divides the current sample into two
partitions: the one with the cases satisfying the test, and
the remaining. �e algorithm proceeds by recursively

Example regression tree

x2< 3.113

x1< 3.386

x2< 6.057

x1 ≥6.569

x2 ≥3.113

x1 ≥3.386

x2 ≥6.057

x1< 6.569

3.65
n = 20

0.75
n = 2

3.97
n = 18

2.22
n = 6

4.84
n = 12

3.79
n = 7

2.3
n = 3

4.9
n = 4

6.32
n = 5

2 4 6 8 10

2
4

6
8

10

Partitioning of the predictors' space

x1

x 2

Y = 0.75

Y = 2.22

Y = 6.32

Y = 4.90 Y = 2.30

Regression Trees. Figure . A regression tree and the partitioning it provides

 R Regression Trees

Algorithm Recursive Partitioning.
: function RecursivePartitioning(D)
Input : D, a sample of cases, {⟨xi,, . . . , xi,p, yi⟩}
Output : t, a tree node

: if <termination criterion> then
: Return a leaf node with <constant k>
: else
: t ← new tree node
: t.split ← <Find the best test on one of

the variables>
: t.le�Node ← RecursivePartitioning(x ∈ D :

x ⊧ t.split)
: t.rightNode ← RecursivePartitioning(x ∈

D : x ⊭ t.split)
: Return the node t
: end if
: end function

applying the same method to these two partitions to
obtain the le� and right branches of the node. Algo-
rithm has threemain components that characterize the
type of regression tree we are obtaining: (a) the termina-
tion criterion; (b) the constant k; and (c) the method to
�nd the best test on one of the predictors.�e choices for
these components are related to the preference criteria
that are selected to build the trees.�e most common
criterion is the minimization of the sum of the square
errors, known as the least squares (LS) criterion. Using
this criterion it can be easily proven (e.g., Breiman et al.,
) that the constant k should be the average target
variable value of the cases in the leaf. With respect to
the termination criterion, usually very relaxed settings
are selected so that an overly large tree is grown. �e
reasoning is that the trees will be pruned a�erward with
the goal of overcoming the problemof over-�tting of the
training data.
According to the LS criterion the error in a given

node is given by,

Err(t) =

nt

∑
⟨xi ,yi⟩∈Dt

(yi − kt) ()

where Dt is the sample of cases in node t, nt is the car-
dinality of this set and kt is the average target variable
value of the cases in Dt .

Any logical test sdivides the cases inDt into two par-
titions, DtL and DtR .�e resulting pooled error is given
by,

Err(t, s) =
ntL
nt

× Err(tL) +
ntR
nt

× Err(tR) ()

where ntL/nt (ntR/nt) is the proportion of cases going to
the le� (right) branch of t.
In this context, we can estimate the value of the split

s by the respective error reduction, and this can be used
to evaluate all candidate split tests for a node,

∆(s, t) = Err(t) − Err(t, s) ()

Finding the best split test for a node t involves eval-
uating all possible tests for this node using Eq. (). For
each predictor of the problem one needs to evaluate all
possible splits in that variable. For continuous variables
this requires a sorting operation on the values of this
variable occurring in the node. A�er this sorting, a fast
incremental algorithm can be used to �nd the best cut-
point value for the test (e.g. Torgo,). With respect
to nominal variables, Breiman et al. () have proved
a theorem that avoids trying all possible combinations
of values, reducing the computational complexity of this
task fromO(v−−) toO(v−), where v is the number
of values of the nominal variable.
Departures from the standard learning procedure

described above include, among others: the use of mul-
tivariate split nodes (e.g., Breiman et al., ; Gama,
; Li, Lue, & Chen,) to overcome the axis par-
allel representation limitation of partitions; the use of
di�erent criteria to �nd the best split node (e.g., Buja
& Lee, ; Loh, ; Robnik-Sikonja & Kononenko,
); the use of di�erent preference criteria to guide
the tree growth (e.g., Breiman et al., ; Buja & Lee,
; Torgo, ; Torgo & Ribeiro,); and the use
of both regression and split nodes (e.g., Lubinsky, ;
Malerba, Esposito, Ceci, & Appice,).

Pruning Regression Trees

As most nonparametric modeling techniques, regres-
sion trees may 7over-�t the training data which will
inevitably lead to poor out-of-the-sample predictive
performance. �e standard procedure to �ght this
undesirable e�ect is to grow an overly large tree and
then to use some reliable error estimation procedure to

Regularization R

R

�nd the “best” sub-tree of this large model.�is proce-
dure is known as post-pruning a tree (Breiman et al.,
). An alternative is to stop tree growth sooner in
a process known as pre-pruning, which again needs to
be guided by reliable error estimation to know when
over-�tting is starting to occur. Although more e�-
cient in computational terms, this latter alternative may
lead to stop tree growth too soon even with look-ahead
mechanisms.
Post-pruning is usually carried out in a three stages

procedure: (a) a set of sub-trees of the initial tree is gen-
erated; (b) some reliable error estimation procedure is
used to obtain estimates for each member of this set;
and (c) somemethod based on these estimates is used to
select one of these trees as the �nal treemodel. Di�erent
methods exist for each of these steps. A common setup
(e.g., Breiman et al.,) is to use error-complexity
pruning to generate a sequence of nested sub-trees,
whose error is then estimated by cross validation.�e
�nal tree is selected using the x-SE rule, which starts
with the lowest estimated error sub-tree and then selects
the smallest tree within the interval of x standard errors
of the lowest estimated error tree (a frequent setting is
to use one standard error).
Variations on the subject of pruning regression

trees include, among others: pre-pruning alternatives
(e.g., Breiman & Meisel, ; Friedman,); the use
of di�erent tree error estimators (see Torgo () for
a comparative study and references to di�erent alterna-
tives); and the use of the MinimumDescription Length
(MDL) principle to guide the pruning (Robnik-Sikonja
& Kononenko,).

Cross References
7Model Trees
7Out-of-the-Sample
7Random Forests
7Regression
7Supervised Learning
7Training Sample

Recommended Reading
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (). Classifica-

tion and regression trees. Statistics/probability series. Wadsworth
& Brooks/Cole Advanced Books & Software.

Breiman, L., & Meisel, W. S. (). General estimates of the intrinsic
variability of data in nonlinear regression models. Journal of the
American Statistical Association, , –.

Buja, A., & Lee, Y.-S. (). Data mining criteria for tree-based
regression and classification. In Proceedings of ACM SIGKDD
international conference on knowledge discovery and data mining
(pp. –). San Francisco, California, USA.

Friedman, J. H. (). A tree-structured approach to nonparamet-
ric multiple regression. In T. Gasser & M. Rosenblatt (Eds.),
Smoothing techniques for curve estimation. Lecture notes in
mathematics (Vol. , pp. –). Berlin: Springer.

Gama, J. (). Functional trees.Machine Learning, (), –.
Li, K. C., Lue, H., & Chen, C. (). Interactive tree-structured

regression via principal Hessians direction. Journal of the Amer-
ican Statistical Association, , –.

Loh, W. (). Regression trees with unbiased variable selection
and interaction detection. Statistica Sinica, , –.

Lubinsky, D. (). Tree structured interpretable regression. In
Proceedings of the workshop on AI & statistics.

Malerba, D., Esposito, F., Ceci, M., & Appice, A. (). Top-down
induction of model trees with regression and splitting nodes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
(), –.

Morgan, J. N., & Sonquist, J. A. (). Problems in the analysis
of survey data, and a proposal. Journal of American Statistical
Association, (), –.

Robnik-Sikonja, M., & Kononenko, I. (). Context-sensitive
attribute estimation in regression. In Proceedings of the ICML-
 workshop on learning in context-sensitive domains. Brighton,
UK.

Robnik-Sikonja, M., & Kononenko, I. (). Pruning regression
trees with MDL. In Proceedings of ECAI-. Brighton, UK.

Torgo, L. (). Error estimates for pruning regression trees. In C.
Nedellec & C. Rouveirol (Eds.), Proceedings of the tenth Euro-
pean conference on machine learning. LNAI (Vol.). London,
UK: Springer-Verlag.

Torgo, L. (). Inductive learning of tree-based regression mod-
els. PhD thesis, Department of Computer Science, Faculty of
Sciences, University of Porto.

Torgo, L., & Ribeiro, R. (). Predicting outliers. In N. Lavrac, D.
Gamberger, L. Todorovski, & H. Blockeel (Eds.), Proceedings of
principles of data mining and knowledge discovery (PKDD’).
LNAI (Vol. , pp. –). Berlin/Heidelberg: Springer-
Verlag.

Regularization

Xinhua Zhang
Australian National University, NICTA London Circuit
Canberra, Australia

Definition
Regularization plays a key role in many machine learn-
ing algorithms. Exactly �tting a model to the training
data is generally undesirable, because it will �t the noise

 R Regularization

in the training examples (7over�tting), and is doomed
to predict (generalize) poorly on unseen data. In con-
trast, a simple model that �ts the training data well is
more likely to capture the regularities in it and gener-
alize well. So a regularizer is introduced to quantify the
complexity of a model, and many successful machine
learning algorithms fall in the framework of regularized
risk minimization:

(How well the model �ts the training data) ()

+λ ⋅ (complexity/regularization of the model), ()

where the positive real number λ controls the tradeo�.
�ere is a variety of regularizers, which yield di�er-

ent statistical and computational properties. In general,
there is no universally best regularizer, and a regular-
ization approach must be chosen depending on the
dataset.

Motivation and Background
�e main goal of machine learning is to induce a model
from the observed data, and use thismodel tomake pre-
dictions and decisions. �is is also largely the goal of
general natural science, and is commonly called inverse
problems (“forward problem” means using the model
to generate observations). �erefore, it is no surprise
that regularization had been well studied before the
emergence of machine learning.
Inverse problems are typically ill-posed, e.g., hav-

ing only a �nite number of samples drawn from an
uncountable space, or having a �nite number of mea-
surements in an in�nite dimensional space. In machine
learning, we o�en need to induce a classi�er for the
whole feature-label space, while only a �nite number of
feature-label pairs are available for training. In practice,
the set of candidate models is o�en �exible enough to
precisely �t all the training examples. However, this can
lead to signi�cant over�tting when the training data is
noisy, and the real challenge is how to generalize well on
the unseen data in the whole feature-label space.
Many techniques have been proposed to tackle ill-

posed inverse problems. Almost all of them introduce
an additional measure on how much a model is pre-
ferred a priori (i.e., without observing the training data).
�is extra belief on the desirable form of the model
re�ects the external knowledge of the model designer.
It cannot be replaced by the data itself according to the

“no free lunch theorem,” which states that if there is
no assumption on the mechanism of labeling, then it is
impossible to generalize and any model can be inferior
to another on some distribution of the feature-label pair
(Devroye, Gyor, & Lugosi,).
A commonly used prior is the so-called 7Occam’s

razor, which prefers “simple” models. It asserts that
among all the models which �t the training data well,
the simplest one is more likely to capture the “regular-
ities” in it and hence has a larger chance to generalize
well to the unseen data. �en an immediate question
is how to quantify the complexity of a model, which
is o�en called a regularizer. Intuitively, a regularizer
can encode preference for a sparse model (few features
are relevant for prediction), a large margin model (two
classes have a wide margin), or a smooth model with
weak high-frequency components. A general frame-
work of regularization was given by Tikhonov ().

Theory
Suppose n feature-label pairs {(xi, yi)}

n
i= are drawn iid

from a certain joint distribution P on X × Y , where X
and Y are the spaces of feature and label respectively.
Let the marginal distribution on X and Y be Px and Py
respectively. For convenience, let X be Rp (Euclidean
space). Denote X := (x, . . . , xn) and y := (y, . . . , yn)⊺.

An Illustrative Example: Ridge Regression

Ridge regression is illustrative of the use of regulariza-
tion. It tries to �t the label y by a linear model ⟨w, x⟩
(inner product). So we need to solve a system of linear
equations in w: (x, . . . , xn)⊺w = y, which is equivalent
to a linear least square problem: minw∈Rp ∥X⊺w − y∥. If
the rank of X is less than the dimension of w, then it is
overdetermined and the solution is not unique.
To approach this ill-posed problem, one needs to

introduce additional assumptions on what models are
preferred, i.e., the regularizer. One choice is to pick a
matrix Γ and regularizew by ∥Γw∥

. As a result, we solve
minw∈Rp ∥X⊺w − y∥ + λ ∥Γ⊺w∥

, and the solution has
closed formw∗ = (XX⊺+λΓΓ⊺)Xy. Γ can be simply the
identity matrix which encodes our preference for small
norm models.

�e use of regularization can also be justi�ed
from a Bayesian point of view. Treating w as a
multi-variate random variable and the likelihood as
exp (− ∥X⊺w − y∥), then the minimizer of ∥X⊺w − y∥

Regularization R

R

is just a maximum likelihood estimate of w. However,
we may also assume a prior distribution over w, e.g.,
a Gaussian prior p(w) ∼ exp (−λ ∥Γ⊺w∥

). �en the

solution of the ridge regression is simply the maximum
a posterior estimate of w.

Examples of Regularization

A common approach to regularization is to penalize a
model by its complexity measured by some real-valued
function, e.g., a certain “norm” of w. We list some
examples below:

L regularization: L regularizer, ∥w∥ := ∑i ∣wi∣, is a
popular approach to �nding sparse models, i.e., only a
few components of w are nonzero and only the corre-
sponding small number of features are relevant to the
prediction. A well-known example is the LASSO algo-
rithm (Tibshirani,), which uses a L regularized
least square:

min
w∈Rp

∥X⊺w − y∥

+ λ ∥w∥ .

L regularization: �e L regularizer,
 ∣∣w∣∣

 :=

 ∑i w

i , is popular due to its self-dual properties. In

all Lp spaces, only the L space is Hilbertian and self-
adjoint, so it a�ords much convenience in studying
and exploiting the dual properties of the L regularized
models. A well-known example is the support vector
machines (SVMs), which minimize the L regularized
hinge loss:

n

n

∑
i=
max {, − ⟨w, xi⟩} +

λ

∥w∥

 .

Lp regularization: In general, all Lp norms ∥w∥p :=

(∑i ∣wi∣
p
)
/p
(p ≥) can be used for regularization.

When p < , (∑i ∣wi∣
p
)
/p
is no longer convex. A spe-

cially interesting case is when p = , and ∥w∥ is de�ned
as the number of nonzero elements inw (the sparseness
of w). But explicitly optimizing the L norm leads to a
combinatorial problem which is hard to solve. In some
cases, the L regularizer can approximately recover the
solution of L regularization (Candes & Tao,).

Lp,q regularizer: �e Lp,q regularizer is popular in the
context of multi-task learning (Tropp,). Suppose
there are T tasks, and each training example xi has
a label vector yi ∈ RT with each component corre-
sponding to a task. For each task t, we seek for a linear
regressor ⟨wt , x⟩ such that for each training example xi,
⟨wt , xi⟩ �ts the tth component of yi. Of course, the wt
could be determined independently from each other.
But in many applications, the T tasks are somehow
related, and it will be advantageous to learn them as a
whole. Stackwt ’s into amatrixW := (w, . . . ,wT)where
each column corresponds to a task and each row cor-
responds to a feature. �en the intuition of multitask
learning can be concretized by regularizingW with the
Lp,q compositional norm (p, q ≥):

∥W∥p,q :=
⎛

⎝
∑
i
(∑
t
∣wit ∣

p
)

q
p ⎞

⎠

q

,

where wit is the ith component of wt . When q = , it
becomes the L norm of the Lp norm of the rows, and
the sparse inducing property of L norm encourages the
rows to have Lp norm , i.e., the corresponding feature
is not used by any task. Other choices of p and q are also
possible.

Entropy regularizer: �e entropy regularizer is useful
in boosting, and it works in a slightly di�erent way from
the above regularizers. Boosting aims to �nd a con-
vex combination of hypotheses, such that the training
data is accurately classi�ed by the ensemble. At each
step, the boosting algorithm maintains a distribution
d (di > and ∑i di =) over the training examples,
feeds d to an oracle which returns a new hypothesis,
and then updates d and go on. As a “simple” ensemble
means a small number of weak hypotheses, the boosting
algorithm is expected to �nd an accurate ensemble by
taking as few steps as possible.�is can be achieved by
exponentiated gradient descent (Kivinen & Warmuth,
), which stems from the relative entropy regularizer
∑i di log

di
/n applied at each step. It also attractsd toward

the uniform distribution, which helps avoid over�tting
the noise, i.e., trying hard to match the (incorrect) label
of a few training examples.

Miscellaneous: Instead of using a function that directly
measures the complexity of the modelw, regularization

 R Regularization

can also be achieved by penalizing the complexity of the
output of the model on the training data.�is is called
value regularization (Rifkin&Lippert,). It not only
yields neat derivations of standard algorithms, but also
provides much convenience in studying the learning
theory and optimization.
Furthermore, the regularized risk minimization

framework in () is not the only approach to regulariza-
tion. For example, in7online learning where themodel
is updated iteratively, early stopping is an e�ective form
of regularization and it has been widely used in train-
ing neural networks. Suppose the available dataset is
divided into a training set and a validation set, and
the model is learned online from the training set.�en
the algorithm terminates when the performance of the
model on the validation set stops improving.

Measuring the Capacity of Model Class

Besides penalizing the complexity of the model, we can
restrict the complexity of the model class F in the �rst
place. For example, 7linear regression is intrinsically
“simpler” than quadratic regression.7Decision stumps
are “simpler” than linear classi�ers. In other words, reg-
ularization can be achieved by restricting the capacity
of the model class, and the key question is how to quan-
tify this capacity. Some commonly usedmeasures in the
context of binary classi�cation are the following.

VC dimension: �e Vapnik–Chervonenkis dimension
(7VC dimension) quanti�es howmany data points can
be arbitrarily labeled by using the functions in F (Vap-
nik & Chervonenkis,). F is said to shatter a set of
data points x, . . . , xn if for any assignment of labels to
these points, there exists a function f ∈ F which yields
this labeling.�e VC dimension ofF is themaximum n
such that there exist n data points that can be shattered
byF . For example, decision stumps haveVCdimension
, and linear classi�ers (with bias) in a p-dimensional
space have VC dimension p + .

Covering number: �e idea of covering number (Guo,
Bartlett, Shawe-Taylor & Williamson) is to
characterize the inherent “dimension” of F , in a way
that follows the standard concept of vector dimension.
Given n data points x, . . . , xn, wemay endow themodel
class F with the following metric:

dn(f , g) :=

n

n

∑
i=

δ(f (xi) ≠ g(xi)), ∀ f , g ∈ F ,

where δ(⋅) = if ⋅ is true and otherwise. A set of
functions f, . . . , fm is said to be a cover of F at radius
є if for any function f ∈ F , there exists an fi such that
dn(f , fi) < є.�en the covering number of F at radius
є > with respect to dn is the minimum size of a cover
of radius є.
To understand themotivation of the de�nition, con-

sider the unit ball in Rp. To cover it by є radius balls,
one needs order N(є, p) = є−p balls.�en the dimen-
sion p can be estimated from the rate of growth of
logN(є, p) = −p log є with respect to є. �e covering
number is an analogy of N(є, p), and the dimension of
F can be estimated in the same spirit.

Rademacher average: �e Rademacher average is a
so� variant of the VC dimension. Instead of requiring
the model class to shatter n data points, it allows that
the labels be violated at some cost. Let σi ∈ {−, } be
an arbitrary assignment of the labels, and assume all
functions in F range in {−, } (this restriction can be
relaxed).�en a model f ∈ F is considered as the most
consistent with {σi} if it maximizes n ∑

n
i= σif (xi).�is

term equals ifF does contain a model consistent with
{σi}.�en we take an average over all possible assign-
ments of σi, i.e., treating σi as a binary random variable
with P(σi =) = P(σi = −) = ., and calculating the
expectation of the best compatibility over {σi}:

Rn(F) = E
σ

⎡
⎢
⎢
⎢
⎣
sup
f ∈F

n

n

∑
i=

σif (xi)
⎤
⎥
⎥
⎥
⎦
.

Rademacher complexity o�en leads to tighter general-
ization bounds than VC dimension thanks to its depen-
dency on the observed data. Furthermore, we may take
expectation over the samples x, . . . , xn drawn indepen-
dently and identically from Px:

R(F) = E
xi∼Px

E
σ

⎡
⎢
⎢
⎢
⎣
sup
f ∈F

n

n

∑
i=

σif (xi)
⎤
⎥
⎥
⎥
⎦
.

�erefore, similar to VC dimension, the Rademacher
average is high if the model class F is “rich,” and can
match most assignments of {σi}.

Applications
In many applications such as bioinformatics, the train-
ing examples are expensive and the number of fea-
tures p is much higher than the number of labeled

Reinforcement Learning R

R

examples n. In such cases, regularization is crucial, (e.g.,
Zhang, Zhang, & Wells,).
L regularizationhas gainedmuchpopularity recently

in the �eld of compressed sensing, and it has been
widely used in imaging for radar, astronomy, medical
diagnosis, and geophysics. See an ensemble of publica-
tions at http://dsp.rice.edu/cs

�e main spirit of regularization, namely a pref-
erence for models with lower complexity, has been
used by some7model evaluation techniques. Examples
include Akaike information criterion (AIC), Bayesian
information criterion (BIC), 7minimum description
length (MDL), and the 7minimum message length
(MML).

Cross References
7Minimum Description Length
7Model Evaluation
7Occam’s Razor
7Over�tting
7Statistical Learning�eory
7Support Vector Machines
7VC Dimension

Recommended Reading
Regularization lies at the heart of statistical machine learning,
and it is indispensable in almost every learning algorithm. A
comprehensive statistical analysis from the computational learn-
ing theory perspective can be found in Bousquet, Boucheron, &
Lugosi () and Vapnik (). Abundant resources on com-
pressed sensing including both theory and applications are available
at http://dsp.rice.edu/cs. Regularizations related to SVMs and ker-
nel methods are discussed in detail by Schölkopf & Smola ()
and Shawe-Taylor & Cristianini (). Anthony & Bartlett ()
provide in-depth theoretical analysis for neural networks.
Anthony, M., & Bartlett, P. L. (). Neural network learning: The-

oretical foundations. Cambridge: Cambridge University Press.
Bousquet, O., Boucheron, S., & Lugosi, G. (). Theory of classi-

fication: A survey of recent advances. ESAIM: Probability and
Statistics, , –.

Candes, E., & Tao, T. (). Decoding by linear programming. IEEE
Transactions on Information Theory, (), –.

Devroye, L., Györ, L., & Lugosi, G. (). A probabilistic theory
of pattern recognition, vol. of applications of mathematics.
New York: Springer.

Guo, Y., Bartlett, P. L., Shawe-Taylor, J., & Williamson, R. C. ().
Covering numbers for support vector machines. In Proceedings
of the Annual Conference Computational Learning Theory.

Kivinen, J., & Warmuth, M. K. (). Exponentiated gradient ver-
sus gradient descent for linear predictors. Information and
Computation, (), –.

Rifkin, R. M., & Lippert, R. A. (). Value regularization and
Fenchel duality. Journal of Machine Learning Research, ,
–.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge:
MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pat-
tern analysis. Cambridge: Cambridge University Press.

Tibshirani, R. (). Regression shrinkage and selection via the
LASSO. Journal of the Royal Statistical Society. Series B. Statis-
tical Methodology, , –.

Tikhonov, A. N. (). On the stability of inverse problems.Doklady
Akademii nauk SSSR, (), –.

Tropp, J. A. (). Algorithms for simultaneous sparse approx-
imation, part ii: Convex relaxation. Signal Processing, (),
C–.

Vapnik, V. (). Statistical Learning Theory. Wiley: New York
Vapnik, V., & Chervonenkis, A. (). On the uniform convergence

of relative frequencies of events to their probabilities. Theory of
Probability and its Applications, (), –.

Zhang, M., Zhang, D., & Wells, M. T. (). Variable selection
for large p small n regression models with incomplete data:
Mapping QTL with epistases. BMC Bioinformatics, , .

Regularization Networks

7Radial Basis Function Networks

Reinforcement Learning

Peter Stone
�e University of Texas at Austin, Austin, TX, USA

Reinforcement learning describes a large class of learn-
ing problems characteristic of autonomous agents inter-
acting in an environment: sequential decision-making
problems with delayed reward. Reinforcement learn-
ing algorithms seek to learn a policy (mapping from
states to actions) that maximize the reward received
over time.
Unlike in 7supervised learning problems, in rein-

forcement-learning problems, there are no labeled
examples of correct and incorrect behavior. However,
unlike7unsupervised learning problems, a reward sig-
nal can be perceived.
Manydi�erent algorithms for solving reinforcement-

learning problems are covered in other entries. �is

 R Reinforcement Learning

entry provides just a brief high-level classi�cation of the
algorithms.
Perhaps the most well-known approach to solving

reinforcement-learning problems, as covered in detail
by Sutton and Barto (), is based on learning a value
function, which represents the long-term expected
reward of each state the agent may encounter, given
a particular policy. �is approach typically assumes
that the environment is a 7Markov decision process
in which rewards are discounted over time, though
it is also possible to optimize for average reward
per time step as in 7average-reward reinforcement
learning. If a complete model of the environment
is available, 7dynamic programming, or speci�cally
7value iteration, can be used to compute an opti-
mal value function, from which an optimal policy can
be derived.
If a model is not available, an optimal value func-

tion can be learned from experience via model-free
techniques such as 7temporal di�erence learning,
which combine elements of dynamic programming
with Monte Carlo estimation. Partly due to Watkins’
elegant proof that 7Q-learning converges to the opti-
mal value function (Watkins,), temporal di�erence
methods are currently among the most commonly used
approaches for reinforcement-learning problems.
Watkins’ convergence proof relies on executing

a policy that visits every state in�nitely o�en. In
practice, Q-learning does converge in small, discrete
domains. However in larger, and particularly in con-
tinuous domains, the learning algorithm must gener-
alize the value function across states, a process known
as 7value function approximation. Examples include
7instance-based reinforcement learning, 7Gaussian
process reinforcement learning, and 7relational rein-
forcement learning.
Even when combined with value function approxi-

mation, the most basic value-free methods, such as Q-
learning and SARSA are very ine�cient with respect to
experience: they are not sample-e�cient. With the view
that experience is o�en more costly than computation,
much research has been devoted to making more e�-
cient use of experience, for instance via 7hierarchical
reinforcement learning, 7reward shaping, or 7model-
based reinforcement learning inwhich the experience is
used to learn a domainmodel, which can then be solved
via dynamic programming.

�ough these methods make e�cient use of the
experience that is presented to them, the goal of opti-
mizing sample e�ciency also motivates the study of
7e�cient exploration in reinforcement learning. �e
study of exploration methods can be isolated from
the full reinforcement-learning problem by removing
the notion of temporally delayed reward as is done in
7associative reinforcement learning or by removing
the notion of states altogether as is done in 7k-armed
bandits. k-Armed bandit algorithms focus entirely on
the exploration versus exploitation challenge, without
having to worry about generalization across states or
delayed rewards. Back in the context of the full RL prob-
lem,7Bayesian reinforcement learning enables optimal
exploration given prior distributions over the param-
eters of the learning problem. However, its computa-
tional complexity has limited its use so far to very small
domains.
Althoughmost of themethods above revolve around

learning a value function, reinforcement-learning prob-
lems can also be solved without learning value func-
tions, by directly searching the space of potential
policies via policy search. E�ective ways of conduct-
ing such a search include 7policy gradient reinforce-
ment learning, 7least squares reinforcement learning
methods, and evolutionary reinforcement learning.
As typically formulated, the goal of a reinforcement-

learning algorithm is to learn an optimal (or high-
performing) policy based on knowledge of, or
experience of, a reward function (and state transition
function). However, it is also possible to take the
opposite perspective that of trying to learn the reward
function based on observation of the optimal policy.
�is problem formulation is known as 7inverse
reinforcement learning.
Leveraging this large body of theory and algorithms,

a current focus in the �eld is deploying large-scale,
successful applications of reinforcement learning. Two
such applications treated herein are7autonomous heli-
copter �ight using reinforcement learning and 7robot
learning.

Cross References
7Associative Reinforcement Learning
7Autonomous Helicopter Flight Using Reinforcement
Learning

Relational Learning R

R

7Average-Reward Reinforcement Learning
7Bayesian Reinforcement Learning
7Dynamic Programming
7E�cient Exploration in Reinforcement Learning
7Gaussian Process Reinforcement Learning
7Hierarchical Reinforcement Learning
7Instance-Based Reinforcement Learning
7Inverse Reinforcement Learning
7Least Squares Reinforcement Learning Methods
7Model-Based Reinforcement Learning
7Policy Gradient Methods
7Q-Learning
7Relational Reinforcement Learning
7Reward Shaping
7Symbolic Dynamic Programming
7Temporal Di�erence Learning
7Value Function Approximation

Recommended Reading
Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An

introduction. Cambridge, MA: MIT.
Watkins, C. J. C. H. (). Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, UK.

Reinforcement Learning in
Structured Domains

7Relational Reinforcement Learning

Relational

�e adjective relational can have two di�erent mean-
ings inmachine learning.�e ambiguity comes from an
ambiguity in database terminology.

7Relational Data Mining refers to relational
database, and is sometimes denoted multi-relational
data mining. Indeed a relational database typically
involves several relations (a relation is the formal name
of a table).�ose tables are o�en linked to each other,
but the “relational” adjective does not refer to those
relationships.

On the other hand, 7Relational Learning focuses
on those relationships and intends to learn whether a
relationship exists between some given entities.

Cross References
7Propositionalization
7Relational Data Mining
7Relational Learning

Relational Data Mining

7Inductive Logic Programming

Relational Dynamic Programming

7Symbolic Dynamic Programming

Relational Learning

Jan Struyf, Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee, Belgium

Problem Definition
Relational learning refers to learning in a context where
there may be relationships between learning examples,
or where these examples may have a complex internal
structure (i.e., consist ofmultiple components and there
may be relationships between these components). In
other words, the “relational” may refer to both an inter-
nal or external relational structure describing the exam-
ples. In fact, there is no essential di�erence between
these two cases, as it depends on the de�nition of an
example whether relations are internal or external to it.
Most methods, however, are clearly set in one of these
two contexts.

Learning from Examples with External Relationships

�is setting considers learning from a set of exam-
ples where each example itself has a relatively sim-
ple description, for instance in the attribute-value
format, and relationships may be present among these
examples.

 R Relational Learning

Example . Consider the task of web-page classi�cation.
Each web-page is described by a �xed set of attributes,
such as a bag of words representation of the page. Web-
pages may be related through hyperlinks, and the class
label of a given page typically depends on the labels of
the pages to which it links.

Example . Consider the Internet Movie Database
(www.imdb.com). Each movie is described by a �xed
set of attributes, such as its title and genre. Movies are
related to other entity types, such as Studio, Director,
Producer, and Actor, each of which is in turn described
by a di�erent set of attributes. Note that twomovies can
be related through the other entity types. For example,
they can be made by the same studio or star the same
well-known actor. �e learning task in this domain
could be, for instance, predicting the opening weekend
box o�ce receipts of the movies.

If relationships are present among examples, then
the examples may not be independent and identi-
cally distributed (i.i.d.), an assumption made by many
learning algorithms. Relational data that violates this
assumption can be detrimental to learning performance
as Jensen andNeville () show. Relationships among
examples can, on the other hand, also be exploited by
the learning algorithm. 7Collective classi�cation tech-
niques (Jensen, Neville, & Gallagher,), for exam-
ple, take the class labels of related examples into account
when classifying a new instance.

Learning from Examples with a Complex Internal

Structure

In this setting, each example may have a complex inter-
nal structure, but no relationships exist that relate dif-
ferent examples to one another. Learning algorithms
typically use individual-centered representations in this
setting, such as logical interpretations or strongly typed
terms (Lloyd,), which store together all data of a
given example. An important advantage of individual-
centered representations is that they scale better to large
datasets. Special cases of this setting include applica-
tions where the examples can be represented as graphs,
trees, or sequences.

Example . Consider a database of candidate chemical
compounds to be used in drugs.�e molecular struc-
ture of each compound can be represented as a graph
where the vertices are atoms and the edges are bonds.

Each atom is labeledwith its element type and the bonds
can be single, double, triple, or aromatic bonds. Com-
pounds are classi�ed as active or inactive with regard
to a given disease and the goal is to build models that
are able to distinguish active from inactive compounds
based on their molecular structure. Such models can,
for instance, be used to gain insight in the common
substructures, such as binding sites, that determine a
compound’s activity.

Approaches to Relational Learning
Many di�erent kinds of learning tasks have been
de�ned in relational learning, and an even larger num-
ber of approaches have been proposed for tackling these
tasks. We give an overview of di�erent learning settings
that can be considered instances of relational learning.

Inductive Logic Programming

In 7inductive logic programming (ILP), the input
and output knowledge of a learner are described in
(variants of) �rst-order predicate logic. Languages
based on �rst-order logic are highly expressive from
the point of view of knowledge representation, and
indeed, a language such as Prolog (Bratko,) can
be used without adaptations to represent objects and
the relationships between them, as well as background
knowledge that one may have about the domain.

Example . �is example is based on the work by
Finn, Muggleton, Page, and Srinivasan (). Con-
sider a data set that describes chemical compounds.�e
active compounds in the set are ACE inhibitors, which
are used in treatments for hypertension. �e molecu-
lar structure of the compounds is represented as a set of
Prolog facts, such as: atom(m, a, o).

atom(m, a, c).
. . .
bond(m, a, a,).
. . .
coord(m, a, ., −., .).
coord(m, a, ., −., .).
. . .

which states that molecule m includes an oxygen
atom a and a carbon atom a that are single bonded.
�e coord/ predicate lists the D coordinates of the

Relational Learning R

R

ca

ACE_inhibitor(A) :-

zincsite(A, B),

hacc(A, C),

dist(A, B, C, 7.9, 1.0),

hacc(A, D),

dist(A, B, D, 8.5, 1.0),

dist(A, C, D, 2.1, 1.0),

hacc(A, E),

dist(A, B, E, 4.9, 1.0),

dist(A, C, E, 3.1, 1.0),

dist(A, D, E, 3.8, 1.0).

b

Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 ± 1.0Å, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 ± 1.0Å, and
the distance between C and D is 2.1 ± 1.0Å, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 ± 1.0Å, and
the distance between C and E is 3.1 ± 1.0Å, and
the distance between D and E is 3.8 ± 1.0Å.

Relational Learning. Figure . (a) Prolog clause modeling the concept of an ACE inhibitor in terms of the background

knowledge predicates zincsite/, hacc/, and dist/. (b) The inductive logic programming system Progol automatically

translates (a) into the “Sternberg English” rule, which can be easily read by human experts. (c) A molecule with the

active site indicated by the atoms B, C, D, and E. (Image courtesy of Finn et al. ().)

atoms in the given conformer. Background knowl-
edge, such as the concepts zinc site, hydrogen donor,
and the distance between atoms, are de�ned by means
of Prolog clauses. Figure shows a clause learned
by the inductive logic programming system Progol
(Džeroski & Lavrač, , Ch.) that makes use of these
background knowledge predicates. �is clause is the
description of a pharmacophore, that is, a submolecular
structure that causes a certain observable property of a
molecule.
More details on the theory of inductive logic pro-

gramming and descriptions of algorithms can be found
in the entry on 7inductive logic programming in
this encyclopedia, or in references (De Raedt, ;
Džeroski & Lavrač,).

Learning from Graphs

A graph is a mathematical structure consisting of a set
of nodes V and a set of edges E ⊆ V between those
nodes. �e set of edges is by de�nition a binary rela-
tion de�ned over the nodes. Hence, for any learning

problem where the relationships between examples can
be described using a single binary relation, the training
set can be represented straightforwardly as a graph.�is
setting covers a wide range of relational learning tasks,
for example, webmining (the set of links between pages
is a binary relation), social network analysis, etc. Non-
binary relationships can be represented as hypergraphs;
in a hypergraph, edges are de�ned as subsets of V of
arbitrary size, rather than elements of V.
In graph-based learning systems, there is a clear

distinction between approaches that learn from exam-
ples with external relationships, where the whole data
set is represented as a single graph and each node is
an example, and individual-centered approaches, where
each example by itself is a graph. In the �rst kind of
approaches, the goal is o�en to predict properties of
existing nodes or edges, to predict the existence or
non-existence of edges (“7link discovery”), to predict
whether two nodes actually refer to the same object
(“node identi�cation”), detection of subgraphs that fre-
quently occur in the graph, etc. When learning from

 R Relational Learning

multiple graphs, a typical goal is to learn a model for
classifying the graphs, to �nd frequent substructures
(where frequency is de�ned as the number of graphs a
subgraphs occurs in), etc.
Compared to other methods for relational learning,

graph-basedmethods typically focusmore on the struc-
ture of the graph, and less on properties of single nodes.
�ey may take node and edge labels into account, but
typically do not allow for more elaborate information
to be associated with each node.

7Graph mining methods are o�en more e�cient
than other relational mining methods because they
avoid certain kinds of overhead, but are typically still
NP-complete, as they generally rely on subgraph iso-
morphism testing. Nevertheless, researchers have been
able to signi�cantly improve e�ciency or even avoid
NP-completeness by looking only for linear or tree-
shaped patterns, or by restricting the graphs analyzed
to a relatively broad subclass. As an example, Horváth
et al. () show that a large majority of molecules
belong to the class of outerplanar graphs, and propose
an e�cient algorithm for subgraph isomorphism testing
in this class.
More information about mining graph data can be

found in the7graphmining entry in this encyclopedia,
or in (Cook & Holder, ; Washio & Motoda,).

Multi-relational Data Mining

Multi-relational data mining approaches relational
learning from the relational database point of view.
�e term “multi-relational” refers to the fact that from
the database perspective, one learns from information
spread over multiple tables or relations, as opposed
to 7attribute-value learning, where one learns from a
single table.

Multi-relational data mining systems tightly inte-
grate with relational databases. Mainly rule and
decision tree learners have been developed in this set-
ting. Because practical relational databases may be
huge, most of these systems pay much attention to e�-
ciency and scalability, and use techniques such as sam-
pling and pre-computation (e.g., materializing views).
An example of a scalable and e�cient multi-relational
rule learning system is CrossMine (Yin, Han, Yang, &
Yu,).
An alternative approach to relational learning and

multi-relational data mining is 7propositionalization.
Propositionalization consists of automatically convert-
ing the relational representation into an attribute-
value representation and then using attribute-value
data mining algorithms on the resulting representation.
An important line of research within multi-relational
data mining investigates how database approaches can
be used to this end. Database oriented propositionaliza-
tion creates a view in which each example is represented
by precisely one row. Information from related enti-
ties is incorporated into this row by adding derived
attributes, computed by means of aggregation. In the
movie database (Example), the view representing
movies could include aggregated attributes such as the
number of actors starring in themovie. A comparison of
propositionalization approaches is presented by Krogel
et al. (), and a discussion of them is also included
in this volume.
Finally, note that most inductive logic program-

ming systems are directly applicable to multi-relational
data mining by representing each relational table as a
predicate. �is is possible because the relational rep-
resentation is essentially a subset of �rst-order logic
(known as datalog). Much research on multi-relational

Representation
generality

Graphs Relational
databases

Logic

Learning from graphs

Relational learning

Multi-relational
data mining

Inductive logic
programming

Statistical relational learning Probabilistic logic
learning

Relational reinforcement learning

Relational Learning R

R

data mining was developed within the ILP community
(Džeroski & Lavrač,).

Statistical Relational Learning/Probabilistic Logic

Learning

Research on relational learning, especially in the begin-
ning, has largely focused on how to handle the rela-
tional structure of the data, and ignored aspects such
as uncertainty. Indeed, the databases handled in multi-
relational data mining, or the knowledge assumed
given in inductive logic programming, are typically
assumed to be deterministic. With the rise of proba-
bilistic representations and algorithms within machine
learning has come an increased interest in enabling rela-
tional learners to cope with uncertainty in the input
data. �is goal has been approached from at least
two di�erent directions: statistical learning approaches
have been extended toward the relational setting, giv-
ing rise to the area of 7statistical relational learn-
ing, whereas inductive logic programming researchers
have investigated how to extend their knowledge rep-
resentation and learning algorithms to cater for prob-
abilistic information, referring to this research area as
7probabilistic logic learning. While there are some dif-
ferences in terminology and approaches, both research
areas essentially address the same research question,
namely how to integrate relational and probabilistic
learning.
Among the best known approaches for statisti-

cal relational learning is the learning of probabilis-
tic relational models (PRMs, Džeroski & Lavrač, ,
Chap.). PRMs extend Bayesian networks to the rela-
tional representationused in relational databases. PRMs
model the joint probability distribution over the non-
key attributes in a relational database schema. Similar
to Bayesian networks, PRMs are 7graphical models.
Each attribute corresponds to a node and direct depen-
dencies are modeled by directed edges. Such edges
can connect attributes from di�erent entity types that
are (indirectly) related (such a relationship is called a
“slot chain”). Inference in PRMs occurs by construct-
ing a 7Bayesian network by instantiating the PRM
with the data in the database and performing the infer-
ence in the latter. To handle :N relationships in the
Bayesian network, PRMsmake use of aggregation, sim-
ilar to the propositionalization techniques mentioned
above.

Bayesian logic programs (BLPs) (Kersting,)
aim at combining the inference power of Bayesian net-
works with that of �rst-order logic reasoning. Similar to
PRMs, the semantics of a BLP is de�ned by translating
it to a Bayesian network. Using this network, the prob-
ability of a given interpretation or the probability that a
given query yields a particular answer can be computed.

�e acyclicity requirement of Bayesian networks
carries over to representations such as PRMs and
BLPs. Markov logic networks (MLNs) (Richardson &
Domingos,) upgrade 7Markov networks to �rst-
order logic and allow networks with cycles. MLNs are
de�ned as sets of weighted �rst-order logic formulas.
�ese are viewed as “so�” constraints on logical inter-
pretations: the fewer formulas a given interpretation
violates, the higher its probability. �e weight deter-
mines the contribution of a given formula: the higher
its weight, the greater the di�erence in log probabil-
ity between an interpretation that satis�es the formula
and one that does not, other things being equal. �e
Alchemy system implements structure and parameter
learning for MLNs.
More speci�c statistical learning techniques such as

Naïve Bayes andHiddenMarkovModels have also been
upgraded to the relational setting. More information
about such algorithms and about statistical relational
learning in general can be found in (Getoor & Taskar,
; Kersting,).
In probabilistic logic learning, two types of seman-

tics are distinguished (De Raedt & Kersting,):
the model theoretic semantics and the proof theoretic
semantics. Approaches that are based on themodel the-
oretic semantics de�ne a probability distribution over
interpretations and extend probabilistic attribute-value
techniques, such as Bayesian networks and Markov
networks, while proof theoretic semantics approaches
de�ne a probability distribution over proofs and
upgrade, e.g., stochastic context free grammars.

Example . Consider the case where each example is a
sentence in natural language. In this example, a model
theoretic approach would de�ne a probability distribu-
tion directly over sentences. A proof theoretic approach
would de�ne a probability distribution over “proofs,” in
this case possible parse trees of the sentence (each sen-
tence may have several possible parses). Note that the
proof theoretic view is more general in the sense that

 R Relational Learning

the distribution over sentences can be computed from
the distribution over proofs.

Stochastic logic programs (SLPs) (Muggleton,)
follow most closely the proof theoretic view and
upgrade stochastic context free grammars to �rst-
order logic. SLPs are logic programs with probabilities
attached to the clauses such that the probabilities of
clauses with the same head sum to ..�e probability
of a proof is then computed as the product of the prob-
abilities of the clauses that are used in the proof. PRISM
(Sato &Kameya,) follows a related approach where
the probabilities are de�ned on ground facts.
Like with standard graphical models, learning algo-

rithms may include both parameter learning (estimat-
ing the probabilities) and structure learning (learning
the program). For most frameworks mentioned above,
such techniques have been or are being developed.
For amore detailed treatment of statistical relational

learning and probabilistic logic learning, we refer to the
entry on statistical relational learning in this volume,
and to several reference works (De Raedt & Kersting,
; Getoor & Taskar, ; Kersting, ; De Raedt,
Frasconi, Kersting, & Muggleton,).

Relational Reinforcement Learning

Relational reinforcement learning (RRL) (Džeroski, De
Raedt, &Driessens, ; Tadepalli, Givan, &Driessens,
) is reinforcement learning upgraded to the rela-
tional setting. Reinforcement learning is concerned
with how an agent should act in a given environment
to maximize its accumulated reward. In RRL, both the
state of the environment and the actions are represented
using a relational representation, typically in the formof
a logic program.
Much research in RRL focuses on Q-learning,

which represents the knowledge of the agent by
means of a Q-function mapping state–action pairs to
real values. During exploration, the agent selects in
each state the action that is ranked highest by the
Q-function. �e Q-function is typically represented
using a relational regression technique. Several tech-
niques, such as relational regression trees, relational
instance based learning, and relational kernel based
regression have been considered in this context. Note
that the regression algorithms must be able to learn
incrementally: each time the agent receives a new

reward, the Q-function must be incrementally updated
for the episode (sequence of state-action pairs) that led
to the reward. Due to the use of relational regression
techniques, the agent is able to generalize over states:
it will perform similar actions in similar states and
therefore scales better to large application domains.
More recent topics in RRL include how expert

knowledge can be provided to the agent in the form
of guidance, and how learned knowledge can be trans-
ferred to related domains (“transfer learning”). More
details on these techniques and more speci�c informa-
tion on the topic of relational reinforcement learning
can be found in its corresponding encyclopedia entry
and in the related entry on 7symbolic dynamic pro-
gramming, as well as in references (Džeroski et al., ;
Tadepalli et al.,).

Cross References
7Inductive Logic Programming
7Multi-Relational Data Mining
7Relational Reinforcement Learning

Recommended Reading
Most of the topics covered in this entry have more detailed entries in
this encyclopedia, namely “Inductive Logic Programming,” “Graph
Mining,” “Relational Data Mining,” and “Relational Reinforcement
Learning.” These entries provide a brief introduction to these more
specific topics and appropriate references for further reading.
Direct relevant references to the literature include the following.

A comprehensive introduction to ILP can be found in De Raedt’s
book (De Raedt,) on logical and relational learning, or in
the collection edited by Džeroski and Lavrač () on relational
data mining. Learning from graphs is covered by Cook and Holder
(). Džeroski and Lavrač () is also a good starting point for
reading about multi-relational data mining, together with research
papers on multi-relational data mining systems, for instance, Yin
et al. (), who present a detailed description of the CrossMine
system. Statistical relational learning in general is covered in the
collection edited by Getoor & Taskar (), while De Raedt &
Kersting () and De Raedt et al. () present overviews of
approaches originating in logic-based learning. An overview of
relational reinforcement learning can be found in Tadepalli et al.
().
Bratko, I. (). Prolog programming for artificial intelligence.

Reading, MA: Addison-Wesley (rd ed.).
Cook, D. J., & Holder, L. B. ().Mining graph data. Hoboken, NJ:

Wiley.
De Raedt, L. (). Logical and relational learning. Berlin: Springer.
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. ().

Probabilistic inductive logic programming. Berlin: Springer.
De Raedt, L., & Kersting, K. (). Probabilistic logic learning.

SIGKDD Explorations, (), –.

Relational Reinforcement Learning R

R

Džeroski, S., De Raedt, L., & Driessens, K. (). Relational rein-
forcement learning. Machine Learning, , –.

Džeroski, S., & Lavrač, N., (Eds.). (). Relational data mining.
Berlin: Springer.

Finn, P., Muggleton, S., Page, D., & Srinivasan, A. (). Phar-
macophore discovery using the inductive logic programming
system PROGOL. Machine Learning, , –.

Getoor, L., & Taskar, B. (). Introduction to statistical relational
learning. Cambridge: MIT Press.

Horváth, T., Ramon, J., & Wrobel, S. (). Frequent subgraph
mining in outerplanar graphs. In Proceedings of the th ACM
SIGKDD international conference on knowledge discovery and
data mining (pp. –). New York: ACM.

Jensen, D., & Neville, J. (). Linkage and autocorrelation cause
feature selection bias in relational learning. In Proceeding of the
th International Conference on Machine Learning, University
of New South Wales, Sydney (pp. –). San Francisco, CA:
Morgan Kaufmann.

Jensen, D., Neville, J., & Gallagher, B. (). Why collective infer-
ence improves relational classification. In Proceedings of the
th ACM SIGKDD international conference on knowledge dis-
covery and data mining, Philadelphia, PA (pp. –). New
York: ACM.

Kersting, K. (). An inductive logic programming approach to
statistical relational learning. Amsterdam: IOS Press.

Krogel, M.-A., Rawles, S., Železný, F., Flach, P., Lavrač, N., &
Wrobel, S. (). Comparative evaluation of approaches to
propositionalization. In Proceedings of the th international
conference on inductive logic programming, Szeged, Hungary
(pp. –). Berlin: Springer-Verlag.

Lloyd, J. W. (). Logic for learning. Berlin: Springer.
Muggleton, S. (). Stochastic logic programs. In L. De Raedt

(Ed.), Advances in inductive logic programming (pp. –).
Amsterdam: IOS Press.

Richardson, M., & Domingos, P. (). Markov logic networks.
Machine Learning, (–), –.

Sato, T., & Kameya, Y. (). PRISM: A symbolic-statistical mod-
eling language. In Proceedings of the th International joint
conference on artificial intelligence (IJCAI), Nagoya, Japan
(pp. –). San Francisco, CA: Morgan Kaufmann.

Tadepalli, P., Givan, R., & Driessens, K. (). Relational rein-
forcement learning: An overview. In Proceeding of the ICML’
Workshop on relational reinforcement learning, Banff, Canada
(pp. –).

Washio, T., & Motoda, H. (). State of the art of graph-based data
mining. SIGKDD Explorations, (), –.

Yin, X., Han, J., Yang, J., & Yu, P. S. (). Efficient classifica-
tion across multiple database relations: A CrossMine approach.
IEEE Transactions on Knowledge and Data Engineering, (),
–.

Relational Regression Tree

7First-Order Regression Tree

Relational Reinforcement Learning

Kurt Driessens
Universiteit Leuven, Celestijnenlaan, Belgium

Synonyms
Learning in worlds with objects; Reinforcement learn-
ing in structured domains

Definition
Relational reinforcement learning is concerned with
learning behavior or control policies based on a numer-
ical feedback signal, much like standard reinforce-
ment learning, in complex domains where states (and
actions) are largely characterized by the presence of
objects, their properties, and the existing relations
between those objects. Relational reinforcement learn-
ing uses approaches similar to those used for standard
reinforcement learning, but extends these with meth-
ods that can abstract over speci�c object identities and
exploit the structural information available in the envi-
ronment.

Motivation and Background
7Reinforcement learning is a very attractive machine
learning framework, as it tackles – in a sense – the
whole arti�cial intelligence problem at a small scale:
an agent acts in an unknown environment and has
to learn how to behave optimally by reinforcement,
i.e., through rewards and punishment. Reinforcement
learning has produced some impressive and promis-
ing results. However, the applicability of reinforcement
learning has been greatly limited by its problem of deal-
ing with large problem spaces and its inability to gener-
alize the learned knowledge to new but related problem
domains.
While standard reinforcement learning methods

represent the learning environment as a set of unre-
lated states or, when using7attribute-value representa-
tions, as a vector space consisting of a �xed number of
independent dimensions, humans tend to think about
their environment in terms of objects, their properties,
and the relations between them. Examples of objects in
everyday life are chairs, people, streets, trees, etc.�is
representation allows people to treat or use most of

 R Relational Reinforcement Learning

the new objects that they encounter correctly, without
requiring training time to learn how to use them. For
example, people are able to drink their co�ee from any
cup that will hold it, even if they have never encoun-
tered that speci�c cup before, because they already have
experience with drinking their co�ee from other cup-
type objects. Standard reinforcement learning agents do
not have this ability.�eir state and action representa-
tions do not allow them to abstract away from speci�c
object-identities and recognize them as a type of object
they are already accustomed to.
Relational reinforcement learning tries to overcome

this problem by representing states of the learning
agent’s environment as sets of objects, their prop-
erties, and the relationships between them, similar
to the approaches used in 7relational learning and
7inductive logic programming. �ese structural rep-
resentations make it possible for the relational rein-
forcement learning agent to abstract away from speci�c
identities of objects and o�en also from the amount of
objects present, the exact learning environment, or even
the speci�c task to be performed.

�e term “Relational reinforcement learning” was
introduced by Džeroski, De Raedt, and Blockeel ()
when they �rst teamed the Q-learning algorithm with
a �rst-order regression algorithm. Since then, rela-
tional reinforcement learning has gained an increasing
amount of interest.

Structure of the Learning System
In principle, the structure of a relational reinforcement
learning system is very similar to that of standard rein-
forcement learning systems Fig. . At a high level, the
learning agent interacts with an environment by per-
forming actions that in�uence that environment, and
the environment provides the learning agent with a
description of its current state and a numerical feed-
back of the behavior of the agent. �e goal of the
agent is to maximize some cumulative form of this
feedback signal.�e major di�erence between standard
reinforcement learning and relational reinforcement
learning is the representation of the state–action–space.
Relational reinforcement learning works on 7Markov
decision processes where states and actions have been
relationally factored, so-called relational Markov deci-
sion processes (RMDPs).

An RMDP can be de�ned as follows:

De�nition (Relational Markov Decision Process)
Let PS be a set of state related predicates, PA a set of action
related predicates and C a set of constants in a logic Λ. Let
B be a theory de�ned in that logic.
An RMDP
is de�ned as < S,A,T,R >, where S ≡ {s ⊂ HPS∪C∣s ⊧

B} represents the set of states, A ≡ {a ⊂ HPA∪C∣a ⊧ B}
represents the set of actions, in which HX is the set of
facts that can be constructed given the symbols in X,
and T and R represent the transition probabilities and
reward function respectively: T : S × A × S → [,] and
R : S→ R.

In less formal language, this means that the states
and actions in an RMDP are represented using a set of
constants C and a set of predicates PS and PA respec-
tively and constrained by a background theory B.�is
means that the background theory B de�nes which
states are possible in the domain and which actions can
be executed in which states.

�e following example illustrates these concepts.
Consider the blocks world depicted in Fig. . To
represent this environment in �rst-order logic, one
could use:

● State related predicates: PS = {on/, clear/}
● Action related predicate: PA = {move/}
● Constants: C = {,,,,�oor}

�e set of factsHPS∪C would then include, for example:
on(,), on(,�oor) and clear() but also on(,) and
on(�oor,). To constrain the possible states to those
that actually make sense in a standard, i.e., real-world
view of the blocks world, the theory B can include rules
to make states that include these kinds of facts impos-
sible. For example, to make sure that a block cannot be
on top of itself, B could include the following rule:

false← on(X,X).

Relational Reinforcement Learning. Figure . Example

state–action pairs in the Blocks World

Relational Reinforcement Learning R

R

One can also include more extensive rules to de�ne the
exact physics of the blocks world that one is interested
in. For example, including

false← on(Y ,X), on(Z,X),X ≠ �oor,Y ≠ Z

as part of the theoryB, one can exclude states where two
blocks are on top of the same block.�e action space
given by HPA∪C consists of facts such asmove(,) and
move(�oor,) and can be constrained by rules such as:

false← move(�oor,X).

whichmakes sure that the �oor cannot be placed on top
of a block.

�e le�most state–action pair of Fig. can be fully
speci�ed by the following set of facts (state description
on the le�, action on the right):

on(,�oor). clear().
on(,). clear().
on(,). clear(�oor).
on(,�oor).

One can easily generalize over speci�c states and
create abstract states (or state–action pairs) that rep-
resent sets of states (or state–action pairs) by using
variables instead of constants and by listing only those
parts of states and actions that hold for each element of
the abstract state (or state–action pair). For example, the
abstract state “on(,), on(,�oor)” represents all states
in which block is on top of block , which in turn is on
the �oor.�e abstract state does not specify the loca-
tions of any other blocks. Of the three states depicted
in Fig. , the set of states represented by the abstract
state would include the le� and middle states. Abstract
states can also be represented by using variables when
one does not want to specify the location of any spe-
ci�c block, but wants to focus on structural aspects of
the states and actions. �e abstract state–action pair
“move(X,Y), on(Y ,�oor)” represents all state–action
pairs where a block is moved on top of another block
that is on the �oor, for example the middle and right
state–action pairs of Fig. .

Added Benefits of Relational Reinforcement Learning

We already stated that the real world is made up out of
interacting objects, or at least that humans o�en think

about the real world as such. Relational reinforcement
learning allows this same representation to be used by
reinforcement learning agents, which in turn leads to
more human-interpretable learning results.
As a consequence of the used logical or relational

representation of states and actions, the results learned
by a relational reinforcement learning agent can be re-
used more easily when some of the parameters of the
learning task change. Because relational reinforcement
learning algorithms try to solve the problem at hand
at an abstract level, the solutions will o�en carry over
to di�erent instantiations of that abstract problem. For
example, the resulting policies learned by the RRL sys-
tem (Driessens,) discussed below, a very simple
example of which is shown in Fig. , o�en generalize
over domains with a varying number of objects. If only
actionswhich lead to the “optimal” leaf are executed, the
shown policy tree will organize any number of blocks
into a single stack.
As another example of this, the relational approxi-

mate policy iteration approach (Fern, Yoon, & Givan,
), also discussed below, is able to learn task speci�c
control knowledge from random walks in the environ-
ment. By treating the resulting state of such a random
walk as a goal state and generalizing over the speci�cs
of that goal (and the rest of the random walk) relational
approximate policy iteration can learn domain speci�c,
but goal independent policies.�is generalization of the
policy is accomplished by parametrization of the goal
and focusing on the relations between objects in the
goal, states and actions when representing the learned
policy.
Another practical bene�t of relational reinforce-

ment learning lies in the �eld of inductive transfer.
Transfer learning is concerned with the added ben-
e�ts of having experience with a related task when
being confronted with a new one. Because of the struc-
tural representation of learned results, the transfer of
knowledge learned by relational reinforcement learn-
ing agents can be accomplished by recycling those parts

Relational Reinforcement Learning. Figure . Simple

relational policy for stacking any number of blocks

 R Relational Reinforcement Learning

Reward

Environment

State

Action

examples

Relational
policy

Learning

Relational
learning
algorithm

Relational reinforcement
learning agent

Relational Reinforcement Learning. Figure . Structure

of the RRL system

of the results that still hold valid information for the
new task. Depending on the relation between the two
tasks, this can yield substantial bene�ts concerning the
required training experience.

�e use of �rst-order logic as a representational lan-
guage in relational reinforcement learning also allows
the integration of reasoning methods with traditional
reinforcement learning approaches. One example of
this is 7Symbolic Dynamic Programming, which uses
logical regression to compute necessary preconditions
that allow an agent to reach certain goals. �is same
integration allows the use of search or planning knowl-
edge as background information to extend the normal
description of states and actions.

Example Relational Reinforcement Learning

Approaches

Relational Q-Learning Relational reinforcement learn-
ing was introduced with the development of the RRL-
system (Džeroski et al.,). �is is a Q-learning
system that employs a relational regression algorithm
to generalize the Q-table used by standard Q-learning
algorithms into a Q-function. �e di�erences with a
standard Q-learning agent are mostly located inside
the learning agent. One important di�erence is the
agent’s representation of the current state. In rela-
tional reinforcement learning, this representation con-
tains structural or relational information about the
environment.
Inside the learning agent, the information consist-

ing of encountered states, chosen actions, and the con-
nected rewards is translated into learning examples.

�ese examples are then processed by a relational learn-
ing system that produces a relational Q-function and/or
policy as a result. �e relational representation of the
Q-function allows the RRL-system to use the struc-
tural properties of states and actions when assigning a
Q-value to them.
Several relational regression approaches have been

developed and applied in this context. While the orig-
inal approach used an of-the-shelve relational regres-
sion algorithm that processed the learning examples
in batch and had to be restarted to be able to pro-
cess newly available learning experiences, a number of
incremental algorithms have been developed for use
in relational reinforcement learning since then. �ese
include an incremental �rst-order regression tree algo-
rithm, incremental relational instance based regression,
kernel based regression that uses Gaussian processes,
and graph-kernels and algorithms that include combi-
nations of the above (Driessens,).
It is possible to translate the learned Q-function

approximations into a function that directly represents
its policy. Using the values predicted by the learned
Q-function, one can generate learning examples that
represent state–action pairs and label them as either
part of the learned policy or not. �is results in a
binary classi�cation problem that can be handled by
a supervised relational learning algorithms.�is tech-
nique is known as P-learning (Džeroski, De Raedt, &
Driessens,). It exhibits better generalization per-
formance across related learning problems than the
Q-learning approach described above. Other than the
�rst-order decision trees mentioned above, rule-based
learners have also been applied to this kind of policy
learning.

Non-parametric Policy Gradients Non-parametric pol-
icy gradients (Kersting & Driessens,), also a
model-free approach, apply Friedmann’s gradient boost-
ing (Friedman,) in an otherwise standard pol-
icy gradient approach for reinforcement learning. To
avoid having to represent policies using a �xed num-
ber of parameters, policies are represented as a weighted
sum of regression models grown in a stage-wise opti-
mization (�is allows the number of parameters to
grow as the experience of the learner increases, hence
the name non-parametric.). While this does not make

Relational Reinforcement Learning R

R

non-parametric policy gradients a technique specif-
ically designed for relational reinforcement learn-
ing, it allows, like the relational Q-learning approach
described above, the use of relational regression mod-
els and is not constrained to the attribute-value setting
of standard policy gradients.

�e idea behind the approach is that instead of �nd-
ing a single, highly accurate policy, it is easier to �nd
many rough rules of thumb of how to change the way
the agent currently acts. �e learned policy is repre-
sented as

π(s, a) =
eΨ(s,a)

∑b eΨ(s,b)
,

where instead of assuming a linear parameterization for
Ψ as is done in standard policy gradients, it is assumed
that Ψ will be represented by a linear combination of
functions. Speci�cally, one starts with some initial func-
tion Ψ, e.g., based on the zero potential, and iteratively
adds corrections Ψm = Ψ + ∆ + ⋯ + ∆m. In contrast
to the standard gradient approach, ∆m here denotes the
so-called functional gradient, which is sampled during
interaction with the environment and then generalized
by an o�-the-shelf regression algorithm.

�e advantages of policy gradients over value-
function techniques are that they can learn non-
deterministic policies and that convergence of the
learning process can be guaranteed, even when using
function approximation (Sutton, McAllester, Singh, &
Mansour,). Experimental results show that non-
parametric policy gradients have the potential to sig-
ni�cantly outperform relational Q-learning (Kersting &
Driessens,).

Relational Approximate Policy Iteration Adi�erent app-
roach, which also directly learns a policy, is taken
in relational approximate policy iteration (Fern et al.,
). Like standard policy iteration, the approach iter-
atively improves its policy through interleaving evalu-
ation and improvement steps. In contrast to standard
policy iteration, it uses a policy language bias and a
generalizing policy function.
Instead of building a value-function approximation

for each policy evaluation step, relational approximate
policy iteration evaluates the current policy and its
closely related neighbors by sampling the state–action–
space through a technique called policy roll-out. �is

technique generates a set of trajectories from a given
state, by executing every possible action in that state
and following the current policy for a number of steps
a�erward (It is also possible to improve convergence
speed by following the next policy.).�ese trajectories
and their associated costs result in number of learn-
ing examples – one for each possible action in each
selected state – that can be used, togetherwith the policy
language bias to generate the next, improved policy.
Because every possible action in each sampled state

needs to be evaluated, this approach does require a
model or a resettable simulator of the environment.
However, relational approximate policy iteration has
been shown to work well for learning domain speci�c
control knowledge and performs very well on planning
competition problems.

Symbolic Dynamic Programming In contrast to the pre-
vious techniques, 7symbolic dynamic programming
(SDP) does not learn a policy through exploration of the
environment. Instead, it is a model-based approach that
uses knowledge about preconditions and consequences
of actions to compute the fastest way to reach a given
goal. Like other dynamic programming techniques,
SDP starts from the goal the agent wants to reach and
reasons backwards to �nd the policy that is needed to
reach that goal. In contrast to other dynamic program-
ming techniques, it does not solve speci�c instantiations
of the problem domain, but instead solves the problem
at an abstract level, thereby solving it for all possible
instantiations of the problem at once.
SDP treats the required goal-conditions as an

abstract state de�nition. Because pre- and post-
conditions of actions are known, SDP can compute
the necessary conditions that allow actions to reach
the abstract goal state.�ese conditions de�ne abstract
states from which it is possible to reach a goal state in
one step. Starting from these abstract states, the same
approach can be used to discover abstract states that
allow the goal to be reached in two steps and so on.

�is approachwas �rst proposed byBoutilier, Reiter,
and Price (), implemented as a working system by
Kersting, van Otterlo, and De Raedt () and later
improved upon by Sanner andBoutilier ().�is last
approach won nd place in the probabilistic program-
ming competition at ICAPS in .

 R Relational Value Iteration

Cross References
7Hierarchical Reinforcement Learning
7Inductive Logic Programming
7Model-Based Reinforcement Learning
7Policy Iteration
7Q-learning
7Reinforcement Learning
7Relational Learning
7Symbolic Dynamic Programming
7Temporal Di�erence Learning

Further Information
�e �eld of relational reinforcement learning has given
rise to a number of PhD dissertations in the last few
years (Croonenborghs, ; Driessens, ; Sanner,
; van Otterlo,). �e dissertation of Mar-
tijn van Otterlo resulted in a book (van Otterlo,
) which provides a recent and reasonably com-
plete overview of the relational reinforcement learn-
ing research �eld. Other publications that presents an
overview of relational reinforcement learning research
include the proceedings of the two workshops on repre-
sentational issues in (relational) reinforcement learning
at the International Conferences of Machine Learning
in and (Driessens, Fern, & van Otterlo, ;
Tadepalli, Givan, & Driessens,).

Recommended Reading
Boutilier, C., Reiter, R., & Price, B. (). Symbolic dynamic pro-

gramming for first-order MDPs. In Proceedings of the th inter-
national joint conference on artificial intelligence (IJCAI-),
Seattle, WA (pp. –).

Croonenborghs, T. (). Model-assisted approaches for relational
reinforcement learning. PHD thesis, Department of Compute
Science, Katholieke Universiteit Leuven.

Driessens, K. (). Relational reinforcement learning. PhD the-
sis, Department of Computer Science, Katholieke Universiteit
Leuven.

Driessens, K., Fern, A., & van Otterlo, M. (Eds.). (). Proceedings
of ICML- workshop on rich representation for reinforcement
learning, Bonn, Germany.

Džeroski, S., De Raedt, L., & Blockeel, H. (). Relational rein-
forcement learning. In Proceedings of the th international
conference on machine learning (ICML-) (pp. –). San
Francisco, CA: Morgan Kaufmann. Madison, WI, USA.

Džeroski, S., De Raedt, L., & Driessens, K. (). Relational rein-
forcement learning. Machine Learning, , –.

Fern, A., Yoon, S., & Givan, R. (). Approximate policy iteration
with a policy language bias: Solving relational Markov decision
processes. Journal of Artificial Intelligence Research, , –.

Friedman, J. (). Greedy function approximation: A gradient
boosting machine. Annals of Statistics, , –.

Kersting, K., & Driessens, K. (). Non-parametric policy gra-
dients: A unified treatment of propositional and relational
domains. In A. McAllum & S. Roweis (Eds.), Proceedings of the
th international conference on machine learning (ICML),
Helsinki, Finland (pp. –).

Kersting, K., van Otterlo, M., & De Raedt, L. (). Bellman
goes relational. In Proceedings of the twenty-first international
conference on machine learning (ICML-), Banff, Canada
(pp. –).

Sanner, S. (). First-order decision-theoretic planning in struc-
tured relational environments. PhD thesis, Department of Com-
pute Science, University of Toronto.

Sanner, S., & Boutilier, C. (). Approximate linear programming
for first-order MDPs. In Proceedings of the st conference on
Uncertainty in AI (UAI), Edinburgh, Scotland.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (). Pol-
icy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing
systems (pp. –). Cambridge: MIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (Eds.). (). Proceedings
of the ICML- workshop on relational reinforcement learning,
Banff, Canada.

van Otterlo, M. (). The logic of adaptive learning. PhD thesis,
Centre for Telematics and Information Technology, University
of Twente.

van Otterlo, M. (). The logic of adaptive behavior: Knowledge
representation and algorithms for adaptive sequential deci-
sion making under uncertainty in first-order and relational
domains. Amsterdam, The Netherlands: IOS Press.

Relational Value Iteration

7Symbolic Dynamic Programming

Relationship Extraction

7Link Prediction

Relevance Feedback

Relevance feedback provides a measure of the extent
to which the results of a search match the expectations
of the user who initiated the query. Explicit feedback
require users to assess relevance by choosing one out of
a number of choices, or to rank documents to re�ect
their perceived degree of relevance. Implicit feedback
is obtained by monitoring user’s behavior such as time
spent browsing a document, amount of scrolling per-
formed while browsing a document, number of times

Reward Shaping R

R

a document is visited, etc. Relevance feedback is one
the techniques used to support query reformulation and
turn the search into an iterative and interactive process.

Cross References
7Search Engines: Applications of ML

Representation Language

7Hypothesis Language

Reservoir Computing

RistoMiikkulainen
�e University of Texas at Austin, Austin, TX, USA

Synonyms
Echo state network; Liquid state machine

Definition
Reservoir computing is an approach to sequential pro-
cessing where recurrency is separated from the out-
put mapping (Jaeger, ; Maass, Natschlaeger, &
Markram,).�e input sequence activates neurons
in a recurrent neural network (a reservoir, where activ-
ity propagates as in a liquid).�e recurrent network is
large, nonlinear, randomly connected, and �xed. A lin-
ear output network receives activation from the recur-
rent network and generates the output of the entire
machine. �e idea is that if the recurrent network is
large and complex enough, the desired outputs can
likely be learned as linear transformations of its acti-
vation. Moreover, because the output transformation
is linear, it is fast to train. Reservoir computing has
been successful in particular in speech and language
processing and vision and cognitive neuroscience.

Recommended Reading
Jaeger, H. (). Adaptive nonlinear system identification

with echo state networks. In S. Becker, S. Thrun, & K.
Obermayer (Eds.), Advances in neural information pro-
cessing systems (Vol. , pp. –). Cambridge, MA:
MIT Press.

Maass, W., Natschlaeger, T., & Markram, H. (). Real-time
computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation, ,
–.

Resolution

7First-Order Logic

Resubstitution Estimate

Resubstitution estimates are estimates that are derived by
applying a 7model to the 7training data from which
it was learned. For example, resubstitution error is the
error of a model on the training data.

Cross References
7Model Evaluation

Reward

In most Markov decision process applications, the
decision-maker receives a reward each period. �is
reward can depend on the current state, the action
taken, and the next state and is denoted by rt(s, a, s′).

Reward Selection

7Reward Shaping

Reward Shaping

EricWiewiora
University of California, San Diego

Synonyms
Heuristic rewards; Reward selection

Definition
Reward shaping is a technique inspired by animal train-
ing where supplemental rewards are provided tomake a
problem easier to learn.�ere is usually an obvious nat-
ural reward for any problem. For games, this is usually a
win or loss. For �nancial problems, the reward is usually
pro�t. Reward shaping augments the natural reward sig-
nal by adding additional rewards for making progress
toward a good solution.

 R Reward Shaping

Motivation and Background
Reward shaping is a method for engineering a reward
function in order to provide more frequent feedback
on appropriate behaviors. It is most o�en discussed
in the 7reinforcement learning framework. Providing
feedback is crucial during early learning so that promis-
ing behaviors are tried early.�is is necessary in large
domains, where reinforcement signals may be few and
far between.
A good example of such a problem is chess. �e

objective of chess is to win a match, and an appropriate
reinforcement signal should be based on this. If an agent
were to learn chess without prior knowledge, it would
have to search for a great deal of time before stumbling
onto a winning strategy. We can speed up this process
by rewarding the agent more frequently. One possibility
is to reward the learner for capturing enemy pieces, and
punish the learner for losing pieces. �is new reward
creates a much richer learning environment, but also
runs the risk of distracting the agent from the true goal
(winning the game).
Another domain where feedback is extremely

important is in robotics and other real-world applica-
tions. In the real world, learning requires a large amount
of interaction time, andmay be quite expensive.Mataric
noted that in order to mitigate “thrashing” (repeatedly
trying ine�ective actions) rewards should be supplied as
o�en as possible (Mataric,).
If a problem is inherently described by sparse

rewards, it may be di�cult to change the reward struc-
ture without disrupting progress to the original goal.
�e behavior that is optimal with a richer reward func-
tion may be quite di�erent from the intended behavior,
even if relatively small shaping rewards are added. A
classic example of this is found in Randlov and Alsrom
(). While training an agent to control a bicycle sim-
ulation, they rewarded an agent whenever it moved
toward a target destination. In response to this reward,
the agent learned to ride in a tight circle, receiving
reward whenever it moved in the direction of the goal.

Theory
We assume a reinforcement learning framework. For
every time step t, the learner observes state st , takes
action at , and receives reward rt .�e goal of reinforce-
ment learning is to �nd a policy π(s) that produces

actions that optimize some long-term measurement of
reward. We de�ne the value function for every state as
the expected in�nite horizon discounted reward

V(s) = max
π
E [

∞
∑
t=

γtrt ∣s = s, at = π(st)] ,

where γ is the discount rate. A reinforcement learner’s
goal is to learn a good estimate of V(s), and to use this
estimate to choose a good policy.
A natural reward source should be fairly obvi-

ous from the problem at hand. Financial problems
should use net monetary gain or loss as reward. Games
and goal-directed problems should reward winning the
game or reaching the goal. It is usually advantageous
to augment this natural reward with a shaping reward
ft . We de�ne the augmented value function V ′ for the
reinforcement learning problem with shaping rewards

V ′(s) = max
π′
E [

∞
∑
t=

γt(rt + ft)∣s = s, at = π′(st)] .

Ideally, the policy that optimizes the augmented value
function will di�er much from the previous optimal
policy.
Constructing an appropriate shaping reward sys-

tem is inherently a problem-dependent task, though
a line of research aids in the implementation of these
reward signals. Potential-based shaping provides a for-
mal framework for translating imperfect knowledge of
the relative value of states and actions into a shaping
reward.

Potential-Based Shaping
Ng et al. proposed amethod for adding shaping rewards
in a way that guarantees the optimal policymaintains its
optimality (Ng, Harada, & Russell,). �ey de�ne
a potential function Φ() over the states. �e shaping
reward f for transitioning from state s to s′ is de�ned
as the discounted change in this state potential:

f (s, s′) = γΦ(s′) −Φ(s).

�is potential-based shaping reward is added to the nat-
ural reward for every state transition the learner expe-
riences. Call the augmented reward r′t = rt + f (st , st+),
and the value function based on this reward V ′(s).�e
potential-based shaping concept can also be applied to

Robot Learning R

R

actions as well as states. SeeWiewiora, Cottrell, & Elkan
() for details.
It can be shown that the augmented value function

is closely related to the original:

V ′(s) = V(s) −Φ(s).

An obvious choice for the potential function is Φ(s) ≈
V(s), making V ′() close to zero. �is intuition is
strengthened by results presented by Wiewiora ().
�is paper shows that for most reinforcement learning
systems, the potential function acts as an initial estimate
of the natural value function V().
However,evenif thepotential functionusedforshap-

ing is very close to the true natural value function, learn-
ing may still be di�cult. Koenig et al. have shown that
initial estimates of the value function have a large in�u-
ence on the e�ciencyof reinforcement learning (Koenig
& Simmons,). With an initial estimate of the value
function set below the optimal value, many reinforce-
ment learning algorithms could require learning time
exponential in the state and action space in order to �nd
a highly rewarding state. On the other hand, in non-
random environments, an optimistic initialization the
value function creates learning time that is polynomial
in the state-action space before a goal is found.

Cross References
7Reinforcement Learning

Recommended Reading
Koenig, S., & Simmons, R. G. (). The effect of representation and

knowledge on goal directed exploration with reinforcement-
learning algorithms. Machine Learning, (–), –.

Mataric, M. J. (). Reward functions for accelerated learning. In
International conference on machine learning, New Brunswick,
NJ (pp. –). San Francisco, CA: Morgan Kaufmann.

Ng, A. Y., Harada, D., & Russell, S. (). Policy invariance under
reward transformations: Theory and application to reward
shaping. In Machine learning, proceedings of the sixteenth inter-
national conference, Bled, Slovenia (pp. –). San Fran-
cisco, CA: Morgan Kaufmann.

Randlov, J., & Alstrom, P. (). Learning to drive a bicycle using
reinforcement learning and shaping. In Proceedings of the fif-
teenth international conference on machine learning, Madison,
WI. San Francisco, CA: Morgan Kaufmann.

Wiewiora, E., Cottrell, G., & Elkan, C. (). Principled meth-
ods for advising reinforcement learning agents. In Machine
learning, proceedings of the twentieth international conference,
Washington, DC (pp. –). Menlo Park, CA: AAAI Press.

Wiewiora, E. (). Potential-based shaping and Q-value initializa-
tion are equivalent. Journal of Artificial Intelligence Research, ,
–.

RIPPER

7Rule Learning

Robot Learning

Jan Peters, Russ Tedrake, Nicholas Roy,
JunMorimoto
Max Planck Institute for Biological Cybernetics,
Germany
Massachusetts Institute of Technology, Cambridge,
MA, USA
Advanced Telecommunication Research Institute
International ATR, Kyoto, Japan

Definition
Robot learning consists of amultitude ofmachine learn-
ing approaches, particularly 7reinforcement learn-
ing, 7inverse reinforcement learning and 7regression
methods.�ese methods have been adapted su�ciently
to domain to achieve real-time learning in complex
robot systems such as helicopters, �apping-wing �ight,
legged robots, anthropomorphic arms, and humanoid
robots.

Robot Skill Learning Problems
In classical arti�cial intelligence-based robotics app-
roaches, scientists attempted to manually generate a set
of rules and models that allows the robot systems to
sense and act in the real world. In contrast, 7robot
learning has become an interesting problem in robotics
as () it may be prohibitively hard to program a robot for
many tasks, () not all situations, as well as goals,may be
foreseeable, and () real-world environments are o�en
nonstationary (Connell and Mahadevan,). Hence,
future robots need to be able to adapt to the real world.
In comparison to many other machine learning

domains, robot learning su�ers from a variety of com-
plex real-world problems.�e real-world training time
is limited and, hence, only a few complete execu-
tions of a task can ever be generated. �ese episodes

 R Robot Learning

are frequently perceived noisily, have a large variabil-
ity in the executed actions, do not cover all possible
scenarios, and o�en do not include all reactions to
external stimuli. At the same time, high-dimensional
data is obtained at a fast rate (e.g., proprioceptive
information at Hz to kHz, vision at –Hz).
Hence, domain-appropriate machine learning methods
are o�en needed in this domain.
A straightforward way to categorize robot learning

approaches is given by the type of feedback (Connell
andMahadevan,). A scalar performance score such
as a reward or cost will o�en result in a7reinforcement
learning approach. A presented desired action or pre-
dicted behavior allows supervised learning approaches
such as model learning or direct imitation learning.
Feedback in terms of an explanation has become most
prominent in apprenticeship learning. �ese methods
will be explained inmore detail in the next section. Note
that unsupervised learning problems, where no feed-
back is required can also be found in robotics, see Ham
et al. () and Jenkins et al. () but only for special
topics.
Note that this overview on7robot learning focuses

on general problems that need to be addressed to teach
robots new skills or tasks. Hence, several important spe-
ci�c robotics problems in specialized domains such as
7simultaneous localization and map building (SLAM)
for mobile robots (�run et al.,) and unsupervised
sensor fusion approaches for robot perception (Apol-
loni et al., ; Jenkins et al.,) are considered
beyond the scope of this article.

Robot Learning Systems
As learning has found many applications in robotics,
this article can only scratch the surface. It focuses on
the key problem of teaching a robot new abilities with
methods such as () Model Learning, () Imitation
and Apprenticeship Learning, and () Reinforcement
Learning.

Model Learning

Model learning is the machine learning counterpart to
classical system identi�cation (Farrell and Polycarpou,
; Schaal et al.,). However, while the classi-
cal approaches heavily rely on the structure of physi-
cally based models, speci�cation of the relevant state
variables and hand-tuned approximations of unknown

nonlinearities, model learning approaches avoid many
of these labor-intensive steps and the entire process to
bemore easily automated.Machine learning and system
identi�cation approaches o�en assume an observable
state of the system to estimate the mapping from inputs
to outputs of the system. However, a learning system is
o�en able to learn this mapping including the statistics
needed to cope with unidenti�ed state variables and can
hence cope with a larger class of systems. Two types of
models are commonly learned, i.e., forwardmodels and
inverse models.
Forward models predict the behavior of the system

based either on the current state or a history of pre-
ceeding observations.�ey can be viewed as “learned
simulators” that may be used for optimizing a policy
or for predicting future information. Examples of the
application of such learned simulators range from the
early work in the late s by Atkeson and Schaal
in robot arm-based cartpole swing-ups to Ng’s recent
extensions for stabilizing an inverted helicopter. Most
forward models can directly be learned by regression.
Conversely, inverse models attempt to predict the

input to a system in order to achieve a desired output
in the next step, i.e., it uses the model of the system
to directly generate control signals. In traditional con-
trol, these are o�en called approximation-based control
systems (Farrell and Polycarpou,). Inverse model
learning can be solved straightforwardly by regression
if the system dynamics are uniquely invertible, e.g., as in
inverse dynamics learning for a fully actuated system.
However, for underactuated or redundantly actuated
systems, operational space control, etc., such a unique
inverses do not exist and additional optimization is
needed.

Imitation and Apprenticeship Learning

A key problem in robotics is to ease the problem of
programming a complex behavior. Traditional robot
programming approaches rely on accurate, manual
modeling of the task and removal of all uncertainities,
so that they work well. In contrast to classical robot pro-
gramming, learning from demonstration approaches
aim at recovering the instructions directly from a
human demonstration. Numerous unsolved problems
exist in this context such as discovering the intent of
the teacher or determing themapping from the teacher’s
kinematics to the robot’s kinematics (o�en called the

Robot Learning R

R

correspondence problem). Twodi�erent approaches are
common in this area: direct imitation learning and
apprenticeship learning.
In imitation learning (Schaal et al.,), also

known as 7behavioral cloning, the robot system
directly estimates a policy from a teacher’s presenta-
tion, and, subsequently, the robot system reproduces the
task using this policy. A key advantage of this approach
is that it can o�en learn a task successfully from few
demonstrations. In areas where human demonstrations
are straightforward to obtain, e.g., for learning racket
sports, manipulation, drumming on anthropomorphic
systems, direct imitation learning o�en proved to be an
appropriate approach. Its major shortcomings are that
it cannot explain why the derived policy is a good one,
and it may struggle with learning from noisy demon-
strations.
Hence, apprenticeship learning (Coates et al.,)

has been proposed as an alternative, where a reward
function is used as an explanation of the teacher’s
behavior. Here, the reward function is chosen under
which the teacher appears to act optimally, and the
optimal policy for this reward function is subsequently
computed as a solution.�is approach transforms the
problem of learning from demonstrations onto the
harder problem of approximate optimal control or rein-
forcement learning, hence it is also known as inverse
optimal control or7inverse reinforcement learning. As
a result, it is limited to problems that can be solved
by current reinforcement learning methods. Addition-
ally, it o�en has a hard time dealing with tasks, where
only fewdemonstrationswith low variance exist.Hence,
inverse reinforcement learning has been particularly
successful in areas where it is hard for a human to
demonstrate the desired behavior such as for helicopter
acrobatics or in robot locomotion.
Further information on learning by demonstration

may be found in Coates et al. () and Schaal et al.
().

Robot Reinforcement Learning

�e ability to self-improve with respect to an arbitrary
reward function, i.e.,7reinforcement learning, is essen-
tial for robot systems to become more autonomous.
Here, the system learns about its policy by interacting
with its environment and receiving scores (i.e., rewards

or costs) for the quality of its performance. Few o�-
the-shelf reinforcement learning methods scale into the
domain of robotics both in terms of dimensionality
and the number of trials needed to obtain an inter-
esting behavior. �ree di�erent but overlapping styles
of reinforcement learning can be found in robotics:
model-based reinforcement learning, model-free
7value function approximation methods, and direct
policy search (see7Markov Decision Process).
Model-based reinforcement learning relies upon a

learned forward model used for simulation-based opti-
mization as discussed before. While o�en highly e�-
cient, it frequently su�ers from the fact that learned
models are imperfect and, hence, the optimization
method can be guaranteed to be biased by the errors
in the model. A full Bayesian treatment of model
uncertainty appears to be a promising way for alle-
viating this shortcoming of this otherwise powerful
approach.
Value function approximation methods have been

the core approach used in reinforcement learning dur-
ing the s.�ese techniques rely upon approximat-
ing the expected rewards for every possible action in
every visited state. Subsequently, the controller chooses
the actions in accordance to this value. Such approxima-
tion requires a globally consistent value function, where
the quality of the policy is determined by the largest
error of the value function at any possible state. As a
result, thesemethods have been problematic for anthro-
pomorphic robotics as the high-dimensional domains
o�en defy learning such a global construct. How-
ever, it has been highly sucessful in low-dimensional
domains such as mobile vehicle control and robot soc-
cer with wheeled robots as well as on well-understood
test domains such as cart-pole systems.
Unlike the previous two approaches, policy search

attempts to directly learn the optimal policy from expe-
rience without solving intermediary learning problems.
Policies o�en have signi�cantly fewer parameters than
models or value functions. For example, for the con-
trol of a prismatic robot optimally with respect to
a quadratic reward function, the number of policy
parameters grows linearly in the number of state dimen-
sions, while it grows quadratically in the size of the
model and value function (this part is well-known as
this problem is analytically tractable). In general cases,
the number of parameters of value functions does o�en

 R Robot Learning

even grow exponentially in the number of states (which
is known as the “Curse ofDimensionality”).�is insight
has given rise to policy search methods, particularly,
7policy gradientmethods and probabilistic approaches
to policy search such as the reward-weighted regres-
sion or PoWER (Kober and Peters,). To date,
application results of direct policy search approaches
range from gait optimization in locomotion (Tedrake
et al.,) to various motor learning examples
(e.g., Ball-in-a-Cup, T-Ball, or throwing darts, see e.g.,
Kober and Peters,).
Further information on reinforcement learning for

robotics may be found in Connell and Mahadevan
(), Kober and Peters (), Riedmiller et al.
(), and Tedrake et al. ().

Application Domains
�e possible application domains for robot learning
have not been fully explored; one could even aggres-
sively state that a huge number of challenges remain
to be fully addressed in order to solve the problem of
robot learning. Nevertheless, robot learning has been
successful in several application domains.
For accurate execution of desired trajectories,

model learning has been scaled to learning the
full inverse dynamics of a humanoid robot in real
time more accurately than achievable with physical
models (Schaal et al.,). Current work focuses
mainly on improving the concurrent execution of
tasks as well as control of redundant or underactuated
systems.
Various approaches have been successful in task

learning. Learning by demonstration approaches are
moving increasingly toward industrial grade solutions,
where fast training of complex tasks becomes possible.
Skills ranging from motor toys, e.g., basic movements,
paddling a ball, to complex tasks such as cooking a
complete meal, basic table tennis strokes, helicopter
acrobatics, or footplacement in locomotion have been
learned from human teachers. Reinforcement learning
has yielded better gaits in locomotion, jumping behav-
iors for legged robots, perching with �xed wing �ight
robots, forehands in table tennis as well as various appli-
cations of learning to control motor toys used for the
motor development of children.

Cross References
7Behavioral Cloning
7Inverse Reinforcement Learning
7Policy Search
7Reinforcement Learning
7Value Function Approximation

Recommended Reading
Recently, several special issues (Morimoto et al., ; Peters and
Ng,) and books (Sigaud,) have covered the domain
of robot learning. The classical book (Connell and Mahadevan,
) is interesting nearly years after its publication. Additional
special topics are treated in Apolloni et al. () and Thrun et al.
().

Apolloni, B., Ghosh, A., Alpaslan, F. N., Jain, L. C., & Patnaik,
S. (). Machine learning and robot perception. Studies in
computational intelligence (Vol.). Berlin: Springer.

Coates, A., Abbeel, P., & Ng, A. Y. (). Apprenticeship learn-
ing for helicopter control. Communications of the ACM, (),
–.

Connell, J. H., & Mahadevan, S. (). Robot learning. Dordrecht:
Kluwer Academic.

Farrell, J. A., & Polycarpou, M. M. (). Adaptive approxima-
tion based control. Adaptive and learning systems for signal
processing, communications and control series. Hoboken: John
Wiley.

Ham, J., Lin, Y., & Lee, D. D. (). Learning nonlinear
appearance manifolds for robot localization. In Interna-
tional conference on intelligent robots and Systems, Takamatsu,
Japan.

Jenkins, O., Bodenheimer, R., & Peters, R. (). Manipulation
manifolds: Explorations into uncovering manifolds in sensory-
motor spaces (pages). In International conference on develop-
ment and learning, Bloomington, IN

Kober, J., & Peters, J. (). Policy search for motor primitives in
robotics. In Advances in neural information processing systems
. Cambridge: MIT Press.

Morimoto, J., Toussaint, M., & Jenkins, C. (). Special issue
on robot learning in practice. IEEE Robotics and Automation
Magazine, (), –.

Peters, J., & Ng, A. (). Special issue on robot learning.
Autonomous Robots, (–):–.

Peters, J., & Schaal, S. (). Reinforcement learning of
motor skills with policy gradients. Neural Networks, ():
–.

Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (July).
Reinforcement learning for robot soccer. Autonomous Robots,
():–.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. Scalable techniques
from nonparameteric statistics for real-time robot learning.
Applied Intelligence, ():–.

Schaal, S., Ijspeert, A., & Billard, A. (). Computational
approaches to motor learning by imitation. Philosophical Trans-
action of the Royal Society of London: Series B, Biological Sci-
ences, ():–.

ROC Analysis R

R

Sigaud, O., & Peters, J. (). From motor learning to interaction
learning in robots. Studies in computational intelligence (Vol.
). Heidelberg: Springer.

Tedrake, R., Zhang, T. W., & Seung, H. S. (). Stochastic pol-
icy gradient reinforcement learning on a simple d biped.
In Proceedings of the IEEE international conference on intelli-
gent robots and systems (pp. –). IROS , Sendai,
Japan.

Thrun, S., Burgard, W., & Fox, D. (). Probabilistic robotics.
Cambridge: MIT Press.

ROC Analysis

Peter A. Flach
University of Bristol
Bristol, UK

Synonyms
Receiver operating characteristic analysis

Definition
ROC analysis investigates and employs the relation-
ship between 7sensitivity and 7speci�city of a binary
classi�er. Sensitivity or 7true positive rate measures
the proportion of positives correctly classi�ed; speci-
�city or7true negative ratemeasures the proportion of
negatives correctly classi�ed. Conventionally, the true
positive rate (tpr) is plotted against the 7false posi-
tive rate (fpr), which is one minus true negative rate.
If a classi�er outputs a score proportional to its belief
that an instance belongs to the positive class, decreas-
ing the 7decision threshold – above which an instance
is deemed to belong to the positive class – will increase
both true and false positive rates. Varying the decision
threshold from its maximal to its minimal value results
in a piecewise linear curve from (,) to (,), such that
each segment has a nonnegative slope (Fig.).�is ROC
curve is the main tool used in ROC analysis. It can be
used to address a range of problems, including: () deter-
mining a decision threshold that minimizes7error rate
or misclassi�cation cost under given class and cost dis-
tributions; () identifying regions where one classi�er
outperforms another; () identifying regions where a
classi�er performsworse than chance; and () obtaining
calibrated estimates of the class posterior.

Motivation and Background
ROC analysis has its origins in signal detection theory
(Egan,). In its simplest form, a detection problem
involves determining the value of a binary signal con-
taminated with random noise. In the absence of any
other information, the most sensible decision thresh-
old would be halfway between the two signal values.
If the noise distribution is zero-centered and symmet-
ric, sensitivity and speci�city at this threshold have the
same expected value, whichmeans that the correspond-
ing operating point on the ROC curve is located at the
intersection with the descending diagonal tpr + fpr = .
However, we may wish to choose di�erent operating
points, for instance because false negatives and false
positives have di�erent costs. In that case, we need to
estimate the noise distribution.
A slight reformulation of the signal detection sce-

nario clari�es its relevance in a machine learning set-
ting. Instead of superimposing random noise on a
deterministic signal, we can view the resulting noisy
signal as coming from a 7mixture distribution con-
sisting of two component distributions with di�erent
means.�e detection problem is now to decide, given
a received value, from which component distribution it
was drawn.�is is essentially what happens in a binary
7classi�cation scenario, where the scores assigned by
a trained classi�er follow a mixture distribution with
one component for each class.�e random variations
in the data are translated by the classi�er into random
variations in the scores, and the classi�er’s performance
depends on how well the per-class score distributions
are separated. Figure illustrates this for both dis-
crete and continuous distributions. In practice, empir-
ical ROC curves and distributions obtained from a
test set are discrete because of the �nite resolution
supplied by the test set. �is resolution is further
reduced if the classi�er only assigns a limited number
of di�erent scores, as is the case with 7decision trees;
the histogram example illustrates this.

Solutions
For convenience we will assume henceforth that score
distributions are discrete, and that decision thresholds
always fall between actual scores (the results easily gen-
eralize to continuous distributions using probability

 R ROC Analysis

Class Score
+ 0.98
+ 0.93
+ 0.87
+ 0.84
– 0.79
+ 0.73
+ 0.67
– 0.62
+ 0.57
– 0.54
– 0.48
+ 0.43
– 0.37
+ 0.34
– 0.28
– 0.24
+ 0.18
– 0.12
– 0.09
– 0.03

ROC Analysis. Figure . The table on the left gives the scores assigned by a classifier to ten positive and ten negative

examples. Each threshold on the classifier’s score results in particular true and false positive rates: e.g., thresholding the

score at . results in three misclassified positives (tpr = .) and three misclassified negatives (fpr = .); thresholding

at . yields tpr = . and fpr = .. Considering all possible thresholds gives the ROC curve on the right; this curve

can also be constructed without explicit reference to scores, by going down the examples sorted on decreasing score

and making a step up (to the right) if the example is positive (negative)

4 3 2 1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Score

R
el

at
iv

e
F

re
qu

en
cy

,
P

ro
ba

bi
lit

y
D

en
si

ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate

T
P

 r
at

e

Raw scores ROC curve

Histogram ROC curve
Theoretical ROC curve

ROC Analysis. Figure . (left) Artificial classifier “scores”for two classes were obtained by sampling points each from

two 7Gaussian distributions with mean and , and unit variance. The figure shows the raw scores on the x-axis and

normalized histograms obtained by uniform five-bin discretization. (right) The jagged ROC curve was obtained by

thresholding the raw scores as before. The histogram gives rise to a smoothed ROC curve with only five segments.

The dotted line is the theoretical curve obtained from the true Gaussian distributions

density functions). �ere is a useful duality between
thresholds and scores: decision thresholds correspond
to operating points connecting two segments in the
ROC curve, and actual scores correspond to segments
of the ROC curve connecting two operating points. Let

f(s∣+) and f(s∣−) denote the relative frequency of posi-
tive (negative) examples from a test set being assigned
score s. (Note that s itself may be an estimate of the
likelihood p(x∣+) of observing a positive example with
feature vector x. We will return to this later.)

ROC Analysis R

R

Properties of ROC Curves

�e �rst property to note is that the true (false) posi-
tive rate achieved at a certain decision threshold t is the
proportion of the positive (negative) score distribution
to the right of the threshold; that is, tpr(t) = ∑s>t f(s∣+)
and fpr(t) = ∑s>t f(s∣−). In Fig. , setting the thresh-
old at using the discretized scores gives a true positive
rate of . and a false positive rate of ., as can be
seen by summing the bars of the histogram to the right
of the threshold. Although the ROC curve does not dis-
play thresholds or scores, this allows us to reconstruct
the range of thresholds yielding a particular operating
point from the score distributions.
If we connect two distinct operating points on an

ROC curve by a straight line, the slope of that line seg-
ment is equal to the ratio of positives to negatives in the
corresponding score interval; that is,

slope(t, t) =
tpr(t) − tpr(t)
fpr(t) − fpr(t)

=
∑t<s<t f(s∣+)
∑t<s<t f(s∣−)

Choosing the score interval small enough to cover a sin-
gle segment of the ROC curve corresponding to score s,
it follows that the segment has slope f(s∣+)/f(s∣−).

�is can be veri�ed in Fig. : e.g., the top-right seg-
ment of the smoothed curve has slope because the
le�most bin of the histogram contains only negative
examples. For continuous distributions the slope of the
ROC curve at any operating point is equal to the ratio
of probability densities at that score.
It can happen that slope(t, t)< slope(t, t)< slope

(t, t) for t < t < t, which means that the ROC curve
has a “dent” or concavity.�is is inevitable when using
raw classi�er scores (unless the positives and nega-
tives are perfectly separated), but can also be observed
in the smoothed curve in the example: the rightmost
bin of the histogram has a positive-to-negative ratio of
, while the next bin has a ratio of . Consequently,
the two le�most segments of the ROC curve display
a slight concavity. It means that performance can be
improved by combining the two bins, leading to one
large segment with slope . In other words, ROC curve
concavities demonstrate locally suboptimal behavior of
a classi�er. An extreme case of suboptimal behavior
occurs if the entire curve is concave, or at least below
the ascending diagonal: in that case, performance can
simply be improved by assigning all test instances the

same score, resulting in an ROC curve that follows the
ascending diagonal. A convexROC curve is one without
concavities.

The AUC Statistic

�e most important statistic associated with ROC
curves is the area under (ROC) curve or AUC. Since
the curve is located in the unit square, we have ≤

AUC ≤ . AUC = is achieved if the classi�er scores
every positive higher than every negative; AUC = is
achieved if every negative is scored higher than every
positive. AUC = / is obtained in a range of di�erent
scenarios, including: () the classi�er assigns the same
score to all test examples, whether positive or nega-
tive, and thus the ROC curve is the ascending diagonal;
() the per-class score distributions are similar, which
results in an ROC curve close (but not identical) to the
ascending diagonal; and () the classi�er gives half of
a particular class the highest scores, and the other half,
the lowest scores. Note that, although a classi�er with
AUC close to / is o�en said to perform randomly,
there is nothing random in the third classi�er: rather,
its excellent performance on some of the examples is
counterbalanced by its very poor performance on some
others. (Sometimes a linear rescaling AUC− called the
Gini coe�cient is preferred, which has a related use in
the assessment of income or wealth distributions using
Lorenz curves: a Gini coe�cient close to means that
income is approximately evenly distributed. Notice that
this Gini coe�cient is o�en called the Gini index, but
should not be confused with the impurity measure used
in decision tree learning).
AUC has a very useful statistical interpretation: it

is the expectation that a (uniformly) randomly drawn
positive receives a higher score than a randomly drawn
negative. It is a normalized version of the Wilcoxon–
Mann–Whitney sum of ranks test, which tests the null
hypothesis that two samples of ordinal measurements
are drawn from a single distribution.�e “sumof ranks”
epithet refers to one method to compute this statis-
tic, which is to assign each test example an integer
rank according to decreasing score (the highest scoring
example gets rank , the next gets rank , etc.); sum up
the ranks of the n− negatives, which have to be high; and
subtract ∑n

−

i= i = n−(n− +)/ to achieve if all nega-
tives are ranked �rst.�e AUC statistic is then obtained
by normalizing by the number of pairs of one positive

 R ROC Analysis

and one negative, n+n−.�ere are several other ways to
calculate AUC: for instance, we can calculate, for each
negative, the number of positives preceding it, which
basically is a columnwise calculation and yields an alter-
native view of AUC as the expected true positive rate
if the operating point is chosen just before a randomly
drawn negative.

Identifying Optimal Points and the ROC Convex Hull

In order to select an operating point on an ROC curve,
we �rst need to specify the objective function that
we aim to optimize. In the simplest case this will be
7accuracy, the proportion of correctly predicted exam-
ples. Denoting the proportion of positives by pos, we
can express accuracy as a weighted average of the true
positive and true negative rates pos ⋅ tpr + (− pos)
(− fpr). It follows that points with the same accuracy
lie on a straight line with slope (− pos)/pos; these par-
allel lines are the isometrics for accuracy (Flach,).
In order to �nd the optimal operating point for a given
class distribution, we can start with an accuracy isomet-
ric through (,) and slide it down until it touches the
ROC curve in one or more points (Fig. (le�)). In the
case of a single point this uniquely determines the oper-
ating point and thus, the threshold. If there are several
points in common between the accuracy isometric and
the ROC curve, we can make an arbitrary choice, or
interpolate stochastically. We can read o� the achieved
accuracy by intersecting the accuracy isometric with the
descending diagonal, on which tpr = − fpr and there-
fore the true positive rate at the intersection point is
equal to the accuracy associated with the isometric.
We can generalize this approach to any objec-

tive function that is a linear combination of true
and false positive rates. For instance, let predicting
class i for an instance of class j incur cost cost(i∣j), so
for instance the cost of a false positive is cost(+∣−)
(pro�ts for correct predictions are modeled as negative
costs, e.g., cost(+∣+)<). Cost isometrics then have
slope(cost(+∣−) − cost(−∣−))/(cost(−∣+) − cost(+∣+)).
Nonuniform class distributions are simply taken into
account by multiplying the class and cost ratio, giving
a single skew ratio expressing the relative importance of
negatives compared to positives.

�is procedure of selecting an optimal point on an
ROC curve can be generalized to select among points
lying on more than one curve, or even an arbitrary set

of points (e.g., points representing di�erent categori-
cal classi�ers). In such scenarios, it is likely that certain
points are never selected for any skew ratio; such points
are said to be dominated. For instance, points on a con-
cave region of an ROC curve are dominated.�e non-
dominated points are optimal for a given closed interval
of skew ratios, and can be joined to form the convex hull
of the given ROC curve or set of ROC points (Fig.
(right)). (In multiobjective optimization, this concept is
called the Pareto front.)�is notion of the ROC convex
hull (sometimes abbreviated as ROCCH) is extremely
useful in a range of situations. For instance, if an ROC
curve displays concavities, the convex hull represents a
discretization of the scores which achieves higher AUC.
Alternatively, the convex hull of a set of categorical clas-
si�ers can be interpreted as a hybrid classi�er that can
reach any point on the convex hull by stochastic inter-
polation between twoneighboring classi�ers (Provost&
Fawcett,).

Obtaining Calibrated Estimates of the Class Posterior

Recall that each segment of an ROC curve has slope
slope(s) = f(s∣+)/f(s∣−), where s is the score associated
with the segment, and f(s∣+) and f(s∣−) are the rela-
tive frequencies of positives and negatives of assigned
score s. Now consider the function cal(s) = slope(s)/
(slope(s) +)= f(s∣+)/(f(s∣+) + f(s∣−)): the calibration
map s↦ cal(s) adjusts the classi�er’s scores to re�ect the
empirical probabilities observed in the test set. If the
ROC curve is convex, slope(s) and cal(s) are mono-
tonically nonincreasing with decreasing s, and thus
replacing the scores s with cal(s) does not change the
ROC curve (other than merging neighboring segments
with di�erent scores but the same slope into a single
segment).
Consider decision trees as a concrete example. Once

we have trained (and possibly pruned) a tree, we can
obtain a score in each leaf l by taking the ratio of posi-
tive to negative training examples in that leaf: score(l) =
p(+∣l)/p(−∣l). �ese scores represent posterior odds,
taking into account the class prior in the training
set. Each leaf gives rise to a di�erent segment of the
ROC curve, which, by the nature of how the scores
were calculated, will be convex. �e calibrated scores
cal(score(l)) then represent an adjusted estimate of the
positive posterior that replaces the training set prior
with a uniform prior. To see this, notice that duplicating

ROC Analysis R

R

ROC Analysis. Figure . (left) The slope of accuracy isometrics reflects the class ratio. Isometric A has slope /: this cor-

responds to having twice as many positives as negatives, meaning that an increase in true positive rate of x is worth

a x increase in false positive rate. This selects two optimal points on the ROC curve. Isometric B corresponds to a uni-

form class distribution, and selects optimal points which make fewer positive predictions. In either case, the achieved

accuracy can be read off on the y-axis after intersecting the isometric with the descending diagonal (slightly higher for

points selected by A). (right) The convex hull selects those points on an ROC curve which are optimal under some class

distribution. The slope of each segment of the convex hull gives the class ratio under which the two end points of the

segment yield equal accuracy. All points under the convex hull are nonoptimal

all positive training examples would amplify all uncal-
ibrated scores score(l) with a factor , but the ROC
curve and therefore the calibrated probability estimates
remain unchanged.
If the ROC curve is not convex, the mapping

s ↦ cal(s) is not monotonic; while the scores cal(s)
would lead to improved performance on the data
from which the ROC curve was derived, this is very
unlikely to generalize to other data, and thus leads to
7over�tting.�is is why, in practice, a less drastic cali-
bration procedure involving the convex hull is applied
(Fawcett & Niculescu-Mizil,). Let s and s be
the scores associated with the start and end segments
of a concavity, i.e., s > s and slope(s)< slope(s).
Let slope(ss) denote the slope of the line seg-
ment of the convex hull that repairs this concav-
ity, which implies slope(s)< slope(ss)< slope(s).
�e calibration map will then map any score in
the interval [s, s] to slope(ss)/(slope(ss) +)
(Fig.).

�is ROC-based calibration procedure, which is
also known as isotonic regression (Zadrozny & Elkan,

++-+--+-+--+--- ++++-

+ + + +

+ + -
+ -

+ + - - -+ - -
- - -

0 .2 .4 .6 .8 1

1

.8

.6

.4

.2

0

Original scores

C
al

ib
ra

te
d

sc
or

es

ROC Analysis. Figure . The piecewise constant calibra-

tion map derived from the convex hull in Fig. . The orig-

inal score distributions are indicated at the top of the

figure, and the calibrated distributions are on the right.

We can clearly see the combined effect of binning the

scores and redistributing them over the interval [,]

 R ROC Analysis

), not only produces calibrated probability esti-
mates but also improves AUC.�is is in contrast with
other calibration procedures such as logistic calibra-
tion which do not bin the scores and therefore do not
change the ROC curve. ROC-based calibration can be
shown to achieve lowest Brier score (Brier,), which
measures themean squared error in the probability esti-
mates as compared with the ideal probabilities (for a
positive and for a negative), among all probability esti-
mators that do not reverse pairwise rankings. On the
other hand, being a nonparametric method it typically
requiresmore data than parametricmethods in order to
estimate the bin boundaries reliably.

Future Directions
ROC analysis in its original form is restricted to binary
classi�cation, and its extension tomore than two classes
gives rise to many open problems. c-class ROC anal-
ysis requires c(c −) dimensions, in order to distin-
guish each possible misclassi�cation type. Srinivasan
proved that basic concepts such as the ROC polytope
and its linearly interpolated convex hull generalize to
the c-class case (Srinivasan,). In theory, the vol-
ume under the ROC polytope can be employed for
assessing the quality of a multiclass classi�er (Ferri,
Hernández-Orallo, & Salido,), but this volume is
hard to compute as – unlike the two-class case, where
the segments of an ROC curve can simply be enumer-
ated in O(n logn) time by sorting the n examples on
their score (Fawcett, ; Flach,) – there is no
simple way to enumerate the ROC polytope. Mossman
considers the special case of -class ROCanalysis, where
for each class the two possible misclassi�cations are
treated equally (the so-called one-versus-rest scenario)
(Mossman,). Hand and Till propose the average
of all one-versus-rest AUCs as an approximation of
the area under the ROC polytope (Hand & Till,).
Various algorithms forminimizing a classi�er’smisclas-
si�cation costs by reweighting the classes are considered
in Bourke, Deng, Scott, Schapire, and Vinodchandran
() and Lachiche and Flach ().
Other research directions include the explicit visu-

alization of misclassi�cation costs (Drummond &
Holte,), and using ROC analysis to study the
behavior of machine learning algorithms and the
relations betweenmachine learningmetrics (Fuernkranz
& Flach,).

Cross References
7Accuracy
7Class Imbalance Problem
7Classi�cation
7Confusion Matrix
7Cost-Sensitive Learning
7Error Rate
7False Negative
7False Positive
7Gaussian Distribution
7Posterior Probability
7Precision
7Prior Probability
7Recall
7Sensitivity
7Speci�city
7True Negative
7True Positive

Recommended Reading
Bourke, C., Deng, K., Scott, S., Schapire, R., & Vinodchandran,

N. V. (). On reoptimizing multi-class classifiers. Machine
Learning, (–), –.

Brier, G. (). Verification of forecasts expressed in terms of
probabilities. Monthly Weather Review, , –.

Drummond, C., & Holte, R. (). Cost curves: An improved
method for visualizing classifier performance. Machine Learn-
ing, (), –.

Egan, J. (). Signal detection theory and ROC analysis. Series in
cognitition and perception. New York: Academic Press.

Fawcett, T. (). An introduction to ROC analysis. Pattern Recog-
nition Letters, (), –.

Fawcett, T., & Niculescu-Mizil, A. (). PAV and the ROC convex
hull. Machine Learning, (), –.

Ferri, C., Hernández-Orallo, J., & Salido, M. (). Volume under
the ROC surface for multi-class problems. In Proceedings of
the fourteenth (ECML) (pp. –). Lecture Notes in
Computer Science . Berlin: Springer.

Flach, P. (). The geometry of ROC space: Understanding
machine learning metrics through ROC isometrics. In Pro-
ceedings of the twentieth international conference on machine
learning (ICML) (pp. –). Washington, DC: AAAI
Press.

Flach, P. (). The many faces of ROC analysis in machine
learning. ICML- Tutorial. http://www.cs.bris.ac.uk/flach/
ICMLtutorial/. Accessed on December .

Fuernkranz, J., & Flach, P. (). ROC ‘n’ Rule learning – towards
a better understanding of covering algorithms. Machine Learn-
ing, (), –.

Hand, D., & Till, R. (). A simple generalization of the area
under the ROC curve to multiple class classification problems.
Machine Learning, (), –.

Lachiche, N., & Flach, P. (). Improving accuracy and cost of
two-class and multi-class probabilistic classifiers using ROC

http://www.cs.bris.ac.uk/flach/ICML04tutorial/

Rule Learning R

R

curves. In Proceedings of the twentieth international conference
on machine learning (ICML’) (pp. –). Washington, DC:
AAAI Press.

Mossman, D. (). Three-way ROCs.Medical Decision Making, ,
–.

Provost, F., & Fawcett, T. (). Robust classification for imprecise
environments. Machine Learning, (), –.

Srinivasan, A. (). Note on the location of optimal classifiers in
n-dimensional ROC space. Technical report PRG-
TR--. Oxford University Computing Laboratory,
Oxford.

Zadrozny, B., & Elkan, C. (). Transforming classifier scores
into accurate multiclass probability estimates. In Proceedings
of the th ACM SIGKDD international conference on knowledge
discovery and data mining (pp. –). New York: ACM.

ROC Convex Hull

�e convex hull of an7ROC curve is a geometric con-
struction that selects the points on the curve that are
optimal under some class and cost distribution. It is
analogous to the Pareto front in multiobjective opti-
mization. See7ROC Analysis.

ROC Curve

�e ROC curve is a plot depicting the trade-o� between
the7true positive rate and the7false positive rate for a
classi�er under varying decision thresholds. See7ROC
Analysis.

Rotation Forests

Rotation Forests is an7ensemble learning technique. It
is similar to the 7Random Forests approach to build-
ing decision tree ensembles. In the �rst step, the orig-
inal feature set is split randomly into K disjoint sub-
sets. Next, 7principal components analysis is used to
extract n principal component dimensions from each
of the K subsets.�ese are then pooled, and the orig-
inal data projected linearly into this new feature space.
A tree is then built from this data in the usual manner.
�is process is repeated to create an ensemble of trees,
each time with a di�erent random split of the original
feature set.

As the tree learning algorithm builds the classi�ca-
tion regions using hyperplanes parallel to the feature
axes, a small rotation of the axes may lead to a very
di�erent tree.�e e�ect of rotating the axes is that clas-
si�cation regions of high accuracy can be constructed
with far fewer trees than in7Bagging and7Adaboost.

RSM

7Random Subspace Method

Rule Learning

Johannes Fürnkranz
Fachbereich Informatik, Darmstadt, Germany

Synonyms
AQ; Covering algorithm; CN; Foil; Laplace estimate;
m-estimate; OPUS; RIPPER

Definition
Inductive rule learning solves a 7classi�cation prob-
lem via the induction of a 7rule set or a 7decision
list. �e principal approach is the so-called separate-
and-conquer or covering algorithm, which learns one
rule at a time, successively removing the covered exam-
ples. Individual algorithmswithin this framework di�er
primarily in the way they learn single rules. A more
extensive survey of this family of algorithms can be
found in Fürnkranz ().

The Covering Algorithm
Most covering algorithms operate in a7concept learn-
ing framework, that is, they assume a set of positive and
negative training examples. Adaptations to the multi-
class case are typically performed via 7class binariza-
tion, transforming the original problem into a set of
binary problems. Some algorithms, most notably CN
(Clark & Niblett, ; Clark & Boswell,), learn
multi-class rules directly by optimizing over all possible
classes in the head of the rule. In this case, the resulting
theory is interpreted as a decision list. In the following,
a two-class problem with a positive and a negative class
will be assumed.

 R Rule Learning

procedure Covering (Examples, Classi�er)
Input: Examples, a set of positive and negative

examples for a class c.
// initialize the classi�er
Classi�er = ∅
// loop until no more positive examples are covered
while Positive (Examples) ≠ ∅ do

// �nd the best rule for the current examples
Rule = FindBestRule (Examples)
// check if we need more rules
if RuleStoppingCriterion (Classi�er,

Rule, Examples)
then break while
// remove covered examples and add rule to rule set
Examples = Examples ∖ Cover (Rule, Examples)
Classi�er = Classi�er ∪ Rule

endwhile
// post-process the rule set (e.g., pruning)
Classi�er = PostProcessing (Classi�er)
Output: Classi�er

�e Covering algorithm starts with an empty the-
ory. If there are any positive examples in the training set
it calls the subroutine FindBestRule for learning a sin-
gle rule that will cover a subset of the positive examples
(and possibly some negative examples as well). All cov-
ered examples are then separated from the training set,
the learned rule is added to the theory, and another
rule is learned from the remaining examples. Rules are
learned in this way until no positive examples are le�
or until the RuleStoppingCriterion �res. In the sim-
plest case, the stopping criterion is a check whether
there are still remaining positive examples that need to
be covered.�e resulting theorymay also undergo some
PostProcessing, for example, a separate pruning and
re-induction phase as in Ripper (Cohen,).
In the following, these componentswill be discussed

in more detail.

Finding the Best Rule

Single rules are typically found by searching the space
of possible rules for a rule that optimizes a given qual-
ity criterion de�ned in EvaluateRule.�e value of this
heuristic function is the higher the more positive and

procedure FindBestRule (Examples, BestRule)
Input: Examples, a set of positive and negative

examples for a class c.
InitRule = InitializeRule (Examples)
InitVal = EvaluateRule (InitRule)
BestRule = <InitVal, InitRule>
Rules = {BestRule}
while Rules ≠ ∅ do
Candidates = SelectCandidates(Rules, Examples)
Rules = Rules ∖ Candidates
for Candidate ∈ Candidates do
Re�nements = RefineRule(Candidate, Examples)

for Re�nement ∈ Re�nements do
Evaluation = EvaluateRule (Re�nement,

Examples)
if StoppingCriterion(Re�nement,

Examples)
then next Re�nement
NewRule = <Evaluation, Re�nement>
Rules = InsertSort(NewRule, Rules)
if NewRule > BestRule
then BestRule = NewRule

endfor
endfor
Rules = FilterRules(Rules, Examples)

endwhile
Output: BestRule

the less negative examples are covered by the candi-
date rule. FindBestRule maintains Rules, a sorted list
of candidate rules, which is initialized by the procedure
InitializeRule. New rules will be inserted in appro-
priate places (InsertSort), so that Rules will always
be sorted in decreasing order of the heuristic evalua-
tions of the rules. At each cycle, SelectCandidates
selects a subset of these candidate rules, which are then
re�ned using the 7re�nement operator RefineRule.
Each re�nement is evaluated and inserted into the
sorted Rules list unless the StoppingCriterion pre-
vents this. If the evaluation of the NewRule is better
than the best rule found previously, BestRule is set to
NewRule. FilterRules selects the subset of the ordered
rule list that will be used in subsequent iterations.When
all candidate rules have been processed, the best rule is
returned.

Rule Learning R

R

Di�erent choices of these functions allow the de�-
nition of di�erent biases for the separate-and-conquer
learner. �e 7search bias is de�ned by the choice of
a search strategy (InitializeRule and RefineRule),
a search algorithm (SelectCandidates and Fil-
terRules), and a search heuristic (EvaluateRule).
�e re�nement operator RefineRule constitutes the
7language bias of the algorithm. An over�tting avoid-
ance bias can be implemented via some StoppingCri-
terion and/or in a post-processing phase.
For example, InitializeRule and RefineRulemay

be de�ned so that they realize a top-down (general-to-
speci�c), a bottom-up (speci�c-to-general) or a bidirec-
tional search. Exhaustive 7breadth-�rst, 7depth-�rst,
or best-�rst searches can be realized by appropriate
choices of EvaluateRule, and no �ltering or candi-
date selection. FilterRules can, for example, be used
to realize a 7hill-climbing or 7beam search by main-
taining only the best or the BeamWidth best rules. Evo-
lutionary algorithms and stochastic local search can also
be easily realized.

�e most common algorithm for �nding the best
rule is a top-down hill-climbing algorithm. It basically
constructs a rule by consecutively adding conditions
to the rule body so that a given quality criterion is
greedily optimized. �is constitutes a simple greedy
hill-climbing algorithm for �nding a local optimum in
the hypothesis space de�ned by the feature set. Initial-
izeRule will thus return the most general rule, the rule
with the body {true}, and RefineRule will return all
possible extensions of the rule by a single condition. Fil-
terRules will only let the best re�nement pass for the
next iteration, so that SelectCandidates will always
have only one choice.�e search heuristic, the stopping
criterion, and the post-processing are discussed in the
next sections.

Rule Learning Heuristics

�e covering algorithm tries to �nd a rule set that is
as complete and consistent as possible.�us, each rule
should cover as many positive examples and as few neg-
ative examples as possible.�e exact trade-o� between
these two objectives is realized via the choice of a rule
learning heuristic. A few important ones are (assume
that p out of P positive examples and n out ofN negative
examples are covered by the rule):

Laplace estimate(Lap = p+
p+n+) computes the fraction

of positive examples in all covered examples, where
each class is initialized with one virtual example in
order to penalize rules with low coverage.

m-estimate(m =
p+m⋅P/(P+N)
p+n+m) is a generalization of the

Laplace estimate which uses m examples for initial-
ization, which are distributed according to the class
distribution in the training set (Cestnik,).

Information gain(ig = p ⋅ (log
p
p+n − log

p′

p′+n′)),
where p′ and n′ are the number of positive and
negative examples covered by the rule’s predeces-
sor) is Quinlan’s () adaptation of the informa-
tion gain heuristic used for decision tree learning.
�e main di�erence is that this only focuses on a
single branch (a rule), whereas the decision tree
version tries to optimize all successors of a node
simultaneously.

Correlation and χ(corr = p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)) com-

putes the four-�eld correlation of covered/
uncovered positive/negative examples. It is equiva-
lent to a χ statistic (χ = (P +N) corr).

An exhaustive overview and theoretical comparison
of various search heuristics in coverage space, a variant
of 7ROC space can be found in Fürnkranz and Flach
().

Overfitting Avoidance

It is trivial to �nd a rule set that is complete and con-
sistent on the training data. To achieve this, one only
needs to convert each positive example into a rule. Each
of these rules is consistent (provided the data set is
not inconsistent), and collectively they cover the entire
example set (completeness). However, this is clearly a
bad case of 7over�tting because the theory will not
generalize to new positive examples.
Over�tting is to some extent handled by the search

heuristics described above, but most algorithms use
additional7pruning techniques. One can discriminate
between7pre-pruning techniques, where a separate cri-
terion is used to �lter out unpromising rules. For exam-
ple, CN computes the likelihood ratio statistic lrs= ⋅
(p log pep + n log

n
en
), where ep = (p + n) P

P+N and en =
(p+n) N

P+N = (p+n)−ep are the number of positive and
negative examples one could expect if the p+n examples

 R Rule Learning

covered by the rule were distributed in the same way
as the P + N examples in the full data set.�is statis-
tic follows a χ distribution, which allows to �lter out
rules for which the distribution of the covered exam-
ples is not statistically and signi�cantly di�erent from
the distribution of examples in the full data set. Other
pre-pruning criteria are simple thresholds that de�ne
a minimum acceptable value for the search heuristic,
or Foil’s 7minimum description length criterion that
relates the length of a rule to the number of examples it
covers.
However, it can be shown experimentally that CN

or Foil still have a tendency to over�t the data. Instead,
state-of-the-art algorithms 7post-prune a rule right
a�er it has been learned. For this purpose, one third of
the training data are reserved for pruning. A�er a rule
has been learned, it is greedily simpli�ed on the prun-
ing set. Simpli�cations can be the deletion of the last
condition, a �nal sequence of conditions, or an arbi-
trary condition of the rule. If the simpli�cation does
not decrease the accuracy of the rule on the prun-
ing set, it will be performed.�is so-called incremental
reduced error pruning algorithm (Fürnkranz & Wid-
mer,) is used in the rule learning algorithmRipper
(Cohen,).
A survey and experimental comparison of pruning

techniques for rule learning can be found in Fürnkranz
().

Alternatives to Covering
An obvious generalization of covering is to not entirely
remove covered examples but to reduce their example
7weights, thus decreasing their importance in subse-
quent iterations (see, e.g., the Slipper algorithm; Cohen
& Singer).
Rules can also be learned by alternative strategies.

�ere have been numerous proposals, only the most
in�uential can be mentioned. Each path from the root
to a leaf of a 7decision tree corresponds to a rule and
so rules can be learned by �rst learning a decision tree
and then post-processing it (see, e.g., the C.rules
algorithm; Quinlan,). It is also possible to use
the 7APriori algorithm for an exhaustive search for
classi�cation rules, and to use a subsequent covering
algorithm to combine the rules into a rule set (see,
e.g., the CBA algorithm; Liu, Hsu, & Ma,). RISE

(Domingos,) combines bottom-up generalization
with7nearest neighbor algorithms to learn a theory via
“conquering without separating”.

Well-known Rule Learning Algorithms
AQ can be considered as the original covering algo-
rithm. Its original version was conceived by Ryszard
Michalski in the s (Michalski,), and numerous
versions and variants of the algorithm appeared sub-
sequently in the literature. AQ uses a top-down beam
search for �nding the best rule. It does not search all
possible specializations of a rule, but only considers
re�nements that cover a particular example, the so-
called seed example. �is idea is basically the same as
the use of a 7bottom clause in 7inductive logic pro-
gramming.
CN (Clark & Niblett, ; Clark & Boswell,)

employs a beam search guided by the Laplace estimate,
and uses the likelihood ratio signi�cance test to �ght
over�tting. It can operate in twomodes, one for learning
rule sets (by modeling each class independently), and
one for learning decision lists.
Foil (Quinlan,) was the �rst relational learn-

ing algorithm that received attention beyond the �eld
of inductive logic programming. It learns a conceptwith
the covering loop and learns individual concepts with a
top-down re�nement operator, guided by information
gain. �e main di�erence to previous systems is that
Foil allowed the use of �rst-order background knowl-
edge. Instead of only being able to use tests on single
attributes, Foil could employ tests that compute rela-
tions between multiple attributes, as well as introduce
new variables in the body of a rule.
Ripper (Cohen,) was the �rst rule learning

system that e�ectively countered the over�tting prob-
lem via incremental reduced error pruning, as described
above. It also added a post-processing phase for opti-
mizing a rule set in the context of other rules.�e key
idea is to remove one rule out of a previously learned
rule set and try to relearn it not only in the context
of previous rules (as would be the case in the regular
covering rule), but in the context of a complete theory.
Ripper is still state-of-the-art in inductive rule learn-
ing. A freely accessible reimplementation can be found
in the Weka machine learning library under the name
of JRip.

Rule Learning R

R

Opus (Webb,) was the �rst rule learning algo-
rithm to demonstrate the feasibility of a full exhaus-
tive search through all possible rule bodies for �nd-
ing a rule that maximizes a given quality criterion (or
heuristic function). �e key idea is the use of ordered
search that prevents that a rule is generated multiple
times.�is means that even though there are l! di�er-
ent orders of the conditions of a rule of length l, only
one of them can be taken by the learner for �nding
this rule. In addition,OPUSuses several techniques that
prune signi�cant parts of the search space, so that this
search method becomes feasible. Follow-up work has
shown that this technique is also an e�cient alterna-
tive for 7association rule discovery, provided that the
database to mine �ts into the memory of the learning
system.

Cross References
7Apriori Algorithm
7Association Rule
7Decision List
7Decision Trees
7Subgroup Discovery

Recommended Reading
Cestnik, B. (). Estimating probabilities: A crucial task in

machine learning. In L. Aiello (Ed.), Proceedings of the ninth
European conference on artificial intelligence (ECAI-), Stock-
holm, Sweden (pp. –). Pitman, London.

Clark, P., & Boswell, R. (). Rule induction with CN: Some
recent improvements. In Proceedings of the fifth European work-
ing session on learning (EWSL-), Porto, Portugal (pp. –).
London: Springer.

Clark, P., & Niblett, T. (). The CN induction algorithm.
Machine Learning, (), –.

Cohen, W. W. (). Fast effective rule induction. In A. Prieditis
& S. Russell (Eds.), Proceedings of the th international confer-
ence on machine learning (ML-), Lake Tahoe, California (pp.
–). Morgan Kaufmann, San Mateo, CA.

Cohen, W. W., & Singer, Y. (). A simple, fast, and effective rule
learner. In Proceedings of the th national conference on artifi-
cial intelligence (AAAI-), Orlando (pp. –). Menlo Park:
AAAI/MIT Press.

Domingos, P. (). Unifying instance-based and rule-based induc-
tion. Machine Learning, , –.

Fürnkranz, J. (). Pruning algorithms for rule learning. Machine
Learning, (), –.

Fürnkranz, J. (February). Separate-and-conquer rule learning.
Artificial Intelligence Review, (), –.

Fürnkranz, J., & Flach, P. (). ROC ‘n’ rule learning – Towards
a better understanding of covering algorithms. Machine Learn-
ing, (), –.

Fürnkranz, J., & Widmer, G. (). Incremental reduced error
pruning. In W. Cohen & H. Hirsh (Eds.), Proceedings of the
th international conference on machine learning (ML-), New
Brunswick, NJ (pp. –). Morgan Kaufmann, San Mateo, CA.

Liu, B., Hsu, W., & Ma, Y. (). Integrating classification and
association rule mining. In R. Agrawal, P. Stolorz, & G.
Piatetsky-Shapiro (Eds.), Proceedings of the fourth international
conference on knowledge discovery and data mining (KDD-),
New York City, NY (pp. –).

Michalski, R. S. (). On the quasi-minimal solution of the cover-
ing problem. In Proceedings of the fifth international symposium
on information processing (FCIP-), Bled, Yugoslavia. Switching
circuits (Vol. A, pp. –).

Quinlan, J. R. (). Learning logical definitions from relations.
Machine Learning, , –.

Quinlan, J. R. (). C.: Programs for machine learning. San
Mateo: Morgan Kaufmann.

Webb, G. I. (). OPUS: An efficient admissible algorithm for
unordered search. Journal of Artificial Intelligence Research, ,
–.

S

Sample Complexity

7Generalization Bounds

Samuel’s Checkers Player

Definition
Samuel’s Checkers Player is the �rst machine learn-

ing system that received public recognition. It pio-

neered many important ideas in game playing and

machine learning.�e two main papers describing his

research (Samuel, ,) became landmark papers

in Arti�cial Intelligence. In one game, the resulting pro-

gram was able to beat one of America’s best players of

the time.

Description of the Learning System
Samuel’s checkers player featured a wide variety of

learning techniques. First, his checkers player remem-

bered positions that it frequently encountered during

play. �is simple form of rote learning allowed it to
save time, and to search deeper in subsequent games

whenever a stored position was encountered on the

board or in some line of calculation. Next, it featured

the �rst successful application of what is now known

as 7Reinforcement Learning for tuning the weights of
its evaluation function. �e program trained itself by

playing against a stable copy of itself. A�er each move,

the weights of the evaluation function were adjusted in

a way that moved the evaluation of the root position

a�er a quiescence search closer to the evaluation of the

root position a�er searching several moves deep.�is

technique is a variant of what is nowadays known as

7Temporal-Di�erence Learning and commonly used
in successful game-playing programs. Samuel’s program

not only tuned the weights of the evaluation but also

employed on-line 7Feature Selection for constructing
the evaluation function with the terms that seem to be

themost signi�cant for evaluating the current board sit-

uation. 7Feature Construction was recognized as the
key problem that still needs to be solved. Later, Samuel

changed his evaluation function from a linear combina-

tion of terms into a structure that closely resembled a

-layer 7Neural Network. �is structure was trained
with7Preference Learning from several thousand posi-
tions from master games.

Cross References
7Machine Learning and Game Playing

Recommended Reading
Samuel, A. L. (). Some studies in machine learning using the

game of checkers. IBM Journal of Research and Development,
(), –.

Samuel, A. L. (). Some studies in machine learning using the

game of checkers. II – recent progress. IBM Journal of Research
and Development, (), –.

Saturation

7Bottom Clause

SDP

7Symbolic Dynamic Programming

Search Bias

7Learning as Search

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 S Search Engines: Applications of ML

Search Engines: Applications of ML

EricMartin

University of New South Wales,

Sydney, NSW, Australia

Definition
Search engines provide users with Internet resources –

links to web sites, documents, text snippets, images,

videos, etc. – in response to queries. �ey use tech-

niques that are part of the �eld of information retrieval,

and rely on statistical and pattern matching methods.

Search engines have to take into account many key

aspects and requirements of this speci�c instance of

the information retrieval problem. First, the fact is that

they have to be able to process hundreds of millions of

searches a day and answer queries in a matter of mil-

liseconds. Second, the resources on the World Wide

Web are constantly updated, with information being

continuously added, removed or changed – the overall

contents changing by up to % a week – in a pool con-

sisting of billions of documents.�ird, the users express

possibly semantically complex queries in a language

with limited expressive power, and o�en not make use

or proper use of available syntactic features of that lan-

guage – for instance, the boolean or operator occurs in
less than % of queries.

Motivation and Background
Web searching is technically initiated by sending a

query to a search engine but the whole search process

starts earlier, in the mind of the person who conducts

the search. To be successful, the process needs to pro-

vide users with words, text snippets, images, or movies

that ful�ll the users’ quest for information.�us, though

a search is technically the implementation of a pro-

cedure that maps a query to some digital material, it

spans a larger spectrum of activities, from a psycholog-

ical trigger to a psychological reward. For a given set

of digital material that, if provided, would be deemed

perfectly satisfactory by a number of users looking for

the same information, di�erent users will issue di�er-

ent queries. �is might be because they have varying

skills at conveying what they are a�er in the form of a

few words.�is, in turn, might be because their under-

standing of the technology prompts them to formulate

what they are a�er in a form that, rightly or wrongly,

they consider appropriate for a computing device to

process. �at might be for a number of di�erent rea-

sons that all point to the fact that the quality of the

search is not determined by its adequacy to the query,

but by its adequacy to the psychological trigger that pro-

duced the query.�is especially makes Web searching

challenging and exciting area in the �eld of7information
retrieval.

In Broder (), it is suggested that web queries can

be classi�ed in three classes:

● Navigational queries expect the search to return
a particular url. For instance, http://www.cityrail.

info is probably the expected result to the query

Cityrail for a Sydneysider.
● Transactional queries expect the search to return
links to sites that o�er further interaction, for exam-

ple for online shopping or to download music. For

instance, http://www.magickeys.com/books/, where

books for young children are available for download,

is probably a good result to the query children
stories.

● Informational queries expect the search to reveal
the information, that is, the correct answer to a

question.�is information can be immediately pro-

vided in the page where the results of the search

are displayed, for instance, Bern for the query
capital of switzerland. Or it can be pro-
vided in the pages accessible from the �rst links

returned by the search, as for instance Italy that is
easily found in the web page accessed from the �rst

link returned in response to the query football
world champion 1982.

Answering an informational query with the informa-

tion itself, rather than with links to documents where

the information is to be found, is one of the most dif-

�cult challenges that search engines developers have

started addressing.

Structure of the Learning System
�e general structure of a search engine can be illus-

trated as follows:

Search Engines: Applications of ML S

S

User

Parsing Postfilering

Repository Matching Postprocessing

Ranking

Que
ry

Documents

Results

A 7string matching algorithm is applied to the parsed
query issued by the user and to an indexed representa-

tion of a set of documents, resulting in a ranked subset

of the latter.�is ranked set of documents can be sub-

jected to a postprocessing procedure whose aim is to

improve the results by either re�ning the query or by

analyzing the documents further, possibly over many

iterations, until the results stabilize and can be returned

to the user, following a post�ltering procedure to display

the information appropriately.

Retrieval Methods
�e existence of hyperlinks between documents distin-

guishes search engines from other information retrieval

applications. All techniques developed in the �eld

of information retrieval are potentially relevant for

extracting information from the web, but bene�ts from

a proper analysis of the cross-reference structure.�at

is, to measure the degree of relevance of a document

to a given query, one can take advantage of a prior

ranking of all documents independent of that query

or any other, following a sophisticated version of the

PageRank (Page, Brin, Motwani, & Winograd,)

link analysis algorithm. One of the simplest versions of

the algorithm recursively de�nes the PageRank PR(T)

of a pageT which pagesT, . . . ,Tn point to, amongst the

c, . . . , cn pages T, . . . ,Tn point to, respectively, as

 − d
N

+ d(T/c +⋯ + Tn/cn),

where N is the total number of pages and d, a damping
factor, represents the probability that a user decides to
follow a link rather than randomly visit another page;

normalizing the solution so that the PageRanks of all

pages add up to , PR(T) then represents the probability

that a user visits T by clicking on a link.

Boolean retrieval is one of the simplest methods to
retrieve a set of documents that match exactly a query

expressed as a boolean combination of keywords.�e

match is facilitated by using an inverted �le indexing
structure which associates every possible keyword with

links to the documents in which it occurs. If extra infor-

mation is kept on the occurrences of keywords in docu-

ments (number of occurrences, part of the document in

which they occur, font size and font type used for their

display, etc.) then the results can also be ranked. But

best match models, as opposed to exact match models,
are better suited to producing ranked results.�e vector
spacemodel is one of the earliest andmost studiedmod-
els of this kind. It represents documents and queries as

vectors over a space each of whose dimensions repre-

sents a possible keyword, and measures the similarity

between the vectors q⃗ and d⃗ whether it occurs at least
once in query and document, respectively, record for

each keyword as the cosine of the angle formed by q⃗ and
d⃗, namely,

q⃗d⃗
∥q⃗∥∥d⃗∥

,

that is all the most closer to that query and document

have more in common. �e term-frequency-inverse-
document-frequency (tf-idf) model re�nes the encoding
given by d⃗ by replacing a value of in the ith dimen-
sion, indicating the existence of an occurrence of the ith
keyword in d⃗, with

c log(
N
c

) ,

where c is the number of occurrences of the ith key-
word in the document, N is the total number of docu-
ments, and c is the number of documents in the whole
collection that contain at least one occurrence of the

ith keyword; so more importance is given to keywords
that occur more and that occur “almost exclusively” in

the document under consideration. One of the most

obvious issues with this approach is that the number of

dimensions is huge and the vectors are sparse. Another

important issue is that set of vectors determined by the

set of keywords is not orthogonal, and not even linearly

independent, because two given keywords can be syn-

onyms (sick and ill), not semantically related (garlic and

manifold), or more or less semantically related (wheel

and tire).

 S Search Engines: Applications of ML

�e extended vector space model (Robertson,
Walker, & Beaulieu, b) addresses this issue assum-

ing that the similarity between two keywords is cap-

tured by the symmetric di�erence between the set of

documents that contain a keyword and the set of doc-

uments that contain the other, ranging from identical

sets (similar keywords) to disjoint sets (unrelated key-

words). Let D, . . . ,DN′ be an enumeration of the quo-

tient relation over the set of all documents such that two

documents are equivalent if they contain precisely the

same keywords (so N′ is at most equal to N, the num-
ber of documents in the whole collection). Conceive of

an N′-dimensional vector space S of which D, . . . ,DN′

is a basis. Associate the ith keyword with the vector
v⃗i of S de�ned as /

√
w +⋯ +wN′(w, . . . ,wN′) where

for all nonzero k ≤ N′, wk is the number of occur-

rences of the ith keyword in all documents that belong
to class Dk.�en associate a document with the vector

d⃗ of S de�ned as αv⃗ + ⋯ + αN′′ ⃗vN′′ where N′′ is the

number of keywords and for all nonzero k ≤ N′′, αk is

the number of occurrences of the ith keyword in that
document, and associate a query with the vector q⃗ of
S de�ned as βv⃗ + ⋯ + βN′′ ⃗vN′′ where for all nonzero
k ≤ N′′, βk is equal to if the ith keyword occurs in the
query, and to otherwise.�e similarity between q⃗ and
d⃗ is then measured as described for the simple vector
space method.

�e topic-based vector space model (Becker &
Kuropka,) also replaces the original vector space

with a di�erent vector space of a di�erent dimen-

sion, addressing the issue of nonorthogonality between

keywords thanks to fundamental topics, assumed to
be pairwise independent, using ontologies; the fun-

damental topics then provide the vector basis which

is a linear combination of a given keyword. So the

topic-based vector space model conceives of the mean-

ing of words as the semantic relationships that emerge

from the common use of a language by the mem-

bers of a given community, whereas the extended vec-

tor space model conceives of the meaning of words

as the syntactic relationship of term co-occurrence

with respect to the repository of documents being

processed.

Probabilistic retrieval frameworks aim at estimat-
ing the probability that a given document is relevant

to a given query. Given a keyword w, denote by p+w
the probability that w occurs in a document relevant

to w, and denote by p−w the probability that w occurs
in a document not relevant to w. Many probabilis-
tic retrieval frameworks then de�ne the relevance of a

document to a query as follows, where w, . . . ,wn are

the keywords that occur both in the query and in the

document:
n

∑
i=
log(

p+wi
(− p−wi

)

p−wi
(− p+wi

)
) .

�is quantity increases all the more that the document

containsmore words that aremore likely to occur in rel-

evant documents, and more words less likely to occur

in irrelevant documents. Di�erent frameworks suggest

di�erent ways to evaluate the values of p+wi
and p−wi

. For

instance, pi is sometimes assumed to be constant and
p−wi
de�ned as ni/N whereN is the total number of doc-

uments and ni the number of documents in which wi

occurs, capturing the fact that a document containing a

keyword appearing in few other documents is likely to

be relevant to that keyword, in which case the previous

formula can be rewritten

c
n

∑
i=
log(

N − ni
ni

)

for some constant c. More sophisticated methods have
been developed to better estimate the probabilities,

such as theOkapi weighting document score (Robertson,
Walker, & Beaulieu, a) which de�nes the relevance

of a document to a query as

n

∑
i=
log(

N − ni + .
ni + .

)
(k +)ci

(k(− b) + b(l/β)) + ci

×
(k +)di
k + di

,

where the notation is as above, with the addition of ci
to denote the number of occurrences of wi in the docu-

ment, di to denote the number of occurrences of wi in

the query, l to denote the number of bytes in the doc-
ument, β to denote the average number of bytes in a
document, and b, k, and k to denote constants.

Query Classification
�e development of e�ective methods of information

retrieval from web resources requires a good under-

standing of users’ needs andpractice. InMarkev (a),

the following questions are identi�ed as being especially

relevant towards gaining such an understanding.

Search Engines: Applications of ML S

S

▸ What characterizes the queries that end users submit to

online IR systems? What search features do people use?

What features would enable them to improve on the

retrievals they have in hand? What features are hardly

ever used? What do end users do in response to the

system’s retrievals?

�is chapter indicates that many of the basic features

of information retrieval systems are poorly used. For

instance, less than , , and % of queries make use

of the and, or, and not boolean operators, respectively,
and less than % of queries of enclosing quotes; the

wrong syntax is o�en used, resulting in incorrect use of

advanced search features in one third of the cases; less

than % of queries take advantage of7relevance feed-
back. Based on those �ndings, the second part (Markev,

b) of the article suggests two dozen new research
questions for researchers in information retrieval, while
noting that about % of users are satis�ed with their

search experience.

Evaluating search satisfaction has received lots of

attention. In Fox, Karnawat, Mydland, Dumais, and

White (), both explicit and implicitmeasures of sat-

isfaction are collected. Explicit measures are obtained

by prompting the user to evaluate a search result as sat-

isfying, partially satisfying, or not satisfying, and simi-

larly to evaluate satisfaction gained from a whole search

session. Implicit measures are obtained by recording

mouse and keyboard actions, time spent on a page,

scrolling actions and durations, number of visits to

a page, position of page in results list, number of

queries submitted, number of results visited, etc. A

Bayesian model can be used to infer the relationships

between explicit and implicit measures of satisfaction.

�is chapter reports on two 7Bayesian networks that
were built to predict satisfaction for individual page vis-

its and satisfaction for entire search sessions – w.r.t.

the feedback obtained from both kinds of prompts

– with evidence that a combination of well chosen

implicit satisfaction measures can be a good predictor

of explicit satisfaction. Referring to the categorization of

web queries in Broder () as user goals, it is proposed
in Lee, Liu, and Cho () to build click distributions
by sorting results to a query following the numbers

of clicks they received from all users, and suggested

that highly skewed distributions should correspond

to navigational queries, while �at distributions should

correspond to informational queries. �e same kind

of considerations are also applied to anchor-link distri-
butions, the anchor-link distribution of a query being
de�ned as the function that maps a URL to the number

of times that URL is the destination of an anchor that

has the same text as the query.

Finer techniques of query classi�cation are pro-

posed in Beitzel, Jensen, Lewis, Chowdhury, and

Frieder (), where is a rule-based automatic classier

is produced from selectional preferences. A query con-
sisting of at least two keywords is split into a head

x and a tail y, and then converted into a forward
pair (x,u) and a backward pair (u, y), where u repre-
sents a category, that is, a generic term that refers to

a list of semantically related words in a thesaurus. For

instance, the query “interest rate” can (only) be split

into (interest, rate) and converted to the forward pair

(interest, personal �nance) where “personal �nance”

denotes the list consisting of the terms “banks,” “rates,”

“savings,” etc.; so the �rst keyword – “interest” – pro-

vides context for the second one. Given a large query

log, themaximum likelihood estimate (MLE) of P(u/x),
the probability that a query decomposed as (x, z) is
such that z belongs to category u, is de�ned as the quo-
tient between the number of queries in the log that have

(x,u) as a forward pair and the number of queries in the
log that can be decomposed as (x, z).�is allows one to
write a forward rule of the form “x Y classi�ed as uwith
weight p,” where p is the MLE of P(u/x), provided that
the selectional preference strength of x be above some
given threshold.�e rule can then be applied to incom-

ing queries, such as “interest only loan” by matching

a �nal or initial segment of the query – depending on

whether forward or backward rules are under consid-

eration – and suggest possible classi�cations; with the

running example, “interest only loan” would then be

classi�ed as “personal �nance with weight p” if a for-
ward rule of the form “interest Y classi�ed as personal
�nance with weight p” had been discovered. Such a
classi�cation can then be used to rewrite the query, or

to send it to an appropriate database-backend if many

domain-speci�c databases are available.

Cross References
7Bayesian Methods
7Classi�cation

 S Self-Organizing Feature Maps

7Covariance Matrix
7Rule Learning
7Text Mining

Recommended Reading
Becker, J., & Kuropka, D. (). Topic-based vector space model.

In W. Abramowicz & G. Klein (Eds.), Proceedings of the
sixth international conference on business information systems
(pp. –). Colorado Springs, CO.

Beitzel, S. M., Jensen, E. C., Lewis, D. D., Chowdhury, A., &

Frieder, O. (). Automatic classification of web queries

using very large unlabeled query logs. ACM Transactions on
Information Systems, (), . ISSN: -

Broder, A. (). A taxonomy of web search. SIGIR Forum, (),
–.

Fox, S., Karnawat, K., Mydland, M., Dumais, S., & White, T. ().

Evaluating implicit measures to improve web search. ACM
Transactions on Information Systems, (), –.

Lee, U., Liu, Z., & Cho, J. (). Automatic identification of user

goals in web search. In WWW ’: In Proceedings of the th
international conference on World Wide Web (pp. –). New
York: ACM Press.

Markev, K. (a). Twenty-five years of end-user searching, part :

Research findings. Journal of the American Society for Informa-
tion Science and Technology, (), –.

Markev, K. (b). Twenty-five years of end-user searching, part :

Future research directions. Journal of the American Society for
Information Science and Technology, (), –.

Page, L., Brin, S., Motwani, R., & Winograd, T. (). The pager-
ank citation ranking: Bringing order to the web. Technical report.
Stanford, CA: Stanford University Press.

Robertson, S. E., Walker, S., & Beaulieu, M. (a). Okapi at trec-

: Automatic ad hoc, filtering, VLC and filtering tracks. In

E. Voorhees & D. Harman (Eds.), In Proceedings of the seventh
text retrieval conference (pp. –). Gaithersburg, MD.

Robertson, S. E., Walker, S., & Beaulieu, M. (b). On model-

ing of information retrieval concepts in vector spaces. ACM
Transactions on Database Systems, (), –.

Self-Organizing Feature Maps

7Self-Organizing Maps

Self-Organizing Maps

Samuel Kaski

Helsinki University of Technology, Finland

Synonyms
Kohonen maps; Self-organizing feature maps; SOM

Definition
Self-organizing map (SOM), or Kohonen Map, is a

computational data analysis method which produces

nonlinear mappings of data to lower dimensions. Alter-

natively, the SOM can be viewed as a 7clustering algo-
rithm which produces a set of clusters organized on a

regular grid. �e roots of SOM are in neural compu-

tation (see 7neural networks); it has been used as an
abstract model for the formation of ordered maps of

brain functions, such as sensory feature maps. Several

variants have been proposed, ranging from dynamic

models to Bayesian variants. �e SOM has been used

widely as an engineering tool for data analysis, process

monitoring, and information visualization, in numer-

ous application areas.

Motivation and Background
�e SOM (Kohonen, ,) was originally intro-

duced in the context of modeling of how the spatial

organization of brain functions forms. Formation of

feature detectors selective to certain sensory inputs,

such as orientation-selective visual neurons, had earlier

been modeled by 7competitive learning in neural net-
works, and some models of how the feature detectors

become spatially ordered had been published (von der

Malsburg,). �e SOM introduced an adaptation
kernel or neighborhood function that governs the adap-
tation in such networks; while in plain competitive

learning only the winning neuron that best matches

the inputs adapts, in SOM all neurons within a local

neighborhood of the winner learn.�e neighborhood

is determined by the neighborhood function.�e SOM

is an algorithm for computing such ordered mappings.

While some of the motivation of the SOM comes

from neural computation, its main uses have been as a

practical data analysis method.�e SOM can be viewed

as a topographic vector quantizer, a nonlinear projec-

tionmethod, or a clusteringmethod. In particular, it is a

clustering-type algorithm that orders the clusters. Alter-

natively, it is a nonlinear projection-type algorithm that

clusters, or more speci�cally quantizes, the data.

�e SOM was very popular in the s and still is;

it is intuitively relatively easily understandable, yet hard

to analyze thoroughly. It connects many research tradi-

tions and works well in practice. An impressive set of

variants have been published over the years, of which

Self-Organizing Maps S

S

probabilistic variants (e.g., Bishop, Svensén, &Williams

() and Heskes ()) are perhaps closest to the

currentmainstreammachine learning.While there cur-

rently are excellent alternative choices for many of the

speci�c tasks SOMshave been applied for over the years,

even the basic SOMalgorithm is still viable as a versatile

engineering tool in data-analysis tasks.

Structure of Learning System
�e SOM consists of a regular grid of nodes (Fig.).

A model of data has been attached to each node. For
vector-valued data x = [x, . . . , xd]T, themodels are vec-
tors in the same space; the model at the ith node is
mi = [mi, . . . ,mid].�e models de�ne a mapping from

the grid to the data space.�e coordinates on the grid

are uniquely determined by the index i of a node, and
the model mi gives the location in the data space.�e

whole grid becomes mapped into an “elastic net” in the

data space. While being a mapping from the grid to

the input space, the SOM de�nes a projection from the

input space to the discrete grid locations as well; each

data point is projected to the node having the closest

model.

�e original online SOM algorithm updates the

model vectors toward the current input vector at time t,

mi(t +) =mi(t) + hci(t)(x(t) −mi(t)) .

Here c is the index of the unit having the closest model
vector to x(t), and hci(t) is the neighborhood function
or adaptation kernel.�e kernel is a decreasing function

of the distance between the units i and c on the grid; it
forces neighboring units to adapt toward similar input

samples.�e height and width of h are decreasing func-
tions of time t. In an iteration over time and over the
di�erent inputs, the model vectors become ordered and

specialize to represent di�erent regions of the input

space.

�e online version of7K-means clustering is a spe-
cial case of the SOM learning rule, where only the clos-

est model vector is adapted.�at is, the neighborhood

function is hci(t) = α(t) for i = c and hci = otherwise.
Here α(t) is the adaptation coe�cient, a decreasing
scalar. In short, K-means and SOM use the prototypes

in the same way, but in SOM the prototypes have an

inherent order that stems from �xing them onto a grid

and updating the prototypes to represent both the data

mapped to themselves and to their neighbors.

A neural interpretation of the SOM adaptation pro-

cess is that the nodes are feature detector neurons

or processing modules that in a 7competitive learn-
ing process become specialized to represent di�erent

kinds of inputs.�e neighborhood function is a plas-

ticity kernel that forces neighboring neurons to adapt

at the same time. �e kernel transforms the discrete

set of feature detectors into feature maps analogous to

ordered brain maps of sensor inputs, and more gener-

ally to maps of more abstract properties of the input

data.

A third interpretation of the SOM is as a vector

quantizer. �e task of a vector quantizer is to encode

inputs with indexes of prototypes, o�en called code-

book vectors, such that a distortion measure is mini-

mized. If there is noise that may change the indexes, the

i mi

SOM grid Data space

Self-Organizing Maps. Figure . A schematic diagram showing how the SOM grid of units (circles on the left, neigh-

bors connected with lines) corresponds to an “elastic net” in the data space. The mapping from the grid locations,

determined by the indices i, to the data space is given by the model vectors mi attached to the units i

 S Semantic Mapping

distribution of the noise should be used as the neighbor-

hood function, and then the distortion becomes mini-

mized by a variant of SOM (Luttrell,). In summary,

the SOM can be viewed as an algorithm for producing

codebooks ordered on a grid.

While it has turned out to be hard to rigorously ana-

lyze the properties of the SOM algorithm (Fort,),

its �xed points may be informative. In a �xed point the

models must ful�ll

mi =
∑x hc(x),ix
∑x hc(x),i

,

that is, each model vector is in the centroid of data

projected to it and its neighbors. �e de�nition of a

principal curve (Hastie, Tibshirani, & Friedman,),
a nonlinear generalization of principal components (see

7principle components analysis), essentially is that the
curve goes through the centroid of data projected to it.

Hence, one interpretation of the SOM is a discretized,

smoothed, nonlinear generalization of principal com-

ponents. In short, SOMs aim to describe the variation

in the data nonlinearly with their discrete grids.

Finally, a popular prototype-based classi�er,

7learning vector quantization (LVQ) (Kohonen,),
can be loosely interpreted as a variant of SOMs,

although it does not have the neighborhood function

and hence, the prototypes do not have an order.

Programs and Data
�e SOM has been implemented in several commercial

packages and as freeware. Two examples, SOM_PAK

written in C andMatlab SOMToolbox (http://www.cis.

hut.�/research/so�ware) came from Kohonen’s group.

Applications
�e SOM can be used as a nonlinear dimensionality

reduction method, by projecting each data vector into

the grid location having the closest model vector. An

image of the grid can be used for information visual-
ization. Since all grid locations are clusters, the SOM
display actually visualizes an ordered set of clusters, or a

quantized image of the principalmanifold in data.More

speci�cally, the SOM units can be thought of as sub-

clusters, and data clusters may form larger areas on the

SOM grid.

SOM-based visualizations can be used for illustrat-

ing the proximity relationships of data vectors, such as

documents in the WEBSOM document maps (Koho-

nen et al.,), or monitoring the change of a sys-

tem such as an industrial process or the utterances

of a speaker, as a trajectory on the SOM display.

More applications can be found in a collected bibli-

ography (the latest one is Pöllä, Honkela, & Kohonen

(in press)).

Cross References
7ART
7Competitive Learning
7Dimensionality Reduction
7Hebbian Learning
7K-means Clustering
7Learning Vector Quantization

Recommended Reading
Bishop, C. M., Svensén, M., & Williams, C. K. I. (). GTM: The

generative topographic mapping. Neural Computation, , –
.

Fort, J. C. (). SOM’s mathematics. Neural Networks, , –.
Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of

statistical learning. New York: Springer.
Heskes, T. (). Self-organizing maps, vector quantization, and

mixture modeling. IEEE Transactions on Neural Networks, ,
–.

Kohonen, T. (). Self-organized formation of topologically cor-

rect feature maps. Biological Cybernetics, , –.
Kohonen, T. (). Self-organizing maps (rd ed.). Berlin: Springer.
Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J.,

Paatero, V., et al. (). Self organization of a massive doc-

ument collection. IEEE Transactions on Neural Networks, ,
–.

Luttrell, S. P. (). A Bayesian analysis of self-organizing maps.

Neural Computation, , –.
Pöllä, M., Honkela, T., & Kohonen, T. (). Bibliography of self-

organizing map (SOM) papers: - addendum. Report

TKK-ICS-R, Helsinki University of Technology, Department

of Information and Computer Science, Espoo, Finland.

von der Malsburg, C. (). Self-organization of orientation sensi-

tive cells in the striate cortex. Kybernetik, , –.

Semantic Mapping

7Text Visualization

Semi-Naive Bayesian Learning S

S

Semi-Naive Bayesian Learning

Fei Zheng, Geoffrey I. Webb

Monash University,

Clayton, Melbourne,

Victoria, Australia

Definition
Semi-naive Bayesian learning refers to a �eld of
7Supervised Classi�cation that seeks to enhance the
classi�cation and conditional probability estimation

accuracy of7naive Bayes by relaxing its attribute inde-
pendence assumption.

Motivation and Background
�e assumption underlying 7naive Bayes is that
attributes are independent of each other, given the

class. �is is an unrealistic assumption for many

applications. Violations of this assumption can render

naive Bayes’ classi�cation suboptimal.�ere have been

many attempts to improve the classi�cation accuracy

and probability estimation of naive Bayes by relax-

ing the attribute independence assumption while at

the same time retaining much of its simplicity and

e�ciency.

Taxonomy of Semi-Naive Bayesian
Techniques
Semi-naive Bayesian methods can be roughly subdi-

vided into �ve high-level strategies for relaxing the

independence assumption.

● �e �rst strategy forms an attribute subset by delet-

ing attributes to remove harmful interdependencies

and applies conventional naive Bayes to this attribute

subset.

● �e second strategy modi�es naive Bayes by adding

explicit interdependencies between attributes.

● �e third strategy accommodates violations of the

attribute independence assumption by applying

naive Bayes to a subset of training set. Note that

the second and third strategies are not mutually

exclusive.

● �e fourth strategy performs adjustments to the

output of naive Bayes without altering its direct

operation.

● �e ��h strategy introduces hidden variables to

naive Bayes.

Methods That Apply Naive Bayes to a
Subset of Attributes
Due to the attribute independence assumption, the

accuracy of naive Bayes is o�en degraded by the

presence of strongly correlated attributes. Irrelevant

attributes may also degrade the accuracy of naive Bayes,

in e�ect increasing variance without decreasing bias.

Hence, it is useful to remove both strongly correlated

and irrelevant attributes.

Backward sequential elimination (Kittler,) is

an e�ective wrapper technique to select an attribute

subset and has been pro�tably applied to naive Bayes.

It begins with the complete attribute set and iteratively

removes successive attributes. On each iteration, naive

Bayes is applied to every subset of attributes that can be

formed by removing one further attribute.�e attribute

whose deletion most improves training set accuracy

is then removed, and the process repeated. It termi-

nates the process when subsequent attribute deletion

does not improve training set accuracy. Conventional

naive Bayes is then applied to the resulting attribute

subset.

One extreme type of interdependencies between

attributes results in a value of one being a generaliza-

tion of a value of the other. For example,Gender=female
is a generalization of Pregnant=yes. Subsumption res-
olution (SR) (Zheng & Webb,) identi�es at clas-

si�cation time pairs of attribute values such that one

appears to subsume (be a generalization of) the other

and delete the generalization. It uses the criterion ∣Txi ∣ =

∣Txi ,xj ∣ ≥ u to infer that attribute value xj is a general-
ization of attribute value xi, where ∣Txi ∣ is the number

of training cases with value xi, ∣Txi ,xj ∣ is the number

of training cases with both values, and u is a user-
speci�ed minimum frequency. When SR is applied

to naive Bayes, the resulting classi�er acts as naive

Bayes except that it deletes generalization attribute-

values at classi�cation time if a specialization is

detected.

 S Semi-Naive Bayesian Learning

Methods That Alter Naive Bayes by
Allowing Interdependencies between
Attributes
Interdependencies between attributes can be addressed

directly by allowing an attribute to depend on other

non-class attributes. Sahami () introduces the ter-

minology of the z-dependence Bayesian classi�er, in
which each attribute depends upon the class and atmost

z other attributes. Figure depictsmethods in this group
from the7Bayesian Network perspective.
In Fig. a, each attribute depends on the class and

at most one another attribute.7Tree Augmented Naive
Bayes (TAN) (Friedman, Geiger, &Goldszmidt,) is

a representative one-dependence classi�er. It e�ciently

�nds a directed spanning tree by maximizing the log-

likelihood and employs this tree to perform classi�ca-

tion. SuperParent TAN (Keogh & Pazzani,) is an

e�ective variant of TAN.

A SuperParent one-dependence classi�er (Fig. b)

is a special case of one-dependence classi�ers, in

which an attribute called the SuperParent (X in this
graph), is selected as the parent of all the other

attributes. 7Averaged One-Dependence Estimators
(AODE) (Webb, Boughton, & Wang,) selects

a restricted class of one-dependence classi�ers and

aggregates the predictions of all quali�ed classi�ers

within this class. Maximum a posteriori linear mixture

of generative distributions (MAPLMG) (Cerquides &

Mántaras,) extends AODE by assigning a weight

to each one-dependence classi�er.

Two z-dependence classi�ers (z ≥) are NBTree

(Kohavi,) and lazy Bayesian rules (LBR) (Zheng

& Webb,), both of which may add any num-

ber of non-class-parents for an attribute. In Fig. c,

attributes in {Xiq+ , . . . ,Xin} depend on all the attributes

in {Xi , . . . ,Xiq}.�emain di�erence between these two

methods is that NBTree builds a single tree for all train-

ing instances while LBR generates a Bayesian rule for

each test instance.

Methods That Apply Naive Bayes to a
Subset of the Training Set
Another e�ective approach to accommodating viola-

tions of the conditional independence assumption is

to apply naive Bayes to a subset of the training set, as

it is possible that the assumption, although violated in

the whole training set, may hold or approximately hold

in a subset of the training set. NBTree and LBR use a

local naive Bayes to classify an instance and can also be

classi�ed into this group. Locally weighted naive Bayes

(LWNB) (Frank, Hall, & Pfahringer,) applies naive

Bayes to a neighborhood of the test instance, in which

each instance is assigned a weight decreasing linearly

with the Euclidean distance to the test instance. �e

number of instances in the subset is determined by a

user-speci�ed parameter. Only those instances whose

weights are greater than zero are used for classi�cation.

Methods That Calibrate Naive Bayes’
Probability Estimates
Methods in this group make adjustments to the distor-

tion in estimated posterior probabilities resulting from

violations of independence assumption. Isotonic regres-

sion (IR) (Zadrozny & Elkan,) is a nonparametric

calibration method which produces a monotonically

increasing transformation of the probability outcome

Y

X1 X2 Xi Xi+1 Xn

Y

X1 X2 Xi Xi+1 Xn
Xiq+1 Xiq+2 Xin

XiqXi2Xi1

Y

Semi-Naive Bayesian Learning. Figure . Bayesian Network. (a) one-dependence classifier, (b) SuperParent one-

dependence classifier and (c) z-dependence classifier (z ≥)

Semi-Naive Bayesian Learning S

S

of naive Bayes. It uses a pair-adjacent violators algo-

rithm (Ayer, Brunk, Ewing, Reid, & Silverman,)

to perform calibration. To classify a test instance, IR

�rst �nds the interval in which the estimated poste-

rior probability �ts and predicts the isotonic regres-

sion estimate of this interval as the calibrated posterior

probability. Adjusted probability naive Bayesian classi-

�cation (Webb & Pazzani,) makes adjustments to

class probabilities, using a simple hill-climbing search

to �nd adjustments that maximize the 7leave-one-out
cross validation accuracy estimate. Starting with the

conditional attribute-value frequency table generated

by naive Bayes, iterative Bayes (Gama,) iteratively

updates the frequency table by cycling through all train-

ing instances.

Methods That Introduce Hidden Variables
to Naive Bayes
Creating hidden variables or joining attributes is

another e�ective approach to relaxing the attribute

independence assumption. Backward sequential elim-

ination and joining (BSEJ) (Pazzani,) extends BSE

by creating new Cartesian product attributes. It con-

siders joining each pair of attributes and creates new

Cartesian product attributes if the action improves

leave-one-out cross validation accuracy. It deletes origi-

nal attributes and also new Cartesian product attributes

during a hill-climbing search. �is process of joining

or deleting is repeated until there is no further accu-

racy improvement. Hierarchical naive Bayes (Zhang,

Nielsen, & Jensen,) uses conditional mutual infor-

mation as a criterion to create a hidden variable whose

value set is initialized to the Cartesian product over

all the value sets of its children. Values of a hidden

variable are then collapsed by maximizing conditional

log-likelihood via the 7minimum description length
principle (Rissanen,).

Selection Between Semi-Naive Bayesian
Methods
No algorithm is universally optimal in terms of gener-

alization accuracy. General recommendations for selec-

tion between semi-naive Bayesian methods is provided

based on7bias-variance tradeo� together with charac-
teristics of the application to which they are applied.

Error can be decomposed into bias and variance

(see7bias variance decomposition). Biasmeasures how
closely a learner is able to approximate the decision sur-

faces for a domain and variancemeasures the sensitivity

of a learner to random variations in the training data.

Unfortunately, we cannot, in general, minimize bias

and variance simultaneously. �ere is a bias-variance

tradeo� such that bias typically decreaseswhen variance

increases and vice versa. Data set size usually interacts

with bias and variance and in turn a�ects error. Since

di�erences between samples are expected to decrease

with increasing sample size, di�erences between mod-

els formed from those samples are expected to decrease

and hence variance is expected to decrease.�erefore,

the bias proportion of error may be higher on large data

sets than on small data sets and the variance proportion

of error may be higher on small data sets than on large

data sets. Consequently, low bias algorithms may have

advantage in error on large data sets and low variance

algorithms may have advantage in error on small data

sets (Brain &Webb,).

Zheng & Webb () compare eight semi-naive

Bayesian methods with naive Bayes. �ese methods

are BSE, FSS, TAN, SP-TAN, AODE, NBTree, LBR,

and BSEJ. NBTree, SP-TAN, and BSEJ have relatively

high training time complexity, while LBR has high clas-

si�cation time complexity. BSEJ has very high space

complexity. NBTree and BSEJ have very low bias and

high variance. Naive Bayes and AODE have very low

variance. AODE has a signi�cant advantage in error

over other semi-naive Bayesian algorithms tested, with

the exceptions of LBR and SP-TAN. It achieves a

lower error for more data sets than LBR and SP-TAN

without SP-TAN’s high training time complexity and

LBR’s high test time complexity. Subsequent researches

(Cerquides & Mántaras, ; Zheng & Webb,)

show that MAPLMG and SR can in practice signif-

icantly improve both classi�cation accuracy and the

precision of conditional probability estimates of AODE.

However, MAPLMG imposes very high training time

overheads on AODE, while SR imposes no extra train-

ing time overheads and onlymodest test time overheads

on AODE.

Within the prevailing computational complexity

constraints, we suggest using the lowest bias semi-naive

Bayesianmethod for large training data and lowest vari-

ance semi-naive Bayesian method for small training

 S Semi-Supervised Learning

data. An appropriate tradeo� between bias and variance

should be sought for intermediate size training data. For

extremely small data, naive Bayes may be superior and

for large data NBTree and BSEJ may be more appealing

options if their computational complexity satis�es the

computational constraints of the application context.

AODE achieves very low variance, relatively low bias

and low training time and space complexity. MAPLMG

and SR further enhance AODE by substantially reduc-

ing bias and error and improving probability prediction

with modest time complexity. Consequently, they may

prove competitive over a considerable range of classi�-

cation tasks. Furthermore, MAPLMG may excel if the

primary consideration is attaining the highest possible

classi�cation accuracy and SRmay have an advantage if

one wishes e�cient classi�cation.

Cross References
7Bayesian Network
7Naive Bayes

Recommended Reading
Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E.

(). An empirical distribution function for sampling with

incomplete information. The Annals of Mathematical Statistics,
(), –.

Brain, D., & Webb, G. I. (). The need for low bias algorithms

in classification learning from large data sets. In Proceedings of
the Sixteenth European Conference on Principles of Data Mining
and Knowledge Discovery (pp. –). Berlin: Springer-Verlag.

Cerquides, J., & Mántaras, R. L. D. (). Robust Bayesian linear

classifier ensembles. In Proceedings of the Sixteenth European
Conference on Machine Learning, pp. –.

Frank, E., Hall, M., & Pfahringer, B. (). Locally weighted naive

Bayes. In Proceedings of the Nineteenth Conference on Uncer-
tainty in Artificial Intelligence, Acapulco, Mexico (pp. –).
San Francisco, CA: Morgan Kaufmann.

Friedman, N., Geiger, D., & Goldszmidt, M. (). Bayesian net-

work classifiers. Machine Learning, (), –.
Gama, J. (). Iterative Bayes. Theoretical Computer Science,

(), –.
Keogh, E. J., & Pazzani, M. J. (). Learning augmented

Bayesian classifiers: A comparison of distribution-based and

classification-based approaches. In Proceedings of the Inter-
national Workshop on Artificial Intelligence and Statistics,
pp. –.

Kittler, J., (). Feature selection and extraction. In T. Y. Young

& K. S. Fu (Eds.), Handbook of Pattern Recognition and Image
Processing. New York: Academic Press.

Kohavi, R. (). Scaling up the accuracy of naive-Bayes classifiers:

A decisiontree hybrid. In Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. –.

Pazzani, M. J. (). Constructive induction of Cartesian prod-

uct attributes. In ISIS: Information. Statistics and Induction in
Science, Melbourne, Australia, (pp. –). Singapore: World
Scientific.

Rissanen, J. (). Modeling by shortest data description. Automat-
ica, , –.

Sahami, M. (). Learning limited dependence Bayesian classi-

fiers. In Proceedings of the Second International Conference on
Knowledge Discovery in Databases (pp. –) Menlo Park:
AAAI Press.

Webb, G. I., & Pazzani, M. J. (). Adjusted probability naive

Bayesian induction. In Proceedings of the Eleventh Australian
Joint Conference on Artificial Intelligence, Sydney, Australia
(pp. –). Berlin: Springer.

Webb, G. I., Boughton, J., & Wang, Z. (). Not so naive

Bayes: Aggregating onedependence estimators.Machine Learn-
ing, (), –.

Zadrozny, B., & Elkan, C. (). Transforming classifier scores into

accurate multiclass probability estimates. In Proceedings of the
Eighth International Conference on Knowledge Discovery and
Data Mining, Edmonton, Alberta, Canada (pp. –). New
York: ACM Press.

Zhang, N. L., Nielsen, T. D., & Jensen, F. V. (). Latent vari-

able discovery in classification models. Artificial Intelligence in
Medicine, (), –.

Zheng, Z., & Webb, G. I. (). Lazy learning of Bayesian rules.

Machine Learning, (), –.
Zheng, F., & Webb, G. I. (). A comparative study of semi-

naive Bayes methods in classification learning. In Proceedings
of the Fourth Australasian Data Mining Conference, Sydney,
pp. –.

Zheng, F., & Webb, G. I. (). Efficient lazy elimination for

averaged-one dependence estimators. In Proceedings of the
Twenty-third International Conference on Machine Learning
(pp. –). New York: ACM Press.

Semi-Supervised Learning

Xiaojin Zhu

University of Wisconsin-Madison,

Madison, WI, USA

Synonyms
Co-training; Learning from labeled and unlabeled data;

Transductive learning

Definition
Semi-supervised learning uses both labeled and unla-

beled data to perform an otherwise7supervised learn-
ing or7unsupervised learning task.
In the former case, there is a distinction between

inductive semi-supervised learning and transductive

Semi-Supervised Learning S

S

learning. In inductive semi-supervised learning, the

learner has both labeled training data {(xi, yi)}li =
iid
∼

p(x, y) and unlabeled training data {xi}l+ui = l+
iid
∼ p(x),

and learns a predictor f : X ↦ Y , f ∈ F where F is

the hypothesis space. Here x ∈ X is an input instance,

y ∈ Y its target label (discrete for 7classi�cation or
continuous for7regression), p(x, y) the unknown joint
distribution and p(x) its marginal, and typically l ≪ u.
�e goal is to learn a predictor that predicts future test

data better than the predictor learned from the labeled

training data alone. In transductive learning, the set-

ting is the same except that one is solely interested in

the predictions on the unlabeled training data {xi}l+ui = l+,

without any intention to generalize to future test data.

In the latter case, an unsupervised learning task

is enhanced by labeled data. For example, in semi-

supervised clustering (a.k.a. 7constrained clustering)
one may have a few must-links (two instances must be

in the same cluster) and cannot-links (two instances

cannot be in the same cluster) in addition to the unla-

beled instances to be clustered; in semi-supervised

7dimensionality reduction one might have the target
low-dimensional coordinates on a few instances.

�is entry will focus on the former case of learning

a predictor.

Motivation and Background
Semi-supervised learning is initially motivated by its

practical value in learning faster, better, and cheaper.

In many real world applications, it is relatively easy to

acquire a large amount of unlabeled data {x}. For exam-
ple, documents can be crawled from the Web, images

can be obtained from surveillance cameras, and speech

can be collected from broadcast. However, their corre-

sponding labels {y} for the prediction task, such as sen-
timent orientation, intrusion detection, and phonetic

transcript, o�en requires slow human annotation and

expensive laboratory experiments.�is labeling bottle-

neck results in a scarce of labeled data and a surplus

of unlabeled data. �erefore, being able to utilize the

surplus unlabeled data is desirable.

Recently, semi-supervised learning also �nds appli-

cations in cognitive psychology as a computational

model for human learning. In human categoriza-

tion and concept forming, the environment provides

unsupervised data (e.g., a child watching surrounding

objects by herself) in addition to labeled data from a

teacher (e.g., Dad points to an object and says “bird!”).

�ere is evidence that human beings can combine

labeled and unlabeled data to facilitate learning.

�e history of semi-supervised learning goes back to

at least the s, when self-training, transduction, and

Gaussian mixtures with the expectation-maximization

(EM) algorithm �rst emerged. It enjoyed an explosion

of interest since the s, with the development of new

algorithms like co-training and transductive support

vector machines, new applications in natural language

processing and computer vision, and new theoretical

analyses. More discussions can be found in section ..

in Chapelle, Zien, and Schölkopf ().

Theory
Unlabeled data {xi}l+ui = l+ by itself does not carry any

information on the mapping X ↦ Y . How can it help

us learn a better predictor f :X ↦ Y? Balcan and Blum
pointed out in that the key lies in an implicit

ordering of f ∈ F induced by the unlabeled data. Infor-
mally, if the implicit ordering happens to rank the target

predictor f ∗ near the top, then one needs less labeled
data to learn f ∗. �is idea will be formalized later
on using PAC learning bounds. In other contexts, the

implicit ordering is interpreted as a prior overF or as a

regularizer.

A semi-supervised learning method must address

two questions: what implicit ordering is induced by the

unlabeled data, and how to algorithmically �nd a pre-

dictor near the top of this implicit ordering and �ts

the labeled data well. Many semi-supervised learning

methods have been proposed, with di�erent answers to

these two questions (Abney, ; Chapelle et al., ;

Seeger, ; Zhu & Goldberg,). It is impossible to

enumerate all methods in this entry. Instead, we present

a few representative methods.

Generative Models

�is semi-supervised learning method assumes the

formof joint probability p(x, y ∣ θ) = p(y ∣ θ)p(x ∣ y, θ).
For example, the class prior distribution p(y ∣ θ) can
be a multinomial over Y , while the class conditional

distribution p(x ∣ y, θ) can be a multivariate Gaus-
sian in X (Castelli & Cover, ; Nigam, McCallum,

�run, & Mitchell,). We use θ ∈ Θ to denote the

 S Semi-Supervised Learning

parameters of the joint probability. Each θ corresponds
to a predictor fθ via Bayes rule:

fθ(x) ≡ argmaxyp(y ∣ x, θ) = argmaxy
p(x, y ∣ θ)

∑y′ p(x, y′ ∣ θ)
.

�erefore, F = {fθ : θ ∈ Θ}.

What is the implicit ordering of fθ induced by unla-
beled training data {xi}l+ui = l+? It is the large to small

ordering of log likelihood of θ on unlabeled data:

log p({xi}l+ui = l+ ∣ θ) =
l+u
∑

i = l+
log

⎛

⎝
∑
y∈Y

p(xi, y ∣ θ)
⎞

⎠
.

�e top ranked fθ is the one whose θ (or rather the gen-
erative model with parameters θ) best �ts the unlabeled
data.�erefore, this method assumes that the form of

the joint probability is correct for the task.

To identify the fθ that both �ts the labeled data well
and ranks high, one maximizes the log likelihood of θ
on both labeled and unlabeled data:

argmaxθ log p({xi, yi}
l
i = ∣ θ) + λ log p({xi}l+ui = l+ ∣ θ),

where λ is a balancing weight. �is is a non-concave
problem. A local maximum can be found with the EM

algorithm, or other numerical optimization methods.

(See also,7generative learning.)

Semi-Supervised Support Vector Machines

�is semi-supervised learningmethod assumes that the

decision boundary f (x) = is situated in a low-density
region (in terms of unlabeled data) between the two

classes y ∈ {−, } (Joachims, ; Vapnik,). Con-

sider the following hat loss function on an unlabeled

instance x:
max(− ∣f (x)∣,),

which is positive when −< f (x)< , and zero outside.
�e hat loss thus measures the violation in (unlabeled)

large margin separation between f and x. Averaging
over all unlabeled training instances, it induces an

implicit ordering from small to large over f ∈ F :

u

l+u
∑
i=l+

max(− ∣f (x)∣,).

�e top ranked f is onewhose decision boundary avoids
most unlabeled instances by a large margin.

To �nd the f that both �ts the labeled data well
and ranks high, one typically minimizes the following

objective:

argminf

l

l

∑
i =
max(− yif (xi),)

+ λ∥f ∥ + λ

u

l+u
∑

i = l+
max(− ∣f (x)∣,),

which is a combination of the objective for super-

vised support vector machines, and the average hat

loss. Algorithmically, the optimization problem is dif-

�cult because the hat loss is non-convex. Existing

solutions include semi-de�nite programming relax-

ation, deterministic annealing, continuation method,

concave-convex procedure (CCCP), stochastic gradient

descent, and Branch and Bound. (See also 7support
vector machines.)

Graph-Based Models

�is semi-supervised learning method assumes that

there is a graph G = {V ,E} such that the vertices
V are the labeled and unlabeled training instances,

and the undirected edges E connect instances i, j with
weight wij (Belkin, Niyogi, & Sindhwani, ; Blum

& Chawla, ; Zhu, Ghahramani, & La�erty,).

�e graph is sometimes assumed to be a random

instantiation of an underlying manifold structure that

supports p(x). Typically, wij re�ects the proximity of

xi, xj. For example, the Gaussian edge weight function
de�neswij = exp (−∥xi − xj∥/σ). As another example,
the kNN edge weight function de�nes wij = if xi is
within the k nearest neighbors of xj or vice versa, and
wij = otherwise. Other commonly used edge weight

functions include є-radius neighbors, b-matching, and
combinations of the above.

Large wij implies a preference for the predictions

f (xi) and f (xj) to be the same.�is can be formalized
by the graph energy of a function f :

l+u
∑
i,j=

wij(f (xi) − f (xj)).

�e graph energy induces an implicit ordering of

f ∈F from small to large. �e top ranked function is
the smoothest with respect to the graph (in fact, it

is any constant function). �e graph energy can be

Semi-Supervised Learning S

S

equivalently expressed using the so-called unnor-

malized graph Laplacian matrix. Variants including

the normalized Laplacian and the powers of these

matrices.

To �nd the f that both �ts the labeled data well
and ranks high (i.e., being smooth on the graph

or manifold), one typically minimizes the following

objective:

argminf

l

l

∑
i =

c(f (xi), yi) + λ∥f ∥

+ λ
l+u
∑
i,j =

wij(f (xi) − f (xj)),

where c(f (x), y) is a convex loss function such as the
hinge loss or the squared loss.�is is a convex optimiza-

tion problem with e�cient solvers.

Co-training and Multiview Models

�is semi-supervised learning method assumes that

there are multiple, di�erent learners trained on the

same labeled data, and these learners agree on the unla-

beled data. A classic algorithm is co-training (Blum &

Mitchell,). Take the example of web page clas-

si�cation, where each web page x is represented by
two subsets of features, or “views” x = ⟨x(), x()⟩.
For instance, x() can represent the words on the
page itself, and x() the words on the hyperlinks (on
other web pages) pointing to this page.�e co-training

algorithm trains two predictors: f () on x() (ignor-
ing the x() portion of the feature) and f () on x(),
both initially from the labeled data. If f () con�dently
predicts the label of an unlabeled instance x, then
the instance-label pair (x, f ()(x)) is added to f ()’s
labeled training data, and vice versa. Note this pro-

motes f () and f () to predict the same on x. �is
repeats so that each view teaches the other. Multiview

models generalize co-training by utilizing more than

two predictors, and relaxing the requirement of hav-

ing separate views (Sindhwani, Niyogi, & Belkin,).

In either case, the �nal prediction is obtained from

a (con�dence weighted) average or vote among the

predictors.

To de�ne the implicit ordering on the hypothe-

sis space, we need a slight extension. In general, let

there be m predictors f (), . . . , f (m). Now let a hypoth-
esis be an m-tuple of predictors ⟨ f (), . . . , f (m)⟩. �e

disagreement of a tuple on the unlabeled data can be

de�ned as

l+u
∑

i = l+

m

∑
u,v =

c(f (u)(xi), f (v)(xi)),

where c() is a loss function. Typical choices of c() are
the – loss for classi�cation, and the squared loss for

regression.�en the disagreement induces an implicit

ordering on tuples from small to large.

It is important for thesem predictors to be of diverse
types, and have di�erent 7inductive biases. In gen-
eral, each predictor f (u),u= . . .mmay be evaluated by
its individual loss function c(u) and regularizer Ω(u).
To �nd a hypothesis (i.e., m predictors) that �ts the

labeled data well and ranks high, one can minimize the

following objective:

argmin

⟨f () ,. . ., f (m)⟩

m

∑
u =

(

l

l

∑
i =

c(u)(f (u)(xi), yi)

+λΩ(u)(f (u)))

+ λ
l+u
∑

i = l+

m

∑
u,v =

c(f (u)(xi), f (v)(xi)).

Multiview learning typically optimizes this objective

directly. When the loss functions and regularizers are

convex, numerical solution is relatively easy to obtain.

In the special cases when the loss functions are the

squared loss, and the regularizers are squared ℓ norms,
there is a closed form solution. On the other hand, the

co-training algorithm, as presented earlier, optimizes

the objective indirectly with the iterative procedure.

One advantage of co-training is that the algorithm is

a wrapper method, in that it can use any “blackbox”

learners f () and f () without the need to modify the
learners.

A PAC Bound for Semi-Supervised Learning

Previously, we presented several semi-supervised learn-

ing methods, each induces an implicit ordering on the

hypothesis space using the unlabeled training data, and

each attempts to �nd a hypothesis that �t the labeled

training data well as well as rank high in that implicit

ordering. We now present a theoretical justi�cation

on why this is a good idea. In particular, we present

a uniform convergence bound by Balcan and Blum

 S Semi-Supervised Learning

(�eorem in Balcan and Blum ()). Alternative

theoretical analyses on semi-supervised learning can be

found by following the recommended reading.

First, we introduce some notations. Consider the

– loss for classi�cation. Let c∗ :X ↦{, } be the

unknown target function, which may not be in F .

Let err(f) = Ex∼p[f (x) ≠ c∗(x)] be the true error
rate of a hypothesis f , and êrr(f) =

l ∑
l
i= f (xi) ≠

c∗(xi) be the empirical error rate of f on the labeled
training sample. To characterize the implicit ordering,

we de�ned an “unlabeled error rate” errunl(f) = −

Ex∼p[χ(f , x)], where the compatibility function χ : F ×

X ↦ [,] measures how “compatible” f is to an unla-
beled instance x. As an example, in semi-supervised
support vector machines, if x is far away from the deci-
sion boundary produced by f , then χ(f , x) is large; but
if x is close to the decision boundary, χ(f , x) is small. In
this example, a large errunl(f) thenmeans that the deci-
sion boundary of f cuts through dense unlabeled data
regions, and thus f is undesirable for semi-supervised
learning. In contrast, a small errunl(f) means that the
decision boundary of f lies in a low density gap, which
is more desirable. In theory, the implicit ordering on

f ∈ F is to sort errunl(f) from small to large. In practice,
we use the empirical unlabeled error rate êrrunl(f) =

 −

u ∑
l+u
i=l+ χ(f , xi).

Our goal is to show that if an f ∈ F “�ts the labeled
data well and ranks high,” then f is almost as good as
the best hypothesis in F . Let t ∈ [,]. We �rst con-

sider the best hypothesis f ∗t in the subset of F that
consists of hypotheses whose unlabeled error rate is no

worse than t: f ∗t = argminf ′∈F ,errunl(f ′)≤terr(f
′). Obvi-

ously, t = gives the best hypothesis in the whole F .
However, the nature of the guarantee has the form

err(f)≤ err(f ∗t)+EstimationError(t)+c, where the Esti-
mationError term increases with t.�us, with t = the
bound can be loose. On the other hand, if t is close to ,
EstimationError(t) is small, but err(f ∗t) can be much

worse than err(f ∗t=). �e bound will account for the
optimal t.
We introduce a few more de�nitions. Let F(f) =

{f ′ ∈ F : êrrunl(f ′) ≤ êrrunl(f)} be the subset ofF with
empirical error no worse than that of f . As a complexity
measure, let [F(f)] be the number of di�erent parti-
tions of the �rst l unlabeled instances xl+ . . . xl, using
f ∈ F(f). Finally, let є̂(f) =

√

l log([F(f)]).�en
we have the following agnostic bound (meaning that c∗

may not be in F , and êrrunl(f)may not be zero for any
f ∈ F):

�eorem Given l labeled instances and su�cient
unlabeled instances, with probability at least − δ, the
function

f = argminf ′∈F êrr(f
′
) + є̂(f ′)

satis�es the guarantee that

err(f) ≤ min
t

(err(f ∗t) + є̂(f ∗t)) +

√
log(/δ)

l
.

If a function f �ts the labeled data well, it has a small
êrr(f). If it ranks high, then F(f) will be a small set,
consequently є̂(f) is small.�e argmin operator identi-
�es the best such function during training.�e bound

account for the minimum of all possible t tradeo�s.
�erefore, we see that the “lucky” case is when the

implicit ordering is good such that f ∗t=, the best hypoth-
esis in F , is near the top of the ranking.�is is when

semi-supervised learning is expected to perform well.

Balcan and Blum also give results addressing the key

issue of howmuch unlabeled data is needed for êrrunl(f)
and errunl(f) to be close for all f ∈ F .

Applications
Because the type of semi-supervised learning discussed

in this entry has the same goal of creating a predictor

as supervised learning, it is applicable to essentially any

problems where supervised learning can be applied. For

example, semi-supervised learning has been applied to

natural language processing (word sense disambigua-

tion (Yarowsky,), document categorization, named

entity classi�cation, sentiment analysis, machine trans-

lation), computer vision (object recognition, image

segmentation), bioinformatics (protein function pre-

diction), and cognitive psychology. Follow the recom-

mended reading for individual papers.

Future Directions
�ere are several directions to further enhance the value

semi-supervised learning. First, we need guarantees

that it will outperform supervised learning. Currently,

the practitioner has to manually choose a particular

Semi-Supervised Text Processing S

S

semi-supervised learning method, and o�en manually

set learning parameters. Sometimes, a bad choice that

does notmatch the task (e.g., modeling each class with a

Gaussian when the data does not have this distribution)

can make semi-supervised learning worse than super-

vised learning. Second, we need methods that bene-

�t from unlabeled when l, the size of labeled data, is
large. It has been widely observed that the gain over

supervised learning is the largest when l is small, but
diminishes as l increases.�ird, we need good ways to
combine semi-supervised learning and 7active learn-
ing. In natural learning systems such as humans, we

routinely observe unlabeled input, which o�en natu-

rally leads to questions. And �nally, we need meth-

ods that can e�ciently process massive unlabeled data,

especially in an7online learning setting.

Cross References
7Active Learning
7Classi�cation
7Constrained Clustering
7Dimensionality Reduction
7Online Learning
7Regression
7Supervised Learning
7Unsupervised Learning

Recommended Reading
Abney, S. (). Semisupervised learning for computational linguis-

tics. Florida: Chapman & Hall/CRC.
Balcan, M.-F., & Blum, A. (). A discriminative model for semi-

supervised learning. Journal of the ACM.
Belkin, M., Niyogi, P., & Sindhwani, V. (). Manifold regular-

ization: A geometric framework for learning from labeled and

unlabeled examples. Journal of Machine Learning Research, ,
–.

Blum, A., & Chawla, S. (). Learning from labeled and unla-

beled data using graph mincuts. In Proceedings of the th
international conference on machine learning (pp. –). San
Francisco: Morgan Kaufmann.

Blum, A., & Mitchell, T. (). Combining labeled and unlabeled

data with co-training. In COLT: Proceedings of the workshop on
computational learning theory (pp. –). New York: ACM.

Castelli, V., & Cover, T. (). The exponential value of labeled

samples. Pattern Recognition Letters, (), –.
Chapelle, O., Zien, A., & Schölkopf, B., (Eds.) (). Semi-

supervised learning. Cambridge, MA MIT Press.
Joachims, T. (). Transductive inference for text classification

using support vector machines. In Proceedings of the th inter-
national conference on machine learning (pp. –). San
Francisco: Morgan Kaufmann.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (). Text

classification from labeled and unlabeled documents using EM.

Machine Learning, (/), –.
Seeger, M. (). Learning with labeled and unlabeled data. Techni-

cal report. University of Edinburgh, Edinburgh.

Sindhwani, V., Niyogi, P., & Belkin, M. (). A co-regularized

approach to semi-supervised learning with multiple views. In

Proceedings of the nd ICML workshop on learning with multi-
ple views.

Vapnik, V. (). Statistical learning theory. New York: Wiley.
Yarowsky, D. (). Unsupervised word sense disambiguation

rivaling supervised methods. In Proceedings of the rd
annual meeting of the association for computational linguistics
(pp. –).

Zhu, X., Ghahramani, Z., & Lafferty, J. (). Semi-supervised

learning using Gaussian fields and harmonic functions. In The
th international conference on machine learning (ICML).

Zhu, X., & Goldberg, A. B. (). Synthesis lectures on artificial

intelligence and machine learning. In Introduction to semi-
supervised learning. Morgan & Claypool.

Semi-Supervised Text Processing

IonMuslea

Language Weaver, Inc.,

Marina del Rey, CA, USA

Synonyms
Learning from labeled and unlabeled data; Transductive

learning

Definition
In contrast to supervised and unsupervised learners,

which use solely labeled or unlabeled examples, respec-

tively, semi-supervised learning systems exploit both

labeled and unlabeled examples. In a typical semi-

supervised framework, the system takes as input a

(small) training set of labeled examples and a (larger)

working set of unlabeled examples; the learner’s perfor-

mance is evaluated on a test set that consists of unla-

beled examples. Transductive learning is a particular

case of semi-supervised learning in which the working

set and the test set are identical.

Semi-supervised learners use the unlabeled exam-

ples to improve the performance of the system that

could be learned solely from labeled data. Such learn-

ers typically exploit – directly or indirectly – the dis-

tribution of the available unlabeled examples. Text

 S Semi-Supervised Text Processing

processing is an ideal application domain for semi-

supervised learning because the abundance of text doc-

uments available on the Web makes it impossible for

humans to label them all. We focus here on two related

types of text processing tasks that were heavily studied

in the semi-supervised framework: text classi�cation

and text7Clustering.

Motivation and Background
In most applications of machine learning, collecting

large amounts of labeled examples is an expensive,

tedious, and error-prone process. In contrast, one may

o�en have cheap or even free access to large amounts of

unlabeled examples. For example, for text classi�cation,

which is the task of classifying text documents into cat-

egories such as politics, sports, entertainment, etc., one

can easily crawl the Web and download billions of Web

pages; however, manually labeling all these documents

according to the taxonomy of interest is an extremely

expensive task.

�e key idea in semi-supervised learning is to com-

plement a small amount of labeled data by a large num-

ber of unlabeled examples. Under certain conditions,

the unlabeled examples can be mined for knowledge

that will allow the semi-supervised learner to build a

system that performs better than one learned solely

from the labeled data. More precisely, semi-supervised

learners assume that the learning model matches the

structure of the application domain. If this is the case,

the information extracted from the unlabeled data can

be used to guide the search towards the optimal solution
(e.g., by modifying or re-ranking the learned hypothe-

ses); otherwise, the unlabeled examples may hurt rather
than help the learning process (Cozman, Cohen, &

Cirelo,).

For the sake of concision and clarity, we have had to

make several compromises in terms of the algorithms

and the applications presented here. Given the vast-

ness of the �eld of text processing, we have decided

to focus only on the two related tasks of text classi-

�cation and text clustering. �ey are the most stud-

ied text processing applications within the �eld of

machine learning; furthermore, virtually all the main

types of semi-supervised algorithms were applied to

these two tasks. �is decision has two main conse-

quences. First, we do not consider many other text

processing tasks, such as information extraction, nat-

ural language parsing, or base noun–phrase identi�ca-

tion; for these we refer the interested reader to Muslea,

Minton, and Knoblock (). Second, we discuss and

cite approaches that were applied to text classi�ca-

tion or clustering there is however, alone an excel-

lent survey by Zhu () covering seminal work on

semi-supervised learning that was not applied to text

processing.

Structure of the Learning System
Generative Models

�e early work on semi-supervised text categoriza-

tion (Nigam, McCallum,�run, & Mitchell,) was

based primarily on generative models (see7generative
learning). Such approaches make two major assump-

tions: () the data is generated by a mixture model,

and () there is a correspondence between the compo-

nents of the mixture and the classes of the application

domain. Intuitively, if these assumptions hold, the unla-

beled examples become instrumental in identifying the

mixture’s components, while the labeled examples can

be used to label each individual component.

�e iterative approach proposed by Nigam et al.

() is based on 7�e EM Algorithm and works as
follows. First, the labeled examples are used to learn

an initial classi�er, which is used to probabilistically

label all unlabeled data; then the newly labeled exam-

ples are added to the training set. Finally, a new classi�er

is learned from all the data, and the entire process is

repeated till convergence is reached (or, alternatively, till

the number of iterations is �xed).

Nigam et al. () noticed that, in practice, the

two above-mentioned assumptions about the generative

model may not hold; in order to deal with this prob-

lem, the authors propose two extensions of their basic

approach. First, they allow each class to be generated

by multiple mixture components. Second, they intro-

duce a weighting factor that adjusts the contribution of

the unlabeled examples; this factor is tuned during the

learning process so that the in�uence of the unlabeled

examples correlates with the degree in which the data

distribution is consistent with the mixture model.

�e same general framework can also be applied

to the related task of text clustering. In the cluster-

ing framework, the learner is not concerned with the

Semi-Supervised Text Processing S

S

actual label of an example; instead, it tries to �nd a

partitioning of the examples in clusters that are similar

respect to a prede�ned objective function. For example,
Seeded-KMeans (Basu, Banerjee, & Mooney,) is a

semi-supervised text clustering algorithm that uses the

few available labeled examples to seed the search for the

data clusters. In order to optimize the target objective

function, Seeded-KMeans uses an EM algorithm on a

mixture of Gaussians.

Discriminative Approaches

7Support vector machines (SVMs) (Joachims,)
are particularly well suited for text classi�cation because

of their ability to deal with high-dimensional input

spaces (each word in the corpus is a feature) and

sparse feature-value vectors (any given document con-

tains only a small fraction of the corpus vocabulary).

SVMs are called maximum margin classi�ers because

theyminimize the empirical classi�cation error bymax-

imizing the geometric margin between the domain’s

positive and negative examples. Intuitively, this is equiv-

alent to �nding a discriminative decision boundary

that avoids the high-density regions in the instance

space.

Transductive SVMs (Joachims,) are designed

to �nd an optimal decision boundary for a particular

test set. More precisely, they have access to both the

(labeled) training set and the unlabeled test set. Trans-

ductive SVMs work by �nding a labeling of the test

examples that maximizes the margin over all the exam-

ples in the training and the test set. �is transductive

approach has shown signi�cant improvements over the

traditional inductive SVMs, especially if the size of the

training set is small.

In contrast to transductive SVMs, semi-supervised

SVMs (SVM) work in a true semi-supervised setting

in which the test set is not available to the learner.

A major di�culty in the SVM framework is the fact

that the resulting optimization problem is not con-

vex, thus being sensitive to the issue of (non-optimal)

local minima. CSVMs (Chapelle, Chi, & Zien,)

alleviate this problem by using a global optimization

technique called continuation. On binary classi�cation

tasks CSVMs compare favorably against other SVM

approaches, but applying it onmulticlass domains is still

an open problem.

Multiview Approaches

Multiview learners are a class of algorithms for domains

in which the features can be partitioned in disjoint

subsets (views), each of which is su�cient to learn

the target concept. For example, when classifying Web

pages, one can use either the words that appear in

the documents or those that appear in the hyper-links

pointing to them. Co-training (Blum & Mitchell,)

is a semi-supervised, multiview learner that, intuitively,

works by bootstrapping the views from each other. First,

it uses the labeled examples to learn a classi�er in each

view.�en it applies the learned classi�ers to the unla-

beled data and detects the examples on which each view

makes the most con�dent prediction; these examples

are labeled by the respective classi�ers and added to

the (labeled) training set of the other view.�e entire

process is repeated for a number of iterations.

Multiview learners rely on two main assumptions,

namely that the views are compatible and uncorrelated.

�e former requires that each example is identically

labeled by the target concept in each view; the lat-

ter means that given an example’s label, its description

in each view are independent. In practice, both these

assumptions are likely to be violated; in order to deal

with the �rst issue, one can use the adaptive view valida-

tion algorithm (Muslea, Minton, & Knoblock, b),

which predicts whether the views are su�ciently com-

patible for multiview learning.

With respect to view correlation Muslea, Minton,

and Knoblock (a) have shown that by interleav-

ing active and semi-supervised learning, multiview

approaches become robust the view correlation. A sim-

ilar idea was previously used in the generative, single-

view framework: McCallum and Nigam () have

shown that by allowing the algorithm to (smartly)

choose which examples to include in the training set,

one can signi�cantly improve over the performance of

both supervised and semi-supervised learners that used

randomly chosen training sets.

�e main limitation of multiview learning is the

requirement that the user identi�es at least two suitable

views. In order to cope with this problem, researchers

have proposed algorithms that work in a way similar

to co-training, but exploit multiple 7inductive biases
instead of multiple views. For example, tri-training

(Zhou & Li,) uses all domain features to train

three supervised classi�ers (e.g., a decision tree, a neural

 S Semi-Supervised Text Processing

network, and a Naive Bayes classi�er).�ese classi�ers

are then applied to each unlabeled example; if two of

them agree on the example’s label, they label it accord-

ingly and add it to the third classi�er’s training set. A

degenerate case is represented by self-training, which
uses a single classi�er that repeatedly goes through

the unlabeled data and adds to its own training set,

the examples on which its predictions are the most

con�dent.

Graph-Based Approaches

�e work on graph-based, semi-supervised text learn-

ing is based on the idea of representing the labeled and

unlabeled examples as vertices in a graph. �e edges

of this graph are weighted by the pair-wise similarity

between the corresponding examples, thus o�ering a

�exible way to incorporate prior domain knowledge.

With the learning task encoded in this manner, the

problem to be solved becomes one of graph theory,

namely �nding a partitioning of the graph that agrees

with the labeled examples. A major challenge for the

graph-based approaches is to �nd a balanced partition-

ing of the graph (e.g., in a degenerate scenario, one can

propose an unbalanced, undesirable partition in which,

except for the negative examples in the training set, all

other examples are labeled as positive).

One possible approach to cope with the issue on

unbalanced partitions is to use randomized min-cuts

(Blum, La�erty, Rwebangira, & Reddy,).�e algo-

rithm starts with the original graph and repeatedly adds

randomnoise to the weights of the edges.�en, for each

modi�ed graph, it �nds a partitioning by using min-

imum cuts. Finally, the results from the various runs

aggregated in order to create probabilistic labels for the

unlabeled examples. �is approach has the additional

bene�t of o�ering a measure of the con�dence in each

particular prediction.

�e SGT algorithm (Joachims,) uses spectral

methods to perform the graph partitioning. SGT can

be seen as a transductive version of the k nearest-
neighbor classi�er; furthermore Joachims () also

show that co-training emerges as a special case of

SGT. In contrast to transductive SVMs and co-training,

SGT does not require additional heuristics for avoiding

unbalanced graph partitionings (e.g., in the original co-

training algorithm, the examples that are added to the

training set a�er each iterationmust respect thedomain-

dependent ratio of negative-to-positive examples).

LapSVM (Sindhwani, Niyogi, & Belkin,) is a

graph-based kernel method that uses a weighted com-

bination a regularizer learned solely from labeled data

and a graph Laplacian obtained from both the labeled

and unlabeled examples.�is approach allows LapSVM

to perform a principled search for a decision bound-

ary that is both consistent with the labeled examples

and re�ects the underlying geometry of all available data

points.

Approaches that Exploit Background Knowledge

WHIRL-BG (Zelikovitz & Hirsh,) is an algo-

rithm for classifying short text fragments. It uses an

information integration approach that combines three

di�erent information sources: the training set, which

consists of the labeled examples; the test set that

WHIRL-BG must label; and a secondary corpus that

consists longer, related documents that are not labeled.

Intuitively, WHIRL-BG exploits the secondary corpus

as background knowledge that allows the system to link

a test example to themost similar labeled training exam-

ple. In other words, instead of trying tomeasure directly

a (unreliable) similarity between two short strings (i.e.,

a test and a training example), the system searches

for a background document that may include (a large

fraction of) both strings.

HMRF-KMEANS (Basu, Bilenko, &Mooney,)

uni�es the two main approaches to semi-supervised

text clustering: the constraint-based one and the adap-

tive distance one. �e former exploits user-provided

background knowledge to �nd an appropriate parti-

tioning of the data; for HMRF-KMEANS, the domain

knowledge consists of must-link or cannot-link con-

straints, which specify whether two examples should

or should not have the same label, respectively. �e

later uses a small number of labeled examples to learn

a domain-speci�c distance measure that is appropriate

for the clustering task at hand. HMRF-KMEANS can

use any Bregman divergence to measure the clustering

distortion, thus supporting a wide variety of learnable

distances.

Sensitivity and Specificity S

S

HMRF-KMEANS exploits the labeled examples in

three main ways. First, it uses the neighborhoods

induced from the constraints to initialize the cluster

centroids. Second, when assigning examples to clusters,

the algorithm tries to simultaneously minimize both

the similarity to the cluster’s centroid and the num-

ber of violated constraints. Last but not least, during

the clustering process, HMRF-KMEANS iteratively re-

estimates the distance measure so that it takes into

account both the background knowledge and the data

variance.

Recommended Reading
Basu, S., Banerjee, A., & Mooney, R. (). Semi-supervised clus-

tering by seeding. In Proceedings of the international conference
on machine learning (pp. –). Sydney, Australia.

Basu, S., Bilenko, M., & Mooney, R. (). A probabilistic frame-

work for semi-supervised clustering. In Proceedings of the ACM
SIGKDD international conference on knowledge discovery and
data mining (pp. –). Seattle, WA.

Blum, A., Lafferty, J., Rwebangira, M. R., & Reddy, R. (). Semi-

supervised learning using randomized mincuts. In Proceedings
of the twenty-first international conference on machine learning
(p.).

Blum, A., & Mitchell, T. (). Combining labeled and unlabeled

data with co-training. In Proceedings of the conference on
computational learning theory (pp. –).

Chapelle, O., Chi, M., & Zien, A. (). A continuation method for

semi-supervised SVMs. In Proceedings of the rd international
conference on machine learning (pp. –). New York: ACM
Press.

Cozman, F., Cohen, I., & Cirelo, M. (). Semi-supervised learn-

ing of mixture models. In Proceedings of the international
conference on machine learning (pp. –). Washington, DC.

Joachims, T. (). Transductive inference for text classifica-

tion using support vector machines. In Proceedings of the
th international conference on machine learning (ICML-)
(pp. –). San Francisco: Morgan Kaufmann.

Joachims, T. (). Transductive learning via spectral graph par-

titioning. In Proceedings of the international conference on
machine learning.

McCallum, A., & Nigam, K. (). Employing EM in pool-based

active learning for text classification. In Proceedings of the th
international conference on machine learning (pp. –).

Muslea, I., Minton, S., & Knoblock, C. (a). Active + semi-

supervised learning = robust multi-view learning. In The
th international conference on machine learning (ICML-)
(pp. –). Sydney, Australia.

Muslea, I., Minton, S., & Knoblock, C. (b). Adaptive view val-

idation: A first step towards automatic view detection. In The
th international conference on machine learning (ICML-)
(pp. –). Sydney, Australia.

Muslea, I., Minton, S., & Knoblock, C. (). Active learning with

multiple views. Journal of Artificial Intelligence Research, ,
–.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. M. ().

Text classification from labeled and unlabeled documents using

EM. Machine Learning, (/), –.
Sindhwani, V., Niyogi, P., & Belkin, M. (). Beyond the

point cloud: From transductive to semi-supervised learning.

In Proceedings of the nd international conference on machine
learning (pp. –). Bonn, Germany.

Zelikovitz, S., & Hirsh, H. (). Improving short text classi-

fication using unlabeled background knowledge. In Proceed-
ings of the th international conference on machine learning
(pp. –).

Zhou, Z.-H., & Li, M. (). Tri-training: Exploiting unlabeled

data using three classifiers. IEEE Transactions on Knowledge and
Data Engineering, (), –.

Zhu, X. (). Semi-supervised learning literature survey. Technical
report , Department of Computer Sciences, University of

Wisconsin, Madison.

Sensitivity

Synonyms
Recall; True positive rate

Sensitivity is the fraction of positive examples predicted

correctly by a model. See 7Sensitivity and Speci�city,
7Recall and Precision.

Sensitivity and Specificity

KaiMing Ting

Monash University, Gippsland Campus Churchill,

VIC, Australia

Definition
Sensitivity and speci�city are two measures used

together in some domains to measure the predictive

performance of a classi�cation model or a diagnos-

tic test. For example, to measure the e�ectiveness of a

diagnostic test in the medical domain, sensitivity mea-

sures the fraction of people with disease (i.e., positive

examples) who have a positive test result; and speci-

�city measures the fraction of people without disease

(i.e., negative examples) who have a negative test result.

�ey are de�ned with reference to a special case of the

7confusion matrix, with two classes, one designated

 S Sequence Data

Sensitivity and Specificity. Table The outcomes of clas-

sification into positive and negative classes

Assigned Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

A
ct

ua
l

C
la

ss

Negative False Positive (FP) True Negative (TN)

the positive class, and the other the negative class, as
indicated in Table .

Sensitivity is sometimes also called true positive rate.
Speci�city is sometimes also called true negative rate.
�ey are de�ned as follows:

Sensitivity = TP/(TP + FN)

Speci�city = TP/(TN + FP)

Instead of two measures, they are sometimes com-

bined to provide a single measure of predictive perfor-

mance as follows:

Sensitivity × Speci�city

= TP ∗ TN/[(TP + FN) ∗ (TN + FP)]

Note that sensitivity is equivalent to7recall.

Cross References
7Confusion Matrix

Sequence Data

7Sequential Data

Sequential Data

Synonyms
Sequence data

Sequential Data refers to any data that contain elements
that are ordered into sequences. Examples include

7time series, DNA sequences (see 7biomedical infor-
matics) and sequences of user actions. Techniques for

learning from sequential data include 7Markov mod-
els, 7Conditional Random Fields and 7time series
techniques.

Sequential Inductive Transfer

7Cumulative Learning

Sequential Prediction

7Online Learning

Set

7Class

Shannon’s Information

If a message announces an event E of probability P(E)
its information content is − log

P(E). �is is also its

length in bits.

Shattering Coefficient

Synonyms
Growth function

Definition
�e shattering coe�cient SF(n) is a function that mea-
sures the size of a function classF when its functions f :
X → R are restricted to sets of points x = (x, . . . , xn) ∈
X n of size n. Speci�cally, for each n ∈ N the shatter-
ing coe�cient is the maximum size of the set of vectors

Fx = {(f (x), , f (xn)) : f ∈ F} ⊂ Rn that can be

realized for some choice of x ∈ X n.�at is,

SF(n) = sup
x∈X n

∣Fx∣ .

�e shattering coe�cient of a hypothesis classH is used

in 7generalization bounds as an analogue to the class’s
size in the �nite case.

Similarity Measures S

S

Similarity Measures

Michail Vlachos

IBM Zürich Research Laboratory, Rüschlikon,

Switzerland

Synonyms
Distance; Distance metrics; Distance functions;

Distance measures

Definition
�e term similarity measure refers to a function that

is used for comparing objects of any type.�e objects

can be data structures, database records, or even multi-

media objects (audio, video, etc.).�erefore, the input

of a similarity measure is two objects and the output

is, in general, a number between and ; “zero” mean-

ing that the objects are completely dissimilar and “one”

signifying that the two objects are identical. Similarity

is related to distance, which is the inverse of similarity.

�at is, a similarity of implies a distance of between

two objects.

Motivation and Background
Similarity measures are typically used for quantify-

ing the a�nity between objects in search operations,

where the user presents an object (query) and requests

other objects “similar” to the given query. �erefore,

a similarity measure is a mathematical abstraction for

comparing objects, assigning a single number that indi-

cates the a�nity between the said pair of objects.�e

results of the search are typically presented to the user

in the order suggested by the returned similarity value.

Objects with higher similarity value are presented �rst

to the user because they are deemed to be more rele-

vant to the query posed by the user. For example, when

searching for speci�c keywords on an Internet search

engine, Internet pages that are more relevant/similar

to the posed query are presented �rst.�e selection of

the proper similarity function is a important param-

eter in many applications, including 7instance-based
learning,7clustering, and7anomaly detection.
Most similaritymeasures attempt tomodel (imitate)

the human notion of similarity between objects. If a

similarity function resembles very closely the similarity

ranking between objects as returned by a human, then

it is considered successful.�is is where the di�culty

also lies, because in general similarity is something that

is very subjective.

Consider the case where a user poses a keyword

query ‘crane’ at a search engine, while searching for

images.�e returned results would contain images with

machineries, birds or even origami creations. �is is

because when the similarity measure used is solely

based on textual information then, then all such images

are indeed proper answers to the query. If one was

interested also in the semantics of an image, then per-

haps additional features such as texture, color or shape

could have been utilized. �erefore, for de�ning an

e�ective similarity measure, one has to �rst extract the

proper object features and then evaluate the similarity

using an appropriate distance function.

Classes of Similarity Functions
�ere are twomajor classes of similarity functions: met-

ric functions and non-metric functions. In order for a

function d to be ametric it has to satisfy all the following
three properties for any objects X,Y ,Z:

. d(X,Y) = i� X = Y (identity axiom)
. d(X,Y) = d(Y ,X) (symmetry axiom)

. d(X,Y) + d(Y ,Z) ≥ d(X,Z) (triangle inequality)

Metric similarity functions are very widely used in

search operations because of their support of the trian-

gle inequality. �e triangle inequality can help prune

a lot of the search space, by eliminating objects from

examination that are guaranteed to be distant to the

given query (Agrawal et al., ; Zezula et al.,).

�e most frequently used metric similarity function is

the Euclidean distance. For two objectsX and Y that are
characterized by set of n features X = (x, x, . . . , xn)
and similarly Y = (y, y, . . . , yn) the Euclidean distance
is de�ned as

D =

¿
Á
ÁÀ

n

∑
i=

(xi − yi)

If we represent the objects X and Y as an

ordered sequence of their features, we can visualize the

 S Similarity Measures

Similarity Measures. Figure . Mapping achieved by the Euclidean distance between time-series data

1. Bat
similar

to batman

2. Batman
similar
to man

3. But, man
is not similar

to bat…

Similarity Measures. Figure . Nonmetric similarity that disobeys the triangle inequality

linear mapping achieved by the Euclidean distance in

Fig. .

Non-metric similarity measures resemble more

closely the human notion of similarity by allowing

more �exible matching between the examined objects,

for example, by allowing non-linear mappings or even

by accommodating occlusion of points or features.

�e human visual system is in general considered

nonmetric. Non-metric functions typically disobey the

triangle inequality. We can see an example of this below

in Fig. .

Similarity Measures S

S

0 20 40 60 80 100 120

Euclidean matching

0 20 40 60 80 100 120

Time warping

0 20 40 60 80 100 120

Longest common subsequence

Similarity Measures. Figure . Comparison of Euclidean,

warping, and longest common subsequence measures

Widely used non-metric similarity functions are the

Warping distance and the Longest Common Subse-

quence (LCSS).�e Warping distance (also known as

dynamic time warping – DTW) has been very exten-

sively used in the past in voice recognition tasks, due

to its ability to perform compression or decompression

of the features, allowing �exible non-linear mappings.

In Fig. we visually depict the outcome of the previ-

ously mentioned measures for 7time-series data. �e
Euclidean distance performs a rigid linear mapping of

points, the DTW can perform nonlinear one-to-many

mappings, and the LCSS constructs a one-to-one non-

linear mapping.

Recently, similarity metrics based on information

theory, and in speci�c, on Kolmogorov complexity have

been presented (Keogh et al., ; Li et al.,) and

can also be considered as compression-based measures.
A very simple and easily implementable version of a

compression based distance is

dc(X,Y) =
C(XY)

C(X) + C(Y)

where C(X) is the compressed size (bytes) of X given
a certain compression algorithm. �e distance will be

close to , if X and Y are dissimilar and less than when
X and Y are related.�erefore, we exploit the fact that
if X and Y are “similar” they should compress equally
well (approximately same amount of bytes) either when

considered separately or together, because the compres-

sion dictionaries will be similar when the two objects

are related.

In summary, the choice of a similarity metric is

highly dependent on the application at hand.�e practi-

tioner should also closely consider on which object fea-

tures the similarity measure will be applied. Ultimately,

the combination of both feature selection and similarity

metric will de�ne the quality of a search process.

Cross References
7Dimensionality Reduction
7Feature Selection

 S Simple Bayes

Recommended Readings
Agrawal, R., Faloutsos, C., & Swami, A. (). Efficient similar-

ity search in sequence databases. In Proceedings of founda-
tions of data organization and algorithms (FODO), (pp. –).
Chicago, Illinois, USA.

Keogh, E., Lonardi, S., & Ratanamahatana, A. (). Towards

parameter-free data mining. Proceedings of International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD) (pp.
–). Seattle, Washington, USA.

Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. M. B. (). The simi-

larity metric. IEEE Transactions on Information Theory, (),
–.

Zezula, P., Amato, G., Dohnal, V., & Batko, M. (). Similar-
ity search: the metric approach. Advances in Database Systems,
Springer.

Simple Bayes

7Naïve Bayes

Simple Recurrent Network

RistoMiikkulainen

�e University of Texas at Austin, Austin, TX, USA

Synonyms
Elman network; Feedforward recurrent network

Definition
�e simple recurrent network is a speci�c version of the

7Backpropagation neural network that makes it possi-
ble to process of sequential input and output (Elman,

). It is typically a three-layer network where a copy

of the hidden layer activations is saved and used (in

addition to the actual input) as input to the hidden

layer in the next time step.�e previous hidden layer

is fully connected to the hidden layer. Because the net-

work has no recurrent connections per se (only a copy

of the activation values), the entire network (includ-

ing the weights from the previous hidden layer to the

hidden layer) can be trained with the backpropagation

algorithm as usual. It can be trained to read a sequence

of inputs into a target output pattern, to generate a

sequence of outputs from a given input pattern, or to

map an input sequence to an output sequence (as in

predicting the next input). Simple recurrent networks

have been particularly useful in 7time series predic-
tion, as well as in modeling cognitive processes, such as

language understanding and production.

Recommended Reading
Elman, J. L. (). Finding structure in time. Cognitive Science, ,

–.

SMT

7Statistical Machine Translation

Solution Concept

A criterion specifying which locations in the search

space are solutions and which are not. In designing a

coevolutionary algorithm, it is important to consider

whether the solution concept implemented by the algo-

rithm (i.e., the set of individuals to which it can con-

verge) corresponds with the intended solution concept.

Solving Semantic Ambiguity

7Word Sense Disambiguation

SOM

7Self-Organizing Maps

SORT

7Class

Spam Detection

7Text Mining for Spam Filtering

Speedup Learning S

S

Specialization

Specialization is the converse of7generalization.�us,
if h is a generalization of h then h is a specialization
of h.

Cross References
7Generalization
7Induction
7Learning as Search
7Subsumption
7Logic of Generality

Specificity

Synonyms
True negative rate

Speci�city is the fraction of negative examples pre-

dicted correctly by a model. See 7Sensitivity and
Speci�city.

Spectral Clustering

7Graph Clustering

Speedup Learning

Alan Fern

Science, Oregon State University,

Corvallis, OR, USA

Definition
Speedup learning is a branch of machine learning that

studies learning mechanisms for speeding up problem

solvers based on problem-solving experience.�e input

to a speedup learner typically consists of observations of

prior problem-solving experience, which may include

traces of the problem solver’s operations and/or solu-

tions to solve the problems. �e output is knowledge

that the problem solver can exploit to �nd solutions

more quickly than before learning without seriously

e�ecting the solution quality.�e most distinctive fea-

ture of speedup learning, compared withmost branches

of machine learning, is that the learned knowledge does

not provide the problem solver with the ability to solve

new problem instances. Rather, the learned knowledge

is intended solely to facilitate faster solution times com-

pared to the solver without the knowledge.

Motivation and Background
Much of the work in computer science and especially

arti�cial intelligence aims at developing practically-

e�cient problem solvers for combinatorially hard prob-

lem classes such as automated planning, logical and

probabilistic reasoning, game playing, constraint sat-

isfaction, and combinatorial optimization. While it

is o�en straightforward to develop optimal prob-

lem solvers for these problems using brute-force,

exponential-time search procedures, it is generally

much more di�cult to develop solvers that are e�-

cient across a wide range of problem instances. �e

main motivation behind speedup learning is to create

adaptive problem solvers that can learn patterns from

problem solving experience that can be exploited for

e�ciency gains. Such adaptive solvers have the poten-

tial to signi�cantly outperform traditional static solvers

by specializing their behavior to the characteristics of a

single problem instance or to an entire class of related

problem instances. �e exact form of knowledge and

learning mechanism is tightly tied to the problem class

and the problem-solver architecture.

Most branches of machine learning, such as

7supervised classi�cation, aim to learn fundamentally
new problem solving capabilities that are not easily

programmed by hand even when ignoring e�ciency

issues – for example, learning to recognize hand-written

digits. Speedup learning is distinct in that it is typically

applied in situations where hand-coding an optimal,

but ine�cient, problem solver is straightforward –

for example, solving satis�ability problems. Rather,

learning is aimed exclusively at �nding solutions in a

more practical time frame.

Work in speedup learning grew out of various

sub�elds of arti�cial intelligence, and more generally

computer science. An early example, from automated

planning involved learning knowledge for speeding up

the original STRIPS planner Fikes, Hart, and Nilsson

() via the learning of triangle tables or macros that

could later be exploited by the problem solver.�rough-

out the s and early s, there was a great deal of

 S Speedup Learning

additional work on speedup learning in the area of auto-

mated planning as overviewed in Minton () and

Zimmerman and Kambhampati ().

Another major source of speedup learning research

has originated from the areas of AI search and con-

straint satisfaction. Many of the 7intelligent back-
tracking mechanisms from these areas, which are

critical to perform, can be viewed as speedup learn-

ing techniques Kambhampati () where knowl-

edge is learned, while solving a problem instance that

better informs later search decisions. Such methods

have also come out of the area of logic programming

Kumar and Lin (), where search e�ciency plays a

central role.

In addition, various branches of AI have devel-

oped speedup-learning approaches based on learn-

ing improved heuristic evaluation functions. Samuel’s

checker player Samuel () was one such early exam-

ples, where learned evaluation functions allowed for the

performance of deep game tree search to be approxi-

mated by shallower, a less expensive search.

Structure of Learning System
Figure shows a generic diagram of a speedup learning

system. �e main components are the problem solver

and the speedup learner.�e role of the problem solver

is to receive problem instances from a problem gen-

erator and to produce solutions for those instances.

For example, problem solvers might include constraint-

satisfaction engines, automated planners, or A∗ search.
�e role of the speedup learner is to produce knowl-

edge that the problem solver can use to improve its

solution time.�e input to the speedup learner, which

is analyzed in order to produce the knowledge, can

include one or more of the following data sources:

() the input problem instances, () traces of the prob-

lem solver’s decisions while solving the input problems,

and () solutions to solved problems.

Clearly there is a large space of possible speedup

learning systems that result from di�erent problem

solvers, forms of learned knowledge, learning methods,

and intended mode of applicability. Some of the main

dimensions are described in the following section along

which speedup learning approaches can be character-

ized. Examples of typical learners that span this space

are provided, noting that the examples are far from an

exhaustive list.

Problem SolverProblem
generator Solution

Speedup
Learner

Problem solver
traces

Learned
knowledge

Problem
instance

Speedup Learning. Figure . Schematic diagram of a

speedup learning system. The problem solver receives

problem instances from a problem generator and pro-

duces solutions. The speedup learner can observe the

input problem instances, traces of the problem solver

while solving the problem instances, and sometimes also

the solutions to previously solved problem instances.

The speedup learner outputs knowledge that can be

used by the problem solver to speedup its solution time

either on the current problem instance (intra-problem

speedup) and/or future related instances (inter-problem

speedup)

Dimensions of Speedup Learning

Intra-Problem versus Inter-Problem Speedup. Intra-
problem speedup learning is when knowledge is

learned during the solution of the current problem

instance and is only applicable to speeding up the solu-

tion of the current instance. A�er a solution is found,

the knowledge is discarded as it is not applicable for

the future instances. Inter-problem speedup learning

is when the learned knowledge is applicable not only

to the problem(s) it was learned on but also to new

problems to be encountered in the future. In this sense,

the learned knowledge can be viewed as a generalized

knowledge about how to �nd solutionsmore quickly for

an entire class of problems.

Typically in the inter-problem learning, the prob-

lem generator produces instances that are related in

some way, and, thus, share common structure that can

be learned from the earlier instances and exploited

when solving the later instances. Rather intra-problem

speedup learners treat each problem instance as com-

pletely distinct from the rest. Also note that inter-

problem learners have the potential to bene�t from

Speedup Learning S

S

the analysis of solutions to previous problem instances.

Rather, intra-problem learners are unable to use this

source of information, since, once the current problem

is solved, no further learning is warranted.

Types of Learned Knowledge. Most problem solvers
can be viewed as search procedures, which is the view

that will be takenwhen characterizing the various forms

of learned knowledge in speedup learning. Four types

of commonly used knowledge are listed below, noting

that this is far from an exhaustive list. First, pruning
constraints are the sets of constraints on search nodes
that signal when certain branch of the search space can

be safely pruned. Second,macro operators (macros) are
sequences of search operators that are typically use-

ful when executed in order. Problem solvers can o�en

utilize macros in order to decrease the e�ective solu-

tion depth of the search space by treating macros as

additional search operators. It is important that the

decrease in e�ective depth is enough to compensate for

the increase in number of operators, which increases

the search complexity. �ird, search-control rules are
the sets of rules that typically test the current prob-

lem solving state and suggest problem-solving actions

such as rejecting, selecting, or preferring a particular

search operator. In the extreme case, learned search

control rules can completely remove the need for search.

Fourth, heuristic evaluation functions are used to mea-
sure the quality of a particular search node. Learning-

improved heuristics can result in better directed search

behavior.

Deductive versus Inductive Learning. 7Deductive
learning refers to a learning process for which the

learned knowledge can be deductively proven to be

correct. For example, in the case of learned pruning

constraints, a deductive learning mechanism would

provide a guarantee that the pruning was sound in

the sense that the optimality of the problem solver

would be una�ected. 7Inductive learning mechanisms
rather are statistical in nature and typically do not

produce knowledge with associated deductive guaran-

tees. Rather, inductive methods focus on �nding sta-

tistical regularities that are typically useful, though

perhaps not correct in all cases. For example, an induc-

tive learner may discover patterns that are strongly cor-

related to pruning opportunities, though these patterns

may have a small probability of leading to unsound

pruning.

In cases where one must guarantee a sound and

complete problem solver, deductive learning approaches

are always applicable, though their utility depends on

the particular application. In certain cases, inductively-

learned knowledge can also be utilized in a way that

does not e�ect the correctness of the problem solver.

For example, inductively learned search-control rules

that assert preferences, rather than prune nodes from

the search, do not lead to incompleteness. Tradition-

ally, the primary disadvantage of deductive learning,

compared with inductive learning, is that the inductive

methods typically produce knowledge that generalizes

to a wider range of situations than deductive meth-

ods. In addition, deductive learning methods are o�en

more costly in terms of learning time as they rely on

expensive deductive reasoning mechanisms. Naturally,

a number of speedup learning systems exist that uti-

lize a combination of inductive and deductive learning

techniques.

Examples of Intra-Problem Speedup Learning

Much of the speedup learning work arising from

research in AI search and constraint satisfaction falls

into the intra-problem paradigm. �e most common

forms of learning are deductive and are based on com-

puting explanations of “search failures” that occur dur-

ing the solution of a particular problem. Here a search

failure typically corresponds to a point where the prob-

lem solver must backtrack. By computing and forming

such failure explanations the problem solver is typi-

cally able to avoid similar types of failures in the future

by detecting that a search path will lead to failure

without fully exploring that path. 7Nogood learning
is a very successful, and commonly used, example of

the general failure-explanation approach Schiex and

Verfaillie (). Nogoods are combinations of vari-

able values that lead to search failures. By comput-

ing and recording nogoods, it is possible to imme-

diately prune search states that consider those value

combinations. �ere are many variations of nogood

learning, with di�erent techniques utilizing di�erent

approaches to analyzing search failures to extract gen-

eral nogoods.

Another example of the failure-explanation app-

roach, which is commonly utilized in satis�ability

solvers, is 7clause learning. �e idea is similar to

 S Speedup Learning

nogood learning. When a failure occurs during the sys-

tematic search, a proof of the failure is constructed and

analyzed to extract implied constraints, or clauses, that

the solution must satisfy.�ese learned clauses are then

added to the set of clauses of the original satis�abil-

ity problem and in later search trigger early pruning

when they, or their consequences, are violated. E�cient

implementations of this idea have lead to huge gains

in satis�ability solvers. In addition, it has been shown

theoretically that clause learning can improve solution

times by an exponential factor Beame and Sabharwal

().

Inductive techniques for learning heuristic evalua-

tion functions have also been investigated in the intra-

problem speedup paradigm. Here we discuss just two

such approaches, where in both cases the key idea

is to observe the problem solver and extract training

examples that can be used to learn an accurate eval-

uation function. A particularly successful example of

this approach is the STAGE system Boyan and Moore

() for solving combinatorial optimization problems

such as traveling salesman and circuit layout.�e prob-

lem solving architecture used by STAGE is based on

repeated random restarts of a fast hill-climbing local

optimizer, which when given an initial con�guration of

the combinatorial object, performs a greedy search to

a local minimum con�guration.�e speedup learning

mechanism for STAGE is to learn an approximate func-

tion that maps initial con�gurations to the performance

of the local optimizer when started at that con�gura-

tion. Note that on each restart of the problem solver the

learning component gets a training example that can

be used to improve the function. �e problem solver

uses the learned function in order to select promising

con�gurations fromwhich to restart, rather than choos-

ing randomly. In particular, STAGE attempts to restart

from a con�guration that optimizes the learned func-

tion, which is the predicted best starting point for the

hill-climber.�is overall approach has shown impres-

sive performance gains in a number of combinatorial

optimization domains.

As a second example of inductive learning of heuris-

tics in the intra-problem paradigm, there has beenwork

within the more traditional problem solving paradigm

of best-�rst search Sarkar, Chakrabarti, and Ghose

(). Here the speedup learner observes the sequence

of search nodes traversed by the problem solver. For any

pair of nodes observed to be on the same search path,

the learner creates a training example in an attempt to

train a heuristic to better predict the distance between

those two nodes. Ideally, this updated heuristic func-

tion better re�ects the distance from nodes in the

search queue to the goal node of the current prob-

lem instance, and, hence, result in improved search

performance.

Examples of Inter-Problem Speedup Learning

Much of the work on inter-problem speedup learning

came out of AI planning research, where researchers

have long studied learning approaches for speeding up

planners. speedup in planning is focused in this chap-

ter, noting that similar ideas have also been pursued in

other research areas such as constraint satisfaction. For

a collection and survey of work on speedup in planning

see Minton () and Zimmerman and Kambhampati

(). Typically in this work, one is interested in learn-

ing knowledge for an entire planning domain, which

is a collection of problems that share the same set of

actions. �e Blocksworld is a classic example of such

a planning domain. A�er experiencing and solving a

number of problems from a target domain, such as the

Blocksworld, the learned knowledge is then used to

speed up performance on new problems from the same

domain.

�ere have been a number of deductive learning

approaches to speedup learning in planning, which

are traditionally cited as 7explanation-based learning
(EBL) approaches Minton et al. (). EBL for AI

planning is strongly related to the failure-explanation

approaches developed for CSPs as characterized nicely

by Kambhampati (). �ere are two main di�er-

ences between the inter-problem EBL work in plan-

ning and the intra-problem EBL approaches for CSPs.

First, EBL approaches in planning produce more gen-

eral explanations that are applicable not only in the

problem in which they were learned, but also new prob-

lems.�is is o�en made possible by introducing vari-

ables in the place of speci�c objects into the explana-

tions derived from a particular problem.�is allows the

explanations to apply to contexts in new problems that

share similar structure but involve di�erent objects.�e

second di�erence is that inter-problem EBL approaches

Speedup Learning For Planning S

S

in planning o�en produce explanations of successes and

not just of failures.�ese positive explanations are not

possible in the context of intra-problem speedup since

the intra-problem learner is only interested in solving a

single problem.

Despite the relatively large e�ort invested in inter-

problemEBL research, the best approaches typically did

not consistently lead to signi�cant gains, and even hurt

performance in many cases. A primary way that EBL

can hurt performance is by learning too many expla-

nations, which results in the problem solver spending

toomuch time simply evaluating the explanations at the

cost of reducing the number of search nodes considered.

�is problem is commonly referred to as the EBL util-

ity problemMinton () as it is di�cult to determine

which explanations have high enoughutility to beworth

keeping.

In addition to EBL, there has also been work

on inductive mechanisms for acquiring search-control

rules to speedupAI planners. Typically, statistical learn-

ing mechanisms are used to �nd common patterns that

can distinguish between good and bad search decisions.

As one example, Huang et al. learn action-rejection

and selection rules based on the solutions to plan-

ning problems froma commondomainHuang, Selman,

and Kautz (). �e learned rules were then added

as constraints to the constraint satisfaction engine,

which served to guide the solver to solution plans more

quickly. Another approach, which has been studied at

a theoretical and empirical level, is to learn heuristic

functions to guide a bounded search process Xu, Fern

(), in particular, bread-�rst beam search. Results in

a number of planning domains demonstrate signi�cant

improvements over planners that do not incorporate

a learning component. One other class of approach is

based on attempting to learn knowledge that removes

the need for a problem solver altogether. In particular,

to learn a reactive policy for quickly selecting actions

in any given state of the environment. Such policies

can be learned via statistical techniques by simply try-

ing to learn an e�cient function that maps planning

states to the actions selected by the planner. Despite

its simplicity, this approach has demonstrated con-

siderable success Khardon () and has also been

characterized at a theoretical level Tadepalli and

Natarajan ().

Cross References
7Explanation-Based Learning

Recommended Reading
Beame, P., Kautz, H., & Sabharwal, A. (). Towards understand-

ing and harnessing the potential of clause learning. Journal of
Artificial Intelligence Research, , –.

Boyan, J. A., & Moore, A. W. (). Learning evaluation functions

for global optimization and boolean satisfiability. In National
conference on artificial intelligence (pp. –). Mlenio Park, CA:
AAAI Press.

Fikes, R., Hart, P., & Nilsson, N. (). Learning and executing

generalized robot plans. Artificial Intelligence, (–), –.
Huang, Y.-C., Selman, B., & Kautz, H. (). Learning declarative

control rules for constraint-based planning. In International
conference on machine learning (pp. –). San Francisco:
Morgan Kaufmann.

Kambhampati, S. (). On the relations between intelligent

backtracking and failure-driven explanation-based learning in

constraint satisfaction and planning. Artificial Intelligence,
(-), –.

Khardon, R. (). Learning action strategies for planning

domains. Artificial Intelligence, (-), –.
Kumar, V., & Lin, Y. (). A data-dependency based intelligent

backtracking scheme for prolog. The Journal of Logic Program-
ming, (), –.

Minton, S. (). Quantitative results concerning the utility of

explanation-based learning. In National conference on artificial
intelligence (pp. –). St. Paul, MN: Morgan Kaufmann.

Minton, S. (Ed.) (). Machine learning methods for planning. San
Francisco: Morgan Kaufmann.

Minton, S., Carbonell, J., Knoblock, C. A., Kuokka, D. R., Etzioni, O.,

& Gil, Y. (). Explanation-based learning: A problem solving

perspective. Artificial Intelligence, , –.
Samuel, A. (). Some studies in machine learning using the game

of checkers. IBM Journal of Research and Development, (), –
.

Sarkar, S., Chakrabarti, P., & Ghose, S. (). Learning whiles

solving problems in best first search. IEEE Transactions on Sys-
tems, Man, and Cybernetics–Part A: Systems and Humans, (),
–.

Schiex, T., & Verfaillie, G. (). Nogood recording for static and

dynamic constraint satisfaction problems. International Journal
on Artificial Intelligence Tools, (), –.

Tadepalli, P., & Natarajan, B. (). A formal framework for

speedup learning from problems and solutions. Journal of Arti-
ficial Intelligence Research, , –.

Zimmerman, T., & Kambhampati, S. (). Learning-assisted auto-

mated planning: Looking back, taking stock, going forward.

AI Magazine, (), –.

Speedup Learning For Planning

7Explanation-Based Learning for Planning

 S Spike-Timing-Dependent Plasticity

Spike-Timing-Dependent Plasticity

Abiological formofHebbian learningwhere the change

of synaptic weights depends on the exact timing of

presynaptic and postsynaptic action potentials.

Cross References
7Biological Learning: Synaptic Plasticity
7Hebb Rule
7Spike Timing Dependent Plasticity

Sponsored Search

7Text Mining for Advertising

Squared Error

7Error Squared

Squared Error Loss

7Mean Squared Error

Stacked Generalization

Synonyms
Stacking

Definition
Stacking is an 7ensemble learning technique. A set of
models are constructed from bootstrap samples of a

dataset, then their outputs on a hold-out dataset are

used as input to a “meta”-model.�e set of base models
are called level-, and the meta-model level-.�e task
of the level- model is to combine the set of outputs so

as to correctly classify the target, thereby correcting any

mistakes made by the level- models.

Recommended Reading
Wolpert, D. H. (). Stacked generalization. Neural Networks (),

–.

Stacking

7Stacked Generalization

Starting Clause

7Bottom Clause

State

In a7Markov decision process, states represent the pos-
sible system con�gurations facing the decision-maker

at each decision epoch. �ey must contain all variable
information relevant to the decision-making process.

Statistical Learning

7Inductive Learning

Statistical Machine Translation

Miles Osborne

University of Edinburgh, Edinburgh, UK

Synonyms
SMT

Definition
Statistical machine translation (SMT) deals with auto-

matically mapping sentences in one human language

(for example, French) into another human language

(such as English).�e �rst language is called the source
and the second language is called the target.�is pro-
cess can be thought of as a stochastic process. �ere

are many SMT variants, depending upon how trans-

lation is modeled. Some approaches are in terms of

Statistical Machine Translation S

S

a string-to-string mapping, some use trees-to-strings,

and some use tree-to-tree models. All share in common

the central idea that translation is automatic, withmod-

els estimated fromparallel corpora (source-target pairs)

and also frommonolingual corpora (examples of target

sentences).

Motivation and Background
Machine Translation has widespread commercial, mil-

itary, and political applications. For example, increas-

ingly, the Web is accessed by non-English speakers

reading non-English pages. �e ability to �nd rele-

vant information clearly should not be bounded by

our language-speaking capabilities. Furthermore, we

may not have su�cient linguists in some language of

interest to cope with the sheer volume of documents

that we would like translated. Enter automatic transla-

tion. Machine translation poses a number of interesting

machine learning challenges: data sets are typically very

large, as are the associatedmodels; the trainingmaterial

used is o�en noisy and plagued with sparse statistics;

the search space of possible translations is su�ciently

large that exhaustive search is not possible. Advances in

machine learning, such as maximum-margin methods,

frequently appear in translation research. SMT systems

are now su�ciently mature that they can be deployed in

production systems. A good example of this is Google’s

online Arabic-English translation, which is based upon

SMT techniques.

Structure of the Learning System
Modeling

Formally, translation can be described as �nding the

most likely target sentence e∗ for some source sentence
f :

e∗ = argmaxeP(f ∣ e)P(e)

(e conventionally stands for English and f for French,
but any language pairs can be substituted.)

�is approach has three major aspects:

● A translation model (P(f ∣ e)), which speci�es
the set of possible translations for some target sen-

tence.�e translation model also assigns probabili-

ties to these translations, representing their relative

correctness.

● A 7language model (P(e)), which models the �u-
ency of the proposed target sentence. �is assigns

a distribution over strings, with higher probabilities

being assigned to sentences which are more rep-

resentative of natural language. Language models

are usually smoothed n-grammodels, typically con-
ditioning on two (or more) previous words when

predicting the probability of the current word.

● A search process (the argmax operation), which

is concerned with navigating through the space of

possible target translations.�is is called decoding.
Decoding for SMT is NP-hard, so most approaches

use a beam search.

�is is called the Source-Channel approach to trans-
lation (Brown, Pietra, Pietra, & Mercer,). Most

modern SMT systems instead use a7log-linear model,
as it is more �exible and allows for various aspects of

translation to be balanced together (Och & Ney,):

e∗ = argmaxe (∑
i
fi(e, f)λi)

Here, feature functions fi(e, f) capture some aspect
of translation and each feature function has an asso-

ciated weight λi. When we have the two feature func-

tions P(f ∣ e) and P(e), we have the Source-Channel
model. �e weights are scaling factors (balancing the

contributions that each feature function makes) and

are optimized with respect to some 7loss function
which evaluates translation quality. Frequently, this is in

terms of the BLEU evaluation metric Papineni, Roukos,
Ward, & Zhu (). Typically, the error surface is non-

convex and the loss function is nondi�erentiable, so

search techniques which do not use �rst-order deriva-

tives must be employed. It is worth noting that machine

translation evaluation is a complex problem and that

methods such as BLEU are not without criticism.

SMT systems usually decompose entire sentences

into a sequence of strings called phrases (Koehn, Och, &
Marcu,). �e modeling task then becomes one

of determining how to break a source sentence into

a sequence of contiguous phrases and how to spec-

ify which source phrase should be associated with

each target phrase. Figure shows an example English-

French sentence pair. Figure shows that sentence pair

decomposed into phrase-pairs. Phrase-based systems

 S Statistical Machine Translation

Those people have grown up, lived and worked for many

years in a farming district.

Ces gens ont grandi, vécu et oeuvré des dizaines d’années

dans le domain agricole.

Statistical Machine Translation. Figure . A sentence pair

Ces gens ont Those people have

gens ont grandi people have

grown up

ont grandi , have grown up ,

grandi , vécu grown up , lived

, vécu et , lived and

vécu et oeuvré lived and worked

et oeuvré des dizaines d’ oeuvré and worked many

oeuvré des dizaines d’ années dizaines worked many years

des dizaines d’ années dans many years in

années dans le years in a

le domaine agricole a farming districtle

domaine agricole . farming district .

Statistical Machine Translation. Figure . Example

phrase pairs

represented an advance over previousword-basedmod-

els, since phrase-based translation can capture local

(within a phrase) word order. Furthermore, phrase-

based translation approaches need to make fewer deci-

sions than word-based models. �is means there are

fewer errors to make.

Amajor aspect of any SMT approach is dealing with

phrasal reordering. Typically, the translation of each
source phrase need not follow the same temporal order

in the target sentence. Simple approaches model the

absolute distance a target phrase can “move” from the

originating target phrase. More sophisticated reorder-

ing models condition this movement upon the aspects

of the phrase pair.

Our description of SMT is in terms of a string-

to-string model. �ere are numerous other SMT

approaches, for example those which use notions of

syntax (Chiang,).�ese models are now showing

promising results, but are signi�cantly more complex to

describe.

Estimation

�e translation model of a SMT system is estimated

using parallel corpora. Because the search space is so
large and that parallel corpora is not aligned at the word

level, the estimation process is based upon a large-scale

application of Expectation-Maximization, along with

heuristics.�is consists of the following steps:

● Determine how each source word translates to zero

or more target words.�e IBM models are used for

this task, which are based upon the Expectation-

Maximization algorithm for parameter estimation

(Brown et al.,).

● Repeat this process, but instead determine how

each target word translates to zero or more source

words.

● Harmonize the previous two steps, creating a set of

word alignments for each sentence pair. �is pro-
cess is designed to use the two directions as alter-

native views on how words should be translated.

Figure shows the sentence pair aligned at the word

level.

● Heuristically, determine which sequence of source

words translates to a sequence of target words.�is

produces a set of phrase-pairs: a snippet of text in the
source sentence and the associated snippet of text in

the target sentence.

● Relative frequency estimators can then be used to

characterize how each source phrase translates to a

given target phrase.

Parallel corpora varies in size tremendously; for lan-

guage pairs such as Arabic to English, we have on the

order of tenmillion sentence pairs.Most other language

pairs (for example, Finnish to Irish) will have far smaller

parallel corpora available. Parallel corpora exists for all

European languages and for many other pairs, such as

Mandarin to English.

�e language model is instead estimated from

monolingual corpora, typically using relative frequency

estimates, which are then smoothed. For languages such

as English, typically billion (and more) words are used.

Deploying such large models can pose signi�cant engi-

neering challenges.�is is because the language model

can easily be so large that it will not �t into the memory

Statistical Machine Translation S

S

Statistical Machine Translation. Figure . The sentence pair in Fig. aligned at the word-level

of conventionalmachines. Also, the languagemodel can

be queriedmillions of timeswhen translating sentences,

which precludes storing it on disk.

Programs and Data
All of the code and data necessary to begin work on

SMT is available either as public source, or for a small

payment (in the case of corpora from the LDC):

● �e standard so�ware to estimate word-based trans-

lation models is Giza++:

http://www.9och.com/GIZA++.html

● Converting word-based to phrase-basedmodels and

decoding can be achieved using the Moses decoder

and associated sets of scripts:

http://www.statmt.org/jhuws/?n=Moses.HomePage

● Translation performance can be evaluated using

BLEU:

http://www.nist.gov/speech/tests/mt/resources/

scoring.htm

● �e SRILM is the standard toolkit for building and

using language models:

http://www.speech.sri.com/projects/srilm/

● Europarl is a set of parallel corpora, dealing with

European languages:

http://www.statmt.org/europarl/

● �e Linguistics Data Consortium (LDC) maintains

corpora of various kinds, including large volumes of

monolingual data which can be used to train lan-

guage models:

http://www.ldc.upenn.edu/

Recommended Reading
Brown, P. F., Pietra, S. D., Pietra, V. J. D., & Mercer, R. L. ().

The mathematic of statistical machine translation: Parameter

estimation. Computational Linguistics, (), –.
Chiang, D. (, June). A hierarchical phrase-based model for sta-

tistical machine translation. In Proceedings of the rd annual
meeting of the association for computational linguistics (ACL’)
(pp. –). Ann Arbor, MI: Association for Computational

Linguistics.

Koehn, P., Och, F. J., & Marcu, D. (). Statistical phrase-

based translation. In NAACL ’: Proceedings of the
conference of the north american chapter of the association
for computational linguistics on human language technology
(pp. –). Morristown, NJ: Association for Computational

Linguistics.

Och, F. J., & Ney, H. (). Discriminative training and maximum

entropy models for statistical machine translation. In ACL ’:
Proceedings of the th annual meeting on association for compu-
tational linguistics (pp. –). Morristown, NJ: Association
for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. -J. (). Bleu: A

method for automatic evaluation of machine translation. In

ACL ’: Proceedings of the th annual meeting on associa-
tion for computational linguistics (pp. –). Morristown, NJ:
Association for Computational Linguistics.

http://www.nist.gov/speech/tests/mt/resources/scoring.htm

 S Statistical Natural Language Processing

Statistical Natural Language
Processing

7MaximumEntropyModels forNatural Language Pro-
cessing

Statistical Physics Of Learning

7Phase Transitions in Machine Learning

Statistical Relational Learning

Luc De Raedt, Kristian Kersting

Katholieke Universiteit Leuven,

Heverlee, Belgium
Knowledge Discovery, Fraunhofer IAIS,

Sankt Augustin, Germany

Definition
Statistical relational learning a.k.a. probabilistic induc-

tive logic programming deals with machine learning

and data mining in relational domains where obser-

vations may be missing, partially observed, or noisy.

In doing so, it addresses one of the central questions

of arti�cial intelligence – the integration of probabilis-

tic reasoning with machine learning and �rst-order and

relational representations – and deals with all related

aspects such as reasoning, parameter estimation, and

structure learning.

Motivation and Background
One of the central questions of arti�cial intelligence

is concerned with combining expressive knowledge

representation formalisms such as relational and �rst-

order logic with principled probabilistic and statistical

approaches to inference and learning. While tradition-

ally relational and logical representations, probabilistic

and statistical reasoning, and machine learning have

been studied independently of one another, statistical

relational learning investigates them jointly, cf. Fig. .

A major driving force is the explosive growth in the

amount of heterogeneous data that is being collected

Statistical
relational
learning

Probabilities

LearningLogic

Statistical Relational Learning. Figure . Statistical

relational learning a.k.a. probabilistic inductive logic

programming combines probability, logic, and learning

in the business and scienti�c world in domains such

as bioinformatics, transportation systems, communica-

tion networks, social network analysis, citation analysis,

and robotics. Characteristic for these domains is that

they provide uncertain information about varying num-
bers of entities and relationships among the entities,

that is, about relational domains. Traditional machine
learning approaches are able to cope either with uncer-

tainty or with relational representations but typically

not with both.

Many formalisms and representations have been

developed in statistical relational learning. For instance,

Eisele () has introduced a probabilistic variant of

comprehensive uni�cation formalism (CUF). In a simi-

lar manner, Muggleton () and Cussens () have

upgraded stochastic grammars toward stochastic logic
programs. Sato () has introduced probabilistic dis-
tributional semantics for logic programs. Taskar, Abbeel,
and Koller () have upgraded Markov networks

toward relational Markov networks, and Richardson
and Domingos () toward Markov logic networks.
Neville and Jensen () have extended depen-

dency networks toward relational dependency networks.
Another research stream has investigated logical and

relational extensions of Bayesian networks. It includes

Poole’s independent choice logic (Poole,), Ngo and
Haddawy’s probabilistic logic programs (Ngo & Had-
dawy,), Jäger’s relational Bayesian networks (Jager,
), Koller, Getoor, and Pfe�er’s probabilistic rela-
tional models (Getoor, ; Pfe�er), and Kersting
and De Raedt’s Bayesian logic programs (Kersting & De
Raedt,).

Statistical Relational Learning S

S

�e bene�ts of employing logical abstraction and

relations within statistical learning are manyfold:

. Relations among entities allow one to use infor-

mation about one entity to help reach conclusions

about other, related entities.

. Variables, that is, placeholders for entities allow one

to make abstraction of speci�c entities.

. Uni�cation allows one to share information among

entities. �us, instead of learning regularities for

each single entity independently, statistical rela-

tional learning aims at �nding general regularities

among groups of entities.

. �e learned knowledge is o�en declarative and

compact, whichmakes it easier for people to under-

stand and to validate.

. In many applications, there is a rich background

theory available, which can e�ciently and elegantly

be represented as a set of general regularities.�is

is important because background knowledge may

improve the quality of learning as it focuses the

learning on the relevant patterns, that is, it restricts

the search space.

. When learning a model from data, relational and

logical abstraction allow one to reuse experience in

that learning about one entity improves the predic-
tion for other entities; and this may even generalize
to objects that have never been observed before.

�us, relational and logical abstraction make statis-

tical learningmore robust and e�cient.�is has proven

to be bene�cial in many fascinating real-world applica-

tions in citation analysis, web mining, natural language

processing, robotics, bio- and chemo-informatics, elec-

tronic games, and activity recognition.

Theory
Whereas most of the existing works on statistical rela-

tional learning have started from a statistical and prob-

abilistic learning perspective and extended probabilistic

formalisms with relational aspects, statistical relational

learning can elegantly be introduced by starting from

7inductive logic programming (De Raedt, ;

Muggleton & De Raedt,), which is o�en also

calledmulti-relational data mining (MRDM) (Džeroski
& Lavrač,). Inductive logic programming is a

research �eld at the intersection of machine learning

and logic programming. It forms a formal framework

and has introduced practical algorithms for inductively

learning relational descriptions (in the form of logic

programs) from examples and background knowledge.

So, the only di�erence to statistical relational learning is

that it does not explicitly deal with uncertainty.

Essentially, there are only two changes to apply to

inductive logic programming approaches in order to

arrive at statistical relational learning:

. 7clauses (i.e., logical formulae that can be inter-
preted as rules; cf. below) are annotated with

probabilistic information such as conditional prob-

abilities; and

. the 7covers relation (which states the conditions
under which a hypothesis considers an example as

positive) becomes probabilistic.

A probabilistic covers relation so�ens the hard covers

relation employed in traditional inductive logic pro-

gramming and is de�ned as the probability of an exam-

ple given the hypothesis and the background theory.

De�nition (Probabilistic Covers Relation). A proba-
bilistic covers relation takes as arguments an example e, a
hypothesis H and possibly the background theory B, and
returns the probability value P(e ∣ H,B) between and
of the example e given H and B, that is, covers(e,H,B) =
P(e ∣ H,B).

It speci�es the likelihood of the example given

the hypothesis and the background theory. Di�erent

choices of the probabilistic covers relation lead to di�er-

ent statistical relational learning approaches; this is akin

to the learning settings in inductive logic programming.

Statistical Relational Languages

�ere is a multitude of di�erent languages and for-

malisms for statistical relational learning. For an

overview of these languages we refer to (Getoor &

Taskar,) and (De Raedt, Frasconi, Kersting, &

Muggleton,). Here, we choose two formalisms

that are representatives of the two main streams in

statistical relational learning. First, we discuss Markov

logic (Richardson & Domingos,), which upgrades

Markov network toward �rst-order logic, and second,

 S Statistical Relational Learning

we discuss ProbLog (De Raedt, Kimmig, & Toivo-

nen,), which is a probabilistic Prolog based on

Sato’s distribution semantics (Sato,).WhileMarkov

logic is a typical example of knowledge-based model

construction, ProbLog is a probabilistic programming

language.

Case Study: Markov Logic Networks Markov logic com-

bines �rst-order logic with 7Markov networks. �e
idea is to view logical formulae as so� constraints on the

set of possible worlds, that is, on the 7interpretations
(an interpretation is a set of facts). If an interpretation

does not satisfy a logical formula, it becomes less proba-

ble, but not necessarily impossible as in traditional logic.

Hence, the more formulae an interpretation satis�es,

the more likely it becomes. In a Markov logic network,

this is realized by associating a weight to each formula

that re�ects how strong the constraint is.More precisely,

a Markov logic network consists of a set of weighted

clauses H = {c, . . . , cm}. (Markov logic networks, in
principle, also allow one to use arbitrary logical formu-

lae, not just clauses. However, for reasons of simplicity,

we only employ clauses and make some further simpli-

�cations.)�e weightswi of the clauses then specify the

strength of the clausal constraint.

Example Consider the following example (adapted
from Richardson and Domingos ()). Friends &
Smokers is a small Markov logic network that computes
the probability of a person having lung cancer on the basis
of her friends smoking. �is can be encoded using the
following weighted clauses:

.: cancer(P)← smoking(P)
.: smoking(X)← friends(X,Y), smoking(Y)
.: smoking(Y)← friends(X,Y), smoking(X)

�e �rst clause states the so� constraint that smoking
causes cancer. So, interpretations in which persons that
smoke have cancer are more likely than those where
they do not (under the assumptions that other properties
remain constant).�e second and third clauses state that
friends of smokers are typically also smokers.

A Markov logic network together with a Herbrand

domain (in the form of a set of constants {d, . . . ,dk})
then induces a grounded Markov network, which

fr(a,b)

fr(a,a) smok(a) smok(b) fr(b,b)

can(a)

fr(b,a)

can(b)

Statistical Relational Learning. Figure . The Markov

network for the constants ann and bob. Adapted

from Richardson and Domingos ()

de�nes a probability distribution over the possible Her-

brand interpretations.

�e nodes, that is, the random variables in the

grounded network, are the atoms in the Herbrand base,

that is, the facts of the form p (d′, . . . ,d′n) where p is
a predicate or relation and the d′i are constants. Fur-
thermore, for every ground instance ciθ of a clause ci
in H, there will be an edge between any pair of atoms
aθ, bθ that occurs in ciθ.�eMarkov network obtained
for the constants anna and bob is shown in Fig. .
To obtain a probability distribution over the Herbrand

interpretations, we still need to de�ne the potentials.

�e probability distribution over interpretations I is

P(I) =

Z
∏

c:clause
fc(I) ()

where the fc are de�ned as

fc(I) = enc(I)wc ()

and nc(I) denotes the number of substitutions θ for
which cθ is satis�ed by I, and Z is a normalization con-
stant. �e de�nition of a potential as an exponential

function of a weighted feature of a clique is common

inMarkov networks; cf.7graphical models.�e reason
is that the resulting probability distribution is easier to

manipulate.

Note that for di�erent (Herbrand) domains, dif-

ferent Markov networks will be produced. �erefore,

one can view Markov logic networks as a kind of

Statistical Relational Learning S

S

template for generating Markov networks, and, hence,

Markov logic is based on knowledge-based model

construction. Notice also that Markov logic networks

de�ne a probability distribution over interpretations,

and nicely separate the qualitative from the quantitative

component.

Case Study: ProbLog Many formalisms do not explic-

itly encode a set of conditional independency assump-

tions, as in Bayesian or Markov networks, but rather

extend a (logic) programming languagewith probabilis-

tic choices. Stochastic logic programs (Cussens, ;

Muggleton,) directly upgrade stochastic context-

free grammars toward de�nite clause logic, whereas

Prism (Sato,), probabilisticHorn abduction (PHA)

(Poole,), and the more recent independent choice

logic (ICL) (Poole,) specify probabilities on facts

from which further knowledge can be deduced. As a

simple representative of this stream of work, we intro-

duce the probabilistic Prolog called ProbLog (De Raedt

et al.,).

�e key idea underlying Problog is that some facts

f for probabilistic predicates are annotated with a prob-
ability value. �is value indicates the degree of belief,

that is the probability, that any ground instance f θ of f
is true. It is also assumed that the f θ aremarginally inde-
pendent. �e probabilistic facts are then augmented

with a set of de�nite clauses de�ning further predicates

(which should be disjoint from the probabilistic ones).

An example adapted fromDeRaedt et al. () is given

below.

Example Consider the facts

.: edge(a,c)←
.: edge(c,b)←
.: edge(d,c)←
.: edge(d,b)←

which specify that with probability . there is an edge
from a to c. Consider also the following (simpli�ed) de�-
nition of path/.

path(X,Y)edge(X,Y)←
path(X,Y)edge(X,Z), path(Z,Y)←

One can now de�ne a probability distribution on

(ground) proofs as follows.�e probability of a ground

proof is the product of the probabilities of the (ground)

clauses (here, facts) used in the proof. For instance,

the only proof for the goal ← path(a,b) employs the
facts edge(a,c) and edge(c,b); these facts aremarginally
independent, and hence the probability of the proof is

. × ..�e probabilistic facts used in a single proof

are sometimes called an explanation.
It is now tempting to de�ne the probability of a

ground atom as the sum of the probabilities of the

proofs for that atom. However, this does not work with-

out additional restrictions, as shown in the following

example.

Example �e fact path(d,b) has two explanations:

. {edge(d,c), edge(c,b)} with probability . × . =
., and

. {edge(d,b)} with probability ..

Summing the probabilities of these explanations gives
a value of ., which is clearly impossible.

�e reason for this problem is that the di�erent

explanations are not mutually exclusive, and therefore

their probabilities may not be summed.�e probability

P(path(d,b) = true) is, however, equal to the probability
that a proof succeeds, that is,

P(path(d,b) = true) = P[(e(d,c) ∧ e(c,b)) ∨ e(d,b)]

which shows that computing the probability of a derived

ground fact reduces to computing the probability of

a boolean formula in disjunctive normal form (DNF),

where all random variables are marginally indepen-

dent of one another. Computing the probability of such

formulae is anNP-hard problem, the disjoint-sum prob-
lem. Using the inclusion-exclusion principle from set
theory, one can compute the probability as

P(path(d,b) = true) = P[(e(d,c) ∧ e(c,b)) ∨ e(d,b)]

= P(e(d,c) ∧ e(c,b))

+ P(e(d,b))

− P((e(d,c) ∧ e(c,b))

∧e(d,b))

= . × . + . − . × .

× . = .

 S Statistical Relational Learning

�ere existmore e�ectiveways to compute the probabil-

ity of such DNF formulae (De Raedt et al.,), where

binary decision diagrams are employed to represent the

DNF formulae.

�e above example shows how the probability of

a speci�c fact is de�ned and can be computed. �e

distribution at the level of individual facts (or goals)

can easily be generalized to a possible world seman-

tics, specifying a probability distribution on interpre-

tations. It is formalized in the distribution semantics of
Sato (), which is de�ned by starting from the set of

all probabilistic ground facts F for the given program.
For simplicity, we shall assume that this set is �nite,

though Sato’s results also hold for the in�nite case.�e

distribution semantics then starts from a probability

distribution PF(S) de�ned on subsets S ⊆ F:

PF(S) =∏
f ∈S

P(f)∏
f /∈S

(− P(f)). ()

Each subset S is now interpreted as a set of logical facts
and combined with the de�nite clause program R that
speci�es the logical part of the probabilistic logic pro-

gram. Any such combination S ∪ R possesses a unique
least Herbrand model M(S ∪ R), which corresponds
to a possible world.�e probability of such a possible

world is then the sum of the probabilities of the subsets

S yielding that possible world, that is,

PW(M) = ∑
S⊆F:M(S∪R)=M

PF(S) ()

For instance, in the path example, there are possi-

ble worlds, which can be obtained from the di�erent

truth assignments to the facts, and whose probabilities

can be computed using Eq. (). As for graphical mod-

els, the probability of any logical formula can be com-

puted from a possible world semantics (speci�ed here

by PW).

Because computing the probability of a fact or goal

under the distribution semantics is hard, systems such

as Prism (Sato,) and PHA (Poole,) impose

additional restrictions that can be used to improve the

e�ciency of the inference procedure.�e key assump-

tion is that the explanations for a goal are mutually
exclusive, which overcomes the disjoint-sum problem.
If the di�erent explanations of a goal do not overlap,

then its probability is simply the sum of the probabil-

ities of its explanations.�is directly follows from the

inclusion-exclusion formulae as under the exclusive-

explanation assumption the conjunctions (or intersec-

tions) are empty.

Learning

Essentially, any statistical relational approach can be

viewed as li�ing a traditional inductive logic program-

ming setting by associating probabilistic information to

clauses and by replacing the deterministic coverage rela-

tion by a probabilistic one. In contrast to traditional

graphical models such as Bayesian networks or Markov

networks, however, we can also employ “counterexam-

ples” for learning. Consider a simple kinship domain.

Assume rex is a male person. Consequently, he can-
not be the daughter of any other person, say ann.
�us, daughter(rex,ann) can be listed as a nega-
tive example although we will never observe it. “Coun-

terexamples” con�ict with the usual view on learning

examples in statistical learning.

In statistical learning, we seek to �nd that hypoth-

esis H∗, which is most likely given the learning

examples:

H∗
= argmax

H
P(H∣E) = argmax

H

P(E∣H) ⋅ P(F)
P(E)

with P(E) > .

�us, examples E in traditional statistical learning are
always observable, that is, P(E) > . However, in statis-
tical relational learning, as in inductive logic program-

ming, we may also employ “counterexamples” such as

daughter(rex,ann), which have probability “,”
and that actually never can be observed.

De�nition (SRL Problem). Given a set E = Ep ∪

Ei of positive and negative examples Ep and Ei (with
Ep ∩ Ei = ∅) over some example language LE, a prob-
abilistic covers relation covers(e,H,B) = P(e ∣ H,B), a
probabilistic logical language LH for hypotheses, and a
background theory B, �nd a hypothesis H∗ in LH such
that H∗ = argmaxH score(E,H,B) and the following
constraints hold: ∀ ep ∈ Ep : covers(ep,H∗,B) >

and ∀ ei ∈ Ei : covers(ei,H∗,B) = . �e score
is some objective function, usually involving the proba-
bilistic covers relation of the observed examples such as
the observed likelihood∏ep∈Ep

covers(ep,H∗,B) or some
penalized variant thereof.

Statistical Relational Learning S

S

�is learning setting uni�es inductive logic pro-

gramming and statistical learning in the following

sense: using a deterministic covers relation (either or

), it yields the classical inductive logic programming

learning problem; sticking to propositional logic and

learning from positive examples, that is, P(E) > , only
yields traditional statistical learning.

To come up with algorithms solving the SRL prob-

lem, say for density estimation, one typically distin-

guishes two subtasks because H = (L, λ) is essen-
tially a logical theory L annotated with probabilistic
parameters λ:

. Parameter estimation where it is assumed that the
underlying logic program L is �xed, and the learn-
ing task consists of estimating the parameters λ that
maximize the likelihood.

. Structure learning where both L and λ have to be
learned from the data.

In the following paragraphs, we will sketch the basic

parameter estimation and structure learning tech-

niques, and illustrate them for each setting.

Parameter Estimation �e problem of parameter esti-

mation is concerned with estimating the values of the

parameters λ of a �xed probabilistic programH = (L, λ)
that best explains the examples E. So, λ is a set of param-
eters and can be represented as a vector. As already

indicated above, tomeasure the extent to which amodel

�ts the data, one usually employs the likelihood of the

data, that is, P(E ∣ L, λ), though other scores or variants
could be used as well.

When all examples are fully observable, maximum

likelihood reduces to frequency counting. In the pres-

ence of missing data, however, the maximum likeli-

hood estimate typically cannot be written in closed

form. It is a numerical optimization problem, and all

known algorithms involve nonlinear optimization.�e

most commonly adopted technique for probabilistic

logic learning is the expectation-maximization (EM)

algorithm (Dempster, Laird, Rubin, ; McLachlan &

Krishnan,). EM is based on the observation that

learning would be easy (i.e., correspond to frequency

counting), if the values of all the random variables

would be known. �erefore, it estimates these values,

maximizes the likelihood based on the estimates, and

then iterates. More speci�cally, EM assumes that the

parameters have been initialized (e.g., at random) and

then iteratively performs the following two steps until

convergence:

(E-Step) On the basis of the observed data and the
present parameters of the model, it computes a dis-

tribution over all possible completions of each par-

tially observed data case.

(M-Step) Treating each completion as a fully observed
data case weighted by its probability, it computes

the improved parameter values using (weighted) fre-

quency counting.

�e frequencies over the completions are called the

expected counts. Examples for parameter estimation of
probabilistic relational models can be found in (Getoor

& Taskar,) and (De Raedt, Frasconi, Kersting, &

Muggleton,).

Structure Learning �e problem is now to learn both

the structure L and the parameters λ of the probabilistic
program H = (L, λ) from data. O�en, further informa-
tion is given as well. As in inductive logic programming,

the additional knowledge can take various di�erent

forms, including a7language bias that imposes restric-
tions on the syntax of L, and an initial hypothesis (L, λ)
from which the learning process can start.

Nearly all (score-based) approaches to structure

learning perform a heuristic search through the space of

possible hypotheses. Typically, hill-climbing or beam-

search is applied until the hypothesis satis�es the

logical constraints and the score(H,E) is no longer
improving. �e steps in the search-space are typi-

cally made using re�nement operators, which make

small, syntactic modi�cations to the (underlying) logic

program.

At this point, it is interesting to observe that the

logical constraints o�en require that the positive exam-

ples are covered in the logical sense. For instance,

when learning ProbLog programs from entailment,

the observed example clauses must be entailed by the

logic program. �us, for a probabilistic program H =

(LH , λH) and a background theory B = (LB, λB) it

holds that ∀ep ∈ Ep : P(e∣H,B) > if and only if

covers(e,LH ,LB) = , where LH (respectively LB) is the
underlying logic program (logical background theory)

 S Statistical Relational Learning

and covers(e,LH ,LB) is the purely logical covers relation,
which is either or .

Applications
Applications of statistical relational learning can be

found in many areas such as web search and min-

ing, text mining, bioinformatics, natural language pro-

cessing, robotics, and social network analysis, among

others. Due to space restrictions, we will only name a

few of these exciting applications.

For instance, Getoor, Taskar, & Koller () have

used statistical relational models to estimate the result

size of complex database queries. Segal et al. have

employed probabilistic relational models to cluster gene

expression data (Segal, Taskar, Gasch, Friedman, &

Koller,) and to discover cellular processes from

gene expression data (Segal, Battle, & Koller,).

Getoor et al. have used probabilistic relational mod-

els to understand tuberculosis epidemiology (Getoor,

Rhee, Koller, & Small,). McGovern et al. ()

have estimated probabilistic relational trees to discover

publication patterns in high-energy physics. Probabilis-

tic relational trees have also been used to learn to rank

brokers with respect to the probability that they would

commit a serious violation of securities regulations in

the near future (Neville et al.,). Anguelov et al.

() have used relational Markov networks for seg-

mentation of D scan data. Markov networks have also

been used to compactly represent object maps and to

estimate trajectories of people (Limketkai, Liao, & Fox,

). Kersting et al. have employed relational hidden

Markov models for protein fold recognition (Kersting,

De Raedt, & Raiko,). Poon and Domingos ()

have shown how to use Markov logic to perform joint

unsupervised coreference resolution. Xu et al. have

used nonparametric relational models for analyzing

social networks (Xu, Tresp, Rettinger, & Kersting,).

Kersting and Xu () have used relational Gaussian

processes for learning to rank search results. Recently,

Poon and Domingos () have shown how to per-

form unsupervised semantic parsing using Markov

logic networks.

Future Directions
We have provided an overview of the new and excit-

ing area of statistical relational learning. It combines

principles of probabilistic reasoning, logical represen-

tation, and statistical learning into a coherent whole.

�e techniques of probabilistic logic learning were ana-

lyzed starting from an inductive logic programming

perspective by li�ing the coverage relation to a prob-

abilistic one and annotating the logical formulae. Dif-

ferent choices of the probabilistic coverage relation lead

to di�erent representational formalisms, two of which

were introduced.

Statistical relational learning is an active area of

research within the machine learning and the arti�-

cial intelligence community. First, there is the issue

of e�cient inference and learning. Most current infer-
ence algorithms for statistical relational models require

explicit state enumeration, which is o�en impracti-

cal: the number of states grows very quickly with

the number of domain objects and relations. Li�ed
inference algorithms seek to avoid explicit state enu-

meration and directly work at the level of groups of

atoms, eliminating all the instantiations of a set of

atoms in a single step, in some cases independently

of the number of these instantiations. Despite var-

ious approaches to li�ed inference (de Salvo Braz,

Amir, & Roth, ; Jaimovich, Meshi, & Friedman,

; Kersting, Ahmadi, & Natarajan, ; Kisynski

& Poole, ; Milch, Zettlemoyer, Kersting, Haimes,

& Kaelbling , ; Poole, ; Sen, Deshpande, &

Getoor, ; Singla & Domingos,), it largely

remains a challenging problem. For what concerns

learning, advanced principles of both statistical learn-

ing and logical and relational learning can be employed

for learning the parameters and the structure of proba-

bilistic logics such as statistical predicate invention (Kok
&Domingos,) and boosting (Gutmann&Kersting,
). Recently, people started to investigate learning
from weighted examples (see e.g., Chen, Muggleton, &
Santos,) and to link statistical relational learning to

support vector machines (see e.g., Passerini, Frasconi,

& De Raedt,). Second, there is the issue of closed-
world versus open-world assumption that is, do we know
howmany objects there are (see e.g., Milch et al.,).

�ird, there is interest in dealing with continuous val-
ues within statistical relational learning (see e.g., Chu,
Sindhwani, Ghahramani, & Keerthi, ; Silva, Chu,

& Ghahramani, ; Wang & Domingos, ; Xu,

Kersting, & Tresp,). �is is mainly motivated

by the fact that most real-world applications actually

Statistical Relational Learning S

S

contain continuous values. Nonparametric Bayesian
approaches to statistical relational learning have also

been developed (see e.g., Kemp, Tenenbaum, Gri�ths,

Yamada, & Ueda, ; Xu, Tresp, Yu, & Kriegel, ;

Yu & Chu, ; Yu, Chu, Yu, Tresp, & Xu,), to

overcome the typically strong parametric assumptions

underlying current statistical relational learning. Peo-

ple have also started to investigate relational variants of
classical statistical learning tasks such as matrix factor-
izations (see e.g., Singh & Gordon,). Finally, while

statistical relational learning approaches have been used

successfully in a number of applications, they do not yet

cope with the dynamic environments in an e�ective way.

Cross References
7Multi-Relational Data Mining
7Relational Learning

Recommended Reading
In addition to the references embedded in the text above, we also

recommend De Raedt et al. (), Getoor & Taskar (), De

Raedt () and the SRL tutorials at major artificial intelligence

and machine learning conferences.

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D.,

Heitz, G., et al. (). Discriminative learning of Markov ran-

dom fields for segmentation of D scan data. In C. Schmid,

S. Soatto, & C. Tomasi (Eds.), IEEE Computer Society inter-
national conference on computer vision and pattern recognition
(CVPR-), San Diego, CA, USA (Vol. , pp. –).

Chen, J., Muggleton, S., & Santos, J. (). Learning probabilistic

logic models from probabilistic examples. Machine Learning,
(), –.

Chu, W., Sindhwani, V., Ghahramani, Z., & Keerthi, S. (). Rela-

tional learning with Gaussian processes. In Advances in Neu-
ral information processing systems (NIPS-). Cambridge,
MA: MIT Press.

Cussens, J. (). Loglinear models for first-order probabilistic rea-

soning. In K. Blackmond Laskey & H. Prade (Eds.), Proceedings
of the fifteenth annual conference on uncertainty in artificial
intelligence (UAI-) (pp. –), Stockholm, Sweden. San
Francisco: Morgan Kaufmann.

Cussens, J. (). Parameter estimation in stochastic logic pro-

grams. Machine Learning Journal, (), –.
De Raedt, L. (). Logical and relational learning. Springer.
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.).

(). Probabilistic inductive logic programming. Lecture
notes in computer science (Vol.). Berlin/Heidelberg:
Springer.

De Raedt, L., Kimmig, A., & Toivonen, H. (). Problog: A prob-

abilistic Prolog and its application in link discovery. In M.

Veloso (Ed.), Proceedings of the th international joint con-
ference on artificial intelligence (pp. –). Hyderabad,
India.

de Salvo Braz, R., Amir, E., & Roth, D. (). Lifted first order prob-

abilistic inference. In Proceedings of the th international joint
conference on artificial intelligence (IJCAI-) (pp. –).
Edinburgh, Scotland.

Dempster, A., Laird, N., & Rubin, D. (). Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society B, , –.

Džeroski, S., & Lavrač, N. (Eds.). (). Relational data mining.
Berlin: Springer.

Eisele, A. (). Towards probabilistic extensions of contraint-

based grammars. In J. Dörne (Ed.), Computational aspects of
constraint-based linguistics description-II. Stuttgart: Institute
for Computational Linguistics (IMS-CL). DYNA- deliverable

R..B.

Getoor, L. (). Learning statistical models from relational data.
PhD thesis, Stanford University, USA.

Getoor, L., Rhee, J., Koller, D., & Small, P. (). Understand-

ing tuberculosis epidemiology using probabilistic relational

models. Journal of Artificial Intelligence in Medicine, ,
–.

Getoor, L., & Taskar, B. (Eds.). (). Introduction to statistical
relational learning. Cambridge, MA, USA: The MIT Press.

Getoor, L., Taskar, B., & Koller, D. (). Using probabilistic mod-

els for selectivity estimation. In Proceedings of ACM SIGMOD
international conference on management of data (pp. –).
Santa Barbara, CA, USA: ACM Press.

Gutmann, B., & Kersting, K. (). TildeCRF: Conditional random

fields for logical sequences. In J. Fuernkranz, T. Scheffer, & M.

Spiliopoulou (Eds.), Proceedings of the th European conference
on machine learning (ECML-), Berlin, Germany (pp. –
).

Jäger, M. (). Relational Bayesian networks. In K. Laskey & H.

Prade (Eds.), Proceedings of the thirteenth conference on uncer-
tainty in artificial intelligence (UAI-), Stockholm, Sweden
(pp. –). San Franciso, CA, USA: Morgan Kaufmann.

Jaimovich, A., Meshi, O., & Friedman, N. (). Template-based

inference in symmetric relational Markov random fields. In

Proceedings of the conference on uncertainty in artificial intel-
ligence (UAI-) (pp. –).

Kemp, C., Tenenbaum, J., Griffiths, T., Yamada, T., & Ueda, N.

(). Learning systems of concepts with an infinite relational

model. In Proceedings of st AAAI.
Kersting, K., Ahmadi, B., & Natarajan, S. (). Counting belief

propagation. In Proceedings of the th conference on uncer-
tainty in artificial intelligence (UAI-). Montreal, Canada.

Kersting, K., & De Raedt, L. (). Bayesian logic programming:

Theory and tool. In L. Getoor & B. Taskar (Eds.), An introduc-
tion to statistical relational learning (pp. –). Cambridge,
MA, USA: MIT Press.

Kersting, K., De Raedt, L., & Raiko, T. (). Logial Hidden Markov

Models. Journal of Artificial Intelligence Research (JAIR), ,
–.

Kersting, K., & Xu, Z. (). Learning preferences with hidden

common cause relations. In Proceedings of the European confer-
ence on machine learning and principles and practice of knowl-
edge discovery in databases (ECML PKDD). LNAI, Bled,
Slovenia, Springer.

Kisynski, J., & Poole, D. (). Lifted aggregation in directed first-

order probabilistic models. In C. Boutilier (Ed.), Proceedings
of the international joint conference on artificial intelligence
(IJCAI-). Pasadena, CA, USA.

 S Statistical Relational Learning

Kok, S., & Domingos, P. (). Statistical predicate invention. In

Proceedings of the twenty-fourth international conference on
machine learning (ICML-), Corvallis, OR, USA (pp. –
). ACM Press.

Limketkai, B., Liao, L., & Fox, D. (). Relational object maps

for mobile robots. In F. Giunchiglia & L. P. Kaelbling (Eds.),

Proceedings of the nineteenth international joint conference on
artificial intelligence (IJCAI-), Edinburgh, Scotland (pp. –
). AAAI Press.

McGovern, A., Friedland, L., Hay, M., Gallagher, B., Fast, A., Neville,

J., et al. (). Exploiting relational structure to understand

publication patterns in high-energy physics. SIGKDD Explo-
rations, (), –.

McLachlan, G., & Krishnan, T. (). The EM algorithm and exten-
sions. New York: Wiley.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A.

(). BLOG: Probabilistic models with unknown objects. In F.

Giunchiglia, L. P. Kaelbling (Eds.), Proceedings of the nineteenth
international joint conference on artificial intelligence (IJCAI-
), Edinburgh, Scotland (pp. –). Edinburgh, Scotland:
AAAI Press.

Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., & Pack Kael-

bling, L. (). Lifted probabilistic inference with counting

formulas. In Proceedings of the rd AAAI conference on arti-
ficial intelligence (AAAI-).

Muggleton, S. (). Stochastic logic programs. In L. De Raedt

(Ed.), Advances in inductive logic programming (pp. –).
Amsterdam: IOS Press.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, (),
–.

Neville, J., & Jensen, D. (). Dependency networks for rela-

tional data. In R. Rastogi, K. Morik, M. Bramer, & X. Wu

(Eds.), Proceedings of the fourth IEEE international conference
on data mining (ICDM-), Brighton, UK (pp. –). IEEE
Computer Society Press.

Neville, J., Simsek, Ö., Jensen, D., Komoroske, J., Palmer,

K., & Goldberg, H. (). Using relational knowledge

discovery to prevent securities fraud. In Proceedings of
the th ACM SIGKDD international conference on knowl-
edge discovery and data mining. Chicago, IL, USA: ACM
Press.

Ngo, L., & Haddawy, P. (). Answering queries from context-

sensitive probabilistic knowledge bases. Theoretical Computer
Science, , –.

Passerini, A., Frasconi, P., & De Raedt, L. (). Kernels on pro-

log proof trees: Statistical learning in the ILP setting. Journal of
Machine Learning Research, , –.

Pfeffer, A. (). Probabilistic reasoning for complex systems.
PhD thesis, Computer Science Department, Stanford

University.

Poole, D. (). Probabilistic Horn abduction and Bayesian net-

works. Artificial Intelligence Journal, , –.
Poole, D. (). The independent choice logic for modelling mul-

tiple agents under uncertainty. Artificial Intelligence, (–),
–.

Poole, D. (). First-order probabilistic inference. In G. Got-

tlob & T. Walsh (Eds.), Proceedings of the eighteenth inter-
national joint conference on artificial intelligence (IJCAI-
), Acapulco, Mexico (pp. –). San Francisco: Morgan
Kaufmann.

Poon, H., & Domingos, P. (). Joint unsupervised coreference

resolution with markov logic. In: Proceedings of the con-
ference on empirical methods in natural language processing
(EMNLP), Honolulu, HI, USA.

Poon, H., & Domingos, P. (). Unsupervised semantic parsing.

In Proceedings of the conference on empirical methods in
natural language processing (EMNLP), Singapore.

Richardson, M., & Domingos, P. (). Markov logic networks.

Machine Learning, , –.
Sato, T. (). A statistical learning method for logic programs

with distribution semantics. In L. Sterling (Ed.), Proceedings
of the twelfth international conference on logic programming
(ICLP-), Tokyo, Japan (pp. –). MIT Press.

Segal, E., Battle, A., & Koller, D. (). Decomposing gene expres-

sion into cellular processes. In Proceedings of Pacific symposium
on biocomputing (PSB) (pp. –). World Scientific.

Segal, E., Taskar, B., Gasch, A., Friedman, N., & Koller, D. ().

Rich probabilistic models for gene expression. Bioinformatics,
(Suppl.), S– (Proceedings of ISMB).

Sen, P., Deshpande, A., & Getoor, L. (). Exploiting shared corre-

lations in probabilistic databases. In Proceedings of the interna-
tional conference on very large data bases (VLDB-). Auckland,
New Zealand.

Silva, R., Chu, W., & Ghahramani, Z. (). Hidden common cause

relations in relational learning. In Advances in Neural informa-
tion processing systems (NIPS-). Cambridge, MA: MIT
Press.

Singh, A., & Gordon, G. (). Relational learning via collective

matrix factorization. In Proceedings of th international con-
ference on knowledge discovery and data mining. Las Vegas,
US.

Singla, P., & Domingos, P. (). Lifted first-order belief propa-

gation. In Proceedings of the rd AAAI conference on artificial
intelligence (AAAI-), Chicago, IL, USA (pp. –).

Taskar, B., Abbeel, P., & Koller, D. (). Discriminative probabilis-

tic models for relational data. In A. Darwiche & N. Friedman

(Eds.), Proceedings of the eighteenth conference on uncertainty
in artificial intelligence (UAI-), Edmonton, Alberta, Canada
(pp. –).

Wang, J., & Domingos, P. (). Hybrid markov logic networks. In

Proceedings of the rd AAAI conference on artificial intelligence
(AAAI-), Chicago, IL, USA (pp. –).

Xu, Z., Kersting, K., & Tresp, V. (). Multi-relational learn-

ing with Gaussian processes. In C. Boutilier (Ed.) Proceedings
of the international joint conference on artificial intelligence
(IJCAI-). Pasadena, CA.

Xu, Z., Tresp, V., Rettinger, A., & Kersting, K. (). Social

network mining with nonparametric relational models. In

Advances in social network mining and analysis. Lecture
Notes in Computer Science (Vol.), Berlin/Heidelberg:

Springer.

Xu, Z., Tresp, V., Yu, K., & Kriegel, H. P. (). Infinite hidden

relational models. In Proceedings of nd UAI.
Yu, K., & Chu, W. (). Gaussian process models for link

analysis and transfer learning. In Advances in Neural infor-
mation processing systems (NIPS-). Cambridge, MA:
MIT Press.

Yu, K., Chu, W., Yu, S., Tresp, V., & Xu, Z. (). Stochastic rela-

tional models for discriminative link prediction. In Advances
in Neural information processing systems (NIPS-). Cam-
bridge, MA: MIT Press.

Stochastic Finite Learning S

S

Stochastic Finite Learning

Thomas Zeugmann

Hokkaido University,

Sapparo, Japan

Motivation and Background
Assume that we are given a concept class C and should

design a learner for it. Next, supposewe already knowor

could prove C not to be learnable in the model of7PAC
Learning. But it can be shown that C is learnable within

Gold’s () model of 7Inductive Inference or learn-
ing in the limit.�us, we can design a learner behaving

as follows. When fed any of the data sequences allowed

in this model, it converges in the limit to a hypothesis

correctly describing the target concept. Nothingmore is

known. LetM be any �xed learner. If (dn)n ≥ is any data
sequence, then the stage of convergence is the least inte-
germ such thatM(dm) =M(dn) for all n ≥ m, provided
such an n exists (and in�nite, otherwise). In general, it
is undecidable whether or not the learner has already

reached the stage of convergence, but even if it is decid-

able for a particular concept class, it may be practically

infeasible to do so.�is uncertaintymay not be tolerable
in many applications.

When we tried to overcome this uncertainty, the

idea of stochastic �nite learning emerged. Clearly, in

general nothing can be done, since in Gold’s ()

model the learner has to learn from any data sequence.

So for every concept that needsmore than one datum to

converge, one can easily construct a sequence, where the

�rst datum is repeated very o�en and where therefore,

the learner does not �nd the right hypothesis within

the given bound. However, such data sequences seem

unnatural.�erefore, we looked at data sequences that

are generated with respect to some probability distribu-

tion taken from a prespeci�ed class of probability distri-

butions and computed the expected total learning time,
i.e., the expected time until the learner reaches the stage

of convergence (cf. Erlebach, Rossmanith, Stadtherr,

Steger, & Zeugmann, ; Zeugmann,). Clearly,

one is then also interested in knowing how o�en the

expected total learning time is exceeded. In general,

Markov’s inequality can be applied to obtain the rele-

vant tail bounds. However, if the learner is known to

be rearrangement independent and conservative, then

we always get exponentially shrinking tail bounds (cf.
Rossmanith & Zeugmann,). A learner is said to be

rearrangement independent, if its output depends exclu-
sively on the range and length of its input (but not the

order) (cf., e.g., Lange & Zeugmann, and the ref-

erences therein). Furthermore, a learner is conservative,
if it exclusively performs mind changes that can be jus-

ti�ed by an inconsistency of the abandoned hypothesis

with the data received so far (see Angluin, b for a

formal de�nition).

Combining these ideas results in stochastic �nite

learning. A stochastic �nite learner is successively fed

data about the target concept. Note that these data are

generated randomly with respect to one of the probabil-

ity distributions from the class of underlying probability

distributions. Additionally, the learner takes a con�-

dence parameter δ as input. But in contrast to learning
in the limit, the learner itself decides how many exam-

ples it wants to read. �en it computes a hypothesis,

outputs it and stops. �e hypothesis output is correct

for the target with a probability at least − δ.
�e description given above explains how it works,

but not why it does. Intuitively, the stochastic �nite

learner simulates the limit learner until an upper bound

for twice the expected total number of examples needed

until convergence has been met. Assuming this to

be true, by Markov’s inequality, the limit learner has

now converged with a probability /. All what is le�

is to decrease the probability of failure. �is can be

done by using again Markov’s inequality, i.e., increas-

ing the sample complexity by a factor of /δ results in
a con�dence of − δ for having reached the stage of
convergence.

Note that the stochastic �nite learner has to cal-

culate an upper bound for the stage of convergence.

�is is precisely the point where we need the param-

eterization of the class D of underlying probability

distributions. �en, a bit of prior knowledge must be
provided in the form of suitable upper and/or lower

bounds for the parameters involved. Amore serious dif-

�culty is to incorporate the unknown target concept

into this estimate. �is step depends on the concrete

learning problem on hand and requires some extra

e�ort.

It should also be noted that our approach may be

bene�cial even in case that the considered concept class

is PAC learnable.

 S Stochastic Finite Learning

Definition
Let D be a set of probability distributions on the learn-

ing domain, let C be a concept class, H a hypothesis

space for C, and δ ∈ (,). (C,D) is said to be stochas-
tically �nitely learnable with δ-con�dence with respect
to H i� there is a learner M that for every c ∈ C and

every D ∈ D performs as follows. Given any random

data sequence θ for c generated according toD,M stops
a�er having seen a �nite number of examples and out-

puts a single hypothesis h ∈ H. With a probability at

least − δ (with respect to distribution D), h has to be
correct, i.e., c = h.
If stochastic �nite learning can be achieved with δ-

con�dence for every δ > then we say that (C,D) can

be learned stochastically �nite with high con�dence.

Detail
Note that there are subtle di�erences between our

model and PAC learning. By its de�nition, stochas-

tic �nite learning is not completely distribution inde-

pendent. A bit of additional knowledge concerning
the underlying probability distributions is required.

�us, from that perspective, stochastic �nite learning is

weaker than the PAC model. On the other hand, we do

not measure the quality of the hypothesis with respect
to the underlying probability distribution. Instead, we

require the hypothesis computed to be exactly correct

with high probability. Note that the exact identi�cation

with high con�dence has been considered within the

PAC paradigm, too (cf., e.g., Saly, Goldman, & Schapire,

). Conversely, we also can easily relax the require-

ment to learn probably exactly correct, but whenever
possible we shall not do it.

Furthermore, in the uniform PAC model as intro-

duced in Valiant (), the sample complexity depends

exclusively on the VC dimension of the target con-

cept class and the error and con�dence parameters ε
and δ, respectively.�is model has been generalized by
allowing the sample size to depend on the concept com-

plexity, too (cf., e.g., Blumer, Ehrenfeucht, Haussler, &

Warmuth, ; Haussler, Kearns, Littlestone, & War-

muth,). Provided no upper bound for the concept

complexity of the target concept is given, such PAC

learners decide themselves how many examples they

wish to read (cf. Haussler et al.,). �is feature is

also adopted to our setting of stochastic �nite learning.

However, all variants of e�cient7PACLearning, we are
aware of, require that all hypotheses from the relevant

hypothesis space are uniformly polynomially evaluable.

�ough this requirement may be necessary in some

cases to achieve (e�cient) stochastic �nite learning, it

is not necessary in general as we shall see below.

In the following, we provide two sample applica-

tions of Stochastic Finite Learning. We always choose

the concept class C itself as hypothesis space.

Learning Monomials
Let Xn = {, }n be the learning domain, let Ln =

{x, x̄, x, x̄ . . . , xn, x̄n} (set of literals), and consider
the class Cn of all concepts describable by a conjunc-

tion of literals. As usual, we refer to any conjunction of

literals as a monomial. A monomial m describes a con-
cept c ⊆ Xn in the obvious way:�e concept contains

exactly those binary vectors for which the monomial

evaluates to .

�e basic ingredient to the stochastic �nite learner is

Haussler’s () Wholist algorithm, and thus the main

emphasis is on the resulting complexity. �e Wholist

algorithm can also be used to achieve 7PAC Learning
of the class Cn and the resulting sample complexity is

O(/ε ⋅ (n + ln(/δ))) for all ε, δ ∈ (,]. Since the

Wholist algorithm learns from positive examples only,

it is meaningful to study the learnability of Cn from pos-

itive examples only. So, the stage of convergence is not
decidable.

Since theWholist algorithm immediately converges

for the empty concept, we exclude it from our consid-

erations.�at is, we consider concepts c ∈ Cn described
by a monomial m = ⋀

#(m)
j = ℓij such that k = k(m) =

n − #(m) > . A literal not contained in m is said to
be irrelevant. Bit i is said to be irrelevant for mono-
mial m if neither xi nor x̄i appear in m. �ere are k

positive examples for c. For the sake of presentation,
we assume these examples to be binomially distributed
with parameter p. So, in a random positive example,
all entries corresponding to irrelevant bits are selected

independently of each other. With some probability p
this will be a , and with probability −p, this will be a .
Only distributions where < p < are considered, since
otherwise exact identi�cation is impossible. Now, one

can show that the expected number of examples needed

by the Wholist algorithm until convergence is bounded

Stochastic Finite Learning S

S

by ⌈logψ k(m)⌉ + τ + , where ψ := min{

− p ,

p} and

τ := max{ p
− p ,

− p
p }.

Let CON denote a random variable for the stage of
convergence. Since the Wholist algorithm is rearrange-

ment independent and conservative, we can conclude

(cf. Rossmanith & Zeugmann,)

Pr(CON > t ⋅E[CON]) ≤
−t
for all natural

numbers t ≥ .

Finally, in order to obtain a stochastic �nite learner,

we reasonably assume that the prior knowledge is pro-
vided by parameters plow and pup such that plow ≤ p ≤

pup for the true parameter p. Binomial distributions ful-
�lling this requirement are called (plow, pup)-admissible
distributions. Let Dn[plow, pup] denote the set of such
distributions on Xn.�en one can show

Let < plow ≤ pup < and ψ := min{

−plow ,

pup
}.

�en (Cn, Dn[plow, pup]) is stochastically �nitely learn-
able with high con�dence from positive examples. To
achieve δ-con�dence no more than O (log

/δ ⋅ logψ n),

many examples are necessary.
�erefore, we have achieved an exponential improve-

ment on the number of examples needed for learning

(compared to the PAC bound displayed above), and, in

addition, our stochastic �nite learner exactly identi�es

the target. Note that this result is due to Reischuk and

Zeugmann, however, we refer the reader to Zeugmann

() for the relevant proofs.

�e results obtained for learnability from positive

examples only can be extended mutatis mutandis to

the case when the learner is fed positive and negative

examples (cf. Zeugmann, for details).

Learning Pattern Languages
�e pattern languages have been introduced byAngluin

(a) and can be informally de�ned as follows. Let Σ =

{, , . . . } be any �nite alphabet containing at least two

elements. LetX = {x, x, . . .} be a countably in�nite set
of variables such that Σ∩X = ∅. Patterns are nonempty
strings over Σ∪X, e.g., , x, xxxxx are pat-
terns. �e length of a string s ∈ Σ∗ and of a pattern

π is denoted by ∣s∣ and ∣π∣, respectively. A pattern π is
in canonical form provided that if k is the number of
di�erent variables in π then the variables occurring in
π are precisely x, . . . , xk−. Moreover, for every j with

 ≤ j < k − , the le�most occurrence of xj in π is le�
to the le�most occurrence of xj+.�e examples given
above are patterns in canonical form.

If k is the number of di�erent variables in π then we
refer to π as to a k-variable pattern. For example, xxx
is a one-variable pattern, and xxx is a two-variable
pattern. If π is a pattern, then the language generated by
π is the set of all strings that can be obtained from π by
substituting a nonnull element si ∈ Σ∗ for each occur-
rence of the variable symbol xi in π, for all i ≥ . We
use L(π) to denote the language generated by pattern
π. So, , belong to L(xxx) (by substituting
 and for x, respectively) and is an element of
L(xxx) (by substituting for x and for x). Note
that even the class of all one-variable patterns has in�-

nite7VC Dimension (cf. Mitchell, Sche�er, Sharma, &
Stephan,).

Reischuk andZeugmann () designed a stochas-

tic �nite learner for the class of all one-variable pat-

tern languages that runs in time O(∣π∣ log(/δ)) for
all meaningful distributions and learns from positive

data only.�at is, all data fed to the learner belong to

the target pattern language. Furthermore, by meaning-

ful distribution essentially the following is meant.�e

expected length of an example should be �nite, and the

distribution should allow to learn the target pattern.

�is is then expressed by �xing some suitable param-

eters. It should be noted that the algorithm is highly

practical, and amodi�cation of it also works for the case

that empty substitutions are allowed.
For the class of all pattern languages, one can also

provide a stochastic �nite learner, identifying the whole

class from positive data. In order to arrive at a suit-

able class of distributions, essentially three require-

ments are made. �e �rst one is the same as in the

one-variable case, i.e., the expected length E[Λ] of

a generated string should be �nite. Second, the class

of distributions is restricted to regular product dis-

tributions, i.e., for all variables the substitutions are

identically distributed. �ird, two parameters α and
β are introduced. �e parameter α is the probability
that a string of length is substituted and β is the
conditional probability that two random strings that

get substituted into π are identical under the condi-
tion that both have length . �ese two parameters

ensure that the target pattern language is learnable at

all.�e stochastic �nite learner is then using as a priori

 S Stratified Cross Validation

knowledge a lower bound α∗ for α and an upper bound
β∗ for β. �e basic ingredient to this stochastic �nite
learner is Lange andWiehagen’s () pattern language

learning algorithm. Rossmanith and Zeugmann’s ()

stochastic �nite learner for the pattern languages runs

in timeO ((/αk
∗)E[Λ] log/β∗(k) log(/δ)), where k is

the number of di�erent variables in the target pattern.

So, with increasing k it becomes impractical.
Note that the two stochastic �nite learners for the

pattern languages can compute the expected stage of

convergence, since the �rst string seen provides an

upper bound for the length of the target pattern.

For further information, we refer the reader to

Zeugmann () and the references therein. More

research is needed to explore the potential of stochas-

tic �nite learning. Such investigations should extend the

learnable classes, study the incorporation of noise, and

explore further possible classes of meaningful probabil-

ity distributions.

Cross References
7Inductive Inference
7PAC Learning

Recommended Reading
Angluin, D. (a). Finding patterns common to a set of strings.

Journal of Computer and System Sciences, (), –.
Angluin, D. (b). Inductive inference of formal languages from

positive data. Information Control, (), –.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().

Learnability and the Vapnik–Chervonenkis dimension. Journal
of the ACM, (), –.

Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., & Zeugmann,

T. (). Learning one-variable pattern languages very effi-

ciently on average, in parallel, and by asking queries. Theoretical
Computer Science, (), –.

Gold, E. M. (). Language identification in the limit. Information
and Control, (), –.

Haussler, D. (). Bias, version spaces and Valiant’s learning

framework. In P. Langley (Ed.), Proceedings of the fourth inter-
national workshop on machine learning (pp. –). San
Mateo, CA: Morgan Kaufmann.

Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. K. ().

Equivalence of models for polynomial learnability. Information
and Computation, (), –.

Lange, S., & Wiehagen, R. (). Polynomial-time inference of

arbitrary pattern languages. New Generation Computing, (),
–.

Lange, S., & Zeugmann, T. (). Set-driven and rearrangement-

independent learning of recursive languages. Mathematical
Systems Theory, (), –.

Mitchell, A., Scheffer, T., Sharma, A., & Stephan, F. (). The VC-

dimension of sub- classes of pattern languages. In O. Watanabe

& T. Yokomori (Eds.), Algorithmic learning theory, tenth inter-
national conference, ALT”, Tokyo, Japan, December , Pro-
ceedings, Lecture notes in artificial intelligence (Vol. , pp.
–). Springer.

Reischuk, R., & Zeugmann, T. (). An average-case optimal

one-variable pattern language learner. Journal of Computer and
System Sciences, (), –.

Rossmanith, P., & Zeugmann, T. (). Stochastic finite learning of

the pattern languages. Machine Learning, (/), –.
Saly, A., Goldman, M. J. K., & Schapire, R. E. (). Exact identifi-

cation of circuits using fixed points of amplification functions.

SIAM Journal of Computing, (), –.
Valiant, L. G. (). A theory of the learnable. Communications of

the ACM, (), –.
Zeugmann, T. (). Lange and Wiehagen’s pattern language learn-

ing algorithm: An average-case analysis with respect to its total

learning time. Annals of Mathematics and Artificial Intelligence,
, –.

Zeugmann, T. (). From learning in the limit to stochastic finite

learning. Theoretical Computer Science, (), –. Special
issue for ALT .

Stratified Cross Validation

Strati�ed Cross Validation is a form of7cross validation
inwhich the class distribution is kept as close as possible

to being the same across all folds.

Stream Mining

A sub�eld of knowledge discovery called streammining
addresses the issue of rapidly changing data.�e idea

is to be able to deal with the stream of incoming data

quickly enough to be able to simultaneously update the

corresponding models (e.g., ontologies), as the amount

of data is too large to be stored: new evidence from

the incoming data is incorporated into the model with-

out storing the data. For instance, modeling ontol-

ogy changes and evolution over time using text min-

ing methods (7Text Mining for Semantic Web). �e
underlying methods are based on the machine learning

methods of7Online Learning, where themodel is built
from the initially available data and updated regularly as

more data become available.

Examples of data streams include computer net-

work tra�c, phone conversations, ATM transactions,

web searches, and sensor data.

Structural Risk Minimization S

S

Cross References
7Clustering Data Streams
7Online Learning

String kernel

A string kernel is a function from any of various families
of kernel functions (see7kernel methods) that operate
over strings and sequences.�e most typical example is

as follows. Suppose that we are dealing with strings over

a �nite alphabet Σ. Given a string a = aa . . .an ∈ Σ*, we
say that a substring p = pp . . .pk occurs in a on posi-
tions i i . . .ik i� ≤ i < i < . . . < ik ≤ n and aij = pj
for all j = , . . . , k. We de�ne the weight of this occur-
rence as λik−i−k+, where λ ∈ [,] is a constant chosen

in advance; in other words, an occurrence weighs less

if characters of p are separated by other characters. Let
ϕp(a) be the sum of the weights of all occurrences
of p in a, and let ϕ(a)= (ϕp(a))p∈Σ∗ be an in�nite-
dimensional feature vector consisting of ϕp(a) for all
possible substrings p ∈ Σ*. It turns out that the dot

product of two such in�nite-length vectors, K(a, a′) =

ϕ(a)Tϕ(a′), can be computed in time polynomial in the
length of a and a′, e.g., using dynamic programming.
�e function K de�ned in this way can be used as a
kernel with various kernel methods. See also 7feature
construction in text mining.

String Matching Algorithm

A string matching algorithm returns parts of text

matching a given pattern, such as a regular expres-
sion. Such algorithms have countless applications, from
�le editing to bioinformatics. Many algorithms com-

pute deterministic �nite automata, which can be expen-

sive to build, but are usually e�cient to use; they

include the Knuth–Morris–Pratt algorithm and the

Boyer–Moore algorithm, that build the automaton in
time O(m) and O(m + s), respectively, where m is the
length of the pattern and s the size of the alphabet, and
match a text of length n in time O(n) in the worst case.

Structural Credit Assignment

7Credit Assignment

Structural Risk Minimization

Xinhua Zhang

Australian National University, NICTA London

Circuit,

Canberra, Australia

Definition
�e goal of learning is usually to �nd a model

which delivers good generalization performance over

an underlying distribution of the data. Consider an

input space X and output space Y . Assume the pairs

(X×Y) ∈ X×Y are randomvariables whose (unknown)

joint distribution is PXY . It is our goal to �nd a predictor

f : X ↦ Y which minimizes the expected risk:

P(f (X) ≠ Y) = E(X,Y)∼PXY [δ(f (X) ≠ Y)] ,

where δ(z) = if z is true, and otherwise.
In practice we only have n pairs of training exam-

ples (Xi,Yi) drawn identically and independently from

PXY . Based on these samples, the7empirical risk can be
de�ned as

n

n

∑
i=

δ(f (Xi) ≠ Yi).

Choosing a function f by minimizing the empirical
risk o�en leads to 7over�tting. To alleviate this prob-
lem, the idea of structural risk minimization (SRM)

is to employ an in�nite sequence of models F,F, . . .

with increasing capacity. Here each Fi is a set of func-

tions, e.g., polynomials with degree . We minimize

the empirical risk in each model with a penalty for the

capacity of the model:

fn := argmin
f ∈Fi ,i∈N

n

n

∑
j=

δ(f (Xj)≠Yj) + capacity(Fi,n),

where capacity(Fi,n) quanti�es the complexity of
model Fi in the context of the given training set. For

example, it equals when Fi is the set of polynomials

with degree . In other words, when trying to reduce

 S Structure

the risk on the training set, we prefer a predictor from a

simple model.

Note the penalty is measured on the model Fi, not
the predictor f . �is is di�erent from the regulariza-
tion framework, e.g., support vector machines, which

penalizes the complexity of the classi�er.
More details about SRM can be found in Vapnik

().

Recommended Reading
Vapnik, V. (). Statistical learning theory. New York: Wiley.

Structure

7Topology of a Neural Network

Structured Data Clustering

7Graph Clustering

Structured Induction

Michael Bain

University of New South Wales,

Sydney, Australia

Definition
Structured induction is a method of applying machine

learning in which a model for a task is learned using

a representation where some of the components are

themselves the outputs of learned models for speci�ed

sub-tasks. �e idea was inspired by structured pro-

gramming (Dahl, Dijkstra and Hoare,), in which

a complex task is solved by repeated decomposition

into simpler sub-tasks that can be easily analyzed and

implemented.�e approachwas �rst developed byAlen

Shapiro () in the context of constructing expert

systems by 7decision tree learning, but in principle it
could be applied using other learning methods.

Motivation and Background

Structured induction is designed to solve complex

learning tasks for which it is di�cult a priori to obtain

a set of attributes or features in which it is possible

to represent an accurate approximation of the target

hypothesis reasonably concisely. In Shapiro’s approach,

a hierarchy of7decision trees is learned, where in each
tree of the hierarchy the attributes can have values

that are outputs computed by a lower-level 7decision
tree. Shapiro showed in computer chess applications

that structured induction could learn accurate mod-

els, while signi�cantly reducing their complexity. Struc-

tured induction was �rst commercialized in the s

by a number of companies providing expert systems

solutions and has since seenmany applications (Razzak,

Hassan and Pettipher,).

A key assumption is that human expertise is avail-

able to de�ne the task structure. Several approaches

have been proposed to address the problem of learning

this structure (under headings such as 7constructive
induction,7representation change,7feature construc-
tion, and 7predicate invention) although to date, none
have received wide acceptance.

�e identi�cation of knowledge acquisition as the

“bottleneck” in knowledge engineering by Feigen-

baum () sparked considerable interest in symbolic

machine-learningmethods as a potential solution. Early

work on7decision tree induction around this time was
o�en driven by problems from computer chess, a chal-

lenging domain by the standards of the time due to

relatively large data sets and the complexity of the target

hypotheses. In a landmark paper on his ID 7decision
tree learning algorithm, Quinlan () reported exper-

iments on learning to classify positions in a four-piece

chess endgame as winnable (or not) within a certain

number of moves (“lost N-ply”). A set of attributes
was de�ned as inadequate for a classi�cation task if
two objects belonging to di�erent classes had identi-

cal values for each attribute. He concluded that “almost

all the e�ort (for a non chess-player, at least) must be

devoted to �nding attributes that are adequate for the

classi�cation problem being tackled”.

�e problem is that the e�ort of developing the

set of attributes becomes disproportionate to the time

taken to do the induction. Quinlan () reported

durations of three weeks and two man-months, respec-

tively, to de�ne an adequate set of attributes for the “lost

Structured Induction S

S

-ply” and “lost -ply” experiments. In contrast, the

implementation of ID used in that work induced the

7decision trees in s and s, respectively. It is worth
noting that the more complex problem of “lost -ply”

was abandoned due to the di�culty of developing an

adequate set of attributes.

AlthoughQuinlan’s experiments with ID produced

exact 7classi�ers for his chess problems, the resulting
7decision trees were too large to be comprehensible
to domain experts. �is is a serious drawback when

machine learning is used with the goal of installing

learned 7rules in an expert system, since the system
cannot provide understandable explanations. Shapiro

and Niblett () proposed structured induction as a

solution to this problem, and the method was devel-

oped in Shapiro’s PhD thesis (Shapiro,) motivated

by expert systems development.

Structure of Learning System
Structured induction is essentially a two-stage process,

comprising a top-down decomposition of the prob-

lem into a solution structure, followed by a bottom-

up series of 7classi�er learning steps, one for each of
the subproblems. A knowledge engineer and a domain

expert are required to collaborate at each stage, with

the latter acting as a source of examples. �e use of

machine learning to avoid the knowledge acquisition

bottleneck is based on the �nding that although domain

experts �nd it di�cult to express general and accurate

7rules for a problem, they are usually able to generate
tutorial examples in an attribute-value formalism from

which7rules can be generalized automatically.�e key
insight of structured induction is that the task of spec-

ifying an attribute and its value set can be treated as

a subproblem of the learning task, and solved in the

same way.

�e approach can be illustrated by a simple exam-

ple using the structure shown in Fig. . Suppose the

task is to learn a model for some concept p. Sup-
pose further that the domain expert proposes three

attributes a, a, and a as adequate for the classi�cation
of p. Now the domain expert consults with the knowl-
edge engineer and it is decided that while attribute a
is directly implementable, the other two are not. An

attribute that is directly implementable by a knowl-

edge engineer is referred to as primitive for the domain.

a1

a21 a22 a23 a31 a32

a2 a3

p

Structured Induction. Figure . A schematic diagram of a

model learned by structured induction (after Shapiro,

). Concepts to be learned are shown in ovals, and

primitive attributes in boxes. The top-level concept p is

defined in terms of the primitive attribute a and two

sub-concepts a and a. Each of the two sub-concepts

are further decomposed into sets of primitive attributes,

a. . . and a. . .

�e other attributes become sub-concepts a and a,
and each in turn is addressed by the domain expert.

In this case, three attributes are proposed as most rel-

evant to the solution of a, and two for a. Since all of
these attributes are found to be primitive, the top-down

problem decomposition stage is therefore complete.

�e domain expert, having proposed a set of primi-

tive attributes for a sub-concept, say a, is now required
to provide a set of classi�ed examples de�ned in terms of

values for attributes a and a. Given these examples,
the knowledge engineer will run a learning algorithm

to induce a 7classi�er such as a 7decision tree. �e
domain expert will then inspect the 7classi�er and
can optionally re�ne it by supplying further examples,

until they are satis�ed that it completely and correctly

de�nes the sub-concept a.�is process is repeated in a
bottom-up fashion for all sub-concepts. At every level of

the hierarchy, once all sub-concepts have been de�ned,

they are now directly executable7classi�ers and can be
treated in the same way as primitive attributes and used

for learning.�e structured induction solution is com-

plete once an acceptable7classi�er has been learned for
the top-level concept, p in this example.

Structured Versus Unstructured Induction
On two chess end-game domains, Shapiro ()

showed that structured induction could generate more

compact trees from fewer examples compared with an

unstructured approach. To quantify this improvement,

 S Structured Induction

Shapiro made an analysis based on Michie’s �nite mes-

sage information theory (Michie,). �is showed

that on one of the domains, the information gain con-

tributed by the structured induction approach over

learning unstructured trees from the same set of exam-

ples was %. Essentially, this is because the structure

devised by the domain expert in collaboration with the

knowledge engineer provides a context for each of the

induction tasks required. Since within this context only

a subset of the complete attribute set is used to specify a

sub-concept, it su�ces to obtain only su�cient exam-

ples to learn a model for that sub-concept. However,

without the bene�t of such contextual restrictions the

task of learning a complete solution can require consid-

erablymore examples. Shapiro’s analysis is an attempt to

quantify the relative increase in information per exam-

ple in structured versus unstructured induction.

Related Work
While induction can bypass the knowledge acquisi-

tion bottleneck, in structured induction the process of

acquiring the structure in collaboration with a domain

expert can become a new bottleneck. In an attempt to

avoid this, a number of researchers have attempted to

develop methods whereby the structure, as well as the

sub-concept models can be learned automatically.

Muggleton () introduced 7inverse resolution
as an approach to learning structured 7rule sets in a
system called Duce. As part of this process, a domain

expert is required to provide names for new sub-

concepts or predicates that are proposed by the learning
algorithm. A domain expert is also required to con�rm

learned 7rules. Both these roles are similar to those
required of the expert in constructive induction, but the

key di�erence is that the learning algorithm is now the

source of both the structure and the 7rules. Duce was
applied to one of the chess end-game domains used in

Shapiro’s study (Shapiro,) and found a solution that

was less compact, but still accepted as comprehensible

by a chess expert.

�e Duce system searches for commonly occur-

ring subsets of attribute-value pairs within 7rules, and
uses these to construct new sub-concept de�nitions.

Many approaches have been developed using related

methods to learn new sub-concepts in the context

of 7decision tree or 7rule learning; some examples

include Pagallo and Haussler (), Zheng (), and

Zhang and Honavar (). Gaines () proposed

EDAGs (exception directed acyclic graphs) as a general-

ization of both 7decision trees and 7rules with excep-
tions, and reported EDAG representations of chess

end-game 7classi�ers that were more comprehensible
than either7rules or7decision trees. Zupan, Bohanec,
Demsar, and Bratko () developed a system named

HINT designed to learn a model represented as a con-

cept hierarchy based on methods of function decom-

position. Inverse resolution as used in Duce has been

generalized to �rst-order logic representations in the

�eld of inductive logic programming. In this frame-

work, the construction of new intermediate concepts

is referred to as 7predicate invention, but to date this
remains a largely open problem.More recently, much of

the interest in 7representation change has focused on
approaches like support vector machines, where the so-

called kernel trick enables the use of implicit 7feature
construction (Shawe-Taylor and Cristianini,).

Cross References
7Classi�er
7Constructive Induction
7Decision Tree
7Feature Construction
7Predicate Invention
7Rule Learning

Recommended Reading
Dahl, O. J., Dijkstra, E. W., & Hoare, C. A. R. (Eds.). (). Struc-

tured programming. London: Academic Press.
Feigenbaum, E. A. (). The art of artificial intelligence: Themes

and case studies of knowledge engineering. In R. Reddy (Ed.),

Proceedings of the fifth international conference on artificial
intelligence (IJCAI) (pp. –). Los Altos, CA: William
Kaufmann.

Gaines, B. (). Transforming rules and trees into comprehensi-

ble knowledge structures. In U. Fayyad, G. Piatetsky-Shapiro,

P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge dis-
covery and data mining (pp. –). Cambridge, MA: MIT
Press.

Michie, D. (). Measuring the knowledge-content of expert pro-

grams. Bulletin of the Institute of Mathematics and its Applica-
tions, (/), –.

Muggleton, S. (). Duce, an oracle-based approach to construc-

tive induction. In IJCAI (pp. –). Los Altos, CA:
Kaufmann.

Sublinear Clustering S

S

Pagallo, G., & Haussler, D. (). Boolean feature discovery in

empirical learning. Machine learning, , –.
Quinlan, J. R. (). Learning efficient classification procedures

and their application to chess end games. In R. Michalski, J.

Carbonnel, & T. Mitchell (Eds.), Machine learning: An artificial
intelligence approach, (pp. –). Palo Alto, CA: Tioga.

Razzak, M. A., Hassan, T., & Pettipher, R. (). Extran-: A

Fortran-based software package for building expert systems. In

M. A. Bramer (Ed.), Research and development in expert systems
(pp. –). Cambridge: Cambridge University Press.

Shapiro, A., & Niblett, T. (). Automatic induction of classifi-

cation rules for a chess endgame. In M. R. B. Clarke (Ed.),

Advances in computer chess (Vol. , pp. –). Pergamon:
Oxford.

Shapiro, A. D. (). Structured Induction in expert systems. Wok-
ingham: Turing Institute Press with Addison Wesley.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Zhang, J., & Honavar, V. (). Learning decision tree clas-

sifiers from attribute value taxonomies and partially speci-

fied data. In ICML-: Proceedings of the twentieth inter-
national conference on machine learning, Menlo Park, CA:
AAAI Press.

Zheng, Z. (). Constructing nominal X-of-N attributes. In Pro-
ceedings of the fourteenth International joint conference on arti-
ficial intelligence (IJCAI,) (pp. –). Los Altos, CA:
Morgan Kaufmann.

Zupan, B., Bohanec, M., Demsar, J., & Bratko, I. (). Learning

by discovering concept hierarchies. Artificial Intelligence, ,
–.

Subgroup Discovery

Definition
Subgroup discovery (Klösgen, ; Lavrač, Kavšek,

Flach, & Todorovski,) is an area of 7supervised
descriptive rule induction.�e subgroup discovery task

is de�ned as given a population of individuals and a

property of those individuals that we are interested in,

�nd population subgroups that are statistically “most

interesting,” for example, are as large as possible and

have the most unusual statistical (distributional) char-

acteristics with respect to the property of interest.

Recommended Reading
Klösgen, W., (). Explora: A multipattern and multistrategy dis-

covery assistant. In Advances in knowledge discovery and data
mining (pp. –). Cambridge: MIT Press.

Lavrač, N., Kavšek, B., Flach, P. A., & Todorovski, L. (). Sub-

group discovery with CN-SD. Journal of Machine Learning
Research, , –.

Sublinear Clustering

Artur Czumaj, Christian Sohler

University of Warwick, Coventry, UK,
University of Paderborn,

Paderborn, Germany

Definition
Sublinear clustering describes the process of clustering
a given set of input objects using only a small subset of

the input set, which is typically selected by a random

process. A solution computed by a sublinear cluster-

ing algorithm is an implicit description of the clustering

(rather than a partition of the input objects), for exam-

ple in the form of cluster centers. Sublinear clustering

is usually applied when the input set is too large to be

processed with standard clustering algorithms.

Motivation and Background
7Clustering is the process of partitioning a set of
objects into subsets of similar objects. Inmachine learn-

ing, it is, for example, used in unsupervised learning

to �t input data to a density model. In many modern

applications of clustering, the input sets consist of bil-

lions of objects to be clustered. Typical examples include

web search, analysis of web tra�c, and spam detection.

�erefore, even thoughmany relatively e�cient cluster-

ing algorithms are known, they are o�en too slow to

cluster such huge inputs.

Since in some applications it is even not possible to

cluster the entire input set, a new approach is needed

to cope with very large data sets.�e approach used in

many di�erent areas of science and engineering in this

context is to sample a subset of the data and to analyze
this sample instead of the whole data set. �is is also

the underlyingmethod used in sublinear clustering.�e

main challenge and innovation in this area lies in the

qualitative analysis of random sampling (in the form of

approximation guarantees) and the design of non uni-
form sampling strategies that approximate the input set
provably better than uniform random sampling.

Structure of the Learning System
In sublinear clustering a large input set of objects is to be

partitioned into subsets of similar objects. Usually, this

 S Sublinear Clustering

input is a point set P either in the Euclidean space or in
the metric space.�e clustering problem is speci�ed by

an objective function that determines the quality or cost

of every possible clustering.�e goal is to �nd a cluster-

ing of minimum cost/maximum quality. For example,

given a set P of points in the Euclidean space the objec-
tive of7k-means clustering is to �nd a setC of k centers
that minimizes ∑p∈P(d(p,C)), where d(p,C) denotes
the distance of p to the nearest center fromC. Since usu-
ally the clustering problems are computationally hard

(NP-hard), one typically considers approximate solu-
tions: instead of �nding a clustering that optimizes the

cost of the solution, one aims at a solution whose cost is

close to the optimal one.

In sublinear algorithms a solution is computed for

a small representative subset of objects, for example a

random sample.�e solution is represented implicitly,

for example, in the form of cluster centers and it can be

easily extended to the whole input point set.�e quality

of the output is analyzedwith respect to the original point
set.�e challenge is to design and analyze fast (sublinear-
time) algorithms that select a subset of objects that very
well represent the entire input, such that the solution

computed for this subset will also be a good solution for

the original point set.�is can be achieved by uniform

and non uniform random sampling and the computa-
tion of core-sets, i.e., small weighted subsets of the input
that approximate the input with respect to a clustering

objective function.

Theory/Solution
Clustering Problems

For any point p and any set Q in a metric space (X,d),
let d(p,Q) = minq∈Q d(p, q). A point set P is weighted if
there is a function w assigning a positive weight to each
point in P.

Radius k-Clustering: Given a weighted set P of points
in a metric space (X,d), �nd a set C ⊆ P of k centers
minimizing maxp∈P d(p,C).

Diameter k-Clustering: Given a weighted set P of points
in a metric space (X,d), �nd a partition of P into k
subsets P, . . . ,Pk, such that max

k
i=maxp,q∈Pi d(p, q) is

minimized.

k-Median: Given a weighted set P of points in a metric
space (X,d), �nd a setC ⊆ P of k centers thatminimizes
median(P,C) = ∑p∈P w(p) ⋅ d(p,C).

k-Means: Given a weighted set of points P in a metric
space (X,d), �nd a setC ⊆ P of k centers thatminimizes
mean(P,C) = ∑p∈P w(p) ⋅ (d(p,C)).

Random Sampling and Sublinear-Time Algorithms

Random sampling is perhaps the most natural approach
to design sublinear-time algorithms for clustering. For

the input set P, random sampling algorithm follows the
following scheme:

. Pick a random sample S of points
. Run an algorithm (possibly an approximation one)

for (given kind of) clustering for S
. Return the clustering induced by the solution for S

�e running time and the quality of this algorithm

depends on the size of the random sample S and of
the running time and the quality of the algorithm for

clustering of S. Because almost all interesting clustering
problems are computationally intractable (NP-hard),

usually the second step of the sampling scheme uses

an approximation algorithm. (An algorithm for a min-

imization problem is called a λ-approximation if it
always returns a solution whose cost is at most λ times
the optimum.)

While random sampling approach gives very sim-

ple algorithms, depending on the clustering problem

at hand, it o�en �nds a clustering of poor quality and

it is usually di�cult to analyze. Indeed, it is easy to

see that random sampling has some serious limitations

to obtain clustering of good quality. Even the standard

assumption that the input is in metric space is not su�-

cient to obtain good quality of clustering because of the

small clusters which are “hidden” for random sampling

approach. (If there is a cluster of size o(∣P∣/∣S∣) thenwith
high probability the random sample set S will contain
no point from that cluster.)�erefore, another impor-

tant parameters used in the analysis is the diameter of
the metric space ∆, which is ∆ = maxp,q∈P d(p, q).

Quality of Uniformly Random Sampling: �e quality of

random sampling for three basic clustering problems

Sublinear Clustering S

S

(k-means, k-median, and min-sum k-clustering) have
been analyzed in Ben-David (), Czumaj and Sohler

(), and Mishra, Oblinger, and Pitt (). In these

papers, generic methods of analyzing uniform random

sampling have been obtained. �ese results assume

that the input point sets are in a metric space and

are unweighted (i.e., when the weight function w is
always).

�eorem Let є > be an approximation parame-
ter. Suppose that an α-approximation algorithm for the
k-median problem in a metric space is used in step ()
of the uniform sampling, where α ≥ (Ben-David ;

Czumaj & Sohler , Mishra et al.,). If we choose
S to be of size at least

cα (k +
∆

є
(α + k ln(k∆α/є)))

for an appropriate constant c, then the uniform sampling
algorithm returns a clustering C∗ (of S) such that with
probability at least . the normalized cost of clustering
for S satis�es

median(S,C∗)
∣S∣

≤
(α + .)OPT(P)

∣P∣
+ є,

where OPT(S) = minCmedian(P,C) is the minimum
cost of a solution for k-median for P.

Similar results can be shown for the k-means prob-
lem, and also for min-sum k-clustering (cf. Czumaj
& Sohler,). For example, for k-means, with a sam-
ple S of size at least cα (k + (∆/є) (α + k ln(k∆α/є))),
with probability at least . the normalized cost of

k-means clustering for S satisfy

mean(S,C∗)
∣S∣

≤
(α + .)OPT(P)

∣P∣
+ є,

where OPT(S) = minCmean(P,C) is the minimum
cost of a solution for k-means for P.
Improvements of these bounds for the casewhen the

input consists of points in Euclidean space are also dis-

cussed inMishra et al. (), Czumaj and Sohler ()

discuss also . For example, for k-median, if one takes S of
size at least cα (k + ∆k ln(∆/є)/є), thenwith probability

at least . the normalized cost of k-median clustering
for S satis�es

median(S,C∗)
∣S∣

≤
(α + .)OPT(P)

∣P∣
+ є ,

and hence the approximation ratio is better than that in

�eorem by factor of .

�e results stated inCzumaj and Sohler () allow

to parameterize the constants . and . in the claims

above.

Property Testing of the Quality of Clustering: Sincemost

of the clustering problems are computationally quite

expensive, in some situations it might be interesting not

to �nd a clustering (or its succinct representation), but

just to test if the input set has a good clustering.

Alon, Dar, Parnas, and Ron () introduced

the notion of approximate testing of good clustering.

A point set P is c-clusterable if it has a clustering of
the cost at most c, that is, OPT(P) ≤ c. To formal-
ize the notion of having no good clustering, one says

a point set is є-far from (+ β)c-clusterable, if more
than an є-fraction of the points in P must be removed
(or moved) to make the input set (+ β)c-clusterable.
With these de�nitions, the goal is to design fast algo-

rithms that accept the input point sets P, which are
c-clusterable, and reject with probability at least /
inputs are є-far from (+ β)c-clusterable. If neither
holds, then the algorithms may either accept or reject.

�e bounds for the testing algorithms are phrased in

terms of sample complexity, that is, the number of sam-
pled input points which are considered by the algorithm

(e.g., by using random sampling).

Alon et al. () consider two classical clustering

problems in this setting: radius and diameter k-
clusterings. If the inputs are drawn from an arbi-

trary metric space, then they show that to distinguish

between input points sets that are c-clusterable and are
є-far from (+ β)c-clusterable with β < , the sam-

ple complexity must be at least Ω(
√

∣P∣/є) . However,
to distinguish between inputs that are c-clusterable and
are є-far from c-clusterable, the sample complexity is
only O(

√
k/є).

A more interesting situation is for the input points

drawn from the Euclidean d-dimensional space. In that
case, even a constant-time algorithms are possible.

 S Sublinear Clustering

�eorem For the radius k-clustering, one can distin-
guish between points sets in Rd that are c-clusterable from
those є-far from c-clusterable with the sample complexity
Õ(dk/є) (Alon et al.,) (�e Õ-notation ignores log-
arithms in the largest occurrence of a variable; Õ(f (n)) =
O(f (n) ⋅ (log f (n))O()).)

Furthermore, for any β > , one can distinguish
between points sets in Rd that are c-clusterable from those
є-far from (+β)c-clusterable with the sample complexity
Õ(k/(βє)).

�eorem For the diameter k-clustering, one can dis-
tinguish between points sets in Rd that are c-clusterable
from those є-far from (+β)c-clusterable with the sample
complexity Õ(kd(/β)d/є) (Alon et al.,).

Core-Sets: Sublinear Space Representations with

Applications

A core-set is a small weighted set of points S that prov-
ably approximates another point set P with respect to a
given clustering problem (Bădoiu, Har-Peled, & Indyk,

). �e precise de�nition of a core-set depends

on the clustering objective function and the notion of

approximation. For example, a coreset for the k-median
problem can be de�ned as follows:

De�nition A weighted point set S is called є-coreset
for a point set P for the k-median problem, if for every
set C of k centers, we have (− є) ⋅ median(P,C) ≤

median(S,C) ≤ (+ є) ⋅ median(P,C) (Har-Peled &
Mazumdar,).

A core-set as de�ned above is also sometimes called

a strong core-set, because the cost of the objective func-
tion is approximately preserved for any set of cluster

centers. In some cases it can be helpful to only require

a weaker notion of approximation. For example, for

some applications it is su�cient that the cost is pre-

served for a certain discrete set of candidate solutions.

Such a core-set is usually called a weak core-set. In
high-dimensional applications it is sometimes su�cient

that the solution is contained in the low-dimensional

subspace spanned by the core-set points.

Constructing a Core-Set: �ere are deterministic and

randomized constructions for core-sets of an un-

weighted set P of n points in the Rd. Deterministic

core-set constructions are usually based on the move-
ment paradigm.�e input points are moved to a set of
few locations such that the overall movement is at most

є times the cost of an optimal solution. �en the set
of points at the same location are replaced by a single

point whose weight equals the number of these points.

Since for the k-median problem the cost of any solution
changes by at most the overall movement, this imme-

diately implies that the constructed weighted set is an

є-core-set. For other similar problems more involved
arguments can be used to prove the core-set property.

Based on themovement paradigm, for k-median a core-
set of size O(k logn/єd) can be constructed e�ciently
(Har-Peled & Mazumdar,).

Randomized core-set constructions are based on

non uniform sampling.�e challenge is to de�ne a ran-

domized process for which the resulting weighted point

set is with high probability a core-set. Most random-

ized coreset constructions �rst compute a bi-criteria

approximation C′. �en every point is sampled with
probability proportional to its distance to the nearest

center of C′. A point q is assigned a weight proportional
to /pq, where pq is the probability that p is sampled.
For every �xed set C of k centers, the resulting sam-
ple is an unbiased estimator for median(P,C). If the
sample set is large enough, it approximates the cost of

every possible set of k centers within a factor of (± є).
�e above approach can be used to obtain a weak core-

set of size independent of the size of the input point

set and the dimension of the input space (Feldman,

Monemizadeh, & Sohler,). A related construction

has been previously used to obtain a strong core-set of

size Õ(k ⋅d⋅logn/є). Both constructions have constant
success probability that can be improved by increasing

the size of the core-set.

Applications Core-sets have been used to obtain im-

proved approximation algorithms for di�erent variants

of clustering problems. Since the core-sets are of sublin-

ear size and they can be constructed in sublinear time,

they can be used to obtain sublinear-time approxima-

tion algorithms for a number of clustering problems.

Another important application is clustering of data

streams. A data stream is a long sequence of data

that typically does not �t into main memory, for

example, a sequence of packet headers in IP traf-

�c monitoring. To analyze data streams we need

Subsumption S

S

algorithms that extract information from a streamwith-

out storing all of the observed data. �erefore, in

the data streaming model algorithms are required to

use log
O() n bits of memory. For core-sets, a simple

but rather general technique is known, which turns

a given construction of a strong core-set into a data

streaming algorithm, i.e., an algorithm that processes

the input points sequentially and uses only log
O()

space (for constant k and є) and computes a (+ є)-
approximation for the optimal set of centers of the

k-median clustering (Har-Peled & Mazumdar,).
Core-sets can also be used to improve the running time

and stability of clustering algorithms like the k-means
algorithm (Frahling & Sohler,).

Recommended Reading
Alon, N., Dar, S., Parnas, M., & Ron, D. (). Testing of clustering.

SIAM Journal on Discrete Mathematics, (), –.
Bădoiu, M., Har-Peled, S., & Indyk, P. (). Approxi-

mate clustering via core-sets. In Proceedings of the th
Annual ACM Symposium on Theory of Computing (STOC),
(pp. –).

Ben-David, S. (). A framework for statistical clustering with a

constant time approximation algorithms for k-median cluster-
ing. In Proceedings of the th Annual Conference on Learning
Theory (COLT), (pp. –).

Chen, K. (). On k-median clustering in high dimensions. In Pro-
ceedings of the th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), (pp. –).

Czumaj, A., & Sohler, C. (). Sublinear-time approximation for

clustering via random sampling. Random Structures & Algo-
rithms, (–), –.

Feldman, D., Monemizadeh, M., & Sohler, C. (). A PTAS for

k-means clustering based on weak coresets. In Proceedings of
the rd Annual ACM Symposium on Computational Geometry
(SoCG), (pp. –).

Frahling, G., & Sohler, C. (). A fast k-means implemen-
tation using coresets. In Proceedings of the nd Annual
ACM Symposium on Computational Geometry (SoCG),
(pp. –).

Har-Peled, S. & Kushal, A. (). Smaller coresets for k-
median and k-means clustering. In Proceedings of the st
Annual ACM Symposium on Computational Geometry (SoCG),
(pp. –).

Har-Peled, S., & Mazumdar, S. (). On coresets for k-
means and k-median clustering. In Proceedings of the th
Annual ACM Symposium on Theory of Computing (STOC),
(pp. –).

Meyerson, A., O’Callaghan, L., & Plotkin S.(July). A k-median
algorithm with running time independent of data size.Machine
Learning, (–), (pp. –).

Mishra, N., Oblinger, D., & Pitt, L. (). Sublinear time approxi-

mate clustering. In Proceedings of the th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), (pp. –).

Subspace Clustering

7Projective Clustering

Subsumption

Claude Sammut

�e University of New South Wales,

Sydney NSW, Australia

Subsumption provides a syntactic notion of general-

ity. Generality can simply be de�ned in terms of the

cover of a concept.�at is, a concept, C, is more gen-
eral than a concept, C′, if C covers at least as many
examples as C′ (see 7Learning as Search). However,
this does not tell us how to determine, from their syn-

tax, if one sentence in a concept description language

is more general than another. When we de�ne a sub-
sumption relation for a language, we provide a syntac-
tic analogue of generality (Lavrač & Džeroski,).

For example, θ-subsumption (Plotkin,) is the basis
for constructing generalization lattices in 7inductive
logic programming (Shapiro,). See 7Generality of
Logic for a de�nition of θ-subsumption. An example
of de�ning a subsumption relation for a domain spe-

ci�c language is in the LEX program (Mitchell, Utgo�,

& Banerji,), where an ordering on mathematical

expressions is given.

Cross References
7Generalization
7Induction
7Learning as Search
7Logic of Generality

Recommended Reading
Lavrač, N., & Džeroski, S. (). Inductive Logic Programming:

Techniques and applications. Chichester: Ellis Horwood.
Mitchell, T. M., Utgoff, P. E., & Banerji, R. B. (). Learning

by experimentation: Acquiring and refining problem-solving

heuristics. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach.
Palo Alto: Tioga.

Plotkin, G. D. (). A note on inductive generalization. In B.

Meltzer & D. Michie (Eds.), Machine intelligence (Vol. , pp.
–). Edinburgh University Press.

 S Supersmoothing

Shapiro, E. Y. (). An algorithm that infers theories from facts. In

Proceedings of the seventh international joint conference on arti-
ficial intelligence, Vancouver (pp. –). Los Altos: Morgan
Kaufmann.

Supersmoothing

7Local Distance Metric Adaptation

Supervised Descriptive Rule
Induction

Petra Kralj Novak, Nada Lavrač,,

Geoffrey I. Webb

Jožef Stefan Institute, Ljubljana, Slovenia
University of Nova Gorica, Nova Gorica, Slovenia
Monash University, Clayton, VIC, Australia

Synonyms
SDRI

Definition
Supervised descriptive rule induction (SDRI) is a

machine learning task in which individual patterns in

the form of rules (see 7Classi�cation rule) intended
for interpretation are induced from data, labeled by a

prede�ned property of interest. In contrast to standard

7supervised rule induction, which aims at learning a
set of rules de�ning a classi�cation/prediction model,

the goal of SDRI is to induce individual descriptive pat-

terns. In this respect SDRI is similar to 7association
rule discovery, but the consequents of the rules are

restricted to a single variable – the property of interest –

and, except for the discrete target attribute, the data is

not necessarily assumed to be discrete.

Supervised descriptive rule induction assumes a set

of training examples, described by attributes and their

values and a selected attribute of interest (called the

target attribute). Supervised descriptive rule induction

induces rules that may each be interpreted indepen-

dently of the others. Each rule is a7local model, cover-
ing a subset of training examples, that captures a local

relationship between the target attribute and the other

attributes.

Induced descriptive rules are mainly aimed at

human interpretation. More speci�cally, the purposes

of supervised descriptive rule induction are to allow

the user to gain insights into the data domain

and to better understand the phenomena underlying

the data.

Motivation and Background
Symbolic data analysis techniques aim at discovering

comprehensible patterns or 7models in data. �ey
can be divided into techniques for predictive induction,
wheremodels, typically induced from class labeled data,

are used to predict the class value of previously unseen

examples, and descriptive induction, where the aim is
to �nd comprehensible patterns, typically induced from

unlabeled data. Until recently, these techniques have

been investigated by two di�erent research communi-

ties: predictive induction mainly by the machine learn-

ing community, and descriptive inductionmainly by the

data mining community.

Data mining tasks where the goal is to �nd com-

prehensible patterns from labeled data have been

addressed by both the machine learning and the

data mining community independently.�e data min-

ing community, using the 7association rule learn-
ing perspective, adapted association rule learners like

7Apriori (Agrawal, Mannila, Srikant, Toivonon, &
Inkeri Verkamo,) to perform tasks on labeled

data, like class association rule learning (Jovanovski &

Lavrač, ; Liu, Hsu, &Ma,), as well as7contrast
set mining (Bay & Pazzani,) and 7emerging pat-
tern mining (Dong & Li,). On the other hand,

the machine learning community, which traditionally

focused on the induction of7rule sets from labeled data
for the purposes of classi�cation, turned to building

individual rules for exploratory data analysis and inter-

pretation.�is is the goal of the task named7subgroup
discovery (Wrobel,). �ese are the main areas of

supervised descriptive rule induction. All these areas

deal with �nding comprehensible rules from class

labeled data. However, the methods used and the inter-

pretation of the results di�er slightly from approach

to approach. Other related approaches include change

mining,mining of closed sets for labeled data, exception

rule mining, bump hunting, quantitative association

rules, and impact rules. See Kralj Novak, Lavrač, and

Supervised Descriptive Rule Induction S

S

Webb () for a more detailed survey of supervised

descriptive rule induction.

Structure of the Learning System
Supervised descriptive rule induction assumes that

there is data with the property of interest de�ned by

the user. Let us illustrate supervised descriptive rule

induction using data from Table , a very small arti-

�cial sample data set, adapted from Quinlan (),

which contains the results of a survey on individ-

uals, concerning the approval or disproval of an issue

analyzed in the survey. Each individual is characterized

by four attributes that encode rudimentary information

about the sociodemographic background.�e last col-

umn (Approved) is the designated property of interest,

encoding whether the individual approved or disproved

the issue. Unlike predictive induction, where the aim

is to �nd a predictive model, the goal of supervised

descriptive rule induction is to �nd local patterns in

form of individual rules describing individuals that are

likely to approve or disprove the issue, based on the four

demographic characteristics.

Figure shows six descriptive rules, found for the

sample data using the Magnum Opus (Webb,)

rule learning so�ware. �ese rules were found using

Supervised Descriptive Rule Induction. Table A Sample Database

Education Marital Status Sex Has Children Approved

Primary Single Male No No

Primary Single Male Yes No

Primary Married Male No Yes

University Divorced Female No Yes

University Married Female Yes Yes

Secondary Single Male No No

University Single Female No Yes

Secondary Divorced Female No Yes

Secondary Single Female Yes Yes

Secondary Married Male Yes Yes

Primary Married Female No Yes

Secondary Divorced Male Yes No

University Divorced Female Yes No

Secondary Divorced Male No Yes

MaritalStatus=single AND Sex=male → Approved=no

Sex=male → Approved=no

Sex=female → Approved=yes

MaritalStatus=married → Approved=yes

MaritalStatus=divorced AND HasChildren=yes → Approved=no

MaritalStatus=single → Approved=no

Supervised Descriptive Rule Induction. Figure . Selected descriptive rules, describing individual patterns in the data

of Table

 S Supervised Descriptive Rule Induction

the default settings except that the critical value for

the statistical test was relaxed. �is set of descriptive

rules di�ers from a typical predictive rule set in several

ways.�e �rst rule is redundant with respect to the sec-

ond. �e �rst rule is included as a strong pattern (all

three singlemales donot approve)whereas the second is

weaker butmore general (four out of sevenmales do not

approve, which is not highly predictive, but accounts for

four out of all �ve respondents who do not approve).

Most predictive systemswould include only one of these

rules, but either or both of them may be of interest

to someone trying to understand the data, depending

on the speci�c application.�is particular approach to

descriptive pattern discovery does not attempt to guess

which of the more speci�c or more general patterns

will be more useful to the end user. Another di�erence

between predictive and descriptive rules is that the pre-

dictive approach o�en includes rules for the sake of

completeness, while some descriptive approaches make

no attempt at completeness, as they assess each pattern

on its individual merits.

Exactly which rules will be induced by a super-

vised descriptive rule induction algorithm depends on

the task de�nition, the selected algorithm, as well as

the user-de�ned constraints concerning minimal rule

support, precision, etc. Di�erent learning approaches

and heuristics have been proposed to induce supervised

descriptive rules.

Applications
Applications of supervised descriptive rule induction

are widely spread. See Kralj Novak et al. () for a

detailed survey.

7Subgroup discovery has been used in numerous
real-life applications. Medical applications include the

analysis of coronary heart disease and brain ischemia

data analysis, as well as pro�ling examiners for sono-

graphic examinations. Spatial subgroup mining appli-

cations include mining of census data and mining of

vegetation data.�ere are also applications inmarketing

and analysis of shop �oor data.

7Contrast setmining has been usedwith retail sales
data and for designing customized insurance programs.

It has also been used in medical applications to identify

patterns in synchrotron X-ray data that distinguish tis-

sue samples of di�erent forms of cancerous tumor and

for distinguishing between groups of brain ischemia

patients.

7Emerging patternmining has beenmainly applied
to the �eld of bioinformatics, more speci�cally to

microarray data analysis. For example, an interpretable

classi�er based on simple rules that is competitive to

the state of the art black-box classi�ers on the acute

lymphoblastic leukemia (ALL) microarray data set was

built from emerging patterns. Another application was

about �nding groups of genes by emerging patterns in a

ALL/acute myeloblastic leukemia (AML) data set and a

colon tumor data set. Emerging patterns were also used

together with the unexpected change approach and the

added/perished rule to mine customer behavior.

Future Directions
A direction for further research is to decompose SDRI

algorithms, preprocessing and evaluation methods into

basic components and their reimplementation as con-

nectable web services, which includes the de�nition of

interfaces between SDRI services. For instance, this can

include the adaptation and implementation of subgroup

discovery techniques to solving open problems in the

area of contrast set mining and emerging patterns.�is

would allow for the improvement of algorithms due

to the cross-fertilization of ideas from di�erent SDRI

subareas.

Another direction for further research concerns

complex data types and the use of background knowl-

edge.�e SDRI attempts in this direction include rela-

tional subgroup discovery approaches like algorithms

Midos (Wrobel,), RSD (Relational Subgroup Dis-

covery) (Železný & Lavrač,), and SubgroupMiner

(Klösgen & May,), which is designed for spatial

data mining in relational space databases. �e search

for enriched gene sets (SEGS) method (Trajkovski,

Lavrac, & Tolar,) supports building rules when

using specialized biological knowledge in the form of

ontologies. It is a step toward semantically enabled cre-

ative knowledge discovery in the form of descriptive

rules.

Cross References
7Apriori
7Association Rule Discovery

Support Vector Machines S

S

7Classi�cation Rule
7Contrast Set Mining
7Emerging Pattern Mining
7Subgroup Discovery
7Supervised Rule Induction

Recommended Reading
Agrawal, R., Mannila, H., Srikant, R., Toivonon, H., & Inkeri

Verkamo, A. (). Fast discovery of association rules.

In Advances in knowledge discovery and data mining (pp.
–). Menlo Park: American Association for Artificial

Intelligence.

Bay, S. D., & Pazzani, M. J. (). Detecting group differences: Min-

ing contrast sets. Data Mining and Knowledge Discovery, (),
–.

Dong, G., & Li, J. (). Efficient mining of emerging pat-

terns: Discovering trends and differences. In Proceedings of
the fifth ACM SIGKDD international conference on knowl-
edge discovery and data mining (KDD-) (pp. –).
New York: ACM.

Jovanovski, V., & Lavrač, N. (). Classification rule learning with

APRIORI-C. In Proceedings of the tenth Portuguese conference
on artificial intelligence (pp. –). London: Springer.

Klösgen, W., & May, M. (). Spatial subgroup mining integrated

in an object-relational spatial database. In Proceedings of the
sixth European conference on principles and practice of knowl-
edge discovery in databases (PKDD-) (pp. –). London:
Springer.

Kralj Novak, P. Lavrač, N., & Webb, G. I. (February). Super-

vised descriptive rule discovery: A unifying survey of contrast

set, emerging pattern and subgroup mining. Journal of Machine
Learning Research, , –. Available at: http://www.jmlr.
org/papers/volume/kralj-novaka/kraljnovaka.pdf.

Liu, B., Hsu, W., & Ma, Y. (). Integrating classification and asso-

ciation rule mining. In Proceedings of the fourth international
conference on knowledge discovery and data mining (KDD-)
(pp. –).

Trajkovski, I., Lavrac, N., & Tolar, J. (). SEGS: Search for

enriched gene sets in microarray data. Journal of Biomedical
Informatics, (), –.

Quinlan, J. R. (). Induction of decision trees.Machine Learning,
(), –.

Webb, G. I. (). OPUS: An efficient admissible algorithm for

unordered search. Journal of Artificial Intelligence Research, ,
–.

Wrobel, S. (). An algorithm for multi-relational discovery of

subgroups. In Proceedings of the first European conference on
principles of data mining and knowledge discovery (PKDD-)
(pp. –). London: Springer.

Wrobel, S. (). Inductive logic programming for knowledge

discovery in databases. In S. Dzeroski & N. Lavrac (Eds.),

Relational data mining (Chap. , pp. –). Berlin: Springer.
Železný, F., & Lavrac, N. (). Propositionalization-based rela-

tional subgroup discovery with RSD. Machine Learning, ,
–.

Supervised Learning

Definition
Supervised learning refers to any machine learning pro-
cess that learns a function from an input type to an

output type using data comprising examples that have

both input and output values. Two typical examples

of supervised learning are 7classi�cation learning and
7regression. In these cases, the output types are respec-
tively categorical (the classes) and numeric. Supervised

learning stands in contrast to 7unsupervised learn-
ing, which seeks to learn structure in data, and to

7reinforcement learning in which sequential decision-
making policies are learned from reward with no exam-

ples of “correct” behavior.

Cross References
7Reinforcement Learning
7Unsupervised Learning

Support Vector Machines

Xinhua Zhang

Australian National University, NICTA London

Circuit, Canberra, Australia

Definition
Support vector machines (SVMs) are a class of lin-

ear algorithms that can be used for 7classi�cation,
7regression, density estimation, novelty detection, and
other applications. In the simplest case of two-class clas-

si�cation, SVMs �nd a hyperplane that separates the

two classes of data with as wide a margin as possible.

�is leads to good generalization accuracy on unseen

data, and supports specialized optimization methods

that allow SVM to learn from a large amount of data.

Motivation and Background
Over the past decade, maximum margin models espe-

cially SVMs have become popular in machine learn-

ing.�is technique was developed in three major steps.

First, assuming that the two classes of training examples

can be separated by a hyperplane, Vapnik and Lerner

http://www.jmlr.org/papers/volume10/kralj-novak09a/kraljnovak09a.pdf

 S Support Vector Machines

proposed in that the optimal hyperplane is the

one that separates the training examples with the widest

margin. From the s to s, Vapnik and Cher-

vonenkis developed the Vapnik–Chervonenkis theory,

which justi�es the maximum margin principle from a

statistical point of view. Similar algorithms and opti-

mization techniques were proposed by Mangasarian

in .

Second, Boser, Guyon, and Vapnik () incor-

porated kernel function into the maximum margin

models, and their formulation is close to the currently

popular form of SVMs. Before that, Wahba () also

discussed the use of kernels. Kernels allow SVM to

implicitly construct the optimal hyperplane in the fea-

ture space, and the resulting nonlinear model is impor-

tant for modeling real data.

Finally, in case the training examples are not lin-

early separable, Cortes and Vapnik () showed that

the so�margin can be applied, allowing some examples

to violate the margin condition.

On the theoretical side, Shawe-Taylor, Bartlett,

Williamson, and Anthony () gave the �rst rigorous

statistical bound on the generalization of hard mar-

gin SVMs. Shawe-Taylor and Cristianini () gave

statistical bounds on the generalization of so� margin

algorithms and for the regression case.

In reality SVMs became popular thanks to its sig-

ni�cantly better empirical performance than the neu-

ral networks. By incorporating transform invariances,

the SVMs developed at AT&T achieved the highest

accuracy on the MNIST benchmark set (a handwrit-

ten digit recognition problem). Joachims () also

showed clear superiority of SVMs on text categoriza-

tion. A�erward, SVMs have been shown e�ective in

many applications including computer vision, natural

language, bioinformatics, and �nance.

Theory
SVMs have a strong mathematical basis and are closely

related to some well-established theories in statistics.

�ey not only try to correctly classify the training data,

but also maximize the margin for better generaliza-

tion performance. �is formulation leads to a sepa-

rating hyperplane that depends only on the (usually

small fraction of) data points that lie on the margin,

which are called support vectors. Hence the whole algo-

rithm is called support vectormachine. In addition, since

real–world data analysis problems o�en involve non-

linear dependencies, SVMs can be easily extended to

model such nonlinearity by means of positive semi-

de�nite kernels. Moreover, SVMs can be trained via

quadratic programming, which (a) makes theoretical

analysis easier, and (b) provides much convenience in

designing e�cient solvers that scale for large datasets.

Finally, when applied to real-world data, SVMs o�en

deliver state-of-the-art performance in accuracy, �exi-

bility, robustness, and e�ciency.

Optimal Hyperplane for Linearly Separable Examples

Consider the training set {(xi, yi)}
n
i= where xi ∈ Rp

is the input feature vector for the i-th example, and
yi ∈ {,−} is its corresponding label indicating whether

the example is positive (yi = +) or negative (yi = −). To
begin with, we assume that the set of positive and nega-

tive examples are linearly separable, that is, there exists

a function f (x) = ⟨w, x⟩ + b where w ∈ Rp (called the

weight vector) and b ∈ R (called bias) such that

⟨w, xi⟩ + b > for yi = +

⟨w, xi⟩ + b < for yi = −.

We call ⟨w, x⟩+b = the decision hyperplane and in
fact, there can exist multiple hyperplanes that separate

the positive and negative examples, see Fig. . However,

they are not created equal. Associated with each such

hyperplane is a notion called margin, de�ned as the
distance between the hyperplane and the closest exam-

ple. SVM aims to �nd the particular hyperplane that

maximizes the margin.

Mathematically, it is easy to check that the dis-

tance from a point xi to a hyperplane ⟨w, x⟩ + b= is
∥w∥

−
∣⟨w, xi⟩ + b∣. �erefore, SVM seeks for the opti-

mal w, b of the following optimization problem:

maximize
w∈Rp , b∈R

min
≤i≤n

∣⟨w, xi⟩ + b∣
∥w∥

,

s.t.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨w, xi⟩ + b > if yi = +

⟨w, xi⟩ + b < if yi = −
∀i .

It is clear that if (w, b) is an optimal solution, then
(αw, αb) is also an optimal solution for any α > .

Support Vector Machines S

S

H1

H2

Support Vector Machines. Figure . Example of maxi-

mum margin separator. Both H and H correctly separate

the examples from the two classes. But H has a wider

margin than H

�erefore, to �x the scale, we can equivalently set the

numerator of the objective min≤i≤n ∣⟨w, xi⟩ + b∣ to ,
and minimize the denominator ∥w∥:

minimize
w∈Rp , b∈R

∥w∥

,

s.t.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨w, xi⟩ + b ≥ if yi = +

⟨w, xi⟩ + b ≤ − if yi = −.
∀i . ()

�is is a linearly constrained quadratic program,

which can be solved e�ciently. Hence, it becomes the

most commonly used (primal) form of SVM for the

linearly separable case.

Soft Margins

In practice, most, if not all, datasets are not linearly sep-

arable, that is, no w and b can satisfy the constraints
of the optimization problem (). In this case, we will

allow some data points to violate the margin condi-

tion, and penalize it accordingly.Mathematically, notice

that the constraints in () can be equivalently written

as yi(⟨w, xi⟩ + b) ≥ . Now we introduce a new set of

nonnegative slack variables ξi into the constraints:

yi(⟨w, xi⟩ + b) ≥ − ξi ,

max{0,1–yi(<w,xi> + b)}

yi(<w,xi> + b)

1

1

Support Vector Machines. Figure . Graph of hinge loss

and incorporate a penalty into the original objective to

derive the so� margin SVM:

minimize
w,b,ξi

λ ∥w∥

+

n

n

∑
i=

ξi

s.t. yi(⟨w, xi⟩ + b) ≥ − ξi, and ξi > ∀i . ()

λ > is a trade-o� factor. It is important to note that

ξi can be written as ξi = max {, − yi(⟨w, xi⟩ + b)},
which is called hinge loss and is depicted in Fig. .�is

way, the optimization problem can be reformulated into

an unconstrained non-smooth problem:

minimize
w∈Rp , b∈R

λ

∥w∥

+

n

n

∑
i=

max {, − yi(⟨w, xi⟩ + b)} . ()

Notice that max {, − yi(⟨w, xi⟩ + b)} is also a convex
upper bound of δ(yi(⟨w, xi⟩+b) >), where δ(x) = if
x is true and otherwise.�erefore, the penalty we use
is a convex upper bound of the average training error.

When the training set is actually separable, the so�mar-

gin problem () automatically recovers the hard margin

problem () when λ is su�ciently large.

Dual Forms and Kernelization

As the constraints in the primal form () are not con-

venient to handle, people have conventionally resorted

to the dual problem of (). Following the standard

procedures, one can derive the Lagrangian dual

min
α

λ
∑
i,j
yiyjαiαj ⟨xi, xj⟩ −∑

i
αi,

s.t. αi ∈ [,n−], and ∑
i
yiαi = . ()

 S Support Vector Machines

which is again a quadratic program, but with much

simpler constraints: box constraints plus a single linear

equality constraint. To recover the primal solution w∗

from the dual solution α∗i , we have

w∗ =
n

∑
i=

α∗i yixi ,

and the optimal bias b can be determined by using the
duality conditions.

�e training examples can be divided into three cat-

egories according to the value of α∗i . If α∗i = , it means
the corresponding training example does not a�ect the

decision boundary, and in fact it lies beyond themargin,

that is, yi(⟨w, xi⟩+b) > . If α∗i ∈ (,n−), then the train-
ing example lies on the margin, that is, yi(⟨w, xi⟩+ b) =
. If α∗i = n− it means the training example violates
the margin, that is, yi(⟨w, xi⟩ + b)< . In the latter two
cases where α∗i > , the i-th training example is called a
support vector.

In many applications, most α∗i in the optimal solu-
tion are , which gives a sparse solution. As the

�nal classi�er depends only on those support vec-

tors, the whole algorithm is named support vector

machines.

From the dual problem (), a key observation can

be drawn that the feature of the training examples {xi}
in�uences training only via the inner product ⟨xi, xj⟩.
�erefore, we can rede�ne the feature by mapping xi
to a richer feature space via ϕ(xi) and then compute
the inner product there: k(xi, xj) := ⟨ϕ(xi), ϕ(xj)⟩. Fur-
thermore, one can even directly de�ne kwithout explic-
itly specifying ϕ.�is allows us to (a) implicitly use a
rich feature space whose dimension can be in�nitely

high, and (b) apply SVM to non-Euclidean spaces as

long as a kernel k(xi, xj) can be de�ned on it. Exam-
ples include strings and graphs (Haussler,), which

have been widely applied in bioinformatics (Schölkopf,

Tsuda, & Vert,). Mathematically, the objective ()

can be kernelized into

λ
∑
i,j
yiyjαiαjk(xi, xj) −∑

i
αi,

s.t. αi ∈ [,n−], and ∑
i
yiαi = . ()

However, now thew cannot be expressed just in terms of
kernels becausew∗ = ∑n

i= α∗i yiϕ(xi). Fortunately, when

predicting on a new example xwe again only require the
inner product and hence use kernel only:

⟨w∗, x⟩ =
n

∑
i=

α∗i yi ⟨ϕ(xi), ϕ(x)⟩ =
n

∑
i=

α∗i yik(xi, x) .

Commonly used kernels on Rn include polynomial

kernels (+ ⟨xi, xj⟩)d, Gaussian RBF kernels exp(−γ
∥xi − xj∥

), Laplace RBF kernels exp(−γ ∥xi − xj∥),

etc. Kernels on strings and trees are usually based

on convolution, which requires involved algorithms

for e�cient evaluation (Borgwardt, ; Haussler,

). More details can be found in the kernel

section.

Optimization Techniques and Toolkits

�e main challenge of optimization lies in scaling

for large datasets, that is, n and p are large. Decom-
position method based on the dual problem is the

�rst popularly used method for solving large scale

SVMs. For example, sequential minimal optimization

(SMO) optimizes two dual variables αi, αj analyti-

cally in each iteration (Platt, a). An SMO-type

implementation is available in the LibSVM pack-

age http://www.csie.ntu.edu.tw/~cjlin/libsvm. Another

popular package using decomposition methods is the

SVM-light, available at http://svmlight.joachims.org.

Coordinate descent in the dual is also e�ective and con-

verges at linear rate. An implementation can be downlo-

aded from http://www.csie.ntu.edu.tw/~cjlin/liblinear.

Primal methods are also popular, most of which are

based on formulating the objective as a non-smooth

objective function like (). An important type is the sub-

gradient descent method, which is similar to gradient

descent but uses a subgradient due to the non-smooth

objective. When the dataset is large, one can further use

a random subset of training examples to e�ciently com-

pute the (approximate) subgradient, and algorithms

exist that guarantee the convergence in probability.�is

is called stochastic subgradient descent, and in prac-

tice, it can o�en quickly �nd a reasonably good solution.

A package that implements this idea can be found at

http://leon.bottou.org/projects/sgd.

Finally, cutting plane and bundle methods are also

e�ective (Tsochantaridis, Joachims, Hofmann, & Altun,

; Smola, Vishwanathan, & Le,), and they are

especially useful for generalized SVMs with structured

Support Vector Machines S

S

outputs. An implementation is the bundle method for

risk minimization (BMRM), available for download at

http://users.rsise.anu.edu.au/~chteo/BMRM.html.

Applications
�e above description of SVM focused on binary class

classi�cation. In fact, SVM, or the ideas of maximum

margin and kernel, have beenwidely used inmany other

learning problems such as regression, ranking and ordi-

nal regression, density estimation, novelty detection,

quantile regression, and etc. Even in classi�cation, SVM

has been extended to the case ofmulti-class,multi-label,

and structured output (Taskar, ; Tsochantaridis

et al.,).

For multi-class classi�cation and structured out-

put classi�cation where the possible label set Y can be

large, maximum margin machines can be formulated

by introducing a joint feature map ϕ on pairs of (xi, y)
(y ∈ Y). Letting ∆(yi, y) be the discrepancy between the
true label yi and the candidate label y, the primal form
can be written as

minimizew,ξi
λ

∥w∥

+

n

n

∑
i=

ξi,

s.t. ⟨w, ϕ(xi, yi) − ϕ(xi, y)⟩ ≥ ∆(yi, y) − ξi, ∀ i, y,

and the dual form is

minimizeαi,y

λ
∑

(i,y),(i′ ,y′)
αi,yαi′ ,y′ ⟨ϕ(xi, yi) − ϕ(xi, y)

ϕ(xi′ , yi′) − ϕ(xi′ , y′)⟩ −∑
i,y
∆(yi, y)αi,y

s.t. αi,y ≥ , ∀ i, y; ∑
y

αi,y =

n
, ∀i.

Again kernelization is convenient, by simply replacing

all the inner products ⟨ϕ(xi, y), ϕ(xi′ , y′)⟩ with a joint
kernel k((xi, y), (xi′ , y′)). Further factorization using
graphical models is possible, see Taskar (). Notice

when Y = {,−}, setting ϕ(xi, y) = yϕ(xi) recovers the
binary SVM formulation. E�ectivemethods to optimize

the dual objective include SMO, exponentiated gradi-

ent descent, mirror descent, cutting plane, or bundle

methods.

In general, SVMs are not trained to output the odds

of class membership, although the posterior probabil-

ity is desired to enable post-processing. Platt (b)

proposed training an SVM, and then train the parame-

ters of an additional sigmoid function to map the SVM

outputs into probabilities. A more principled approach

is the relevance vector machine, which has an iden-

tical functional form to the SVMs and uses Bayesian

inference to obtain sparse solutions for probabilistic

classi�cation.

As mentioned above, the hinge loss used in SVM

is essentially a convex surrogate of the misclassi�ca-

tion loss, that is, if the current weight w misclassi�es
the training example and otherwise. Minimizing the

misclassi�cation loss is proved NP-hard, so for compu-

tational convenience continuous convex surrogates are

used, including hinge loss, exponential loss, and logis-

tic loss.�eir statistical properties are studied by Jordan,

Bartlett, and McAuli�e (). For hinge loss, it has the

signi�cant merit of sparsity in the dual, which leads to

robustness and good generalization performance.

SVMs have been widely applied in real-world prob-

lems. In history, its �rst practical success was gained

in handwritten digit recognition. By incorporating

transform invariances, the SVMs developed at AT&T

achieved the highest accuracy on the MNIST bench-

mark set. It has also been very e�ective in com-

puter vision applications such as object recognition and

detection.With the special advantage in handling high-

dimensional data, SVMs have witnessed wide applica-

tion in bioinformatics such as microarray processing

(Schölkopf et al.,), and natural language process-

ing like named entity recognition, part-of-speech tag-

ging, parsing, and chunking (Joachims, ; Taskar,

).

Cross References
7Kernel Methods
7Radial Basis Function Networks

Further Reading
A comprehensive treatment of SVMs can be found

in Schölkopf and Smola () and Shawe-Taylor and

Cristianini (). Some important recent develop-

ments of SVMs for structured output are collected in

Bakir, Hofmann, Schölkopf, Smola, Taskar, and Vish-

wanathan (). As far as applications are concerned,

 S Swarm Intelligence

see Lampert () for computer vision and Schölkopf

et al. () for bioinformatics. Finally, Vapnik ()

provides the details on statistical learning theory.

Recommended Reading
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., &

Vishwanathan, S. V. N. (). Predicting structured data. Cam-
bridge: MIT Press.

Borgwardt, K. M. (). Graph Kernels. Ph.D. thesis, Ludwig-
Maximilians-University, Munich, Germany.

Boser, B., Guyon, I., & Vapnik, V. (). A training algorithm for

optimal margin classifiers. In D. Haussler (Ed.), Proceedings of
annual conference computational learning theory (pp. –).
Pittsburgh: ACM Press.

Cortes, C., & Vapnik, V. (). Support vector networks. Machine
Learning, (), –.

Haussler, D. (). Convolution kernels on discrete structures (Tech.
Rep. UCS-CRL--). University of California, Santa Cruz.

Joachims, T. (). Text categorization with support vector

machines: Learning with many relevant features. In Proceedings
of the European conference on machine learning (pp. –).
Berlin: Springer.

Jordan, M. I., Bartlett, P. L., & McAuliffe, J. D. (). Convexity,
classification, and risk bounds (Tech. Rep.). University of
California, Berkeley.

Lampert, C. H. (). Kernel methods in computer vision. Foun-
dations and Trends in Computer Graphics and Vision, (),
–.

Platt, J. C. (a). Fast training of support vector machines

using sequential minimal optimization. In Advances in kernel
methods—support vector learning (pp. –). Cambridge,
MA: MIT Press.

Platt, J. C. (b). Probabilities for sv machines. In A. J. Smola, P. L.

Bartlett, B. Schölkopf, & D. Schuurmans, (Eds.), Advances in
large margin classifiers (pp. –). Cambridge: MIT Press.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge:
MIT Press.

Schölkopf, B., Tsuda, K., & Vert, J.-P. (). Kernel methods in
computational biology. Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Margin distribution and

soft margin. In A. J. Smola, P. L. Bartlett, B. Schölkopf, &

D. Schuurmans, (Eds.), Advances in large margin classifiers
(pp. –). Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M.

(). Structural risk minimization over data-dependent hier-

archies. IEEE Transactions on Information Theory, (), –
.

Smola, A., Vishwanathan, S. V. N., & Le, Q. (). Bundle methods

for machine learning. In D. Koller, & Y. Singer, (Eds.), Advances
in neural information processing systems (Vol.). Cambridge:
MIT Press.

Taskar, B. (). Learning structured prediction models: A large
margin approach. Ph.D. thesis, Stanford University.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. ().

Large margin methods for structured and interdependent out-

put variables. Journal of Machine Learning Research, , –
.

Vapnik, V. (). Statistical learning theory. New York: Wiley.
Wahba, G. (). Spline models for observational data. CBMS-

NSF regional conference series in applied mathematics (Vol.).
Philadelphia: SIAM.

Swarm Intelligence

Swarm intelligence is the discipline that studies the col-
lective behavior of systems composed of many individ-

uals that interact locally with each other and with their

environment and that rely on forms of decentralized

control and self-organization. Examples of such sys-

tems are colonies of ants and termites, schools of �sh,

�ocks of birds, herds of land animals, and also some

artifacts, including swarm robotic systems and some

computer programs for tackling optimization problems

such as7ant colony optimization and7particle swarm
optimization.

Symbolic Dynamic Programming

Scott Sanner, Kristian Kersting

Statistical Machine Learning Group,

NICTA, Canberra, ACT, Australia
Fraunhofer IAIS,

Sankt Augustin, Germany

Synonyms
Dynamic programming for relational domains; Rela-

tional dynamic programming; Relational value itera-

tion; SDP

Definition
Symbolic dynamic programming (SDP) is a generaliza-

tion of the7dynamic programming technique for solv-
ing 7Markov decision processes (MDPs) that exploits
the symbolic structure in the solution of relational and

Symbolic Dynamic Programming S

S

�rst-order logical MDPs through a li�ed version of

dynamic programming.

Motivation and Background
Decision-theoretic planning aims at constructing a pol-

icy for acting in an uncertain environment that max-

imizes an agent’s expected utility along a sequence of

steps. For this task, Markov decision processes (MDPs)

have become the standard model. However, classical

dynamic programming algorithms for solving MDPs

require explicit state and action enumeration, which

is o�en impractical: the number of states and actions

grows very quickly with the number of domain objects

and relations. In contrast, SDP algorithms seek to avoid

explicit state and action enumeration through the sym-

bolic representation of an MDP and a corresponding

symbolic derivation of its solution, such as a value func-

tion. In essence, SDP algorithms exploit the symbolic

structure of theMDP representation to construct amin-

imal logical partition of the state space required tomake

all necessary value distinctions.

Theory and Solution
Consider an agent acting in a simple variant of the

BoxWorld problem. �ere are several cities such as

London, Paris etc., trucks truck, truck etc., and boxes
box, box etc. �e agent can load a box onto a truck
or unload it and can drive a truck from one city to

another. Only when a particular box, say box box, is in
a particular city, say Paris, the agent receives a positive
reward.�e agent’s learning task is now to �nd a policy

for action selection that maximizes its reward over the

long term.

A great variety of techniques for solving such

decision-theoretic planning tasks have been developed

over the last decades. Most of them assume atomic rep-

resentations, which essentially amounts to enumerating

all unique con�gurations of trucks, cities, and boxes. It

might then be possible to learn, for example, that taking

action action in state state is worth . and leads
to state state. Atomic representations are simple,
and learning can be implemented using simple lookup

tables.�ese lookup tables, however, can be intractably

large as atomic representations easily explode. Further-

more, they do not easily generalize across di�erent

numbers of domain objects (We use the term domain in

the �rst-order logical sense of an object universe.�e

term should not be confused with a planning problem
such as BoxWorld or BlocksWorld.).

In contrast, SDP assumes a relational or �rst-order

logical representation of an MDP (as given in Fig.) to

exploit the existence of domain objects, relations over

these objects, and the ability to express objectives and

action e�ects using quanti�cation.

It is then possible to learn that to get box b to paris,
the agent drives a truck to the city of b, loads box on
the truck, drives the truck to Paris, and �nally unloads
the box box in Paris.�is is essentially encoded in the
symbolic value function shown in Fig. , which was

computed by discounting rewards t time steps into the
future by .t .�e key features to note here are the state

and action abstraction in the value and policy represen-

tation that are a�orded by the �rst-order speci�cation

and solution of the problem.�at is, this solution does

not refer to any speci�c set of domain objects, such

as City = {paris, berlin, london}, but rather it provides
a solution for all possible domain object instantiations.
And while classical dynamic programming techniques

could never solve these problems for large domain

instantiations (since they would have to enumerate all

states and actions), a domain-independent SDP solu-

tion to this particular problem is quite simple due to the

power of state and action abstraction.

Background: Markov Decision Processes (MDPs)

In the MDP (Puterman,) model, an agent is

assumed to fully observe the current state and choose

an action to execute from that state. Based on that state

and action, nature then chooses a next state according

to some �xed probability distribution. In an in�nite-

horizon MDP, this process repeats itself inde�nitely.

Assuming there is a reward associated with each state

and action, the goal of the agent is to maximize the

expected sum of discounted rewards received over an

in�nite horizon (Although we do not discuss it here,

there are other alternatives to discounting such as aver-

aging the reward received over an in�nite horizon.).

�is criterion assumes that a reward received t steps in
the future is discounted by γt , where γ is a discount fac-
tor satisfying ≤ γ < .�e goal of the agent is to choose

its actions in order to maximize the expected, dis-

counted future reward in this model.

 S Symbolic Dynamic Programming

● Domain Object Types (i.e., sorts): Box, Truck, City = {paris, . . .}

● Relations (with parameter sorts):

BoxIn(Box,City), TruckIn(Truck,City), BoxOn(Box, Truck)

● Reward: if ∃b.BoxIn(b,paris) else

● Actions (with parameter sorts):

– load(Box : b, Truck : t,City : c):

∗ Success Probability: if (BoxIn(b, c) ∧ TruckIn(t, c)) then . else

∗ Add Effects on Success: {BoxOn(b, t)}

∗ Delete Effects on Success: {BoxIn(b, c)}

– unload(Box : b, Truck : t,City : c):

∗ Success Probability: if (BoxOn(b, t) ∧ TruckIn(t, c)) then . else

∗ Add Effects on Success: {BoxIn(b, c)}

∗ Delete Effects on Success: {BoxOn(b, t)}

– drive(Truck : t,City : c,City : c):

∗ Success Probability: if (TruckIn(t, c)) then else

∗ Add Effects on Success: {TruckIn(t, c)}

∗ Delete Effects on Success: {TruckIn(t, c)}

– noop

∗ Success Probability:

∗ Add Effects on Success: ∅

∗ Delete Effects on Success: ∅

Symbolic Dynamic Programming. Figure . A formal description of the BoxWorld adapted from Boutilier, Reiter, and

Price (). We use a simple STRIPS (Fikes & Nilsson,) add and delete list representation of actions and, as a simple

probabilistic extension in the spirit of PSTRIPS (Kushmerick, Hanks, & Weld,), we assign probabilities that an action

successfully executes conditioned on various state properties

if (∃b.BoxIn(b,paris)) then do noop (value = .)

else if (∃b,t.TruckIn(t,paris) ∧ BoxOn(b, t)) then do unload(b, t) (value = .)

else if (∃b,c,t.BoxOn(b, t) ∧ TruckIn(t, c)) then do drive(t, c,paris) (value = .)

else if (∃b,c,t.BoxIn(b, c) ∧ TruckIn(t, c)) then do load(b, t) (value = .)

else if (∃b, c, t, c.BoxIn(b, c) ∧ TruckIn(t, c)) then do drive(t, c, c) (value = .)

else do noop (value = .)

Symbolic Dynamic Programming. Figure . A decision-list representation of the optimal policy and expected dis-

counted reward value for the BoxWorld problem

Formally, a �nite state and action MDP is a tuple:

⟨S,A,T,R⟩, where S is a �nite state space, A is a �nite
set of actions, T is a transition function: T : S×A× S→
[,], where T(s, a, ⋅) is a probability distribution over
S for any s ∈ S and a ∈ A, and R is a bounded reward
function R : S ×A→ R.

As stated earlier, our goal is to �nd a policy thatmax-

imizes the in�nite horizon, discounted reward criterion:

Eπ[∑
∞
t= γt ⋅ rt ∣s], where rt is a reward obtained at time

t, γ is a discount factor as de�ned earlier, π is the policy
being executed, and s is the initial starting state. Based
on this reward criterion, we de�ne the value function

Symbolic Dynamic Programming S

S

for a policy π as the following:

Vπ(s) = Eπ [
∞
∑
t=

γt
⋅ rt ∣ s = s] ()

Intuitively, the value function for a policy π is the
expected sumof discounted rewards accumulatedwhile

executing that policy when starting from state s.
For theMDPmodel discussed here, the optimal pol-

icy can be shown to be stationary (Puterman,).

Consequently, we use a stationary policy representation

of the form π : S → A, with π(s) denoting the action
to be executed in state s. An optimal policy π∗ is the
policy that maximizes the value function for all states.

We denote the optimal value function over an inde�nite

horizon as V∗(s) and note that it satis�es the following
equality:

V∗
(s) = max

a∈A
{R(s, a) + γ∑

s′∈S
T(s, a, s′) ⋅V∗

(s′)} ()

Bellman’s principle of optimality (Bellman,) estab-
lishes the following relationship between the optimal

value function V t(s) with a �nite horizon of t steps
remaining and the optimal value function V t−(s) with

a �nite horizon of t − steps remaining:

V t
(s) = max

a∈A
{R(s, a) + γ∑

s′∈S
T(s, a, s′) ⋅V t−

(s′)} ()

A dynamic programming approach for computing the
optimal value function over an inde�nite horizon is

known as value iteration and directly implements () to

compute by successive approximation. As sketched in

Fig. , we start with arbitrary V(s) (e.g., ∀sV(s) =)
and perform the Bellman backup given in () for each

stateV (s) using the value ofV(s). We repeat this pro-
cess for each t to compute V t(s) from the memorized
values for V t−(s) until we have computed the intended
t-stages-to-go value function. V t(s) will converge to
V∗(s) as t →∞ (Puterman,).

O�en, the Bellman backup is rewritten in two steps

to separate out the action regression and maximization

steps. In this case, we �rst compute the t-stages-to-go
Q-function for every action and state:

Qt
(s, a) = R(s, a) + γ ⋅∑

s′∈S
T(s, a, s′) ⋅V t−

(s′) ()

A1 A1A1
S1 S1

S2 S2

S1

S2

S1

S2
A2

A2

A1

A2

A2

A1

A2

A2

A1

V3 (s1) V2 (s1) V1 (s1) V0 (s1)

V3 (s2) V1 (s2) V0 (s2)V2 (s2)

Symbolic Dynamic Programming. Figure . A diagram demonstrating a dynamic programming regression-based eval-

uation of the MDP value function. Dashed lines are used in the expectation computation of the Q-function: for each

action, take the expectation over the values of possible successor states. Solid lines are used in the max computation:

determine the highest valued action to be taken in each state

 S Symbolic Dynamic Programming

�en we maximize over each action to determine the

value of the regressed state:

V t
(s) = max

a∈A
{Qt

(s, a)} ()

�is is clearly equivalent to () but is in a form that we

refer to later, since it separates the algorithm into its two

conceptual components: decision-theoretic regression

and maximization.

First-Order Markov Decision Processes

A �rst-order MDP (FOMDP) can be thought of as

a universal MDP that abstractly de�nes the state,

action, transition, and reward tuple ⟨S,A,T,R⟩ for
an in�nite number of ground MDPs. To make this

idea more concrete, consider the BoxWorld prob-

lem de�ned earlier. While we have not yet formalized

the details of the FOMDP representation, it should

be clear that the BoxWorld dynamics hold for any

instantiation of the domain objects: Box, Truck, and
City. For instance, assume that the domain instan-
tiation consists of two boxes Box = {box, box},
two trucks Truck = {truck, truck} and two cities
City = {paris, berlin}. �en the resulting ground
MDP has state-variable atoms (each atom being

true or false in a state), four atoms for BoxIn such as
BoxIn(box, paris), BoxIn(box, paris), . . ., four atoms
for TruckIn such as TruckIn(truck, paris), . . . and four
atoms for BoxOn such as BoxOn(box, truck),
�ere are also possible actions (eight for each of

load,unload, and drive) such as load(box, truck, paris),
load(box, truck, berlin), drive(truck, paris, paris),
drive(truck, paris, berlin), etc., where the transition
function directly follows from the ground instan-

tions of the corresponding PSTRIPS operators. �e

reward function looks like: if (BoxIn(box, paris) ∨

BoxIn(box, paris)) else .
�erefore, to solve an FOMDP, we could ground it

for a speci�c domain instantiation to obtain a corre-

sponding ground MDP.�en we could apply classical

MDP solution techniques to solve this ground MDP.

However, the obvious drawback to this approach is that

the number of state variables and actions in the ground

MDP grow at least linearly as the domain size increases.

And even if the ground MDP could be represented

within memory constraints, the number of distinct

ground states grows exponentially with the number of

state variables, thus rendering solutions that scale with

state size intractable even formoderately small numbers

of domain objects.

An alternative idea to solving an FOMDP at the

ground level is to solve the FOMDP directly at the

�rst-order level using symbolic dynamic programming,

thereby obtaining a solution that applies universally

to all possible domain instantiations. While the exact

representation and SDP solution of FOMDPs di�er

among the variant formalisms, they all share the same

basic �rst-order representation of rewards, probabili-

ties, and values that we outline next. To highlight this,

we introduce a graphical case notation to allow �rst-
order speci�cations of the rewards, probabilities, and

values required for FOMDPs:

case =

ϕ : t

: : :

ϕn : tn

Here the ϕi are state formulae and the ti are terms.
O�en the ti are constants and the ϕi partition state

space. To make this concrete, we represent our Box-

World FOMDP reward function as the following rCase
statement:

rCase =
∃b.BoxIn(b, paris) :

¬∃b.BoxIn(b, paris) :

Here we see that the �rst-order formulae in the case

statement divide all possible ground states into two

regions of constant value: when there exists a box in

Paris, a reward of is achieved, otherwise a reward

of is achieved. Likewise, the value function case
that we derive through SDP can be represented in

exactly the same manner. Indeed, as we will see shortly,

case = rCase in the �rst-order version of value
iteration.

To state the FOMDP transition function for an

action, we decompose stochastic “agent” actions into a

collection of deterministic actions, each corresponding
to a possible outcome of the stochastic action. We then

specify a distribution according to which “nature” may

Symbolic Dynamic Programming S

S

choose a deterministic action from this set whenever

the stochastic action is executed.

Letting A(x⃗) be a stochastic action with nature’s
choices (i.e., deterministic actions) n(x⃗), . . . ,nk(x⃗),
we represent the distribution over ni(x⃗) given A(x⃗)
using the notation pCase(nj(x⃗),A(x⃗)). Continuing our
logistics example, if the success of driving a truck

depends on whether the destination city is paris (per-
haps due to known tra�c delays), then we decom-

pose the stochastic drive action into two deterministic
actions driveS and driveF, respectively denoting suc-
cess and failure.�en we can specify a distribution over

nature’s choice deterministic outcome for this stochastic

action:

pCase(driveS(t, c , c),

drive(t, c , c))
=

c = paris : .

c ≠ paris : .

pCase(driveF(t, c , c),

drive(t, c , c))
=

c = paris : .

c ≠ paris : .

Intuitively, to perform an operation on case state-

ments, we simply perform the corresponding opera-

tion on the intersection of all case partitions of the

operands. Letting each ϕi and ψj denote generic �rst-

order formula, we can perform the “cross-sum” ⊕ of

case statements in the following manner:

ϕ :

ϕ :
⊕

ψ :

ψ :
=

ϕ ∧ ψ :

ϕ ∧ ψ :

ϕ ∧ ψ :

ϕ ∧ ψ :

Likewise, we can perform ⊖, ⊗, and max operations

by respectively subtracting, multiplying, or taking the

max of partition values (as opposed to adding them)

to obtain the result. Some partitions resulting from

the application of the ⊕, ⊖, and ⊗ operators may be

inconsistent; we simply discard such partitions (since

they can obviously never correspond to any world

state).

We de�ne another operation on case statements

max∃x⃗ that is crucial for SDP. Intuitively, the mean-
ing of max∃x⃗ case(x⃗) is a case statement where the
maximal value is assigned to each region of state

space where there exists a satisfying instantiation

of x⃗. To make these ideas concrete, following is
an exposition of how the max∃x⃗ may be explicitly
computed:

max∃x⃗

ψ(x⃗) :

ψ(x⃗) :

ψ(x⃗) :

=

∃x⃗ψ(x⃗) :

¬(∃x⃗ψ(x⃗)) ∧ ∃x⃗ψ(x⃗) :

¬(∃x⃗ψ(x⃗)) ∧ ¬(∃x⃗ψ(x⃗)) ∧ ∃x⃗ψ(x⃗) :

Here we have simply sorted partitions in order of values

and have ensured that the highest value is assigned to

partitions in which there exists a satisfying instantiation

of x⃗ by rendering lower value partitions disjoint from
their higher-value antecedents.

Symbolic Dynamic Programming

SDP is a dynamic programming solution to FOMDPs

that produces a logical case description of the optimal

value function.�is is achieved through the operations

of �rst-order decision-theoretic regression (FODTR)

and symbolic maximization that perform the tradi-

tional dynamic programming Bellman backup at an

abstract level without explicit enumeration of either the

state or action spaces of the FOMDP.Amongmany uses,

the application of SDP leads to a domain-independent

value iteration solution to FOMDPs.

Suppose that we are given a value function in the

form case. �e FODTR (Boutilier et al.,) of this
value function through an action A(x⃗) yields a case
statement containing the logical description of states

and values that would give rise to case a�er doing action
A(x⃗).�is is analogous to classical goal regression, the
key di�erence being that action A(x⃗) is stochastic. In
MDP terms, the result of FODTR is a case statement

representing a Q-function.

 S Symbolic Dynamic Programming

We de�ne the FODTR operator in the following
manner:

FODTR[vcase,A(x⃗)] = rCase⊕ ()

γ [⊕j{pCase(nj(x⃗))⊗

Regr[vcase,A(x⃗)]}]

Note that we have not yet de�ned the regression opera-

tor Regr[vcase,A(x⃗)]. As it turns out, the implementa-
tion of this operator is speci�c to a given FOMDP lan-

guage and SDP implementation.We simply remark that

the regression of a formulaψ through an actionA(x⃗) is a
formula ψ′ that holds prior to A(x⃗) being performed i�
ψ holds a�er A(x⃗). However, regression is a determin-
istic operator and thus FODTR takes the expectation of

the regression over all possible outcomes of a stochastic

action according to their respective probabilities.

It is important to note that the case statement result-

ing from FODTR contains free variables for the action

parameters x⃗. �at is, for any constant binding c⃗ of
these action parameters such that x⃗ = c⃗, the case state-
ment speci�es a well-de�ned logical description of the

value that can be obtained by taking action A(c⃗) and
following a policy so as to obtain the value given by

vcase therea�er. However, what we really need for sym-
bolic dynamic programming is a logical description of

a Q-function that tells us the highest value that can be

achieved for any action instantiation. �is leads us to
the following qCase(A(x⃗)) de�nition of a �rst-order
Q-function that makes use of the previously de�ned

max∃x⃗ operator:

qCaset(A(x⃗)) = max∃x⃗.FODTR[vcaset−,A(x⃗)] ()

Intuitively, qCaset(A(x⃗)) is a logical description of the
Q-function for action A(x⃗) indicating the best value
that could be achieved by any instantiation of A(x⃗).
And by using the case representation and action quan-

ti�cation in the max∃x⃗ operation, FODTR e�ectively
achieves both action and state abstraction.
At this point, we can regress the value function

through a single action, but to complete the dynamic
programming step, we need to know the maximum

value that can be achieved by any action (e.g., in the
BoxWorld FOMDP, our possible action choices are

unload(b, t, c), load(b, t, c), and drive(t, c, c)). Fortu-
nately, this turns out to be quite easy. Assuming we have

m actions {A(x⃗), . . . ,Am(x⃗m)}, we can complete the
SDP step in the following manner using the previously

de�ned max operator:

vcaset = max
a∈{A(x⃗),. . .,Am(x⃗m)}

qCaset(a) ()

While the details of SDP may seem very abstract at

the moment, there are several examples for speci�c

FOMDP languages that implement SDP as described

earlier, for which we provide references next. Nonethe-

less, one should note that the SDP equations given

here are exactly the “li�ed” versions of the traditional

dynamic programming solution to MDPs given previ-

ously in () and (). �e reader may verify — on a

conceptual level — that applying SDP to the -stages-

to-go value function (i.e., case = rCase, given previ-
ously) yields the following - and -stages-to-go value

functions in the BoxWorld domain (¬“ indicating the

conjunction of the negation of all higher value parti-

tions):

case =

∃b.BoxIn(b, paris) : .

¬“ ∧ ∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t) : .

¬“ : .

case =

∃b.BoxIn(b, paris) : .

¬“ ∧ ∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t) : .

¬“ ∧ ∃b, c, t.BoxOn(b, t) ∧ TruckIn(t, c) : .

¬“ : .

A�er su�cient iterations of SDP, the t-stages-to-go
value function converges, giving the optimal value func-

tion (and corresponding policy) from Fig. .

Applications
Variants of SDP have been successfully applied

in decision-theoretic planning domains such as

BlocksWorld, BoxWorld, ZenoWorld, Eleva-

tors, Drive, PitchCatch, and Schedule. �e

Symbolic Dynamic Programming S

S

�rst-order approximate linear programming (FOALP)

system (Sanner & Boutilier,) was runner-up at

the probabilistic track of the th International Planning

Competition (IPC-). Related techniques have been

used to solve path planning problems within robotics

and instances of real-time strategy games, Tetris, and

Digger.

Future Directions
�e original SDP (Boutilier et al.,) approach is a
value iteration algorithm for solving FOMDPs based on

Reiter’s situations calculus. Since then, a variety of exact

algorithms have been introduced to solve MDPs with

relational (RMDP) and �rst-order (FOMDP) structure

(We use the term relational MDP to refer to models that
allow implicit existential quanti�cation, and FOMDP
for those with explicit existential and universal quanti�-

cation.). First-order value iteration (FOVIA) (Hölldobler
& Skvortsova, ; Karabaev & Skvortsova,) and

the relational Bellman algorithm (ReBel) (Kersting, van
Otterlo,&deRaedt,) are value iteration algorithms

for solving RMDPs. In addition, �rst-order decision dia-
grams (FODDs) have been introduced to compactly
represent case statements and to permit e�cient appli-

cation of SDP operations to solve RMDPs via value

iteration (Wang, Joshi, & Khardon,) and policy

iteration (Wang & Khardon,). All of these algo-

rithms have some form of guarantee on convergence

to the (є-)optimal value function or policy.�e expres-
siveness of FOMDPs has been extended to support

inde�nitely factored reward and transition functions in

FOMDPs (Sanner & Boutilier,).

A class of linear-value approximation algorithms

have been introduced to approximate the value func-

tion as a linear combination of weighted basis func-

tions. FOALP (Sanner & Boutilier,) directly

approximates the FOMDP value function using a lin-

ear program. First-order approximate policy iteration
(FOAPI) (Sanner & Boutilier,) approximately

solves for the FOMDP value function by iterating

between policy and value updates in a policy-iteration

style algorithm. Somewhat weak error bounds can

be derived for a value function approximated via

FOALP (Sanner & Boutilier,) while generally

stronger bounds can be derived from the FOAPI solu-

tion (Sanner & Boutilier,).

Finally, there are a number of heuristic solu-

tions to FOMDPs and RMDPs. Approximate policy
iteration (Fern, Yoon, & Givan,) induces rule-
based policies from sampled experience in small-

domain instantiations of RMDPs and generalizes these

policies to larger domains. In a similar vein, induc-
tive policy selection using �rst-order regression (Gret-
ton & �iebaux,) uses the action regression

operator in the situation calculus to provide the �rst-

order hypothesis space for an inductive policy learn-

ing algorithm. Approximate linear programming (for
RMDPs) (Guestrin, Koller, Gearhart, & Kanodia,)
is an approximation technique using linear program

optimization to �nd a best-�t value function over a

number of sampled RMDP domain instantiations.

Cross References
7Dynamic Programming
7Markov Decision Processes

Recommended Reading
Bellman, R. E. (). Dynamic programming. Princeton, NJ: Prince-

ton University Press.

Boutilier, C., Reiter, R., & Price, B. (). Symbolic dynamic

programming for first-order MDPs. In IJCAI- (pp.–)
Seattle.

Fikes, R. E., & Nilsson, N. J. (). STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial
Intelligence, , –.

Fern, A., Yoon, S., & Givan, R. (). Approximate policy iteration

with a policy language bias. In NIPS-. Vancouver.
Gretton, C., & Thiebaux, S. (). Exploiting first-order regression

in inductive policy selection. In UAI-. (pp.–) Banff,
Canada.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (). Gen-

eralizing plans to new environments in relational MDPs. In

IJCAI-. Acapulco, Mexico.
Hölldobler, S., & Skvortsova, O. (). A logic-based approach to

dynamic programming. In AAAI- Workshop on Learning and
Planning in MDPs (pp.–). Menlo Park, CA.

Karabaev, E., & Skvortsova, O. (). A heuristic search algo-

rithm for solving first-order MDPs. In UAI- (pp.–).
Edinburgh, Scotland.

Kersting, K., van Otterlo, M., & De Raedt, L. (). Bellman goes

relational. In ICML-. New York ACM Press.
Kushmerick, N., Hanks, S., & Weld, D. (). An algorithm for

probabilistic planning. Artificial Intelligence, , –.
Puterman, M. L. (). Markov decision processes: Discrete stochas-

tic dynamic programming. New York: Wiley.
Sanner, S., & Boutilier, C. (). Approximate linear programming

for first-order MDPs. In UAI-. Edinburgh, Scotland.
Sanner, S., & Boutilier, C. () Practical linear evaluation tech-

niques for first-order MDPs. In UAI-. Boston.

 S Symbolic Regression

Sanner, S., & Boutilier, C. (). Approximate solution techniques

for factored first-order MDPs. In ICAPS-. Providence, RI.
pp. –.

Wang, C., Joshi, S., & Khardon, R. (). First order decision

diagrams for relational MDPs. In IJCAI. Hyderabad, India.
Wang, C., & Khardon, R. (). Policy iteration for relational

MDPs. In UAI. Vancouver, Canada.

Symbolic Regression

7Equation Discovery

Symmetrization Lemma

Synonyms
Basic lemma

Definition
Given a distribution P over a sample space Z , a �nite
sample z = (z, . . . , zn) drawn i.i.d. from P and a

function f : Z → R we de�ne the shorthand EPf =

EP[f (z)] and Ezf =

n ∑
n
i= f (zi) to denote the true and

empirical average of f .�e symmetrization lemma is an
important result in the learning theory as it allows the

true averageEPf found in7generalization bounds to be
replaced by a second empirical average Ez′ f taken over
an independent ghost sample z′ = (z′, . . . z′n) drawn i.i.d.
from P. Speci�cally, the symmetrization lemma states
that for any є > whenever nє ≥

Pn ⎛

⎝
sup
f ∈F

∣EPf −Ezf ∣ > є
⎞

⎠
≤ Pn

⎛

⎝
sup
f ∈F

∣Ez′ f −Ezf ∣ >
є

⎞

⎠
.

�is means the typically di�cult to analyze behavior of

EPf – which involves the entire sample space Z – can
be replaced by the evaluation of functions from F over
the points in z and z′.

Synaptic E.Cacy

7Weight

T

Tagging

7POS Tagging

TAN

7Tree Augmented Naive Bayes

Taxicab Norm Distance

7Manhattan Distance

TD-Gammon

Definition
TD-Gammon is a world-champion strength backgam-

mon program developed by Gerald Tesauro. Its

development relied heavily on machine learning

techniques, in particular on 7Temporal-Di�erence
Learning. Contrary to successful game programs in

domains such as chess, which can easily out-search

their human opponents but still trail these ability

of estimating the positional merits of the current

board con�guration, TD-Gammon was able to excel

in backgammon for the same reasons that humans

play well: its grasp of the positional strengths and

weaknesses was excellent. In , it lost a -game

competition against the world champion with only

 points. Its sometimes unconventional but very solid

evaluation of certain opening strategies had a strong

impact on the backgammon community and was soon

adapted by professional players.

Description of the Learning System
TD-Gammon is a conventional game-playing program

that uses very shallow search (the �rst versions only

searched one ply) for determining its move. Candidate

moves are evaluated by a 7Neural Network, which
is trained by TD(λ), a well-known algorithm for

Temporal-Di�erence Learning (Tesauro,). �is

evaluation function is trained on millions of games that

the program played against itself. At the end of each

game, a reinforcement signal that indicates whether the

game has been lost or won is passed through all moves

of the game. TD-Gammon developed useful concepts

in the hidden layer of its network. Tesauro () shows

examples for two hidden units of TD-Gammon that he

interpreted as a race-oriented feature detector and an

attack-oriented feature detector.

TD-Gammon clearly surpassed its predecessors, in

particular the Computer Olympiad champion Neu-

rogammon, which was trained with 7Preference
Learning (Tesauro,). In fact, early versions of

TD-Gammon, which only used the raw board infor-

mation as features, already learned to play as well as

Neurogammon, which used a sophisticated set of fea-

tures. Adding more sophisticated features to the input

representation further improved TD-Gammon’s play-

ing strength. Over time, TD-Gammon not only that

increase the number of training games that it played

against itself, but Tesauro also increased the search

depth and changed the network architecture, so that

TD-Gammon eventually reached world-championship

strength (Tesauro,).

Cross References
7Machine Learning and Game Playing

Recommended Reading
Tesauro, G. (). Connectionist learning of expert preferences by

comparison training. In D. Touretzky (Ed.), Proceedings of the
advances in neural information processing systems (NIPS-)
(pp. –). San Francisco: Morgan Kaufmann.

Tesauro, G. (). Practical issues in temporal difference learning.

Machine Learning, , –. http://mlis.www.wkap.nl/mach/
abstracts/absvp.htm.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 T TDIDT Strategy

Tesauro, G. (). Temporal difference learning and TD-Gammon.

Communications of the ACM, (), –. http://www.
research.ibm.com/massdist/tdl.html.

TDIDT Strategy

7Divide-and-Conquer Learning

Temporal Credit Assignment

7Credit Assignment

Temporal Data

7Time Series

Temporal Difference Learning

William Uther

NICTA and the University of New South Wales

Definition
Temporal Di�erence Learning, also known as

TD-Learning, is a method for computing the long term

utility of a pattern of behavior from a series of inter-

mediate rewards (Sutton, , ; Sutton and Barto,

). It uses di�erences between successive utility esti-

mates as a feedback signal for learning.�e Temporal

Di�erencing approach to model-free 7reinforcement
learningwas introduced by, and is o�en associatedwith,

R.S. Sutton. It has ties to both the arti�cial intelligence

and psychological theories of reinforcement learning

as well as 7dynamic programming and operations
research from economics (Bellman, ; Bertsekas &

Tsitsiklis, ; Puterman, ; Samuel, ; Watkins,

).

While TD learning can be formalised using the the-

ory of 7Markov Decision Processes, in many cases it
has been used more as a heuristic technique and has

achieved impressive results even in situations where

the formal theory does not strictly apply, e.g., Tesauro’s

TD-Gammon (Tesauro,) achieved world cham-

pion performance in the game of backgammon.�ese

heuristic results o�en did not transfer to other domains,

but over time the theory behind TD learning has

expanded to cover large areas of reinforcement learning.

Formal Definitions

Consider an agent moving through a world in discrete

time steps, t, t, At each time step, t, the agent is
informed of both the current state of the world, st ∈ S ,
and its reward, or utility, for the previous time step,

rt− ∈ R.
As the expected long term utility of a pattern of

behavior can change depending upon the state, the util-

ity is a function of the state, V : S → R. V is known
as the value function or state-value function.�e phrase
“long term utility” can be formalized in multiple ways.

Undiscounted sum of reward:
�e simplest de�nition is that long term reward is

the sum of all future rewards.

V(st) = rt + rt+ + rt+ +⋯

=
∞
∑
δ=

rt+δ

Unfortunately, the undiscounted sum of reward is

only well de�ned if this sum converges. Convergence

is usually achieved by the addition of a constraint that

the agent’s experience terminates at some, �nite, point

in time and all rewards a�er that point are zero.

Discounted sum of reward:
�e discounted utility measure discounts rewards

exponentially into the future.

V(st) = rt + γrt+ + γrt+ +⋯ γ ∈ [,]

=
∞
∑
δ=

γδrt+δ

Note that when γ = the discounted and undis-
counted regimes are identical. When γ < , the dis-
counted reward scheme does not require that the agent

experience terminates at some �nite time for conver-

gence. �e discount factor γ can be interpreted as an
in�ation rate, a probability of failure for each time

step, or simply as a mathematical trick to achieve

convergence.

Temporal Difference Learning T

T

Average reward:
Rather than consider a sum of rewards, the average

reward measure of utility estimates both the expected
reward per future time step, also known as the gain, and
the current di�erence from that long-term average, or

bias.

G(st) = lim
n→∞

n

n

∑
δ=

rt+δ

B(st) =
∞
∑
δ=

[rt+δ −G(st+δ)]

A system where any state has a nonzero probabil-

ity of being reached from any other state is known as

an ergodic system. For such a system the gain, G(s),
will have the same value for all states and the bias, B(s),
serves a similar purpose toV(s) above in indicating the
relative worth of di�erent states. While average reward

has a theoretical advantage in that there is no discount

factor to choose, historically average reward has been

considered more complex to use than the discounted

reward regimes and so has been less used in practice.

�ere is a strong theoretical relationship between aver-

age reward and discounted reward in the limit as the

discount factor approaches one.

Here we focus on discounted reward.

Estimating Discounted Sum of Reward �e temporal

di�erencing estimation procedure is based on recur-

sive reformulation of the above de�nitions. For the

discounted case:

V(st) = rt + γrt+ + γrt+ + γrt+ +⋯
= rt + γ[rt+ + γrt+ + γrt+ +⋯]
= rt + γV(st+)

From the recursive formulation we can see that the

long term utility for one time step is closely related to

the long term utility at the next time step. If there is

already an estimate of the long term utility at st , V(st),
then we could calculate a change in that value given a

new trajectory as follows:

∆t = [rt + γV(st+)] −V(st)

If we are dealing with a stochastic system, then we

may not want to update V(st) to the new value in one

jump, but rather only move part way toward the new

value:

∆t = α(rt + γV(st+) −V(st))

where α is a learning rate between and . As an
assignment, this update can be written in a number of

equivalent ways, the two most common being:

V(st)← V(st) + α(rt + γV(st+) −V(st)) or,

V(st)← (− α)V(st) + α(rt + γV(st+))

�is update, error, learning or delta rule is the core of
temporal di�erence learning. It is from this formulation,

which computes a delta based on the di�erence in esti-

mated long term utility of the world at two consecutive

time steps, that we get the term temporal di�erencing.

Having derived this update rule, we can now apply it

to �nding the long term utility of a particular agent. In

the simplest case we will assume that there are a �nite

number of Markov states of the world, and that these

can be reliably detected by the agent at run time. We

will store the function V as an array of real numbers,
with one number for each world state.

A�er each time step, t, we will use the knowledge of
the previous state, st , the instantaneous reward for the
time step, rt , and the resulting state, st+, to update the
value of the previous state, V(st), using the delta rule
above:

V(st)← V(st) + α(rt + γV(st+) −V(st))

Eligibility Traces and TD(λ)

Basic temporal di�erencing as represented above can be

quite slow to converge in many situations. Consider, for

example, a simple corridor with a single reward at the

end, and an agent that walks down the corridor. Assume

that the value function was initialized to a uniform zero

value. On each walk down the corridor, useful informa-

tion is only pushed one step back toward the start of the

corridor.

Eligibility traces try to alleviate this problem by

pushing information further back along the trajectory

of the agent with each update to V . An algorithm
incorporating eligibility traces can be seen as a mix-

ture of “pure” TD, as described above, and 7Monte-
Carlo estimation of the long term utility. In particu-

lar, the λ parameter to the TD(λ) family of algorithms

 T Temporal Difference Learning

speci�es where in the range from pure TD, when λ = ,
to pure Monte-Carlo, when λ = , a particular algo-
rithm falls.

Eligibility traces are implemented by keeping a sec-

ond function of the state space, є : S → R.�e є func-
tion represents how much an experience now should

a�ect the value of a state the agent has previously passed

through.When the agent performs anupdate, the values

of all states are changed according to their eligibility.

�e standard de�nition of the eligibility of a par-

ticular state uses an exponential decay over time, but

this is not a strict requirement and other de�nitions

of eligibility could be used. In addition, each time a

state is visited, its eligibility increases. Formally, on each

time step,

∀s∈S є(s)← γλє(s) and then,

є(st)← є(st) +

�is eligibility is used to update all state values by

�rst calculating the delta for the current state as above,

but then applying it to all states according to the eligi-

bility values:

∆t = α(rt + γV(st+) −V(st))
∀s∈S V(s)← V(s) + ∆tє(s)

Convergence

TD value function estimation has been shown to con-

verge under many conditions, but there are also well

known examples where it does not converge at all, or

does not converge to the correct long term reward (Tsit-

siklis & Van Roy,).

In particular, temporal di�erencing has been shown

to converge to the correct value of the long term dis-

counted reward if,

● �e world is �nite.

● �e world state representation is Markovian.

● �e rewards are bounded.

● �e representation of the V function has no con-
straints (e.g., a tabular representation with an entry

for each state).

● �e learning rate, α, is reduced according to the
Robbins-Monro conditions: ∑∞t= αt = ∞, and
∑∞t= αt <∞.

Much of the further work in TD learning since its

invention has been in �nding algorithms that provably

converge in more general cases.

�ese convergence results require that a Marko-

vian representation of state be available to the agent.

�ere has been research into how to acquire such a

representation from a sequence of observations. �e

approach of the Temporal Di�erencing community has

been to use TD-Networks (Sutton & Tanner,).

Control of Systems

Temporal Di�erence Learning is used to estimate the

long term reward of a pattern of behavior.�is estima-

tion of utility can then be used to improve that behav-

ior, allowing TD to help solve a reinforcement learning

problem.�ere are two common ways to achieve this:

An Actor-Critic setup uses value function estimation as
one component of a larger system, and the Q-learning
and SARSA techniques can be viewed as slight modi�-
cations of the TD method which allow the extraction

of control information more directly from the value

function.

First we will formalise the concept of a pattern of

behavior. In the preceding text it was le� deliberately

vague as TD can be applied tomultiple de�nitions. Here

we will focus on discrete action spaces.

Assume there is a set of allowed actions for the

agent,A. We de�ne aMarkov policy as a function from
world states to actions, π : S → A. We also de�ne a
stochastic or mixed Markov policy as a function from
world states to probability distributions over actions,

π : S → A → [,]. �e goal of the control algo-
rithm is to �nd an optimal policy: a policy that max-

imises long term reward in each state. (When function

approximation is used (see section “Approximation”),

this de�nition of an optimal policy no longer su�ces.

One can then either move to average reward if the sys-

tem is ergodic, or give a, possibly implicit, weighting

function specifying the relative importance of di�erent

states.)

Actor-Critic Control Systems Actor-Critic control is

closely related to mixed policy iteration from Markov
Decision Process theory.�ere are two parts to an actor-

critic system; the actor holds the current policy for the
agent, and the critic evaluates the actor and suggests
improvements to the current policy.

Temporal Difference Learning T

T

�ere are a number of approaches that fall under this

model. One early approach stores a preference value for

each world state and action pair, p : S × A → R.�e
actor then uses a stochastic policy based on the Gibbs

so�max function applied to the preferences:

π(s, a) = ep(s,a)

∑x∈A ep(s,x)

�e critic then uses TD to estimate the long term

utility of the current policy, and also uses the TD update

to change the preference values.When the agent is posi-

tively surprised it increases the preference for an action,

when negatively surprised it decreases the preference

for an action. �e size of the increase or decrease is

modulated by a parameter, β:

p(st , at)← p(st , at) + β∆t

Convergence of this algorithm to an optimal policy

is not guaranteed.

A second approach requires the agent to have an

accurate model of its environment. In this approach the

critic uses TD to learn a value function for the current

behavior.�e actor uses model based forward search to

choose an action likely to lead to a state with a high

expected long term utility. �is approach is common

in two player, zero sum, alternating move games such

as Chess or Checkers where the forward search is a

deterministic game tree search.

More modern approaches which guarantee conver-

gence are related to policy gradient approaches to rein-
forcement learning (Castro &Meir,).�ese store a

stochastic policy in addition to the value function, and

then use the TD updates to estimate the gradient of the

long term utility with respect to that policy.�is allows

the critic to adjust the policy in the direction of the neg-

ative gradient with respect to long term value, and thus

improve the policy.

Other Value Functions �e second class of approaches

to using TD for control relies upon extending the

value function to estimate the value of multiple actions.

Instead of V we use a state-action value function, Q :

S × A → R.�e update rule for this function is min-
imally modi�ed from the TD update de�ned for V
above.

Once these state-action value functions have been

estimated, a policy can be selected by choosing for each

state the action that maximizes the state-action value

function, and then adding some exploration.

In order for this extended value function to be

learned, the agentmust explore each action in each state

in�nitely o�en. Traditionally this has been assured by

making the agent select random actions occasionally,

even when the agent believes that action would be sub-

optimal. In general the choice of when to explore using

a sub-optimal action, the exploration/exploitation trade-
o�, is di�cult to optimize. More recent approaches
to optimizing the exploration/exploitation trade-o� in

reinforcement learning estimate the variance of the

value function to decide where they need to explore

(Auer & Ortner,).

�e requirement for exploration leads to two di�er-

ent value functions that could be estimated.�e agent

could estimate the value function of the pattern of

behavior currently being executed, which includes the

exploration.Or, the agent could estimate the value func-

tion of the current best policy, excluding the exploration

currently in use.�ese are referred to as on-policy and
of f-policymethods respectively.

Q-Learning is an o�-policy update rule:

Q(st , at)← Q(st , at) + α(rt + γV(st+) −Q(st , at))

where V(st+) = max
a∈A

Q(st+, a)

SARSA is an on-policy update rule:

Q(st , at)← Q(st , at) + α(rt + γQ(st+, at+) −Q(st , at))

�en for both:

π(s) = argmaxa∈AQ(s, a)

and some exploration.

As can be seen above, the update rules for SARSA

and Q-learning are very similar – they only di�er in the

value used for the resulting state. Q-learning uses the

value of the best action, whereas SARSA uses the value

of the action that will actually be chosen.

Q-Learning converges to the best policy to use once

you have converged and can stop exploring. SARSA

converges to the best policy to use if you want to keep

exploring as you follow the policy (Lagoudakis & Parr,

).

 T Temporal Difference Learning

Approximation

A major problem with many state based algorithms,

including TD learning, is the so-called 7curse of
dimensionality. In a factored state representation, the

number of states increases exponentially with the num-

ber of factors. �is explosion of states produces two

problems: it can be di�cult to store a function over the

state space, and even if the function can be stored, so

much data is required to learn the function that learning

is impractical.

�e standard response to the curse of dimensional-

ity is to apply function approximation to any function

of state.�is directly attacks the representation size, and

also allows information from one state to a�ect another

“similar” state allowing generalisation and learning.

While the addition of function approximation can

signi�cantly speed up learning, it also causes di�culty

with convergence. Some types of function approxima-

tion will stop TD from converging at all.�e resulting

algorithms can either oscillate forever or approach in�-

nite values. Other forms of approximation cause TD to

converge to a estimate of long term rewardwhich is only

weakly related to the true long term reward (Baird, ;

Boyan & Moore, ; Gordon,).

Most styles of function approximation used in con-

junction with TD learning are parameterized, and the

output is di�erentiablewith respect to those parameters.

Formally we haveV : Θ → S → R, where Θ is the space
of possible parameter vectors, so that Vθ(s) is the value
of V at state s with parameter vector θ, and ∇Vθ(s) is
the gradient of V with respect to θ at s.�e TD update
then becomes:

∆t = α (rt + γVθ(st+) −Vθ(st))
θ ← θ + ∆t∇Vθ(st)

We describe three styles of approximation: state

abstraction, linear approximation, and smooth general

approximators (e.g., neural networks).

State abstraction refers to grouping states together

and therea�er using the groups, or abstract states,
instead of individual states.�is can signi�cantly reduce

the amount of storage required for the value function as

only values for abstract states need to be stored. It also

preserves convergence results. A slightlymore advanced

form of state abstraction is the tile coding or CMAC

(Albus,). In this type of function approximation,

the state representation is assumed to be factored, i.e.,

each state is represented by a vector of values rather

than a single scalar value. �e CMAC represents the

value function as the sum of separate value functions;

one for each dimension of the state. �ose individual

dimensions can each have their own state abstraction.

Again, TD has been shown to converge when used with

a CMAC value function representation.

In general, any form of function approximation that

forms a contraction mapping will converge when used

with TD (see the entry on 7Markov Decision Pro-
cesses). Linear interpolation is a contraction mapping,

and hence converges. Linear extrapolation is not a con-

tractionmapping and care needs to be takenwhen using

general linear functions with TD. It has been shown that

general linear function approximation used with TD

will converge, but only when complete trajectories are

followed through the state space (Tsitsiklis & Van Roy,

).

It is not uncommon to use various types of

back-propagation neural nets with TD, e.g., Tesauro’s

TD-gammon. More recently, TD algorithms have been

proposed that converge for arbitrary di�erentiable func-

tion approximators (Maei et al., ; Papavassiliou and

Russell,). �ese use more complex update tech-

niques than those shown above.

Related Differencing Systems

TD learning was originally developed for use in envi-

ronments where accurate models were unavailable. It

has a close relationship with the theory ofMarkovDeci-

sion Processes where an accurate model is assumed.

Using the notation V(st) ↝ V(st+) for a TD-style
update that moves the value at V(st) closer to the value
at V(st+) (including any discounting and intermediate
rewards), we can now consider many possible updates.

As noted above, one way of applying TD to control

is to use forward search. Forward search can be imple-

mented using dynamic programming, and the result is

closely related to TD. Let state c(s) be the best child of
state s in the forward search. We can then consider an
update,V(s)↝ V(c(s)). If we let l(s) be the best leaf in
the forward search, we could then consider an update

V(s) ↝ V(l(s)). Neither of these updates consider
the world a�er an actual state transition, only simu-

lated state transitions, and so neither is technically a TD

update.

Temporal Difference Learning T

T

Some work has combined both simulated time steps

and real time steps.�e TD-Leaf learning algorithm for

alternative move games uses the V(l(st)) ↝ V(l(st+))
update rule (Baxter et al.,).

An important issue to consider when using forward

search is whether the state distribution where learning

takes place is di�erent to the state distribution where

the value function is used. In particular, if updates only

occur for states the agent chooses to visit, but the search

is using estimates for states that the agent is not visit-

ing, then TDmay give poor results. To combat this, the

TreeStrap(α-β) algorithm for alternating move games
updates all nodes in the forward search tree to be closer

to the bound information provided by their children

(Veness et al.,).

Biological Links

�ere are strong relationships between TD learning

and the Rescorla–Wagner model of Pavlovian condi-

tioning. �e Rescorla–Wagner model is one way to

formalize the idea that learning occurs when the co-

occurence of two events is surprising rather than every

time a co-occurence is experienced.�e ∆t value cal-

culated in the TD update can be viewed as a measure

of surprise.�ese �ndings appear to have a neural sub-

strate in that dopamine cells react to reward when it

is unexpected and to the predictor when the reward is

expected (Schultz et al., ; Sutton & Barto,).

Cross References
7Curse of Dimensionality
7Markov Decision Processes
7Monte-Carlo Simulation
7Reinforcement Learning

Recommended Reading
Albus, J. S. (). Brains, behavior, and robotics. Peterborough:

BYTE, ISBN: .

Auer, P., & Ortner, R. (). Logarithmic online regret bounds for

undiscounted reinforcement learning. Neural and Information
Processing Systems (NIPS).

Baird, L. C. (). Residual algorithms: reinforcement learning

with function approximation. In A. Prieditis & S. Russell

(Eds.), Machine Learning: Proceedings of the Twelfth Interna-
tional Conference (ICML) (pp. –). San Mateo: Morgan
Kaufmann.

Baxter, J., Tridgell, A., & Weaver, L. (). KnightCap: a chess pro-

gram that learns by combining TD(lambda) with game-tree

search. In J. W. Shavlik (Ed.), Proceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML ’) (pp. –
). San Francisco: Morgan Kaufmann.

Bellman, R. E. (). Dynamic programming. Princeton: Princeton
University Press.

Bertsekas, D. P., & Tsitsiklis, J. (). Neuro-dynamic program-

ming. Belmont: Athena Scientific.

Boyan, J. A., & Moore, A. W. (). Generalization in reinforce-

ment learning: safely approximating the value function. In

G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in
neural information processing systems (Vol.). Cambridge: MIT
Press.

Di Castro, D., & Meir, R. (). A convergent online single

time scale actor critic algorithm. Journal of Machine Learn-
ing Research, , –. http://jmlr.csail.mit.edu/papers/v/
dicastroa.html

Gordon, G. F. (). Stable function approximation in dynamic
programming (Technical report CMU-CS--). School of
Computer Science, Carnegie Mellon University.

Lagoudakis, M. G., & Parr, R. (). Least-squares policy iter-

ation. Journal of Machine Learning Research , –.
http://www.cs.duke.edu/~parr/jmlr.pdf

Maei, H. R. et al. (). Convergent temporal-difference learn-

ing with arbitrary smooth function approximation. Neural
and Information Processing Systems (NIPS), pp. –.
http://books.nips.cc/papers/files/nips/NIPS_.pdf

Mahadevan, S. (). Average reward reinforcement learning: foun-

dations, algorithms, and empirical results. Machine Learning,
, –, doi: ./A:.

Papavassiliou, V. A., & Russell, S. (). Convergence of

reinforcement learning with general function approxima-

tors. International Joint Conference on Artificial Intelligence,
Stockholm.

Puterman, M. L. ().Markov decision processes: discrete stochastic
dynamic programming. Wiley series in probability and math-
ematical statistics. Applied probability and statistics section.
New York: Wiley.

Samuel, A. L. (). Some studies in machine learning using the

game of checkers. IBM Journal on Research and Development,
(), –.

Schultz, W., Dayan, P., & Read Montague, P. (). A neural sub-

strate of prediction and reward. Science, (), –,
doi: ./science....

Sutton, R., & Tanner, B. (). Temporal difference networks.

Neural and Information Processing Systems (NIPS).
Sutton, R. S. (). Temporal credit assignment in reinforce-

ment learning. Ph.D. thesis, University of Massachusetts,

Amherst.

Sutton, R. S. (). Learning to predict by the method of temporal

differences.Machine learning, , –, doi: ./BF.
Sutton, R. S., & Barto, A. G. (). Reinforcement learning: an

introduction. Cambridge: MIT Press.
Sutton, R. S., & Barto, A. G. (). Time-derivative models of Pavlo-

vian reinforcement. In M. Gabriel & J. Moore (Eds.), Learn-
ing and computational neuroscience: foundations of adaptive
networks (pp. –). Cambridge: MIT Press.

Tesauro, G. (). Temporal difference learning and TD-gammon.

Communications of the ACM, (), –.
Tsitsiklis, J. N., & Van Roy, B. (). An analysis of temporal-

difference learning with function approximation. IEEE Trans-
actions on Automatic Control, (), –.

http://jmlr.csail.mit.edu/papers/v11/dicastro10a.html

 T Test Data

Veness, J., et al. (). Bootstrapping from game tree search. Neural
and Information Processing Systems (NIPS).

Watkins, C. J. C. H. (). Learning with delayed rewards.
Ph.D. thesis, Cambridge University Psychology Department,

Cambridge.

Test Data

Synonyms
Evaluation data; Test instances

Definition
Test data are data to which a 7model is applied for the
purposes of7evaluation.When7holdout evaluation is
performed, test data are also called out-of-sample data,
holdout data, or the holdout set.

Cross References
7Test Set

Test Instances

7Test Data

Test Set

Synonyms
Evaluation data; Evaluation set; Test data

Definition
A test set is a 7data set containing data that are used
for 7evaluation by a 7learning system. Where the
7training set and the test set contain disjoint sets of
data, the test set is known as a7holdout set.

Cross References
7Data Set

Test Time

A learning algorithm is typically applied at two dis-

tinct times. Test time refers to the time when an algo-

rithm is applying a learned model to make predictions.

7Training time refers to the time when an algorithm is
learning a model from 7training data. 7Lazy learning
usually blurs the distinction between these two times,

deferring most learning until test time.

Test-Based Coevolution

Synonyms
Competitive coevolution

Definition
A coevolutionary system constructed to simultaneously

develop solutions to a problem and challenging tests for

candidate solutions. Here, individuals represent com-

plete solutions or their tests.�ough not precisely the

same as competitive coevolution, there is a signi�cant
overlap.

Text Clustering

7Document Clustering

Text Learning

7Text Mining

Text Mining

DunjaMladenić

Jožef Stefan Insitute, Ljubljana, Slovenia

Synonyms
Analysis of text; Data mining on text; Text learning

Definition
�e term text mining is used analogous to 7data min-
ing when the data is text. As there are some data speci-

�cities when handling text compared to handling data

from databases, text mining has a number of speci�c

methods and approaches. Some of these are extensions

of data mining and machine learning methods, while

other are rather text-speci�c. Text mining approaches

Text Mining for Advertising T

T

combine methods from several related �elds, including

machine learning, datamining,7information retrieval,
7natural language processing, 7statistical learning,
and the Semantic Web. Basic text mining approaches

are also extended to enable handling di�erent natural

languages (7cross-lingual text mining) and are com-
bined with methods for handling di�erent data types,

such as links and graphs (7link mining and link dis-
covery,7graphmining), images and video (multimedia
mining).

Cross References
7Cross-Lingual Text Mining
7Feature Construction In Text Mining
7Feature Selection In Text Mining
7Semi-Supervised Text Processing
7Text Mining For Advertising
7Text Mining For News and Blogs Analysis
7Text Mining for the Semantic Web
7Text Mining For Spam Filtering
7Text Visualization

Text Mining for Advertising

Massimiliano Ciaramita

Yahoo! Research Barcelona,

Barcelona, Spain

Synonyms
Content match; Contextual advertising; Sponsored

search; Web advertising

Definition
Text mining for advertising is an area of investigation

and application of text mining and machine learning

methods to problems such as Web advertising; e.g.,

automatically selecting the most appropriate ads with

respect to a Web page, or query submitted to a search

engine. Formally, the task can be framed as a rank-

ing or matching problem where the unit of retrieval,

rather than a Web page, is an advertisement. Most of

the time ads have simple and homogeneous prede-

�ned textual structures, however, formats can vary and

include audio and visual information. Advertising is

a challenging problem due to several factors such as

the economic nature of the transactions involved, engi-

neering issues concerning scalability, and the inherent

complexity of modeling the linguistic and multimedia

content of advertisements.

Motivation and Background
�e role of advertising in supporting and shaping the

development of the Web has substantially increased

over the past years. According to the Interactive Adver-

tisingBureau (IAB), Internet advertising revenues in the

USA totaled almost $ billion in the �rst months of

, a .% increase over the same period in ,

the last in a series of consecutive growths. Search, i.e.,

ads placed by Internet companies in Web pages or in

response to speci�c queries, is the largest source of

revenue, accounting for % of total revenue (Inter-

net Advertising Bureau,). �e most important

categories of Web advertising are keyword match, also
known as sponsored search or paid listing, which places
ads in the search results for speci�c queries (see Fain &

Pedersen, for a brief history of sponsored search),

and content match, also called content-targeted advertis-
ing or contextual advertising, which places ads in Web
pages based on the page content. Figure shows an

example of sponsored search and ads are listed on the

right side of the page.

Currently, most of the focus in Web advertising

involves sponsored search, because matching based

on keywords is a well-understood problem. Content

match has greater potential for content providers, pub-

lishers, and advertisers, because users spend most of

their time on the Web on content pages as opposed to

search engine result pages. However, content match is

a harder problem than sponsored search. Matching ads

with query terms is to a certain degree straightforward,

because advertisers themselves choose the keywords

that characterize their ads that are matched against

keywords chosen by users while searching. In con-

textual advertising, matching is determined automati-

cally by the page content, which complicates the task

considerably.

Advertising touches challenging problems concern-

ing how ads should be analyzed, and how the accurately

and e�ciently systems select the best ads.�is area of

research is developing rapidly in information retrieval.

 T Text Mining for Advertising

Text Mining for Advertising. Figure . Ads ranked next to a search results page for the query “Spain holidays”

How best to model the structure and components of

ads, and the interaction between the ads and the con-

texts in that they appear are open problems. Informa-

tion retrieval systems are designed to capture relevance,

which is a basic concept in advertising as well. Elements

of an ad such as text and images tend to be mutually

relevant, and o�en (in print media for example) ads are

placed in contexts that match a certain product at a top-

ical level; e.g., an ad for sneakers placed on a sport news

page. However, topical relevance is only one the basic

parameters which determine a successful advertisement

placement. For example, an ad for sneakers might be

appropriate and e�ective on a page comparing MP

players, because they may share a target audience (e.g.,

joggers) although they arguably refer to di�erent top-

ics, and it is possible they share no common vocabulary.

Conversely, there may be ads that are topically similar

to a Web page, but cannot be placed there because they

are inappropriate. An example might be placing ads for

a product in the page of a competitor.

�e language of advertising is rich and sophisti-

cated and can rely considerably on complex inferential

processes. A picture of a sunset in an ad for life insur-

ance carries a di�erent implication than a picture of

a sunset in an ad for beer. Layout and visual content

are designed to elicit inferences, possibly hinging on

cultural elements; e.g., the age, appearance, and gen-

der of people in an ad a�ect its meaning. Adequate

automatic modeling will likely involve, to a substantial

degree, understanding the language of advertisement

and the inferential processes involved (Vestergaard &

Schroeder,). Today this seems beyond what tra-

ditional information retrieval systems are designed to

cope with. In addition, the global context can be cap-

tured only partially by modeling the text alone. As the

Web evolves into an immense infrastructure for social

interaction and multimedia information sharing the

need for modeling structured “content” becomes more

and more crucial.�is applies to information retrieval

and speci�cally to advertising. For this reason, the prob-

lem of content match is of particular interest and opens

new problems and opportunities for interdisciplinary

research.

Today, contextual advertising, the most interesting

sub-task from a mining perspective, consists mostly in

selecting ads from a pool to match the textual con-

tent of a particular Web page. Ads provide a limited

amount of text: typically a few keywords, a title, and

brief description.�e ad-placing system needs to iden-

tify relevant ads, from huge ad inventories, quickly

and e�ciently based on this very limited amount of

information. Current approaches have focused on aug-

menting the representation of the page to increase the

chance of a match (Ribeiro-Neto, Cristo, Golgher, and

de Moura,), or by using machine learning to �nd

complex ranking functions (Lacerda et al.,), or

Text Mining for Advertising T

T

by reducing the problem of content match to that of

sponsored search by extracting keywords from theWeb

page (Yih et al.,). All these approaches are based

on methods that quantify the similarity between the ad

and the target page on the basis of traditional informa-

tion retrieval notions such as cosine similarity and tf.idf
features.�e relevance of an ad for a page depends on

the number of overlapping words, weighted individu-

ally and independently as a function of their individual

distributional properties in the collection of documents

or ads.

Structure of Learning Problem
�e typical elements of an advertisement are a set of

keywords, a title, a textual description and a hyperlink
pointing to page, the landing page, relative to a product
or service, etc. In addition, an ad has an advertiser id and
can be part of a campaign, i.e., a subset of all the ads with
same advertiser id.�is latter information can be used,

for example, to impose constraints on the number of ads

to display relative to the campaign or advertiser. While

this is possibly the most common layout, it is important

to realize that ads structure can vary signi�cantly and

include relevant audio and visual content.

In general, the learning problem for an ad-placing

system can be formalized as a ranking task. Let A be a
set of ads, P the set of possible pages, and Q the set of
possible queries. In keyword match, the goal is to �nd

a function F : A ×Q → R; e.g., a function that counts
the number of individual common terms or n-grams of
such terms. In content match, the objective is to �nd a

function F : A × P → R. �e keyword match prob-
lem is to a certain extent straightforward and amounts

to matching small set of terms de�ned manually by

both the user and the advertiser.�e contentmatch task

shares with the former task the peculiarities of the units

of retrieval (the ads), but introduces new and interest-

ing issues for text mining and learning because of the

more complex conditioning environment, theWeb page

content, which needs to modeled automatically.

In general terms, an ad can be represented as a fea-

ture vector x = Φ(ai, pj) such that ai ∈ A, pj ∈ P ,
and given a d-dimensional feature space X ⊂ Rd,

Φ :A×P→X . In the traditional machine learning set-
ting, one introduces a weight vector α ∈ Rd which

quanti�es each feature’s contribution individually.�e

vector’s weights can be learned from manually edited

rankings (Lacerda et al., ; Ribeiro-Neto et al.,)

or from click-through data as in search results optimiza-

tion (Joachims,). In the case of a linear classi�er the

score of an ad-target page pair xi would be:

F(x; α) =
d

∑
s=

αsxs. ()

Several methods can be used to learn similar or related

models such as perceptron, SVM, boosting, etc. Con-

straints on the number of advertisers or campaigns

could be easily implemented as post-ranking �lters on

the top of the ranked list of ads or included in a suitable

objective function.

A basic model for ranking ads can be de�ned in

the vector space model for information retrieval, using

a ranking function based on cosine similarity, where

ads and target pages are represented as vectors of terms

weighted by �xed schemes such as tf.idf. If only one fea-
ture is used, the cosine based on tf.idf between the ad
and the page, a standard vector space model baseline is

obtained, which is at the base of the ad-placing rank-

ing functions variants proposed by (Ribeiro-Neto et al.,

) Recent work has shown that machine learning-

based models are considerably more accurate than such

baselines. However, as in document retrieval, simple

feature maps which include mostly coarse-grained sta-

tistical properties of the ad-page pairs, such as t�df-
based cosine, are the most desirable for e�ciency and
bias reasons. Properties of the di�erent components of

the ad can be used and weighted in di�erent ways, and

so� or hard constraints introduced to model the pres-

ence of the ads keyword in the Web page.�e design

space for ad-place systems is vast and still little explored.

All systems presented so far in the literaturemake use of

manually annotated data for training and/or evaluating

a model.

Structure of Learning Systems
Web advertising presents peculiar engineering and

modeling challenges and has motivated research in dif-

ferent areas. Systems need to be able to deal in real time

with huge volumes of data and transactions involving

billions of ads, pages, and queries. Hence several engi-

neering constraints need to be taken into account; e�-

ciency and computational costs are crucial factors in the

 T Text Mining for Advertising

choice of matching algorithms (�e Yahoo! Research

Team,). Ad-placing systems might require new

global architecture design; e.g., Attardi et al. ()

proposed an architecture for information retrieval sys-

tems that need to handle large-scale targeted advertising

based on an information �ltering model.�e ads that

appear on Web pages or search results pages will ulti-

mately be determined taking into account the expected

revenues and the price of the ads. Modeling the microe-

conomics factors of such processes is a complex area of

investigation in itself (Feng et al.,).

Another crucial issue is the evaluation of the

e�ectiveness of the ad-placing systems. Studies have

emphasized the impact of the quality of the match-

ing on the success of the ad in terms of click-through

rates (Gallagher et al., ; Sherman & Deighton,

). Although 7click-through rates (CTRs) provide
a traditional measure of e�ectiveness, it has been found

that ads can be e�ective even when they do not solicit

any conscious response and that the e�ectiveness of the

ad is mainly determined by the level of congruency

between the ad and the context inwhich it appears (Yoo,

).

Keyword Extraction Approaches

Since the query-based ranking problem is better under-

stood than contextual advertising, oneway of approach-

ing the latter would be to represent the content page as

a set of keywords and then ranking the ads based on the

keywords extracted from the content page. Carrasco et

al. () proposed clustering of bi-partite advertiser-

keyword graphs for keyword suggestion and identify-

ing groups of advertisers. Yih, Goodman, & Carvalho

() proposed a system for keyword extraction from

content pages. �e goal is to determine which key-

words, or key phrases, are more relevant in a Web

page. Yih et al. develop a supervised approach to this

task from a corpus of pages where keywords have been

manually identi�ed. �ey show that a model learned

with 7logistic regression outperforms traditional vec-
tor models based on �xed tf.idf weights.�e most use-
ful features to identify good keywords e�ciently are,

in this case, term frequency and document frequency

of the candidate keywords, and particularly the fre-

quency of the candidate keyword in a search engine

query log. Other useful features include the similarity

of the candidate with the page’s URL and the length, in

number of words, of the candidate keyword. In terms

of feature representation thus, they propose a feature

map Φ : A → Q, which represent a Web page as a
set of keywords.�e accuracy of the best learned sys-

tem is .%, in terms of the top predicted keyword

being in the set of manually generated keywords for a

page, against .% of the simpler tf.idf based model.
While this approach is simple to apply, it remains to

be seen how accurate it is at identifying good ads for a

page. It identi�es potentially useful sources of informa-

tion in automatically-generated keywords. An interest-

ing related �nding concerning keywords is that longer

keywords, about four words long, lead to increased

click-through rates (OneUpWeb,).

The Vocabulary Impedance Problem

(Ribeiro-Neto et al.,) introduced an approach to

content match which focuses on the vocabulary mis-

match problem.�ey notice that there tends to be not

enough overlap in the text of the ad and the target page

to guarantee good accuracy; they call this the vocab-
ulary impedance problem. To overcome this limitation
they propose to generate an augmented representation

of the target page by means of a Bayesian model pre-

viously applied to document retrieval (Ribeiro-Neto &

Muntz,). �e expanded vector representation of

the target page includes a signi�cant number of addi-

tional words which can potentially match some of the

terms in the ad.�ey �nd that such a model improves

over a standard vector space model baseline, evaluated

by means of -point average precision on a test bed

of Web pages, from . to .. One possible

shortcoming of such an approach is that generating the

augmented representation involves crawling a signi�-

cant number of additional related pages. It has also been

argued (Yih et al.,) that this model complicates

pricing of the ads because the keywords chosen by the

advertisers might not be present in the content of the

matching page.

Learning with Genetic Programming

Lacerda et al. () proposed to use machine learn-

ing to �nd good ranking functions for contextual

advertising. �ey use the same data-set described

in Ribeiro-Neto et al. (), but use part of the data

for training a model and part for evaluation purposes.

�ey use a genetic programming algorithm to select a

Text Mining for Advertising T

T

ranking function which maximizes the average preci-

sion on the training data.�e resulting ranking function

is a nonlinear combination of simple components based

on the frequency of ad terms in the target page, doc-

ument frequencies, document length, and size of the

collections. �us, in terms of the feature representa-

tion de�ned earlier, they choose a feature map which

extracts traditional features from the ad-page pair, but

then apply then genetic programmingmethods to select

complex nonlinear combinations of such features that

maximize a �tness function based on average precision.

Lacerda et al. () �nd that the ranking functions

selected in this way are considerablymore accurate than

the baseline proposed in Ribeiro-Neto et al. (); in

particular, the best function selected by genetic pro-

gramming achieves an average precision at position

three of ., against . of the baseline.

Semantic Approaches to Contextual Advertising

�e most common approaches to contextual adver-

tising are based on matching terms between the ad

and the content page. Broder, Fontoura, Josifovski, and

Riedel () notice that this approach (which they call

the “syntactic—” model), can be improved by adopt-

ing a matching model which additionally takes into

account topical proximity; i.e., a “semantic” model. In

their model the target page and the ad are classi�ed

with respect to a taxonomy of topics.�e similarity of

ad and target page estimated by means of the taxon-

omy provides an additional factor in the ads ranking

function.�e taxonomy,which has beenmanually built,

contains approximately , nodes, where each node

represents a set of queries. �e concatenation of all

queries at each node is used as a meta-document, ads

and target pages are associated with a node in the tax-

onomy using a nearest neighbor classi�er and tf .idf
weighting. �e ultimate score of an ad ai for a page
p is a weighted sum of the taxonomy similarity score
and the similarity of ai and p based on standard syn-
tactic measures (vector cosine). On evaluation, Broder

et al. () report a % improvement for mid-range

recalls of the syntactic-semantic model over the pure

syntactic one.

Cross References
7Boosting
7Genetic Programming

7Information Retrieval
7Perceptron
7SVM
7TF–IDF
7Vector Space Model

Recommended Reading
Attardi, G., Esuli, A., & Simi, M. (). Best bets, thousands of

queries in search of a client. In Proceedings of the th inter-
national conference on World Wide Web, alternate track papers
& posters. New York: ACM Press.

Broder, A., Fontoura, M., Josifovski, V., & Riedel, L. (). A

semantic approach to contextual advertising. In Proceedings
of the th annual international ACM SIGIR conference on
research and development in information retrieval. New York:
ACM Press.

Carrasco, J. J., Fain, D., Lang, K., & Zhukov, L. (). Clustering of

bipartite advertiser-keyword graph. In Workshop on clustering
large datasets, IEEE conference on data mining. New York: IEEE
Computer Society Press.

Fain, D., & Pedersen, J. (). Sponsored search: A brief history. In

Proceedings of the nd workshop on sponsored search auctions.
Web Publications.

Feng, J., Bhargava, H., & Pennock, D. (). Implementing spon-

sored search in Web search engines: Computational evalua-

tion of alternative mechanisms. Informs Journal on Computing
(forthcoming).

Gallagher, K., Foster, D., & Parsons, J. (). The medium is not

the message: Advertising effectiveness and content evaluation

in print and on the Web. Journal of Advertising Research, (),
–.

Internet Advertising Bureau (IAB). (). IAB Internet Advertising
Revenue Report. http://www.iab.net/resources/adrevenue/pdf/
IAB_PwC%Q.pdf

Joachims, T. (). Optimizing search engines using clickthrough

data. In Proceedings of the ACM conference on knowledge discov-
ery and data mining (KDD). New York: ACM Press.

Lacerda, A., Cristo, M., Gonçalves, M. A., Fan, W., Ziviani, N., &

Ribeiro-Neto, B. (). Learning to advertise. In Proceed-
ings of the th annual international ACM SIGIR conference
on research and development in information retrieval (pp. –
). New York: ACM Press.

OneUpWeb (). How keyword length affects conversion
rates. http://www.oneupweb.com/landing/keywordstudy_lan

ding.htm.

Ribeiro-Neto, B., Cristo, M., Golgher, P. B., & de Moura, E. S.

(). Impedance coupling in content-targeted advertising. In

Proceedings of the th annual international ACM SIGIR confer-
ence on research and development in information retrieval (pp.
–). New York: ACM Press.

Ribeiro-Neto, B., & Muntz, R. (). A belief network model for

IR. In Proceedings of the th annual international ACM SIGIR
conference on research and development in information retrieval
(pp. –). New York: ACM Press.

http://www.oneupweb.com/landing/keywordstudy_landing.htm.

 T Text Mining for News and Blogs Analysis

Sherman, L., & Deighton, J. (). Banner advertising: Measuring

effectiveness and optimizing placement. Journal of Interactive
Marketing, (), –.

The Yahoo! Research Team. (). Content, metadata, and behav-

ioral information: Directions for Yahoo! Research. IEEE Data
Engineering Bulletin, (), –.

Vestergaard, T., & Schroeder, T. (). The language of advertising.
Oxford: Blackwell.

Yih, W., Goodman, J., & Carvalho, V. R. (). Finding advertising

keywords on web pages. In Proceedings of the th international
conference on World Wide Web (pp. –). New York: ACM
Press.

Yoo, C. Y. (). Preattentive processing of web advertising. PhD
thesis, University of Texas at Austin.

Text Mining for News and Blogs
Analysis

Bettina Berendt

Katholieke Universiteit Leuven, Heverlee, Belgium

Definition
News and blogs are two types ofmedia that generate and

o�er informational resources. News is any information
whose revelation is anticipated to have an intellectual

or actionable impact on the recipient. �e dominant

type of news in text analysis is that pertaining to cur-

rent events. Originally referring to print-based news

from press agencies or end-user news providers (like

individual newspapers or serials), it now increasingly

refers to Web-based news in the online editions of the

same providers or in online-only news media.�e term

is generally understood to denote only the reports in

news media, not opinion or comment pieces. A blog is
a (more or less) frequently updated publication on the

Web, sorted in (usually reverse) chronological order of

the constituent blog posts.�e content may re�ect any
interest including personal, journalistic, or corporate.

Blogs were originally called weblogs. To avoid confu-

sion with web server log �les that are also known by

this term, the abbreviation “blog”was coined and is now

commonly used.

News and blogs consist of textual and (in some

cases) pictorial content, and, when Web-based, may

contain additional content in any other format (e.g.,

video, audio) and hyperlinks. �ey are indexed by

time and structured into smaller units: news media

into articles, blogs into blog posts. In most news and

blogs, textual content dominates.�erefore, text anal-

ysis is the most o�en applied form of knowledge

discovery. �is comprises tasks and methods from

data/text mining, 7information retrieval, and related
�elds. In accordance with the increasing convergence

of these �elds, this article refers to all of them as 7text
mining.

Motivation and Background
News and blogs are today’s most common sources

for learning about current events and also, in the

case of blogs, for uttering opinions about current

events. In addition, they may deal with topics of

more long-term interest. Both re�ect and form soci-

eties’, groups’ and individuals’ views of the world, fast

or even instantaneous with the events triggering the

reporting.

However, there are di�erences between these two

types of media regarding authoring, content, and form.

News is generally authored by people with journalistic

training who abide by journalistic standards regarding

the style and language of reporting. Topics and ways of

reporting are circumscribed by general societal consen-

sus and the policies of the news provider. In contrast,

everybody with Internet access can start a blog, and

there are no restrictions on content and style (beyond

the applicable types of censorship).�us, blogs o�er end

users a wider range of topics and views on them. On the

one hand, this implies that journalistic blogs, which cor-

respondmost closely to news, are only one type of blogs.

Other frequent types are diary-like personal blogs, cor-

porate blogs for public relations, and blogs focusing on

special-interest topics. On the other hand, their com-

parative lack of restrictions has helped to establish blogs

as an important alternative source of information, as a

form of grassroots journalism that may give rise to a

counterpublic. An example are the warblogs published
during the early years of the Iraq War (+) by inde-
pendent sources (o�en civilian individuals) both in the

West and in the Middle East.

�ese application characteristics lead to various lin-

guistic and computational challenges for text-mining

analyses of news and blogs:

● Indexing, taxonomic categorization, partial redun-
dancy, and data streams: News is indexed by time

Text Mining for News and Blogs Analysis T

T

and by source (news agency or provider). In a mul-

tisource corpus, many articles published at about

the same time (in the same or in other languages)

describe the same events. Over time, a story may

develop in the articles. Such multiple reporting and

temporal structures are also observed for popular

topics in blogs.

● Language and meaning: News is written in clear,
correct, “objective,” and somewhat schematized lan-

guage. Usually, the start of a news article summarizes

the whole article (feeds are a partial analogue of this

in blogs). Information from external sources such as

press agencies is generally reused rather than refer-

enced. In sum, newsmakes fewer assumptions about

the reader’s background and context knowledge than

many other texts.

● Nonstandard language and subjectivity: �e lan-
guage in blogs ranges from high-quality “news-like”

language through poor-quality, restricted-code lan-

guage with many spelling and grammatical errors

to creative, sometimes literary, language. Jargon is

very common in blogs, and new linguistic develop-

ments are adopted far more quickly than could be

re�ected in external resources such as lexica. Many

blog authors strive not for objectivity, but for subjec-

tivity and emotionality.

● �ematic diversity and new forms of categorization:
News are generally categorized by topic area (“pol-

itics,” “business,” etc.). In contrast, a blog author

may choose to write about di�ering, arbitrary top-

ics. When blogs are labeled, it is usually not with

reference to a stable, taxonomic system, but with an

arbitrary number of tags: free-form, o�en informal
labels chosen by the user.

● Social structure and its impact on content and mean-
ing: �e content of a blog (post) is o�en not con-
tained in the text alone. Rather, blog so�ware

supports “Social Web” behavior, and bloggers prac-

tice it: multiway communication rather than broad-

casting, and semantics-inducing referencing of both

content and people. Speci�cally, hyperlinks to other

resources provide not only context but also content;

“blogrolls” (hyperlinks to other blogs) supply con-

text in terms of other blogs/bloggers recommended

by the author; comments to blog posts are inte-

gral part of the communication that the post trig-

gered. “Trackback” links, indicating hyperlinks set

to the blog, may be automatically added by blog-

ging so�ware and thus, create a dynamic citation

context.

Structure of the Learning System
Tasks

News and blogs may serve many di�erent interests, for

example, those of:

● End users who want to know what is happening in

given universes of discourse, to follow developments

within these areas, or to identify sources that are

of long-term interest to them.�ese users di�er by

their preferences, their educational level, the pur-

poses of their searches, and other factors.�is calls

for search engines, temporal analyses, topic identi�-

cation, personalization, and related functionalities.

● Companies that want to learn about their target

groups’ views and opinions of their products and

activities, detect trends and make predictions. Simi-

lar market research may be carried out by nonpro�t

organizations or politicians.

● People who use blogs to gain insights about spe-

ci�c blog author(s) as background knowledge for

decisions on befriending, hiring, or insuring these

individuals (see Nowson &Oberlander) on the

textual analysis of blogs for determining personality

features).

�e literature on news and blogs analysis re�ects

these and other possible uses. A number of standard

tasks are emerging, furthered by the competitions

at events such as the Topic Detection and Track-

ing (TDT) research program and workshops (http:

//www.itl.nist.gov/iad/mig/tests/tdt, Allan,), Text

Retrieval Conference (TREC, http://trec.nist.gov/, e.g.,

MacDonald, Ounis, & Soboro�,), and Document

Understanding/Text Analysis Conference (DUC/TAC,

http://www.nist.gov/tac/). Other initiatives also provide

and encourage the usage of standardized real-world

7datasets, but instigate research on novel questions
by standardizing neither tasks nor 7algorithm evalua-
tion. Prominent examples are the Reuters- dataset,

which is not only a collection of newswire articles

but also the most classical dataset for text mining in

general (http://kdd.ics.uci/edu/databases/reuters/

reuters.html), and the blog datasets provided by

 T Text Mining for News and Blogs Analysis

International Conference onWeblogs and Social Media

(ICWSM, http://www.icwsm.org) and its precursors.

Tasks can be grouped by di�erent criteria:

● Use case and type of result: description and predic-
tion (supervised or unsupervised, may include topic

identi�cation, tracking, and/or novelty detection);

search (ad hoc or �ltering); recommendation (of

blogs, blog posts, or tags); summarization

● Higher-order characterization to be extracted: topic;
opinion

● Time dimension: nontemporal; temporal (stream
mining); multiple streams (e.g., in di�erent lan-

guages, see7cross-lingual text mining)
● User adaptation: none (no explicit mention of user
issues and/or general audience); customizable; per-

sonalized

Since the beginning of news mining in the s and of

blogmining in the early s, more complex combina-

tions of these dimensions have been explored. Examples

include (a) the TDT research program (/–

) required an explicit focus on temporal analyses

and called for topic description and prediction in a

news stream; (b) “bursty” topics in a stream of blogs

were used to predict peaks in a stream of online sales

(Gruhl, Guha, Kumar, Novak, & Tomkins,); (c) the

role of opinion mining as a key question in blog anal-

ysis was manifested by the �rst TREC blog track in

 (see also MacDonald et al.,); it is now a

standard task, also for analysing microblogs (Jansen,

Zhang, Sobel, & Chowdury,); (d) a recommen-

dation method on a document stream based on track-

ing multiple topics over time, personalized to a user

whose interests may change over time was developed

in (Pon, Cardenas, Buttler, & Critchlow,); (e) in

(Lu & Zhai,), opinions were summarized in a set

of non–time-indexed texts, for a general audience; and

(f) in (Subašić & Berendt,), bursty topics in a news

streamwere summarized into graph patterns that can be

interactively explored and customized.

Another important task is spam detection and

blocking (Kolari, Java, Finin, Oates, & Joshi,).

While basically nonexistent in news mining (news are

identi�ed by their sources, which are “white-listed” and

thus credible), spamming has become a severe problem

in the blogosphere, ranging from comment spam via

“�ogs” (e.g., ghostwritten by a marketing department

but pretending to be an enduser), to “splogs” (arti�cially

created blogs used to increase the visibility and search

engine rankings of associated sites). (cf. 7text mining
for spam detection).

Solution Approaches

Solution approaches are based on general 7data-
miningmethods and adapted to the conceptual speci�cs

of news and blogs and their mining tasks (see list of

tasks above). Methods include (7document) classi�ca-
tion and7clustering, latent-variable techniques such as
(P)LSA or LDA (cf. 7feature construction), 7mixture
models, 7time series, and 7stream mining methods.
Named-entity recognition may be an important part or

companion of topic detection (cf.7information extrac-
tion). Opinion mining o�en relies on word class iden-

ti�cation and7part-of-speech tagging, and it generally
employs lexica (e.g., of typical opinionated words and

their positive or negative polarity). Data cleaning is

similar to that of other Web documents; in particular,

it requires the provision or learning of wrappers for

removing markup elements.

In addition, many solution approaches exploit the

speci�c formatting and/or linguistic features of blogs.

For example, to improve the retrieval of blogs about

a queried event, the format elements “timestamp” and

“number of comments” can be treated as indicators

of increased topical relevance and likelihood of being

opinionated, respectively (Mishne,). Structural

elements of blogs such as length and representation in

post title versus post body have been used for blog dis-

tillation (�ltering out those blogs that are principally

devoted to a topic rather than just mentioning it in

passing) (Weerkamp, Balog, & de Rijke,). Text-

based statistical topic modeling can be enhanced by

7regularizing it with the (e.g., social) network struc-
ture associated with blog data (Mei, Cai, Zhang, & Zhai,

) (cf. 7link mining and link discovery). However,
many blogs are not strongly hyperlinked – but tags also

carry “Social Web” information: A combination of text

clustering and tag analysis can serve to identify topics

as well as the blogs that are on-topic and likely to retain

this focus over time (Hayes, Avesani, & Bojars,).

Due to blog writing style, standard indicators of rel-

evance may not be applicable. For example, a term’s

Text Mining for News and Blogs Analysis T

T

TF.IDF score, which is commonly used as a7weight in
a 7feature vector representing the document, assumes
that important terms are mentioned (frequently) in the

document and infrequently elsewhere. However, blogs

o�en rely on implicit context – established by hyper-

links or by the history of the discussion. Solution pro-

posals include the integration of the text from previous

blog posts with the same tag (Hayes et al.,); in

addition, terms from hyperlinked documents could be

taken into account. In addition, while blogs may be

more opinionated than news texts, their language may

make it more di�cult to extract topics and argumenta-

tion vis-à-vis that topic. Speci�cally, blogs o�en contain

irony and other indirect uses of language for expressing

appreciation or discontent.�e “emotional charge” of a

text has, therefore, been proposed as a better target for

blog classi�cation (Gamon et al.,).

Viewed in relation to each other, news and blogs

pose some additional challenges for automated anal-

ysis and text mining. Several studies (e.g., Adamic

& Glance) address questions such as: How are

blogs linked to news media (and possibly vice versa)?

Do they form a coherent whole, “the blogosphere,” or

rather a loose connection of mutually unrelated, polit-

ical, national, linguistic, etc., blogospheres? What are

the topics investigated in blogs versus news? Are sto-

ries reported by news or blogs �rst, and how does the

other side follow up reporting? In general, how do blogs

and news refer to and contextualize each other (e.g.,

Gamon et al. ; Berendt & Trümper ; Leskovec,

Backstrom, & Kleinberg)?

Finally, text mining faces a further challenge: while

news are always meant to be read, many blogs are not

(e.g., because they are a personal journal) – even if they

are accessible over the Web.�is raises the question of

whether text mining could or should become privacy-

aware (cf.7privacy-related aspects and techniques).

Recommended Reading
Adamic, L., & Glance, N. (). The political blogosphere and the

 U.S. election: Divided they blog. In E. Adar, N. Glance, &

M. Hurst (Eds.), Proceedings of the WWW nd annual
workshop on the weblogging ecosystem: Aggregation, analy-
sis and dynamics. Chiba, Japan. http://doi.acm.org/./
. New York, NY, –.

Allan, J. (Ed.). (). Topic detection and tracking: Event-based
information organization. Norwell, MA: Kluwer Academic Pub-
lishers.

Berendt, B., & Trümper, D. (). Semantics-based analysis

and navigation of heterogeneous text corpora: The Porpoise
news and blogs engine. In I.-H. Ting & H.-J. Wu (Eds.),

Web mining applications in e-commerce and e-services Berlin:
Springer.

Gamon, M., Basu, S., Belenko, D., Fisher, D., Hurst, M., & König,

A. C. (). BLEWS: Using blogs to provide context for

news articles. In E. Adar, M. Hurst, T. Finin, N. Glance,

N. Nicolov, B. Tseng, & F. Salvetti (Eds.), Proceedings of the
second international conference on weblogs and social media
(ICWSM’). Seattle, WA. Menlo Park, CA. http://www.aaai.
org/Papers/ICWSM//ICWSM-.pdf

Gruhl, D., Guha, R., Kumar, R., Novak, J., & Tomkins, A. ().

The predictive power of online chatter. In R. Grossman,

R. J. Bayardo, & K. P. Bennett (Eds.), Proceedings of the th
ACM SIGKDD international conference on knowledge discovery
and data mining. Chicago, IL. New York, NY.

Hayes, C., Avesani, P., & Bojars, U. (). An analysis of bloggers,

topics and tags for a blog recommender system. In B. Berendt,

A. Hotho, D. Mladeniè, & G. Semeraro (Eds.), From web to social
web: Discovering and deploying user and content profiles. LNAI
. Berlin: Springer.

Jansen, B.J., Zhang, M., Sobel, K., & Chowdury, A. (). Twit-

ter Power: Tweets as electronic word of mouth. Journal of the
American Society for Information Science and Technology, ():
–.

Kolari, P., Java, A., Finin, T., Oates, T., & Joshi, A. (). Detecting

spam blogs: A machine learning approach. In Proceedings of the
st national conference on artificial intelligence. Boston: AAAI.

Leskovec, J., Backstrom, L., & Kleinberg, J. (). Meme-tracking

and the dynamics of the news cycle. In J.F. Elder IV, F. Fogelman-

Soulié, P.A. Flach, & M.J. Zaki (Eds.), Proceedings of the th
ACM SIGKDD international conference on knowledge discovery
and data mining, Paris, France. New York, NY.

Lu, Y., & Zhai, C. (). Opinion integration through semi-

supervised topic modeling. In J. Huai & R. Chen (Eds.), Pro-
ceeding of the th international conference on world wide web
(WWW’). Beijing, China. New York, NY.

MacDonald, C., Ounis, I., & Soboroff, I. (). Overview

of the TREC- blog track. In E. M. Voorhees & L.

P. Buckland (Eds.), NIST special publication: SP -:
The sixteenth text REtrieval conference (TREC) Pro-
ceedings. Gaithersburg, MD. http://trec.nist.gov/pubs/trec/
papers/BLOG.OVERVIEW.pdf

Mei, Q., Cai, D., Zhang, D., & Zhai, C. (). Topic modeling

with network regularization. In J. Huai & R. Chen (Eds.), Pro-
ceeding of the th international conference on world wide web
(WWW’) Beijing, China. New York, NY.

Mishne, G. (). Using blog properties to improve retrieval. In

N. Glance, N. Nicolov, E. Adar, M. Hurst, M. Liberman, &

F. Salvetto (Eds.), Proceedings of the international conference on
weblogs and social media (ICWSM). Boulder, CO. http://www.
icwsm.org/papers/paper.html

Nowson, S., & Oberlander, J. (). Identifying more blog-

gers: Towards large scale personality classification of per-

sonal weblogs. In N. Glance, N. Nicolov, E. Adar, M. Hurst,

M. Liberman, & F. Salvetto (Eds.), Proceedings of the inter-
national conference on weblogs and social media (ICWSM).
Boulder, CO. http://www.icwsm.org/papers/paper.html.

Pon, R. K., Cardenas, A. F., Buttler, D., & Critchlow, T. (). Track-

ing multiple topics for finding interesting articles. In P. Berkhin,

 T Text Mining for Spam Filtering

R. Caruana, & X. Wu (Eds.), Proceedings of the th ACM
SIGKDD international conference on knowledge discovery and
data mining. San Jose, CA. New York, NY.

Subašić, I., & Berendt, B. (). Web mining for understanding

stories through graph visualisation. In F. Giannotti,

D. Gunopoulos, F. Turini, C. Zaniolo, N. Ramakrishnan, & X.

Wu (Eds.), Proceedings of the IEEE international conference on
data mining (ICDM). Pisa, Italy. Los Alamitos, CA.

Weerkamp, W., Balog, K., & de Rijke, M. (). Finding key blog-

gers, one post at a time. In M. Ghallab, C. D. Spyropoulos,

N. Fakotakis, & N. Avouris (Eds.), Proceedings of the th Euro-
pean conference on artificial intelligence (ECAI). Greece:
Patras. Amsterdam, The Netherlands.

Text Mining for Spam Filtering

Aleksander Kołcz

Microso� One Microso� Way,

Redmond, WA, USA

Synonyms
Commerical email �ltering; Junk email �ltering; Spam

detection; Unsolicited commercial email �ltering

Definition
Spam �ltering is the process of detecting unsolicited

commercial email (UCE) messages on behalf of an

individual recipient or a group of recipients. Machine

learning applied to this problem is used to create dis-

criminating models based on labeled and unlabeled

examples of spam and nonspam. Suchmodels can serve

populations of users (e.g., departments, corporations,

ISP customers) or they can be personalized to re�ect

the judgments of an individual. An important aspect of

spam detection is the way in which textual information

contained in email is extracted and used for the purpose

of discrimination.

Motivation and Background
Spam has become the bane of existence for both Inter-

net users and entities providing email services. Time

is lost when si�ing through unwanted messages and

important emails may be lost through omission or acci-

dental deletion. According to various statistics, spam

constitutes the majority of emails sent today and a large

portion of emails actually delivered.�is translates to

large costs related to bandwidth and storage use. Spam

detection systems help to alleviate these issues, but they

may introduce problems of their own, such as more

complex user interfaces, delayed message delivery, and

accidental �ltering of legitimate messages. It is not clear

if any one approach to �ghting spam can lead to its com-

plete eradication and a multitude of approaches have

been proposed and implemented. Among existing tech-

niques are those relying on the use of supervised and

unsupervised machine learning techniques, which aim

to derive a model di�erentiating spam from legitimate

content using textual and nontextual attributes.�ese

methods have become an important component of the

antispam arsenal and draw from the body of related

research such as text classi�cation, fraud detection and

cost-sensitive learning.�e text mining component of

these techniques is of particular prominence given that

email messages are primarily composed of text. Appli-

cation of machine learning and data mining to the

spam domain is challenging, however, due, among oth-

ers, to the adversarial nature of the problem (Dalvi,

Domingos, Sanghai, & Verma, ; Fawcett,).

Structure of the Learning System
Overview

A machine-learning approach to spam �ltering relies

on the acquisition of a learning sample of email data,

which is then used to induce a classi�cation or scor-

ing model, followed by tuning and setup to satisfy the

desired operating conditions. Domain knowledge may

be injected at various stages into the induction process.

For example, it is common to a priori speci�c features
that are known be highly correlated with the spam label,

e.g., certain patterns contained in email headers or cer-

tain words or phrases. Depending on the application

environment, messages classi�ed as spam are prevented

from being delivered (e.g., are blocked or “bounced”),

or are delivered with a mechanism to alert users to their

likely spam nature. Filter deployment is followed by

continuous evaluation of its performance, o�en accom-

panied by the collection of error feedback from its users.

Data Acquisition

A spam �ltering system relies on the presence of labeled

training data, which are used to induce a model of what

constitutes spam and what is legitimate email. Spam

detection represents a two-class problem, although it

may sometimes be desired to introduce special handling

Text Mining for Spam Filtering T

T

of messages for which a con�dent decision, either way,

cannot bemade.Depending on the application environ-

ment, the training data may represent emails received

by one individual or a group of users. Ideally, the

data should correspond to a uniform sample acquired

over some period of time preceding �lter deployment.

Typical problems with data collection revolve around

privacy issues, whereby users are unwilling to donate

emails of personal or sensitive nature. Additionally, lab-

eling mistakes are common where legitimate emails

may be erroneously marked as spam or vice versa. Also,

since for certain types of emails, the spam/legitimate

distinction is personal, one may �nd that the same

message content is labeled in a con�icting manner by

di�erent users (or even by the same user at di�erent

times). �erefore, data cleaning and con�ict resolu-

tion techniques may need to be deployed, especially

when building �lters that serve a large and diverse user

population.

Due to privacy concerns, few large publicly email

corpora exist.�e ones created for theTRECSpamTrack

(TREC data is available from: http://plg.uwaterloo.ca/~

gvcormac/treccorpus/). stand out in terms of size and

availability of published comparative results.

Content Encoding and Deobfuscation

Spam has been evolving in many ways over the course

of time. Some changes re�ect the shi� in content adver-

tised in such messages (e.g., from pornography and

pharmaceuticals to stock schemes and phish). Others
re�ect the formatting of content. While early spam

was sent in the form of plain text, it subsequently

evolved into more complex HTML, with deliberate

attempts to make extraction of meaningful textual

features as di�cult as possible. Typically, obfusca-

tion (a list of obfuscation techniques is maintained at

http://www.jgc.org/tsc.html) aims at

(a) Altering the text extracted from the message for

words visible to the user (e.g., by breaking up

the characters in message source by HTML tags,

encoding the characters in various ways, using

character look-alikes, wrapping the display of text

using script code executed by the message viewer).

�is tactic is used to hide the message “payload.”

(b) Adding content that is not visible to the user (e.g.,

using the background color or zero-width font to

render certain characters/words).�is tactic typi-

cally attempts to add “legitimate content.”

(c) Purposefulmisspelling of words known to be fairly

incriminating (e.g., Viagra as Vagr@), in a way
that allows the email recipient to still understand

the spammer’s message.

�e line of detection countermeasures aiming at pre-

venting e�ective content extraction continues in the

form of image spam, where the payload message is

encoded in the form of an image that is easily legi-

ble to a human but poses challenges to an automatic

content extraction system. To the extent that rich and

multimedia content gets sent out by legitimate users in

increasing proportions, spammers are likely to use the

complexity of these media to obfuscate their messages

even further.�e very fact that obfuscation is attempted,

however, provides an opportunity for machine learn-

ing techniques to use obfuscation presence as a fea-

ture.�us, even if payload content cannot be faithfully

decoded, the very presence of elaborate encoding may

help in identifying spam.

Feature Extraction and Selection

An email message represents a semistructured docu-

ment, commonly following the rfc standard

(www.faqs.org/rfcs/rfc.html). Its header consists of

�elds indicative of formatting, authorship, and delivery

information, while its body contains the actual content

being sent.�ere can be little correctness enforcement

of the header �elds and spamming techniques o�en rely

on spoo�ng and forging of the header data, although

this may provide evidence of tempering. Many early

approaches to detect spam depended predominantly

on hand-cra�ed rules identifying inconsistencies and

peculiarities of spam email headers. Manually or auto-

matically generated header features continue to be rel-

evant even when other features (e.g., message text) are

considered.

Given that an email message tends to be primar-

ily text, features traditionally useful in text categoriza-

tion have also been found useful in spam detection.

�ese include individual words, phrases, character n-

grams, and other textual components (Siefkes, Assis,

Chhabra, & Yerazunis,). Natural language pro-

cessing (NLP) techniques such as stemming, stop-word

removal, and case folding are also sometimes applied to

http://plg.uwaterloo.ca/~gvcormac/treccorpus/

 T Text Mining for Spam Filtering

normalize the features further. Text extraction is o�en

nontrivial due to the application of content obfusca-

tion techniques. For example, standard lexical feature

extractors may need to be strengthened to correctly

identify word boundaries (e.g., in cases where groups

of characters within a word are separated by zero-width

HTML tags).

Extraction of features from nontextual attachments

(e.g., images, audio, and video) is also possible but

tends to be more computationally demanding. Other

types of features capture the way amessage if formatted,

encoded in HTML, composed of multiple parts, etc.

Although nontextual features have di�erent proper-

ties than text, it is common practice to combine them

with textual features and present a single uni�ed rep-

resentation to the classi�er. Indeed, some approaches

make no distinction between text and formatting even

during the process of feature extraction, and apply

pattern discovery techniques to identifying complex

features automatically (Rigoutsos & Huynh,).�e

advantage of such techniques is that they do not require

rich domain knowledge and can discover new useful

patterns. Due to the large space of possible patterns they

can potentially be computationally expensive. However,

even the seemingly simplistic treatment of an email

message as a plain-text document with “words” delim-

ited by white space o�en leads to very good results.

Even though typical text documents are already very

sparse, the problem is even more pronounced for the

email medium due to frequent misspelling and delib-

erate randomization performed by spammers. Insisting

on using all such variations may lead to over�tting

for some classi�ers, and it leads to large �lter mem-

ory footprints that are undesirable from an operational

standpoint. However, due to the constantly changing

distribution of content, it may be dangerous to rely

on very few features. Traditional approaches to feature

selection based on measures such as Information Gain

have been reported as successful in the spam �ltering

domain, but even simple rudimentary attribute selec-

tion based on removing very rare and/or very frequent

features tends to work well.

�ere are a number of entities that can be extracted

from message text and that tend to be of relevance

in spam detection. Among others, there are telephone

numbers and URLs. In commercial email and in spam,

these provide ameans of ordering products and services

and thus, o�er important information for vendor and

campaign tracking. Detection of signature and mailing

address blocks can also be of interest, even if only to

indicate their presence or absence.

Learning Algorithms

A variety of learning algorithms have been applied in

the spam �ltering domain. �ese range from linear

classi�ers such as Naive Bayes (Metsis, Androutsopou-

los, & Paliouras,), logistic regression (Goodman&

Yih,), or linear support vector machines (Drucker,

Wu, & Vapnik, ; Kołcz & Alspector, ; Scul-

ley & Wachman,) to nonlinear ones such as

boosted decision trees (Carreras & Màrquez,).

Language modeling and statistical compression tech-

niques have also been found quite e�ective (Bratko,

Cormack, Filipic, Lynam, & Zupan,). In general,

due to the high dimensionality of the feature space, the

classi�er chosen should be able to handle tens of thou-

sand, ormore, attributeswithout over�tting the training

data.

It is usually required that the learned model pro-

vides a scoring function, such that for email message

x score(x) ∈ R, with higher score values correspond-
ing to higher probability of the message being spam.

�e score function can also be calibrated to represent

the posterior probability P (spam∣x) ∈ [,], although
accurate calibration is di�cult due to constantly chang-

ing class and content distributions.�e scoring function

is used to establish a decision rule:

score (x) ≥ th→ spam

where the choice of the decision threshold th is driven
by the minimization of the expected cost. In the linear

case, the scoring function takes the form

score(x) = w ⋅ x + b

wherew is the weight vectors, and x is a vector represen-
tation of the message. Sometimes scores are normalized

with a monotonic function, e.g., to give an estimate of

the probability of x being spam.
Linear classi�ers tend to provide su�ciently high

accuracy, which is also consistent with other applica-

tion domains involving the text medium. In particular,

Text Mining for Spam Filtering T

T

many variants of the relatively simple Naive Bayes clas-

si�er have been found successful in detecting spam,

and Naive Bayes o�en provides a baseline for sys-

tems employingmore complex classi�cation algorithms

(Metsis et al.,).

One Model versus Multiple Models

It o�en pays o� to combine di�erent types of classi�ers

(even di�erent linear ones) in a sequential or parallel

fashion to bene�t from the fact that di�erent classi�ers

may provide an advantage in di�erent regions of the

feature space. Stacking via 7linear regression has been
reported to be e�ective for this purpose (Sakkis et al.,

; Segal, Crawford, Kephart, & Leiba,). One

can generally distinguish between cases where all clas-

si�ers are induced over the same data and cases where

several di�erent datasets are used. In the former case,

the combination process exploits the biases of di�erent

learning algorithms. In the latter case, one can consider

building amultitude of detectors, each targeting a di�er-

ent subclass of spam (e.g., phish, pharmaceutical spam,

“Nigerian” scams, etc.). Datasets can also be de�ned on

a temporal basis, so that di�erent classi�ers have shorter

or longer memory spans. Other criteria of providing

di�erent datasets are also possible (e.g., based on the

language of the message).

Additional levels of complexity in the classi�er com-

bination process can be introduced by considering

alternative feature representations for each dataset. For

example, a single data collection and a single learning

method can be used to create several di�erent classi�ers,

based upon alternative representations of the same data

(e.g., using just the header features or just the message

text features).

�e method of classi�er combination will necessar-

ily depend on their performance and intended area of

applications.�e combination regimes can range from

simple logical-OR through linear combinations to com-

plex nonlinear rules, either derived automatically to

maximize the desired performance or speci�ed manu-

ally with the guidance of expert domain knowledge.

Off-line Adaptation Versus Online Adaptation

A spam �ltering system can be con�gured to receive

instant feedback from its users, informing it when-

ever certain messages get misdelivered (this necessarily

does not include cases where misclassi�ed legitimate

messages are simply blocked). In the case of online �l-

ters, the feedback informationmay be immediately used

to update the �ltering pro�le. �is allows a �lter to

adjust to the changing distribution of email content and

to detection countermeasures employed by spammers.

Not all classi�ers are easily amenable to the online learn-

ing update, although online versions of well-known

learners such as logistic regression (Goodman & Yih,

) and linear SVMs (Sculley & Wachman,)

have been proposed. �e distinguishing factor is the

amount of the original training data that needs to be

retained in addition to the model itself to perform

future updates. In this respect, Naive Bayes is particu-

larly attractive since it does not require any of the origi-

nal data for adaptation, with the model itself providing

all the necessary information.

One issue with the user feedback signal, however, is

its bias toward current errors of the classi�er, which for

learners depending on the training data being an unbi-

ased sample drawn from the underlying distribution

may lead to overcompensation rather than an improve-

ment in �ltering accuracy. As an alternative, unbiased

feedback can be obtained by either selectively querying

users about the nature of uniformly sampled messages

or by deriving the labels implicitly.

In the case where o�-line adaptation is in use,

the feedback data is collected and saved for later use,

whereby the �ltering models are retrained periodically

or only as needed using the data collected.�e advan-

tage of o�-line adaptation is that it o�ersmore �exibility

in terms of the learning algorithm and its optimization.

In particular, model retraining can take advantage of a

larger quantity of data, and does not have to be con-

strained to be an extension of the current version of the

model. As a result, it is, e.g., possible to rede�ne the fea-

tures fromone version of the spam�lter to the next.One

disadvantage is that model updates are likely to be per-

formed less frequently and may be lagging behind the

most recent spam trends.

User-specific Versus User-independent Spam Detection

What constitutes a spam message tends to be personal,

at least for some types of spam. Various commercial

messages, such as promotions and advertisements, e.g.,

may be distributed in a solicited or unsolicited manner,

and sometimes only the end recipient may be able to

 T Text Mining for Spam Filtering

judge which. In that sense, user-speci�c spam detection

has the potential of being most accurate, since a user’s

own judgments are used to drive the training process.

Since the nonspam content received by any particu-

lar user is likely to be more narrowly distributed when

compared a larger user population, this makes the dis-

crimination problemmuch simpler. Additionally, in the

adversarial context, a spammer should �nd itmore di�-

cult to measure the success of penetrating personalized

�lter defenses, which makes it more di�cult to cra� a

campaign that reaches su�cientlymanymail inboxes to

be pro�table.

One potential disadvantage of such solutions is the

need for acquiring labeled data on a user by user basis,

which may be challenging. For some users historical

data may not yet exist (or has already been destroyed),

for others even if such data exist, labeling may seem too

much of a burden for the users. Aside from the data col-

lection issues, personal spam �ltering faces maintain-

ability issues, as the �lter is inherently controlled by its

user.�is may result in less-than-perfect performance,

e.g., if the user misdirects �lter training.

From the perspective of institutions and email ser-

vice providers, it is o�enmore attractive tomaintain just

one set of spam �lters that service a larger user popula-

tion.�is makes them simpler to operate and maintain,

but their accuracy may depend on the context of any

particular user. �e advantage of centralized �ltering

when serving large user populations is that global trends

can be more readily spotted and any particular user

may be automatically protected against spam, a�ecting

other users. Also, the domain knowledge of the spam-

�ltering analysts can be readily injected into the �ltering

pipeline.

To the extent that a service provider maintains

personal �lters for its population of users, there are

potential large system costs to account for, so that a

complete cost-bene�t analysis needs to be performed to

assess the suitability of such as solution as opposed to

a user-independent �ltering complex. More details on

the nature of such trade-o�s can be found in (Kołcz,

Bond, & Sargent,).

Clustering and Volumetric Techniques

Content clustering can serve as an important data

understanding technique in spam�ltering. For example,

large clusters can justify the use of specialized classi�ers

and/or the use of cost-sensitive approaches in classi�er

learning and evaluation (e.g., where di�erent costs are

assigned to di�erent groups of content within each class

(Kołcz & Alspector,).

Both spam and legitimate commercial emails are

o�en sent in large campaigns, where the same or highly

similar content is sent to a large number of recipients,

sometimes over prolonged periods of time. Detection of

email campaigns can therefore play an important role

in spam �ltering. Since individual messages of a cam-

paign are highly similar to one another, this can be

considered a variant of near-replica document detec-

tion (Kołcz,). It can also be seen as relying on

identi�cation of highly localized spikes in the content

density distribution. As found in (Yoshida et al.,),

density distribution approaches can be highly e�ec-

tive, which is especially attractive given that they do

not require the explicitly labeled training data. Track-

ing of spam campaigns may be made di�cult due to

content randomization, and some research has been

directed at making the detection methods robust in the

presence such countermeasures (Kołcz, ; Kołcz &

Chowdhury,).

Misclassification Costs and Filter Evaluation

An important aspect of spam �ltering is that the costs

of misclassifying spam as legitimate email are not the

same as the costs of making the opposite mistake. It is

thus commonly assumed that the costs of a false posi-

tive mistake (i.e., a legitimate email being misclassi�ed

as spam) are much higher than the cost of mistak-

ing spam for legitimate email. Given the prevalence of

spam π and the false-spam (FS) and false-legitimate
(FL) rates of the classi�er, themisclassi�cation cost c can
be expressed as

c = CFS ⋅ (− π) ⋅ FS + CFL ⋅ π ⋅ FL

where CFS and CFL are the costs of making a false-spam
and false-legitimate mistake, respectively (there is no

penalty for making the correct decision). Since actual

values of CFS and CFL are di�cult to quantify, one typ-
ically sees them combined in the form of a ratio, λ =
CFS/CFL, and the overall cost can be expressed as rel-
ative to the cost of a false-legitimate misclassi�cation

e.g.,

Text Mining for Spam Filtering T

T

crel = λ ⋅ (− π) ⋅ FS + π ⋅ FL

Practical choices of λ tend to range from to ,.
Nonuniform misclassi�cation costs can be used dur-

ing the process of model induction or in postprocessing

when setting up the operating parameters of a spam

�lter, e.g., using the receiver operating characteristic

(ROC) analysis.

Since the costs and cost ratios are sometimes hard to

de�ne, some approaches to evaluation favor direct val-

ues of the false-spam and false-legitimate error rates.

�is captures the intuitive requirement that an e�ec-

tive spam �lter should provide high detection rate at

a close-to-zero false-spam rate. Alternatively, threshold

independent metrics such as the area under the ROC

(AUC) can be used (Bratko et al., ; Cormack &

Lynam,), although other measures have also been

proposed (Sakkis et al.,).

Adaptation to Countermeasures

Spam �ltering is an inherently adversarial task, where

any solution deployed on a large scale is likely to be

met with a response on the part of the spammers. To

that extent that the success of a spam �lter can be pin-

pointed to any particular component (e.g., the type of

features used), that prominent component is likely to

be attacked directly and may become a victim of its

own success. For example, the use of word features

in spam �ltering encourages countermeasures in the

form of deliberate misspellings, word fragmentation,

and “invisible ink” in HTML documents. Also, since

some words are considered by a model inherently more

legitimate than others, “word stu�ng” has been used

to inject large blocks of potentially legitimate vocab-

ulary into an otherwise spammy message in the hope

that this information outweighs the evidence provided

by the spam content (Lowd &Meek,).

Some authors have attempted to put the adversar-

ial nature of spam �ltering in the formal context of

game theory (Dalvi et al.,). One di�culty of draw-

ing broad conclusion based on such analyses is the

breadth of the potential attack/defense front, of which

only small sections have been successfully captured in

the game-theory formalism.�e research on countering

the countermeasures points at using multiple diverse

�ltering components, normalization of features to keep

them invariant to irrelevant alterations. A key point is

that frequent �lter retraining is likely to help in keeping

up with the shi�s in content distribution, both natural

and due to countermeasures.

Future Directions
Reputation Systems and Social Networks

�ere has been a growing interest in developing reputa-

tion systems capturing the trustworthiness of a sender

with respect to a particular user or group of users.

To this end however, the identity of the sender needs to

be reliably veri�ed, which poses challenges and presents

a target for potential abuses of such systems. Never-

theless, reputation systems are likely to grow in impor-

tance, since they are intuitive from the user perspective

in capturing the communication relationships between

users. Sender reputation can be hard or so�. In the hard

variant, the recipient always accepts or declines mes-

sages from a given sender. In the so� variant, the repu-

tation re�ects the level of trustworthiness of the sender

in the context of the given recipient. When sender

identities resolve to individual email addresses, the rep-

utation system can be learned via analysis of a large

social network that documents who exchanges email

with whom.�e sender identities can also be broader

however, e.g., assigning reputation to a particular mail

server or all mail servers responsible for handling the

outbound tra�c for a particular domain. On the recip-

ient side, reputation can also be understood globally to

represent the trustworthiness of the sender with respect

to all recipients hosted by the system. Many open ques-

tions remain with regard to computing and maintain-

ing reputations as well as using them e�ectively to

improve spam detection. In the context of text mining,

one such question is the extent to which email content

analysis can be used to aid the process of reputation

assessment.

Cross References
7Cost-Sensitive Learning
7Logistic Regression
7Naive Bayes
7Support Vector Machines
7Text Categorization

 T Text Mining for the Semantic Web

Recommended Reading
Bratko, A., Cormack, G. V., Filipic, B., Lynam, T. R., & Zupan, B.

(). Spam filtering using statistical data compression mod-

els. Journal of Machine Learning Research, , –.
Carreras, X., & Màrquez, L. (). Boosting trees for anti-spam

email filtering. In Proceedings of RANLP-, the th interna-
tional conference on recent advances in natural language process-
ing. New York: ACM.

Cormack, G. V., & Lynam, T. R. (). On-line supervised spam

filter evaluation. ACM Transactions on Information Systems,
(), .

Dalvi, N., Domingos, P., Sanghai, M. S., & Verma, D. (). Adver-

sarial classification. In Proceedings of the tenth international
conference on knowledge discovery and data mining (Vol. ,
pp. –). New York: ACM.

Drucker, H., Wu, D., & Vapnik, V. N. (). Support vector

machines for spam categorization. IEEE Transactions on Neural
Networks, (), –.

Fawcett, T. (). In vivo’ spam filtering: A challenge problem for

data mining. KDD Explorations, (), –.
Goodman, J., & Yih, W. (). Online discriminative spam filter

training. In Proceedings of the third conference on email and anti-
spam.Mountain View, CA. (CEAS-).

Kołcz, A. (). Local sparsity control for naive bayes with extreme

misclassification costs. In Proceedings of the eleventh ACM
SIGKDD international conference on knowledge discovery and
data mining. New York: ACM.

Kołcz, A., & Alspector, J. (). SVM-based filtering of e-mail spam
with content-specific misclassification costs. TextDM’ (IEEE
ICDM- workshop on text mining), San Jose, CA.

Kołcz, A., Bond, M., & Sargent, J. (). The challenges of service-

side personalized spam filtering: Scalability and beyond. In

Proceedings of the first international conference on scalable infor-
mation systems (INFOSCALE). New York: ACM.

Kołcz, A. M., & Chowdhury, A. (). Hardening fingerprinting by

context. In Proceedings of the fourth international conference on
email and anti-spam.

Lowd, D., & Meek, C. (). Good word attacks on statistical spam

filters. In Proceedings of the second conference on email and anti-
spam. Mountain View, CA. (CEAS-).

Metsis, V., Androutsopoulos, I., & Paliouras, G. (). Spam filter-

ing with naive bayes - which naive bayes? In Proceedings of the
third conference on email and anti-spam. (CEAS-).

Rigoutsos, I., & Huynh, T. (). Chung-Kwei: a pattern-discovery-

based system for the automatic identification of unsolicited

e-mail messages (SPAM). In Proceedings of the first conference
on email and anti-spam. (CEAS-).

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. ().

A Bayesian approach to filtering junk email. AAAI workshop
on learning for text categorization, Madison, Wisconsin. AAAI

Technical Report WS--.

Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V.,

Spyropoulos, C. D., & Stamatopoulos, P. (). Stacking clas-

sifiers for anti-spam filtering of e-mail. In L. Lee & D. Harman

(Eds.). Proceedings of empirical methods in natural language pro-
cessing (EMNLP) (pp. –). http://www.cs.cornell.edu/
home/llee/emnlp/proceeding.html.

Sculley, D., & Wachman, G. (). Relaxed online support vec-

tor machines for spam filtering. In Proceedings of the th

annual international ACM SIGIR conference on research and
development in information retrieval. New York: ACM.

Segal, R., Crawford, J., Kephart, J., & Leiba, B. (). SpamGuru:

An enterprise anti-spam filtering system. In Proceedings of the
first conference on email and anti-spam. (CEAS-).

Siefkes, C., Assis, F., Chhabra, S., & Yerazunis, W. (). Combining

winnow and orthogonal sparse bigrams for incremental spam

filtering. In Proceedings of the european conference on princi-
ple and practice of knowledge discovery in databases. New York:
Springer.

Yoshida, K., Adachi, F., Washio, T., Motoda, H., Homma, T.,

Nakashima, A., et al. (). Densitiy-based spam detection.

In Proceedings of the tenth ACM SIGKDD international confer-
ence on knowledge discovery and data mining (pp. –).
New York: ACM.

Text Mining for the Semantic Web

Marko Grobelnik, DunjaMladenić,

MichaelWitbrock

Jožef Stefan Institute
Cycorp Inc

Executive Center Drive, Austin, TX, USA

Definition
7Text mining methods allow for the incorporation of
textual data within applications of semantic technolo-

gies on the Web. Application of these techniques is

appropriate when some of the data needed for a Seman-

ticWeb use scenario are in textual form.�e techniques

range from simple processing of text to reducing vocab-

ulary size, through applying shallow natural language

processing to constructing new semantic features or

applying information retrieval to selecting relevant texts

for analysis, through complex methods involving inte-

grated visualization of semantic information, seman-

tic search, semiautomatic ontology construction, and

large-scale reasoning.

Motivation and Background
Semantic Web applications usually involve deep struc-

tured knowledge integrated by means of some kind

of ontology. Text mining methods, on the other hand,

support the discovery of structure in data and e�ec-

tively support semantic technologies on data-driven

tasks such as, (semi)automatic ontology acquisition,

extension, and mapping. Fully automatic text mining

Text Mining for the Semantic Web T

T

approaches are not always themost appropriate because

o�en it is too di�cult or too costly to fully integrate the

available background domain knowledge into a suitable

representation. For such cases semiautomatic methods,

such as7active learning and7semisupervised text pro-
cessing (7Semisupervised Learning), can be applied
to make use of small pieces of human knowledge to

provide guidance toward the desired ontology or other

model. Application of these semiautomated techniques

can reduce the amount of human e�ort required to

produce training data by an order of magnitude while

preserving the quality of results.

To date, Semantic Web applications have typically

been associated with data, such as text documents and

corresponding metadata that have been designed to be

relatively easily manageable by humans. Humans are,

for example, very good at reading and understanding

text and tables. General semantic technologies, on the

other hand, aim more broadly at handling data modal-

ities including multimedia, signals from emplaced or

remote sensors, and the structure and content of com-

munication and transportation graphs and networks.

In handling such multimodal data, much of which is

not readily comprehensible by unaugmented humans,

there must be signi�cant emphasis on fully- or semi-

automatic methods o�ered by knowledge discovery

technologies whose application is not limited to a spe-

ci�c data representation (Grobelnik &Mladenic,).

Data and the corresponding semantic structures

change over time, and semantic technologies also aim at

adapting the ontologies thatmodel the data accordingly.

For most such scenarios extensive human involvement

in building models and adapting them according to the

data is too costly, too inaccurate, and too slow. Stream

mining (Gaber, Zaslavsky,&Krishnaswamy,) tech-

niques (7Data Streams: Clustering) allow text mining
of dynamic data (e.g., notably in handling a stream of

news or of public commentary).

Structure of Learning System
Ontology is a fundamental method for organizing

knowledge in a structured way, and is applied, along

with formalized reasoning, in areas from philosophy

to scienti�c discovery to knowledge management and

the Semantic Web. In computer science, an ontology

generally refers to a graph or network structure con-

sisting of a set of concepts (vertices in a graph), a set of

relationships connecting those concepts (directed edges

in a graph) and, possibly, a set of distinguished instance

concepts assigned to particular class concepts (data

records assigned to vertices in a graph). In many cases,

knowledge is structured in this way to allow for auto-

mated inference based on a logical formalism such as

the predicate calculus (Barwise & Etchemendy,);

for these applications, an ontology o�en further com-

prises a set of rules or produces new knowledge within

the representation from existing knowledge. An ontol-

ogy containing instance data and rules is o�en referred

to as a knowledge base (KB) (e.g., Lenat,).

Machine learning practitioners refer to the task

of constructing these ontologies as ontology learn-
ing. From this point of view, an ontology is seen

a class of models – somewhat more complex than

most used in machine learning – which need to be

expressed in some 7hypothesis language.�is de�ni-
tion of ontology learning (from Grobelnik &Mladenic,

) enables a decomposition into several machine

learning tasks, including learning concepts, identi-

fying relationships between existing concepts, popu-

lating an existing ontology/structure with instances,

identifying change in dynamic ontologies, and induc-

ing rules over concepts, background knowledge, and

instances.

Following this scheme, text mining methods have

been applied to extending existing ontologies based

on Web documents, learning semantic relations from

text based on collocations, semiautomatic data driven

ontology construction based on document clustering

and classi�cation, extracting semantic graphs from

text, transforming text into RDF triples (a commonly

used Semantic Web data representation), and mapping

triplets to semantic classes using several kinds of lexi-

cal and ontological background knowledge. Text min-

ing is also intensively used in the e�ort to produce a

SemanticWeb for annotation of text with concepts from

ontology. For instance, a text document is split into sen-

tences, each sentence is represented as a word-vector,

sentences are clustered, and each cluster is labeled by

the most characteristic words from its sentences and

mapped upon the concepts of a general ontology. Sev-

eral approaches that integrate ontology management,

knowledge discovery, and human language technolo-

gies are described in (Davies, Grobelnik, & Mladenić,

).

 T Text Spatialization

Extending the text mining paradigm, current e�orts

are beginning to aim at giving machines an approxima-

tion of the full human ability to acquire knowledge from

text. Machine reading aims at full text understanding

by integrating knowledge-based construction and use

into syntactically sophisticated natural language analy-

sis, leading to systems that autonomously improve their

ability to extract further knowledge from text (e.g.,

Curtis et al., ; Etzioni, Banko, & Cafarella, ;

Mitchell,).

Cross References
7Active Learning
7Classi�cation
7Document Clustering
7Semisupervised Learning
7Semisupervised Text Processing
7Text Mining
7Text Visualization

Recommended Reading
Barwise, J., & Etchemendy, J. (). Language proof and logic.

Center for the Study of Language and Information. ISBN,

X.

Buitelaar, P., Cimiano, P., & Magnini, B. (). Ontology learn-
ing from text: Methods, applications and evaluation, frontiers
in artificial intelligence and applications. The Netherlands: IOS
Press.

Curtis, J., Baxter, D., Wagner, P., Cabral, J., Schneider, D., &

Witbrock, M. (). Methods of rule acquisition in the

TextLearner system. In Proceedings of the AAAI spring
symposium on learning by reading and learning to read
(pp. –). Palo Alto, CA: AAAI Press.

Davies, J., Grobelnik, M., & Mladenić, D. (). Semantic knowl-
edge management. Berlin: Springer.

Etzioni, O., Banko, M., & Cafarella, M. J. (). Machine Read-

ing. In Proceedings of the AAAI spring symposium on

machine reading.

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. ().Mining data

streams: A review. ACM SIGMOD Record, (), –. ISSN:
-

Grobelnik, M., & Mladenic, D. (). Automated knowledge dis-

covery in advanced knowledge management. Journal of Knowl-
edge Management, , –.

Lenat, D. B. (). Cyc: A large-scale investment in knowl-

edge infrastructure. Communications of the ACM, (),
–.

Mitchell, T. (). Reading the web: A breakthrough goal for AI.

celebrating twenty-five years of AAAI: Notes from the AAAI-

and IAAI- conferences. AI Magazine, (), –.

Text Spatialization

7Text Visualization

Text Visualization

John Risch, Shawn Bohn, Steve Poteet,

Anne Kao, Lesley Quach, JasonWu

Paci�c Northwest National Laboratory
Boeing PhantomWorks, Seattle, WA, USA

Synonyms
Semantic mapping; Text spatialization; Topic mapping

Definition
�e term text visualization describes a class of knowl-
edge discovery techniques that use interactive graphi-

cal representations of textual data to enable knowledge

discovery via recruitment of human visual pattern

recognition and spatial reasoning capabilities. It is

a subclass of information visualization, which more
generally encompasses visualization of nonphysically

based (or “abstract”) data of all types. Text visualiza-

tion is distinguished by its focus on the unstructured

(or free text) component of information.While the term
“text visualization” has been used to describe a vari-

ety of graphical methods for deriving knowledge from

text, it is most closely associated with techniques for

depicting the semantic characteristics of large docu-

ment collections. Text visualization systems commonly

employ unsupervised machine learning techniques as

part of broader strategies for organizing and graphically

representing such collections.

Motivation and Background
�e Internet enables universal access to vast quantities

of information,most ofwhich (despite admirable e�orts

(Berners-Lee, Hendler, & Lassila,)) exists in the

form of unstructured and unorganized text. Advance-

ments in search technology make it possible to retrieve

large quantities of this information with reasonable

precision; however, only a tiny fraction of the infor-

mation available on any given topic can be e�ectively

exploited.

Text Visualization T

T

Text visualization technologies, as forms of

computer-supported knowledge discovery, aim to

improve our ability to understand and utilize the wealth

of text-based information available to us. While the

term “text visualization” has been used to describe

a variety of techniques for graphically depicting the

characteristics of free-text data (Havre, Hetzler, Whit-

ney, & Nowell, ; Small,), it is most closely

associated with the so-called semantic clustering or
semantic mapping techniques (Chalmers & Chitson,
; Kohonen et al., ; Lin, Soergel, & Marchion-

ini, ; Wise et al.,).�ese methods attempt to

generate summary representations of document col-

lections that convey information about their general

topical content and similarity structure, facilitating gen-

eral domain understanding and analytical reasoning

processes.

Text visualization methods are generally based on

vector-space models of text collections (Salton,),

which are commonly used in information retrieval,

clustering, and categorization. Such models repre-

sent the text content of individual documents in the

form of vectors of frequencies of the terms (text fea-
tures) they contain. A document collection is therefore
represented as a collection of vectors. Because the num-

ber of unique terms present in a document collec-

tion generally is in the range of tens of thousands, a

dimensionality reductionmethod such as singular value

decomposition (SVD) (Deerwester, Dumais, Furnas,

Landauer, & Harshman,) or other matrix decom-

position method (Kao, Poteet, Ferng, Wu, & Quach,

; Booker et al.,) is typically used to eliminate

noise terms and reduce the length of the document vec-

tors to a tractable size (e.g., – dimensions). Some

systems attempt to �rst identify discriminating features

in the text and then use mutual probabilities to spec-

ify the vector space (York, Bohn, Pennock, & Lantrip,

).

To enable visualization, the dimensionsmust be fur-

ther reduced to two or three. �e goal is a graphical

representation that employs a “spatial proximity means

conceptual similarity”metaphorwhere topically similar

text documents are represented as nearby points in the

display. Various regions of the semantic map are subse-

quently labeled with descriptive terms that convey the

primary concepts described by nearby documents.�e

text visualization can thus serve as a kind of graphical

“table of contents” depicting the conceptual similarity

structure of the collection.

Text visualization systems therefore typically imple-

ment four key functional components, namely,

. A tokenization component that characterizes the
lexical content of text units via extraction, normal-

ization, and selection of key terms

. A vector-space modeling component that generates
a computationally tractable vector space represen-

tation of a collection of text units

. A spatialization component that uses the vector
space model to generate a D or D spatial con�g-

uration that places the points representing concep-

tually similar text units in near spatial proximity

. A labeling component that assigns characteristic
text labels to various regions of the semantic map

Although machine learning techniques can be used in

several of these steps, their primary usage is in the spa-

tialization stage. An unsupervised learning algorithm

is typically used to �nd meaningful low-dimensional

structures hidden in high-dimensional document fea-

ture spaces.

Structure of Learning System
Spatialization is a termgenerically used in7information
visualization to describe the process of generating a

spatial representation of inherently nonspatial infor-

mation. In the context of text visualization, this term

generally refers to the application of a nonlinear dimen-

sionality reduction algorithm to a collection of text

vectors in order to generate a visually interpretable two-

or three-dimensional representation of the similarity

structure of the collection.�e goal is the creation of a

semantic similaritymap that positions graphical features
representing text units (e.g., documents) conceptually

similar to one another near one another in the visual-

ization display.�esemapsmay be further abstracted to

produce more general summary representations of text

collections that do not explicitly depict the individual

text units themselves (Wise et al.,).

A key assumption in text visualization is that text

units which express similar concepts will employ sim-

ilar word patterns, and that the existence of these

 T Text Visualization

word correlations creates coherent structures in high-

dimensional text feature spaces. A further assumption

is that text feature spaces are nonlinear, but that their

structural characteristics can be approximated by a

smoothly varying low-dimensional manifold.�e text

spatialization problem thus becomes one of �nding an

embedding of the feature vectors in a two- or three-

dimensionalmanifold that best approximates this struc-

ture. Because the intrinsic dimensionality of the data is

invariably much larger than two (or three), signi�cant

distortion is unavoidable. However, because the goal of

text visualization is not necessarily the development of

an accurate representation of interdocument similari-

ties, but rather the depiction of broad (and ambigu-

ously de�ned) semantic relationships, this distortion is

generally considered acceptable.

Text vector spatialization therefore involves the �t-

ting of a model into a collection of observations.

Most text visualization systems developed to date have

employed some type of unsupervised learning algo-

rithm for this purpose. In general, the desired character-

istics of an algorithm used for text spatialization include

that it () preserves global properties of the input space,

() preserves the pairwise input distances to the greatest

extent possible, () supports out-of-sample extension

(i.e., the incremental addition of new documents), and

() has low computational and memory complexity.

Computational and memory costs are key considera-

tions, as a primary goal of text visualization is the man-

agement and interpretation of extremely large quanti-

ties of textual information.

A leading approach is to iteratively adapt the nodes

of a �xed topology mesh to the high-dimensional fea-

ture space via adaptive re�nement.�is is the basis of

the well-known Kohonen feature mapping algorithm,

more commonly referred to as the 7self-organizing
map (SOM) (Kohonen,). In a competitive learn-

ing process, text vectors are presented one at a time to

a (typically triangular) grid, the nodes of which have

been randomly initialized to points in the term space.

�e Euclidean distance to each node is computed, and

the node closest to the sample is identi�ed. �e posi-

tion of the winning node, along with those of it’s topo-

logically nearest neighbors, is incrementally adjusted

toward the sample vector.�e magnitude of the adjust-

ments is gradually decreased over time. �e process

is generally repeated using every vector in the set for

many hundreds or thousands of cycles until the mesh

converges on a solution. At the conclusion, the sam-

ples are assigned to their nearest nodes, and the results

are presented as a uniform grid. In the �nal step, the

nodes of the grid are labeledwith summary termswhich

describe the key concepts associated with the text units

that have been assigned to them.

Although self-organizing maps can be considered

primarily a clustering technique, the grid itself theoret-

ically preserves the topological properties of the input

feature space. As a consequence, samples that are near-

est neighbors in the feature space generally end up in

topologically adjacent nodes. However, while SOMs are

topology-preserving, they are not distance-preserving.

Vectors that are spatially distant in the input space

may be presented as proximal in the output, which

may be semantically undesirable. SOMs have a num-

ber of attractive characteristics, including straightfor-

ward out-of-sample extension and low computational

and memory complexity. Examples of the use of SOMs

in text visualization applications can be found in (Lin

et al., ; Kaski, Honkela, Lagus, & Kohonen, ;

Kohonen et al.,).

O�en, it is considered desirable to attempt to pre-

serve the distances among the samples in the input

space to the greatest extent possible in the output.�e

rationale is that the spatial proximities of the text vectors

capture important and meaningful characteristics of

the associated text units: spatial “nearness” corresponds

to conceptual “nearness.” As a consequence, many

text visualization systems employ distance-preserving

dimensionality reduction algorithms. By far the most

commonly used among these is the class of algo-

rithms known as multidimensional scaling (MDS)
algorithms.

Multidimensional scaling is “a term used to describe

any procedure which starts with the ‘distances’ between

a set of points (or individuals or objects) and �nds

a con�guration of the points, preferably in a smaller

number of dimensions, usually or ” ((Chat�eld &

Collins,), quoted in Chalmers & Chitson,).

�ere are two main subclasses of MDS algorithms.

Metric (quantitative, also known as classical) MDS

algorithms attempt to preserve the pairwise input dis-

tances to the greatest extent possible in the output

Text Visualization T

T

con�guration, while nonmetric (qualitative) techniques

attempt only to preserve the rank order of the distances.

Metric techniques aremost commonly employed in text

visualization.

Metric MDS maps the points in the input space to

the output space while maintaining the pairwise dis-

tances among the points to the greatest extent possi-

ble.�e quality of the mapping is expressed in a stress

function which is minimized using any of a variety

of optimization methods, e.g., via eigen decomposi-

tion of a pairwise dissimilarity matrix, or using itera-

tive techniques such as generalized Newton–Raphson,

simulated annealing, or genetic algorithms. A simple

example of a stress function is the raw stress function

(Kruskal,) de�ned by

ϕ(Y) =∑
ij

(∣∣xi − xj∣∣ − ∣∣yi − yj∣∣)

in which ∣∣xi − xj∣∣ is the Euclidean distance between
points xi and xj in the high-dimensional space, and ∣∣yi−
yj∣∣ is the distance between the corresponding points in
the output space. A variety of alternative stress func-

tions have been proposed (Cox & Cox,). In addi-

tion to its distance-preserving characteristics, MDS has

the added advantage of preserving the global proper-

ties of the input space. A major disadvantage of MDS,

however, is its high computational complexity, which is

approximately O(kN), where N is the number of data
points and k is the dimensionality of the embedding.
Although computationally expensive, MDS can be used

practically on data sets of up to several hundred docu-

ments in size. Another disadvantage is that out-of-core

extension requires reprocessing of the full data set if

an optimization method which computes the output

coordinates all at once is used.

�e popularity ofMDSmethods has led to the devel-

opment of a range of strategies for improving on its

computational e�ciency to enable scaling of the tech-

nique to text collections of larger size. One approach

is to use either cluster centroids or a randomly sam-

pled subset of input vectors as surrogates for the full

set. �e surrogates are down-projected independently

using MDS, then the remainder of the data is pro-

jected relative to this “framework” using a less expensive

algorithm, e.g., distance-based triangulation.�is is the

basis for the anchored least stress algorithm used in the

SPIRE text visualization system (York et al.,), as

well as themore recently developed LandmarkMDS (de

Silva & Tenenbaum,) algorithm.

While self-organizing maps and multidimensional

scaling techniques have received the most attention to

date, a number of other machine learning techniques

have also been used for text spatialization.�e Starlight

system (Risch et al.,) uses stochastic proximity
embedding (Agra�otis,), a high-speed nonlinear
manifold learning algorithm. Other approaches have

employed methods based on graph layout techniques

(Fabrikant,). Generally speaking, any of a num-

ber of techniques for performing dimensionality reduc-

tion in a correlated system of measurements (classi�ed

under the rubric of factor analysis in statistics) may be

employed for this purpose.

Machine learning algorithms can also be used in

text visualization for tasks other than text vector spa-

tialization. For example, generation of descriptive labels

for semantic maps requires partitioning of the text

units into related sets. Typically, a partitioning-type

7clustering algorithm such as K-means is used for

this purpose (see 7Partitional Clustering), either as an
element of the spatialization strategy (see York et al.,

), or as a postspatialization step.�e labeling pro-

cess itself may also employ machine learning algo-

rithms. For instance, the TRUST system (Booker et al.,

; Kao et al.,) employed by Starlight gener-

ates meaningful labels for document clusters using a

kind of 7unsupervised learning. By projecting a clus-
ter centroid de�ned in the reduced dimensional repre-

sentation (e.g., – dimensions) back into the full

term space, terms related to the content of the docu-

ments in the cluster are identi�ed and used as sum-

mary terms. Machine learning techniques can also be

applied indirectly during the tokenization phase of text

visualization. For example, information extraction sys-

tems commonly employ rule sets that have been gen-

erated by a supervised learning algorithm (Mooney &

Bunescu,). Such systems may be used to iden-

tify tokens that are most characteristic of the over-

all topic of a text unit, or are otherwise of interest

(e.g., the names of people or places). In this way, the

dimensionality of the input space can be drastically

reduced, accelerating downstream processing while

 T Text Visualization

simultaneously improving the quality of the resulting

visualizations.

Applications

Sammon

�e �rst text visualization system based on a text vec-

tor space model was likely a prototype developed in

the s by John Sammon’s “nonlinear mapping,” or

NLM, algorithm (today referred to as organizing text
data). �e con�guration depicted here is the result of

applying Sammon’s algorithm to a collection of doc-

uments represented as -dimensional vectors deter-

mined according to document relevance to , key

words and phrases. Among other interesting and pre-

scient ideas, Sammon describes techniques for interact-

ing with text visualizations depicted on a “CRT display”

using a light pen (Fig.).

Lin

Lin’s prototype (Lin et al.,) was one of the �rst

to demonstrate the use of self-organizingmaps for orga-

nizing text documents. Lin formed a -dimensional

vector space model of a document collection using

 key index terms extracted from the text. �e doc-

ument vectors were used to train a node feature

map, generating the result shown here (the fact that the

Text Visualization. Figure .

number of nodes matches the number of documents is

coincidental). Lin was also among the �rst to assign text

labels to various regions of the resultingmap to improve

the interpretability and utility of the resulting product

(Fig.).

BEAD

�e BEAD system (Chalmers & Chitson,) was a

text visualization prototype developed during the early

s at Rank Xerox EuroPARC. BEAD employed a

vector space model constructed using document key-

words and a hybrid MDS algorithm based on an opti-

mized form of simulated annealing. Although it did not

include a region labeling component, BEAD did sup-

port highlighting of visualization features in response to

query operations, a now standard text visualization sys-

tem feature.�e BEADproject also pioneered a number

of now common interaction techniques, andwas among

the �rst to explore D representations of document

collections (Fig.).

IN-SPIRE

IN-SPIRE (formerly SPIRE, Spatial Paradigm for Infor-

mation Retrieval and Exploration) (Wise et al.,),

was originally developed in at Paci�c North-

west National Laboratory (PNNL). Over the years, IN-

SPIRE has evolved from usingMDS, to Anchored Least

Stress, to a hybrid clustering/PCA projection scheme.

�e SPIRE/IN-SPIRE system introduced several new

concepts, including the use of a D “landscape” abstrac-

tion (called a �emeView) for depicting the general
characteristics of large text collections. A recently devel-

oped parallelized version of the so�ware is capable of

Text Visualization. Figure .

Text Visualization T

T

generating visualizations of document collections con-

taining millions of items (Fig.).

WEBSOM

WEBSOM (Kaski et al.,) was another early appli-

cation of Kohonnen self-organizing maps to text data.

Early versions of WEBSOM used an independent SOM

to generate reduced dimensionality text vectors which

were then mapped with a second SOM for visualiza-

tion purposes. More recent SOM-based text visualiza-

tion experiments have employed vectors constructed

via random projections of weighted word histograms

(Kohonen et al.,). SOMs have been used to gen-

erate semantic maps containing millions of documents

(Fig.).

Text Visualization. Figure .

Text Visualization. Figure .

Starlight

Starlight (Risch et al.,) is a general-purpose infor-

mation visualization system developed at PNNL that

includes a text visualization component. Starlight’s text

visualization system uses the Boeing Text Represen-
tation Using Subspace Transformation (TRUST) text
engine for vector space modeling and text summariza-

tion. Text vectors generated by TRUST are clustered,

and the cluster centroids are down-projected to D and

Dusing a nonlinearmanifold learning algorithm. Indi-

vidual document vectors associated with each cluster

are likewise projected within a local coordinate system

established at the projected coordinates of their asso-

ciated cluster centroid, and TRUST is used to generate

topical labels for each cluster. Starlight is unique in that

Text Visualization. Figure .

Text Visualization. Figure .

 T TF–IDF

it couples text visualization with a range of other infor-

mation visualization techniques (such as link displays)

to depict multiple aspects of information simultane-

ously (Fig.).

Cross References
7Dimensionality Reduction
7Document Classi�cation/Clustering
7Feature Selection/Construction
7Information Extraction/Visualization
7Self-Organizing Maps
7Text Preprocessing

Recommended Reading
Agrafiotis, D. K. (). Stochastic proximity embedding. Journal of

Computational Chemistry, (), –.
Berners-Lee, T., Hendler, J., & Lassila, O. (). The semantic web.

Scientific American, (), –.
Booker, A., Condliff, M., Greaves, M., Holt, F. B., Kao, A.,

Pierce, D. J., et al. (). Visualizing text data sets. Computing
in Science & Engineering, (), –.

Chalmers, M., & Chitson, P. (). Bead: Explorations in informa-

tion visualization. In SIGIR ’: Proceedings of the th annual
international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. –). New York: ACM.

Chatfield, C., & Collins, A. (). Introduction to multivariate
analysis. London: Chapman & Hall.

Cox, M. F., & Cox, M. A. A. (). Multidimensional scaling.
London: Chapman & Hall.

Crouch, D. (). The visual display of information in an informa-

tion retrieval environment. In Proceedings of the ACM SIGIR
conference on research and development in information retrieval
(pp. –). New York: ACM.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., &

Harshman, R. (). Indexing by latent semantic analy-

sis. Journal of American Society for Information Science, (),
–.

de Silva, V., & Tenenbaum, J. B. (). Global versus local meth-

ods in nonlinear dimensionality reduction. In S. Becker, S.

Thrun, & K. Obermayer (Eds.), Proceedings of the NIPS (Vol. ,
pp. –).

Doyle, L. (). Semantic roadmaps for literature searchers. Journal
of the Association for Computing Machinery, (), –.

Fabrikant, S. I. (). Visualizing region and scale in information

spaces. In Proceedings of the th international cartographic
conference, ICC (pp. –). Beijing, China.

Havre, S., Hetzler, E., Whitney, P., & Nowell, L. (). ThemeRiver:

Visualizing thematic changes in large document collections.

IEEE Transactions on Visualization and Computer Graphics,
(), –.

Huang, S., Ward, M., & Rundensteiner, E. (). Exploration
of dimensionality reduction for text visualization (Tech. Rep.
TR--). Worcester, MA: Worcester Polytechnic Institute,

Department of Computer Science.

Kao, A., Poteet, S., Ferng, W., Wu, J., & Quach, L. (). Latent

semantic indexing and beyond, to appear. In M. Song &

Y. F. Wu (Eds.), Handbook of research on text and web mining
technologies. Hershey, PA: Idea Group Inc.

Kaski, S., Honkela, T., Lagus, K., & Kohonen, T. (). WEBSOM-

self-organizing maps of document collections. Neurocomput-
ing, , –.

Kohonen, T. (). Self-organizing maps. Series in information sci-
ences (nd ed., Vol.). Heidelberg: Springer.

Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J.,

Paatero, V., et al. (). Self organization of a massive doc-

ument collection. IEEE Transactions on Neural Networks, (),
–.

Kruskal, J. B. (). Multidimensional scaling by optimizing good-

ness of fit to a nonmetric hypothesis. Psychometrika, (),
–.

Lin, X., Soergel, D., & Marchionini, D. A. (). Self-organizing

semantic map for information retrieval. In Proceedings
of the fourteenth annual international ACM/SIGIR confer-
ence on research and development in information retrieval
(pp. –). Chicago.

Mooney, R. J., & Bunescu, R. (). Mining knowledge from text

using information extraction. In K. Kao & S. Poteet (Eds.),

SigKDD explorations (pp. –).
Paulovich, F. V., Nonato, L. G., & Minghim, R. (). Visual map-

ping of text collections through a fast high precision projection

technique. In Proceedings of the tenth international conference
on information visualisation (IV’) (pp. –).

Risch, J. S., Rex, D. B., Dowson, S. T., Walters, T. B., May, R. A., &

Moon, B. D. (). The STARLIGHT information visualiza-

tion system. In S. Card, J. Mackinlay, & B. Shneiderman (Eds.),

Readings in information visualization: Using vision to think
(pp. –). San Francisco: Morgan Kaufmann.

Salton, G. (). Automatic text processing. Reading, MA: Addison-
Wesley.

Sammon, J. W. (). A nonlinear mapping for data structure

analysis. IEEE Transactions on Computer, (), –.
Small, D. (). Navigating large bodies of text. IBM Systems

Journal, (&), –.
Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M.,

Schur, A., et al. (). Visualizing the non-visual: Spatial anal-

ysis and interaction with information from text documents. In

Proceedings of the IEEE information visualization symposium ’
(pp. –). Atlanta, GA.

York, J., Bohn, S., Pennock, K., & Lantrip, D. (). Clustering

and dimensionality reduction in SPIRE. In Proceedings, sympo-
sium on advanced information processing and analysis, AIPA.
Tysons Corner, VA.

TF–IDF

TF–IDF (term frequency–inverse document frequency) is
a term weighting scheme commonly used to represent

textual documents as vectors (for purposes of classi�-

cation, clustering, visualization, retrieval, etc.). Let T =
{t,…, tn} be the set of all terms occurring in the doc-
ument corpus under consideration. �en a document

Time Series T

T

di is represented by a n-dimensional real-valued vector
xi = (xi,…, xin)with one component for each possible
term from T.

�e weight xij corresponding to term tj in docu-
ment di is usually a product of three parts: one which
depends on the presence or frequency of tj in di, one
which depends on tj’s presence in the corpus as a whole,
and a normalization part which depends on dj. �e
most common TF–IDF weighting is de�ned by xij =
TFi ⋅ IDFj ⋅ (∑j (TFijIDFj))−/, where TFij is the term
frequency (i.e., number of occurrences) of tj in di, and
IDFj is the IDF of tj, de�ned as log(N/DFj), where N
is the number of documents in the corpus and DFj

is the document frequency of tj (i.e., the number of
documents in which tj occurs).�e normalization part
ensures that the vector has a Euclidean length of .

Several variations on this weighting scheme are

also known. Possible alternatives for TFij include min

{, TFij} (to obtain binary vectors) and (+ TFij/maxj
TFij)/ (to normalize TF within the document).
Possible alternatives for IDFj include (to obtain

plain TF vectors instead of TF–IDF vectors) and log

(∑i∑k TFik/∑i TFij). �e normalization part can be
omitted altogether or modi�ed to use some other norm

than the Euclidean one.

Threshold Phenomena in Learning

7Phase Transitions in Machine Learning

Time Sequence

7Time Series

Time Series

Eamonn Keogh

University of California

Riverside, CA, USA

Synonyms
Temporal data; Time sequence; Trajectory data

Definition
A Time Series is a sequence T = (t, t,…,tn)which is an
ordered set of n real-valued numbers.�e ordering is
typically temporal; however, other kinds of data such

as color distributions (Hafner, Sawhney, Equitz, Flick-

ner, & Niblack,), shapes (Ueno, Xi, Keogh, &

Lee,), and spectrographs also have a well-de�ned

ordering and can be fruitfully considered “time series”

for the purposes of machine learning algorithms.

Motivation and Background
�e special structure of time series produces unique

challenges for machine learning researchers.

It is o�en the case that each individual time series

object has a very high dimensionality. Whereas classic

algorithms o�en assume a relatively low dimensional-

ity (for example, a few dozen measurements such as

“height, weight, blood sugar,” etc.), time series learning

algorithms must be able to deal with dimensionalities

in hundreds or thousands. �e problems created by

high-dimensional data are more than mere computa-

tion time considerations; the very meaning of normally

intuitive terms, such as “similar to” and “cluster form-

ing,” become unclear in high-dimensional space. �e

reason for this is that as dimensionality increases, all

objects become essentially equidistant to each other

and thus classi�cation and clustering lose their mean-

ing. �is surprising result is known as the 7curse of
dimensionality and has been the subject of extensive
research. �e key insight that allows meaningful time

series machine learning is that although the actual

dimensionality may be high, the intrinsic dimension-
ality is typically much lower. For this reason, virtually

all time series data mining algorithms avoid operat-

ing on the original “raw” data; instead, they consider

some higher level representation or abstraction of the

data. Such algorithms are known as 7dimensionality
reduction algorithms. �ere are many general dimen-
sionality reduction algorithms, such as singular value

decomposition and random projections, in addition

to many reduction algorithms speci�cally designed for

time series, including piecewise liner approximations,

Fourier transforms, wavelets, and symbol approxima-

tions (Ding, Trajcevski, Scheuermann,Wang, & Keogh,

).

In addition to the high dimensionality of individual

time series objects, many time series datasets have very

 T Topic Mapping

high numerosity, resulting in a large volume of data.

One implication of high numerosity combined with the

high dimensionality of this is that the entire dataset

may not �t in main memory.�is requires an e�cient

disk-aware learning algorithm or a careful sampling
approach.

A �nal consideration due to the special nature

of time series is the fact that individual datapoints

are typically highly correlated with their neighbors

(a phenomenon known as autocorrelation). Indeed, it
is this correlation that makes most time series excellent

candidates for dimensionality reduction. However, for

learning algorithms that assume the independence of

features (i.e., 7Naïve Bayes), this lack of independence
must be countered or mitigated in some way.

While virtually every machine learning method has

been used to classify time series, the current state-of-

the-artmethod is the nearest neighbor algorithm (Ueno

et al.,) with a suitable distance measure (Ding

et al.,).�is simple method outperforms neutral

networks and Bayesian classi�ers.

�e major database (SIGMOD, VLDB, PODS) and

data mining (SIGKDD, ICDM, SDM) conferences

typically feature several time series machine learn-

ing/data mining papers each year. In addition, because

of the ubiquity of time series, several other commu-

nities have active subgroups that conduct research on

time series; for example, the SIGGRAPH conference

typically has papers on learning or indexing or motion

capture time series, and most medical conferences have

tracks devoted to medical time series, such as electro-

cardiograms and electroencephalograms.

�e UCR Time Series Archive has several dozen

time series datasets which are widely used to test clas-

si�cation and clustering algorithms, and the UCI Data

Mining archive has several additional datasets.

Recommended Reading
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E.

A. (). Querying and mining of time series data: Experi-

mental comparison of representations and distance measures.

In Proceeding of the VLDB. VLDB Endowment.
Hafner, J., Sawhney, H., Equitz, W., Flickner, M., & Niblack, W.

(). Efficient color histogram indexing for quadratic form

distance functions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (), –.

Ueno, K., Xi, X., Keogh, E., & Lee, D. (). Anytime classi-

fication using the nearest neighbor algorithm with applica-

tions to stream mining. In Proceedings of IEEE international

conference on data mining (ICDM).

Topic Mapping

7Text Visualization

Topology of a Neural Network

RistoMiikkulainen

�e University of Texas at Austin

Austin, TX, USA

Synonyms
Connectivity; Neural network architecture; Structure

Definition
Topology of a neural network refers to the way the

7Neurons are connected, and it is an important fac-
tor in network functioning and learning. A com-

mon topology in unsupervised learning is a direct

mapping of inputs to a collection of units that rep-

resents categories (e.g., 7Self-organizing maps). �e
most common topology in supervised learning is the

fully connected, three-layer, feedforward network (see

7Backpropagation, Radial Basis Function Networks).
All input values to the network are connected to all

neurons in the hidden layer (hidden because they are

not visible in the input or the output), the outputs of

the hidden neurons are connected to all neurons in the

output layer, and the activations of the output neurons

constitute the output of the whole network. Such net-

works are popular partly because theoretically they are

known to be universal function approximators (with

e.g., a sigmoid or gaussian nonlinearity in the hid-

den layer neurons), although in practice networks with

more layers may be easier to train (see 7Cascade Cor-
relation, Deep Belief Networks). Layered networks can

be extended to processing sequential input and/or out-

put by saving a copy of the hidden layer activations

and using it as additional input to the hidden layer in

the next time step (see 7Simple Recurrent Networks).

Training Examples T

T

Fully recurrent topologies, where each neuron is con-

nected to all other neurons (and possibly to itself) can

also be used to model time-varying behavior, although

such networks may be unstable and di�cult to train

(e.g., with backpropagation; but see also 7Boltzmann
Machines). Modular topologies, where di�erent parts

of the networks perform distinctly di�erent tasks, can

improve stability and can also be used to model high-

level behavior (e.g.,7Reservoir Computing,7Adaptive
Resonance �eory). Whatever the topology, in most

cases, learning involves modifying the 7Weights on
the network connections. However, arbitrary network

topologies are possible as well and can be constructed

as part of the learning (e.g. with backpropagation or

7Neuroevolution) to enhance feature selection, recur-
rent memory, abstraction, or generalization.

Trace-Based Programming

Pierre Flener ,, Ute Schmid

Sabancı University, Orhanlı, Tuzla,

İstanbul, Turkey
Uppsala University

Uppsala, Sweden
University of Bamberg

Bamberg, Germany

Synonyms
Programming from traces; Trace-based programming

Definition
Trace-based programming addresses the inference of

a program from a small set of example computation

traces.�e induced program is typically a recursive pro-

gram. A computation trace is a nonrecursive expression
that describes the transformation of some speci�c input

into the desired output with help of a prede�ned set of

primitive functions. While the construction of traces is

highly dependent on background knowledge or even on

knowledge about the program searched for, the induc-

tive7generalization is based on syntactical methods of
detecting regularities and dependencies between traces,

as proposed in classical approaches to 7inductive pro-
gramming (see Example of that encyclopedia entry) or

7explanation-based learning (EBL). As an alternative
to providing traces by hand-simulation, AI planning

techniques or7programming by demonstration (PBD)
can be used.

Cross References
7Inductive Programming
7Programming by Demonstration

Recommended Reading
Biermann, A. W. (). On the inference of Turing machines from

sample computations. Artificial Intelligence, (), –.
Schmid, U., & Wysotzki, F. (). Induction of recursive pro-

gram schemes. In Proceedings of the tenth european conference
on machine learning (ECML): Lecture notes in artificial
intelligence (Vol. , pp. –). Berlin: Springer.

Schrödl, S., & Edelkamp, S. (). Inferring flow of control in pro-

gram synthesis by example. In Proceedings of the rd annual
german conference on artificial intelligence (KI): Lecture
notes in artificial intelligence (Vol. , pp. –). Berlin:
Springer.

Shavlik, J. W. (). Acquiring recursive and iterative concepts with

explanation-based learning. Machine Learning, , –.
Wysotzki, F. (). Representation and induction of infinite con-

cepts and recursive action sequences. In Proceedings of the
eighth international joint conference on artificial intelligence
(IJCAI) (pp. –). San Mateo, CA: Morgan Kaufmann.

Training Curve

7Learning Curves in Machine Learning

Training Data

Synonyms
Training examples; Training instances; Training set

Definition
Training data are data to which a7learner is applied.

Training Examples

7Training Data

 T Training Instances

Training Instances

7Training Data

Training Set

Synonyms
Training data

Definition
A training set is a 7data set containing data that are
used for learning by a 7learning system. A training
set may be divided further into a 7growing set and a
7pruning set.

Cross References
7Data Set
7Training Data

Training Time

A learning algorithm is typically applied at two distinct

times. Training time refers to the time when an algo-

rithm is learning a model from 7training data. 7Test
time refers to the time when an algorithm is applying

a learned model to make predictions. 7Lazy learning
usually blurs the distinction between these two times,

deferring most learning until test time.

Trait

7Attribute

Trajectory Data

7Time Series

Transductive Learning

7Semi-Supervised Learning
7Semi-Supervised Text Processing

Transfer of Knowledge Across
Domains

7Inductive Transfer

Transition Probabilities

In a7Markov decision process, the transition probabil-
ities represent the probability of being in state s′ at time
t + , given you take action a from state s at time t for all
s, a and t.

Tree Augmented Naive Bayes

Fei Zheng, Geoffrey I. Webb

Monash University

Synonyms
TAN

Definition
Tree augmented naive Bayes is a7semi-naive Bayesian
Learning method. It relaxes the 7naive Bayes attribute
independence assumption by employing a tree struc-

ture, in which each attribute only depends on the class

and one other attribute. A maximum weighted span-

ning tree that maximizes the likelihood of the training

data is used to perform classi�cation.

Classification with TAN
Interdependencies between attributes can be addressed

directly by allowing an attribute to depend on other

non-class attributes. However, techniques for learning

unrestricted 7Bayesian networks o�en fail to deliver
lower zero-one loss than naive Bayes (Friedman,Geiger,

& Goldszmidt,). One possible reason for this is

that full Bayesian networks are oriented toward opti-

mizing the likelihood of the training data rather than

the conditional likelihood of the class attribute given

a full set of other attributes. Another possible reason

is that full Bayesian networks have high variance due

Tree Mining T

T

Y

NB

X1 X2 Xi Xi+1 Xn

Y

TAN

X1 X2 Xi Xi+1 Xn

Tree Augmented Naive Bayes. Figure . Bayesian net-

work examples of the forms of model created by NB and

TAN

to the large number of parameters estimated. An inter-

mediate alternative technique is to use a less restrict

structure than naive Bayes. Tree augmented naive Bayes

(TAN) (Friedman et al.,) employs a tree structure,

allowing each attribute to depend on the class and at

most one other attribute. Figure shows Bayesian net-

work representations of the types of model that NB and

TAN respectively create.

Chow and Liu () proposed a method that e�-

ciently constructs a maximum weighted spanning tree

which maximizes the likelihood that the training data

was generated from the tree.�eweight of an edge in the

tree is themutual information of the two attributes con-

nected by the edge. TAN extends this method by using

conditional mutual information as weights. Since the

selection of root does not a�ect the log-likelihood of the

tree, TAN randomly selects a root attribute and directs

all edges away from it.�e parent of each attribute Xi

is indicated as π(Xi) and the parent of the class is ∅.
It assumes that attributes are independent given the

class and their parents and classi�es the test instance

x = ⟨x, . . . , xn⟩ by selecting

argmax
y

P̂(y) ∏
≤i≤n

P̂(xi ∣ y, π(xi)), ()

where π(xi) is a value of π(Xi) and y is a class label.

Due to the relaxed attribute independence assump-

tion, TAN considerably reduces the 7bias of naive
Bayes at the cost of an increase in7variance. Empirical
results (Friedman et al.,) show that it substan-

tially reduces zero-one loss of naive Bayes on many

data sets and that of all data sets examined it achieves

lower zero-one loss than naive Bayes more o�en

than not.

Cross References
7Averaged One-Dependence Estimators
7Bayesian Network
7Naive Bayes
7Semi-Naive Bayesian Learning

Recommended Reading
Chow, C. K., & Liu, C. N. (). Approximating discrete probabil-

ity distributions with dependence trees. IEEE Transactions on
Information Theory, , –.

Friedman, N., Geiger, D., & Goldszmidt, M. (). Bayesian net-

work classifiers. Machine Learning, (), –.

Tree Mining

Siegfried Nijssen

Katholieke Universiteit Leuven,

Belgium

Definition
Tree mining is an instance of constraint-based pattern

mining and studies the discovery of tree patterns in

data that is represented as a tree structure or as a set

of trees structures. Minimum frequency is the most

studied constraint.

Motivation and Background
Tree mining is motivated by the availability of many

types of data that can be represented as tree struc-

tures.�ere is a large variety in tree types, for instance,

ordered trees, unordered trees, rooted trees, unrooted

(free) trees, labeled trees, unlabeled trees, and binary

trees; each of these has its own application areas.

An example are trees in tree banks, which store sen-

tences annotated with parse trees. In such data, it is

 T Tree Mining

not only of interest to �nd commonly occurring sets

of words (for which frequent itemset miners could be

used), but also to �nd commonly occurring parses of

these words. Tree miners aim at �nding patterns in this

structured information. �e patterns can be interest-

ing in their own right, or can be used as features in

classi�cation algorithms.

Structure of Problem
All tree miners share a similar problem setting. �eir

input consists of a set of trees and a set of con-

straints, usually a minimum frequency constraint, and

their output consists of all subtrees that ful�ll the

constraints.

Tree miners di�er in the constraints that they are

able to deal with, and the types of trees that they operate

on.�e following types of trees can be distinguished:

Free trees, which are graphs without cycles, and no
order on the nodes or edges;

Unordered trees, which are free trees in which one
node is chosen to be the root of the tree;

Ordered trees, which are rooted trees in which the
nodes are totally ordered.

For each of these types of tree, we can choose to have

labels on the nodes, or on the edges, or on both.

�e di�erences between these types of trees are

illustrated in Fig. . Every graph in this �gure can be

interpreted as a free tree Fi, an unordered tree Ui, or

an ordered tree Ti. When interpreted as ordered trees,

none of the trees are equivalent. When we interpret

them as unordered trees, U and U are equivalent rep-
resentations of the same unordered tree that has B as

its root and C and D as its children. Finally, as free
trees, not only F and F are equivalent, but also F
and F.
Intuitively, a free tree requires less speci�cation than

an ordered tree. �e number of possible free trees is

smaller than the number of possible ordered trees. On

the other hand, to test if two trees are equivalent we

need a more elaborate computation for free trees than

for ordered trees.

Assume that we have data represented as (a set of)

trees, then the data mining problem is to �nd patterns,

represented as trees, that ful�ll constraints based on this

data. To express these constraints, we need a coverage

relation that expresses when one tree can be considered

to occur in another tree.Di�erent coverage relations can

be expressed for free trees, ordered trees, and unordered

trees. We will introduce these relations through opera-

tions that can be used to transform trees. As an example,

consider the operation that removes a leaf from a tree.

We can repeatedly apply this operation to turn a large

tree into a smaller one. Given two trees A and B, we say
that A occurs in B as

Induced subtree, ifA can be obtained fromB by repeat-
edly removing leaves from B. When dealing with
rooted trees, the root is here also considered to be

a leaf if it has one child;

Root-induced subtree, if A can be obtained from B
by repeatedly removing leaves from B. When deal-
ing with rooted trees, the root is not allowed to be

removed;

Embedded subtree, if A can be obtained from B by
repeatedly either () removing a leaf or () remov-

ing an internal node, reconnecting the children of

A

B E

C D

T , U , F

B

C D
T1 , U1 , F1

B

D C
T2 , U2 , F2

A

E

T3 , U3 , F3

A

D E
T4 , U4 , F4

B

A C D
T5 , U5 , F5

A

B D
T6 , U6 , F6

A

B

C D

T7 , U7 , F7

Tree Mining. Figure . The leftmost tree is part of the data, the other trees could be patterns in this tree, depending on

the subtree relation that is used

Tree Mining T

T

the removed node with the parent of the removed

node;

Bottom-up subtree, if there is a node v in B such that if
we remove all nodes fromB that are not a descendant
of v, we obtain A;

Pre�x, if A can be obtained from B by repeatedly
removing the last node from the ordered tree B;

Leaf set, if A can be obtained from B by selecting a set
of leaves from B, and all their ancestors in B.

For free trees, only the induced subtree relation is well-

de�ned. A pre�x is only well-de�ned for ordered trees,

the other relations apply both to ordered and unordered

trees. In the case of unordered trees, we assume that

each operation maintains the order of the original

tree B.�e relations are also illustrated in Fig. .
Intuitively, we can speak of occurrences (also called

embeddings by some authors) of a small tree in a larger
tree. Each such occurrence (or embedding) can be

thought of as a function φ that maps every node in the
small tree to a node in the large tree.

Using an occurrence relation, we can de�ne fre-

quency measures. Assume given a forest F of trees, all

T
re

e

In
du

ce
d

E
m

be
dd

ed

R
oo

t-
In

du
ce

d

B
ot

to
m

-u
p

P
re

fix

L
ea

f-
se

t

T1

T2

T3

T4

T5

T6

T7

yes yes no yes no no
no no no no no no
yes yes yes no no yes
no yes no no no no
no no no no no no
no no no no no no
yes yes yes no yes yes

T
re

e

In
du

ce
d

E
m

be
dd

ed

R
oo

t-
In

du
ce

d

B
ot

to
m

-u
p

L
ea

f-
se

t

U1 yes yes no yes no
U2 yes yes no yes no
U3 yes yes yes no yes
U4 no yes no no no
U5 no no no no no
U6 no no no no no
U7 yes yes yes no yes

T
re

e

In
du

ce
d

F1 yes
F2 yes
F3 yes
F4 no
F5 yes
F6 no
F7 yes

Tree Mining. Figure . Relations between the trees of

Fig.

ordered, unordered, or free.�en the frequency of a tree

A can be de�ned

Transaction-based, where we count the number of
trees B ∈ F such that A is a subtree of B;

Node-based, where we count the number of nodes v in
F such that A is a subtree of the bottom-up subtree
below v.

Node-based frequency is only applicable in rooted trees,

in combination with the root-induced, bottom-up, pre-

�x, or leaf set subtree relations.

Given a de�nition of frequency, constraints on trees

of interest can be expressed:

Minimum frequency, to specify that only trees with
a certain minimum number of occurrences are of

interest;

Closedness, to specify that a tree is only of interest if its
frequency is di�erent from all its supertrees;

Maximality, to specify that a tree is only of interest if
none of its supertrees is frequent.

Observe that in all of these constraints, the subtree rela-

tion is again important.�e subtree relation is not only

used to compare patterns with data, but also patterns

among themselves.

�e tree mining problem can now be stated as fol-

lows. Given a forest of trees F (ordered, unordered, or
free) and a set of constraints, based on a subtree rela-

tion, the task is to �nd all trees that satisfy the given

constraints.

Theory/Solution
�e treemining problem is an instance of themore gen-

eral problem of constraint-based pattern mining under

constraints. For more information about the general

setting, see the sections on constraint-based mining,

itemset mining, and graph mining.

All algorithms iterate a process of generating can-

didate patterns, and testing if these candidates satisfy

the constraints. Essential is to avoid that every possible

tree is considered as a candidate. To this purpose, the

algorithms exploit that many frequency measures are

anti-monotonic.�is property states that for two given

 T Tree Mining

trees A and B, where A is a subtree of B, if A is infre-
quent, then also B is infrequent, and therefore, we do
not need to consider it as a candidate.

�is observation canmake it possible to �nd all trees

that satisfy the constraints, if these requirements are

ful�lled:

● We have an algorithm to enumerate candidate sub-

trees, which satis�es these properties:

– It should be able to enumerate all trees in the

search space;

– It should avoid that no two equivalent subtrees

are listed;

– It should only list a tree a�er at least one of

its subtrees has been listed, to exploit the anti-

monotonicity of the frequency constraint;

● We have an algorithm to e�ciently compute in how

many database trees a pattern tree occurs.

�e algorithmic solutions to these problems depend on

the type of tree and the subtree relation.

Encoding and Enumerating Trees

We will �rst consider how tree miners internally repre-

sent trees. Two types of encodings have been proposed,

both of which are string-based. We will illustrate these

encodings for node-labeled trees, and start with ordered
trees.

�e �rst encoding is based on a preorder listing of
nodes: () for a rooted ordered tree T with a single ver-
tex r, the preorder string of T is ST ,r = lr − , where lr
is the label for the single vertex r, and () for a rooted
ordered tree T withmore than one vertex, assuming the
root of T is r (with label lr) and the children of r are
r, . . . , rK from le� to right, then the preorder string for
T is ST ,r = lrST ,r⋯ST ,rK − , where ST ,r , . . . , ST ,rK are
the preorder strings for the bottom-up subtrees below

nodes r, . . . , rK in T.
�e second encoding is based on listing the depths

of the nodes together with their labels in pre�x-order.

�e depth of a node v is the length of the path from
the root to the node v. �e code for a tree is ST ,r =
drlrST ,r⋯ST ,rK , where dr is the depth of the node r in
tree T.
Both encodings are illustrated in Fig. .

Tree Depth-sequence Preorder string

T ABD AB-D-

T ABCD ABC-D---

T ABCDE ABC-D--E-

T ADE AD-E--

T AE AE--

T BACD BA-C-D--

T BCD BC-D--

T BDC BD-C--

Tree Mining. Figure . Depth sequences for all the trees

of Fig. , sorted in lexicographical order. Tree T is

the canonical form of unordered tree U, as its depth

sequence is the highest among equivalent representa-

tions

A search space of trees can be visualized as in Fig. .

In this �gure, every node corresponds to the depth

encoding of a tree, while the edges visualize the partial

order de�ned by the subtree relation. It can be seen that

the number of induced subtree relations between trees is

smaller than the number of embedded subtree relations.

�e task of the enumeration algorithm is to traverse

this search space starting from trees that contain only

one node.Most algorithms perform the search by build-

ing an enumeration tree over the search space. In this

enumeration tree every pattern should have a single par-

ent.�e children of a pattern in the enumeration tree

are called its extensions or its re�nements. An example
of an enumeration tree for the induced subtree relation

is given in Fig. .

In the enumeration tree that is given here, the parent

of a tree is its pre�x in the depth encoding. An alterna-

tive de�nition is that the parent of a tree can be obtained

by removing the last node in a pre�x order traversal

of the ordered tree. Every re�nement in the enumera-

tion has one additional node that is connected to the

rightmost path of the parent.
�e enumeration problem is more complicated for

unordered trees. In this case, the trees represented by
the strings AAB and ABA are equivalent, and we

Tree Mining T

T

1A 1B

1A2A 1A2B 1B2A 1B2B

1A2A2A

1A2A3A

1A2A2B 1A2A3B1A2B2A

1A2B2B

1A2B3A 1A2B3B

.

Induced/Embedded Subtree
Embedded Subtree only

Tree Mining. Figure . A search space of ordered trees, where edges denote subtree relationships

1A 1B

1A2A 1A2B 1B2A 1B2B

1A2A2A

1A2A3A

1A2A2B 1A2A3B1A2B2A

1A2B2B

1A2B3A 1A2B3B

.

Tree Mining. Figure . Part of an enumeration tree for the search space of Fig.

only wish to enumerate one of these strings. �is can

be achieved by de�ning a total order on all strings that

represent trees, and to de�ne that only the highest (or

lowest) string of a set of equivalent strings should be

considered.

For depth encodings, the ordering is usually lexi-

cographical, and the highest string is chosen to be the

canonical encoding. In our example, ABA would be
canonical. �is code has the desirable property that

every pre�x of a canonical code is also a canonical code.

Furthermore it can be determined in polynomial time

which extensions of a canonical code lead to a canon-

ical code, such that it is not necessary to consider any

code that is not canonical.

Alternative codes have also been proposed, which

are not based on a preorder, depth-�rst traversal of

a tree, but on a level-wise listing of the nodes in

a tree.

Finally, for free treeswe have the additional problem
that we de not have a root for the tree. Fortunately, it is

known that every free tree either has a uniquely deter-

mined center or a uniquely determined bicenter. �is
(bi)center can be found by determining the longest path

between two nodes in a free tree: the node(s) in themid-

dle of this path are the center of the tree. It can be shown

that if multiple paths have the same maximal length,

they will have the same (bi)center. By appointing one

center to be the root, we obtain a rooted tree, for which

we can compute a code.

To avoid that two codes are listed that represent

equivalent free trees, several solutions have been pro-

posed. One is based on the idea of �rst enumerat-

ing paths (thus �xing the center of a tree), and for

each of these paths enumerating all trees that can be

grown around them. Another solution is based on enu-

merating all rooted, unordered trees under the con-

straint that at least two di�erent children of the root

have a bottom-up subtree of equal, maximal depth.

In the �rst approach, a preorder depth encoding was

used; in the second approach a level-wise encoding

was used.

Counting Trees

To evaluate the frequency of a tree the subtree rela-

tion between a candidate pattern tree and all trees

in the database has to be computed. For each of our

subtree relations, polynomial algorithms are known

to decide the relation, which are summarized in

Table .

 T Tree Mining

Tree Mining. Table Worst case complexities of the best known algorithms that determine whether a tree relation

holds between two trees; m is the number of nodes in the pattern tree, l is the number of leafs in the pattern tree,

n the number of nodes in the database tree

Ordered

Embedding O(nl)

Induced O(nm)

Root-induced O(n)

Leaf-set O(n)

Bottom-up O(n)

Pre�x O(m)

Unordered

Embedding NP-complete

Induced O(nm / logm)

Root-induced O(nm / logm)

Leaf-set O(nm / logm)

Bottom-up O(n)

Even though a subtree testing algorithm and an

algorithm for enumerating trees are su�cient to com-

pute all frequent subtrees correctly, in practice �ne-

tuning is needed to obtain an e�cient method. �ere

are two reasons for this:

● In some databases, the number of candidates can

by far exceed the number of trees that are actually

frequent. One way to reduce the number of candi-

dates is to only generate a particular candidate a�er

we have encountered at least one occurrence of it in

the data (this is called pattern growth); another way
is to require that a candidate is only generated if at

least two of its subtrees satisfy the constraints (this

is called pattern joining).
● �e trees in the search space are very similar to each

other: a parent only di�ers from its children by the

absence of a single node. If memory allows, it is

desirable to reuse the subtree matching information,
instead of starting the matching from scratch.

A large number of data structures have been proposed

to exploit these observations. We will illustrate these

ideas using the FreqT algorithm, whichmines induced,

ordered subtrees, and uses a depth encoding for the

trees.

In FreqT, for a given pattern tree A, a list of
(database tree, database node) pointers is stored. Every
element (B, v) in this list corresponds to an occurrence

of treeA in tree B in which the last node (in terms of the
preorder) of A is mapped to node v in database tree B.
For a database and three example trees this is illustrated

in Fig. .

Every tree in the database is stored as follows. Every

node is given an index, and for every node, we store

the index of its parent, its righthand sibling, and its �rst

child.

Let us consider how we can compute the occur-

rences of the subtree ABB from the occurrences of
the tree AB. �e �rst occurrence of AB is (t,),
which means that the B labeled node can be mapped to
node in t. Using the arrays that store the database tree,
we can then conclude that node , which is the right-

hand sibling of node , corresponds to an occurence

of the subtree ABB.�erefore, we add (t,) to the
occurrence list of ABB. Similarly, by scanning the
data we �nd out that the �rst child of node corre-

sponds to an occurrence of the subree ABC, and we
add (t,) to the occurrence list of ABC.
Overall, using the parent, sibling and child point-

ers we can scan every node in the data that could

correspond to a valid expansion of the subtree AB,
and update the corresponding lists. A�er we have done

this for every occurrence of the subtree, we know the

occurrence lists of all possible extensions.

From an occurrence list we can determine the fre-

quency of a tree. For instance, the transaction-based

frequency can be computed by counting the number of

di�erent database trees occurring in the list.

Tree Mining T

T

A

B B

DC E

t1

A

B B

DC

E

t2

2

1 1

6

3 4 5

2

3

4

6

5

Node
Label A B C D E B
Parent

1 2 3 4 5 6

- 1 2 2 2 1
Sibling - 6 4 5 - -
Child 2 3 - - - -

A

A

B

A

BB

(t1,1)(t2,1)

(t1,2)(t1,6)(t2,2)(t2,6)

(t1,6)(t2,6)

Tree Mining. Figure . A tree database (left) and three ordered trees with their occurrence lists according to the FreqT

algorithm (right). The datastructure that stores t in FreqT is given in the table (right)

As we claimed, this example illustrates two features

that are commonly seen in tree miners: �rst, the occur-

rence list of one tree is used to compute the occurrence

list of another tree, thus reusing information; second,

the candidates are collected from the data by scanning

the nodes that connect to the occurrence of a tree in the

data. Furthermore, this example illustrates that a careful

design of the datastructure that stores the data can ease

the frequency evaluation considerably.

FreqT does not perform pattern joining.�e most

well-known example of an algorithm that performs

tree joining is the embedded TreeMiner (Zaki,).

Both the FreqT and the TreeMiner perform the search

depth-�rst, but also tree miners that use the traditional

level-wise approach of theApriori algorithmhave been

proposed. �e FreqT and the TreeMiner have been

extended to unordered trees.

Other Constraints

As the number of frequent subtrees can be very large,

approaches have been studied to reduce the number of

trees returned by the algorithm, of which closed and

maximal trees are the most popular. To �nd closed or

maximal trees, two issues need to be addressed:

● How do we make sure that we only output a tree if it

is closed or maximal, that is, how do we determine

that none of its supertrees has the same support, or

is frequent?

● Can we conclude that some parts of the search space

will never contain a closed or maximal tree, thus

making the search more e�cient?

Two approaches can be used to address the �rst issue:

● All closed patterns can be stored, and every new pat-

tern can be compared with the stored set of patterns;

● When we evaluate the frequency of a pattern in the

data, we also (re)evaluate the frequency of all its pos-

sible extensions, and only output the pattern if its

support is di�erent.

�e second approach requires less memory, but in some

cases requires more computations.

To prune the search space, a common approach is

to check all occurrences of a tree in the data. If every

occurrence of a tree can be extended into an occurrence

of another tree, the small tree should not be considered,

and the search should continue with the tree that con-

tains all common edges and nodes. Contrary to graph

mining, it can be shown that this kind of pruning can

safely be done in most cases.

Applications
Examples of databases to which tree mining algorithms

have been applied are

Parse tree analysis: Since the early s large Tree-
bank datasets have been collected consisting of

 T Tree Mining

sentences and their grammatical structure. An

example is the Penn TreeBank (Marcus, Santorini,

& Marcinkiewicz,). �ese databases contain

rooted, ordered trees. To discover di�erences in

domain languages it is useful to compare commonly

occurring grammatical constructions in two di�er-

ent sets of parsed texts, for which tree miners can be

used (Sekine,).

Computer network analysis: IP multicast is a protocol
for sending data tomultiple receivers. In an IPmulti-

cast session a webserver sends a packet once; routers

copy a packet if two di�erent routes are required to

reach multiple receivers. During a multicast session

rooted trees are obtained in which the root is the

sender and the leaves are the receivers. Commonly

occurring patterns in the routing data can be dis-

covered by analyzing these unordered rooted trees

(Chalmers & Almeroth,).

Webserver access log analysis: Whenusers browse aweb-
site, this behavior is re�ected in the access log �les

of the webserver. Servers collect information such as

the webpage that was visited, the time of the visit,

and the webpage that was clicked to reach the web-

page.�e access logs can be transformed into a set

of ordered trees, each of which corresponds to a vis-

itor. Nodes in these trees correspond to webpages;

edges are inserted if a user browses from one web-

page to another. Nodes are ordered in viewing order.

A tool was developed to perform this transformation

in a sensible way (Punin, Krishnamoorthy, & Zaki,

).

Phylogenetic trees: One of the largest tree databases cur-
rently under construction is the TreeBASE database,

which is comprised of a large number of phyloge-

netic trees (Morell,).�e trees in the TreeBASE

database are submitted by researchers and are col-

lected from publications. Originating from multiple

sources, they can disagree on parts of the phylo-

genetic tree. To �nd common agreements between

the trees, tree miners have been used (Zhang &

Wang,). �e phylogenetic trees are typically

unordered; labels among siblings are unique.

Hypergraph mining: Hypergraphs are graphs in which
one edge can have more than two endpoints.�ose

hypergraphs in which no two nodes share the same

label can be transformed into unordered trees, as fol-

lows. First, an arti�cial root is inserted. Second, for

each edge of the hypergraph a child node is added

to the root, labeled with the label of the hyperedge.

Finally, the labels of nodes within hyperedges are

added as leaves to the tree. An example of hyper-

graph data is bibliographic data: if each example cor-

responds to a paper, nodes in the hypergraph corre-

spond to authors cited by the paper, and hyperedges

connect coauthors of cited papers.

Multi-relational data mining : Many multi-relational
databases are tree shaped, or a tree-shaped view can

be created. For instance, a transaction database in

which every transaction is associatedwith customers

and their information, can be represented as a tree

(Berka,).

XML data mining: Several authors have stressed that
tree mining algorithms are most suitable for mining

XML data. XML is a tree–shaped data format,

and tree miners can be helpful when trying to

(re)construct Document Type De�nitions (DTDs)

for such documents.

Cross References
7Constraint-based Mining
7Graph Mining

Further Reading
�e FreqT algorithm was introduced in (Asai, Abe,

Kawasoe, Arimura, Satamoto, & Arikawa, ; Wang

& Liu, ; Zaki,).�e most popular tree miner

is the embedded tree miner by Zaki (). A more

detailed overview of tree miners can be found in Chi,

Nijssen, Muntz, and Kok (). Most implementa-

tions of tree miners are available on request from their

authors.

Recommended Reading
Asai, T., Abe, K., Kawasoe, S., Arimura, H., Satamoto, H., &

Arikawa, S. (). Efficient substructure discovery from large

semi-structured data. In Proceedings of the second SIAM inter-
national conference on data mining (pp. –). SIAM.

Berka, P. (). Workshop notes on discovery challenge PKDD-
(Tech. Rep.). Prague, Czech Republic: University of Economics.

Chalmers, R., & Almeroth, K. (). On the topology of multi-

cast trees. In IEEE/ACM transactions on networking (Vol. ,
pp. –). IEEE Press/ACM Press.

Chi, Y., Nijssen, S., Muntz, R. R., & Kok, J. N. (). Frequent

subtree mining—An overview. In Fundamenta Informaticae
(Vol. , pp. –). IOS Press.

Typical Complexity of Learning T

T

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (). Build-

ing a large annotated corpus of English: The Penn Treebank. In

Computational linguistics (Vol. , pp. –). MIT Press.
Morell, V. (). TreeBASE: The roots of phylogeny. In Science

(Vol. , p.).

Punin, J., Krishnamoorthy, M., & Zaki, M. J. (). LOGML—log

markup language for web usage mining. In WEBKDD —
mining web log data across all customers touch points. Third
international workshop. Lecture notes in artificial intelligence
(Vol. , pp. –). Springer.

Sekine, S. (). Corpus-based parsing and sublanguages studies.
Ph.D. dissertation. New York University, New York.

Wang, K., & Liu, H. (). Discovering typical structures of docu-

ments: A road map approach. In Proceedings of the st annual
international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. –). ACM Press.

Zaki, M. J. (). Efficiently mining frequent trees in a forest.

In Proceedings of the th international conference knowledge
discovery and data mining (KDD) (pp. –). ACM Press.

Zhang, S., & Wang, J. (). Frequent agreement subtree mining.

http://aria.njit.edu/mediadb/fast/.

Tree-Based Regression

7Regression Trees

True Negative

True negatives are the negative examples that are
correctly classi�ed by a classi�cation model. See

7confusion matrix for a complete range of related
terms.

True Negative Rate

7Speci�city

True Positive

True positives are the positive examples that are correctly
classi�ed by a classi�cation model. See 7confusion
matrix for a complete range of related terms.

True Positive Rate

7Sensitivity

Type

7Class

Typical Complexity of Learning

7Phase Transitions in Machine Learning

U

Underlying Objective

�e term objectiveused inEvolutionaryMulti-Objective
Optimization refers to an indicator of quality return-
ing an element from an ordered set of scalar values,
such as a real number. For any test-based coevolution-
ary problem, a set of underlying objectives exists such
that knowledge of the objective values of an individual
is su�cient to determine the outcomes of all possible
tests.�e existence of a set of underlying objectives is
guaranteed, as the set of possible tests itself satis�es this
property.

Unit

7Neuron

Universal Learning Theory

MarcusHutter
Australian National University, Canberra, Australia

Definition, Motivation, and Background
Universal (machine) learning is concerned with the
development and study of algorithms that are able
to learn from data in a very large range of environ-
ments with as few assumptions as possible. �e class
of environments typically considered includes all com-
putable stochastic processes. �e investigated learn-
ing tasks range from 7inductive inference, sequence
prediction, sequential decisions, to (re)active problems
like 7reinforcement learning (Hutter,), but also
include 7clustering, 7regression, and others (Li &
Vitányi,). Despite various no-free-lunch theorems

(Wolpert & Macready,), universal learning is pos-
sible by assuming that the data possess some e�ective
structure, but without specifying any further, which
structure. Learning algorithms that are universal (at
least to some degree) are also necessary for develop-
ing autonomous general intelligent systems, required,
for example, for exploring other planets, as opposed
to decision support systems which keep a human in
the loop. �ere is also an intrinsic interest in striv-
ing for generality: Finding new learning algorithms
for every particular (new) problem is possible but
cumbersome and prone to disagreement or contra-
diction. A sound, formal, general and ideally com-
plete theory of learning can unify existing approaches,
guide the development of practical learning algo-
rithms, and last but not least lead to novel and deep
insights.

Deterministic Environments
Let t,n ∈ IN be natural numbers, X ∗ be the set of �nite
strings and X∞ be the set of in�nite sequences over
some alphabet X of size ∣X ∣. For a string x ∈ X ∗ of
length ℓ(x) = n we write xx . . . xn with xt ∈ X , and
further abbreviate xt:n := xtxt+ . . . xn−xn and x<n :=
x . . . xn−, and є = x< for the empty string. Consider a
countable class of hypothesesM = {H,H, . . .}. Each
hypothesisH ∈M (also called model) shall describe an
in�nite sequence xH:∞, for example, like in IQ test ques-
tions “, , , ,….” In online learning, for t = , , , . . .,
we predict xt based on past observations ẋ<t , then
nature reveals ẋt , and so on, where the dot above x
indicates the true observation. We assume that the true
hypothesis is inM, that is, ẋ:∞ = xHm

:∞ for somem ∈ IN.
Goal is to (“quickly”) identify the unknown Hm from
the observations.

Learning by enumeration works as follows: LetMt =

{H ∈M : xH<t = ẋ<t} be the set of hypotheses
consistent with our observations ẋ<t so far. �e

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 U Universal Learning Theory

hypothesis inMt with smallest index, saym′
t , is selected

and used for predicting xt .�en ẋt is observed and all
H ∈ Mt inconsistent with xt are eliminated, that is,
they are not included inMt+. Every prediction error
results in the elimination of at leastHm′t , so a�er at most
m− errors, the true hypothesisHm gets selected forever,
since it nevermakes an error (Hm ∈Mt ∀t).�is identi-
�cation may take arbitrarily long (in t), but the number
of errors on the way is bounded by m − , and the lat-
ter is o�en more important. As an example for which
the bound is attained, consider Hi with xHi

:∞ :=
f (i)∞

∀i for any strictly increasing function f , for example,
f (i) = i. But we now show that we can do much better
than this, at least for �nite X .

Majority learning:
Consider (temporarily in this paragraph only) a

binary alphabet X = {, } and a �nite deterministic
hypothesis classM = {H, H, . . . , HN}. Hm andMt

are as before, but now we take a majority vote among
the hypotheses inMt as our prediction of xt . If the pre-
diction turns out to be wrong, then at least half (the
majority) of the hypotheses get eliminated fromMt .
Hence a�er at most logN errors, there is only a single
hypothesis, namely Hm, le� over. So this majority pre-
dictor makes at most logN errors. As an example where
this bound is essentially attained, consider m = N =

n − and let xHi
:∞ be the digits a�er the comma of the

binary expansion of (i −)/n for i = , . . . ,N.

Weighted majority for countable classes:
Majority learning can be adapted to denumerable

classes M and general �nite alphabet X as follows:
Each hypothesis Hi is assigned a weight wi > with
∑i wi ≤ . LetW := ∑i:Hi∈Mt

wi be the total weight of
the hypotheses inMt . LetMa

t := {Hi ∈Mt : xHi
t = a}

be the consistent hypotheses predicting xt = a, and
Wa their weight, and take the weighted majority pre-
diction xt = argmaxaWa. Similarly as above, a predic-
tion error decreases W by a factor of − /∣X ∣, since
maxaWa ≥ W/∣X ∣. Since wm ≤ W ≤ , this algorithm
can at most make log−/∣X ∣wm = O (logw−m) predic-
tion errors. If we choose, for instance, wi = (i +)−,
the number of errors is O(logm), which is an expo-
nential improvement over the Gold-style learning by
enumeration above.

Algorithmic Probability
Algorithmic probability has been founded by
Solomono� ().�e so-called universal probability
or a-priori probability is the key quantity for univer-
sal learning. Its philosophical and technical roots are
7Ockham’s razor (choose the simplest model consis-
tent with the data), Epicurus’ principle of multiple
explanations (keep all explanations consistent with
the data), (Universal) Turing machines (to compute,
quantify and assign codes to all quantities of inter-
est), and Kolmogorov complexity (to de�ne what
simplicity/complexity means). �is section considers
deterministic computable sequences, and the next
section the general setup of computable probability
distributions.

(Universal) monotone Turing machines: Since we con-
sider in�nite computable sequences, we need devices
that convert input data streams to output data streams.
For this we de�ne the following variants of a classi-
cal deterministic Turing machine: A monotone Turing
machine T is de�ned as a Turingmachine with one uni-
directional input tape, one unidirectional output tape,
and some bidirectional work tapes. �e input tape is
binary (no blank) and read only; the output tape is
over �nite alphabet X (no blank) and write only; uni-
directional tapes are those where the head can only
move from le� to right; work tapes are initially �lled
with zeros and the output tape with some �xed element
from X . We say that monotone Turing machine T out-
puts/computes a string starting with x on input p, and
write T(p) = x∗ if p is to the le� of the input head
when the last bit of x is output (T reads all of p but no
more).Tmay continue operation and need not halt. For
a given x, the set of such p forms a pre�x code. Such
codes are called minimal programs. Similarly, we write
T(p) = ω if p outputs the in�nite sequence ω. A pre�x
code P is a set of binary strings such that no element
is proper pre�x of another. It satis�es Kra�’s inequality
∑p∈P −ℓ(p) ≤ .

�e table of rules of a Turing machine T can be
pre�x encoded in a canonical way as a binary string,
denoted by ⟨T⟩. Hence, the set of Turing machines
{T, T, . . .} can be e�ectively enumerated.�ere are
so-called universal Turingmachines that can “simulate”
all other Turing machines. We de�ne a particular one
which simulates monotone Turing machine T(q) if fed

Universal Learning Theory U

U

with input ⟨T⟩q, that is, U(⟨T⟩q) = T(q) ∀T, q. Note
that for p not of the form ⟨T⟩q, U(p) does not out-
put anything. We call this particular U the reference
universal Turing machine.

Universal weighted majority learning: T(є),T(є), . . .
constitutes an e�ective enumeration of all �nite and
in�nite computable sequences, hence also monotone
U(p) for p ∈ {, }∗. As argued below, the class
of computable in�nite sequences is conceptually very
interesting. �e halting problem implies that there is
no recursive enumeration of all partial-recursive func-
tions with in�nite domain; hence we cannot remove the
�nite sequences algorithmically. It is very fortunate that
we don’t have to. Hypothesis Hp is identi�ed with the
sequence U(p), which may be �nite, in�nite, or possi-
bly even empty. �e class of considered hypotheses is
M := {Hp : p ∈ {, }∗}.

�e weightedmajority algorithm also needs weights
wp for each Hp. Ockham’s razor combined with Epi-
curus’ principle demand to assign a high (low) prior
weight to a simple (complex) hypothesis. If complexity
is identi�ed with program length, then wp should be a
decreasing function of ℓ(p). It turns out thatwp = −ℓ(p)

is the “right” choice, sinceminimal p forms a pre�x code
and therefore∑p wp ≤ as required.
UsingHp for prediction can now fail in twoways.Hp

maymake a wrong prediction or no prediction at all for
xt .�e true hypothesis Hm is still assumed to produce
an in�nite sequence.�e weighted majority algorithm
in this setting makes at most O (logw−p) = O(ℓ(p))
errors. It is also plausible that learning ℓ(p) bits requires
O(ℓ(p)) “trials.”

Universalmixtureprediction: Solomono� () de�ned
the following universal a-priori probability

M(x) := ∑
p:U(p)=x∗

−ℓ(p). ()

�at is, M(x) = W is the total weight of the
computable deterministic hypotheses consistent with
x for the universal weight choice wp = −ℓ(p).
�e universal weighted majority algorithm predicted
argmaxa M(ẋ<ta). Instead, one could also make a
probability prediction M(a∣ẋ<t) := M(ẋ<ta)/M(ẋ<t),
which is the relative weight of hypotheses inMt pre-
dicting a.�e higher the probability M(ẋt ∣ẋ<t) that is

assigned to the true next observation ẋt , the better. Con-
sider the absolute prediction error ∣ −M(ẋt ∣ẋ<t)∣ and
the logarithmic error − logM(ẋt ∣ẋ<t). �e cumulative
logarithmic error is bounded by∑n

t= − logM(ẋt ∣ẋ<t) =
− logM(ẋ:n) ≤ ℓ(p) for any program p that prints ẋ∗.
For instance, p could be chosen as the shortest
one printing ẋ:∞, which has length Km(ẋ:∞) :=
min{ℓ(p) : U(p) = ẋ:∞}. Using − z ≤ − log z and
letting n→∞ we get

∞
∑
t=

∣ −M(ẋt ∣ẋ<t)∣ ≤
∞
∑
t=
− logM(ẋt ∣ẋ<t) ≤ Km(ẋ:∞).

Hence again, the cumulative absolute and logarithmic
errors are bounded by the number of bits required to
describe the true environment.

Universal Bayes
�e exposition so far has dealt with deterministic envi-
ronments only. Data sequences produced by real-world
processes are rarely as clean as IQ test sequences.
�ey are o�en noisy.�is section deals with stochastic
sequences sampled from computable probability dis-
tributions. �e developed theory can be regarded as
an instantiation of Bayesian learning. Bayes’ theorem
allows to update beliefs in face of new information but is
mute about how to choose the prior and themodel class
to begin with. Subjective choices based on prior knowl-
edge are informal, and traditional “objective” choices
like Je�rey’s prior are not universal. Machine learn-
ing, the computer science branch of statistics, devel-
ops (fully) automatic inference and decision algorithms
for very large problems. Naturally, machine learning
has (re)discovered and exploited di�erent principles
(Ockham’s and Epicurus’) for choosing priors, appro-
priate for this situation. �is leads to an alternative
representation of universal probability as a mixture
over all lower semi-computable semimeasureswithKol-
mogorov complexity-based prior as described below.

Bayes

Sequences ω = ω:∞ ∈ X∞ are now assumed to be
sampled from the “true” probability measure µ, that is,
µ(x:n) := P[ω:n = x:n∣µ] is the µ-probability that
ω starts with x:n. Expectations w.r.t. µ are denoted
by E. In particular for a function f : X n → IR,
we have E[f] = E[f (ω:n)] = ∑x:n µ(x:n)f (x:n).

 U Universal Learning Theory

Note that in Bayesian learning, measures, environ-
ments, and models are the same objects; let M =

{ν, ν, . . .} ≡ {Hν ,Hν , . . .} denotes a countable
class of these measures≡hypotheses. Assume that µ is
unknown but known to be a member ofM, and wν :=
P[Hν] is the given prior belief inHν .�en the Bayesian
mixture

ξ(x:n) := P[ω:n = x:n]

= ∑
ν∈M

P[ω:n = x:n∣Hν]P[Hν]

≡ ∑
ν∈M

ν(x:n)wν

must be our a-priori belief in x:n, and P[Hν ∣ω:n =

x:n] = wνν(x:n)/ξ(x:n) be our posterior belief in ν by
Bayes’ rule.

Universal Choice ofM
Next, we need to �nd a universal class of environments
MU . Roughly speaking, Bayes’ works if M contains
the true environment µ.�e largerM, the less restric-
tive is this assumption. �e class of all computable
distributions, although only countable, is pretty large
from a practical point of view, since it includes, for
instance, all of today’s valid physics theories. (Finding
a non-computable physical system would indeed over-
turn the generally accepted Church-Turing thesis.) It is
the largest class, relevant from a computational point of
view. Solomono� (, Eq. ()) de�ned and studied
the mixture over this class.
One problem is that this class is not (e�ec-

tively = recursively) enumerable, since the class of
computable functions is not enumerable due to the
halting problem, nor is it decidable whether a func-
tion is a measure. Hence ξ is completely incomputable.
Leonid Levin (Zvonkin & Levin,) had the idea
to “slightly” extend the class and include also lower
semi-computable semimeasures.
A function ν : X ∗ → [,] is called a semimeasure

i� ν(x) ≥ ∑a∈X ν(xa)∀x ∈ X ∗. It is a proper prob-
ability measure i� equality holds and ν(є) = . ν(x)
still denotes the ν-probability that a sequence starts with
string x. A function is called lower semi-computable,
if it can be approximated from below. Similarly to the
fact that the class of partial recursive functions is recur-
sively enumerable, one can show that the classMU =

{ν, ν, . . .} of lower semi-computable semimeasures

is recursively enumerable. In some sense MU is the
largest class of environments for which ξ is in some
sense computable, but even larger classes are possible
(Schmidhuber,).

Kolmogorov Complexity

Before we can turn to the prior wν , we need to quantify
complexity/simplicity. Intuitively, a string is simple if it
can be described in a few words, like “the string of one
million ones,” and is complex if there is no such short
description, like for a random object whose shortest
description is specifying it bit by bit.We are interested in
e�ective descriptions, and hence restrict decoders to be
Turing machines. One can de�ne the pre�x Kolmogorov
complexity of string x as the length ℓ of the shortest
halting program p for which U outputs x:

K(x) := min
p

{ℓ(p) : U(p) = x halts}.

Simple strings like … can be generated by short
programs, and hence have low Kolmogorov complex-
ity, but irregular (e.g., random) strings are their own
shortest description, and hence have high Kolmogorov
complexity. For non-string objects o (like numbers and
functions) one de�nes K(o) := K(⟨o⟩), where ⟨o⟩ ∈ X ∗

is some standard code for o. In particular,K(νi) = K(i).
To be brief, K is an excellent universal complexity

measure, suitable for quantifying Ockham’s razor.

The Universal Prior

Wecan nowquantify a prior biased toward simplemod-
els. First, we quantify the complexity of an environment
ν or hypothesisHν by its Kolmogorov complexityK(ν).
�e universal prior should be a decreasing function in
the model’s complexity, and of course sum to (less than)
one. Since ∑x −K(x) ≤ by the pre�x property and
Kra�’s inequality, this suggests the choice

wν = wU
ν :=

−K(ν). ()

Since log i ≤ K(νi) ≤ log i + log logi for “most” i, most
νi have prior approximately reciprocal to their index i as
also advocated by Je�reys and Rissanen.

Representations

Combining the universal classMU with the universal
prior , we arrive at the universal mixture

ξU(x) := ∑
ν∈MU

−K(ν)ν(x) ()

Universal Learning Theory U

U

which has remarkable properties. First, it is itself a lower
semi-computable semimeasure, that is ξU ∈MU , which
is very convenient. Note that for most classes, ξ /∈M.
Second, ξU coincides with M within an irrelevant

multiplicative constant, andM ∈MU .�is means that
themixture over deterministic computable sequences is
as rich as themixture over themuch larger class of semi-
computable semimeasures.�e intuitive reason is that
the probabilistic semimeasures are in the convex hull of
the deterministic ones, and therefore need not be taken
extra into account in the mixture.

�ere is another, possibly the simplest, representa-
tion: One can show thatM(x) is equal to the probability
that U outputs a string starting with x when provided
with uniform random noise on the program tape. Note
that a uniform distribution is also used in many no-
free-lunch theorems to prove the impossibility of uni-
versal learners, but in our case the uniform distribution
is piped through a universal Turing machine, which
defeats these negative implications as we will see in the
next section.

Applications
In the stochastic case, identi�cation of the true hypoth-
esis is problematic.�e posterior P[H∣x] may not con-
centrate around the true hypothesisHµ if there are other
hypotheses Hν that are not asymptotically distinguish-
able from Hµ . But even if model identi�cation (induc-
tion in the narrow sense) fails, predictions, decisions, and
actions can be good, and indeed, for universal learning
this is generally the case.

Universal Sequence Prediction

Given a sequence xx . . . xt−, we want to predict its
likely continuation xt . We assume that the strings which
have to be continued are drawn from a computable
“true” probability distribution µ. �e maximal prior
information a prediction algorithm can possess is the
exact knowledge of µ, but o�en the true distribution
is unknown. Instead, prediction is based on a guess
ρ of µ. Let ρ(a∣x) := ρ(xa)/ρ(x) be the “predictive”
ρ-probability that the next symbol is a ∈ X , given
sequence x ∈ X ∗. Since µ ∈ MU it is natural to use
ξU orM for prediction.
Solomono� ’s (Hutter, ; Solomono�,) cel-

ebrated result indeed shows that M converges to µ.

For general alphabet it reads

∞
∑
t=

E [∑
a∈X

(M(a∣ω<t) − µ(a∣ω<t))

]

≤ K(µ) ln +O(). ()

Analogous bounds hold for ξU and for other than the
Euclidean distance, for example, the Hellinger and the
absolute distance and the relative entropy.
For a sequence a, a, . . . of random variables,

∑
∞
t= E [at] ≤ c < ∞ implies at → for t → ∞

with µ-probability (w.p.). Convergence is rapid in the
sense that the probability that at exceeds ε > at more
than c/εδ times is bounded by δ. �is might loosely
be called the number of errors. Hence Solomono� ’s
bounds implies

M(xt ∣ω<t) − µ(xt ∣ω<t)Ð→ for any xt rapid w.p.

for t →∞.

�e number of times M deviates from µ by more
than ε > is bounded by O(K(µ)), that is, propor-
tional to the complexity of the environment, which
is again reasonable. A counting argument shows that
O(K(µ)) errors for most µ are unavoidable. No other
choice for wν would lead to signi�cantly better bounds.
Again, in general it is not possible to determine when
these “errors” occur. Multi-step lookahead convergence
M(xt:nt ∣ω<t) − µ(xt:nt ∣ω<t) → even for unbounded
lookahead nt − t ≥ , relevant for delayed sequence
prediction and in reactive environments, can also be
shown.
In summary, M is an excellent sequence predictor

under the only assumption that the observed sequence
is drawn from some (unknown) computable probability
distribution. No ergodicity, stationarity, or identi�abil-
ity or other assumption is required.

Universal Sequential Decisions

Predictions usually form the basis for decisions and
actions, which result in some pro�t or loss. Let ℓxtyt ∈
[,] be the received loss for decision yt ∈ Y when xt ∈
X turns out to be the true tth symbol of the sequence.
�e ρ-optimal strategy

yΛρ
t (ω<t) := argmin

yt
∑
xt

ρ(xt ∣ω<t)ℓxtyt ()

 U Universal Learning Theory

minimizes the ρ-expected loss. For instance, if we can
decide among Y = {sunglasses, umbrella} and it turns
out to be X = {sun, rain}, and our personal loss matrix
is ℓ = (

. .
. .), then Λρ takes yΛρ

t = sunglasses if
ρ(rain∣ω<t) < / and an umbrella otherwise. For X =

Y and – loss ℓxy = for x = y and else, Λρ predicts
the most likely symbol yΛρ

t = argmaxa ρ(a∣ω<t) as in
Sect. .

�e cumulative µ(=true)-expected loss of Λρ for the
�rst n symbols is

LossΛρ
n :=

n

∑
t=

E [ℓωtyΛρ
t (ω<t)] ≡

n

∑
t=
∑
x:t

µ(x:t)ℓxtyΛρ
t (x<t).

If µ is known, Λµ obviously results in the best decisions
in the sense of achieving minimal expected loss among
all strategies. For the predictor ΛM based on M (and
similarly ξU), one can show

√
LossΛM

n −
√
LossΛµ

n ≤
√
K(µ) ln +O() ()

�is implies that LossΛM
n /LossΛµ

n → for LossΛµ
n →

∞, or if LossΛµ
∞ is �nite, then also LossΛM

∞ < ∞. �is
shows that M (via ΛM) also performs excellent from a
decision-theoretic perspective, that is, su�ers loss only
slightly larger than the optimal Λµ strategy.
One can also show that ΛM is pareto-optimal

(admissible) in the sense that every other predictor with
smaller loss than ΛM in some environment ν ∈ MU

must be worse in another environment.

Universal Classification and Regression

�e goal of classi�cation and regression is to infer
the functional relationship f : Y → X from data
{(y, x), . . . , (yn, xn)}. In a predictive online setting
one wants to “directly” infer xt from yt given (y<t , x<t)
for t = , , , �e universal induction framework
has to be extended by regarding y:∞ as independent
side-information presented in the form of an oracle or
extra tape information or extra parameter. �e con-
struction has to ensure that x:n depends only on y:n but
is (functionally or statistically) independent of yn+:∞.
First, we augment a monotone Turingmachine with

an extra input tape containing y:∞.�e Turingmachine
is called chronological if it does not read beyond y:n
before x:n has been written. Second, semimeasures

ρ = µ, ν,M, ξU are extended to ρ(x:n∣y:∞), that is, one
semimeasure ρ(⋅∣y:∞) for each y:∞ (no distribution
over y is assumed). Any such semimeasure must be
chronological in the sense that ρ(x:n∣y:∞) is indepen-
dent of yt for t > n, hence we can write ρ(x:n∣y:n). In
classi�cation and regression, ρ is typically (condition-
ally) i.i.d., that is, ρ(x:n∣y:n) = ∏

n
t= ρ(xt ∣yt), which

is chronological, but note that the Bayesian mixture
ξ is not i.i.d. One can show that the class of lower
semi-computable chronological semimeasuresM∣

U =

{ν(⋅∣⋅), ν(⋅∣⋅), . . .} is e�ectively enumerable.
�e generalized universal a-priori semimeasure also

has two equivalent de�nitions:

M(x:n∣y:n) := ∑
p:U(p,y:n)=x:n

−ℓ(p)

= ∑
ν∈M

−K(ν)ν(x:n∣y:n) ()

which is again inM∣
U . In case of ∣Y ∣ = , this reduces

to () and ().�e bounds () and () and others con-
tinue to hold, now for all individual ys, that is, M pre-
dicts asymptotically xt from yt and (y<t , x<t) for any y,
provided x is sampled from a computable probability
measure µ(⋅∣y:∞). Convergence is rapid if µ is not too
complex.

Universal Reinforcement Learning

�e generalized universal a-priori semimeasure () can
be used to construct a universal reinforcement learning
agent, called AIXI. In reinforcement learning, an agent
interacts with an environment in cycles t = , , . . . ,n. In
cycle t, the agent chooses an action yt (e.g., a limbmove-
ment) based on past perceptions x<t and past actions y<t .
�erea�er, the agent perceives xt ≡ otrt , which con-
sists of a (regular) observation ot (e.g., a camera image)
and a real-valued reward rt .�e reward may be scarce,
for example, just + (−) for winning (losing) a chess
game, and at all other times.�en the next cycle t +
starts.�e goal of the agent is to maximize its expected
reward over its lifetime n. Probabilistic planning deals
with the situation in which the environmental proba-
bility distribution µ(x:n∣y:n) is known. Reinforcement
learning deals with the case of unknown µ. In univer-
sal reinforcement learning, the unknown µ is replaced

Universal Learning Theory U

U

by M similarly to the prediction, decision, and classi-
�cation cases above.�e universally optimal action in
cycle t is (Hutter,)

yt := argmax
yt
∑
xt
. . . max

yn
∑
xn

[rt +⋯ + rn]M(x:n∣y:n).

()

�e expectations (Σ) and maximizations (max) over
future x and y are interleaved in chronological order to
form an expectimax tree similarly to minimax decision
trees in extensive zero-sum games like chess. Optimal-
ity and universality results similar to the prediction case
exist.

Approximations and Practical Applications

Since K andM are only semi-computable, they have to
be approximated in practice. For instance, − logM(x) =
K(x) + O(log l(x)), and K(x) can be and has been
approximated by o�-the-shelf compressors like Lempel-
Ziv and successfully applied to a plethora of clustering
problems (Cilibrasi & Vitányi,). �e approxima-
tions upper-bound K(x) and, for example, for Lempel-
Ziv converge to K(x) if x is sampled from a context tree
source.�e 7Minimum Description Length principle
(Grünwald,) also attempts to approximate K(x)
for stochastic x.�e Context Tree Weighting algorithm
considers a relatively large subclass ofMU that can be
summed over e�ciently.�is can be and has been com-
bined withMonte-Carlo sampling to e�ciently approx-
imate AIXI (Veness, Ng, Hutter, & Silver,).�e
time-bounded versions ofK andM, namely Levin com-
plexity Kt and the speed prior S have also been applied
to various learning tasks (Gaglio,).

Other Applications

Continuously parameterized model classes are very
common in statistics. Bayesian’s usually assume a-prior
density over some parameter θ ∈ IRd, which works �ne
for many problems, but has its problems. Even for con-
tinuous classesM, one can assign a (proper) universal
prior (not density) wU

θ :=
−K(θ) > for computable θ

(and νθ), and for uncomputable ones.�is e�ectively
reduces M to a discrete class {νθ ∈M : wU

θ > } ⊆

MU which is typically dense inM.�ere are various
fundamental philosophical and statistical problems and
paradoxes around (Bayesian) induction, which nicely

disappear in the universal framework. For instance,
universal induction has no zero and no improper
p(oste)rior problem, that is, can con�rm universally
quanti�ed hypotheses, is reparametrization and repre-
sentation invariant, and avoids the old-evidence and
updating problem, in contrast to most classical contin-
uous prior densities. It even performs well in incom-
putable environments, actually better than the latter
(Hutter,).

Discussion and Future Directions
Universal learning is designed to work for a wide range
of problems without any a-priori knowledge. In prac-
tice, we o�en have extra information about the prob-
lem at hand, which could and should be used to guide
the forecasting. One can incorporate it by explicating
all our prior knowledge z, and place it on an extra
input tape of our universal Turing machine U, or pre-
�x our observation sequence x by z and useM(zx) for
prediction.
Another concern is the dependence of K andM on

U.�e good news is that a change of U changes K(x)
only within an additive and M(x) within a multiplica-
tive constant independent of x.�is makes the theory
practically immune to any “reasonable” choice of U for
large data sets x, but predictions for short sequences
(shorter than typical compiler lengths) can be arbitrary.
One solution is to take into account our (whole) scien-
ti�c prior knowledge z (Hutter,), and predicting
the now long string zx leads to good (less sensitive to
“reasonable” U) predictions. �is is a kind of grand
transfer learning scheme. It is unclear whether a more
elegant theoretical solution is possible.
Finally, the incomputability of K and M prevents a

direct implementation of Solomono� induction. Most
fundamental theories have to be approximated for prac-
tical use, sometimes systematically like polynomial time
approximation algorithms or numerical integration,
and sometimes heuristically like in many AI-search
problems or in non-convex optimization problems.
Universal machine learning is similar, except that its
core quantities are only semi-computable.�is makes
them o�en hard, but as described in the previous sec-
tion, not impossible, to approximate.
In any case, universal induction can serve as a “gold

standard” which practitioners can aim at. Solomono� ’s

 U Unknown Attribute Values

theory considers the class of all computable (stochas-
tic) models, and a universal prior inspired by Ockham
and Epicurus, quanti�ed by Kolmogorov complexity.
�is leads to a universal theory of induction, predic-
tion, decisions, and, by including Bellman, to universal
actions in reactive environments. Future progress on the
issues above (incorporating prior knowledge, getting
rid of the compiler constants, and �nding better approx-
imations) will lead to new insights and will continually
increase the number of applications.

Cross References
7Bayes Rule
7Bayesian Methods
7Bayesian Reinforcement Learning
7Classi�cation
7Data Set
7Discriminative Learning
7Hypothesis Space
7Inductive Inference
7Loss
7Minimum Description Length
7On-line Learning
7Prior Probability
7Reinforcement Learning
7Time Series

Recommended Reading
Cilibrasi, R., & Vitányi, P. M. B. (). Clustering by compression.

IEEE Transactions on Information Theory, (), –.
Gaglio, M. (). Universal search. Scholarpedia, (), .
Grünwald, P. D. (). The minimum description length principle.

Cambridge: The MIT Press.
Hutter, M. (). Universal artificial intelligence: Sequential deci-

sions based on algorithmic probability. Berlin: Springer.
Hutter, M. (). Human knowledge compression prize. open

ended, http://prize.hutter.net/.
Hutter, M. (). On universal prediction and Bayesian confirma-

tion. Theoretical Computer Science, (), –.
Li, M., & Vitányi, P. M. B. (). An introduction to Kolmogorov

complexity and its applications (rd ed.). Berlin: Springer.
Schmidhuber, J. (). Hierarchies of generalized Kolmogorov

complexities and nonenumerable universal measures com-
putable in the limit. International Journal of Foundations of
Computer Science, (), –.

Solomonoff, R. J. (). A formal theory of inductive inference:
Parts and . Information and Control, , – and –.

Solomonoff, R. J. (). Complexity-based induction systems:
Comparisons and convergence theorems. IEEE Transactions on
Information Theory, IT-, –.

Veness, J., Ng, K. S., Hutter, M., & Silver, D. (). Reinforce-
ment learning via AIXI approximation. In Proceedings of th
AAAI conference on artificial intelligence, Atlanta. AAAI Press.
–.

Wolpert, D. H., &Macready, W. G. (). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation,
(), –.

Zvonkin, A. K., & Levin, L. A. (). The complexity of finite
objects and the development of the concepts of information
and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, (), –.

Unknown Attribute Values

7Missing Attribute Values

Unknown Values

7Missing Attribute Values

Unlabeled Data

Unlabeled data are 7data for which there are no tar-
get values. Unlabeled data are used in 7unsupervised
learning.�ey stand in contrast to labeled data that have
target values and are used in7supervised learning.

Unsolicited Commercial Email
Filtering

7Text Mining for Spam Filtering

Unstable Learner

An unstable learner produces large di�erences in gen-
eralization patterns when small changes are made to its
initial conditions.�e obvious initial condition is the set
of training data used – for an unstable learner, sampling

Utility Problem U

U

a slightly di�erent training set produces a large di�er-
ence in testing behavior. Some models can be unstable
in additional ways, for example 7neural networks are
unstable with respect to the initial weights. In general
this is an undesirable property – high sensitivity to
training conditions is also known as high 7variance,
which results in higher overall mean squared error.�e
�exibility enabled by being sensitive to data can thus be
a blessing or a curse. Unstable learners can however be
used to an advantage in 7ensemble learning methods,
where large variance is “averaged out” across multiple
learners.
Examples of unstable learners are: neural networks

(assuming gradient descent learning), and 7decision
trees. Examples of stable learners are 7support vec-
tor machines, 7K-nearest neighbor classi�ers, and
7decision stumps. It should of course be recognized
that there is a continuum between “stable” and “unsta-
ble,” and the opinion ofwhether something is “sensitive”
to initial conditions is somewhat of a subjective one. See
also 7bias-variance decomposition for a more formal
interpretation of this concept.

Unsupervised Learning

Unsupervised learning refers to any machine learning
process that seeks to learn structure in the absence of
either an identi�ed output (cf. 7supervised learning)
or feedback (cf. 7reinforcement learning). �ree typ-
ical examples of unsupervised learning are7clustering,
7association rules, and7self-organizing maps.

Unsupervised Learning on
Document Datasets

7Document Clustering

Utility Problem

7Explanation-Based Learning

V

Value Function Approximation

Michail G. Lagoudakis
Technical University of Crete

Synonyms
Approximate Dynamic Programming, Neuro-dynamic
Programming, Cost-to-go Function Approximation

Definition
�e goal in sequential decision making under uncer-
tainty is to �nd good or optimal policies for selecting
actions in stochastic environments in order to achieve a
long term goal; such problems are typically modeled as
7Markov Decision Processes (MDPs). A key concept
in MDPs is the value function, a real-valued function
that summarizes the long-term goodness of a decision
into a single number and allows the formulation of opti-
mal decisionmaking as an optimization problem. Exact
representation of value functions in large real-world
problems is infeasible, therefore a large body of research
has been devoted to value function approximationmeth-
ods, which sacri�ce some representation accuracy for
the sake of scalability.�ese approaches have delivered
e�ective approaches to deriving good policies in hard
decision problems and laid the foundation for e�cient
reinforcement learning algorithms, which learn good
policies in unknown stochastic environments through
interaction.

Motivation and Background
Markov Decision Processes

A Markov Decision Process (MDP) is a six-tuple
(S ,A,P ,R, γ,D), where S is the state space of the
process, A is a �nite set of actions, P is a Markovian
transition model (P(s′∣s, a) denotes the probability of
a transition to state s′ when taking action a in state s),
R is a reward function (R(s, a) is the reward for tak-
ing action a in state s), γ ∈ (,] is the discount factor

for future rewards (a reward received a�er t steps is
weighted by γt), and D is the initial state distribution
(Puterman,). MDPs are discrete-time processes.
�e process begins at time t = in some state s ∈ S
drawn from D. At each time step t, the decision maker
observes the current state of the process st ∈ S and
chooses an action at ∈ A.�e next state of the process
st+ is drawn stochastically according to the transition
modelP(st+∣st , at) and the reward rt at that time step is
determined by the reward functionR(st , at).�e hori-
zon h is the temporal extent of each run of the process
and is typically in�nite. A complete run of the process
over its horizon is called an episode and consists of a long
sequence of states, actions, and rewards:

s
aÐÐÐÐ→
r

s
aÐÐÐÐ→
r

s...sh−
ah−ÐÐÐÐ→
rh−

sh.

�e quantity of interest is the expected total dis-
counted reward from any state s:

E (r + γr + γr + γr + ⋅ ⋅ ⋅ + γhrh ∣ s = s)

= E(
h

∑
t=

γtrt ∣ s = s) ,

where the expectation is taken with respect to all
possible trajectories of the process in the state space
under the decisions made and the transition model,
assuming that the process is initialized in state s. �e
goal of the decision maker is to make decisions so
that the expected total discounted reward, when s is
drawn from D, is optimized. (�e optimization objec-
tive could be maximization or minimization depending
on the problem. Here, we adopt a reward maximization
viewpoint, but there are analogous de�nitions for cost
minimization.�ere are also other popular optimality
measures, such as maximization/minimization of the
average reward/cost per step.)

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 V Value Function Approximation

Policies

A policy dictates how the decision maker chooses
actions in each state. A stationary, deterministic policy
π is a mapping π : S ↦ A from states to actions; π(s)
denotes the action the agent takes in state s. In this case,
there is a single action choice for each state, and this
choice does not change over time. In contrast, a station-
ary, stochastic policy π is a mapping π : S ↦ Ω(A),
where Ω(A) is the set of all probability distributions
over A. Stochastic policies are also called so�, for they
do not commit to a single action per state; π(a∣s) stands
for the probability of choosing action a in state s under
policy π. Each policy π (deterministic or stochastic) is
characterized by the expected total discounted reward
it accumulates during an episode. An optimal policy π∗

for anMDP is a policy thatmaximizes the expected total
discounted reward from any state s ∈ S . It is well-known
that for every MDP there exists at least one, not nec-
essarily unique, optimal policy, which is stationary and
deterministic.

Value Functions

�e quality of any policy π can be quanti�ed formally
through a value function, which measures the expected
return of the policy under di�erent process initializa-
tions. For any MDP and any policy π, the state value
function V assigns a numeric value to each state. �e
value Vπ(s) of a state s under a policy π is the expected
return, when the process starts in state s and the deci-
sionmaker follows policy π (all decisions at all steps are
made according to π):

Vπ(s) = Eat∼π ; st∼P ; rt∼R (
∞
∑
t=

γtrt ∣ s = s) .

Similarly, the state-action value function Q assigns a
numeric value to each pair (s, a) of states and actions.
�e value Qπ(s, a) of taking action a in state s under a
policy π is the expected return when the process starts
in state s, and the decision maker takes action a for the
�rst step and follows policy π therea�er:

Qπ(s, a) = Eat∼π ; st∼P ; rt∼R (
∞
∑
t=

γtrt ∣ s = s, a = a) .

�e state and the state-action value functions for a
deterministic policy π are related as follows:

Vπ(s) = Qπ (s, π(s)) .

For a stochastic policy π this relationship needs to take
into account the probability distribution over actions:

Vπ(s) = ∑
a∈A

π(a∣s)Qπ(s, a).

�e state-action value function of a policy π (either
deterministic or stochastic) can also be expressed in
terms of the state value function:

Qπ(s, a) =R(s, a) + γ ∑
s′∈S
P(s′∣s, a)Vπ(s′).

�e optimal value functions V∗ = Vπ∗ and Q∗ = Qπ∗

are the state and the state-action value functions of any
optimal policy π∗. Even if there are several distinct opti-
mal policies, they all share the same unique optimal
value functions.

Bellman Equations

Given the full MDP model, the state or the state-action
value function of any given policy can be computed by
solving a linear system formed using the linear Bell-
man equations. In general, the linear Bellman equation
relates the value of the function at any point to the val-
ues of the function at several – in fact, all – other points.
�is is achieved by separating the �rst step of an episode
from the rest and using the de�nition of the value func-
tion recursively in the next step. In particular, for any
deterministic policy π, the linear Bellman equation for
the state value function is

Vπ(s) =R(s, π(s)) + γ ∑
s′∈S
P(s′∣s, π(s))Vπ(s′),

whereas for a stochastic policy π, it becomes

Vπ(s) = ∑
a∈A

π(a∣s)(R(s, a) + γ ∑
s′∈S
P(s′∣s, a)Vπ(s′)) .

�e exactVπ values for all states can be found by solving
the (∣S ∣ × ∣S ∣) linear system that results from writing
down the linear Bellman equation for all states.
Similarly, the linear Bellman equation for the

state-action value function given any deterministic
policy π is

Qπ(s, a) =R(s, a) + γ ∑
s′∈S
P(s′∣s, a)Qπ (s′, π(s′)) ,

Value Function Approximation V

V

whereas for a stochastic policy π, it becomes

Qπ(s, a)=R(s, a)+γ∑
s′∈S
P(s′∣s, a)∑

a′∈A
π(a′∣s′)Qπ(s′, a′).

�e exact Qπ values for all state-action pairs can be
found by solving the (∣S ∣∣A∣× ∣S ∣∣A∣) linear system that
results from writing down the linear Bellman equation
for all state-action pairs.

�e unique optimal state or state-action value func-
tion can be computed even for an unknown optimal
policy π∗ using the non-linear Bellman optimality equa-
tion, which relates values of the function at di�er-
ent points while exploiting the fact that there exists
a deterministic optimal policy that achieves the max-
imum value at each point. In particular, the non-
linear Bellman optimality equation for the state value
function is

V∗(s) = max
a∈A

{R(s, a) + γ ∑
s′∈S
P(s′∣s, a)V∗(s′)} ,

whereas for the state-action value function is

Q∗(s, a) =R(s, a) + γ ∑
s′∈S
P(s′∣s, a)max

a′∈A
{Q∗(s′, a′)} .

�e functions V∗ and Q∗ can be approximated arbi-

trarily closely by the iterative application of the oper-
ator formed by the right-hand side of the equations
above (Bellman optimality operator).�is iteration is a
contraction with rate γ, so starting with any arbitrary
initialization it eventually converges to V∗ or Q∗.

Significance of Value Functions

Value functions play a critical role in sequential deci-
sion making because they address two core problems:
policy evaluation and policy improvement. Policy eval-
uation refers to the problem of quantifying the quality
of any given policy π in a given MDP. Apparently, com-
puting the value function Vπ or Qπ using the Bellman
equations provides the solution to this problem. Policy
improvement, on the other hand, refers to the problem
of deriving an improved policy π′ given any base policy
π, so that π′ is at least as good as π and possibly better.
�e knowledge of Vπ or Qπ allows for the derivation of

an improved deterministic policy π′ through a simple
one-step look-ahead maximization procedure:

π′(s) = arg
a∈A
max{R(s, a) + γ ∑

s′∈S
P(s′∣s, a)Vπ(s′)}

π′(s) = arg
a∈A
max {Qπ(s, a)} .

Note that this maximization does not need the MDP
model when using the state-action value function. Once
policy evaluation and policy improvement have been
addressed, the derivation of an optimal policy for any
MDP is straightforward. One can alternate between
policy evaluation and policy improvement producing
a sequence of improving policies until convergence to
an optimal policy; this algorithm is known as policy
iteration. Alternatively, one can iteratively compute an
optimal value functionV∗ orQ∗ and extract an optimal
policy through a trivial step of policy improvement on
top of V∗ or Q∗; this algorithm is known as value iter-
ation. In either case, value functions provide the means
to the end.

�e problem of deriving an optimal policy using
the full MDP model is known as planning. Neverthe-
less, in many real-world sequential decision domains
the model is unknown. �e problem of optimal deci-
sion making in an unknown stochastic environment
is known as reinforcement learning, because the deci-
sion maker relies on the feedback received through
interaction with the environment to reinforce or dis-
courage past decisions. More speci�cally, the learner
interacts with an unknownMDP and typically observes
the state of the process and the immediate reward at
every step, however P and R are not accessible. At
each step of interaction, the learner observes the current
state s, chooses an action a, and observes the resulting
next state s′ and the reward received r, thus learning
is based on (s, a, r, s′) samples. �e core problems in
reinforcement learning are known as prediction and
control. Prediction refers to the problem of learning
the value function of a given policy π in an unknown
MDP through interaction. Well-known algorithms for
the prediction problem are Monte-Carlo Estimation
andTemporal Di�erence (TD) learning. Control, on the
other hand, refers to the problem of gradually learn-
ing a good or even optimal policy in an unknown
MDP through interaction. Well-known algorithms for
the control problem are SARSA and Q-learning. Again,

 V Value Function Approximation

value functions play a critical role in reinforcement
learning; they are absolutely necessary for the predic-
tion problem and themajority of control approaches are
value-function-based.

Structure of Learning System

Value Function Approximation

Most algorithms for planning or learning in MDPs
rely on computing or learning a value function. How-
ever, if the state space of the process is fairly large,
the exact (tabular) representation of a value function
becomes problematic. Not only does memory space
become insu�cient very quickly, but also computing or
learning accurately all the distinct entries of the func-
tion requires a tremendous amount of computation and
data.�is is known as the7curse of dimensionality: the
exponential growth of the state or action space as a func-
tion of the dimensionality of the state or action. �e
urgent need for solutions to large real-world sequential
decision problems has drawn attention to approximate
methods. �ese methods use function approximation
techniques for approximating value functions, there-
fore they sacri�ce some representational accuracy in
order to make the representation manageable in prac-
tice. Sacri�cing accuracy in the representation of the
value function is acceptable, since the ultimate goal is
to �nd a good policy and not necessarily an accurate
value function. As a result, value function approxima-
tion methods cannot guarantee optimal solutions, but
only good solutions. �is is not to say that they are
doomed to always �nding suboptimal solutions; if an
optimal solution lies within the space spanned by the
value function approximation scheme, it is possible that
an optimal solution will be discovered.
Let V̂π(s;w) be an approximation to the state value

functionVπ(s) represented by a parametric approxima-
tion architecture with free parametersw.�e key idea of
value function approximation is that the parameters w
can be adjusted appropriately so that the approximate
values are “close enough” to the original values,

V̂π(s;w) ≈ Vπ(s),

and, therefore, V̂π can be used in place of the
exact value function Vπ . Similarly, let Q̂π(s, a;w) be

an approximation to the state-action value function
Qπ(s, a). Again, the goal is to adjust the parameters w
so that

Q̂π(s, a;w) ≈ Qπ(s, a),

and, therefore, Q̂π can be used in place of the exact value
functionQπ . Approximations V̂∗ and Q̂∗ of the optimal
value functions V∗ and Q∗ are de�ned similarly. �e
characterization “close enough” (≈) accepts a variety of
interpretations in this context and it does not neces-
sarily refer to the minimization of some norm. Value
function approximation should be regarded as a func-
tional approximation rather than as a pure numerical
approximation, where “functional” refers to the ability
of the approximation to play closely the functional role
of the original value function within a decision making
algorithm.

�e bene�ts of value function approximation are
obvious. �e storage requirements are much smaller
compared to the tabular case, since only the parameters
w need to be stored along with a compact description
of the functional form of the architecture. In general,
for most approximation architectures, the storage needs
are independent of the size of the state space and/or
the size of the action space. Furthermore, for most
approximation architectures there is no restriction on
the state space to be a �nite set; it could be an in�nite,
or even a continuous, space. �is �exibility neverthe-
less reveals the need for good generalization abilities on
behalf of the architecture, since the approximate value
functionwill have to provide good values over the entire
state/state-action space, using data only from a limited
subset of the space.

�e main di�culty associated with value function
approximation, beyond the loss in accuracy, is the
choice of the projection method, which is the method of
�nding appropriate parameters thatmaximize the accu-
racy of the approximation according to certain criteria
and with respect to the target function. Typically, for
ordinary function approximation, this is accomplished
using a training set of examples of the form {s,Vπ(s)},
{s,V∗(s)}, {(s, a),Qπ(s, a)}, or {(s, a),Q∗(s, a)} that
provide the true value of the target function at certain
sample points s or (s, a) (supervised learning). Unfor-
tunately, in the context of sequential decision making,
the target value function is completely unknown. Had
it been possible to compute it easily, value function

Value Function Approximation V

V

approximation would have been unnecessary. In fact,
it is not possible to analytically compute the true value
of the target value function even at certain isolated
sample points due to interdependencies between the
values at all points. �e implication of this di�culty
is that evaluation and projection to the approximation
architecture must be blended together. �is is usually
achieved by trying to �nd values for the free param-
eters so that the approximate function retains some
properties of the original exact value function. Another
implication of using approximation for value functions
is that all convergence properties of exact planning or
learning algorithms are compromised. �erefore, sig-
ni�cant attention must be paid to the choice of the
approximation architecture and the evaluation and pro-
jection method to minimize the chances for divergence
or oscillations.

Approximation Architectures

�ere is a variety of architectures available for value
function approximation: 7perceptrons, 7neural net-
works, splines, polynomials, 7radial basis functions,
7support vector machines, 7decision trees, CMACs,
wavelets, etc.�ese architectures have diverse represen-
tational power and generalization abilities and the most
appropriate choicewill heavily dependon the properties
of the decisionmaking problem at hand.�e projection
methods associated with these approximation architec-
tures are typically designed for a supervised learning
setting. For successful use in the context of decision
making, combined evaluation and projection methods
are necessary.
A broad categorization of approximation architec-

tures distinguishes between nonlinear and linear archi-
tectures. �e characterization “nonlinear” or “linear”
refers to the way the free parameters enter into the
architecture and not to the approximation ability of
the architecture. Nonlinear architectures are usually
more expressive than the linear ones, due to the com-
plex interactions among their free parameters, how-
ever tuning their parameters is a much more elaborate
task compared to tuning the parameters of their lin-
ear counterparts. Linear architectures are perhaps the
most popular choice for value function approximation;
interestingly, most theoretical results on convergence

properties in the context of value function approxima-
tion are restricted to linear architectures.
A linear approximation architecture approximates a

function Vπ(s) or Qπ(s, a) as a linear weighted combi-
nation of k basis functions (also called features):

V̂π(s;w) =
k

∑
j=

ϕj(s)wj = ϕ(s)⊺w

Q̂π(s, a;w) =
k

∑
j=

ϕj(s, a)wj = ϕ(s, a)⊺w.

�e free parameters of the architecture are the coe�-
cients wj of the combination (also called weights).�e
basis functions ϕj are �xed, but arbitrary and, in gen-
eral, nonlinear, functions of s or (s, a). It is required that
the basis functions ϕj are linearly independent to ensure
that there are no redundant parameters and that the
matrices involved in the computations are full rank. In
general, k≪ ∣S ∣ and k≪ ∣S ∣∣A∣ and the basis functions
ϕj have small compact descriptions. As a result, the stor-
age requirements of a linear approximation architecture
are much smaller than those of the tabular representa-
tion of a value function.�ere is a large variety of linear
approximation architectures and in fact many common
schemes for value function approximation can be cast
as linear architectures.

● Look-up table:�is is the exact tabular representa-
tion (�ere is no approximation under this scheme;
it is included only to illustrate that exact represen-
tation belongs in the family of linear architectures.)
suitable for problems with discrete state variables.
Each basis function is an indicator function whose
value is only for a speci�c discrete input point (state
or state-action) and otherwise. Each parameter
stores one value/entry of the table.

● Discretization: �is is a common technique for
turning a continuous space into discrete using a
uniform- or variable-resolution grid. One indicator
basis function is assigned to each cell of the dis-
cretization and the corresponding parameter holds
the value of that cell.

● Tile coding (CMAC): �is scheme utilizes several
overlapping discretizations (tilings) for better accu-
racy. It generates indicator basis functions for each
cell of each tiling and concatenates the basis func-
tions for all tilings. Each parameter corresponds to

 V Value Function Approximation

one cell in one tiling, but the value at each input
point is computed additively from the values of all
containing cells from all tilings.

● State aggregation: �is is a family of schemes
where “similar” (by some metric) states are grouped
together and are treated as one state. �e similar-
ity metric is usually formed through dimensional-
ity reduction techniques for identifying the most
signi�cant dimensions in a high-dimensional input
space, unlike conventional proximity measures in
the same space.�ere is one indicator basis function
for each group and a single value for all states in the
group.

● Polynomials:�is is a generic approximation scheme
suitable for problems with several (continuous)
state variables. Each basis function is a polynomial
term composed of state variables up to a certain
degree.

● Radial basis functions (RBFs):�is is another generic
approximation scheme suitable for continuous state
variables. Each basis function is a Gaussian with
�xedmean and variance; theGaussians are topologi-
cally arranged so that they cover the input spacewith
some overlap.

● Kernel methods: Kernels are symmetric functions
between two points and they are used to represent
compactly dot products of feature vectors in high- or
even in�nite-dimensional spaces.�e compactness
of kernels allows for approximation schemes that
essentially enjoy the �exibility provided by a huge or
in�nite number of basis functions.�e basis func-
tions, in this case, are implicitly de�ned through the
choice of the kernel.

● Partitioning: �is technique is used for construct-
ing complex approximators by partitioning the state
space in several subsets and using a di�erent approx-
imator in each one of them. If linear architec-
tures are used in all partitions, then a set of basis
functions for the global architecture can be con-
structed by concatenating the basis functions of the
smaller linear architectures multiplying each sub-
set with an indicator function for the corresponding
partition.

Linear architectures o�er several advantages: they are
easy to implement and use, and their behavior is fairly
transparent, both from an analysis standpoint and from

a debugging and feature engineering standpoint. It is
usually relatively easy to get some insight into the
reasons for which a particular choice of features suc-
ceeds or fails. �is is facilitated by the fact that the
magnitude of each parameter is related to the impor-
tance of the corresponding feature in the approximation
(assuming normalized features).
A nonlinear approximation architecture approxi-

mates a function Vπ(s) or Qπ(s, a) using arbitrary
parametric functions of s and (s, a), possibly in con-
junction with some features ϕ computed over s and
(s, a). �e best-known representative of this cate-
gory are the multi-layer feed-forward neural networks,
which use one or more layers of linear combina-
tions followed by a nonlinear sigmoidal transforma-
tions (thresholding). In their simplest form (one layer),
neural networks approximate value functions as

V̂π(s;w, θ) =
m

∑
i=

θ iσ
⎛
⎝

k

∑
j=

ϕj(s)wji
⎞
⎠

=
m

∑
i=

θ iσ (ϕ(s)⊺wi)

Q̂π(s, a;w, θ) =
m

∑
i=

θ iσ
⎛
⎝

k

∑
j=

ϕj(s, a)wji
⎞
⎠

=
m

∑
i=

θ iσ (ϕ(s, a)⊺wi) .

Common choices for the di�erentiable, bounded, and
monotonically increasing function σ are the hyperbolic
tangent function σ(x) = tanh(x) = (ex−e−x)/(ex+e−x)
and the logistic function σ(x) = /(+ e−x).�e free
parameters of the architecture (also called weights) are
the coe�cients wji of the linear combinations of the
inputs and the coe�cients θ i of the linear combina-
tion of the sigmoidal transformations for the output.
Notice that the parameters wji enter non-linearly into
the approximation.
A key question in all approximation architectures is

how features are generated and selected.�e feature gen-
eration and selection problem is an open question that
spans most of machine learning research and admits no
easy and general answer. Prior domain-speci�c knowl-
edge and experience can be very helpful in choosing
appropriate features. Several recent studies also describe

Value Function Approximation V

V

methods for automatically generating features targeted
for value function approximation (Menache et al., ;
Mahadevan and Maggioni, ; Parr et al.,).

Learning

Learning (or training, or parameter estimation) in value
function approximation refers to parameter tuninlg
methods that take as input a policy π, an approxima-
tion architecture for Vπ/Qπ , and the full MDP model
or samples of interaction with the process and output a
set of parameterswπ such that V̂π/Q̂π is a good approxi-
mation toVπ/Qπ . Learning also covers methods for the
harder problemof taking an approximation architecture
for V∗/Q∗ and the model or samples and outputting a
set of parameters w∗ such that V̂∗/Q̂∗ is a good approx-
imation to V∗/Q∗. �e former problem is somewhat
easier because the policy π, unlike an optimal policy π∗,
is known and therefore in the presence of a simulator of
the process the value function can be estimated at any
isolated point usingMonte-Carlo estimation techniques
based on repeated policy rollouts from that point. Each
rollout is an execution of an episode starting from a
state s (or state-action (s, a)) using policy π to obtain an
unbiased estimate of the return of the policy from s (or
(s, a)). In this case, value function approximation can
be cast as a classic supervised learning problem; the true
value ofVπ/Qπ is estimated at a subset of points to form
a training set, which can be subsequently used to train
the approximation architecture using supervised learn-
ing techniques. However, in the absence of a simulator
or when seeking approximations to V∗/Q∗, evaluation
and projection into the architecture have to be carried
out simultaneously.

�e true value function has two key properties:
it satis�es the Bellman equations and it is the �xed
point of the Bellman operator. Learning in value func-
tion approximation strives to �nd values for the free
parameters so that the approximate function retains at
least one of these properties to the extent this is pos-
sible. Learning methods that focus on satisfying the
Bellman equations attempt to �nd an approximate func-
tion that minimizes the Bellman residual, the di�erence
between the le�- and the right-hand sides of the sys-
tem of Bellman equations. On the other hand, learn-
ing methods that focus on the �xed point property
attempt to �nd an approximate function that exhibits

a �xed point behavior under the combined applica-
tion of the Bellman operator and projection onto the
space spanned by the basis functions. Experimental
evidence suggests that it is really hard to satisfy both
properties under approximation and therefore these
two approaches di�er signi�cantly in their solutions.
�e majority of existing learning methods focus on
�xed point approximation, which experimentally has
been shown to exhibitmore stable behavior and delivers
better policies.�ere are also proposals for combining
the bene�ts of both approaches into a hybrid method
(Johns et al.,).

�e most widely-used learning approach is based
on gradient descent and is applicable to any approxi-
mation architecture that is di�erentiable with respect
to its parameters. Any stochastic approximation learn-
ing method for tabular representations of value func-
tions can be extended to approximate representations.
For example, given any sample (s, a, r, s′) of interac-
tion with the process, the Temporal Di�erence (TD)
learning update rule

Vπ(s)← Vπ(s) + α (r + γVπ(s′) −Vπ(s))

for tabular representations, where α ∈ (,] is the
learning rate, becomes

wπ←wπ+α (r+γV̂π(s′;wπ)−V̂π(s;wπ))∇wπ V̂π(s;wπ)

under an approximation scheme V̂π . Similarly, the
SARSA update rule

Qπ(s, a)← Qπ(s, a) + α (r + γQπ(s′, π(s′)) −Qπ(s, a))

for tabular representations, becomes

wπ ← wπ + α (r + γQ̂π(s′, π(s′);wπ) − Q̂π(s, a;wπ))

∇wπ Q̂π(s, a;wπ)

under an approximation scheme Q̂π . Finally, the Q-
learning update rule

Q∗(s, a)←Q∗(s, a)+α (r+γmax
a′∈A

{Q∗(s′, a′)} −Q∗(s, a))

 V Value Function Approximation

for tabular representations, under an approximation
scheme Q̂∗ becomes

w∗ ← w∗ + α (r + γmax
a′∈A

{Q̂∗(s′, a′;w∗)}

−Q̂∗(s, a;w∗))∇w∗Q̂∗(s, a;w∗).

�ese rules are applicable to any approximation archi-
tecture, linear or non-linear. However, when using lin-
ear architectures they can be greatly simpli�ed, because
the gradient with respect to a parameterwj is simply the
corresponding basis function ϕj, for j = , , . . . , k.

TD: wπ
j ← wπ

j + α (r + γϕ(s′)⊺wπ

−ϕ(s)⊺wπ) ϕj(s)
SARSA: wπ

j ← wπ
j + α (r + γϕ(s′, π(s′))⊺wπ

−ϕ(s, a)⊺wπ) ϕj(s, a)

Q-learning: w∗j ← w∗j + α (r + γmax
a′∈A

{ϕ(s′, a′)⊺w∗}

−ϕ(s, a)⊺w∗) ϕj(s, a)

More sophisticated learning approaches rely on retain-
ing the desired value function property in a batch
manner by processing several samples collectively. A
variety of least-squares techniques have been pro-
posed for linear architectures giving rise to several
least-squares reinforcement learning methods, such as
Least-Squares Temporal Di�erence (LSTD) learning
(Bradtke and Barto,), Least-Squares Policy Eval-
uation (LSPE) (Nedić and Bertsekas,), Hybrid
Least-Squares Approximation (Johns et al.,), and
Least-Squares Policy Iteration (LSPI) (Lagoudakis and
Parr,). �e parameters of a linear architecture
can also be estimated using Linear Programming (de
Farias and Van Roy,). Specialized learning algo-
rithms have been proposed when using a kernel-based
approximation architecture, based either on Gaussian
Process TD (GPTD) (Engel et al.,), Gaussian
Process SARSA (GPSARSA) (Engel et al.,), ker-
nelized LSTD (KLSTD) and LSPI (KLSPI) (Xu et al.,
), Support Vector Regression (Bethkeh et al.,),
or Gaussian Process regression (Rasmussen and Kuss,
; Bethke andHow,). A uni�ed view of kernel-
ized value function approximation is o�ered by Taylor

and Parr (). On the other hand, boot-strapping –
the updating of a value estimate based on other value
estimates – is the main learning approach behind batch
methods for non-linear architectures, such as Fitted
Q-Iteration (FQI) (Ernst et al.,).

Examples
Very close approximations of the state value function
of optimal policies in two well-known problems are
presented to illustrate the di�culty of value function
approximation. To obtain these close approximations,
a �ne discretization of the two-dimensional state space
into a uniform grid of × was used for represen-
tation. �e state-action value function Q was initially
computed using approximate policy iteration (a sparse-
matrix version of LSPI) with a set of indicator basis
functions over the state grid and all actions and
(s, a, r, s′) samples for each one of the , discrete
cells (s, a), until convergence to a near-optimal policy;
the state value function V was extracted from the Q
values.

Inverted Pendulum

�e inverted pendulum problem is to balance a pendu-
lumof unknown length andmass at the upright position
by applying forces to the cart it is attached to (Fig. , le�).
�ree actions are allowed: le� force LF (−N), right
force RF (+N), or no force NF (N). All three actions
are noisy; Gaussian noise with µ = and σ = is
added to the chosen action.�e state space of the prob-
lem is continuous and consists of the vertical angle θ
and the angular velocity θ̇ of the pendulum.�e tran-
sitions are governed by the nonlinear dynamics of the
system and depend on the current state and the current
(noisy) control u:

θ̈ =
g sin(θ) − αml(θ̇) sin(θ)/ − α cos(θ)u

l/ − αml cos(θ) ,

where g is the gravity constant (g = .m/s), m is
the mass of the pendulum (default: m = . kg), M
is the mass of the cart (default: M = . kg), l is the
length of the pendulum (default: l = . m), and α =
/(m + M).�e simulation step is . s, thus the con-
trol input is given at a rate of Hz, at the beginning
of each time step, and is kept constant during any time
step. A reward of is given as long as the angle of the

Value Function Approximation V

V

q

d
(q

)

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

q
d (q)

0
–0.1
–0.2
–0.3
–0.4

–0.5V
*

–0.6
–0.7

–0.9
–1
–1.5

–0.5 0 0.5 1 1.5 –6 –4 –2 0
2

4 6

–1

–0.8

Value Function Approximation. Figure . Inverted pendulum: state value function of an optimal policy (D and D)

(Courtesy of Ioannis Rexakis)

x

d
(x

)
−0.06

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.04

−0.02

0

0.02

0.04

0.06

−10

−20

−30

−40

−50

−60

0

0.1

10

0

–10

–20

–30

v* –40

–50

–60

–70

0.05

0
–0.05

–0.1

d(x)

–1.5
–1

–0.5
0

0.5
1

x

Goal

Value Function Approximation. Figure . Mountain car: state value function of an optimal policy (D and D)

(Courtesy of Ioannis Rexakis)

pendulum does not exceed π/ in absolute value (the
pendulum is above the horizontal line). An angle greater
than π/ in absolute value signals the end of the episode
and a reward (penalty) of −.�e discount factor of the
process is ..
Figure shows a close approximation to the state

value function V∗ of an optimal policy for the inverted
pendulum domain over the two-dimensional state
space (θ, θ̇). �e value function indicates that states
which potentially o�er high return are clustered within
a zone where θ and θ̇ have di�erent signs and therefore
the gravity force can be counteracted. Notice the non-
linearity of the function and the di�cult approximation
problem it presents.

Mountain Car

�emountain car problem is to drive an underpowered
car from the bottom of a valley between two mountains
to the top of the mountain on the right (Fig. , le�).
�e car is not powerful enough to climb any of the hills

directly from the bottom of the valley even at full throt-
tle; it must build some energy by climbing �rst to the
le� (moving away from the goal) and then to the right.
�ree actions are allowed: forward throttle FT (+),
reverse throttle RT (−), or no throttle NT (). All three
actions are noisy; Gaussian noise with µ = and σ = .
is added to the chosen action. �e state space of the
problem is continuous and consists of the position x and
the velocity ẋ of the car along the horizontal axis.�e
transitions are governed by the nonlinear dynamics of
the system and depend on the current state (x(t), ẋ(t))
and the current (noisy) control u(t):

x(t +) = Boundx[x(t) + ẋ(t +)]

ẋ(t +) = Boundẋ[ẋ(t) + .u(t)
− . cos(x(t))],

where Boundx is a function that keeps x within
[−., .], while Boundẋ keeps ẋ within [−., .].
If the car hits the bounds of the position x, the velocity ẋ

 V Value Function Approximation

is set to zero. A penalty of − is given at each step as long
as the position of the car is below the right bound (.).
As soon as the car position hits the right bound of the
position, it has reached the goal; the episode ends suc-
cessfully and a reward of is given.�e discount factor
of the process is ..
Figure shows a close approximation to the state

value functionV∗ of an optimal policy for themountain
car domain over the two-dimensional state space (x, ẋ).
�e value function indicates that in order to gain high
return the car has to follow a spiral in the state space that
goes through states with progressively higher value. In
practice, this means that the car has to move back and
forth between the twomountains until su�cient energy
is built to escape from the valley.
Again, notice the high non-linearity of the function

and the hard approximation problem it presents.

Definitions
�e table summarizes the di�erences in names and
symbols between the common notation (adopted here)
and the alternative notation used in the literature.

Common notation Alternative notation

Name Symbol Symbol Name

State space S S States

State s, s′ i, j State

Action space A U Controls

Action a u Control

Transition
model

P(s′∣s,a) pij(u) Transition prob-
abilities

Reward
function

R g Cost function

Discount factor γ α Discount factor

Policy π µ Policy

State value
function

V J Cost-to-go
function

State-action
value function

Q Q Q-factors

Parameters/
weights

w r Parameters

Learning rate α γ Step size

Cross References
7Curse of Dimensionality
7Dynamic Programming
7Feature Selection
7Gaussian Process Reinforcement Learning
7Least-Squares Reinforcement Learning Methods
7Q-Learning; Radial Basis Functions
7Reinforcement Learning
7Temporal Di�erence Learning
7Value Iteration

Recommended Reading
Brett, B., & How, J. P. (). Approximate dynamic program-

ming using Bellman residual elimination and Gaussian process
regression. Proceedings of the American Control Conference,
St. Louis, MO, USA, pp. –.

Brett, B., How, J. P., & Ozdaglar, A. (). Approximate dynamic
programming using support vector regression. Proceedings of
the IEEE Conference on Decision and Control, Cancun, Mexico,
pp. –.

Bertsekas, D. P., & Tsitsiklis, J. N. (). Neuro-dynamic program-
ming. Belmont: Athena Scientific.

Bradtke, S. J., & Barto, A. G. (). Linear least-squares algorithms
for temporal difference learning. Machine Learning, (–),
–.

Buşoniu, L., Babuška, R., De Schutter, B., & Ernst, D. (). Rein-
forcement learning and dynamic programming using functions
approximators. CRC Press, Boca Raton, FL, USA.

de Farias, D. P., & Van Roy, B. (). The linear programming
approach to approximate dynamic programming. Operations
Research, (), –.

Engel, Y., Mannor, S., & Meir, R. (). Bayes meets Bellman:
the Gaussian process approach to temporal difference learning.
Proceedings of the International Conference on Machine Learning
(ICML), Washington, DC, pp. –.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learn-
ing with Gaussian processes. Proceedings of the International
Conference on Machine Learning (ICML), Bonn, Germany, pp.
–.

Ernst, D., Geurts, P., & Wehenkel, L. (). Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research,
, –.

Johns, J., Petrik, M., & Mahadevan, S. (). Hybrid least-squares
algorithms for approximate policy evaluation. Machine Learn-
ing, (–), –.

Lagoudakis, M. G., & Parr, R. (). Least-squares policy iteration.
Journal of Machine Learning Research, , –.

Mahadevan, S., & Maggioni, M. (). Proto-value functions: a
Laplacian framework for learning representation and control
in Markov decision processes. Journal of Machine Learning
Research, , –.

Menache, I., Mannor, S., & Shimkin, N. (). Basis function adap-
tation in temporal difference reinforcement learning. Annals of
Operations Research, (), –.

Nedić, A., & Bertsekas, D. P. (). Least-squares policy evaluation
algorithms with linear function approximation. Discrete Event
Dynamic Systems: Theory and Applications, (–), –.

VC Dimension V

V

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (). Ana-
lyzing feature generation for value-function approximation.
Proceedings of the International Conference on Machine Learning
(ICML), Corvallis, pp. –.

Puterman, M. L. ().Markov decision processes: discrete stochastic
dynamic programming. New York: Wiley.

Rasmussen, C. E., & Kuss, M. (). Gaussian processes in rein-
forcement learning. Advances in Neural Information Processing
Systems (NIPS), pp. –.

Sutton, R., & Barto, A. (). Reinforcement learning: an introduc-
tion. Cambridge: MIT Press.

Taylor, G., & Parr, R. (). Kernelized value function approxima-
tion for reinforcement learning. Proceedings of the International
Conference on Machine Learning (ICML), Toronto, Canada,
pp. –.

Xu, X., Hu, D., & Lu, X. (). Kernel-based least-squares policy
iteration for reinforcement learning. IEEE Transactions on Neu-
ral Networks, (), –.

Variable Selection

7Feature Selection

Variable Subset Selection

7Feature Selection

Variance

7Bias Variance Decomposition

Variance Hint

7Inductive Bias

VC Dimension

Thomas Zeugmann
Hokkaido University, Sapparo, Japan

Motivation and Background
We de�ne an important combinatorial parameter that
measures the combinatorial complexity of a fam-
ily of subsets taken from a given universe (learning

domain) X. �is parameter was originally de�ned by
Vapnik and Chervonenkis () and is thus commonly
referred to as Vapnik–Chervonenkis dimension, abbre-
viated as VC dimension. Subsequently, Dudley (,
) generalized Vapnik and Chervonenkis ()
results. �e reader is also referred to Vapnik’s ()
book in which he greatly extends the original ideas.
�is results in a theory which is called 7structural risk
minimization.

�e importance of the VC dimension for 7PAC
Learning was discovered by Blumer, Ehrenfeucht,
Haussler, & Warmuth (), who introduced the
notion to computational learning theory.
As Anthony and Biggs (, p.) have put it,

“�e development of this notion is probably the most
signi�cant contribution that mathematics has made to
Computational Learning�eory.”
Recall that we use ∣S∣ and ℘(S) to denote the car-

dinality and the power set of any set S, respectively.
We �rst de�ne the VC dimension and provide a short
explanation of its importance for7PAC learning.�en
we present some examples.

Definition
Let X ≠ ∅ be any learning domain, let C ⊆℘(X)
be any nonempty concept class, and let S⊆X be any
�nite set. We set

ΠC(S) = {S ∩ c ∣ c ∈ C}.

. S is said to be shattered by C i� ΠC(S) = ℘(S).
. �e VC dimension of C is the cardinality of the
largest �nite set S⊆X that is shattered by C.

If arbitrary large �nite sets S are shattered by C, then
the VC dimension of C is de�ned to be in�nite.
Notation: By VC(C) we denote the VC dimension of C.

Remarks

As far as7PAC Learning is concerned, for a sample set
S, the notion ΠC(S) has the following meaning. Essen-
tially, ΠC(S) collects the set of all subsets of the sample
set S which are made positive by some concept c ∈ C.
Consequently, S∩ c represents the elements of S that are
labeled as to be positive by the concept c. Hence, ΠC(S)
is the collection of all such subsets taken over all c ∈ C. If
every subset of S can be labeled as to be positive by some

 V VC Dimension

concept c ∈ C and c does not make any other element of
S positive, then S is shattered.
If VC(C) = d then there exists a �nite set S⊆X such

that ∣S∣ = d, and S is shattered by C. Moreover, every set
S⊆X with ∣S∣ > d is not shattered by C.
It is intuitively clear that an in�nite VC dimen-

sion might enormously complicate learning. On the
other hand, it is by no means obvious that a �nite VC
dimension may always guarantee the learnability of the
corresponding concept class. However, this is a cen-
tral theorem of the 7PAC Learning theory. Moreover,
the value of the VC dimension is a measure of the
sample complexity. �is holds for PAC Learning and
beyond. Further models where this is true comprise the
7Online Learning models (cf. Haussler, Littlestone, &
Warmuth (), Maass and Turán (); Littlestone
(), models of Query Based Learning (cf. Maass and
Turán,), and others.

Examples
First, let C be any �nite concept class. �en, since it
requires d distinct concepts to shatter a set of cardi-
nality d, no set of cardinality larger than log∣C∣ can be
shattered. �us, log∣C∣ is always an upper bound for
the VC dimension of �nite concept classes. Here log
denotes the logarithm to the base .
However, if the VC dimension can be determined,

it usually gives a better bound than log∣C∣. To see this, let
Ln = {x, x̄, x, x̄ . . . , xn, x̄n}, n ≥ be a set of literals
and letX = {, }n be the n-dimensional Boolean learn-
ing domain. Furthermore, let Cn ⊆℘(X) be the class of
all concepts describable by a monomial, including the
empty monomial (representing {, }n) and the con-
junction of all literals (representing∅).�en ∣Cn∣ = n+
and thus VC(C) ≤ n(log) + . But VC(Cn) = n for
all n ≥ and VC(C) = as shown by Natschläger
and Schmitt (). Note that the same is true for the
class of all concepts describable by monotone mono-
mials, i.e., monomials containing only non-negated
literals.
Next, we consider the concept class C of all axis-

parallel rectangles. So let X = E be the two-
dimensional Euclidean space and C ⊆℘(E) be the set
of all axis-parallel rectangles, i.e., products of intervals
on the x-axis with intervals on the y-axis.�en, it is not
hard to see that VC(C) = .

r1
*

r2r5

xx

yy

r4 r4

r1 r5

r2

r3r3

VC Dimension. Figure . No set of cardinality can be

shattered by axis-parallel rectangles

Clearly, we can shatter the empty set and sets of car-
dinality , , and . Now, let S = {r, r, r, r} be such
that r, r, r, r are the middle points of the sides of
some square. �en it is not hard to see that there are
 concepts ci, ≤ i ≤ , in C such that ℘(S) = {S ∩ ci ∣
 ≤ i ≤ }. Hence, VC(C) ≥ .
Next, let S = {r, r, r, r, r} be any set of �ve

pairwise di�erent points. Let c be the smallest closed
axis-parallel rectangle containing the points of S. Since
c has only four sides, there must be some point r ∈ S, say
r, such that r lies either in the interior of c or r lies on
some side of c along with another point of S (cf. Fig.).
Suppose S is shattered by C.�en, there has to be a con-
cept c ∈ C such that {r, r, r, r} = S ∩ c. However, by
construction we obtain that {r, r, r, r} = S∩c implies
r ∈ S ∩ c, a contradiction.�us, no set of cardinality
is shattered. Hence, VC(C) = .

�e latter result can be easily generalized. Let X =
En, and letC be the set of all axis-parallel parallelepipeds
in En.�en VC(C) = n.
A further generalization is as follows. Let X be the

real line (one-dimensional Eucleadean space), i.e., X =
E, and let C be the set of all unions of at most s (closed
or open) intervals for some �xed constant s ≥ . Let S =
{xi ∣ ≤ i ≤ s, xi < xi+ for all ≤ i < s}.�en one
easily veri�es that S is shattered by C. Hence, VC(C) ≥
s. On the other hand, if S is any set of s + pairwise
di�erent points with xi < xi+ for all ≤ i ≤ s, then
no concept in C contains x, x, . . . , xs+ without also
containing a point in x, x, . . . , xs.�us, no such S is
shattered. Consequently, VC(C) = s.
Furthermore, we can generalize the observations

made above by deriving some rules that turn out to
be very useful to estimate the VC dimension of more
complicated concept classes, provided they can be con-
structed from simpler classes.

VC Dimension V

V

First, let C and C be concept classes such that
C ⊆C.�en we clearly have

VC(C) ≤ VC(C).

Second, let X be any learning domain, let C ⊆℘(X)
and de�ne the complement of C to be C = {X/c ∣ c ∈ C}.
�en we have

VC(C) = VC(C).

�ird, consider two concept classes C and C
de�ned over the same learning domainX. LetC = C∪C
be the union of C and C.�en,

VC(C) ≤ VC(C) +VC(C) + .

Fourth, let C be any concept class such that
VC(C)=d. Consider the Cs union (or intersection) of
at most s concepts from C, where s ≥ is any �xed
constant, i.e., Cs = {c ∣ c = ⋃≤i≤s ci , ci ∈ C} (or
Cs = {c ∣ c = ⋂≤i≤s ci , ci ∈ C}).�en one can show
that

VC(Cs) ≤ ds ⋅ log(s).

Numerous further examples can be found in, e.g.,
Vapnik and Chervonenkis (), Haussler and Welz
(), Anthony and Bartlett (), Wenocur and
Dudley (), Karpinski and Werther (), Karpin-
ski and Macintyre (), Sakurai (), and Mitchell,
Sche�er, Sharma, & Stephan ().

Applications
Let us return to the notion ΠC(S) and generalize it a
bit as follows. For any natural number m ∈ N and any
nonempty concept class C ⊆℘(S), we set:

ΠC(m) = max{∣ΠC(S)∣ ∣ S⊆X, ∣S∣ = m}.

We can use the new notion to give an equivalent de�ni-
tion of the VC dimension of a concept class C, i.e.,

VC(C) = max{d ∣ d ∈ N, ΠC(d) = d}.

Looking at ΠC(m) from the perspective of learn-
ing, we see the following.�e argumentm refers to the

sample size. ΠC(m) is describing the maximum num-
ber of ways a sample of sizem can be labeled by concepts
taken from C. Hence, the number ΠC(m) behaves as a
measure of concept class complexity. What can be said
about ΠC(m)? Suppose, d = VC(C); thenm ≤ d implies
ΠC(m) = m. On the other hand,m > d directly implies
ΠC(m) < m.�erefore, we are interested in learning
how fast ΠC(m) really grows provided m > d.�e key
ingredient to obtain the desired information is usually
referred to as Sauer’s Lemma Sauer (). Under the
assumptions made above, it states that

ΠC(m) ≤
d

∑
i =

(m
i
), where (m

i
) = if i > m.

Like many important results, Sauer’s Lemma Sauer
() has several proofs and generalizations have been
studied, too. We refer the reader to Anthony and Biggs
(), Kearns and Vazirani (), and Gurvits ()
for a more detailed exposition.
Let us �rst look at the casem ≤ d already considered.

For this case, Sauer’s Lemma is telling us that

ΠC(m) ≤
d

∑
i =

(m
i
) = m,

and thus, we get an exponential bound. �e interest-
ing aspect is that in the remaining cases the bound is
polynomial. For simplifying notation, we set

Φ(d,m) =
d

∑
i =

(m
i
).

Using combinatorial arguments and Stirling approxi-
mation, one can show that

. Φ(,m) = (m) = for allm ∈ N.
. Φ(d,) = () + () = for all d ∈ N, d ≥ .
. Φ(d,m) = Φ(d,m −) + Φ(d − ,m −) for all

d,m ∈ N, d ≥ , m ≥ .
. Φ(d,m) ≤ md + for all d ≥ ,m ≥ .
. Φ(d,m) ≤ md for all d ≥ ,m ≥ .
. Φ(d,m) ≤ (em

d)d for allm ≥ d ≥ .

�at is, () through () provide a bound polynomial
in m for ΠC(m) whenever VC(C) is �nite.�is insight
is fundamental for 7PAC Learning and other learning
models.

 V Vector Optimization

Finally, we refer the reader to Schaefer (), who
has determined the complexity of computing the VC
dimension and to Goldberg and Jerrum (), who
succeeded in bounding the VC dimension of concept
classes parameterized by real numbers.

Cross References
7Epsilon Nets
7PAC Learning
7Statistical Machine Learning
7Structural Risk Minimization

Recommended Reading
Anthony, M., & Bartlett, P. L. (). Neural network learning: The-

oretical foundations. Cambridge: Cambridge University Press.
Anthony, M., & Biggs, N. (). Computational learning the-

ory. Cambridge tracts in theoretical computer science (No.).
Cambridge: Cambridge University Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().
Learnability and the Vapnik–Chervonenkis dimension. Journal
of the ACM, (), –.

Dudley, R. M. (). Central limit theorems for empirical measures.
Annals of Probability, (), –.

Dudley, R. M. (). Corrections to “Central limit theorems for
empirical measures”. Annals of Probability, (), –.

Goldberg, P. W., & Jerrum, M. R. (). Bounding the Vapnik–
Chervonenkis dimension of concept classes parameterized by
real numbers. Machine Learning, (–), –.

Gurvits, L. (). Linear algebraic proofs of VC-dimension based
inequalities. In S. Ben-David (Ed.), Computational learning the-
ory, third European conference, EuroCOLT ’, Jerusalem, Israel,
March , Proceedings, Lecture notes in artificial intelligence
(Vol. , pp. –). Springer.

Haussler, D., & Welz, E. (). Epsilon nets and simplex range
queries. Discrete & Computational Geometry, , –.

Haussler, D., & Littlestone, N., & Warmuth, M. K. (). Predict-
ing f; g functions on randomly drawn points. Information and
Computation, (), –.

Karpinski, M., & Macintyre, A. (). Polynomial bounds for VC
dimension of sigmoidal neural networks. In Proceedings of
twenty-seventh annual ACM symposium on theory of computing
(pp. –). New York: ACM Press.

Karpinski, M., & Werther, T. (). VC dimension and sam-
pling complexity of learning sparse polynomials and rational
functions. In S. J. Hanson, G. A. Drastal, and R. L. Rivest
(Eds.), Computational learning theory and natural learning sys-
tems, Vol. I: Constraints and prospects (Chap. , pp. –).
Cambridge, MA: MIT Press.

Kearns, M. J., & Vazirani, U. V. (). An introduction to computa-
tional learning theory. Cambridge, MA: MIT Press.

Littlestone, N. (). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
(), –.

Maass, W., & Turan, G. (). On the complexity of learning
from counterexamples and membership queries. In Proceedings

of the thirty-first annual symposium on Foundations of Com-
puter Science (FOCS), St. Louis, Missouri, October –,
 (pp. –). Los Alamitos, CA: IEEE Computer Society
Press.

Mitchell, A., Scheffer, T., Sharma, A., & Stephan, F. (). The
VC-dimension of subclasses of pattern languages. In O. Watan-
abe & T. Yokomori (Eds.), Algorithmic learning theory, tenth
international conference, ALT’, Tokyo, Japan, December ,
Proceedings, Lecture notes in artificial intelligence (Vol. , pp.
–). Springer.

Natschläger, T., & Schmitt, M. (). Exact VC-dimension of
Boolean monomials. Information Processing Letters, (),
–.

Sakurai, A. (). On the VC-dimension of depth four thresh-
old circuits and the complexity of Boolean-valued functions.
Theoretical Computer Science, (), –. Special issue for
ALT ’

Sauer, N. (). On the density of families of sets. Journal of
Combinatorial Theory (A), (), –.

Schaefer, M. (). Deciding the Vapnik–Červonenkis dimension
is Σp

-complete. Journal of Computer System Sciences, (), –
.

Vapnik, V. N. (). The nature of statistical learning theory, (nd
ed.). Berlin: Springer.

Vapnik, V. N., & Chervonenkis, A. Y. (). On the uniform con-
vergence of relative frequencies of events to their probabilities.
Theory of Probabability and Its Applications, (), –.

Vapnik, V. N., & Chervonenkis, A. Y. (). Theory of pattern
recognition. Moskwa: Nauka (in Russian).

Wenocur, R. S., & Dudley, R. M. (). Some special Vapnik–
Chervonenkis classes. Discrete Mathematics, , –.

Vector Optimization

7Multi-Objective Optimization

Version Space

Claude Sammut
�e University of New South Wales,
Sydney, Australia

Definition
Mitchell (,) de�nes the version space for a
learning algorithm as the subset of hypotheses consis-
tentwith the training examples.�at is, the7hypothesis
language is capable of describing a large, possibly in�-
nite, number of concepts.When searching for the target
concept, we are only interested in the subset of sen-
tences in the hypothesis language that are consistent

Viterbi Algorithm V

V

with the training examples, where consistentmeans that
the examples are correctly classi�ed (assuming deter-
ministic concepts and no 7noise in the data). While
the version space may be in�nite, it can o�en be rep-
resented in a compact manner by maintaining only its
bounds, the 7most speci�c (7Most Speci�c Hypothe-
sis) and7most general hypotheses. Any hypothesis that
is more general than a hypothesis in the most speci�c
bound and more speci�c than a hypothesis in the most
general bound is in the version space.

Cross References
7Learning as Search
7Noise

Recommended Reading
Mitchell, T. M. (). Version Spaces: A candidate elimination

approach to rule-learning (pp. –). In Proceedings of
the fifth international joint conference on artificial intelligence,
Cambridge.

Mitchell, T. M. (). Generalization as Search. Artificial Intelli-
gence, (), –.

Viterbi Algorithm

A dynamic programming algorithm for �nding the
most likely sequence of hidden states resulting in an
observed sequence of output events. �e most likely
sequence is called the Viterbi path. �e Viterbi algo-
rithm was popularized due to its usability in Hidden
Markov models (HMM).

�e Viterbi algorithm was initially proposed by
Andrew Viterbi as an error-correction scheme for noisy
digital communication links. It is now also commonly
used in speech recognition, natural language process-
ing, and bioinformatics.

Recommended Reading
Viterbi, A.J. (). Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE Transac-
tions on Information Theory (), –.

W

Web Advertising

7Text Mining for Advertising

Weight

RistoMiikkulainen
�e University of Texas at Austin
Austin, TX, USA

Synonyms
Connection strength; Synaptic e�cacy

Definition
In a 7neural network, connections between neurons
typically have weights that indicate how strong the con-
nection is.�e neuron computes by forming a weighted
sum of its input, i.e., the activation of each input neuron
is multiplied by the corresponding connection weight.
Adapting such weights is the most important way of
learning in neural networks. Connection weights are
loosely modeled a�er the synaptic e�cacies in biolog-
ical neurons, where they determine how large a positive
or negative change in the membrane potential each
input spike generates (see 7Biological Learning). In
most models, all connection parameters are abstracted
into a weight: attenuation or interaction of the poten-
tials and connection delays are usually not taken into
account. �e weights are usually real-valued numbers
(−∞ ..∞), although in some algorithms, intended for
VLSI implementation, the range and precision of these
values can be restricted (or weights eliminated alto-
gether). Weights in some methods can be restricted to
positive values if the inputs are known to be positive
and the method is based on comparing the similar-
ity to the weights (as in e.g., 7Self-Organizing Maps,

7Adaptive Resonance �eory, and 7Radial Basis
Function networks). Most learning methods are based
on adjusting the weight values. �e weights are o�en
initialized to small random values, although if enough
is known about the input space and the task, more
systematic initialization can improve performance sig-
ni�cantly.�e weights are then adjusted based on local
information that is available on either side of the con-
nection. Usually, only small modi�cations are made in
each learning step to avoid disrupting what the network
already knows, and learning converges over time to a
setting of values that solves the task.

Within-Sample Evaluation

7In-Sample Evaluation

Word Sense Disambiguation

RadaMihalcea
University of North Texas
Denton, TX, USA

Synonyms
Learning word senses; Solving semantic ambiguity

Definition
Ambiguity is inherent to human language. In partic-
ular, word sense ambiguity is prevalent in all natu-
ral languages, with a large number of the words in
any given language carrying more than one meaning.
For instance, the English noun plant can mean green
plant or factory; similarly the French word feuille can
mean leaf or paper. �e correct sense of an ambigu-
ous word can be selected based on the context where
it occurs, and correspondingly the problem of word

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

 W Word Sense Disambiguation

sense disambiguation is de�ned as the task of auto-
matically assigning the most appropriate meaning to a
polysemous word within a given context.

Motivation and Background
Word sense disambiguation is considered one of the
most di�cult problems in natural language processing,
due to the high semantic ambiguity that is typically
associated with language. It was �rst noted as a prob-
lem in the context ofmachine translation, whenWarren
Weaver, in his famous memorandum, pointed out
word ambiguity as one of the problems that needed
to be solved in order to enable automatic translations
between the languages of the world (Weaver,).
More than years later, word sense ambiguity is still
regarded as an important and di�cult research prob-
lem, and it has been demonstrated to have a potentially
signi�cant impact on several natural language process-
ing applications.

Applications

In addition to machine translation, the role of word
sense disambiguation has also been explored in connec-
tion to other applications, such as monolingual infor-
mation retrieval, cross-language information retrieval,
question answering, knowledge acquisition, informa-
tion extraction, text classi�cation, and others. In partic-
ular, a signi�cant amount of work has been carried out
in areas related to information retrieval, where the res-
olution of word ambiguity has been shown to have an
impact on both the precision of the system (by allowing
for matches only between identical word meanings in
the query and in the documents), as well as the recall
of the system (by performing query expansion using
synonyms of selected word meanings).

Brief History

Over the years, the �eld of word sense disambiguation
has undergone steady improvements in both quality
and scope, moving from the rule-based systems using
hand cra�ed knowledge that were popular in the s
and s, to the more advanced corpus-based meth-
ods used in the s, and to the current hybrid systems
that rely on a mix of knowledge-based and corpus-
based resources, minimizing the need of sense anno-
tated data and taking advantage of the Web. �e shi�

from small-scale rule-based systems to large-scale data-
driven methods has also implied an increase in cover-
age, with early systems typically addressing a handful
of ambiguous words for which hand-coded rules were
available, while many of the current systems have the
ability to address all or almost all content words in
unrestricted text.

Methods

Current word sense disambiguation systems are divided
into three main categories:

Knowledge-based: �ese systems rely mainly on
information drawn from lexical resources, such as dic-
tionaries or thesauruses. �e Lesk algorithm (Lesk,
) is one of the most well-known knowledge-based
word sense disambiguation methods. It decides the
meaning of a word based on a measure of similarity
among the de�nitions provided by a dictionary. For
instance, for the phrase pine cone, the algorithm will
select the meaning of kind of evergreen tree for pine, and
fruit of evergreen tree for cone, as these are the de�nitions
with the highest lexical overlap among all the possible
de�nitions provided by a dictionary.

Unsupervised corpus-based: �ese approaches typ-
ically consist of algorithms for clustering word sense
occurrences in a corpus, without making explicit ref-
erence to a sense inventory. �e clustering can be per-
formed in a monolingual environment, in which case
di�erent word occurrences are represented by features
derived from their immediate context (Schutze,).
Alternatively, a clustering of word senses can also be
performed using cross-lingual evidence drawn from the
translations observed in a parallel corpus (Ng, Wang,
& Chan,).�is line of work is o�en referred to as
word sense discrimination, as the word meanings are
not disambiguated against a sense inventory, but are
discriminated against each other.

Supervised corpus-based: �ese methods are the
focus of the current chapter, and they consist primar-
ily of machine learning algorithms applied on large
sense-annotated corpora. Supervised algorithms have
been typically applied to one word at a time, although
experiments have also been carried out for their appli-
cation to all words in unrestricted text. While sense-
annotated corpora have usually been constructed by
hand, recent work has also explored various approaches
for the automatic generation of such data, which has

Word Sense Disambiguation W

W

been used successfully in conjunction with machine
learning algorithms.

Structure of the Learning System
Among the various knowledge-based and data-driven
word sense disambiguation methods that have been
proposed to date, supervised systems have been con-
stantly observed as leading to the highest performance.
In these systems, the sense disambiguation problem is
formulated as a supervised learning task, where each
sense-tagged occurrence of a particular word is trans-
formed into a feature vector, which is then used in an
automatic learning process.

Given a target word and a set of examples where this
word occurs, each occurrence being annotated with the
correct sense, a supervised system will attempt to learn
how to automatically annotate occurrences of the given
word in new, previously unseen, contexts.�is process
is accomplished in two steps. First, representative fea-
tures are extracted from the context of the ambiguous
word; this step is applied to the annotated examples
(training) as well as the unlabeled examples (test). Sec-
ond, a machine learning algorithm is applied on the
feature vectors, and consequently the most likely sense
is assigned to the test occurrences of the target word.

Features

Research in supervised word sense disambiguation has
considered two main types of featutlllrestomodel occur-
rences of ambiguous words:

Contextual features, which are extracted tfrom the
immediate vicinity of the ambiguous word. �ese fea-
tures usually consist of the words before and a�er the
target word (a window size of – words is typical),
their parts of speech, words in a syntactic dependency
with the target word (e.g., the subject of the verb, the
noun modi�ed by an adjective), position in the sen-
tence, and the like. For instance, the adjective green
could be one of the contextual features extracted from

W- W + P- P+ Growth Flowering Industrial Staff Sense

Flowering Helps Adj Verb Y Y N N Green plant

Industrial Is Adj Verb N N Y Y Factory

the context the green plant for the ambiguous word
plant.

Topical features, which are represented by the words
most frequently co-occurring with a given meaning of
the target word.�ese words are usually determined by
counting the number of times each word occurs in the
context of a wordmeaning, divided by the total number
of occurrences in the context of the word regardless of
its meaning. For instance, the factory meaning of plant
could have topical features such as industrial and work,
whereas the green plant meaning of plant might have
features such as animal and water.

As an example of feature vector construction, con-
sider the following two contexts provided for the
ambiguous word plant:

�e/det growth/noun of/prep a/det seedling/noun
into/prep a/det �owering/adj plant/noun helps/verb
children/noun investigate/verb the/det conditions/noun
that/prep plants/noun need/verb for/prep growth/
noun.

�e/det operations/noun sta�/noun in/prep an/det
industrial/adj plant/noun is/verb typically/adv mea-
sured/verb in/prep asset/noun utilization/noun.

�e following two feature vectors are constructed:

Machine Learning

Provided a set of feature vectors representing di�er-
ent occurrences of an ambiguous target word, the goal
of the machine learning system is to learn how to
predict the most likely sense for a new occurrence.
�e word sense disambiguation literature describes
experiments with a large number of machine learning
algorithms, including decision lists (Yarowsky,),
instance-based learning (Ng & Lee,), Naïve Bayes
and decision trees (Pedersen,), support vector
machines (Lee & Ng,), and others. A comparison
of several machine learning algorithms for word sense
disambiguation is provided in Lesk () and Mooney
().

 W Word Sense Discrimination

Generation of Sense-Tagged Corpora

One of the main drawbacks associated with the super-
visedmethods forword sense disambiguation is the cost
incurred in the process of building sense-tagged cor-
pora. Despite their high performance, the applicability
of these supervised systems is limited to those fewwords
for which sense-tagged data is available, and their accu-
racy is strongly connected to the amount of labeled data
available at hand.

Sense annotations have been typically carried out
by humans, which resulted in several publicly avail-
able data sets, such as those made available during the
Senseval evaluations (http://www.senseval.org). How-
ever, despite the e�ort that went into the construction of
these data sets, their applicability is limited to a handful
of approximately ambiguous words.

To address the sense-tagged data bottleneck prob-
lem, di�erent methods for automatic sense-tagged data
annotation have been proposed in the past, with various
degrees of success. One such method relies on monose-
mous relatives extracted from dictionaries, which can
be used to identify ambiguity-free occurrences in large
corpora (Leacock, Chodorow, &Miller, ; Mihalcea,
). Another method relies on automatically boot-
strapped disambiguation patterns, which can be used
to generate a large number of sense-tagged examples
(Mihalcea, ; Yarowsky,). �e use of volun-
teer contributors to create sense-annotated corpora has
also been explored in the OpenMindWord Expert sys-
tem (Chklovski and Mihalcea,). Finally, in recent
work, Wikipedia was identi�ed as a rich source of word
sense annotations, which can be used to build super-
vised word sense disambiguation systems (Mihalcea,
).

Cross References
7Semi-Supervised Text Processing

Recommended Reading
Agirre, E., & Edmonds, P. (). Word sense disambiguation:

Algorithms and applications. Berlin: Springer. http://www.
wsdbook.org

Chklovski, T., & Mihalcea, R. (). Building a sense tagged cor-
pus with open mind word expert. In Proceedings of ACL
workshop on WSD. Philadelphia, PA.

Leacock, C., Chodorow, M., & Miller, G. A. (). Using cor-
pus statistics and wordnet relations for sense identification.
Computational Linguistics, (), –.

Lee, Y. K., & Ng, H. T. (). An empirical evaluation of knowledge
sources and learning algorithms for word sense disambiguation.
In Proceedings of EMNLP . Philadelphia, PA.

Lesk, M. (). Automatic sense disambiguation using machine
readable dictionaries: How to tell a pine cone from an ice cream
cone. In SIGDOC . Toronto, ON, Canada.

Mihalcea, R. (). An automatic method for generating sense
tagged corpora. In Proceedings of AAAI . Orlando, FL.

Mihalcea, R. (). Bootstrapping large sense tagged corpora. In
Proceedings of LREC . Las Palmas, Spain.

Mihalcea, R. (). Using wikipedia for automatic word sense
disambiguation. In Proceedings of NAACL . Rochester, NY.

Mihalcea, R., & Pedersen, T. (). Advances in word sense disam-
hbiguation. Tutorial presented at IBERAMIA , ACL ,
AAAI . http://www.d.umn.edu/~tpederse/WSDTutorial.
html

Mooney, R. (). Comparative experiments on disambiguating
word senses: An illustration of the role of bias in machine
learning. In Proceedings of EMNLP. Philadelphia, PA.

Ng, H. T. & Lee, H. B. (). Integrating multiple knowledge sources
to disambiguate word sense: An examplar-based approach. In
Proceedings of ACL. Santa Cruz, CA.

Ng, H. T., Wang, B., & Chan, Y. S. (). Exploiting parallel texts for
word sense disambiguation: an empirical study. In Proceedings
of ACL. Sapporo, Japan.

Pedersen, T. (). Learning probabilistic models of word sense
disambiguation. Ph.D. Dissertation. Southern Methodist Uni-
versity.

Schutze, H. (). Automatic word sense discrimination. Compu-
tational Linguistics, (), –.

Weaver, W. (). Translation. In W. N. Locke, & A. D. Booth (Eds.),
Machine translation of languages: Fourteen essays. Cambridge,
MA: MIT Press.

Yarowsky, D. (). Unsupervised word sense disambiguation rival-
ing supervised methods. In Proceedings of ACL. Cambridge,
MA.

Yarowsky, D. (). Hierarchical decision lists for word sense dis-
ambiguation. Computers and the Humanities, (–), –.

Word Sense Discrimination

Word sense discrimination is sometimes used as a syn-
onym for7word sense disambiguation. Note, however,
that these two terms refer to somewhat di�erent prob-
lems, as word sense discrimination implies a distinction
between di�erent word meanings in a corpus (without
reference to a sense inventory), whereas word sense dis-
ambiguation refers to a sense assignment using a given
sense inventory.

http://www.d.umn.edu/~tpederse/WSDTutorial.html
http://www.wsdbook.org

Z

Zero-One Loss

Zero-one loss is a common 7loss function used with
7classi�cation learning. It assigns to loss for a correct
classi�cation and for an incorrect classi�cation.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC

	Cover
	front-matter
	0-9
	1-Norm Distance

	A
	Abduction
	Definition
	Motivation and Background
	Structure of the Learning Task
	Abduction in Artificial Intelligence
	Abductive Concept Learning
	Abduction and Induction
	Abduction in Systems Biology

	Cross References
	Recommended Reading

	Absolute Error Loss
	Accuracy
	Definition
	Cross References

	ACO
	Actions
	Active Learning
	Definition
	Structure of Learning System
	Related Problems
	Active Learning Scenarios
	Constructive Active Learning
	Pool-Based Active Learning
	Stream-Based Active Learning
	Other Forms of Active Learning

	Common Active Learning Strategies
	Statistical Active Learning
	The Need for Reference Distributions
	A Detailed Example: Statistical Active Learning with LOESS
	Greedy Versus Batch Active Learning
	Cross References
	Recommended Reading

	Active Learning Theory
	Definition
	Learning from Labeled and Unlabeled Data
	Motivating Examples
	Example: Thresholds on the Line
	Example: Linear Separators in R2
	Example: An Overabundance of Unlabeled Data

	The Sample Complexity of Active Learning
	Generic Results for Separable Data
	Mildly Selective Sampling
	A Bayesian Model
	Other Work

	Conclusion
	Cross References
	Recommended Reading

	Adaboost
	Adaptive Control Processes
	Adaptive Real-Time Dynamic Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Backup Operations
	Off-Line Versus On-Line
	Learning A Model
	Summary of Theoretical Results
	Special Cases and Extensions

	Cross References
	Recommended Reading

	Adaptive Resonance Theory
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	How CLEARS Mechanisms Interact
	Complementary Computing in the Brain: Resonance and Reset
	Binding Distributed Feature Patterns and Symbols During Conscious Resonances
	Resonance Links Intentional and Attentional Information Processing to Learning
	Complementary Attentional and Orienting Systems Control Resonance Versus Reset
	Controlling the Content of Conscious Experiences: Exemplars and Prototypes
	Memory Consolidation and the Emergence of Rules: Direct Access to Globally Best Match
	How the Laminar Circuits of Cerebral Cortex Embody ART Mechanisms
	Review of ART and ARTMAP Algorithms
	From Winner-Take-All to Distributed Coding
	Complement Coding: Learning both Absent and Present Features
	ARTMAP Search and Match Tracking in Fuzzy ARTMAP
	ART Geometry
	Biasing Against Previously Active Category Nodes and Previously Attended Features During Attentive Memory Search
	Self-Organizing Rule Discovery

	Cross References
	Recommended Reading

	Adaptive System
	Agent
	Agent-Based Computational Models
	Agent-Based Modeling and Simulation
	Agent-Based Simulation Models
	AIS
	Algorithm Evaluation
	Definition
	Motivation and Background
	Processes and Techniques
	Cross References
	Recommended Reading

	Analogical Reasoning
	Analysis of Text
	Analytical Learning
	Ant Colony Optimization
	Synonyms
	Definition
	Motivation and Background
	Structure of the Optimization System
	The Ant Colony Optimization Probabilistic Model
	The Ant Colony Optimization Pheromone Update

	Cross References
	Recommended Reading

	Anytime Algorithm
	AODE
	Apprenticeship Learning
	Approximate DynamicProgramming
	Apriori Algorithm
	Definition
	Cross References
	Recommended Reading

	Area Under Curve
	Synonyms
	Definition

	AQ
	ARL
	ART
	ARTDP
	Artificial Immune Systems
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Supervised Immune-Inspired Learning
	Unsupervised Immune-Inspired Learning

	Recommended Reading

	Artificial Life
	Artificial Neural Networks
	Cross References

	Artificial Societies
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Important Aspects
	Modeling Learning
	Examples
	Software Systems

	Applications
	Future Directions, Challenges
	Cross References
	Recommended Reading

	Assertion
	Association Rule
	Definition
	Cross References
	Recommended Reading

	Associative Bandit Problem
	Associative Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	The Learning Setting
	Power of Side Information
	Linear Payoff Functions
	PAC Associative Reinforcement Learning

	Recommended Reading

	Attribute
	Synonyms
	Definition
	Motivation and Background
	Future Directions
	Limitations
	Recommended Reading

	Attribute Selection
	Attribute-Value Learning
	AUC
	Autonomous Helicopter Flight Using Reinforcement Learning
	Definition
	Motivation and Background
	Typical Hardware Setup
	Helicopter State and Controls
	Helicopter Flight as an RL Problem
	Formulation
	Modeling
	Control Problem Solution Methods
	Policy Search
	Differential Dynamic Programming
	Apprenticeship Learning and Inverse RL

	Conclusion
	Cross References
	Recommended Reading

	Average-Cost Neuro-Dynamic Programming
	Average-Cost Optimization
	Averaged One-DependenceEstimators
	Synonyms
	Definition
	Classification with AODE
	Cross References
	Recommended Reading

	Average-Payoff Reinforcement Learning
	Average-Reward Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Model-Based Learning
	Model-Free Learning
	Scaling Average-Reward Reinforcement Learning
	Applications
	Convergence Analysis
	Cross References
	Recommended Reading

	B
	Backprop
	Backpropagation
	Synonyms
	Definition
	Characteristics
	Feed-Forward Networks
	Gradient Descent
	Implementation
	Classification Tasks with BP
	Curve Fitting with BP
	The Autoencoder Architecture
	Prediction with BP
	Cognitive Modeling with BP
	Biological Inspiration and Plausibility
	Shortcomings of BP
	History

	Cross References
	Recommended Reading

	Bagging
	Bake-Off
	Definition
	Cross References

	Bandit Problem with SideInformation
	Bandit Problem with Side Observations
	Basic Lemma
	Basket Analysis
	Synonyms
	Definition
	Cross References

	Batch Learning
	Synonyms
	Definition

	Baum–Welch Algorithm
	Bayes Adaptive Markov DecisionProcesses
	Bayes Net
	Bayes Rule
	Definition
	Discussion
	Cross References

	Bayesian Methods
	Definition
	Motivation and Background
	Theory
	Basic Theory
	Justifications
	Bayesian Computation

	Cross References
	Recommended Reading

	Bayesian Model Averaging
	Bayesian Network
	Synonyms
	Definition
	Cross References

	Bayesian Nonparametric Models
	Synonyms
	Definition
	Motivation and Background
	Examples
	Theory
	Exchangeability
	Model Representations
	Consistency and Convergence Rates

	Inference
	Examples
	On Bayes Equations and Conjugacy

	Future Directions
	General-Purpose Software Package
	Statistical Properties of Models

	Cross References
	Recommended Reading

	Bayesian Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Approach
	Model-Based Bayesian Learning
	Belief MDP Equivalence
	Optimal Value Function Parameterization
	Exploration/Exploitation Tradeoff
	Related Work

	Cross References
	Recommended Reading

	Beam Search
	Cross References
	Recommended Reading

	Behavioral Cloning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning Direct (Situation–Action) Controllers
	Limitations

	Learning Indirect (Goal-Directed) Controllers
	Cross References
	Recommended Reading

	Belief State Markov Decision Processes
	Bellman Equation
	Bias
	Bias Specification Language
	Definition
	Examples
	Bias Specification Languages in Inductive Logic Programming
	DLAB
	Type- and Mode-Based Biases
	FLIPPER's Bias Specification Language
	Other Approaches

	Further Reading
	Cross References
	Recommended Reading

	Bias Variance Decomposition
	Definition
	Cross References
	Recommended Reading

	Bias-Variance Trade-offs: Novel Applications
	Definition
	Motivation and Background
	Applications
	Monte Carlo Estimation of Integrals Using Importance Sampling
	Monte Carlo Optimization
	Parametric Machine Learning
	PLMCO
	MCO Problem Description
	Solution Methodology
	Log-Concave Densities
	Mixture Models
	Test Problems
	Application of PL Techniques

	Conclusions
	Recommended Reading

	Bias-Variance Trade-offs
	Bias-Variance-CovarianceDecomposition
	Bilingual Lexicon Extraction
	Binning
	Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	The Hebb Rule
	Functional Consequences of Hebbian Learning

	Cross References
	Recommended Reading

	Biomedical Informatics
	Introduction
	Gene Expression Microarrays
	Gene Chips

	Machine Learning for Microarrays
	Single Nucleotide Polymorphisms
	Mass Spectrometry and Proteomics
	Protein Structures
	Protein–Protein Interactions
	Related Data Types
	High-Throughput Screening Data for Drug Design
	Electronic Medical Records (EMR) and Personalized Medicine
	Conclusion
	Acknowledgment
	Cross References
	Recommended Reading

	Blog Mining
	Boltzmann Machines
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The stochastic Dynamics of a Boltzmann Machine
	Learning in Boltzmann Machines Without Hidden Units
	Learning with Hidden Units
	Different Types of Boltzmann Machine
	The speed of Learning
	Restricted Boltzmann Machines
	Learning Deep Networks by Composing Restricted Boltzmann Machines
	Relationships to Other Models

	Recommended Reading

	Boosting
	Bootstrap Sampling
	Definition
	Recommended Reading

	Bottom Clause
	Synonyms
	Definition
	Cross References

	Bounded Differences Inequality
	BP
	Breakeven Point

	C
	C4.5
	Cannot-Link Constraint
	Candidate-EliminationAlgorithm
	Recommended Reading
	Cascade-Correlation
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Algorithm
	Performance
	Variants of Cascade-Correlation
	Flat Cascade-Correlation
	Sibling-Descendant Cascade-Correlation (SDCC)
	Recurrent Cascade-Correlation (RCC)
	Knowledge-Based Cascade-Correlation (KBCC)
	Software

	Applications
	CC
	SDCC
	KBCC

	Future Directions
	Cross References
	Recommended Reading

	CART
	Cascor
	Case
	Case-Based Learning

	Case-Based Reasoning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Knowledge Containers
	CBR Cycle
	Retrieval
	Reuse and Revision
	Retention and Maintenance
	CBR Tools
	Applications

	Future Directions
	Cross References
	Recommended Reading

	Categorical Attribute
	Synonyms

	Categorical Data Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Generic Data Clustering System
	Categorical Data Clustering System
	Overlap-Based Similarity Measures
	Context-Based Similarity Measures
	Information-Theoretic Clustering Criteria
	Categorical Clustering as Clustering Aggregation

	Cross References
	Recommended Reading

	Categorization
	Category
	Causal Discovery
	Causality
	Definition
	Motivation and Background
	Structure of the Learning System
	Structure of Causal Inference
	Languages and Assumptions for Causal Inference

	Representing Interventions
	Calculating Distributions under Interventions
	Learning Causal Structure
	Confidence Intervals

	Other Languages and Tasks in Causal Learning

	Cross References
	Recommended Reading

	CBR
	CC
	Certainty Equivalence Principle
	Characteristic
	City Block Distance
	Class
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Class Imbalance Problem
	Definition
	Motivation and Background
	Recommended Reading

	Classification
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Applications
	Future Directions
	Limitations
	Recommended Reading

	Classification Algorithms
	Recommended Reading

	Classification Learning
	Classification Tree
	Classifier Systems
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Michigan Classifier Systems
	Knowledge Representation
	Performance Component
	Credit Assignment
	Rule Discovery Component
	Pittsburgh Classifier Systems
	Applications
	Programs and Data
	Cross References
	Recommended Reading

	Clause
	Cross References

	Clause Learning
	Click-Through Rate (CTR)
	Clonal Selection
	Closest Point
	Cluster Editing
	Cluster Optimization
	Cluster Ensembles
	Clustering
	Cross References

	Clustering Aggregation
	Clustering Ensembles
	Clustering from Data Streams
	Definition
	Main Techniques
	Basic Concepts
	Partitioning Clustering
	Micro Clustering
	Monitoring the Evolution of the Cluster Structure
	Tracking the Evolution of the Cluster Structure

	Recommended Reading

	Clustering of Nonnumerical Data
	Clustering with Advice
	Clustering with QualitativeInformation
	Clustering with Side Information
	Clustering with Constraints
	CN2
	Co-Training
	Coevolution
	Coevolutionary Computation
	Coevolutionary Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Multiple Versus Single Population Approaches
	Competition and Cooperation
	Evaluation
	Representation
	Pathologies and Remedies

	Cross References
	Recommended Reading

	Collaborative Filtering
	Collection
	Collective Classification
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Relational Classification
	Iterative Collective Classification with Neighborhood Labels
	Collective Classification with Graphical Models
	Applications
	Cross References
	Recommended Reading

	Commercial Email Filtering
	Committee Machines
	Community Detection
	Comparable Corpus
	Competitive Coevolution
	Competitive Learning
	Complex Adaptive System
	Complexity in Adaptive Systems
	Synonyms
	Definition
	Motivation and Background
	Theory
	Adaptive System Environment and Regularities
	External and Internal Complexities

	Application: Learning
	Recommended Reading

	Complexity of Inductive Inference
	Definition
	Detail
	Mind Changes and Anomalies
	Data and Time Complexity
	Iterative and Memory-Bounded Learning
	Complexity of Final Hypothesis
	Intrinsic Complexity
	Learning Using Oracles
	Recommended Reading

	Compositional Coevolution
	Synonyms
	Definition
	Cross References

	Computational Complexity of Learning
	Definition
	Detail

	Computational Discovery of Quantitative Laws
	Concept Drift
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Identifying Context Change
	Recent Advances
	Cross References
	Recommended Reading

	Concept Learning
	Synonyms
	Definition
	Background
	Rules, Relations, and Background Knowledge
	Concept Learning and Noise
	Cross References
	Recommended Reading

	Conditional Random Field
	Recommended Reading

	Confirmation Theory
	Confusion Matrix
	Definition

	Conjunctive Normal Form
	Recommended Reading

	Connection Strength
	Connections Between Inductive Inference and Machine Learning
	Definition
	Detail
	Multi-Task or Context Sensitive Learning
	Special Cases of Inductive Logic Programming
	Learning Drifting Concepts
	Behavioral Cloning
	Learning To Coordinate
	Learning Geometric Clustering
	Insights for Limitations of Science
	Cross References
	Recommended Reading

	Connectivity
	Consensus Clustering
	Synonyms
	Definition

	Constrained Clustering
	Definition
	Motivation and Background
	Structure of the Learning System
	Programs and Data

	Recommended Reading

	Constraint-Based Mining
	Definition
	Motivation and Background
	Structure of the Learning System
	Constraints
	Monotonic and Anti-Monotonic Constraints
	Succinct Constraints
	Convertible Constraints
	Boundable Constraints
	Borders
	Algorithms

	Cross References
	Recommended Reading

	Constructive Induction
	Recommended Reading

	Content Match
	Content-Based Filtering
	Synonyms
	Definition

	Content-Based Recommending
	Context-Sensitive Learning
	Contextual Advertising
	Continual Learning
	Synonyms
	Definition
	Cross References

	Continuous Attribute
	Contrast Set Mining
	Definition
	Recommended Reading

	Cooperative Coevolution
	Co-Reference Resolution
	Correlation Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Applications
	Applications of Clustering with Advice
	Recommended Reading

	Correlation-Based Learning
	Cost
	Cross References

	Cost Function
	Cost-Sensitive Classification
	Cost-Sensitive Learning
	Synonyms
	Definition
	Motivation and Background
	Theory
	Structure of Learning System
	Direct Cost-Sensitive Learning
	Cost-Sensitive Meta-Learning

	Recommended Reading

	Cost-to-Go Function Approximation
	Covariance Matrix
	Definition
	Motivation and Background
	Theory
	Properties
	Correlation Coefficient
	Parameter Estimation
	Conjugate Priors

	Applications
	Correlation and Kernel Methods
	Correlation and Least Squares Approximation
	Principal Component Analysis
	Gaussian Processes

	Cross References
	Recommended Reading

	Covering Algorithm
	Credit Assignment
	Synonyms
	Definition
	Motivation
	Structural Credit Assignment
	Temporal Credit Assignment
	Transfer Learning
	Cross References
	Recommended Reading

	Cross-Language Document Categorization
	Cross-Language Information Retrieval
	Cross-Language QuestionAnswering
	Cross-Lingual Text Mining
	Definition
	Motivation and Background
	Tasks and Methods
	Translation-Based Approaches
	Latent Semantic Approaches
	Cross-Language Semantic Analysis
	Cross-Language Latent Dirichlet Allocation
	Cross-Language Canonical Correlation Analysis
	The Primal Formulation
	Kernel Canonical Correlation Analysis
	Regularization and Partial Least Squares Solution
	Approximate Solutions

	Specific Applications
	Cross-Language Information Retrieval (CLIR)
	Cross-Language Question Answering (CLQA)
	Cross-Language Categorization (CLCat) and Clustering (CLCLu)

	Recommended Reading

	Cross-Validation
	Definition
	Cross References

	Cumulative Learning
	Synonyms
	Definition
	Related Terminology
	Motivation and Background
	History
	Structure of the Learning System
	Toward a CL Specification
	Classification of CL Systems
	Architecture
	Knowledge
	Learning

	The Research Space
	Future Directions
	Recommended Reading

	Curse of Dimensionality
	Definition
	Background
	Recommended Reading

	D
	Data Mining On Text
	Data Preparation
	Synonyms
	Definition
	Motivation and Background
	Processes and Techniques
	Sourcing, Selecting, and Auditing Appropriate Data
	Transforming Representation

	Cross References
	Recommended Reading

	Data Preprocessing
	Data Set
	DBN
	Decision Epoch
	Decision List
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Decision Lists and Decision Trees
	Definition
	Cross References
	Recommended Reading

	Decision Rule
	Decision Stump
	Definition
	Cross References
	Recommended Reading

	Decision Threshold
	Decision Tree
	Synonyms
	Definition
	Representation
	Learning Algorithm
	Attribute Selection
	Overfitting Avoidance

	Well-known Decision Tree Learning Algorithms
	Cross References
	Recommended Reading

	Decision Trees For Regression
	Deductive Learning
	Synonyms
	Definition

	Deduplication
	Deep Belief Nets
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Composing Simple Learning Modules
	The Theoretical Justification of the Learning Procedure
	Deep Belief Nets with Other Types of Variable
	Using Autoencoders as the Learning Module
	Applications of Deep Belief Nets

	Recommended Reading

	Deep Belief Networks
	Density Estimation
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Density-Based Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	Dependency Directed Backtracking
	Detail
	Deterministic Decision Rule
	Digraphs
	Synonyms
	Definition

	Dimensionality Reduction
	Synonyms
	Definition
	Motivation and Background
	Dimensionality Reduction for Time-Series Data
	Dimensionality Reduction and Lower-Bounding

	Cross References
	Recommended Reading

	Dimensionality Reduction on Text via Feature Selection
	Directed Graphs
	Dirichlet Process
	Definition
	Motivation and Background
	Theory
	Dirichlet Process
	Posterior Distribution
	Predictive Distribution and the Blackwell–MacQueen Urn Scheme
	Clustering, Partitions, and the Chinese Restaurant Process
	Stick-Breaking Construction

	Applications
	Dirichlet Process Mixture Models

	Generalizations and Extensions
	Future Directions
	Cross References
	Further Reading
	Recommended Reading

	Discrete Attribute
	Discretization
	Synonyms
	Definition
	Motivation and Background
	Taxonomy

	Recommended Reading

	Discriminative Learning
	Definition
	Cross References

	Disjunctive Normal Form
	Recommended Reading

	Distance
	Distance Functions
	Distance Measures
	Distance Metrics
	Distribution-Free Learning
	Divide-and-Conquer Learning
	Synonyms
	Definition
	Cross References

	Document Classification
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Data Representation
	Classification
	Evaluation Measures

	Cross References
	Recommended Reading

	Document Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Structure of Document Clustering
	Document Representation
	Similarity Measures
	Partitional Document Clustering
	Agglomerative Document Clustering
	Evaluation of Document Clustering

	Programs and Data
	Cross References
	Recommended Reading

	Dual Control
	Duplicate Detection
	Dynamic Bayesian Network
	Dynamic Decision Networks
	Dynamic Memory Model
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Dynamic Programming
	Definition
	Background and Motivation
	Structure of the Learning System
	The Finite Horizon Setting
	Backward Induction Algorithm

	The Infinite Horizon Setting
	Solving the Infinite Horizon Discounted MDP
	Value Iteration
	Policy Iteration
	Solving the Infinite Horizon Average Reward MDP
	Policy Iteration

	Continuous Time Models
	Extensions
	Partially Observed MDPs
	Parameter-Adaptive Dynamic Programming
	Approximate Dynamic Programming

	Cross References
	Recommended Reading

	Dynamic Programming For Relational Domains
	Dynamic Systems

	E
	EBL
	Echo State Network
	ECOC
	Edge Prediction
	Efficient Exploration in Reinforcement Learning
	Synonyms
	Definition
	Motivation
	Efficient Exploration in Markov Decision Processes
	Variations on MDP Learning
	Alternative Settings

	Cross References
	Recommended Reading
	EFSC
	Elman Network
	EM Algorithm
	EM Clustering
	Embodied Evolutionary Learning
	Emerging Patterns
	Definition
	Recommended Reading

	Empirical Risk Minimization
	Definition
	Recommended Reading

	Ensemble Learning
	Synonyms
	Definition
	Motivation and Background
	Methods and Algorithms
	Methods for Combining a Set of Models
	Algorithms for Learning a Set of Models
	Bagging
	Adaboost
	Mixtures of Experts

	Theoretical Perspectives: Ensemble Diversity
	What is Diversity?
	Regression Error with a Linear Combination Rule
	Classification Error with a Linear Combination Rule
	Classification Error with a Voting Combination Rule
	Summary

	Conclusions & Current Directions in the Field
	Recommended Reading

	Entailment
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Entity Resolution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Attribute-Based Entity Resolution
	Efficiency
	Probabilistic Models for Pairwise Resolution
	Probabilistic Models for Relational Entity Resolution
	Other Approaches for Relational Entity Resolution
	Applications
	Cross References
	Recommended Reading

	Epsilon Covers
	Definition
	Application
	Cross References
	Recommended Reading

	Epsilon Nets
	Definition
	Definition
	Remarks
	Example

	Application
	Cross References
	Recommended Reading

	Equation Discovery
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Approaches and Methods
	Types of Equations

	Applications
	Cross References
	Recommended Reading

	Error
	Error Correcting Output Codes
	Synonyms
	Definition
	Recommended Reading

	Error Curve
	Error Rate
	Synonyms
	Definition
	Cross References

	Error Squared
	Synonyms
	Definition

	Estimation of Density Level Sets
	Evaluation
	Evaluation Data
	Evaluation Set
	Evolution of Agent Behaviors
	Evolution of Robot Control
	Evolutionary Algorithms
	Synonyms
	Definition
	Cross References

	Evolutionary Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Evolving Clusters and Evolving Clustering Algorithms
	Encodings and Operators for Evolutionary Clustering
	Evolutionary Multiobjective Clustering

	Cross References
	Recommended Reading

	Evolutionary Computation
	Evolutionary Computation in Economics
	Definition
	Motivation and Background
	Rationality and Learning
	Economic and Econometric Models
	Game Theory
	Auction Theory
	Agent-Based Models

	Cross References
	Recommended Reading

	Evolutionary Computation in Finance
	Definition
	Motivation and Background
	Financial Forecasting
	Portfolio Optimization
	Financial Markets
	Option Pricing
	Credit Scoring, Credit Rating, and Bankruptcy Prediction

	Cross References
	Recommended Reading

	Evolutionary Computational Techniques in Marketing
	Definition
	Motivation and Background
	Applications
	Target potential clients
	New Products design
	Advertisement

	Cross References
	Recommended Reading

	Evolutionary Computing
	Evolutionary Constructive Induction
	Evolutionary Feature Selection
	Evolutionary Feature Selection and Construction
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Evolutionary Feature Selection
	Evolutionary Feature Construction

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Evolutionary Feature Synthesis
	Evolutionary Fuzzy Systems
	Definition
	Motivation and Background
	Structure of the Learning System
	Optimization and Learning of the Fuzzy Database
	Optimization and Learning of the Fuzzy Rule Base
	Optimization and Learning of the Complete Knowledge Base
	Final Remarks

	Recommended Reading

	Evolutionary Games
	Definition
	Motivation and Background
	Structure of the Learning System
	Genetic Programming
	Evolving Game-Playing Strategies
	Example: Robocode
	Program Architecture
	Terminal and Function Sets
	Fitness Measure
	Control Parameters and Run Termination
	Results

	Backgammon and Chess: Major Results
	Backgammon
	Chess (endgames)

	Cross References
	Recommended Reading

	Evolutionary Grouping
	Evolutionary Kernel Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Assessing Fitness: Model Selection Criteria
	Accuracy on Sample Data
	Measures Derived from Bounds on the Generalization Performance
	Number of Input Variables
	Space and Time Complexity of the Classifier
	Multi-Objective Optimization

	Encoding and Variation Operators
	Gaussian Kernels
	Optimizing Additional Hyperparameters

	Application Example
	Cross References
	Recommended Reading

	Evolutionary Robotics
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Genetic Encoding
	Fitness Evaluation
	Advantages

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Evolving Neural Networks
	Example
	Example-Based Programming
	Expectation Maximization Algorithm
	Expectation Maximization Clustering
	Synonyms
	Cross References
	Recommended Reading

	Expectation Propagation
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Bayesian Machine Learning
	Assumed Density Filtering
	Expectation Propagation
	Computational Aspects
	Convergence Issues
	Generalizations

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Expectation-Maximization Algorithm
	Synonyms

	Experience Curve
	Experience-Based Reasoning
	Explanation
	Explanation-Based Generalization for Planning
	Explanation-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Explanations and Their Generalization
	Evaluation and Hypothesis Selection
	Literature

	Cross References
	Recommended Reading

	Explanation-Based Learning for Planning
	Synonyms
	Definition
	Dimensions of Variation
	Learning from Success: Explanation-Based Generalization
	Learning from Failure
	Learning Adjustments to Heuristics
	EBL from Incomplete Domain Theories
	EBL to Learn Domain Knowledge
	EBL and Knowledge-Level Learning
	Utility Problem and its Non-Exclusive Relation to EBL
	Current Status
	Additional Reading
	Cross References
	Recommended Reading

	F
	F1-Measure
	False Negative
	False Positive
	Feature
	Feature Construction
	Feature Construction in Text Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Solutions
	Word-Based Features
	Character-Based Features
	Kernel Methods
	Linear Algebra Methods
	Miscellaneous

	Cross References
	Recommended Reading

	Feature Extraction
	Feature Reduction
	Feature Selection
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Categories of Feature Selection
	Searching for Relevant Features
	Models of Feature Selection
	Evaluation of Feature Selection
	Feature Selection Development and Applications

	Cross References
	Recommended Reading

	Feature Selection in Text Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Recommended Reading

	Feature Subset Selection
	Feedforward Recurrent Network
	Finite Mixture Model
	First-Order Logic
	Synonyms
	Definition
	Motivation and Background
	Theory
	Syntax
	Semantics
	Proofs
	Programming in Logic

	Cross References
	Recommended Reading

	First-Order Predicate Calculus
	First-Order Predicate Logic
	First-Order Regression Tree
	Synonyms
	Definition
	Cross References

	F-Measure
	Foil
	Frequent Itemset
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Frequent Pattern
	Definition
	Motivation and Background
	Structure of Problem
	Theory/solutions
	Condensed Representations: Closed Sets andNonderivable Sets
	Generalizations of Frequent Patterns

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Frequent Set
	Functional Trees
	Fuzzy Sets
	Recommended Reading

	Fuzzy Systems
	Recommended Reading

	G
	Gaussian Distribution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Canonical Form
	Cumulative Distribution Function
	Moments
	Entropy and Kullback–Leibler Divergence
	Properties Under Affine Transform
	Conjugate Priors
	Parameter Estimation
	Distributions Induced by the Gaussian

	Applications
	Central Limit Theorem
	Approximate Gaussian Posterior
	3-bold0mu mumu Rule
	Combination of Random Variables
	Correlations and Independence
	Marginalization, Conditioning, and Agglomeration

	Cross References
	Recommended Reading

	Gaussian Process
	Synonyms
	Definition
	Motivation and Background
	Theory
	Gaussian Process
	Covariance Functions

	Applications
	Regression
	Likelihood Function and Posterior Distribution:
	Predictive Distribution:
	Point Prediction:

	Classification
	Likelihood Function and Posterior Distribution:
	Predictive Distribution:
	Point Prediction:

	Practical Issues
	Model Selection
	Marginal Likelihood for Regression:
	Marginal Likelihood for Classification:

	Sparse Approximation

	Current and Future Directions
	Cross References
	Recommended Reading

	Gaussian Process Reinforcement Learning
	Definition
	Motivation and Background
	Markov Decision Processes
	Reinforcement Learning

	Structure of Learning System
	Gaussian Process Temporal Difference Learning

	Theory
	MRPs with Deterministic Transitions
	General MRPs

	Applications
	Future Directions
	Further Reading
	Recommended Reading

	Generality And Logic
	Generalization
	Cross References
	Recommended Reading

	Generalization Bounds
	Synonyms
	Definition
	Motivation and Background
	Details
	Cross References
	Recommended Readings

	Generalization Performance
	Cross References

	Generalized Delta Rule
	General-to-Specific Search
	Generative and Discriminative Learning
	Definition
	Motivation and Background
	Cross References
	Recommended Reading

	Generative Learning
	Definition
	Cross References

	Genetic and Evolutionary Algorithms
	Definitions
	Genetic Operators
	Cross References

	Genetic Attribute Construction
	Genetic Clustering
	Genetic Feature Selection
	Genetic Grouping
	Genetic Neural Networks
	Genetic Programming
	Genetics-Based Machine Learning
	Gibbs Sampling
	Gini Coefficient
	Gram Matrix
	Grammar Learning
	Grammatical Inference
	Synonyms
	Definition
	Recommended Reading

	Grammatical Tagging
	Graph Clustering
	Synonyms
	Definition
	Motivation and Background
	Graph Clustering as Minimum Cut
	Graph Clustering as Multiway Graph Partitioning
	Graph Clustering with k-Means
	Graph Clustering with the Spectral Method
	Graph Clustering as Quasi-Clique Detection
	Graph Clustering as Dense Subgraph Determination
	Clustering Graphs as Objects
	Conclusions and Future Research
	Cross References
	Recommended Reading

	Graph Kernels
	Definition
	Motivation and Background
	Approaches for Kernels between Graphs
	Approaches for Kernels on a Graph
	Recommended Reading

	Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Analysis of Real-World Graphs
	Graph Generators

	Applications
	Cross References
	Recommended Reading

	Graphical Models
	Definition
	Motivation and Background
	Theory
	Directed Graphical Models
	Undirected Graphical Models
	Conversion from Directed to Undirected GraphicalModels

	Characterization of Directed and Undirected Graphical Models

	Applications
	Inference Algorithms in Graphical Models
	Belief-Propagation
	Maximum A Posteriori (MAP) Estimation
	The Junction-Tree Algorithm
	Approximate Inference

	Cross References
	Recommended Reading

	Graphs
	Definition
	Motivation and Background
	Theory
	Isomorphism
	Classes of Graphs
	Properties of Graphs

	Applications
	Future Directions
	Recommended Reading

	Greedy Search
	Cross References
	Recommended Reading

	Greedy Search Approach of Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Graph-Based Hierarchical Conceptual Clustering
	Graph-Based Supervised Learning
	Graph Grammar Inference

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Group Detection
	Synonyms
	Definition
	Motivation and Background
	Theory Solution
	Approaches
	Local Techniques
	Clustering Techniques
	Centrality-Based Techniques
	Modularity-Based Techniques

	Issues
	Cross References
	Recommended Reading

	Grouping
	Growing Set
	Definition
	Cross References

	Growth Function

	H
	Hebb Rule
	Hebbian Learning
	Cross References

	Heuristic Rewards
	Hidden Markov Models
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Training and Using Hidden Markov Models
	Applications of Hidden Markov Models
	Programs

	Cross References
	Recommended Reading

	Hierarchical Reinforcement Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Structure of HRL
	Semi-Markov Decision Problem Formalism
	Approaches to Hierarchical Reinforcement Learning
	Hierarchies of Abstract Machines (HAMs)
	MAXQ
	Automatic Decomposition

	Cross References
	Recommended Reading

	High-Dimensional Clustering
	Higher-Order Logic
	Definition
	Motivation and Background
	Theory
	Logic
	Knowledge Representation
	Reasoning

	Applications
	Cross References
	Recommended Reading

	HMM
	Hold-One-Out Error
	Holdout Data
	Holdout Evaluation
	Definition
	Cross References

	Holdout Set
	Synonyms
	Definition
	Cross References

	Hopfield Network
	Synonyms
	Definition
	Recommended Reading

	Hypothesis Language
	Synonyms
	Definition
	Motivation and Background
	Examples of Hypothesis Languages
	Decision Trees and Rule Sets
	Graphical Models
	Neural Networks
	Instance-Based Learning
	Clustering
	First-Order Logic Versus Propositional Languages

	Further Reading
	Cross References
	Recommended Reading

	Hypothesis Space
	Synonyms
	Definition
	Motivation and Background
	Theory
	Further Reading
	Cross References
	Recommended Reading

	Hypothesis Space
	Definition

	I
	ID3
	Identification
	Identity Uncertainty
	Idiot's Bayes
	Immune Computing
	Immune Network
	Immune-Inspired Computing
	Immunocomputing
	Immunological Computation
	Implication
	Improvement Curve
	Incremental Learning
	Definition
	Motivation and Background
	Theory
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Indirect Reinforcement Learning
	Induction
	Definition
	Theory
	Hume's Problem of Induction
	Induction and Probabilistic Inference
	Popper
	Causality and Hempel's Paradox

	Cross References
	Recommended Reading

	Induction as Inverted Deduction
	Inductive Bias
	Synonyms
	Definition
	Cross References

	Inductive Database Approach to Graphmining
	Overview
	Pattern Domain
	Query Language
	Data Structures
	Recommended Reading

	Inductive Inference
	Definition
	Detail
	Explanatory Learning
	Beyond Explanatory Learning
	Consistent and Conservative Learning
	Monotonicity
	Indexed Families
	Cross References
	Recommended Reading

	Inductive Inference
	Inductive Inference Rules
	Inductive Learning
	Synonyms
	Definition

	Inductive Logic Programming
	Synonyms
	Definition
	Motivation
	Theory
	A Methodology
	FOIL: An Illustration
	Application
	State-of-the-Art
	Current Trends and Challenges
	Cross References
	Recommended Reading

	Inductive Process Modeling
	Synonyms
	Definition
	Cross References
	Recommended Reading
	Inductive Program Synthesis

	Inductive Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Evidence and the Oracle
	Program Schemas
	Predicate Invention
	Background Knowledge

	Programs and Data
	Applications
	Future Directions
	Acknowledgment
	Cross References
	Websites
	Recommended Reading
	Inductive Synthesis

	Inductive Transfer
	Synonyms
	Definition
	Structure of the System
	Neural Networks
	Other Paradigms
	Metasearching for Problem Solvers

	Theoretical Work
	Future Directions
	Cross References
	Recommended Reading

	Inequalities
	Information Retrieval
	Information Theory
	In-Sample Evaluation
	Synonyms
	Definition
	Cross References

	Instance
	Synonyms
	Definition

	Instance Language
	Instance Space
	Synonyms
	Definition

	Instance-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Further Reading
	Recommended Reading

	Instance-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Basic Approach
	Examples of IBRL Algorithms
	Assumptions
	Problems and Drawbacks

	Cross References
	Recommended Reading

	Intelligent Backtracking
	Synonyms
	Definition

	Intent Recognition
	Internal Model Control
	Synonyms
	Definition

	Interval Scale
	Inverse Entailment
	Definition
	Cross References

	Inverse Optimal Control
	Inverse Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Preliminaries and Notation
	Characterization of the Inverse RL Solution Set
	Reward Function Ambiguity
	Statistical Efficiency
	Computational Efficiency

	A Generative Approach to Inverse RL

	Apprenticeship Learning: Inverse RL Versus Imitation Learning
	Cross References
	Recommended Reading

	Inverse Resolution
	Definition
	Cross References

	Is More General Than
	Is More Specific Than
	Item
	Iterative Classification

	J
	Junk Email Filtering

	K
	K-Medoids Clustering
	Recommended Reading

	K-Way Spectral Clustering
	Recommended Reading

	Kernel Density Estimation
	Kernel Matrix
	Synonyms
	Definition

	Kernel Methods
	Definition
	Reproducing Kernel Hilbert Space
	Properties of psd Kernels
	Example Kernels
	Kernel Function Classes
	Motivation and Background
	Theory
	Reproducing Kernel Hilbert Space
	Properties of psd Kernels
	Example Kernels
	Kernel Function Classes

	Applications
	Supervised Learning
	Unsupervised Learning

	Cross References
	Further Reading
	Recommended Reading

	Kernel Shaping
	Kernel-Based ReinforcementLearning
	Kernels
	Kind
	Knowledge Discovery
	Kohonen Maps
	k-Armed Bandit
	Synonyms
	Definition
	Motivation and Background
	Theory
	The Stochastic k-Armed Bandit Problem
	Regret Minimization for the Stochastic k-Armed Bandit Problem
	The Non-stochastic k-Armed Bandit Problem
	The Exploratory k-Armed Bandit Problem
	Cross References
	Recommended Reading

	K-Means Clustering
	Recommended Reading

	L
	L1-Distance
	Label
	Labeled Data

	Language Bias
	Definition
	Cross References

	Laplace Estimate
	Latent Class Model
	Latent Factor Models and MatrixFactorizations
	Definition

	Lazy Learning
	Definition
	Discussion
	Cross References

	Learning as Search
	Definition
	Background
	Representation
	Version Spaces and Subsumption
	Noisy Data
	Cross References
	Recommended Reading

	Learning Bayesian Networks
	Learning Bias
	Learning By Demonstration
	Learning By Imitation
	Learning Classifier Systems
	Learning Control
	Learning Control Rules
	Learning Curves in Machine Learning
	Synonyms
	Definition
	Motivation and Background
	Use of Learning Curves in Machine Learning
	Artificial Neural Networks
	General Machine Learning

	Cross References
	Recommended Reading

	Learning from Complex Data
	Learning from Labeled andUnlabeled Data
	Learning from NonpropositionalData
	Learning from Nonvectorial Data
	Learning from Preferences
	Learning from Structured Data
	Synonyms
	Definition
	Motivation and Background
	Main Tasks and Solution Approaches
	Applications
	Cross References
	Recommended Reading

	Learning from Labeled and Unlabeled Data
	Learning Graphical Models
	Synonyms
	Definition
	Motivation and Background
	Theory
	Probability and Causality
	Statistical Equivalence

	Applications
	Constraint Learners
	Metric Learners
	Search and Complexity
	Markov Blanket Discovery
	Knowledge Engineering with Bayesian Networks

	Cross References
	Recommended Reading

	Learning in Logic
	Learning in Worlds with Objects
	Learning Models of Biological Sequences
	Definition
	Motivation and Background
	Structure of Learning System
	Motifs
	Proteins
	Genes
	RNAs
	Phylogenetic Models
	Programs and Data

	Recommended Reading

	Learning Vector Quantization
	Synonyms
	Definition

	Learning with DifferentClassification Costs
	Learning with Hidden Context
	Learning Word Senses
	Least-Squares Reinforcement Learning Methods
	Definition
	Motivation and Background
	Bellman Residual Minimizing Approximation
	Least-Squares Fixed-Point Approximation

	Structure of Learning System
	Least-Squares Temporal Difference Learning
	Bellman Residual Minimization Learning
	Hybrid Least-Squares Learning
	Least-Squares Policy Evaluation
	Least-Squares Policy Iteration
	Least-Squares Fitted Q-Iteration

	Cross References
	Recommended Reading

	Leave-One-Out Cross-Validation
	Definition
	Cross References
	Recommended Reading

	Leave-One-Out Error
	Synonyms
	Definition

	Lessons-Learned Systems
	Lifelong Learning
	Life-Long Learning
	Lift
	Linear Discriminant
	Definition
	Motivation and Background
	Fisher's Discriminant for Two-Category Problem
	Fisher's Discriminant for Multi-category Problem
	Cross References
	Recommended Reading

	Linear Regression
	Definition
	Motivation and Background
	Theory/Solution
	Least Squares Method
	Geometrical Interpretation of Least Squares Method
	Practical note:

	Sequential Learning of Least Squares Method
	Regularized/Penalized Least Squares Method
	Ridge regression
	Lasso regression

	Cross References
	Recommended Reading

	Linear Regression Trees
	Linear Separability
	Cross References

	Link Analysis
	Link Mining and Link Discovery
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Data Representation
	Link Mining Tasks
	Cross References
	Recommended Reading

	Link Prediction
	Synonyms
	Definition
	Theory/Solution
	Approaches
	Topology-Based Approaches
	Node Attribute-Based Approaches
	Issues
	Related Problems
	Cross References
	Recommended Reading

	Link-Based Classification
	Liquid State Machine
	Local Distance Metric Adaptation
	Synonyms
	Definition
	Cross References

	Local Feature Selection
	Locality Sensitive Hashing Based Clustering
	Recommended Reading

	Locally Weighted Learning
	Locally Weighted Regression for Control
	Synonyms
	Definition
	Motivation and Background
	Background
	Structure of Learning System
	Memory-Based Locally Weighted Regression (LWR)
	Locally Weighted Projection Regression (LWPR)
	A Full Bayesian Treatment of Locally Weighted Regression
	Applications
	Learning Internal Models with LWPR
	Learning Paired Inverse-Forward Models
	Learning Trajectory Optimizations

	Cross References
	Programs and Data
	Recommended Reading

	Logic of Generality
	Synonyms
	Definition
	Motivation and Background
	Theory
	Learning from Entailment
	Learning from Interpretations
	An Operational Perspective

	Frameworks for Generality
	Propositional Subsumption
	-Subsumption
	Inverse Resolution

	Background Knowledge
	Recommended Reading

	Logic Program
	Cross References

	Logical Consequence
	Logical Regression Tree
	Logistic Regression
	Synonyms
	Definition
	Recommended Reading

	Logit Model
	Log-Linear Models
	Long-Term Potentiation of Synapses
	LOO Error
	Loopy Belief Propagation
	Loss
	Synonyms
	Definition

	Loss Function
	Synonyms
	Definition
	LWPR
	LWR

	M
	m-Estimate
	Machine Learning and Game Playing
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning of Evaluation Functions
	Learning Search Control
	Opening Book Learning
	Pattern Discovery
	Player Modeling
	Commercial Computer Games

	Cross References
	Recommended Reading

	Machine Learning for IT Security
	Definition
	Motivation and Background
	Structure of Learning System
	Misuse Detection
	Anomaly Detection

	Cross References
	Recommended Reading

	Manhattan Distance
	Synonyms
	Definition
	Cross References

	Margin
	Definition
	Cross References

	Market Basket Analysis
	Markov Blanket
	Markov Chain
	Markov Chain Monte Carlo
	Synonyms
	Definition
	Motivation
	The Algorithm
	The Metropolis Algorithm
	Burn-in and Convergence
	Gibbs Sampling
	Cross References
	Recommended Reading

	Markov Decision Processes
	Synonyms
	Definition
	Optimality Criteria
	Finite Horizon
	Infinite Horizon Discounted
	Average Reward

	Value Determination
	Bellman Equations
	Linear Programming Solutions
	Bellman Error Minimization

	Control Methods
	Representations
	Greedy Algorithms Versus Search

	Cross References
	Recommended Reading

	Markov Model
	Markov Net
	Markov Network
	Synonyms
	Definition
	Cross References

	Markov Process
	Synonyms
	Recommended Reading

	Markov Random Field
	Markovian Decision Rule
	Synonyms
	Definition

	Maxent Models
	Maximum Entropy Models for Natural Language Processing
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Representing Evidence
	Combining the Evidence
	Relationship to Maximum Likelihood
	Parameter Estimation

	Applications
	Part-of-Speech Tagging
	Model Specification
	Training Data
	Search for Best Sequence

	Other NLP Applications

	Future Directions
	Recommended Reading

	McDiarmid's Inequality
	Synonyms
	Definition

	MCMC
	MDL
	Mean Absolute Deviation
	Mean Absolute Error
	Synonyms
	Definition
	Cross References

	Mean Error
	Mean Shift
	Recommended Reading

	Mean Squared Error
	Synonyms
	Definition
	Cross References

	Measurement Scales
	Definition
	Categorical versus Numeric
	Levels of Measurement Scales
	Summary
	Recommended Reading

	Medicine: Applications of Machine Learning
	Motivation
	Structure of the Problem
	Diversity of Representations
	Medical Tasks
	Diagnosis and Medication
	Prognosis and Quality of Care Assessment
	Verification and Validation
	Intelligent Search in Medical Literature
	Epidemiology and Outbreak Detection

	Cross References
	Recommended Reading

	Memory Organization Packets
	Memory-Based
	Memory-Based Learning
	Merge-Purge
	Message
	Meta-Combiner
	Metaheuristic
	Metalearning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Metalearning System
	Employing Metaknowledge to Select Machine Learning Algorithms
	How the Subset of Algorithms Is Identified
	Acquisition of Metaknowledge
	Inductive Transfer

	Cross References

	Minimum Cuts
	Minimum Description Length Principle
	Synonyms
	Definition
	Motivation and Background
	Theory
	Optimal Yardstick
	Cross References

	Minimum Encoding Inference
	Minimum Message Length
	Synonyms
	Definition
	Motivation and Background
	Theory
	Example with Binomial Distribution
	Approximations

	Applications
	Model-Based Clustering or Mixture Models
	Probabilistic Finite State Machines
	Decision Trees
	Causal Nets

	Future Directions
	Cross References
	Recommended Reading

	Missing Attribute Values
	Synonyms
	Definition
	Strategies for Missing Value Processing
	Missing Value Processing Techniques in Various ML Paradigms
	Recommended Reading

	Missing Values
	Mistake-Bounded Learning
	Mixture Distribution
	Mixture Model
	Synonyms
	Definition
	Motivation and Background
	Estimation
	Choosing the Number of Components
	Types of Component Distributions
	Large Datasets
	Theory
	Applications
	Cross References
	Recommended Reading

	Mixture Modeling
	Mode Analysis
	Model Evaluation
	Motivation and Background
	Processes and Techniques
	Cross References
	Recommended Reading

	Model Selection
	Model Space
	Model Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	Model-Based Clustering
	Definition
	Structure of Learning System
	Generative Model
	Learning
	Related Work

	Recommended Reading

	Model-Based Control
	Model-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Theory and Methods
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Modularity Detection
	MOO
	Morphosyntactic Disambiguation
	Most General Hypothesis
	Synonyms
	Definition
	Cross References

	Most Similar Point
	Most Specific Hypothesis
	Synonyms
	Definition
	Cross References

	Multi-Agent Learning I: Problem Definition
	Definition
	Background
	Problem Definition
	Recommended Reading

	Multi-Agent Learning II: Algorithms
	Definition
	Some MAL Techniques
	Model-Based Approaches
	Model-Free Approaches
	Regret Minimization Approaches

	Some Typical Results
	Recommended Reading

	Multi-Armed Bandit
	Multi-Armed Bandit Problem
	MultiBoosting
	Definition
	Algorithm
	Cross References
	Recommended Reading

	Multi-Criteria Optimization
	Multi-Instance Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Problem
	Theory and Methods
	Multiple-Instance Classification
	Multiple-Instance Regression

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Multi-Objective Optimization
	Synonyms
	Definition

	Multiple Classifier Systems
	Multiple-Instance Learning
	Multi-Relational Data Mining
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Multistrategy Ensemble Learning
	Definition
	Cross References
	Recommended Reading

	Must-Link Constraint

	N
	Naïve Bayes
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	NC-Learning
	NCL
	Nearest Neighbor
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Nearest Neighbor Methods
	Negative Correlation Learning
	Synonyms
	Definition
	Recommended Reading

	Negative Predictive Value
	Network Analysis
	Network Clustering
	Networks with Kernel Functions
	Neural Networks
	Cross References

	Neural Network Architecture
	Neuro-Dynamic Programming
	Neuroevolution
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Basic methods
	Extensions

	Applications
	Programs and Data
	Cross References
	Recommended Reading

	Neuron
	Synonyms
	Definition

	Node
	No-Free-Lunch Theorem
	Nogood Learning
	Noise
	Nominal Attribute
	Nonparametric Bayesian
	Nonparametric Cluster Analysis
	Non-Parametric Methods
	Nonstandard Criteria in Evolutionary Learning
	Introduction
	Formal Background
	Support Vector Machines
	Ensemble methods

	Learning Criteria
	Evolutionary Regularization
	Ensemble Learning and Boosting
	Boosting and Large-Scale Learning
	AUC: Area Under the ROC Curve

	Conclusions
	Recommended Reading

	Nonstationary Kernels
	Nonstationary Kernels Supersmoothing
	Normal Distribution
	NP-Completeness
	Definition
	Recommended Reading

	Numeric Attribute
	Synonyms
	Definition

	O
	Object
	Object Consolidation
	Object Space
	Observation Language
	Synonyms
	Definition
	Motivation and Background
	Attribute-Value Learning
	Learning from Graphs, Trees, or Sequences
	Relational Learning
	Inductive Logic Programming

	Further Reading
	Cross References
	Recommended Reading

	Occam’s Razor
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Ockham’s Razor
	Offline Learning
	One-Step Reinforcement Learning
	Online Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Theory/Solution
	TheWeighted Majority Algorithm
	Extensions and Modifications of the Weighted MajorityAlgorithm
	General loss functions.
	Tracking the best expert and other structured experts.
	The doubling trick.
	Followthe perturbed leader.
	Prediction with limited feedback and the multiarmedbandit problem.
	The Perceptron Algorithm
	Analysis of the perceptron algorithm.
	Relation between the perceptron algorithm and supportvector machines.
	Learning with Equivalence Queries

	Cross References
	Recommended Reading

	Ontology Learning
	Opinion Mining
	Optimal Learning
	OPUS
	Ordered Rule Set
	Ordinal Attribute
	Out-of-Sample Data
	Out-of-Sample Evaluation
	Definition
	Cross References

	Overall and Class-SensitiveFrequencies
	Overfitting
	Synonyms
	Definition
	Discussion
	Cross References

	Overtraining

	P
	PAC Identification
	PAC Learning
	Synonyms
	Motivation and Background
	Definition
	Remarks

	The Finite Case
	The Infinite Case
	Variations
	Weak Learning

	Relations to Other Learning Models
	Cross References
	Recommended Reading

	PAC-MDP Learning
	Parallel Corpus
	Part of Speech Tagging
	Partially Observable MarkovDecision Processes
	Synonyms
	Definition
	Motivation and Background
	Structure of Model and SolutionAlgorithms
	POMDP Model
	Policies
	Solution Algorithms
	RelatedWork

	Cross References
	Recommended Reading

	Particle Swarm Optimization
	The Canonical Particle Swarm
	The Social–Psychological Metaphor
	The Population Topology
	Vmax and Convergence
	Step Size and Consensus
	The Fully Informed Particle Swarm (FIPS)

	Generalizing the Notation
	The Evolving Paradigm
	Binary Particle Swarms
	Alternative Probability Distributions

	Recommended Reading

	Partitional Clustering
	Definition
	Recommended Reading

	Passive Learning
	PCA
	PCFG
	Phase Transitions in MachineLearning
	Synonyms
	Definition
	Motivation and Background
	Relational Learning
	Relational Kernels and MIL Problems
	Multi-Instance Learning: Background and Kernels
	The MI-SVM PT

	Propositional Learning and Sparse Coding
	Propositional Classification
	Propositional Regression

	Perspectives
	Recommended Reading

	Perceptron
	Piecewise Constant Models
	Piecewise Linear Models
	Plan Recognition
	Policy Gradient Methods
	Synonyms
	Definition
	Structure of the Learning System
	Expected Return
	Gradient Descent in Policy Space
	Finite Difference Gradients
	Likelihood-Ratio Gradients

	Cross References
	Recommended Reading

	Policy Search
	POMDPs
	POS Tagging
	Synonyms
	Definition
	Motivation and Background
	Statistical and Machine LearningApproaches to Tagging
	HMMs
	Transformation-Based Error-DrivenLearning (Brill-Tagging)
	Other Supervised Learning Methods
	Cross References
	Recommended Reading

	Positive Definite
	Positive Predictive Value
	Positive Semidefinite
	Synonyms
	Definition

	Posterior
	Posterior Probability
	Synonyms
	Definition
	Cross References

	Post-Pruning
	Definition
	Cross References

	Postsynaptic Neuron
	Precision
	Synonyms
	Definition
	Cross References

	Precision and Recall
	Definition
	Cross References

	Predicate
	Cross References

	Predicate Calculus
	Predicate Invention
	Definition
	Cross References

	Predicate Logic
	Prior Probabilities
	Prior Probability
	Synonyms
	Definition
	Cross References

	Prediction with Expert Advice
	Predictive Software Models
	Predictive Techniques in SoftwareEngineering
	Synonyms
	Introduction
	The Process of Applying ML to SE
	Applications of Predictive Models in SE
	Software size prediction
	Software quality prediction
	Software Cost Prediction
	Software Defect Prediction
	Software Reliability Prediction
	Software Reusability Prediction
	Other Applications

	Future Directions
	Recommended Reading

	Preference Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning from Object Preferences
	Learning from Label Preferences
	Learning Utility Functions
	Learning Preference Relations

	Future Directions
	Cross References
	Recommended Reading

	Pre-Pruning
	Synonyms
	Definition
	Cross References

	Presynaptic Neuron
	Principal Component Analysis
	Synonyms
	Definition

	Prior
	Privacy-Preserving Data Mining
	Privacy-Related Aspects andTechniques
	Synonyms
	Definition
	Motivation and Background
	Theory/Solutions
	Basic Dimensions of Privacy Techniques
	Protecting Centralized Data
	Protecting the Model (Centralized Data)
	Distributed Data

	Evaluation
	Future Directions
	Recommended Reading

	Probabilistic Context-FreeGrammars
	Synonyms
	Definition
	Derivation Process
	Probability Distribution
	Parsing Algorithm
	Learning
	Application to Bioinformatics
	Recommended Reading

	Probably Approximately CorrectLearning
	Process-Based Modeling
	Program Synthesis From Examples
	Programming by Demonstration
	Synonyms
	Definition
	Acknowledgement
	Cross References
	Recommended Reading

	Programming by Example
	Programming from Traces
	Projective Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Algorithms
	Applications

	Principal Component Analysis
	Coresets
	Cross References
	Recommended Reading

	Prolog
	Cross References
	Recommended Reading

	Property
	Propositional Logic
	Cross References

	Propositionalization
	Definition
	Motivation and Background
	Solutions
	Functional Relationship (Many-To-One, One-To-One)
	Non-Determinate Relationship (One-To-Many,Many-To-Many)
	CommonMistakes and Key Rules to Avoid them
	Further Relationships

	Future Directions
	Recommended Reading

	Pruning
	Definition
	Cross References

	Pruning Set
	Definition
	Cross References

	Q
	Q-Learning
	Definition
	Cross References
	Recommended Reading

	Quadratic Loss
	Qualitative Attribute
	Quality Threshold Clustering
	Synonyms
	Recommended Reading

	Quantitative Attribute
	Query-Based Learning
	Definition
	Detail
	Recommended Reading

	R
	Rademacher Average
	Rademacher Complexity
	Synonyms
	Definition

	Radial Basis Function Approximation
	Radial Basis Function Networks
	Synonyms
	Definition
	Motivation and Background
	Structure of the Network/Learning System
	Applications
	Theory/Solution
	Regularization and Generalizations
	Advantages of the Approach
	Limitations
	Cross References
	Recommended Reading

	Radial Basis Function Neural Networks
	Random Decision Forests
	Random Forests
	Synonyms
	Definition

	Random Subspace Method
	Synonyms
	Definition

	Random Subspaces
	Randomized Decision Rule
	Rank Correlation
	Definition
	Cross References

	Ratio Scale
	Real-Time Dynamic Programming
	Recall
	Cross References

	Receiver Operating Characteristic Analysis
	Recognition
	Recommender Systems
	Definition
	Motivation and Background
	Structure of Learning System
	Collaborative Filtering
	Neighborhood-based Collaborative Filtering
	Model-based Collaborative Filtering

	Content-based Recommending
	Hybrid Approaches
	Evaluation Metrics
	Challenges and Limitations

	Recommended Reading

	Record Linkage
	Recurrent Associative Memory
	Recursive Partitioning
	Reference Reconciliation
	Regression
	Definition
	Motivation and Background
	Theory/Solution
	Fitting
	Regularized/Penalized Fitting
	Bias-Variance Dilemma
	Nonparametric Regression
	Generalized Linear Models
	Other Variants of Regression

	Cross References
	Recommended Reading

	Regression Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Learning a Regression Tree
	Pruning Regression Trees

	Cross References
	Recommended Reading

	Regularization
	Definition
	Motivation and Background
	Theory
	An Illustrative Example: Ridge Regression
	Examples of Regularization
	Measuring the Capacity of Model Class

	Applications
	Cross References
	Recommended Reading

	Regularization Networks
	Reinforcement Learning
	Cross References
	Recommended Reading

	Reinforcement Learning in Structured Domains
	Relational
	Cross References

	Relational Data Mining
	Relational Dynamic Programming
	Relational Learning
	Problem Definition
	Learning from Examples with External Relationships
	Learning from Examples with a Complex Internal Structure

	Approaches to Relational Learning
	Inductive Logic Programming
	Learning from Graphs
	Multi-relational Data Mining
	Statistical Relational Learning/Probabilistic Logic Learning
	Relational Reinforcement Learning

	Cross References
	Recommended Reading

	Relational Regression Tree
	Relational Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Added Benefits of Relational Reinforcement Learning
	Example Relational Reinforcement Learning Approaches
	Relational Q-Learning
	Non-parametric Policy Gradients
	Relational Approximate Policy Iteration
	Symbolic Dynamic Programming

	Cross References
	Further Information
	Recommended Reading

	Relational Value Iteration
	Relationship Extraction
	Relevance Feedback
	Cross References

	Representation Language
	Reservoir Computing
	Synonyms
	Definition
	Recommended Reading

	Resolution
	Resubstitution Estimate
	Cross References

	Reward
	Reward Selection
	Reward Shaping
	Synonyms
	Definition
	Motivation and Background
	Theory
	Potential-Based Shaping
	Cross References
	Recommended Reading

	RIPPER
	Robot Learning
	Definition
	Robot Skill Learning Problems
	Robot Learning Systems
	Model Learning
	Imitation and Apprenticeship Learning
	Robot Reinforcement Learning

	Application Domains
	Cross References
	Recommended Reading

	ROC Analysis
	Synonyms
	Definition
	Motivation and Background
	Solutions
	Properties of ROC Curves
	The AUC Statistic
	Identifying Optimal Points and the ROC Convex Hull
	Obtaining Calibrated Estimates of the Class Posterior

	Future Directions
	Cross References
	Recommended Reading

	ROC Convex Hull
	ROC Curve
	Rotation Forests
	RSM
	Rule Learning
	Synonyms
	Definition
	The Covering Algorithm
	Finding the Best Rule
	Rule Learning Heuristics
	Overfitting Avoidance

	Alternatives to Covering
	Well-known Rule Learning Algorithms
	Cross References
	Recommended Reading

	S
	Sample Complexity
	Samuel's Checkers Player
	Definition
	Description of the Learning System
	Cross References
	Recommended Reading

	Saturation
	SDP
	Search Bias
	Search Engines: Applications of ML
	Definition
	Motivation and Background
	Structure of the Learning System
	Retrieval Methods
	Query Classification
	Cross References
	Recommended Reading

	Self-Organizing Feature Maps
	Self-Organizing Maps
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Programs and Data
	Applications
	Cross References
	Recommended Reading

	Semantic Mapping
	Semi-Naive Bayesian Learning
	Definition
	Motivation and Background
	Taxonomy of Semi-Naive Bayesian Techniques
	Methods That Apply Naive Bayes to a Subset of Attributes
	Methods That Alter Naive Bayes by Allowing Interdependencies between Attributes
	Methods That Apply Naive Bayes to a Subset of the Training Set
	Methods That Calibrate Naive Bayes' Probability Estimates
	Methods That Introduce Hidden Variables to Naive Bayes
	Selection Between Semi-Naive Bayesian Methods
	Cross References
	Recommended Reading

	Semi-Supervised Learning
	Synonyms
	Definition
	Motivation and Background
	Theory
	Generative Models
	Semi-Supervised Support Vector Machines
	Graph-Based Models
	Co-training and Multiview Models
	A PAC Bound for Semi-Supervised Learning

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Semi-Supervised Text Processing
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Generative Models
	Discriminative Approaches
	Multiview Approaches
	Graph-Based Approaches
	Approaches that Exploit Background Knowledge

	Recommended Reading

	Sensitivity
	Synonyms

	Sensitivity and Specificity
	Definition
	Cross References

	Sequence Data
	Sequential Data
	Synonyms

	Sequential Inductive Transfer
	Sequential Prediction
	Set
	Shannon's Information
	Shattering Coefficient
	Synonyms
	Definition

	Similarity Measures
	Synonyms
	Definition
	Motivation and Background
	Classes of Similarity Functions
	Cross References
	Recommended Readings

	Simple Bayes
	Simple Recurrent Network
	Synonyms
	Definition
	Recommended Reading

	SMT
	Solution Concept
	Solving Semantic Ambiguity
	SOM
	SORT
	Spam Detection
	Specialization
	Cross References

	Specificity
	Synonyms

	Spectral Clustering
	Speedup Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Dimensions of Speedup Learning
	Examples of Intra-Problem Speedup Learning
	Examples of Inter-Problem Speedup Learning

	Cross References
	Recommended Reading

	Speedup Learning For Planning
	Spike-Timing-Dependent Plasticity
	Cross References

	Sponsored Search
	Squared Error
	Squared Error Loss
	Stacked Generalization
	Synonyms
	Definition
	Recommended Reading

	Stacking
	Starting Clause
	State
	Statistical Learning
	Statistical Machine Translation
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Modeling
	Estimation

	Programs and Data

	Statistical Physics Of Learning
	Statistical Relational Learning
	Definition
	Motivation and Background
	Theory
	Statistical Relational Languages
	Case Study: Markov Logic Networks
	Case Study: ProbLog

	Learning
	Parameter Estimation
	Structure Learning

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Stochastic Finite Learning
	Motivation and Background
	Definition
	Detail
	Learning Monomials
	Learning Pattern Languages
	Cross References
	Recommended Reading

	Stratified Cross Validation
	Stream Mining
	Cross References

	String kernel
	String Matching Algorithm
	Structural Credit Assignment
	Structural Risk Minimization
	Definition
	Recommended Reading

	Structure
	Structured Data Clustering
	Structured Induction
	Definition
	Motivation and Background

	Structure of Learning System
	Structured Versus Unstructured Induction
	Related Work
	Cross References
	Recommended Reading

	Subgroup Discovery
	Definition
	Recommended Reading

	Sublinear Clustering
	Definition
	Motivation and Background
	Structure of the Learning System
	Theory/Solution
	Clustering Problems
	Radius k-Clustering:
	Diameter k-Clustering:
	k-Median:
	k-Means:

	Random Sampling and Sublinear-Time Algorithms
	Quality of Uniformly Random Sampling:
	Property Testing of the Quality of Clustering:

	Core-Sets: Sublinear Space Representations with Applications
	Constructing a Core-Set:
	Applications

	Recommended Reading

	Subspace Clustering
	Subsumption
	Cross References
	Recommended Reading

	Supersmoothing
	Supervised Descriptive Rule Induction
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Applications
	Future Directions
	Cross References

	Supervised Learning
	Definition
	Cross References

	Support Vector Machines
	Definition
	Motivation and Background
	Theory
	Optimal Hyperplane for Linearly Separable Examples
	Soft Margins
	Dual Forms and Kernelization
	Optimization Techniques and Toolkits

	Applications
	Cross References
	Further Reading
	Recommended Reading

	Swarm Intelligence
	Symbolic Dynamic Programming
	Synonyms
	Definition
	Motivation and Background
	Theory and Solution
	Background: Markov Decision Processes (MDPs)
	First-Order Markov Decision Processes
	Symbolic Dynamic Programming

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Symbolic Regression
	Symmetrization Lemma
	Synonyms
	Definition

	Synaptic E.Cacy

	T
	Tagging
	TAN
	Taxicab Norm Distance
	TD-Gammon
	Definition
	Description of the Learning System
	Cross References
	Recommended Reading

	TDIDT Strategy
	Temporal Credit Assignment
	Temporal Data
	Temporal Difference Learning
	Definition
	Formal Definitions
	Estimating Discounted Sum of Reward

	Eligibility Traces and TD(bold0mu mumu)
	Convergence
	Control of Systems
	Actor-Critic Control Systems
	Other Value Functions

	Approximation
	Related Differencing Systems
	Biological Links

	Cross References
	Recommended Reading

	Test Data
	Synonyms
	Definition
	Cross References

	Test Instances
	Test Set
	Synonyms
	Definition
	Cross References

	Test Time
	Test-Based Coevolution
	Synonyms
	Definition

	Text Clustering
	Text Learning
	Text Mining
	Synonyms
	Definition
	Cross References

	Text Mining for Advertising
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Problem
	Structure of Learning Systems
	Keyword Extraction Approaches
	The Vocabulary Impedance Problem
	Learning with Genetic Programming
	Semantic Approaches to Contextual Advertising

	Cross References
	Recommended Reading

	Text Mining for News and Blogs Analysis
	Definition
	Motivation and Background
	Structure of the Learning System
	Tasks
	Solution Approaches

	Recommended Reading

	Text Mining for Spam Filtering
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Overview
	Data Acquisition
	Content Encoding and Deobfuscation
	Feature Extraction and Selection
	Learning Algorithms
	One Model versus Multiple Models
	Off-line Adaptation Versus Online Adaptation
	User-specific Versus User-independent Spam Detection
	Clustering and Volumetric Techniques
	Misclassification Costs and Filter Evaluation
	Adaptation to Countermeasures

	Future Directions
	Reputation Systems and Social Networks

	Cross References
	Recommended Reading

	Text Mining for the Semantic Web
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	Text Spatialization
	Text Visualization
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Applications
	Sammon
	Lin
	BEAD
	IN-SPIRE
	WEBSOM
	Starlight

	Cross References
	Recommended Reading

	TF–IDF
	Threshold Phenomena in Learning
	Time Sequence
	Time Series
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Topic Mapping
	Topology of a Neural Network
	Synonyms
	Definition

	Trace-Based Programming
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Training Curve
	Training Data
	Synonyms
	Definition

	Training Examples
	Training Instances
	Training Set
	Synonyms
	Definition
	Cross References

	Training Time
	Trait
	Trajectory Data
	Transductive Learning
	Transfer of Knowledge Across Domains
	Transition Probabilities
	Tree Augmented Naive Bayes
	Synonyms
	Definition
	Classification with TAN
	Cross References
	Recommended Reading

	Tree Mining
	Definition
	Motivation and Background
	Structure of Problem
	Theory/Solution
	Encoding and Enumerating Trees
	Counting Trees
	Other Constraints

	Applications
	Cross References
	Further Reading
	Recommended Reading

	Tree-Based Regression
	True Negative
	True Negative Rate
	True Positive
	True Positive Rate
	Type
	Typical Complexity of Learning

	U
	Underlying Objective
	Unit
	Universal Learning Theory
	Definition, Motivation, and Background
	Deterministic Environments
	Learning by enumeration
	Majority learning
	Weighted majority for countable classes

	Algorithmic Probability
	(Universal) monotone Turing machines
	Universal weighted majority learning
	Universal mixture prediction

	Universal Bayes
	Bayes
	Universal Choice of M
	Kolmogorov Complexity
	The Universal Prior
	Representations

	Applications
	Universal Sequence Prediction
	Universal Sequential Decisions
	Universal Classification and Regression
	Universal Reinforcement Learning
	Approximations and Practical Applications
	Other Applications

	Discussion and Future Directions
	Cross References
	Recommended Reading

	Unknown Attribute Values
	Unknown Values
	Unlabeled Data
	Unsolicited Commercial Email Filtering
	Unstable Learner
	Unsupervised Learning
	Unsupervised Learning onDocument Datasets
	Utility Problem

	V
	Value Function Approximation
	Synonyms
	Definition
	Motivation and Background
	Markov Decision Processes
	Policies
	Value Functions
	Bellman Equations
	Significance of Value Functions

	Structure of Learning System
	Value Function Approximation
	Approximation Architectures
	Learning

	Examples
	Inverted Pendulum
	Mountain Car

	Definitions
	Cross References
	Recommended Reading

	Variable Selection
	Variable Subset Selection
	Variance
	Variance Hint
	VC Dimension
	Motivation and Background
	Definition
	Remarks

	Examples
	Applications
	Cross References
	Recommended Reading

	Vector Optimization
	Version Space
	Definition
	Cross References
	Recommended Reading

	Viterbi Algorithm
	Recommended Reading

	W
	Web Advertising
	Weight
	Synonyms
	Definition

	Within-Sample Evaluation
	Word Sense Disambiguation
	Synonyms
	Definition
	Motivation and Background
	Applications
	Brief History
	Methods

	Structure of the Learning System
	Features
	Machine Learning
	Generation of Sense-Tagged Corpora

	Cross References
	Recommended Reading

	Word Sense Discrimination

	Z
	Zero-One Loss

