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Preface

There are not many books on general game programming, and even fewer on game 
artificial intelligence (AI) programming. This text will provide the reader with four 
principal elements that will extend the current library.

 1.  A clear definition of “game AI.” Many books use a general or far too wide-
sweeping meaning for the term AI, and as such, the reader never feels com-
pletely satisfied with the solutions provided. This lack of satisfaction may 
further the “mystical” nature of AI that pervades the common knowledge 
of both the general public and industry people.

 2.  Genre-by-genre breakdown of AI elements and solutions. Too many books 
rely on one type of game, or one narrow demonstration program. This 
text breaks apart the majority of the modern game genres and gives con-
crete examples of AI usage in actual released titles. By seeing the reasoning 
behind the different genre choices of AI paradigms, the reader will gain 
greater understanding of the paradigms themselves.

 3.  Implemented code for the majority of commonly-used AI paradigms. In the 
latter parts of the book, real code is given for each AI technique, both in 
skeletal form, and as part of a real-world example application. The code is 
broken down and fully discussed to help show the actual handling of the 
system.

 4.  A discussion of future directions for improvement. With each genre and AI 
technique, the text gives examples of ways the system could be extended. 
This is done by pointing out common AI failings in current and classic 
games, as well as by detailing ways in which systems could be optimized for 
space, speed, or some other limitation.
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The book is divided into a few major areas: theory and background, major genre 
divisions, AI techniques with code, and AI engine development concerns. Readers of 
the book should note that there might be some confusion if read from start to finish, 
since the genre chapters make mention of some of the AI techniques discussed later in 
the book. However, discussion of the AI techniques first would have made mention of 
game genre issues, so the current ordering was thought to be best.

Content Overview

Chapters 1–3 provides an overall look at game AI, covers the basic terminology 
that will be used throughout the book, looks at some of the underlying concepts of 
game AI, and dissects the parts of a game AI engine. Chapters 4–14 cover specific 
game genres and how they use the differing AI paradigms. Although the book 
cannot be all-inclusive (by detailing how each and every game “did it”), it does 
discuss the more common solutions to the problems posed by games of each genre. 
Chapters 15–21 provides the actual code implementations for the basic AI tech-
niques, and Chapters 22–24 covers the more advanced ones. In the last four chapters, 
a variety of concepts and concerns are broken down, dealing with real game AI 
development: general design and development issues, distributed AI as an overall 
paradigm that can help with the organization of almost any AI engine, debugging 
AI systems, and the future of AI.

Audience

This book was written to provide game developers with the tools necessary to cre-
ate modern game artificial intelligence (AI) engines, and to survey the capabilities 
of the differing techniques used in some current AI engines. AI programming is a 
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very challenging aspect of game production, and although many books have been 
written on generic game-related data structures and coding styles, very few have 
been written specifically for this important and tech-heavy subject.

This book is specifically written for the professional game AI programmer, or 
the programmer interested in expanding his area of interest into AI. If you are 
having difficulties determining which techniques to use, have questions about, or 
need working code for the engine best suited for a particular game, this is the book 
for you. This book provides a clean, usable interface for a variety of useful game 
AI techniques. The book emphasizes primary decision-making paradigms, and as 
such does not delve into the important areas of pathfinding (at least, not directly; many 
of the techniques presented could be used to run a pathfinder) or perception, 
although they are discussed.

This book assumes a working knowledge of C++, the classical data structures, 
and a basic knowledge of object-oriented programming. The demonstration pro-
grams are written in Microsoft Visual C++® under the Windows® platform, but 
only the rendering is platform specific, and the rendering API used is the GLUT 
extension to OpenGL, so that you could easily port to another system if necessary. 
See the CD-ROM for information on GLUT and OpenGL.

After reading this book, you will be familiar with a good portion of the huge land-
scape of knowledge that a game AI programmer has to master. The genre discussions 
will supply the programmer with insights into how to build an AI system from start 
to finish, given the realities of the product and the schedule. The code in the book is 
generic enough to build almost any type of AI system and it provides clear ways to com-
bine techniques into much more complex and usable game-specific AI engines.

xxx Introduction



1

Basic Definitions 
and Concepts

1

Welcome to AI Game Engine Programming. This book is meant to give the 
game artificial intelligence (AI) programmer the knowledge and tools 
needed to create AI engines for modern commercial games. What ex-

actly do we mean by “game AI”? It turns out this isn’t as straightforward a question 
as you would think.

First, the term “game” is somewhat hazy itself. A “game” could refer to a spoken 
ritual that a class full of kids might play or to a complex technological undertak-
ing by our government for training purposes. For this book, we’ll be referring to 
electronic video games exclusively, although some of the concepts that we’ll cover 
would probably be applicable to board games, or other strategic competitive game-
like activities.

Second, we come to the term “AI.” Seeing as its foundations were created in 
the 1950s, the science of AI is relatively young. The usage of AI techniques within 
games is even more contemporary, because of the computation and storage-space 
limitations of earlier game machines (not to mention the simplistic nature of many 
early games). The field’s immaturity means that the definition of game AI is not 
clear for most people, even those who practice game production. This chapter will 
define the term game AI, identify practices and techniques that are commonly mis-
taken for game AI, and discuss areas of future expansion. Later in the chapter, rel-
evant concepts from other fields, including mind science, psychology, and robotics, 
will be discussed regarding game AI systems.

In This Chapter

 What Is Intelligence?
 What Is “Game AI”?
 What Game AI Is Not
 How this Definition Differs from that of Academic AI
 Applicable Mind Science and Psychology Theory
 Lessons from Robotics
 Summary



WHAT IS INTELLIGENCE?

The word intelligence is fairly nebulous. The dictionary will tell you it is the ca-
pacity to acquire and apply knowledge, but this is far too general. This definition, 
interpreted literally, could mean that your thermostat is intelligent. It acquires the 
knowledge that the room is too cold and applies what it learned by turning on the 
heater. The dictionary goes on to suggest that intelligence demonstrates the fac-
ulty of thought and reason. Although this is a little better (and more limiting; the 
thermostat has been left behind), it really just expands our definition problem by 
introducing two even more unclear terms, thought and reason. In fact, the feat of 
providing a true definition of intelligence is an old and harried debate that is far 
beyond the scope of this text. Thankfully, making good games does not require this 
definition.

Actually, this text will agree with our first dictionary definition, as it fits nicely 
with what we expect game systems to exhibit to be considered intelligent. For our 
purposes, an intelligent game agent is one that acquires knowledge about the world, 
and then acts on that knowledge. This is not to say that our notion of intelligence 
is completely reactive, since the “action” we might take is to build a complex plan 
for solving the game scenario. The quality and effectiveness of these actions then 
become a question of game balance and design.

WHAT IS “GAME AI”?

Let us start with a rigorous, academic definition of AI. In their seminal AI Bible, 
Artificial Intelligence: A Modern Approach, Russel and Norvig [Russel 95] say that 
AI is the creation of computer programs that emulate acting and thinking like a 
human, as well as acting and thinking rationally. This definition encompasses both 
the cognitive and the behavioral views of intelligence (by requiring emulation of 
both actions and thinking). It also includes, yet separates, the notions of rationality 
and “humanity” (because being human is sometimes far from rational, but is still 
considered intelligent; like running into a burning building to save your child).

In contrast, games don’t require such a broad, all-encompassing notion of AI. 
Game AI is specifically the code in a game that makes the computer-controlled 
elements appear to make smart decisions when the game has multiple choices for a 
given situation, resulting in behaviors that are relevant, effective, and useful. Note 
the word “appear” in the last sentence. The AI-spawned behaviors in games are very 
results-oriented, and thus, we can say that the game world is primarily concerned 
with the behavioralist wing of AI science. We’re really only interested with the 
responses that the system will generate, and don’t really care how the system arrived 
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at it. We care about how the system acts, not how it thinks. People playing the game 
don’t care if the game is using a huge database of scripted decisions, is making di-
rected searches of a decision tree, or is building an accurate knowledge base of its 
surroundings and making inferred choices based on logical rules. The proof is in 
the pudding as far as game AI goes.

Modern game developers also use the term AI in other ways. For instance:

Some people refer to the behavioral mechanics of the game as AI. These ele-
ments should actually be thought of as gameplay, but any time the AI con-
trolled agents do something, people tend to think of it as AI, even if it’s using 
the exact mechanism that the human players use.
Many people think of game AI primarily as animation selection. Once a game 
entity makes a decision as to what to do, animation selection then makes a 
lower level decision as to how (on a visual level) to perform the move. Say that 
your AI controlled baseball pitcher has decided to throw a curveball. The exact 
animation that he goes through performing that decision is animation selec-
tion. How does the windup go, where does he look, does he tip his hat, etc.? 
Perceptions are polled, and an intelligent contextual decision is made. But this 
kind of low-level decision making is much more short range than the kind of 
intelligence we are talking about. People that think of animation selection as 
AI tend to be working on games with very simple AI requirements, games that 
don’t require heavily strategic solutions.
Even the algorithms that govern movement and collision can sometimes fall   
under this label (if the game uses animation-driven movement, rather than 
physics-based methods).

In fact, the term “AI” is a broadly-used moniker in the game-development 
world. When discussing AI with someone else in the industry (or even within the 
company at which you work), it’s important to know that you both agree on the 
meaning and scope of the term; miscommunication can occur if your notion of AI 
is vastly different from the other person’s (be it simpler or more complex, or just 
at opposite ends of the responsibility spectrum). So, let’s be clear. When this book 
refers to AI, it will use the rather narrow definition of character-based behavioral 
intelligence. We care only about the behavioral smarts exhibited by some character 
within the game (the main character, a camera, an overseeing “god,” or any other 
agent within a game world).

In the old days, AI programming was more commonly referred to as “gameplay 
programming,” because there really wasn’t anything intelligent about the behaviors 
exhibited by the CPU-controlled characters. See Figure 1.1 for an overall game AI 
timeline.



FIGURE 1.1  Game AI timeline.
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In the early days of video gaming, most coders relied on patterns or some re-
petitive motions for their enemies (for example, Galaga or Donkey Kong), or they 
used enemies that barely moved at all but were vulnerable to attack only in certain 
“weak points” (like R-Type). The whole point of many of these early games was 
for the player to find the predetermined behavior patterns so that the player could 
easily beat that opponent (or wave of opponents) and move on to another. The 
extreme restraints of early processor speed and memory storage lead naturally to 
this type of game. Patterns could be stored easily, requiring minimal code to drive 
them, and required no calculation; the game simply moved the enemies around in 
the prescribed patterns, with whatever other behavior they exhibited layered on top 
(for instance, the Galaga enemies shoot while moving in a pattern when a player is 
beneath them).

In fact, some games that used supposed “random” movement could some-
times lead to a pattern. The random number generator in many early games used 
a hard-coded table of pseudo-random numbers, eventually exposing a discernable 
sequence of overall game behavior.

Another commonly used technique in the past (and sadly, the present) to make 
games appear smarter was to allow the computer opponents to cheat; that is, to 
have additional information about the game world that the human player does 
not have. The computer reads that a player pushed the punch button (before the 
player has even started the punch animation) and responds with a perfectly timed 
blocking move. A real-time strategy (RTS) game employing AI cheating might have 
its workers heading toward valuable resource sites early in the game, before they 
had explored the terrain to legitimately find those resources. AI cheating is also 
achieved when the game grants gifts to the computer opponent, by providing the 
opponent additional (and strategically timed) abilities, resources, and so forth that 
the opponent uses outright, instead of planning ahead and seeing the need for these 
resources on its own. These tactics lead to more challenging but ultimately less sat-
isfying opponents because a human player can almost always pick up on the notion 
that the computer is accomplishing things that are impossible for the human player 
to accomplish, because the “cheats” are not available or given to the human player.

One of the easier-to-notice and most frustrating examples of this impossible 
behavior is the use of what is called rubber banding in racing games. Toward the 
end of a race, if a player is beating the AI-controlled cars by too much, some games 
simply speed up the other cars until they’ve caught up with the human player, after 
which the AI-controlled cars return to normal. Sure, it makes the race more of a 
battle, but for a human player, watching a previously clueless race car suddenly per-
form miracles to catch up to him or her borders on ridiculous. The opposite case 
can be equally frustrating. The AI-controlled cars are so far ahead of the player that 
the game reacts by having the leaders suddenly crash, screw up, or just slow down 
until the human catches up. Most players realize they’re being coddled; they don’t 
feel as much of a sense of accomplishment when the computer gives up.
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In modern games, the old techniques are being abandoned. The primary selling 
point of games is slowly but surely evolving into the realm of AI accomplishments 
and abilities, instead of the graphical look of the game as it was during the last big 
phase of game development. This emphasis on visuals is actually somewhat causal 
in this new expansion of AI importance and quality; the early emphasis on graph-
ics eventually led to specialized graphics processors on almost every platform, and 
the main CPU is increasingly being left open for more and more sophisticated AI 
routines. Now that the norm for game graphics is so high, the “wow” factor of game 
graphics is finally wearing thin, and people are increasingly concentrating on other 
elements of the game itself.

So, the fact that we now have more CPU time is very advantageous, consider-
ing that the current consumer push is now for games that contain much better 
AI-controlled enemies. In the 8-bit days of gaming or before, 1 to 2 percent of total 
CPU time was the norm, if not an overestimation, for a game’s AI elements to run 
in. Now, games are routinely budgeting 10 to 35 percent of the CPU time to the AI 
system [Woodcock 01], with some games going even higher.

Today’s game opponents can find better game solutions without cheating and 
can use more adaptive and emergent means—if for no reason other than that they 
have access to faster and more powerful processors driving them. Modern game 
AI is increasingly leading towards “real” intelligence techniques (as defined by aca-
demic AI), instead of the old standby of pre-scripted patterns or behaviors that 
only mimic intelligent behavior. As games (and gamers’ tastes) become more com-
plex, game AI work will continue to be infused with more complex AI techniques 
(heuristic search, learning, planning, etc.).

WHAT GAME AI IS NOT

The term game AI can be used as quite the broad label, often loosely used when re-
ferring to all sorts of areas within a game: the collision avoidance (or pathfinding) 
system, the player controls, the user interface, and sometimes the entire animation 
system. To some extent, these elements do have something to add to the AI world 
and are elements that, if done poorly, will make the game seem “stupider,” but they 
are not the primary AI system in a game. An exception to this might be a game in 
which the gameplay is simple enough that the entire smarts of the enemies are in 
moving around or choosing the right animations to play.

The difference is this: Game AI makes intelligent decisions when there 
are  multiple options or directions for play. The above-mentioned secondary-
support systems, while making decisions from a pool of options/animations/paths, 
are more “find the optimal” (read: singular) solution for any particular input. 
The main AI in contrast might have many equally good solutions, but needs to 
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consider  planning, resources, player attributes (including esoteric attributes like 
person ality type or things like character flaws), and so on to make decisions for the 
game’s  bigger picture.

An alternative way of thinking about this differentiation is that these support 
systems are much more low-level intelligence, whereas this book will focus mostly 
on the high-level decisions that an AI system needs to make. For example, you get 
out of your chair and walk across the room to the refrigerator. The thought in your 
mind was, “I want a soda out of the fridge.” But look at all the low-level intelli-
gence you used to accomplish the task: your mind determined the right sequence 
of muscle contractions to get you out of the chair (animation picking), and then 
started you moving toward the fridge (behavior selection), threading you through 
all the things on the floor (pathfinding). In addition, you slightly lost your balance 
but regained it quickly (physics simulation) and scratched your head on the way 
there (secondary behavior layering), in addition to a myriad of other minor actions. 
None of these secondary concerns changed the fact that your entire plan was to go 
get a soda, which you eventually accomplished. Most games split up the various 
levels of decision making into separate systems that barely communicate. The point 
is that these low-level systems do support the intelligence of the agent but, for this 
book’s purposes, do not define the intelligence of an AI-controlled agent.

A completely separate point to consider is that creating better game AI is not 
necessarily a result of writing better code. This is what puts the “A” in AI. Many 
programmers believe that AI creation is a technical problem that can be solved 
purely with programming skill, but there’s much more to it than that. When build-
ing game AI, a good software designer must consider balancing issues from such 
disparate areas as gameplay, aesthetics, animation, audio, and behavior of both the 
AI and the game interface. It is true that a vast number of highly technical chal-
lenges must be overcome by the AI system. However, the ultimate goal of the AI is 
to provide the player with an entertaining experience, not to be a demonstration 
for your clever code. Gamers will not care about your shiny new algorithm if it 
doesn’t feel smart and fun.

Game AI is not the best code; it is the best use of code and a large dollop of 
“whatever works.” Some of the smartest-looking games have used very question-
able methods to achieve their solutions, and although this book is not advocating 
poorly written code, nothing should be thrown away if it helps to give the illusion 
of intelligence and enhances the fun factor of the game. Plus, some of the most 
 elegant game code in the world started out as a mindless hack, which blossomed 
into a clever algorithm later, upon retrospection and cleanup.

On a less serious note, game AI is also not some kind of new life form—a dis-
connected brain that will eventually take over your PlayStation® and command you 
to feed it regularly. Hollywood routinely tells us that something sinister is probably 
what AI has in store for us, but the truth is likely far less dramatic. In the future, 
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we will most likely have access to a truly generic AI paradigm that will learn to 
competently play any game, but for now this is not the case. Right now, game AI is 
still very game-specific and very much in the hands of the coders who work on it. 
The field is still widely misunderstood by the non-programming public, however, 
and even by those people working in game development who don’t regularly work 
with AI systems.

HOW THIS DEFINITION DIFFERS FROM THAT OF ACADEMIC AI

The world of academic AI has two main goals. First is to help us understand intelli-
gent entities, which will, in turn, help us to understand ourselves. Second is to build 
intelligent entities, for fun and profit, you might say, because it turns out that these 
intelligent entities can be useful in our everyday lives.

The first goal is also the goal of more esoteric fields, such as philosophy and 
psychology, but in a much more functional way. Rather than the philosophical, 
“Why are we intelligent?,” or the psychological, “Where in the brain does intel-
ligence come from?,” AI is more concerned with the question, “How is that guy 
finding the smart-sounding answer?” The second goal mirrors the nature of the 
practical economy (especially in the western world), in that the research that is 
most likely to result in the largest profits is also the most likely to win the largest 
funding.

As stated earlier, Russel and Norvig [Russel 95] define AI as the creation of 
computer programs that emulate four things:

 1.  thinking humanly
 2.  thinking rationally
 3.  acting humanly
 4.  acting rationally

In academic study, all four parts of this definition have been the basis for build-
ing intelligent programs. The Turing test is a prime example of a program spe-
cifically created for acting humanly—the test states that if you cannot tell the 
difference between the actions of the program and the actions of a person, that 
program is intelligent. Some cognitive theorists, who are helping to blend tradi-
tional human mind science into AI creation, hope to lead towards human-level 
intelligence by actually getting a computer to think humanly. Sheer logic sys-
tems try to solve problems without personal bias or emotion, purely by thinking 
 rationally. Lastly, many AI systems are concerned with acting rationally—always 
trying to come up with the correct answer that, in turn, directs the system to 
behave correctly.
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But, the vast majority of academic AI study is heavily biased towards the ra-
tionality side. If you think about it, rationality lends itself much more cleanly to a 
computing environment, since it is algorithmic in nature. If you start with a true 
statement, you can apply standard logical operators to it and retain a true state-
ment. In contrast, game AI focuses on acting “human,” with much less dependence 
on total rationality. This is because game AI needs to model the highs and lows of 
human task performance, instead of a rigorous search toward the best decision at 
all times. Games are played for entertainment, of course, and nobody wants to be 
soundly beaten every time.

Say you’re making a chess game. If you’re making this chess game as part of 
an academic study, you probably want it to play the best game possible, given time 
and memory constraints. You are going to try to achieve perfect rationality, using 
highly-tuned AI techniques to help you navigate the sea of possible actions. If 
instead, you are building your chess game to give a human player an entertain-
ing opponent to play against, then your goal shifts dramatically. Now you want a 
game that provides the person with a suitable challenge, but doesn’t overwhelm the 
human by always making the best move. Yes, the techniques used to achieve these 
two programs might parallel in some ways, but because the primary goal of each 
program is different, the coding of the two systems will dramatically diverge. The 
people who coded Big Blue did not care if Kasparov was having fun when play-
ing against it. But the people behind the very popular Chessmaster games surely 
spend a lot of time thinking about the fun factor, especially at the default difficulty 
 setting.

Chess is an odd example because humans playing a chess program usually ex-
pect it to perform pretty well (unless they’re just learning and have specifically set 
the difficulty rating of the program to a low level). But imagine an AI-controlled 
Quake “bot” deathmatch opponent. If the bot came into the room, dodged per-
fectly, aimed perfectly, and knew exactly where and when powerups spawned in the 
map, it wouldn’t be very fun to play against (not for very long, anyway). Instead, 
we want a much more human level of performance from a game AI opponent. We 
want to play against an enemy that occasionally misses, runs out of ammo in the 
middle of a fight, jumps wrong and falls, and everything else that makes an oppo-
nent appear human. We still want competent opponents, but because our measure 
of competence, as humans, involves a measure of error, we expect shortcomings 
and quirks when determining how intelligent, as well as how real, something is. 
Anything that is too perfect isn’t seen as more intelligent; it is usually seen as either 
cheating, or alien (some might say “like a computer”).

Academic AI systems are generally not trying to model humanity (although 
there is the odd rare case). They are mostly trying to model intelligence—the abil-
ity to produce the most rational decision given all the possible decisions and the 
rules. This is usually their one and only requirement and, as such, the reason why 



all our limitations in games (such as time or memory) are not given thought. Also, 
by distancing themselves from the issues of humanity, they don’t run into the sticky 
problems in dealing with questions about what constitutes human intelligence 
and proper problem solving. They just happily chug along, searching vast seas of 
agreed-upon possibility for the maximum total value.

Eventually, computing power, memory capacity, and software engineering will 
become so great that these two separate fields of AI research may no longer be dis-
sociated. AI systems may achieve the kind of performance necessary to solve even 
the most complex of problems in real time, and as such, programming them might 
be more like simply communicating the problem to the system. Game programmers 
would then use the same general intelligence systems that any programmer would.

APPLICABLE MIND SCIENCE AND PSYCHOLOGY THEORY

Thinking about the way that the human mind works is a great way to flavor your 
AI programming with structural and procedural lessons from reality. Try to take
this section with a grain of salt, and note that different theories exist on the 
workings and organization of the brain. This section is meant to give you ideas and 
notions of how to break down intelligence tasks in the same ways that the human 
mind does.

BRAIN ORGANIZATION

Classically, the brain is divided up into three main subsections: the hindbrain (or 
brain stem), the midbrain, and the forebrain. Most people may have heard these di-
visions somewhat wrongly referred to as the reptilian brain, the mammalian brain, 
and the human brain, but recent research has shown this sort of clear-cut, species-
related division to be false. Almost all animal brains have all three parts, just in 
different sizes and, in some cases, in dramatically different locations (thus, snakes 
have a mammalian brain region).

These brain regions can be divided into smaller working structures, each of 
which operate independently by using local working memory areas and access-
ing neighboring synaptic connections to do specific tasks for the organism (fear 
conditioning in humans is mostly centered in a brain structure called the amygdala, 
for example). But these regions are also interconnected, some areas heavily so, to 
perform global-level tasking as well (the above-mentioned amygdala, through the 
thalamus and some cortical regions, is also a primary first-step collection spot for 
emotional data, which will then be sent to another brain structure called the hippo-
campus for blending with other sensory input and eventual storage into long-term 
memory). If you think of the brain as being an object-oriented class, the amygdala 
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would be a small class, with its own internal functions and data members. But it 
would also be an internal structure within other classes, like Long-Term Memory, 
or Forebrain. This object-oriented, hierarchical organizational model of the brain 
has merit when setting up an AI engine, as seen in Figure 1.2, which shows a nice 
mirroring between brain and game systems.

By breaking down your AI tasks into atomic modules that require little knowl-
edge of each other (like the brain’s small, independent structures), you’ll find it 
much easier to follow good object-oriented programming principles. Combina-
tions of the atomic modules can be blended into more complex representations 
as needed, without replicating code. This also represents the kind of efficiency we 
should be trying to achieve in our AI systems. Avoid single-use calculations and 
code whenever possible, or input conditions that are so rare as to be practically 
hard-coded. Alas, inefficiency cannot be completely overcome, but most inefficien-
cies can be eliminated with clever thinking and programming.

KNOWLEDGE BASE AND LEARNING

Although the inner workings of the human memory system are not fully under-
stood, the common idea is that information is stored in the form of small changes 
in brain nerve cells at the synapse level. These changes cause differences in the 
electrical conductivity of different routes through the network and, as such, affect 
the firing potential of specific nerve cells as well as whole sub-networks. If you use 
a particular neural pathway, it gets stronger. The reverse is also true. Thus, memory 
systems use a technique that game designers could learn a lot from (no pun in-
tended), that of plasticity. Instead of creating a set-in-stone list of AI behaviors 
and reactions to human actions, we can keep the behavior mix exhibited by the 
AI malleable through plasticity. The AI system could keep track of its actions and 
make note of whether or not the human consistently chooses certain behaviors 
in response. It could then recognize trends and bias its behaviors (or the requisite 
counter measures, as a defense) to plastically change the overall behavior mix that 
the AI uses.

Of course, an AI memory system would require a dependable way of deter-
mining what is “good” to learn. We humans rely on teaching conventions and 
retrospection to gain insight into which information to value, and which to dis-
card. Without these aids, the human brain would just store everything, leading to 
misconception, miscommunication, and even delusion. Although very contextu-
ally complex, a filter on AI learning would keep the human player from exploiting 
a learning system by teaching it misleading behaviors, knowing that the system 
will respond in kind. Does the AI always use a low block to stop the next incom-
ing punch after the player has punched three times in a row? An advanced player 
would perceive that and punch three times followed by a high punch to get a free 
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 FIGURE 1.2 Object-oriented nature of the brain related to game AI systems.
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hit in on the low-blocking AI. But another level of AI memory performance would 
have the AI noticing that pattern, and making adjustments to how it would handle 
the situation in the future. This would be tantamount to learning about how the 
player is learning.

Another useful lesson from nature is that the rate of memory reinforcement 
and degradation in the human brain is not the same for all systems. Usually, memo-
ries are created only after repeated exposure to the information. Likewise, already 
existing memories tend to take a period of time before they either wither through 
misuse, or will require conscious counter-association in order to quell. Memories 
associated with pain aversion, however, may never fully extinguish, even if the per-
son only experienced the relation once. This is a good example of nature using 
dynamic hard coding. The usually plastic changes in the brain can be “locked in” 
(by stopping the learning process or moving these changes into a more long-term 
memory) and thus not be allowed to degrade over time. But like the brain, too 
much hardcoding used in the wrong place can lead to odd behavior, turning people 
(or your game characters) into apparent phobics or amnesiacs.

Another concept to think about is long-term versus short-term memory. 
Short-term, or working memory, can be thought of as perception data that can 
only be held onto for a short time, in a small queue. The items sitting in short-term 
memory can be filtered for importance, and then stored away into longer-term 
memories, or simply forgotten about by sitting idle until a time duration is hit or 
additional data comes in and bumps it off the end of the queue. Varying the size of 
the queue and the rates of storage creates such concepts as attention span, as well 
as single-mindedness.

Many games have essentially digital memory. An enemy will see a player and 
pursue the character for a while. But if the player hides, the enemy eventually for-
gets about the player and goes back to what he was doing. This is classic state-based 
AI behavior, but it is also very unrealistic and unintelligent behavior. It’s even more 
unrealistic when the enemy didn’t just see the player, but was shot and injured 
during the exchange. By using a more analog memory model for our opponent, he 
could still go back to his post, but he’d be much more sensitive to future attacks, 
would most likely spend the time at his post bandaging his wounds, would prob-
ably make it a priority to call for backup, and so forth. For sure, some games do use 
these types of memory systems. But the vast majority does not.

The brain also makes use of modulators, chemicals that are released into the 
blood, affect some change in brain state, and take a while to degrade. These are 
things like adrenaline or oxytocin. These chemicals’ main job is to inhibit or en-
hance the firing of neurons in specific brain areas. This leads to a more focused 
mind-set, as well as flavoring the memories of the particular situation in a contex-
tual way. In a game AI system, a modulator could override the overall AI state, or 
just adjust the behavior exhibited within a certain state. In this way, conventional 
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state-based AI could be made more flexible by borrowing the concept of modula-
tion. The earlier-mentioned enemy character that the player alarmed could transi-
tion to an entirely different Alerted state, which would slowly degrade and then 
transition back down to a Normal state. But using a state system with modifiers, 
the enemy could stay in his normal Guard state, with an aggressive or alerted 
 modulator. Although keeping the state diagram of a character simpler, this would 
require a much more general approach to coding the Guard state. More on this in 
Chapter 15, under finite state machine extensions.

The human brain stores things in different memory centers. It does this in a 
few different ways: direct experience, imitation, or imaginative speculation. With 
the possible exception of speculation, which would require quite a sophisticated 
mental model, game characters may gather information in the same ways. Keeping 
statistics on the strategies that seem to work against the human and then biasing 
future AI behavior could be thought of as learning by direct experience. Imitation 
would involve recording the strategies that the human player is successfully using 
and employing them in return.

The problem that games have had with classical AI learning algorithms is that 
they usually take many iterations of exposure to induce learning. It is a slippery 
slope to do learning in the fast-paced, short-lived world of the AI opponent. Most 
games that use these techniques do all the learning before hand, during production, 
and then ship the games with the learning disabled, so that the behavior is stable. 
This will change as additional techniques, infused with both speed and accuracy, 
are found and made public.

But learning need not be “conscious.” Influence maps (see Chapter 19) can be 
used by a variety of games to create much lower level, or “subconscious” learning, 
making AI enemies seem smarter without any of the iteration issues of normal 
learning. A simple measure of how many units from each side have died on each 
spot of the map could give an RTS game’s pathfinding algorithm valuable informa-
tion necessary to avoid kill zones where an opponent (human or otherwise) has 
set up a trap along some commonly traveled map location. This learning effect 
could even erode over time or be influenced by units relaying back that they have 
destroyed whatever was causing the kill zone in the first place. Influence maps are 
also being used successfully in some sports games. For example, by slightly perturb-
ing the default positions of the players on a soccer field to be better positioned for 
the passes the human has made in the past. The same system can also be used by 
the defensive team to allow them to be better able to possibly block these passes. 
Influence map systems allow cumulative kinds of information to be readily stored 
in a quick and accessible way, while keeping the number of iterations that have to 
occur to see the fruition of this type of learning very low. Because the nature of the 
information stored is so specific, the problem of storing misleading information is 
also somewhat minimized.
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COGNITION

The flood of data coming from our senses bombards us at all times. How does 
the brain know which bits of information to deal with first? Which pieces to 
throw away? When to override the processing it is currently doing for a more life-
 threatening situation? It does this by using the brain’s various systems to quickly 
categorize and prioritize incoming data. Cognition can be thought of as taking all 
your incoming sense data, also called perceptions, and filtering them through your 
innate knowledge (both instinctual and intuitive) as well as your reasoning centers 
(which includes your stored memories), to come up with some understanding of 
what those perceptions mean to you. Logic, reason, culture, and all of your per-
sonally stored rules can be thought as merely ways of sorting out the important 
perceptions from the background noise.

Think of the sheer volume of input coursing into the mind of a person living in 
a big city. He must contend with the sights, sounds, and smells of millions of people 
and cars, the constant pathfinding through the crowd, the hawkers, and homeless 
vying for his attention, and countless other distractions. Perceptions are also not all 
external. The pressures of the modern world cause stress and anxiety that split your 
attention and fragment your thoughts. Your mind also needs to try to distill the 
important thoughts inside your own head from the sea of transient, flighty ideas 
that everyone is constantly engaged in. If your brain tried to keep all this in mind, 
it would never be able to concentrate sufficiently to perform any task at all. Only by 
boiling all this information down to the most critical half-dozen perceptions or so 
at any given time can you hope to accomplish anything.

In game AI, we don’t suffer as much from the flood of data because we can 
pick and choose our perceptions at any level in the process, and this makes the 
whole procedure a bit less mystical. In Figure 1.3, you can see a mock-up of a 
sports game using different perceptions for the various decisions being made 
by the AI player in the foreground. Make sure, when coding any particular AI 
subsystem that you only use those perceptions you truly need. Be careful not 
to oversimplify, or you may make the output behaviors from this subsystem 
too predictable. An auditory subsystem that only causes an enemy character to 
hear a sound when its location is within some range to the enemy would seem 
strange when a player sets off a particularly loud noise just outside of that range. 
A game design should take into account distance and starting volume, so that 
sounds would naturally trail off as they travel. You might also want to take into 
account the acoustics of the environment because sounds will travel much longer 
distances in a canyon than in an office building (or underwater versus open air). 
These are very simple examples, but you see the notion involved. Perceptions are 
much more than a single value, because there are usually many ways to interpret 
the data that each perception represents.
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We can think of the systems used in the AI world as filters as well. Whatever 
technique we are using as our primary decision-making system, to determine the 
right action to perform, is really just a method of filtering the current game state 
through all the possible things that the AI can do (or some subset of these possibili-
ties, as defined by some rule or game state). Thus, we see the primary observation 
many people make about AI in general—that it all boils down to focused search-
ing, in some way or another. This is true to some degree. Most AI systems are just 
different ways of searching through the variety of possibilities, and as such, the 
topography of your game’s possibilities can be used to conceptually consider 
the best AI technique to use. This topography is generally called the “state space” of 
the game. If your game’s possible outcomes to different perceptions are mostly iso-
lated islands of response, with no real gray conditions, a state-based system might 
be the way to go. You’re dealing with a set of exclusive possible responses, an almost 
enumerated state space. However, if the full range of possible responses is more 
continuous, and would graph out more like a rolling hillside with occasional dips 
(or another metaphor with more than three dimensions, but you get the idea), a 
fuzzy system or one using neural nets might be a better fit, as they tend to work 

FIGURE 1.3 A visual depiction of various perceptions being taken into account by a game character.
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better at identifying local minima and maxima in continuous fields of response. We 
will cover these and the other AI systems in Part III and Part IV of the book; this 
was merely for illustration.

THEORY OF MIND

One psychological construct that is again being embraced as a major field of inves-
tigation by both behavioralists and cognitive scientists is that of the so-called The-
ory of Mind (ToM). This concept has a good deal of merit in the field of game AI 
because our primary job is creating systems that seem intelligent. A ToM is actually 
more of a cognitive capacity of human beings, rather than a theory. It fundamen-
tally means that one person has the ability to understand others as having minds 
and a worldview that are separate from his own. In a slightly more technical fash-
ion, ToM is defined as knowing that others are intentional agents, and to interpret 
their minds through theoretical concepts of intentional states such as beliefs and 
desires [Premack 78]. This isn’t as complicated as it sounds. Think of this as having 
the ability to see intent, rather than just strict recognition of action. We do it all the 
time as adults, and humanize even the most nonhuman of environmental elements. 
Listing 1.1 shows a bit of code from a Java version (written by Robert C. Goerlich, 
1997) of the early AI program Eliza, which, in its time, did a remarkable job of 
making people believe it was much more than it really was. The idea of attributing 
agency to objects in our environment is almost innate in humans, especially objects 
that move. In simple experiments in which subjects were asked to explain what they 
saw when shown a scene consisting of a colored spot on a computer screen mov-
ing from left to right, closely followed by a different-colored dot, a large portion 
of people described it as “the first dot was being chased by the second.” People give 
their cars personalities, and even think (at some superstitious level) that if you talk 
bad about it, or suggest getting rid of it, it will perform poorly.

In human terms, the ability to form a ToM about others usually develops at 
about the age of three. A commonly used test to determine if the child has de-
veloped this cognitive trait is to question the child about the classic “False Belief 
Task” [Wimmer 83]. In this problem, the child is presented with a scene in which a 
character named Bobby puts a personal belonging, such as a book, into his closet. 
He then leaves, and while he’s away, his little brother comes and takes out the book 
and puts it in a cupboard. The child is then asked where Bobby will look for his 
book when he comes back. If the child indicates the cupboard, he reveals that he 
has yet to develop the understanding that Bobby wouldn’t have the same informa-
tion in his mind that the child does. He, therefore, does not have an abstract frame 
of reference, or theory, about Bobby’s mind, hence no ToM about Bobby. If the 
child gives the correct answer, it shows that he can not only determine facts about 
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the world but can also form a theoretical, simplified model of others’ minds that 
includes the facts, desires, and beliefs that they might have; thus providing a theory 
of this other’s mind.

LISTING 1.1  Some sample code from a Java version of Eliza.

public class Eliza extends Applet 

      {

    ElizaChat       cq[];

    ElizaRespLdr    ChatLdr;

    static ElizaConjugate  ChatConj;

    boolean         _started=false;

    Font            _font;

    String          _s;

    public void init() 

         {

        super.init();

        ChatLdr = new ElizaRespLdr();

        ChatConj = new ElizaConjugate();

        //{{INIT_CONTROLS

        setLayout(null);

        addNotify();

        resize(425,313);

        setBackground(new Color(16776960));

        list1 = new java.awt.List(0,false);

        list1.addItem(“Hi! I’m Eliza.  Let’s talk.”);

        add(list1);

        list1.reshape(12,12,395,193);

        list1.setFont(new Font(“TimesRoman”, Font.BOLD, 14));

        list1.setBackground(new Color(16777215));

        button1 = new java.awt.Button

              (“Depress the Button or depress <Enter> to send to Eliza”);

        button1.reshape(48,264,324,26);

        button1.setFont(new Font(“Helvetica”, Font.PLAIN, 12));

        button1.setForeground(new Color(0));

        add(button1);

        textField1 = new java.awt.TextField();

        textField1.reshape(36,228,348,24);
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        textField1.setFont(new Font(“TimesRoman”, Font.BOLD, 14));

        textField1.setBackground(new Color(16777215));

        add(textField1);

        //}}

        textField1.requestFocus();

    }

    public boolean action(Event event, Object arg)

         {

        if (event.id == Event.ACTION_EVENT && event.target ==

                                                            button1) 

             {

                clickedButton1();

                textField1.requestFocus();

                return true;

        }

        if (event.id == Event.ACTION_EVENT && event.target ==

                                                        textField1) 

             {

                clickedButton1();

                textField1.requestFocus();

                return true;

        }

        return super.handleEvent(event);

    }

    public void clickedButton1() 

         {

        parseWords(textField1.getText());

        textField1.setText(“”);

        textField1.setEditable(true);

        textField1.requestFocus();

    }

    public void parseWords(String s_) 

         {

        int idx=0, idxSpace=0;

        int _length=0;      // actual no of elements in set

        int _maxLength=200;  // capacity of set

        int _w;

        list1.addItem(s_);

        list1.makeVisible(list1.getVisibleIndex()+1);

        s_=s_.toLowerCase()+” “;
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        while(s_.indexOf(“‘“)>=0)

            s_=s_.substring(0,s_.indexOf(“‘“))+

                    s_.substring(s_.indexOf(“‘“)+1,s_.length());

        bigloop: for(_length=0; _length<_maxLength  && 

                          idx < s_.length(); _length++)

             {

            // find end of the first token

            idxSpace=s_.indexOf(“ “,idx);

            if(idxSpace == –1) idxSpace=s_.length();

           String _resp=null;

           for(int i=0;i<ElizaChat.num_chats && _resp == null;i++) 

                {

               _resp=ChatLdr.cq[i].converse

                                       (s_.substring(idx,s_.length()));

               if(_resp != null) 

                    {

                   list1.addItem(_resp);

                   list1.makeVisible(list1.getVisibleIndex()+1);

                   break bigloop;

               }

           }

           // eat blanks

           while(s_.length() > ++idxSpace && 

                      Character.isSpace(s_.charAt(idxSpace)));

           idx=idxSpace;

           if(idx >= s_.length())

                {

                _resp=ChatLdr.cq[ElizaChat.num_chats-1]

                                        .converse(“nokeyfound”);

                list1.addItem(_resp);

                list1.makeVisible(list1.getVisibleIndex()+1);

           }

        }

    }

//{{DECLARE_CONTROLS

java.awt.List list1;

java.awt.Button button1;

java.awt.TextField textField1;

//}}

}

//--------------------
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class ElizaChat 

     {

    static int          num_chats=0;

    private String      _keyWordList[];

    private String      _responseList[];

    private int         _idx=0;

    private int         _rIdx=0;

    private boolean     _started=false;

    private boolean     _kw=true;

    public String       _response;

    private String      _dbKeyWord;

    public int          _widx = 0;

    public int          _w = 0;

    public int          _x;

    private char        _space;

    private char        _plus;

    public ElizaChat() 

         {

        num_chats++;

        _keyWordList= new String[20];

        _responseList=new String[20];

        _rIdx=0;

        _idx=0;

        _keyWordList[_idx]=” “;

        _space=” “.charAt(0);

        _plus=”+”.charAt(0);

    }

    public String converse(String kw_) 

         {

        _response = null;

        for(int i=0; i <= _idx – 1;i++){

            _dbKeyWord = _keyWordList[i];

            if(kw_.length()>=_dbKeyWord.length()&&

                    _keyWordList[i].equals

                        (kw_.substring(0,_dbKeyWord.length()))) 

                 {

                _widx = (int) Math.round(Math.random()*_rIdx-.5);

                _response = _responseList[_widx];
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                _x=_response.indexOf(“*”);

                if(_x>0)

                     {

                    _response=_response.substring(0,_x)+

                                     kw_.substring(_dbKeyWord.length(),

                                                      kw_.length());

                    if(_x<_responseList[_widx].length()-1)

                        _response=_response+”?”;

                    _response=Eliza.ChatConj

                                          .conjugate(_response,_x);

                    _response=_response.replace(_plus,_space);

                }

                break;

            }

        }

        return _response;

    }

    public void loadresponse(String rw_)

         {

        _responseList[_rIdx]=rw_;

        _rIdx++;

    }

    public void loadkeyword(String kw_)

         {

        _keyWordList[_idx]=kw_;

        _idx++;

    }

}

It has been routine in philosophy, and the mind sciences in general, to see this 
ability as somewhat dependent upon our linguistic abilities. After all, language 
provides us a representational medium for meaning and intentionality; thanks 
to language, we are able to describe people’s actions in an intentional way. This 
is also probably why Alan Turing gave us his famous test as to a true measure of 
intelligence exhibited by a computer program. If the program could communi-
cate successfully to another entity (that being a human), and the human could 
not tell it was a computer, it must be intelligent. Turing’s argument is thus that 
anything we can successfully develop a ToM toward must be intelligent—great 
news for our games, if we can get them to trigger this response within the people 
who play them.
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Interestingly, further studies in chimpanzees and even some lower primates have 
shown that they have remarkable abilities toward determining intention and predic-
tion toward each other and us without verbal communication at the human level. So, 
the ability to form ideas about another’s mindset is either biologically innate, can be 
determined with visual cues, or is possibly something else entirely. Whatever the source 
of this ability, the notion is that we do not require our AI-controlled agents to require 
full verbal communication skills to instill the player with a ToM about our AI.

If we can get the people playing our games to not see a creature in front of them 
with X amount of health and Y amount of strength, but rather a being with beliefs, 
desires, and intent, then we will have really won a major battle. This superb suspen-
sion of disbelief by the human player can be achieved if the AI system in question 
is making the kinds of decisions that a human would make, in such a way as to 
portray these higher traits and rise above the simple gameplay mechanic involved. 
In effect, we must model minds, not behavior. Behavior should come out of the 
minds that we give our AI creations, not from the programmers’ minds. Note that 
this does not mean we need to give our creations perfect problem-solving abilities 
to achieve this state. Nor does this mean that every creature in the game must have 
this level of player interaction and nuance. The main bad guys that will be around 
for a while or other long-term characters (including the protagonist) would be 
helped by making them more “rich” in terms of personal connection to the player. 
One of the primary things a lot of people attribute great movies to is a “great bad 
guy.” Usually it’s because the bad guy has been written in such a way that people can 
really sense his personality and get into his thinking to a certain extent.

What does a realization of this human tendency give us as game producers? It 
means that as long as we follow some rules, people’s brains actually want to believe 
in our creations. In effect, knowledge of this fundamental, low-level goal (that of 
brains constantly working to create a ToM about each other) can help give the pro-
grammers and designers guidelines about what types of information to show the 
player directly, what types to specifically not show, and what types to leave ambigu-
ous. As the illusionist says, “The audience sees what I want it to see.”

Take for example, an AI-controlled behavior from a squad combat game. In 
Figure 1.4, we see the layout of a simple battlefield, with the human player at the bot-
tom of the map, and four CPU enemies closing in on him, moving between many 
cover points. The simple behavioral rules for these enemies are the following:

If nobody is shooting at the player, and I’m (as the enemy) fully loaded and 
ready, I will start shooting. Note that only one player can shoot at a time in this 
system.
If I’m out in the open, I will head for the nearest unoccupied cover position, 
and randomly shout something like “Cover me!” or “On your left!” or even just 
grunt.
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If I’m at a cover position, I’ll reload, and then wait for the guy shooting to be 
finished, maybe by playing some kind of scanning animation to make it look 
like he’s trying to snipe the player.

Now imagine how this battle will look to the human player. Four enemy soldiers 
come into view. One starts firing immediately, while the other three dive for cover. 
Then, the one that was firing stops, shouts “Cover me!,” and runs forward for cover 
as a different soldier pops up and starts firing. Here we have a system in which the 
soldiers are completely unaware of each other (save for the small detail that “some-
one is shooting”), the player’s intentions, or the fact that they’re performing a basic 
leapfrogging advance-and-cover military maneuver. But because the human player 
is naturally trying to form a ToM about the enemy, the human player is going to see 
this as very tightly-coordinated, intelligent behavior. Therefore, the ruse has worked. 
We have created an intelligent system, at least for the entertainment world.

BOUNDED OPTIMALITY

When rationality is a goal of your AI system, the degree of rationality you are striv-
ing for can be the prime determiner of the overall system design. If your goal is 

FIGURE 1.4 Emergent Theory of Mind in a loosely coordinated enemy squad.
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near-perfect rationality, you might have to accept that your program is going to 
need a huge amount of time to run to completion, unless the decision state space 
you are working with is very small indeed. For most entertainment games, perfect 
rationality is not only unnecessary, but actually unwanted. As discussed earlier, the 
goal of game AI is usually to emulate a more human performance level, including 
all the foibles, falls, and outright screwups.

One of the reasons that humans make all these mistakes is the near certainty of 
limited resources. In the real world, it’s practically impossible to get everything you 
need to come up with the perfect solution. There’s always some bottleneck: too few 
details, not enough time, insufficient money, or just plain limited ability. We try to 
overcome these hurdles by using what is called bounded optimality (or BO), which 
just means that we make the best decisions we can in the face of resource restric-
tions. The chances of getting the best possible solution are directly linked to the 
number and amount of limitations. In other words, you get what you pay for.

BO techniques are prevalent in most academic AI circles (as well as in game 
theory and even philosophy) because “optimal” solutions to real-life problems are 
usually computationally intractable. Another reason is that very few real-life prob-
lems have no limitations. Given the realities of our world, we need a method of 
measuring success without requiring absolute rationality.

Like computers, the decision-making ability of people is limited by a number 
of factors, including the quality and depth of relevant knowledge, cognitive speed, 
and overall problem-solving skill. But that only covers the hardware and software. 
We also suffer from environmental limitations that might make it impossible to 
fully exploit our brains. We live in a “real-time” world, and must make decisions 
that could save our lives (or merely save our careers) in very short time frames. All 
these factors come together to flavor our decisions with a healthy dose of incor-
rectness. So, instead of trying to brute force our programs into finding the ideal 
solution, we should merely guide our decision making in the right direction and 
work in that direction for as much time as we have (of course, computing power 
will eventually get to the level that any time restriction will vanish to the point of 
nothing, but for now we must still grapple with what we have). The decisions that 
come out will then, we hope, be somewhat more human and work well with the 
limiting constraints of the platform and genre of game we are working on. In effect, 
we create optimal programs rather than achieve optimal actions.

A problem with trying to use BO methods on many types of systems is that they re-
quire incremental solutions; that is, solutions that get better by degrees as they are given 
more resources. Incremental solutions are definitely not universal to all problems, but 
the types of computationally challenging hurdles that require BO thinking can often 
be reduced in some way to an incremental level. Pathfinding, for example, can be given 
several levels of complexity. You might start by pathfinding between very large map 
sectors, then within those sectors, then locally, and then around dynamic  objects. Each 
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successive level solves the problem slightly better than the last, but even the earliest level 
gets the player going in the right direction, at least in a primitive sense.

LESSONS FROM ROBOTICS

Robotics is one of the few academic fields with a good deal of similar tasking to the 
world of game AI. Unlike other academic endeavors which can deal with large-scale 
problems and can use exhaustive searches to find optimal results, robots usually 
have to deal with many real-time constraints like physics, computation speed prob-
lems (because of limited on-board computer space), and physical perception of the 
environment. Robots usually have to deal with the computational issues of solving 
problems intelligently and must house this technology into a physical construct 
that must deal with the real world directly. This is truly an ambitious task. As such, 
academic theories are taken and ground against the stone of reality until finely 
honed. Many techniques crafted by robotics end up in games because of the inher-
ent optimizing and real-world use that robotics adds to the theoretical AI work 
done in research labs. The lion’s share of the successful pathfinding methods we 
use in games, including the invaluable A* algorithm, came out of robotics research. 
Some of the prime lessons that robotics has given us include the following:

SIMPLICITY OF DESIGN AND SOLUTION

Many robotics methodologies, like games, use the “whatever works” model. Robot-
ics in general is a very hard problem, with an ambitious variety of challenges such 
as navigating undefined terrains, or recognizing general environmental objects. 
Every true perceptual sense that a researcher bestows on his or her robot translates 
into a tremendous amount of technology and study necessary to break down the 
system into workable parts. If the system can be made to work without the sense, 
then the solution is just as good, if not better, considering that the expense in both 
time and money was saved by not having to involve a complex perception sub-
system. Some of Rodney Brooks’s robots illustrate this perfectly: instead of trying 
to navigate areas by recognizing obstacles and either circumventing or calculating 
how to surmount them, some of his robot designs are largely mindless; insectile 
creations that blindly use general-purpose methods (like multiple simple flailing 
arms) to force their way over obstacles. The lesson here is that while others spend 
years trying tech-heavy methods for cleverly getting around obstacles and failing, 
Brooks’s designs are being incorporated into robots that are headed to Mars.

THEORY OF MIND

ToM concepts have also been advanced by robotics. Researchers have discovered that 
people deal better with robots if they can in some way associate human  attributes 
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(if not human thought processes) with the robot. Incorporating features into your 
robot that improve this humanization is a good thing for robotics researchers in 
that it actually makes the robot seem more intelligent to people, and more agree-
able in the eyes of the public. Imagine a robot built to simply move toward any 
bright light. Humans, when asked to describe this simple behavior, will usually 
report that the robot “likes lights,” or “is afraid of the dark.” Neuroscientists usually 
call this human behavior “attributing agency.” This is a fancy way of saying that 
humans have a tendency to think of moving objects as doing so because of some in-
tentional reason, in most cases by a thinking agent. Think of it this way: you’re on a 
trail in Africa, and you see the bushes rustling. Your brain thinks: “Yikes, there must 
be a lion over there!” and you head for the nearest tree. You’re much more likely to 
survive (on average) with this response rather than if you were thinking: “Huh, that 
bush is moving. I wonder why?” It could just be the breeze, but statistically, it is less 
likely that you’ll die if you don’t take the chance. The other notion at work here is 
simple anthropomorphizing. Humans love to think of non-human things as if they 
were human. How many times have you seen someone at the park pleading with 
their Golden Retriever to “stop making this so hard, you know I’ve had a bad week, 
and I could really use your help with the other dog.” It’s all complete silliness. Spot 
isn’t making things hard; he’s reacting to the smells of the park with mostly pre-
described instinctual behaviors. He has no knowledge whatsoever that you’ve been 
having a bad week, and for that matter really can’t understand English. I’ve heard 
practically this same speech given to a computer, a car, and a 12-week-old baby.

By working with people’s natural inclination to attribute desires and inten-
tions, instead of raw behaviors, to just about anything, researchers hope to make 
robots that people will not just tolerate but enjoy working with in the real world. 
Robotic projects like Cog and Kismet [Brooks 98] continue to push the realm of 
human-robot interaction, mostly through social cues that deepen and build upon 
people’s ToM about the robot to enliven the interaction itself and the learning that 
the robot is engaging in. People want to believe that your creation has a mind and 
intentions. We just have to push a little, and give the right signals.

MULTIPLE LAYERED DECISION ARCHITECTURES

Many modern robotics platforms use a system whereupon the decision-making 
structure of the robot is broken down into layers which represents high-level to 
low-level decisions about the world [Brooks 91]. This bottom-up behavior design 
(sometimes called subsumption) allows robots to achieve a level of autonomy in an 
environment by always having some fail-safe behavior to fall back on. So, a robot 
might have a very low-level layer whose only goal is to avoid obstacles or other 
nearby dangers. This “avoidance” layer would get fresh information from the world 
quite frequently. It would also override or modify behaviors coming from further 
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up the decision structure, as it represents the highest priority of decision making. 
As you climb the layers, the priority lessens, the amount of interaction with the 
world lessens, and the overall goal complexity goes up. So, at the highest level, the 
robot could formulate the high-level plan: “I need to leave the room.” In contrast, 
the bottommost layer might have as its plan “Turn 10 degrees clockwise, I’m going 
to run into something.” The layers within this system know nothing about each 
other (or as little as possible), they simply build on one another in such a way that 
the various tasks normally associated with the goal at large are specialized and con-
centrated into distinct layers. This layer independence also creates a much higher 
robustness to the system since it means that a layer getting confused (or receiving 
bad data) will not corrupt the entirety of the structure, and thus, the robot may still 
be able to perform while the rest of the system returns to normalcy.

A structure of this kind is very applicable to game genres that have to make 
decisions at many levels of complexity concurrently, like RTS games. By sticking 
to the formal conventions expressed (as well as experimentally tested) by robotics 
teams using subsumption techniques, we can also gain from the considerable ben-
efits these systems have been found to exhibit, including automatic fault tolerance 
(between layers of the system), as well as the robustness to deal with any number 
of unknown or partially known pieces of information at each level. Subsumption 
architectures do not require an explicit, start-to-finish action plan, and a well-
 designed system will automatically perform the various parts of its intelligent plan 
in an order that represents the best way the environment will allow. This book will 
cover a general way of breaking down AI engine issues using a method something 
like this approach in Chapter 23.

SUMMARY

This chapter covered some basic AI terminology that we will use in later chapters, 
some general psychological theory, and some concepts from other fields that are 
applicable to AI system design.

This book will use the term game AI to mean character-based behavioral deci-
sion making, further refined by concentrating on tasks that require choosing 
among multiple good decisions, rather than finding the best possible decision.
Older games used patterns or let the computer opponent cheat by giving it clan-
destine knowledge that the human player didn’t have; both methods are being 
abandoned because of the increasing power of AI systems being used in games.
AI is becoming more important in today’s games, as players demand better 
opponents to more complex games. This is true even though many games are 
going online because most people still play single-player modes exclusively.
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Game AI needs to be smart and fun because this is primarily a form of en-
tertainment. Thus, game AI needs to exhibit human error and personality, be 
able to employ different difficulty levels, and make the human feel adequately 
challenged.
Brain organization shows us the use of object-oriented systems that build upon 
each other, in complexity order.
Like the brain, our AI systems can employ long- and short-term memories, 
which will lead us toward more realistic AI behaviors.
Learning in a game, like in real brains, can be conscious or unconscious. By 
using both types, we can model more realistic behavior modification over time, 
while still focusing our learning on things we deem important.
Cognition studies lead us to think of AI reasoning systems as filters that take 
our inputs and lead us toward sensible outputs. Thinking of the nature of the 
state space that a given game has, and contrasting that with the types of AI 
techniques available, the right filter can be found for your game.
By striving to feed into the natural human tendency to build a Theory of Mind 
about the AI-controlled agents within our game, we can extend the attributes 
of the agent to basic needs and desires, and therefore extend the realism of his 
decision making to the player.
Bounded rationality is a formal concept that we can use to visualize our game 
AI goals. We are not searching for optimal actions, but optimal incremental 
programs that give good solutions while working under many constraints.
Robotics gives us the notion of design and implementation simplicity, extends 
our desire for cultivating a ToM towards our creations, and provides us with 
a generic subsumption architecture for designing and implementing autono-
mous agents from the bottom up.
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In this chapter, the basic parts of an AI engine will be broken down and dis-
cussed. Although this list is neither all-inclusive nor the only way to do things, 
almost all AI engines will use the following foundation systems in some form 

or another: decision making/inference, perception, and navigation. See Figure 2.1 for 
a basic layout.

DECISION MAKING AND INFERENCE

The workhorse of the engine, the decision-making system is the main emphasis of 
this book. Inference is defined as the act of deriving logical or reasonable conclusions 
from factual knowledge or premises assumed to be true. In game terms, this means 
that the AI-controlled opponent gains information about the world (see “Perception 
Type,” later in this chapter) and makes intelligent, reasonable decisions about what 
to do in response. Thus, your AI system is defined (as well as restricted) by the kind 
of information it can gain about the outside world, as well as the richness of the 
response set (or behavior state space) as defined by the game design. The more things 
the game allows the AI characters to do, the greater the response set of the game. The 
technique you choose for your AI engine should be dictated, at least in part, by the size 
and nature of the state space of the game you are building. More information about 
this consideration will be given in Parts III and IV, where the different techniques are 
described.

In This Chapter

 Decision Making and Inference
 Input Handlers and Perception
 Navigation
 Bringing It All Together
 Summary

An AI Engine: The Basic 
Components and Design

2
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FIGURE 2.1 Basic AI engine layout.

All of the decision-making systems described in this book can be boiled down 
to different ways of using available inputs to come up with solutions. The main 
differences we are concerned with are the types of solutions, agent reactivity, sys-
tem realism, genre, content, platform, development limitations, and entertainment 
limitations.

TYPES OF SOLUTIONS

The primary game solution types are strategic and tactical. Strategic solutions are 
usually long-term, higher-level goals that might involve having many actions to ac-
complish. Tactical solutions are more often short-term, lower-level goals that usu-
ally involve a physical act or skill. An example of the difference between the two 
solution types is the “Hunt Player” and “Circle Strafe” solutions in a Quake-style 
game. Hunting the player is a high-level goal that involves determining where the 
player is, physically getting to the player, and then engaging the player in combat. 
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Circle strafing is merely a way to move while engaged in combat with an enemy. 
Many games require both strategic and tactical solutions, and this means poten-
tially using different techniques for getting these solutions.

AGENT REACTIVITY

How reactive do your game elements need to be? Scripted systems tend to create 
characters with much more stylized and contextual response, but they also tend 
to become locked into these behavior scripts and, thus, lose reactivity. Conversely, 
fully reactive systems (those that take the inputs, and change responses immedi-
ately, with little thought to what was being done before) tend to be considered 
either spastic or cheating, and are not very human feeling. Highly responsive sys-
tems also require a fairly rich response set, or the behavior they exhibit will be 
very predictable and stale. However, this is great for arcade style, or what are called 
“twitch” games. This point needs to be addressed based on the type of game being 
created and the proper balance determined based on the gameplay experience you 
are looking to create.

SYSTEM REALISM

To be considered “realistic,” the decisions and actions that an AI element comes up 
with need to be regarded as human. Each AI entity requires the intelligence to de-
termine the right thing to do, within the limitations of the game. But being human 
also means making mistakes. Thus, AI characters need to show human weakness as 
well. Opponents that block all your punches, or that never miss a basketball shot, 
or a Scrabble opponent that knows the entire dictionary would only frustrate the 
player. The goal is to strike a balance between competition and entertainment, so 
that the player is drawn in by the challenge of the game but also given a constant 
stream of positive feedback by beating the game. Other realism concerns involve 
the amount of actual adherence to physical laws the game uses. Can the player 
jump higher than in real life? Can he fly? Do players heal quickly? All these things 
are up to the developer.

What this means is that “realism” can be defined as real in this particular game 
world. Care must be taken in fantasy worlds because enemies that arbitrarily break 
rules are considered to be cheating, not magical. You must take steps to ensure that 
the player knows the rules of your world and then make sure you stick to them. Re-
member that Earth’s physical laws are usually known by most of the people playing 
your game, whereas special laws might provide your players with an initial stum-
bling block as they try to get used to the new rules.

Humans also don’t perceive randomness very well. In nature few things are truly 
random, as opposed to just infrequent or part of a dynamic system that is too com-
plex for us to see. As such, AI that is random can sometimes feel like it’s cheating to 
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the player. If the majority of your players feel this way, you should really look into 
adjusting your random number generation toward a method that doesn’t feel like 
cheating to people.

The lesson is this: It really doesn’t matter if your AI cheats or not, what matters is 
that your AI doesn’t “feel” like it’s cheating. An example of this would be the popular 
puzzle-style game Puzzle Quest. This game uses a completely random system for de-
termining what blocks to drop after you clear out a chunk of the board. However, the 
AI seems to be much luckier than any human opponent. The web is full of discus-
sion about the supposed cheating that the AI does, back and forth over the issue. The 
truth is that the developers should adjust the algorithm they use for dropping blocks 
specifically to limit the AI’s effectiveness, since it would appear that the majority of 
people playing the game feel cheated and not unlucky. People will always determine 
if you are cheating. This is all but a universal law. However, they will also mark your 
game as cheating if it “feels to close” to cheating, like Puzzle Quest. In this case, the 
developers should have adjusted things to simply help with that perception.

GENRE

The different broad categories of games require specific types of AI systems. See 
Part II of the book for an in-depth discussion of each genre. At this level, keep in 
mind the following factors:

Input (or perception) types. Things to note include the number of inputs, fre-
quency, communication method (polled, events, callback functions, shared 
memory, etc.), and any hierarchical relationships among inputs. Arcade-style 
games might have very limited inputs, whereas a character in a real-time strategy 
game might require quite a few perceptions about the world—to navigate 
terrain, stay in formation, help friendly units, take orders from the human, and 
respond to attacking enemies.
Output (or decision) types. Once the perception system collects all the facts 
about the state of the game world, a decision “output” is generated by the AI 
system. Outputs can be analog, digital, or complex constructions (like a series 
of modifying events on top of some ambient behavior). Decisions can involve 
the entire character (such as diving for cover), merely parts of the character 
(such as a character turning its head in response to a noise), or multiple char-
acters (such as having your townspeople mine more stone). Outputs can be 
specific (affecting a single character in a certain way, like jumping into the air), 
or be high level (“we need to create Dragon units”), which could affect the be-
havior of many AI characters and change the course of many future decisions.
The overall structure of the decisions needed for the genre. Some games have fairly 
simple or single-natured decisions. Robotron is a good example. The monsters 
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head towards a player’s character, with a set speed and movement type, and 
try to kill the human player. But a complex game, like Age of Empires, requires 
many different types of decisions to be made during the game. The game in-
volves team-level strategy, group strategy, unit tactics, an array of pathfinding 
problems (both single unit and group issues), and even more esoteric things, 
such as diplomacy. Each of these might represent a subsystem in the AI that is 
using an entirely different technique to get its job done.

CONTENT

Over and above the game’s genre are special-case gameplay concerns brought 
about by special or novel game content. Games like Black & White required very 
spe cialized AI systems for the basic gameplay mechanism, that of teaching your 
main animal behaviors by leading it around and showing it how to do things. This 
requires careful deliberation when designing the framework up front, but can also 
be aided by early prototype work to flesh out design holes.

PLATFORM

Will the game be made for the personal computer, a home console, an arcade ar-
chitecture, or for a handheld platform? Although the lines between these differing 
machines are beginning to blur, each still has its own specific requirements and 
limitations that must be taken into account. Some AI considerations on each plat-
form include:

PC. Online PC games might require user extensibility (in the form of included 
level or AI editors), so your AI system would need to handle a more data-driven 
approach to the world. Single-player PC games usually have fairly deep AI sys-
tems, because PC game players are usually a bit older and want a tad more com-
plexity and opponent realism. The standard input mechanism on the PC is the 
mouse (except for flight simulators or racing games), so remember that if your 
game requires its human players to perform things that would be either tedious 
or impossible with the mouse, they’ll cry foul. Also, the constantly-changing 
PC means that the minimum configuration for most games is going to keep 
climbing, so AI programmers need to predict the minimum configuration that 
the game will use (usually one to three years after the game is started) when 
making design decisions. PC game experiences are also usually longer (typi-
cally more than thirty hours of gameplay), and thus, the opponent AI needs to 
vary more often, so that playing against it doesn’t get repetitious.
Consoles. The realism constraints in consoles are lifted because console gamers 
are usually younger and more open to fantasy situations. However, there is a 
much higher usage of difficulty settings because the overall range of players’ 
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skills is much greater. Memory and CPU budgets are usually much stricter 
because these machines (at least until recently) have been very limited com-
pared with their PC brothers. Console games have a much higher standard of 
quality, for the most part—from a quality assurance standpoint, rather than 
a quality of game-play experience. Games on consoles usually don’t crash, 
although this “PC only” problem has begun to creep into the console world. 
Because of this higher standard, however, your AI system has to endure much 
longer and more strenuous testing before it is approved for release. Many 
companies test their games internally, and then the maker of the console also 
tests the game before it gets to the shelves. Therefore, any “exotic” AI styles 
(such as learning systems) that are used in the game might make this testing 
process longer because of the inherent non-reproducibility of some of these 
advanced AI techniques.
Arcade. The arcade platform was huge in the 1970s and 1980s when it was 
cost prohibitive to have advanced graphics hardware in everybody’s home 
and home consoles were much simpler (like the Atari® 2600™ and Coleco-
Vision®) in what they could display. Because of today’s increasingly powerful 
home machines, the arcade industry has had to make large changes. Today, 
most arcade machines are one of three types: large, custom cabinets (such 
as sit-down racing games or skiing simulators), custom inputs (light gun 
games, music games), or small games that can be put in the corner of a bar 
or some other nondedicated arcade environment. Golden Tee golf is a good 
example of the last type. With the custom arcade machines, the sky is usually 
the limit in hardware. The entire package is customized, so the developer is 
free to put as much RAM and processing power as needed (within the limits 
of reason, of course). Smaller arcade games actually tend to be the opposite, 
and are sometimes sold as “kits,” where the owner of the game can swap out 
parts from an old game with that of a newer game. Arcade AI is usually still 
“pattern-based,” meaning that the AI follows set patterns instead of reacting 
to the player, because people assume that’s what they’re in for when they put 
in their quarter (or a dollar or more in some of the modern games). Tuning 
AI for the arcade environment usually involves putting a beta machine in a 
local venue, and getting statistics back from the machine to determine if areas 
of the game are too easy, too difficult, or whatever else might be detrimen-
tal to the amount of money coming into the machine. So, AI for the arcade 
world is usually simple, but the tuning is difficult because you are trying to 
balance fun factor with cash flow.
Handheld. The most restrictive platform, the handheld world has been almost 
exclusively ruled by the Nintendo® Gameboy®, but has recently become the 
hot area of game development, with PDAs, cell phones, the Sony® PSP®, and 
just about every other gadget you can think of now being turned into gaming 
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devices. These machines usually have very little RAM, the number of input 
buttons is severely limited (this is especially true on cell phones, which are not 
true game consoles and, thus, not designed to recognize more than one button 
being pressed at a time), and the graphical power of these mini-machines is 
very small. In fact, people who used to work heavily in the 8- and 16-bit worlds 
are finding their talents are marketable again. AI on these platforms needs to be 
clever, and optimized for both space and speed. As such, these machines usually 
use throwback techniques for their AI systems: patterned movement, enemies 
as mindless obstacles, or cheating (by using knowledge about the human that 
they only have because they’re part of the program). However, this will change 
as more powerful handheld systems are developed, and the handheld/console 
line will blur.

DEVELOPMENT LIMITATIONS

Development limitations include budgetary concerns, manpower issues, and sched-
ule length. Basically, the AI programmer needs to equate all these things into his or 
her one primary resource: time. The AI programmer really needs to have a good 
sense of time. How much time do you have to invest in the design phase, the pro-
duction phase, and finally the test and tune phase? This last phase of the process is 
potentially the most important, as has been proven repeatedly by the best games 
inevitably being the most highly polished. True, designing the system is paramount 
as well because a well-designed engine will provide the programmer with the ability 
to add the necessary behavioral content to the game quickly and easily, but even the 
best-designed games need extensive tuning to get proper feel.

Because the role of AI in a game is inherently higher level (rather than low-level 
engine code, such as the math library, or the renderer) and because new ideas and 
behaviors seem to almost inevitably come up late in the production, AI systems are 
notorious for “feature creep.” This is defined as new features being added toward 
the end of the project, such that the final completion date keeps creeping out into 
the future. This indicates one of two things: a bad game that requires additional ele-
ments to be fun or playable, or a good game that can be made just that much better. 
If you find yourself in the latter situation, good for you. If management is willing to 
take the additional investment of time and money to really maximize the product 
above its initial design, that’s great. But tacking on additional elements as quickly 
as possible to make a questionable or failing game better is a recipe for disaster. A 
good, up-front game design really is your best line of defense against feature creep, 
but the production staff also needs to curtail this malady by keeping careful and 
strict accordance to the schedule.

As you will note in Part II, almost all games use some form of state-based AI, 
if not as the primary system. This is mostly because of the nature of games in 
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general. People like at least some level of predictability in games—if you’re con-
stantly engaged in a never-ending, constantly-changing fight, you’ll burn out 
quickly. The AI (or gameplay experience in general) in most games needs to be 
somewhat cyclical, with phases of action, followed by a phase of rest, and then re-
peat. This pacing lends itself well to a state-based approach. However, most games 
use combination engines, with multiple decision-making sections devoted to the 
differing AI problems found during the span of the game, so don’t feel that a state-
based model is the only way to go.

State-based methods are so prevalent because they are a means of organi-
zationally dividing the state space of the entire game into manageable chunks. 
Instead of trying to tackle the logical connections between decisions across the 
entire game, you, in effect, split the game into smaller subgames that can be dealt 
with more easily. Even games that don’t lend well to a state-based architecture as 
a whole can still benefit from the partitioning effect of a high-level state machine 
that can divvy up the solution state space into convenient pieces. By defining states 
that are really only internal states, a state machine can provide partitioning of the 
game world. For example, Joust is a very dynamic game, every level is pretty much 
the same (with the exception of the egg stages), and the AI system is more rule-
based than state-based (each rider has a set couple of “rules” that govern their 
behavior). But you could divide a normal level of Joust into three states: a spawn-
ing state (in which the enemies are instantiated), a regular state (during normal 
gameplay), and an extended state (in which time has run out, and the Pterodactyl 
is after the human player). Optionally, you could divide the regular state even 
further. So, you could determine that the AI character is on the bottom layer of 
the screen, or the middle, or the top, and actually make that a state. The AI system 
could then respond with specific behavior to each location state. This piece of 
information could obviously be used as a simple modifier in the regular state (the 
regular state would have a switch statement dividing up the behavior determina-
tion based on the placement of the character, for example). But each resultant state 
is simpler, as well as easier to edit and extend, as opposed to a more complex, all-
encompassing regular state. The correct balance between organizational simplicity 
and having repetitious code would have to be determined through planning and 
implementation.

Another reason for the preponderance of state machines in game AI is for 
testing, tuning, and debugging purposes. If the game’s AI system isn’t reproduc-
ible in some way, the quality assurance staff (QA, or “testers”) are going to have 
a heck of a time determining if the game AI is faulty, or too hard, or outright 
crashes the computer. Tuning a game made with non-state based techniques is 
much harder, and adding specific suggestions can be very hard to implement 
(and we all know that producers are chock full of specific suggestions, some-
times dangerously close to product completion). These types of concerns will be 
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discussed in more detail on a technique-by-technique basis in Parts III and IV of 
the book.

ENTERTAINMENT LIMITATIONS

Video games have become part of our culture. They’ve been a part of everyday life 
for a couple of generations, and show no signs of leaving anytime soon. People 
have grown up with games, and some of the more archetypical elements of games 
have become household terms. Games that go against gaming norms, or that 
don’t allow standard gaming conventions can be responded to quite negatively. 
This includes things like the rock-paper-scissors (RPS) scenario. A commonly 
used notion in game design is that everything that can be done should have a 
countermove, thus leading to the RPS comparison. If your game’s AI opponents 
have abilities that cannot be countered by the human player, you’d better have a 
good reason or your game isn’t going to be much fun. But if the human can do 
something that the AI cannot counter, your game is going to be too easy, and you 
again lose out. This is the classic game balancing that is so crucial to the final suc-
cess of a game.

How to best use difficulty levels is another entertainment question that must 
be answered by your AI system. Static skill levels (which are set before the game 
begins, usually by the player) are typically considered better than dynamic skill 
levels (levels that change in real time as the player progresses). This is because most 
players want to know the challenge level they are trying to beat (although you could 
set up a “static” difficulty level that the player would know is going to adjust as 
the game progresses). People’s skill levels vary a great deal from person to per-
son and at the specific task level. Dynamic skill level adjustments are very hard to 
tune. It is difficult to implement and still have the game players feel like the game 
or opponent is balanced and not cheating. Some people enjoy being very anxious 
about the game, loving the feeling of being just on the edge of their seats, but others 
just want to sit back and sail through like a tourist, noting the sights and such. 
Another problem with dynamic skill levels is that you have to somehow filter out 
exploratory or nonstandard behavior that the human does from behavior associ-
ated with being “stuck” or frustrated because of the difficulty.

Because we are making video games, and not movies, there is also a problem 
with getting across emotion or intent of the AI characters to the player, without 
being heavy-handed or trite. In movies and TV, this can be done with dramatic 
camera angles, lots of dialogue, and the inherent expressivity of the human face. 
In a game, it’s much harder to use camera angles because (especially in three-
 dimensional games) the control scheme might be tied to the camera, or you might 
need a wide-angle camera in order to play the game (for example, a player might 
need to see most of the field in a football game, and gameplay would be hurt by
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even a fairly short close-up of somebody’s face). Therefore, we are left with a 
somewhat limited set of tools to get this type of information across. We can cari-
cature the emotion, which is useful for more cartoonish games, like Crash Bandi-
coot or Ratchet and Clank. The use of classic cartoon stretch and squash when 
animating moves in these games helps to really bring emotion into the characters 
from afar, without having to use a close-up camera. Dialogue can help but can get 
repetitive and also requires some level of lip-synching to look good. A character 
with a sad look on its face, but a generic flapping lower jaw while talking, isn’t 
going to convey a particularly deep level of emotion. We need to realize that most 
actions have to be fairly obvious to be perceived. Better graphical power in today’s 
platforms is making the problem of conveying emotions a bit easier to resolve. 
We can actually model more complex characters and use more subtle animations 
to enliven them, but home consoles still suffer from the limited resolution of 
regular TV, which means that small details are mostly blended into nothingness 
on non-HDTVs. Even with high-definition systems, the action should be on the 
slower side, or subtle details will be lost because you can never be sure where the 
player is focused.

INPUT HANDLERS AND PERCEPTION

AI perceptions can be defined as the things in the environment that you want the 
elements in your game to respond to. This might be as simple as the player’s posi-
tion (in Robotron, this was the only input to the AI of note, besides the enemy’s own 
position) or something as complex as a record of the units that the computer has 
seen the human use in a real-time strategy (RTS) game. Usually, these types of data 
registers are encapsulated into a single-code module, if possible. Doing this makes 
it easier to add to the system, ensures that you are not repeating calculations in dif-
ferent parts of the AI system, helps in tuning, and distills the computations into an 
easily optimized central location.

A central perception system can also tag additional data or considerations on 
each input register, including perception type, update regularity, reaction time, 
thresholds, load balancing, compilation cost, and preconditions.

PERCEPTION TYPE

The various types of inputs might include standard coding data types like Boolean, 
integer, floating point, and so on. They might also include static perceptions 
(a perception needed for logic in a basketball game might be “Ball Handling Skill is 
greater than 75,” which really only needs to be determined once, unless your game 
allows for that skill to be adjusting during a game).
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UPDATE REGULARITY

Different perceptions might only need to be updated periodically because they 
don’t change often or are expensive to recalculate constantly. This could be consid-
ered a form of reaction time, but it’s more like a polled perception that you don’t 
mind being slightly out of date. Continuing our basketball example, this could be 
used with line-of-sight check that determines if the ball holder has a clear lane to 
the basket. That’s a pretty expensive check, especially if you use prediction on all 
the moving characters to determine if they will move out of the corridor in time to 
allow for passage. So, you might want to check this perception at set time intervals, 
instead of every update loop.

REACTION TIME

Reaction time is the pause before an enemy acknowledges a change in the environ-
ment. With a reaction time of zero, the computer seems just like, well, a computer. 
By giving a slightly random (or based on some skill attribute) amount of pause 
time before things are acknowledged by the enemy, the overall behavior of the sys-
tem seems much more human and fair. This can also be tweaked for difficulty level, 
to make the overall game more or less difficult as desired. Reaction time can also 
give a modicum of personality to characters, so faster characters will respond more 
quickly than slower ones.

THRESHOLDS

Thresholds are the minimum and maximum values to which the AI will respond. 
This can be for simple data bounds checking but could also simulate a slightly deaf 
character (his minimum auditory threshold might be higher than that of other 
characters), or an eagle-eye enemy (who sees any movement at all, instead of large 
or fast movement). Thresholds can also go down or up in response to game events, 
again to simulate perception degradation or augmentation. So, a flash grenade 
would temporarily blind an opponent, but a patrol guard startled by an unidenti-
fied sound might actually become a more acute listener because he’s paying so 
much more attention for a short while. This type of behavior is evidenced in the 
popular Thief games, for example.

LOAD BALANCING

In some games, the amount of data that the AI needs to take into account might be 
too numerous or too calculation-heavy to evaluate on any one game tick. Setting 
up your perception system so that you can specify the amount of time between 
updates of specific input variables is an easy way to load-balance the system so that 
you don’t end up using too much CPU time for something that rarely changes.
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COMPUTATION COST AND PRECONDITIONS

In addition to load balancing the calculations as just described, you should also 
consider raw computation cost. You can design your system with any hierarchically 
linked computations in mind from the start. Simple precondition calculations are 
done first, and as such, more complex determinations might not have to be done 
at all. To give an oversimplified example, let us say that in the game of Pac-Man, an 
AI routine for running the main character around needs to make (among others) 
two calculations: the number of power pills, and the distance to each power pill loca-
tion. The main character would probably be better off checking the total number of 
power pills first (by checking some sort of power pill count variable, or polling the 
various pills to see how many are still active), to make sure there is one, before he 
recalculates his distance to all the power pills (as this is a more costly calculation).

The perception system you choose for your game will most likely be game-
specific because the inputs to which your AI system will respond depend heavily on 
the type of game, the emphasis of the gameplay, any special powers that the char-
acters or enemies have, and many other things. Some data your AI systems will require 
are simulated human sensory systems (such as line of sight or hearing radius), 
whereas others will just use the information straight from the game (like amount 
of gold left in the world). Make sure you don’t go too far with this latter group, or 
you run the risk of cheating. More likely, you will need to use extended information 
for these game-specific kinds of input because they would be too costly to compute 
directly (such as a detailed map of everywhere the AI has been, or modeling a sense 
that someone is behind a player).

The two main paradigms for updating the perception registers are:

Polling: Checking for specific values to change, or making calculations, 
on a “game loop by game loop” basis—for example, checking to see if a 
basketball player is open for a pass every tick. This is necessary for much of the data 
that your AI will respond to, but it is also the kind of data that is much more likely 
to need load balancing (see earlier). Use this method for analog (continuous or real 
valued) inputs, or for values that may vary wildly in some form all the time.

Events: Using events is in some ways the opposite of polling; the input itself 
tells the perception system that it has changed, and the perception system notes 
that change. If no events are shunted to the perception system, it does noth-
ing. This is the preferred method for digital inputs (on/off, or enumerative 
states) that don’t change often (rather than thirty times a second or more, like 
the human player’s position, for example). If you’re going to have a constant 
stream of events being registered, queued, and then acted upon, you’re really 
just adding overhead to a polling system (for that particular input) and prob-
ably don’t want to use an event-based system.
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Some games—stealth games in particular—make extensive use of advanced 
perception systems. This is because the senses of the enemies become a weapon 
against the player, and a large part of the game experience is about beating the per-
ception system, in addition to the objectives of the game. See Chapter 5, Adventure 
Games, for more on this.

NAVIGATION

AI navigation is the art of getting from point A to point B. In our search for more 
realistic/thrilling/dramatic games, the worlds of modern games commonly involve 
large, complex environments with a variety of terrains, obstacles, movable objects, 
and the like. The reason we have well-researched AI algorithms for solving prob-
lems like this is because of the field of robotics, which has had to deal with trying to 
get robots to maneuver through tougher and tougher environments. Navigation is 
typically split into two main tasks: pathfinding and obstacle avoidance.

Pathfinding is an interesting, complex, and sometimes frustrating problem. 
In early games pathfinding was almost nonexistent, as environments were sim-
ple or wide open (like that in Defender, where the enemies simply headed in a 
player’s exact direction), or the enemies really didn’t head in the player’s direc-
tion but, rather, random directions that the player had to avoid (like the barrels in 
Donkey Kong). When games started having real worlds in which to move around, 
all this changed. To have an AI character move intelligently from point A in the 
world to point B, you’re going to need a dedicated system to help the player find 
the way. Several different schemes have come about to do this, including grid-
based methods, simple avoidance and potential fields, map-node networks, 
 navigation meshes, and combination systems. These methods will be discussed a 
bit more below.

GRID-BASED

In a grid-based system, the world is divided up into an even grid, usually either 
square or hexagonal, and the search algorithm A* (the heavyweight champ of path-
finding) or some close relative is used to find the shortest path using the grid. Each 
grid square has a “traversal possibility” value, usually from 0 (cannot pass through at 
all) to 1 (totally open for travel). Simple systems might use just binary values for the 
grid, where more complex setups would use the full analog values to show the height 
of the grid (to make it possible to simulate going uphill being harder than going 
downhill) or special attributes of the grid squares, such as water or someone stand-
ing. (See Figure 2.2.) Concerns with grid-based solutions are sheer memory size of 
the grid, as well as storage of the temporary data as the system finds the shortest
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path. High-resolution grids can become very cost-prohibitive because the amount 
of work the search algorithm has to do escalates dramatically.

SIMPLE AVOIDANCE AND POTENTIAL FIELDS

With simple avoidance and potential fields, you again separate the map into a grid. 
You then associate a vector with each grid area that exerts a push or pull on the AI 
character from areas of high potential to areas of low potential value. In an open 
world with convex obstacles, this technique can be preprocessed, leading to an al-
most optimal Voronoi diagram of the space (that is, a mathematically sound op-
timal “partition” of the space) providing good quality, fast pathfinding. The paths 
are extracted from the map by simply following the line of decreasing potential as 

FIGURE 2.2 Example of grid squares.
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FIGURE 2.3 Preprocessed potential fields.

opposed to heavy searching. (See Figure 2.3.) With convex obstacles, however, you 
cannot preprocess because the vector would depend on a particular character’s ap-
proach angle and direction of travel. In this case, the pressure is now on the run-
time potential field generator.

MAP NODE NETWORKS

Map node networks are for more expansive worlds, or worlds with heavy use of 
three-dimensional structures. With this method, the level designers, during world 
construction, actually lay down a series of connected waypoints that represent 
interconnectedness among the rooms and halls that make up a particular game 
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space. (See Figure 2.4.) Then, just like the grid-based method, a search algorithm 
(most likely A*) will be used to find the shortest connected path between the 
points. In effect, you are using the same technique as described earlier, but are 
reducing the state space in which the algorithm will operate tremendously. The 
memory cost is much less for this system, but there is a cost. The node network be-
comes another data asset that has to be created correctly to model intelligent paths, 
and maintained if the level is changed. Also, this method doesn’t lend itself well to 
dynamic obstacles, unless you don’t mind inserting/removing the dynamic object 
locations into and out of the node network. A better way is to use some form of ob-
stacle avoidance system to take care of moving objects, and use the node network to 
traverse the static environment. The obstacle avoidance system kicks in when a 

FIGURE 2.4 Map node network systems.
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game agent gets too close to a dynamic obstacle, and just perturbs the direction of 
travel around it. Without a dynamic obstacle, the character would just head to the 
next path node directly.

NAVIGATION MESH

A navigation mesh system tries to get all the advantages of the map node system, 
without having to create or maintain the node network. By using the actual poly-
gons used to build the map, this system algorithmically builds a path node network 
that the AI can use. (See Figure 2.5.) This is a much more powerful system, but can 
lead to some strange-looking paths if the method of constructing the navigation

FIGURE 2.5 Navigation mesh systems.
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mesh isn’t fairly intelligent itself, or the levels were not built with the knowledge 
that this process was going to be performed.

This type of system is best used for simple navigation, because gameplay- specific 
path features (such as teleporters or elevators) can be difficult to extract with a gen-
eral algorithm. You could have the level designers lay down specific connection data 
associated with these special case gameplay elements, and then your navigation mesh 
algorithm could use this data in building the network. However, if you’re trying to 
spare the level designers the worry of dealing with navigation issues, this step would 
somewhat defeat the purpose of autogenerating a navigation mesh in the first place.

COMBINATION SYSTEMS

Some games use a combination of these techniques. Relatively open worlds might 
use a navigation mesh, but have underground passages that rely on path node net-
works. Games with lots of organic creature movement (like flocks of birds, or herds 
of animals) might use a potential fields solution to accentuate the group behavior, 
but have a fixed pathfinding system for more humanoid creatures, or a special net-
work of nodes that only UFOs can use when flying in the air. By combining, you get 
the advantage of not having to overtax any one part of the system because you’re 
using that system only for what it does best. You can then rely on another technique 
when the first one breaks down. It also helps that A* can be used to search through 
many different types of connected networks, so that you can use the same code to 
search through the different structures that you’re using.

OBSTACLE AVOIDANCE

Dynamic obstacle avoidance, on the other hand, is a much simpler navigation task. 
It involves getting around objects that are in a player’s direct line of travel. Avoid-
ance is akin to dodging, in that a player temporarily changes his or her path to get 
around objects. The pathfinding system has found the player a legitimate path to 
get to his or her target location, but the player needs to adjust that path for now be-
cause something just got in the way. This temporary nature allows players to handle 
dynamic obstacles that appear in the world separately from the static pathfinding 
system. Chapter 20, Steering Behaviors, will cover all this in detail, but for now we 
shall introduce these concepts.

Avoidance is commonly done in a couple of different ways:

Potential fields: If your design already uses the potential fields for your pri-
mary pathfinding, you could use a similar method for avoidance. The various 
dynamic obstacles simply apply a repellant force away from their center, push-
ing invaders away. Make the force get stronger as the invader gets closer, until it 
finally stops the invader at some minimum distance.
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Steering behaviors: Back in 1987, Craig Reynolds released a paper [Reynolds 87] 
detailing a system of behaviors for what he called “boids,” creatures that moved 
in groups and had somewhat organic behavior without complex planning. In 
1999, he updated his research by releasing another paper entitled, “Steering 
Behaviors for Autonomous Characters,” [Reynolds 99] and games have been bor-
rowing from it ever since. In it, he illustrated that with only a few mathematical 
forces you could very easily simulate realistic motion patterns for AI-controlled 
characters. The most popular application of Reynolds’s techniques have been 
in the implementation of “flocking” systems (dealing with large groups of 
creatures, such as birds and fish). The same system can also be used for general 
movement, including avoidance. By using very simple sensors to determine 
future collisions, and then reacting accordingly with simple steering behaviors, 
avoidance can just be another element in your steering solution.

There are many, many articles and papers on pathfinding. So many early games 
did this task poorly, and were taken to task by critics, that this AI task is actually one 
of the more heavily explored problems in the AI world. This book will not be delv-
ing into implementation of specific pathfinding systems, but see the companion 
CD-ROM for links to materials concerning this important AI engine subsystem.

BRINGING IT ALL TOGETHER

By taking all of these considerations into account, and noting the strengths and 
weaknesses of the different AI techniques (as described in later parts of this book), 
you will assuredly find a solution to your game’s AI needs. The basic steps involved 
in AI engine design are thus:

 1. Determine the different sections of your AI system: Consider that you 
might have to treat these different parts as separate pieces to your engine. 
Each piece of your AI system may pose a problem that needs a specific AI 
technique to solve. Some of this is genre-specific. If you will be coding on 
a straightforward fighting game, you might need one real type of AI sys-
tem (on most fighting games, the AI is usually heavily data-driven). But if 
you’re going to be coding a large RTS, you might need several subsystems 
to accomplish the many levels of AI that encompass this genre.

 2. Determine the types of inputs to the system: Will they be digital (on/off), 
some series of enumerative states, full floating-point analog values, or any 
combination of these?

 3. Determine the outputs that the system will use: Along the same lines 
as the inputs, you may have very distinct outputs, like playing a specific 
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animation or performing in a very constrained behavior. You could have a 
number of analog outputs, such as speed, where you can be at 1.5 mph or 
157.3 mph. But you might also have layered outputs; an example would be 
characters that can play different animations for the upper and lower parts 
of their body. This character’s lower half might be connected strongly with 
movement, whereas the upper body could then be concerned mostly with 
holding a weapon, and aiming, or playing some taunt animation. In effect, 
you are now governing two outputs concurrently, and they are being lay-
ered onto the character in some way.

 4. Determine the primary logic you are going to need to link the inputs 
to the outputs: Do you have real, hard, and steadfast rules? Do you have 
very general rules and a ton of exceptions? Do you have no rules at all, and 
merely modes that can layer onto each other to convey an overall logic? All 
of these setups are prevalent in today’s games.

 5. Determine the type of communication links in your system: Between 
objects in your game, between the AI systems you might need to code, and 
between the other game systems. Are you going to need continuous com-
munication, or a more event-driven situation? Are you going to be getting 
back multiple messages from things within any particular game tick every 
so often, or almost always?

 6. Consider the attributes of each AI technique: These types of consider-
ations will give you a list of additional requirements that you will need from 
your individual AI entities, as well as the overall system. Take note of all the 
other limitations that your game will endure. Platform-specific concerns are 
a big category here. Schedule length is another issue, which is a hard one to 
deal with when you’re first tackling an AI project. There are so many places 
to get tangled, and the high-level nature of AI work means that you’re also 
relying on other people in the team to provide you with technology or art re-
sources along the way. You have to be reasonable about the amount of work 
that you can accomplish, given these types of concerns, but also remember 
that if you work yourself into the ground, you’ll go crazy or burn out.

At this point, you can consider the pros and cons of each AI technique, as de-
tailed in Parts III and IV of the book, and you will find something that you can use 
to implement your system. If you can’t seem to find the right technique, it might be 
because you haven’t broken the problem down enough and are trying to tackle too 
large of a chunk at once. Try looking at the system (or subsystem) you are design-
ing, and ensure that you aren’t trying to pack too much functionality into a single 
AI technique, and choking it with complexity or exceptions.

Theory will only get you so far. Take the skeletal code included with this book 
and do some prototyping in your game. You might find specific failings with a 
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particular method, discover that it is difficult to scale a technique to the level you 
require, or need additional elements for side AI issues. Consider this prototyping to 
be a part of the design phase of your AI engine. It will help you find holes in your 
plan, as well as break up the somewhat tedious task of class and structural design. 
Your final product will be better for it.

SUMMARY

This chapter covered the foundation systems inherent in a game AI engine and de-
scribed the primary points to consider when designing and building an engine. The 
three main portions of an AI engine are decision making, perception, and navigation.

The type of decision-making technique you use should rely on game-specific 
factors like types of solutions, agent reactivity, system realism, genre, special 
content, platform, and development and entertainment limitations.
Perception systems are usually central locations for input data calculations for 
the AI characters. By keeping it central, the AI system prevents excessive recal-
culation and aids debugging and development.
Perception systems can also take into account low-level details, including up-
date regularity, reaction time, thresholds, load balancing, and computation cost 
and preconditions.
Navigation systems for game AI usually fall into one of four main paradigms: 
grid-based, simple avoidance and potential fields, map node networks, and 
navigation meshes. Some games use combinations of these hierarchically.
Obstacle avoidance is a more local system dealing with short-term goals.
When designing your AI system, use the following process:

 1.  break down the overall system into sections
 2.  determine inputs and input types, determine outputs and output types
 3.  determine logic needed to unite the two
 4.  determine communication types needed
 5.  determine other system limitations
 6.  consider the attributes of each AI technique
If you’re having trouble fitting a system into a technique, you might need to 
simplify (by subdividing) the current system you’re working on, or maybe a 
different technique will be better.
Prototyping your AI system as part of the design phase will help to ensure that 
your system is flexible enough to handle everything you will need from it, and 
will quickly point out holes in design or implementation, which will be much 
more easily fixed before the full production cycle is underway.
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AIsteroids: Our AI Test Bed3

This chapter will introduce the small application that will become the test 
bed for the various AI techniques, AIsteroids. As the name implies, it is a 
very simplified version of an Asteroids-style game, with only rocks (repre-

sented by circles), an AI or human-controlled ship (represented by a triangle), and 
powerups that increase your shot power (represented by squares) to begin with. 
The ship can turn, thrust (forward and reverse), use “hyperspace,” and shoot. Later 
we will incorporate additional elements (an alien craft, different weapons, and 
powerups) as the need arises to show off particular AI techniques. This application 
was picked because of its simplicity and because the various AI methods could be 
implemented within the program easily.

Before we begin dissecting the code of the basic classes within the AI system, a 
quick note on some of the coding practices used in this book:

 All variables are in CamelCase (meaning that multiword names are all stuck 
together, with each new word capitalized; examples are thisVariableIsLocal
and nextItemInList).
 All class member variables start with the “m_” prefix. Examples are m_lifeTimer
and m_velocity.

In This Chapter

 The GameObj Class
 The GameObj Update Function
 The Ship Object
 The Other Game Objects
 The GameSession Class
 The Control Class
 The AI System Hooks
 Game Main Loop
 Summary
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 All local variables begin with a lower case letter. Examples are index and 
someVariable.
 Class member Functions begin with an uppercase letter. Examples are Update()
and Draw().
 Global utility functions are in all uppercase. Examples are DOT and MIN.
 Global macro functions are in all lowercase. Examples are randflt and randint.

Figure 3.1 shows the layout of the various classes used. This fairly flat 
 hierarchy has only one major base class, the GameObj. The dynamic objects in the 
game—asteroids, bullets, explosions, powerups, and ships—are all GameObj chil-
dren. This allows the GameSession class, which is the main game logic depository, 
to have a complete list of GameObjS on which it can act. There are three other 
main files:— Aisteroids.cpp and the utility.cpp and utility.h files. Aisteroids.
cpp is the main loop, as well as the initialization code for the OpenGL Utility 
Toolkit (GLUT). The utility.cpp and utility.h files include some useful math 
functions, several game-related definitions, and functions for drawing text to the 
screen under GLUT.

THE GameObj CLASS

As shown in Listing 3.1, the GameObj class is very straightforward. The class en-
capsulates object creation, collision (both checking for physical collisions and any 
special code that needs to run in the event of a collision), basic physical movement, 
and Draw() and Update() methods. Explode() handles the spawning of explosions 
for object types that explode when they collide.

Note the enumeration for object types. They have been made bitwise values 
instead of a straight integer enumeration so that the code can also use these types 
for collision flags. Each object must register for the specific object types with 
which it will collide, and this bitwise representation allows an object to register 
collisions with multiple object types. Collisions for all game objects are handled 
with simple collision spheres that test for intersection.

Also, notice that by default a plain GameObj does not draw, explode, or perform 
any special code at collision time. Children of this class must override these mem-
ber functions to facilitate each action.



FIGURE 3.1  AIsteroids class structure.
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LISTING 3.1 Header for the GameObj class.

class GameObj

{

public:

 //constructors/functions

 GameObj(float _size = 1);

 GameObj(const Point3f &_p,

  const float _angle,

  const Point3f &_v);

 virtual void Draw(){}

 virtual void Init();

 virtual void Update(float t);

 virtual bool IsColliding(GameObj *obj);

 virtual void DoCollision(GameObj *obj) {}

 virtual void Explode() {}

 //unit vector in facing direction

 Point3f UnitVectorFacing();

 Point3f UnitVectorVelocity();

 enum//collision flags/object types

 {

  OBJ_NONE = 0x00000001,

  OBJ_ASTEROID = 0x00000010,

  OBJ_SHIP = 0x00000100,

  OBJ_BULLET = 0x00001000,

  OBJ_EXP = 0x00010000,

  OBJ_POWERUP = 0x00100000,

  OBJ_TARGET = 0x01000000

 };

 //data

 Point3f m_position;

 Point3f m_axis;

 float m_angle;

 Point3f m_velocity;

 float m_angVelocity;

 bool m_active;

 float m_size;

 Sphere3f m_boundSphere;

 int m_type;

 unsigned int m_collisionFlags;

 int m_lifeTimer;

};



THE GameObj UPDATE FUNCTION

Listing 3.2 is the base class update function, which updates the base physics 
 parameters (m_position and m_angle) and decrements the optional m_lifeTimer,
which is a generic way of having game objects last for a set period of time and 
then automatically removing themselves from the world. This feature is used for 
bullets, explosions, and powerups. In this game, positions are essentially two-
dimensional. We are keeping true three-dimensional positions for each object, 
but the Z component is always set to 0, and thus the world represents a flat two-
dimensional plane.

LISTING 3.2 The base game object update () function.

//——————————––––––––––

void GameObj::Update(float dt)

{

 m_velocity += dt*m_accelleration;

 m_position += dt*m_velocity;

 m_angle += dt*m_angVelocity;

 m_angle  = CLAMPDIR180(m_angle);

 if(m_position.z() !=0.0f)

 {

  m_position.z() = 0.0f;

 }

 if(m_lifeTimer != NO_LIFE_TIMER)

 {

  m_lifeTimer –= dt;

  if(m_lifeTimer<0.0f)

  m_active=false;

 }

};

THE Ship OBJECT

The ship object is a GameObj, with the addition of controls and the ability to fire 
bullets. Listing 3.3 shows the class header. The majority of the class methods rep-
resent the behaviors available to the ship: the controls of the craft, powerup man-
agement, bullet firing, and bookkeeping. The m_invincibilityTime integer sets the 
initial period of invincibility when a level starts, or when the main ship respawns. 
The variable m_shotPowerLevel is an accumulator for powerups that affect a player’s 
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shooting power level. If you were to create additional powerup types, you would 
probably want to give the structure accumulator variables for those as well. The 
Update() function is only mildly different from the base class; the Update()  function 
checks to see if m_thrust is true, and if so, calculates an acceleration, and then updates 
velocity, position, and angle. The function also updates the m_invincibilityTime, if 
required.

LISTING 3.3 The ship class header.

class Ship : public GameObj

{

public:

 //constructor/functions

 Ship();

 virtual void Draw();

 virtual void Init();

 virtual void Update(float t);

 virtual bool IsColliding(GameObj *obj);

 virtual void DoCollision(GameObj *obj);

 //ship controls

 void ThrustOn()  {m_thrust=true; m_revThrust=false;}

 void ThrustReverse(){m_revThrust=true; m_thrust=false;}

 void ThrustOff()  {m_thrust=false; m_revThrust=false;}

 void TurnLeft();

 void TurnRight();

 void StopTurn()  {m_angVelocity=0.0;}

 void Stop();

 void Hyperspace();

 //Powerup Management

 virtual void GetPowerup(int powerupType);

 int GetShotLevel() {return m_shotPowerLevel;}

 int GetNumBullets(){return m_activeBulletCount;}

 void IncNumBullets(int num = 1){m_activeBulletCount+=num;}

 void MakeInvincible(float time){m_invincibilityTimer = time;}

 //bullet management

 virtual int MaxBullet();

 void TerminateBullet(){if(m_activeBulletCount > 0)

  m_activeBulletCount—;};

 virtual void Shoot();

 virtual float GetClosestGunAngle(float angle);
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 //data

 Control* m_control;

private:

 int m_activeBulletCount;

 Point3f m_accelleration;

 bool m_thrust;

 bool m_revThrust;

 int m_shotPowerLevel;

 float m_invincibilityTimer;

};

THE OTHER GAME OBJECTS

Exp (explosions) and Powerup are very simple objects that simply instantiate, last 
for their preset lifetime, and then disappear. If a ship collides with a powerup, 
however, that ship will call its GetPowerup() function in response to the collision. 
Asteroids are simple objects that just float around, don’t have a maximum life-
time, and will split apart when struck by a bullet, if big enough. The target object 
is for debugging (unless you wanted to implement it for something else, such as 
homing missiles), and is simply a game object with no logic that displays itself 
as an X.

Bullets require one further collision step, as shown in Listing 3.4.

LISTING 3.4 The bullet special collision code.

void Bullet::DoCollision(GameObj *obj)

{

 //take both me and the other object out

 if(obj->m_active)

 {

  obj->Explode();

  obj->DoCollision(this);

 }

 m_active=false;

 if(m_parent)

 {

  Game.IncrementScore(ASTEROID_SCORE_VAL);

  m_parent->TerminateBullet();

 }

}
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In this simple function, the bullet also increments the score, and calls its parent’s 
TerminateBullet() function (this depends on whether you set this bullet to have a 
ship parent because bullets can be freely instantiated as well), which just decrements 
the number of shots the ship has active. The bullet will also kill off the other object 
with which it collides. The general collision system only calls the—Explode() and 
DoCollision() functions for the first object in the collision, for optimization reasons. 
Therefore bullets, which require both objects to run collide code, need this special 
case consideration.

THE GameSession CLASS

The overall game structure is shown in Listing 3.5. Most of the class is public be-
cause it will be accessed by the main game functions. The game is divided into a few 
high-level states: STATE_PLAY, STATE_PAUSE, STATE_NEXTWAVE, and STATE_GAMEOVER.
These are very basic game flow states and serve only as modifiers to the draw and 
control codes. For this demonstration program, there are two Control classes that 
are instantiated, a HumanControl class that handles the keyboard events, and an 
AIControl class, which for right now does nothing but will eventually be where we 
put our AI code for the game.

LISTING 3.5 The GameSession class header.

typedef std::list<GameObj*> GameObjectList;

Class GameSession

{

public:

 //constructor/functions

 GameSession();

 void Update(float dt);

 void Draw();

 void DrawLives();

 void Clip(Point3f &p);

  void PostGameObj(GameObj*obj)

  {m_activeObj.push_back(obj);}

 //game controls

 enum

 {

  CONTROL_THRUST_ON,

  CONTROL_THRUST_REVERSE,

  CONTROL_THRUST_OFF,
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  CONTROL_RIGHT_ON,

  CONTROL_LEFT_ON,

  CONTROL_STOP_TURN,

  CONTROL_STOP,

  CONTROL_SHOOT,

  CONTROL_HYPERSPACE,

  CONTROL_PAUSE,

  CONTROL_AION,

  CONTROL_AIOFF

 };

 void UseControl(int control);

 //score functions

 void IncrementScore(int inc) {m_score += inc;}

 void ResetScore() {m_score = 0;}

 //game related functions

 void StartGame();

 void StartNextWave();

 void LaunchAsteroidWave();

 void WaveOver();

 void GameOver();

 void KillShip(GameObj *ship);

 //data

  Ship* m_mainShip;

  HumanControl* m_humanControl;

  AIControl* m_AIControl;

 bool m_bonusUsed;

 int m_screenW;

 int m_screenH;

 int m_spaceSize;

 float m_respawnTimer;

 float m_powerupTimer;

 int m_state;

 int m_score;

 int m_numLives;

 int m_waveNumber;

 int m_numAsteroids;

 bool m_AIOn;

 enum

 {
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  STATE_PLAY,

  STATE_PAUSE,

  STATE_NEXTWAVE,

  STATE_GAMEOVER

 };

private:

 GameObjList m_activeObj;

 };

 The list of dynamic objects for the game is stored in a Standard Template 
Library (STL) list structure called m_activeObj. This program was written for 
simplicity, so it does things like new and delete memory while in game, whereas 
most real games try to achieve a solid memory allocation beforehand to prevent 
memory fragmentation (one method could be to allocate a large pool of the dif-
ferent GameObj structures, and then manage their use as needed). By placing all 
the game objects in this structure, the Update() function for GameSession is very 
simple and generic. The discussion of this function will be shown split into eight 
parts, so that each part of the update can be discussed separately. See Listings 3.6.1 
through 3.6.7.

PRIMARY LOGIC AND COLLISION CHECKING

Listing 3.6.1 is the primary part of the update loop. It sets up a for loop to iterate 
through all the game objects, and then for each object, runs its Update() method 
and clips its position to the viewport (which also wraps the position around, as-
teroids style). The function then checks for any collisions with other objects, by 
looping through the objects and calling the IsColliding() method on each. The 
collision calculations are optimized by the following rules:

 1.  An object must be registered to collide by having its m_collisionFlags
variable not contain the GameObj::OBJ_NONE bit.

 2.  The object will only do collision checks against objects of the types for 
which it is registered.

 3.  An object cannot collide with another object that isn’t active (it m_active
member is false).

 4.  Objects cannot collide with themselves.

LISTING 3.6.1 GameSession’s update loop, section 1: update and collision checking.

void GameSession::Update(float dt)

{
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 GameObjectList::iterator list1;

 for(list1=m_activeObj.begin();

  list1!=m_activeObj.end();++list1)

 {

  //update logic and positions

  if((*list1)�>m_active)

  {

  (*list1)�>Update(dt);

  Clip((*list1)–>m_position);

    }

    else continue;

  //check for collisions

  if((*list1)–>m_collisionFlags !=

  GameObj::OBJ_NONE)

    {

  GameObjectList::iterator list2;

  for(list2=m_activeObj.begin();

  list2!=m_activeObj.end();++list2)

  {

  //don’t collide with yourself

  if(list1 == list2)

  continue;

  if((*list2)–>m_active    &&

  ((*list1)–>m_collisionFlags  &

  (*list2)–>m_type)    &&

  (*list1)–>IsColliding(*list2))

  {

  (*list1)–>Explode();

  (*list1)–>DoCollision((*list2));

  }

  }

 }

    if(list1==m_activeObj.end()) break;

    }//main for loop

}

OBJECT CLEANUP

Objects that were destroyed by a collision or an object that has outlived its 
life counter variable will be removed from the object list by the code shown in 
Listing 3.6.2, and then erased. The functor that checks for the inactive condition 
(RemoveNotActive) is also in charge of deleting the actual memory taken up by the 
object; the erase function just takes it out of the GameSession object list.
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LISTING 3.6.2 GameSession’s update loop, section 2: killed object cleanup.

//get rid of inactive objects

 GameObjectList::iterator end   = m_activeObj.end();

 GameObjectList::iterator newEnd =

 remove_if(m_activeObj.begin(),

 m_activeObj.end(),RemoveNotActive);

 if(newEnd != end)

    m_activeObj.erase(newEnd,end);

SPAWNING MAIN SHIP AND POWERUPS

Listings 3.6.3 and 3.6.4 are simple parts of the update function that check a cou-
ple of timers, m_respawnTimer and m_powerupTimer. The respawn timer is used when 
the main ship has been destroyed; it takes a small pause before respawning. This is so 
the player has time to realize his ship has exploded. The powerup timer provides for 
the pause between each powerup spawning. If this time is up, the game spawns a new 
powerup with random position and velocity and adds it to the main object list.

LISTING 3.6.3 GameSession’s update loop, section 3: respawn main ship.

//check for no main ship, respawn

 if(m_mainShip == NULL || m_respawnTimer>=0)

 {

  m_respawnTimer–=dt;

  if(m_respawnTimer <0.0f)

  {

   m_mainShip = new Ship;

   if(m_mainShip)

   {

   PostGameObj(m_mainShip);

   m_humanControl–>SetShip(m_mainShip);

   m_AIControl–>SetShip(m_mainShip);

  }

  }

 }

LISTING 3.6.4 GameSession’s update loop, section 4: spawn powerups.

//occasionally spawn a powerup

 m_powerupTimer –=dt;

 if(m_powerupTimer <0.0f)

 {
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  m_powerupTimer = randflt()*6.0f + 4.0f;

  Powerup* pow = new Powerup;

  if(pow)

  {

  pow–>m_position.x()= randFlt()*m_screenW;

  pow–>m_position.y()= randFlt()*m_screenH;

  pow–>m_position.z()= 0;

  pow–>m_velocity.x()= randFlt()*40 – 20; 

  pow–>m_velocity.y()= randFlt()*40 – 20;

  pow–>m_velocity.z()= 0;

  PostGameObj(pow);

  }

 }

BONUS LIVES

Listing 3.6.5 does a simple score check, and every 10,000 points, it awards the player 
another life. This is fairly straightforward and is a common practice in these kinds 
of games.

LISTING 3.6.5 GameSession’s update loop, section 5: bonus lives.

//check for additional life bonus each 10K points

 if(m_score >= m_bonusScore)

 {

 m_numLives++;

 m_bonusScore += BONUS_LIFE_SCORE;

 }

END OF LEVEL AND GAME

The next two listings (3.6.6 and 3.6.7) check for two important game conditions, 
the end of the current level (determined when no asteroids are left for the player to 
shoot), and end of the game (determined when the player has no more lives left). 
Each of these conditions calls a function, WaveOver() or GameOver(), which sets some 
critical flags, and also advances the overall game state to either STATE_NEXTWAVE or 
STATE_GAMEOVER.

LISTING 3.6.6 GameSession’s update loop, section 6: end of level.

//check for finished wave

 if(!m_numAsteroids)

 {
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  m_waveNumber++;

  WaveOver();

 }

LISTING 3.6.7 GameSession’s update loop, section 7: game over.

//check for finished game, and reset

 if(!m_numLives)

 GameOver();

THE Control CLASS

To give commands to a ship, the system makes use of the Control class. Control’s
base class contains the barebones structure, including Update(), Init(), and an 
m_ship pointer to the ship to be controlled. This class is the parent to both the 
human control system (HumanControl) and to the AI (AIControl). The HumanControl
class is a bit different in that it doesn’t use its update function. Rather, it’s just the 
depository for the global callbacks that the program passes to GLUT to perform 
keyboard checks and notifications. If the game were more complex, we would im-
plement a state-based control scheme (or some other way of separating the system 
functionality) and use the full functionality of the Control class. Later in the book, 
when we implement the various AI methodologies, we’ll start by creating a specific 
AIControl class to house the particulars of each AI method.

THE AI SYSTEM HOOKS

The GameSession class checks to see if the AI system is turned on, and if so, the 
Update() function for the AIControl class is called. This update function is stubbed 
out in AIControl.cpp, meaning that the AI system does nothing here. Again, this is 
just the framework for the future implementations of each AI technique. We will 
later make child classes of this barebones AIControl class that will run specific code 
for each technique.

The only other things of note in the base class are some debug data fields, 
which were used in developing the demo programs in this book and were left in 
to serve as a good start for any additional debugging information you might add. 
It’s good practice to include debugging hooks in your system right from the start, 
so that you don’t have to spend precious time during development trying to patch 
debugging output into your AI engine.
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The two update functions, Update() and UpdatePerceptions(), deal with  system-
level data objects. These functions are separated to emphasize the separation of 
game objects from game perceptions. UpdatePerceptions handles the refreshing of all 
the game variables that the objects in your game will use to make decisions (all of 
these inputs to the system could be called perceptions), whereas the regular update 
function handles all the functions for the game objects themselves. Figure 3.2 shows a 
screenshot of the test bed running the finite state machines (FSM) AI system from 
Chapter 15.

FIGURE 3.2  AIsteroids screenshot.
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GAME MAIN LOOP

AIsteroids.cpp is the main game file for the project. It initializes GLUT and sets up 
the callback pointers for updating the game, drawing the game, and handling all the 
input from Windows or the user (the global functions that handle the keyboard are 
in the HumanControl.cpp file).

SUMMARY

This chapter described the primary test-bed application the book will use for im-
plementing each AI technique in Parts III and IV. The overall class structure was 
discussed, as were the notable sections of the base class code.

GameObj is the basic game object class. It takes care of physics and handles object 
drawing and updating.
 The current objects in the game include asteroids, bullets, explosions, pow-
erups, ships, and a debugging target object.
GameSession is the singular game class. It takes care of all the variables and 
structures needed to run a game. It has the primary update and draw functions 
for the game. It spawns all additional game elements and manages object-to-
object collision checking.
Aisteroids.cpp is the main loop file, and it includes all the initialization of 
GLUT and all the GLUT callbacks for running the game.
 The Control class handles the logic for a ship object. This logic can be in the 
form of an AI technique or keyboard functionality for a human player.
 The AIControl class will be the branching point for our AI to hook into the 
system. By overriding the class with a specific AI method class (for example, 
FSMAIControl, discussed in Chapter 15), we can use this game application with 
CPU-controlled opponents. The keyboard control will still be enabled, but this 
is to facilitate the application as a test bed (we still want to be able to send key-
board events to the game when the AI system is running).
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Role-Playing Games (RPGs)4

As personal computers became more mainstream, one of the first new game 
genres to appear was the role-playing game, or RPG. RPGs became popular 
because they were a radical departure from the fast, twitch-based action 

games that had dominated the arcades. They allowed for more thoughtful strategy, 
and were able to give the player much more interesting input opportunities by 
using the keyboard found on personal computers rather then an arcade-style con-
troller and a button or two. They also enveloped the player in a rich storyline, and 
gave the player a high degree of identification with the hero since the game took 
so long to complete. Arcade-style games, which in those days were mostly shooters 
or platformers, were typically designed to be over quickly (for profit reasons, but 
also because of limited complexity) so a game that takes a long investment in time 
and effort was a complete departure from the arcade norm. The RPG allowed for 
characters that grew and morphed over time, thus permitting players to really get 
to know, and affect the development of the main characters.

The earliest RPGs were either text based (like Adventure or Wumpus) or 
had art crafted out of ASCII characters like Rogue and NetHack (see Listing 4.1 
for a code snippet from NetHack—the listed function is a generic method for 
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determining and defining missile attacks from an AI-controlled enemy). The game-
play tended to be mostly exploratory (leading many of these games to be called 
“dungeon crawlers”), with random monster encounters and turn-based combat 
systems. Typically, the dungeon itself is randomly generated, and as such you could 
continue to advance and discover deeper dungeons pretty much forever.

The next wave of RPGs finally came out with graphical art, but the images were 
static, like The Bard’s Tale and Wizardry. Typically, these games were just graphically 
upgraded versions of early RPGs, but some started to craft specific locations and 
included backstory and secondary characters. They also typically had an “ending,” 
in which players actually defeated the final bad guy and saved the world (or some-
thing along those lines).

Modern RPGs are generally fully open, sprawling worlds filled with other char-
acters, monsters, places to explore, and tons of interaction with both people and 
objects in the game. Today, both console and computer RPGs have blurred the plat-
form line, with games like Diablo being a computer game with simple, console-like 
action-oriented gameplay; and the new online persistent RPGs on the consoles are 
all but identical to their personal computer brothers.

LISTING 4.1  Code snippet from the Open Source ASCII RPG, NetHack.

    Distributed under the NetHack GPL.

/* monster attempts ranged weapon attack against player */

void

thrwmu(mtmp)

struct monst *mtmp;

{

    struct obj *otmp, *mwep;

    xchar x, y;

    schar skill;

    int multishot;

    const char *onm;

    /* Rearranged beginning so monsters can use polearms not in a 

            line */

    if (mtmp->weapon_check == NEED_WEAPON || !MON_WEP(mtmp)) {

        mtmp->weapon_check = NEED_RANGED_WEAPON;

        /* mon_wield_item resets weapon_check as appropriate */

        if(mon_wield_item(mtmp) != 0) return;

    }

    /* Pick a weapon */

    otmp = select_rwep(mtmp);
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    if (!otmp) return;

    if (is_pole(otmp)) {

        int dam, hitv;

        if (dist2(mtmp->mx, mtmp->my, mtmp->mux, mtmp->muy) >

                 POLE_LIM ||

            !couldsee(mtmp->mx, mtmp->my))

        return;    /* Out of range, or intervening wall */

        if (canseemon(mtmp)) {

        onm = xname(otmp);

        pline(“%s thrusts %s.”, Monnam(mtmp),

              obj_is_pname(otmp) ? the(onm) : an(onm));

        }

        dam = dmgval(otmp, &youmonst);

        hitv = 3 - distmin(u.ux,u.uy, mtmp->mx,mtmp->my);

        if (hitv < -4) hitv = -4;

        if (bigmonst(youmonst.data)) hitv++;

        hitv += 8 + otmp->spe;

        if (dam < 1) dam = 1;

        (void) thitu(hitv, dam, otmp, (char *)0);

        stop_occupation();

        return;

    }

    x = mtmp->mx;

    y = mtmp->my;

    /* If you are coming toward the monster, the monster

     * should try to soften you up with missiles.  If you are

     * going away, you are probably hurt or running.  Give

     * chase, but if you are getting too far away, throw.

     */

    if (!lined_up(mtmp) ||

        (URETREATING(x,y) &&

            rn2(BOLT_LIM - distmin(x,y,mtmp->mux,mtmp->muy))))

        return;

    skill = objects[otmp->otyp].oc_skill;

    mwep = MON_WEP(mtmp);        /* wielded weapon */

    /* Multishot calculations */

    multishot = 1;

    if ((ammo_and_launcher(otmp, mwep) || skill == P_DAGGER ||
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        skill == -P_DART || skill == -P_SHURIKEN) && !mtmp->mconf) {

        /* Assumes lords are skilled, princes are expert */

        if (is_prince(mtmp->data)) multishot += 2;

        else if (is_lord(mtmp->data)) multishot++;

        switch (monsndx(mtmp->data)) {

        case PM_RANGER:

            multishot++;

            break;

        case PM_ROGUE:

            if (skill == P_DAGGER) multishot++;

            break;

        case PM_NINJA:

        case PM_SAMURAI:

            if (otmp->otyp == YA && mwep &&

            mwep->otyp == YUMI) multishot++;

            break;

        default:

        break;

        }

        /* racial bonus */

        if ((is_elf(mtmp->data) &&

            otmp->otyp == ELVEN_ARROW &&

            mwep && mwep->otyp == ELVEN_BOW) ||

        (is_orc(mtmp->data) &&

            otmp->otyp == ORCISH_ARROW &&

            mwep && mwep->otyp == ORCISH_BOW))

        multishot++;

        if ((long)multishot > otmp->quan) 

                 multishot = (int)otmp->quan;

        if (multishot < 1) multishot = 1;

        else multishot = rnd(multishot);

    }

    if (canseemon(mtmp)) {

        char onmbuf[BUFSZ];

        if (multishot > 1) {

        /* “N arrows”; multishot > 1 implies otmp->quan > 1, so

           xname()’s result will already be pluralized */

        Sprintf(onmbuf, “%d %s”, multishot, xname(otmp));

        onm = onmbuf;

        } else {
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        /* “an arrow” */

        onm = singular(otmp, xname);

        onm = obj_is_pname(otmp) ? the(onm) : an(onm);

        }

        m_shot.s = ammo_and_launcher(otmp,mwep) ? TRUE : FALSE;

        pline(“%s %s %s!”, Monnam(mtmp),

          m_shot.s ? “shoots” : “throws”, onm);

        m_shot.o = otmp->otyp;

    } else {

        m_shot.o = STRANGE_OBJECT;

             /* don’t give multishot feedback */

    }

    m_shot.n = multishot;

    for (m_shot.i = 1; m_shot.i <= m_shot.n; m_shot.i++)

        m_throw(mtmp, mtmp->mx, mtmp->my, sgn(tbx), sgn(tby),

            distmin(mtmp->mx, mtmp->my, 

                         mtmp->mux, mtmp->muy), otmp);

    m_shot.n = m_shot.i = 0;

    m_shot.o = STRANGE_OBJECT;

    m_shot.s = FALSE;

    nomul(0);

}

 RPGs, in general, follow a simple formula: the player starts with nothing, per-
forms tasks for treasure and money (mostly killing monsters and going on quests), 
trains his or her skills, and eventually builds his or her character into a powerhouse 
figure that can then right the ultimate wrongs of the land. Some games include a 
whole party of adventurers, so the player is in effect building up a whole team of
characters. Whatever the technical details, the name of the game is immersion: 
getting the player to identify with the main character, and caring enough to invest 
the vast amount of time necessary to build the character up and eventually finish 
the game.

The enemy-filled, constantly hostile world of most RPGs might seem odd, but 
not to teenagers. In a way, young people somewhat relate to a character who is 
solitary in the world, against everyone, universally misunderstood and attacked. It’s 
what gives RPGs their appeal to many of the youth who play them. The inclusion of 
a small band of party members ties nicely into the clique-ish world of most teens, 
in which they form a small group of intense friends, and extend the “me against the 
world” fight to include these people as well. This argument is not to say that older 
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or younger people cannot enjoy RPGs but, rather, speaks to a theoretical reason 
why some people find these types of games popular.

RPGs are fairly AI-intensive, because they are usually expansive games, with 
varying types of gameplay and many hours of gaming experiences per title. As such, 
the apparent intelligence of the varying game elements has to be higher than most, 
or at least more heavily scripted. The sheer number of hours people invest in an 
RPG will make any behavioral repetition much more obvious, as well as making 
small annoyances (like pathfinding hangups) in AI behavior appear larger.

On home computers, users demand a minimum of 40 or so hours of gameplay 
from an RPG. Consoles are a bit lower, usually 20 to 40. This formula seems to be 
somewhat fixed in the minds of game players (a strange mix of the approximate 
amount of time a game can keep a player’s interest, and marketing education about 
how much gameplay a buyer can expect for their money), but there are exceptions, 
like Baldur’s Gate for the PC having 100+ hours of play.

Because of these hefty gameplay quantity demands, your game needs a vari-
ety of gameplay types (such as puzzles, combat, crafting, different types of travel, 
etc.) or your primary combat system had better be very fun and addicting. The 
Diablo games fall into the latter category. The gameplay is very repetitive, but also 
very addictive. Some have theorized that the game somehow awakens our inherent 
“hunter-gatherer” lineage, and we just can’t stop clicking the mouse.

COMMON AI ELEMENTS

RPGs contain a number of commonly AI-controlled elements. These include both 
antagonistic characters (enemies, bosses, and non-player characters), as well as 
good or neutral characters (shopkeepers, and other party members). Since RPGs’ 
main gameplay revolve in many ways around character interaction, either combat 
or otherwise, each of these elements can be quite complex.

ENEMIES

The majority of the population of most RPG worlds is enemies. An almost end-
less supply of enemies is needed to provide the player with something to dispatch 
and get experience points, money, and powerful new items. RPGs in the past used 
almost exclusively what can be described as statistical AI, in that the attributes 
(strength, size, hit points, etc.) of the monsters determined everything about them: 
the attacks they use, the way they fight, how tough they are in general, what treasure 
they drop when they die, and so on. Today’s games go a bit further and have en-
emies that are more hand-tailored. These modern enemies also use more complex 
behavior patterns, including running away, healing themselves, fighting in groups 
by surrounding a player and using complementary attack methods, and so forth.
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Since enemies in RPGs usually come in such numbers during a game, the AI 
is specifically set up to be more A and not so much I. Turn-based RPGs of the past 
(Bard’s Tale, Phantasy Star, Chrono Trigger), the so-called real-time combat RPG 
(The Legend of Zelda, the later Ultima™ games, Diablo, Terranigma), and the fusion 
variants brought about recently (Baldur’s Gate or Icewind Dale, which are real-time 
games that can be paused and, thus, made to act turn-based) all pretty much boil 
down the enemies to be combination containers (of wealth and experience points) 
and obstacles (by being “walls” of a certain number of hit points that the hero must 
destroy to get by). Very few games go beyond this kind of simple-style enemy to 
create anything with personality, ingenuity, or shifting strategy.

This is done by design, of course. When a player who has spent 60 or more 
hours playing your game goes into a room and sees a monster approach that looks 
like an enemy character he has seen before, he should feel one of three ways:

 1.  I can beat this guy. I know what attacks he uses, approximately how many 
hit points he has, and that I have a weapon that affects this enemy.

 2.  I think I can defeat this guy. He looks a lot like an enemy I’ve already 
fought, but is a different color, or a special name, that makes him unusual 
and possibly more advanced. In effect, I believe he belongs to an enemy 
“type,” but I’m not sure about his toughness.

 3.  I cannot beat this guy. He’s too tough, or I don’t have the weapon necessary 
to get through his armor. I know because I’ve tried before, and failed, or 
somebody in the game has warned me.

This is another way of immersing the player in the game and making him feel              
a part of the world, in that he “knows” the enemies by experience. If a lowly Orc 
suddenly pulls out a grenade (after futilely running up and using a rusty dagger in 
the last fifty encounters) and nukes the player, the player is going to feel somewhat 
cheated. However, this basic guideline can be occasionally sidestepped, if the player 
is allowed to save the game whenever he wants, or the game actually autosaves quite 
frequently. In this way, a highly unusual encounter with a special enemy might kill 
the player, but he won’t have lost much playing time if he has a save. Yes, this leads 
to more “save, then round the corner, kill one monster, then save” behavior from 
the player, but it also gives you more freedom to put elements of surprise into your 
random encounters.

BOSSES

Bosses are larger, more complex game characters, either humanoid or creature, 
found at the end of each level (or game world, or subsection) after defeating a 
horde of lesser enemies. They are usually equivalent to monster leaders, the Kings 
of the Monsters. These are specific, usually unique enemies that can break all the 
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previous rules. Players expect to be surprised by the power, skills, weapons, and 
so forth used by these characters. Bosses are even thought of as treats in the RPG 
world, and a good boss creature can make up for a lot of game shortcomings, either 
in the areas of average gameplay, or merely a period of tedious leveling-up neces-
sary to continue on in the game world.

As such, Boss monsters are usually heavily scripted, with specialty attacks and 
behaviors that only they perform. Boss monsters also usually communicate with the 
player, in the form of plot advancing information, or pure invectives. So the AI for 
these creatures needs to include use of the dialogue system for the game. The Final 
Fantasy series’ Boss monsters are a wonder of specialized coding, with encounters that 
might take hours of real time, complete with various stages of battle and conversa-
tion. These encounters are strictly paced by the developers, with planned volleys of 
the player’s advantage, followed by the enemy’s advantage, scripted interruptions with 
other enemies or special game events, and whatever else the designers can think up.

Another tried-and-true Boss tactic involves the “can’t be killed . . . yet Boss.” This 
involves a Boss that the players can bring to near death, only to miraculously escape, 
shouting “I’ll be back!” and promising to be bigger and badder next time. Although 
somewhat trite, this is the gaming equivalent of simple character development, with 
the Bad Guy developing over the course of the game as much as you are.

Some games use the designation of “sub-boss” to further stratify the monsters 
in the game, although they are usually just very tough versions of regular creatures, 
like the “unique” creatures that heavily populate the Diablo series. But even Diablo,
which many considered an “RPG-lite” click fest, also uses much more specialized 
Boss creatures that employ additional dialogue, animations, spell and weapon effects, 
and special powers.

The Boss designation also includes the final creature (wizard/god/evil doer) 
that the player will need to defeat to win the game, also called the End Boss. This 
character is very important indeed, and many a good game has received bad marks 
for having a disappointing or anticlimatic End Boss. The player should have to 
perform every trick he or she has learned during the game, and stretch the acquired 
skills to the limit to destroy this character, and the End Boss itself should be able to 
do things that the player has never seen before in the game. The End Boss should be 
tough from a statistics point of view, of course (with lots of hit points and immu-
nities to weapons or spells), but the End Boss should also be capable of behaviors 
beyond the typical. That’s why the character is the End Boss in the first place.

NONPLAYER CHARACTERS (NPCS)

NPCs are defined as anybody in the game that is not a human player. Usually, how-
ever, the term NPC refers to characters in the game that the player can interact 
with in ways other than combat. NPCs are the characters who inhabit the towns, 
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the half-dead soldiers on the trail who give the player valuable clues to the danger 
ahead, and the occasional old man who offers the player’s character money to 
rescue the old man’s daughter. Typically, NPCs can be grouped into one of two 
types:

 1.  One-shot characters (meaning they have something for the player once 
during the course of the game, but afterwards will only greet the player 
with gratitude), like the people that are involved in a side quest.

 2.  Information-dumping characters, that a player can keep conversing with at 
different points during the game. These characters might know something 
additional about whatever is currently “new” in the game flow.

NPCs  are generally not very intelligent; they usually don’t have to be. Anything 
they add beyond information or story advancement is just flavor for the game. 
However, they also represent one of the largest sources of information the player 
has about the flow of the storyline. NPCs can also serve as in-game help that can 
bring a stuck or lost player back into alignment with the objectives of the game. As 
such, many games have experimented with differing ways of doing NPC conversa-
tion. Some games give the player keywords that represent questions the player is 
posing to the NPC (as in the Ultima games), others give the player a choice between 
a number of complete sentences that represent the different attitudes the player can 
take with the NPC.

The evolution of these systems will continue as grammar systems become 
better, faster, and more generally accepted. Some day, players may converse di-
rectly with a general AI NPC who can give wide-ranging responses by indexing 
the character’s knowledge base and forming sentences on the fly. Until then, we 
do what we can.

SHOPKEEPERS

Shopkeepers are special NPCs that do business with the player; buying and selling 
gear, teaching the player new skills, and so on. Shopkeepers usually aren’t much 
smarter than regular NPCs, but they get special mention because they usually have 
extended interfaces, which, in turn, require special code so they seem intelligent 
and usable. Sometimes shopkeepers might be part of a scripted quest or game se-
quence, in that they only become shopkeepers later in the game, or after a task has 
been completed. A shopkeeper thus might have a notion about whether or not he 
likes the player, which would then affect his attitude, and prices, when dealing with 
that player. Some games have a general charisma attribute for characters within 
the game (or some derivative; the meaning is “How well other people perceive you 
naturally,” considering first impressions, the player’s looks, and the player’s speak-
ing ability), as well as some form of a reputation system that represents a sort of 
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“rating” depicting the amount of good versus evil deeds a player has, as well as 
flags representing specific things the player has done that NPCs can notice and 
respond to.

There is a natural human tendency to give inanimate things human qualities, 
and this tendency is tied directly to the amount of time we have to spend dealing 
with something. There is also a correlation with how much that object has cost us. 
Very few people would attribute human qualities to their shoes, but many people 
name their cars, know its gender, know how to identify if it’s having a bad day, 
and will even plead with it if it isn’t running well. Both objects (shoes and cars) 
do roughly the same thing: help protect our bodies from the rigors of traveling, 
so why the disparity? The answer is obvious. With no moving parts, and a simple 
procedure that we learned when we were three years old, we put on our shoes in the 
morning, and forget about them. Buying a new pair doesn’t require a credit check. 
Our cars are exactly the opposite.

The same is true with Shopkeeper AI. If you have a one-shot NPC within your 
game, you can pretty much do whatever you want with his behavior, dialogue, and 
interactions with the player. The player isn’t expecting much and will take most 
things at face value. But with a shopkeeper, especially one that the player will have 
to keep coming back to for a large part of the game, every nuance, reply, and anima-
tion frame will be carefully watched, memorized, and humanized.

Do you have a bartering system (which in reality takes the player’s charisma 
score, adds in a random factor, and determines a small discount that a player can 
bargain for) within your game? Over time, a human player will start to imagine 
intricate rules involving the order of the items he does business with, the time of 
day, the shopkeeper’s moods, and a host of other factors that may not actually exist. 
It is precisely this humanizing tendency that allows game makers to get away with 
so little detail in their games because the human player will fill in all the complex-
ity where there is none. The lesson is that shopkeepers do more than provide your 
players with an economy interface; they also give richness to the world and provide 
the player with other facets of the game to consider.

PARTY MEMBERS

Members of a player’s adventuring party are also special NPCs, except that they 
travel with the player, and are either completely player-controlled (in turn-based 
RPGs, or in later games that allow players to pause the action so they have time to 
give detailed commands) or have AI code associated with them. These AI-based 
party members need careful coding because stupid party members will drive po-
tential players away quickly. Many of the real-time combat games use simple party 
AI, so that the player can predict (and rely on) what each party member is going to 
do during a fight.
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A large factor to remember with real-time combat RPGs is pathfinding. In turn-
based combat systems, a player’s party members are just attached to the player, or 
follow the player around directly (like the Final Fantasy games, or even the early 
Bard’s Tale), but in real-time games, they actually have to pathfind to follow the 
player. In a semi-enclosed space (such as an underground dungeon, for instance) 
with no room to manuever, one or more party members might go running off to 
take some extra-long scenic route that the pathfinder managed to find. Blind path-
ing can be supremely frustrating to the player, as it can cause these confused party 
members to run through packs of monsters in other parts of the map, even bringing 
unfriendlies running into the room behind the “helpful” friends to join in the fight.

Here’s a place where an intelligent party member might say, “Hmm, I can’t get 
around that guy directly to use my sword. But I do have a bow and arrow in my 
pack, and I’m decent at archery, maybe I’ll try a ranged attack.” A simpler solu-
tion might be “Can’t get around directly, so I can’t attack. Maybe I should tap my 
weaker buddy on the shoulder, who’s being mauled by a creature, and replace him 
on the front line.” These kinds of “smarts” (rather than ignorant pathfinding and 
script following) are the difference between useful party members, and ineffective 
 accomplices that the player needs to babysit. If the characters a player adventures 
with frequently screw up, do the right thing in the wrong way, or are constantly 
getting themselves (or worse, the player) killed, the player is not going to want to 
continue playing with them.

Baldur’s Gate (and its descendents) even allows users to edit the scripts that 
govern the party members’ AI, so that users have even more control over this cru-
cial game element. Some users in the community have created very advanced AI 
scripts and put them up on fan websites for all to use. See the section on “Scripting” 
that follows.

Adding a scripting system to edit a party AI is a careful balance. If you make it 
too easy to use and don’t provide enough complexity and functionality, it’s worth-
less. But if the system is too powerful, then it can overwhelm the casual gamer, and 
again becomes worthless to a large part of your audience.

A technique that many sports games use to allow players to adjust the AI in 
their games is to expose specific tendencies of behavior as “sliders” (scroll bars 
that tie to a variable) that the player can set. For sports games, this means that the 
players could set up a basketball game where the AI never tries to steal the ball, 
doesn’t guard as well, and is better at three point shots all by setting sliders to cer-
tain points. A similar system could be used to give more casual gamers access to AI 
editing without having to write script code. Even some of the more complex uses 
of a scripting system, like setting up when specific spells would be cast by an AI 
mage character, could be represented as sliders that are specific to that spell. This 
does translate to many potential sliders, but again, it’s definitely more accessible to 
a larger audience than script files are.
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USEFUL AI TECHNIQUES

Along with the many types of AI-controlled entities within RPGs come the many 
AI techniques that are useful when constructing RPG-style games. These include 
scripting (because of the heavy story-based element in the genre), finite-state ma-
chines (for their general usefulness), and messaging (since so many RPG tasks are 
flag-based events).

SCRIPTING

Most RPGs are heavily scripted because these games tend to follow a very spe-
cific storyline. Scripts are used for a variety of game constructs, including dialogue, 
game event flags, specific enemy or NPC behavior, environmental interaction, and 
many others.

Scripting is used because most RPGs are linear, or at most branching linear, 
and so work well with the scripted interface. You can design parts of the game to 
play out almost exactly as specified, with choke points and flags embedded into 
the scripts so that the players are forced to follow the game flow from point A to 
point B, even if they first wandered over to points C, D, E, and F in the meantime. 
Plus, the conversational nature of many RPGs also lends itself to this technique. 
You can think of scripts as a data-based way of hardcoding the assorted events that 
come up during the overall story. See Listing 4.2 for an example of a short script 
from the Black Isle game, Baldur’s Gate. Here you can see a very basic attack script, 
which determines whether to attack an enemy based on the enemy’s distance to 
the character, and then also determines whether to use a ranged or melee weapon. 
It does perception checking (the range calculations) as well as perception schedul-
ing (by saying how often the script should be run). It also has some randomness, 
in that the determination for ranged or close combat is determined by a random 
number (33 percent of the time, it chooses melee, the rest of the time, it chooses 
ranged).

LISTING 4.2  Sample Warrior AI user-defined script from Baldur’s Gate.

IF

    // If my nearest enemy is not within 3

    !Range(NearestEnemyOf(Myself),3)

    // and is within 8

    Range(NearestEnemyOf(Myself),8)
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THEN

    // 1/3 of the time

    RESPONSE #40

       // Equip my best melee weapon

       EquipMostDamagingMelee()

          // and attack my nearest enemy, checking every 60 ticks 

           // to make sure he is still the nearest

       AttackReevalutate(NearestEnemyOf(Myself),60)

       // 2/3 of the time

    RESPONSE #80

       // Equip a ranged weapon

       EquipRanged()

       // and attack my nearest enemy, checking every 30 ticks

           // to make sure he is still the nearest

       AttackReevalutate(NearestEnemyOf(Myself),30)

END

FINITE-STATE MACHINES (FSMS)

The staple of game development, FSMs are useful in RPGs, just as they are useful 
in any game—they allow the developer to split the game into explicit states. In each 
state, specific characters can perform different behaviors, and manage these with 
discrete code blocks. Thus, you could have an NPC who first meets a player and 
gives the player a quest (for example, state before meeting the player is state_intro,
changing to state_quest after giving the player information about a quest). Then, 
after the player finishes the quest, the NPC becomes a shopkeeper and sells the 
player things at a discount as a reward (state_shopkeep). Note how earlier the script 
from Baldur’s Gate is only applicable if an enemy is close by. Any other game state 
would require additional scripting, or it could fall back on some default script, 
which would most likely do some idle behavior.

By having a state-based system, but scripting the entry and exit to those states, 
many RPGs hide the “hard” state transitions (meaning, it’s difficult to notice the 
difference in game state, because the transition was a seamless scene that moves 
us from one state to another). Other games do not, like Nintendo’s classic The 
Legend of Zelda, in which the game was split into two globally distinct states: the 
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overworld and the dungeons of the underworld. The game’s music would change, 
the character itself would look a little different (because of the “lighting”), and if 
the player died, the game acted a little differently (by allowing the player to con-
tinue in the same dungeon, if the player wanted), all because of this basic state 
change.

MESSAGING

With so many elements in an RPG world, the need to communicate between enti-
ties is high, so a messaging system is useful in this genre. Information can be passed 
between party members quickly and easily, facilitating group combat or dialogue. 
Door keys (or whatever your game is using) can message locks to open, and out-
of-place wall stones could cause entire sequences of events to occur when pushed. 
Because of the sheer number of uses within an RPG, messaging systems can really 
give you a lot of flexibility and ease of implementation.

One thing that should be watched for, because it breaks the illusion of reality, 
is for instant messaging being used by the game. If a party kills some creature on 
the far side of the world, they then teleport back to town (because of a special 
magic item), and everyone back in town already knows about the battle, that the 
party won, and that the player is the hero. The townspeople obviously got the 
message and have switched on the game state-specific behavior for it. Wouldn’t 
a better reaction be that the first character the player talks with doesn’t know 
(unless the player took the long way home, and gave everybody time to find out 
on their own), and the player has to tell him? Then, that character runs into the 
streets and spreads the good news? Build messaging into the game, and use it 
to set game flags that change game behavior, but don’t overuse it, or abuse the 
system by allowing game states to change instantaneously in ways that couldn’t 
possibly have occurred. If the mayor of the town has his own wizard who saw 
everything happen through his crystal ball, that’s a different story, but it should 
be portrayed as such.

EXAMPLES

Classic games like Wizardy, the early Ultimas, Phantasy Star, Might and Magic, and 
the Bard’s Tale had mostly statistic-based enemies, with little special case code. 
They all used a simple “key and lock” puzzle system (using some sort of key or 
jewel or Skull of Muldark or what have you) that had to be found and used in the 
right place at the right time. This was most likely coded as a system of flags that 
the elements of the game would access to determine the particulars of the game 
progression.
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Usually, the gameplay diagram for these games would include a town state, a 
“travel” state, and a combat state. The differences between these games were pretty 
much the overall game’s graphic quality, how the player conversed with NPCs, and 
the combat interface.

Strangely enough, some massive multiplayer online RPGs (MMORPGs) are 
using this exact game style to create huge worlds in which people can play. The 
only real gameplay addition has, of course, been the vast number of people who 
are also playing the game at the same time, leading to more human-to-human 
interactions.

Modern RPGs such as the later Final Fantasy games, Neverwinter Nights, 
Baldur’s Gate, and System Shock are much more scripted affairs, with some of the 
 attribute-based enemies of these games, but with a large portion of hand-tailored 
encounters and environments along the way to provide the player with a more 
crafted gameplay experience. Only recently have the online RPGs tried this tactic 
(such as the Final Fantasy online game) because of the enormous amount of work 
associated with creating custom quests and encounters for a world that may be in-
habited by thousands of people at all hours of the day. But, the demand is there for 
higher quality content, so game companies will provide it.

EXCEPTIONS

Bethesda Softworks makes the excellent Elder Scrolls series of RPGs (see Figure 4.1 
for a screenshot from Elder Scrolls: Arena, the first in the series), which it touts as 
being open ended, meaning that you can solve the game and perform the various 
quests in a nonlinear fashion. The games do deliver this promise to a much larger 
degree than any other RPG. A large amount of freedom is granted through the lack 
of time limits on the quests you receive, so you can collect quests, and do them in 
any order. The quests are still mostly scripted (a number of quest types are used 
as templates, with different characters and locations) and usually simple in nature 
to facilitate this (although the newer games in the series have vastly improved 
the variety and complexity of quests). The main quest is still linear, facilitated 
by scripted encounters with unique NPCs, but it allows the player to take time 
completing many other side quests as well.

Neverwinter Nights is another recent game that was supposed to change ev-
erything. By allowing players to control a character in the game and actually be 
in the Dungeon Master role (as borrowed from the pen and paper world), the 
game was supposed to be Dungeons and Dragons (D&D) fully brought to the 
computer. To some degree it succeeded, but in many ways, all it really showed 
was that the average person is pretty bad at coming up with good game content. 
Patches have fixed some of the problems, and the title is nothing if not created 
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for longevity, so this will surely change, and good modules will make their 
 appearance on the Net.

SPECIFIC GAME ELEMENTS THAT NEED IMPROVEMENT

Any established genre can use some improvements pushing forward through the 
sea of established storylines and gameplay mechanics. RPGs have their share of 
issues when it comes to perennial issues. Some specific issues that could use some 
fresh insight include making role playing more then just endless combat, grammar 
machines, quest generators, better enemy and party member AI, and fully realized 
towns. A game with all these elements would truly be an epic adventure, with some-
thing new behind every door.

ROLE PLAYING DOES NOT EQUAL COMBAT

The definition of “role playing” is typically “acting like someone else in an es-
capist fantasy.” There is a vast array of possible behaviors that you could 

FIGURE 4.1 Elder Scrolls: Arena screenshot. © 1993. Bethesda Softworks LLC, a ZeniMax Media company.
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engage in. Acting means a lot of things; everything from behaving like another per-
son to using their manner of speaking. It can also mean subtle (yet very important) 
distinctions like taking on the other identity’s core beliefs (maybe the character 
being role played is whole-heartedly evil, whereas the person doing the role playing 
might be a Girl Scout), or holding grudges against others that have done the char-
acter wrong within the role playing universe. All of these things give role playing a 
rich, usually dramatic, and freeing sense of open-endedness that make it an activity 
with nearly limitless potential.

However, in most RPGs, right from the start, most of the time spent role-playing 
is actually time spent killing, mainly because of some seminal influences: two really 
old pen-and-paper RPGs (Dungeons and Dragons and, earlier than that, Chainmail)
centered their gameplay systems on fighting against fantastical creatures. The rule-
books were filled with combat statistics, magical spell lists, and weapon descrip-
tions. There really wasn’t a single chapter anywhere in the rulebooks about creating 
realistic stories, locales, and people to inhabit them. Novel combat scenarios are 
much easier to model and invent than an actual story with plot, characters, drama, 
and so on.

Consider this: nonkiller classes in most RPGs are only useful for the small set 
of contrived circumstances that the designers have included to justify these classes. 
Thieves are one of the more classic types with problems, even in paper D&D. If you 
allow thieves to really do what they do, they’re too powerful because they don’t have 
to follow the rules like everybody else does (just like in real life; the Mafia is more 
powerful than a police officer).

So games hobble them. Thieves can disarm traps, and pickpocket. But, if they 
disarm incorrectly, they generally die, and if they pickpocket unsuccessfully, they 
are generally always caught. Fun is nowhere to be seen. Think of the myriad won-
derful professions that players can choose from in the average Massive Multiplayer 
Online Role Playing Game (MMORPG). In Ultima Online, a player could be a 
baker. Unfortunately, the player could spend months playing the game, become a 
Master Baker, a true King of baking, and then be almost instantly killed the second 
the player stepped outside of town by an extremely low-level fighter with a rusty 
spoon.

In today’s MMORPGs, people tend to be tanks (meaning fighter types with 
huge amounts of health and armor; human walls that absorb damage), or casters 
(someone who stands behind a tank and can either damage creatures with spells, 
or heal the tank so he can continue to bash and be bashed). Specialty classes have 
somewhat dissolved into these two basic groups.

Huge areas of compelling potential gameplay are hidden within RPG worlds, 
but that involves thinking about ways of creating content that doesn’t involve kill-
ing and that takes advantage of nonlethal skills in a meaningful way, not just to 
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affect your prices for new swords. The task involved here is not an easy one, and 
writing AIs to support these new quest types will also be hard. But our RPGs will 
definitely be better for it.

GRAMMAR MACHINES

Grammar machines (GMs) make for better conversations. A lot of the interac-
tion with other characters in RPGs is through conversation, usually in the form 
of choosing from a list of responses, and then reading the character’s scripted re-
sponse. Ultima used a keyword system, so a player would say “thieves,” and the 
other character would tell the player about the local thieves, mentioning toward the 
end that someone named Blue is their boss. A new keyword, “Blue,” would show up 
in the player’s list, and the player could ask for additional information in this way. 
Old text-adventure games actually had rudimentary grammar engines that could 
handle semicomplex sentences. A fully functional grammar system used to con-
verse with NPCs in a modern RPG has yet been implemented. This might change 
because of the advent of better and better speech recognition software. Eventually, 
RPGs might use this system instead of a slow, clumsy text interface to allow the 
user to really ask questions. Our job as AI programmers will then be to fully flesh 
out a grammar engine, and fill a text database with enough knowledge to dutifully 
answer those questions.

QUEST GENERATORS

The real quest (for game developers) is quest generators that don’t churn out deriv-
ative or repetitive content. Sort of the Holy Grail of large-scale RPGs, an advanced 
quest generator could make up new quests that the player could tackle without 
 having to be explicitly set up and scripted by a game designer. Games like World 
of Warcraft, which are played around the clock online, could benefit greatly from 
a system that could come up with novel challenges for any number of party mem-
bers, and of any skill level. As of now, only a few games have “random” quests, and 
they usually fall into the “Fed Ex” quest realm. That is, go somewhere, get some-
thing, and bring it back to me.

An improvement might be a system set up ad-lib style; using templates to create 
custom quests (or strings of connected quests) that included multiple characters, 
locations, rewards, and different actions to be done. These templates, connected to 
a database of potential ad-lib names and locations, as well as some way of scoring 
quests for skill level and such, could make RPG games truly unique experiences (at 
least for side quest interactions). The game could even keep track of which quests 
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the player liked (by keeping records of quests turned down or never finished versus 
successful and repeated types) and adjust the kinds of quests given to a specific 
player. Also, by making the ad-lib machine extensible, you could add content con-
tinually (through mods, patches, or expansion packs to individual products), and 
the ad-lib system would just incorporate it into the mix.

BETTER PARTY MEMBER AI

Party AI that can be extended and modified, both implicitly and explicitly, is 
another big area in need of concern. Early real-time RPGs (like Ultima 7, pic-
tured in Figure 4.2) had simple party AI that mainly just followed a player 
around the map and tried to help during combat. Baldur’s Gate has contributed 
heavily to real-time RPG party AI becoming a greater priority. The level of 
adjustment that can be accomplished within their simple script form is pretty 

FIGURE 4.2 Ultima™ 7 screenshot.
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astounding, but it could be better. The character could keep track of the sorts 
of actions the player has the character do, and could incorporate them into 
automatic behavior.

Think of this as simple learning by imitation. Does the player always retreat 
from a certain character (like a weak mage, perhaps)? After two or three times of 
doing this manually, the mage could retreat automatically. Does the player drink a 
health potion whenever the player gets to one-third health, but only after the battle 
is over or after running away from immediate danger? The characters should per-
ceive this and parrot these simple behaviors.

Imagine how the player’s game experience is going to evolve and change as the 
game progresses, instead of micromanaging very tedious actions again and again 
during hours of gameplay. It might even be possible to show the player this learned 
behavior list and allow the player to edit it by deleting things, or changing the pri-
orities of these behaviors.

BETTER ENEMIES

Instead of just mobs (groups of monsters that turn toward the player, advance 
until in range, and attack), enemies should work together from multiple fronts, 
using plans and the environment to their advantage. They should set ambushes, 
make traps, find your weakness and try to exploit it, and do everything else that 
a human player would do. This is, of course, a universal problem. As stated ear-
lier, most RPG enemies are supposed to be relatively mindless, so the player can 
quickly kill enough of them to rise in rank at a rate that feels good. The problem 
is that this need creates very monotonous battles, one after another, with ex-
ceedingly stupid monsters. One popular answer to this is sub-bosses or mildly 
scripted and slightly more strenuous enemies that will make the player feel like 
the whole of creation is not filled with senseless drones, all attacking in the same 
manner as the last. Dungeon Siege (Figure 4.3) and the Diablo games used this 
technique relatively successfully, as areas of the map would always have a native 
type of creature, and some larger, stronger version of that creature type would 
be leading them. This unique creature would not be tied to any quest (although 
some were) but, rather provided a bit of variety to the constant stream of cannon 
fodder.

These sub-bosses could be developed as more than just tougher versions of 
regular monsters, to a level where they are truly small boss monsters that rule that 
part of the game world. Sub-bosses could be little generals, giving sophisticated 
orders to their armies, and doing things that a leader would do. By killing this crea-
ture, the player would weaken the attack of all the creatures the sub-boss led, until 
another leader is promoted.
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An aside about Dungeon Siege, however, is that the game did too many things 
automatically for the player. At times, the game seemed to be playing itself, with 
hardly any input from the user. If this automatic behavior could have been modi-
fied or tweaked (maybe even just a slider so that the player could set the level of 
automation he liked), the game might have felt better to a larger audience.

FULLY-REALIZED TOWNS

The towns that constitute the trade and information centers of these games are 
usually pretty dull, filled with people either standing around, or moving between 
two locations. These townsfolk usually say the same thing over and over and don’t 
appear to have a “life” at all. Obviously, this is not reality. By using simple rules, and 
a data-driven approach to town creation, even large villages could be populated 

FIGURE 4.3 Dungeon Siege screenshot. © 2002 Gas Powered Games Corp. All rights reserved. Gas Powered Games 
and Dungeon Siege are the exclusive trademarks of Gas Powered Games Corp. Reprinted with permission.
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with characters who have jobs, go to school, shop for groceries, or whatever it is 
that people do in your RPG world. If you employ a system like this, you would also 
have to make it easier for the human player to find people in the town (this is why 
most games have people standing in one place, so that the user knows where to find 
them). But this is a problem that can be solved (perhaps you have certain important 
NPCs that can be found in one of three different places, based on time of day). The 
overall effect of a living, breathing town would make the game world much more 
interesting and immersive.

Implementing this kind of town could be done a few different ways. You could 
use a need-based system (like The Sims), in which each NPC would have a number 
of needs and would autonomously determine how to fulfill those needs. As an ar-
bitrary example, let’s say that a certain part of town contains 100 NPCs. Each NPC 
has three needs: hunger, business, and family. Each need is satisfied when the NPC 
performs tasks that are suited to the particular need (eating to hunger; trading, 
training, talking, and so forth to business; and parenting, providing, and so on to 
family). The game could then use a “need pathfinding” system to give information 
on how to fulfill its needs to each NPC. The streets would be busy with people, 
going to and fro, buying bread, painting fences, or looking for their kids. The given 
action of each townsperson is defined by what need is the highest.

Another way to write this system would be to write a number of different 
scripts, each of which would define a chain of actions, and just assign these little 
scripts to each NPC in the map. The second method saves a lot of computation 
(because you don’t have to do any sort of planning, or need tracking), but isn’t as 
general (you could implement a hundred different places for a need-based NPC 
to satisfy his hunger and the AI would use them all, whereas you’d need to write a 
hundred different scripts in addition to creating the hundred different places in the 
scripted system).

SUMMARY

As a game genre, RPGs have been around a long time and people still love them; 
they show no sign of falling out of favor. They provide people with an escape from 
their ordinary lives by allowing users to take on another persona. The AI systems 
in this genre are quite complex, with many different AI needs across the entire 
game.

Enemies and Boss Enemies are necessary to give the player something to fight, 
and to provide story motivation.
NPCs and Shopkeepers provide the player with more personal interactions 
(other than combat), and give the world a living feel, complete with an economy.
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Party-member AI needs special attention, especially in real-time combat-based 
RPGs.
AI Scripting is a prime weapon to use in developing RPGs, but FSMs, and mes-
saging systems are also staples for this genre.
Some areas in which RPGs need improvement include grammar machines for 
better conversations, quest generators for more varied and long-lasting game-
play situations, better enemy and party member AI, and fully-realized towns to 
give the player a greater sense of immersion in the world.
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Adventure Games5

Adventure games and early personal computers were made for each other. 
The spectacularly limited abilities of early PCs required a truly creative 
game to give the player a rich experience. This was challenging given the 

fact that the game could only give the player feedback by spelling things out in black 
and white text on the screen, or showing a few blocky shapes in limited colors. What 
was needed was a great story and some way of interacting with that story, letting 
the player’s own imagination create the striking visuals. Plus, PCs gave the game 
industry something they’d never really had before: a full keyboard interface. In the 
late 1970s and early 1980s, adventure games were some of the first games to make 
entertainment use of the clunky PCs that were just starting to become popular.

The so-called text-based adventure games (the original being Collosal Cave 
Adventure, another being the famous Zork series) were our first taste of the genre. 
These games got their names because they had no graphics whatsoever—a text 
description of the room you were in and your imagination were all that you had to 
utilize. The player would type commands into a parser, and the game would either 
respond in kind with the result of the action the user had entered or inform the 
user that it didn’t know what he or she was talking about (if the user typed some-
thing in that wasn’t in the game’s command language). The player traveled from 
room to room collecting elements used to unlock puzzles, which would in turn 
allow the user access to other areas and further the story.

Eventually, people started attaching pictures to these puzzle-filled stories, includ-
ing games like the King’s Quest series, LucasArts’® seminal Day of the Tentacle and 
Monkey Island games, and the Leisure Suit Larry games. LucasArts also did away with 
full-text parsers, instead relying on a highly simplified keyword and iconic interface.

In This Chapter

 Common AI Elements
 Useful AI Techniques
 Areas That Need Improvement
 Summary
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In 1993, a small company called Cyan released a game called Myst. Myst took 
the adventure game and removed most of the story, leaving a very pretty world 
(it was one of the first CD-ROM games and used prerendered backdrops, which 
looked amazing compared with the simplistic real-time 3D worlds that people were 
used to seeing in other games at the time) and a large number of puzzles to solve. 
A player couldn’t die, but there was also no help to guide the player through the 
game; it was pure exploration mixed with trial and error. Although this sounds like 
a simple premise, Myst was the runaway hit of its time and is still widely credited 
as one of the best-selling computer games of all time. It spawned five sequels (the 
entire series has sold more than 12 million copies worldwide) and countless similar 
games tried to follow its formula.

Today, the classic adventure game has all but disappeared. Nobody seems to 
know why. The Myst games may have given the genre sales numbers (adventure 
games had never been very big sellers), but they also may have been the reason for 
the dearth of new titles. People started to associate the adventure game title with 
slow, casual gaming that was merely a collection of puzzles and forgot (or had 
never heard) about the well-written, rich storylines of the earlier titles. Players have 
instead headed for the instant gratification of the more action-oriented adventure-
game variants that have begun to take over the genre today.

This book will not concentrate on the classic style of adventure game, which 
has also been called interactive fiction. We mention them for historic note only, 
since the level of AI elements inherent in these games is usually so low that 
they don’t require even moderate levels of decision-making potential. They are 
usually coded with state-based characters; most have only static elements, and 
only certain games even have actors that can move from room to room. Also, 
because the human could solve the puzzles in many of these games in any order, 
the AI for the characters is something more akin to a database of flags then to 
an actual decision structure. That being said, creating a classic-style game would 
require a parsing system, which is very akin to the scripting engine described in 
Chapter 18.

Instead, this book will focus on the modern alternatives that have all but taken 
over the genre. These new takes on the adventure game (sometimes called action 
adventure) are usually variations of the first-person shooters/third-person shoot-
ers (FTPS) genre that focuses on noncombat-based gameplay situations: a mostly 
exploratory game (like Tomb Raider), or the more recent stealth games.

The stealth game involves a main hero who cannot shoot his way out of the 
primary situations in the game but instead must use elements of stealth and guile to 
slip past the guards (such as the recent Metal Gear games, or the Thief series). Stealth 
games have proven hugely popular because of the varying gameplay elements, and 
the heightened sense of tension that comes from having to come up with alterna-
tive means of traversing the level and solving problems other than “pull the trigger.” 
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This transcends the FTPS roots of the games, bringing players back to the feeling of 
constant puzzle solving and a great storyline, but in a real-time game environment, 
so these are now considered adventure titles.

Another variation, which does contain some combat elements, is called the 
survival horror game. Titles such as Resident Evil still have a lot of combat, mostly 
projectile attacks, but these are mostly three-dimensional exploration titles with 
lots of puzzle-elements to drive the player around the map.

COMMON AI ELEMENTS

Adventure games are in somewhat the same realm as role-playing games. They also 
have enemies, non-player characters, and cooperative elements. But the modern 
adventure game also tends to sport advanced perception systems and specialized 
cameras that require AI programming effort.

ENEMY AI

Enemies in stealth games tend to be implemented with scripted movement 
sequences or very simple rules. The player needs to sneak by guards and other 
enemies and has to be able to identify patterns of movement to determine ways 
of exploiting these patterns. Once alerted to the player’s presence, however, 
the enemy’s behavior can get a whole lot smarter, and enemies can become 
quite involved. Guard characters usually employ multiple stages of attention, 
from “Did I hear something?” to a guard pretending he didn’t hear the player’s 
character as the guard slowly patrols in the player’s direction while taking the 
safety off his gun. Guards also perform basic behaviors like calling for backup, 
hunting the player down, and so forth. Remember that as an AI designer, you 
don’t want the enemies to be too diligent, or a player’s character would wake 
up the whole complex by setting off one guard, which would be frustrating to 
the human player.

For other types of adventure games, pretty much anything goes. Some games 
use somewhat mindless hunter-style enemies, as in the simpler FTPS games. Other 
games have smart enemies that are constrained to zones (as in the Thief games), 
so a player might find himself being tracked down by an alerted guard, but the 
player won’t set off the whole world if he can escape his territory within a reason-
able time.

The survivor horror titles use very simple enemy AI, usually because the mon-
sters involved are zombies, or something similar. The combat interface is mostly 
secondary to the exploration and puzzle interaction, so the enemies are slow, and 
the action isn’t as twitch-oriented (reliant on fast reflexes).
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NONPLAYER CHARACTERS (NPCS)

Just as in RPGs, NPC characters are noncombatant inhabitants of the game world. 
They are placed there to give the player information, or to bring the world to life for 
visual support. The AI used for these characters is quite varied, from both an ability 
level and an implementation level, and can be anything from a static dialogue and 
actions to a much more complex system involving paths, goals, and a conversation 
engine with which to engage the player. This is all determined by the design goals 
of your game.

COOPERATIVE ELEMENTS

Cooperative characters go beyond the realm of NPCs. These characters assist the 
player directly, by showing the player new items, locations, or quests. In the case 
of action-oriented adventure games, cooperative characters will sometimes assist 
by helping players fight against the enemy creatures in the game. They can even 
be secondary main characters. Other games involve the player constantly switch-
ing primary control back and forth, in episodic or mission-based chunks of time, 
between different game characters. Switching control like this is a great way to de-
crease the perceived linearity of your game and to break the action into manageable 
chunks for the player.

The state of the guards in a stealth-based game is the game, so to speak. The 
player is essentially balancing his exploration and discovery goals with trying to 
sneak around unseen and unheard, so as to slip past all the guards without “setting 
off the system” (meaning, causing the guards to become alerted to his presence), 
and bringing ruin upon himself. In order to be challenging at all, many of these 
games use smart chains of guards. This refers to guards that talk to one another, 
overlap each other’s territory, and generally share in patrolling an area. Connected 
guards lead to what can be thought of as a tightly coupled system. Each guard is in 
many ways coupled to other guards. The player cannot just get past one guard at a 
time, but must contend with systems of guards that are working together. Because 
of this touchy nature of stealth games, the programmer must make sure that an AI 
helper in that specific genre isn’t going to do anything that would set off the guards, 
or else we’re back to player frustration.

PERCEPTION SYSTEMS

For stealth games, most of the complexity of the AI model is contained within 
the perception system. Different techniques have been developed for each of the 
senses—to model each sense such that it translates well to the videogame world.

Thief, from LookingGlass™ Studios, took the stealth game to an entirely  
new level, with the main thrust of the gameplay being constant sneaking, 
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hiding in shadows, pickpocketing specific characters when they’re not looking, 
and so on. A good breakdown of the perception system of Thief was given by 
one of the programmers who worked on the game at the 2002 Game Develop-
er’s Conference; the paper can be found online at the following site: http://www.
gamasutra.com/gdc2003/features/20030307/ leonard_01.htm under the heading 
Building an AI Sensory System. This is highly suggested reading if you plan to 
do a system of this complexity. Also, see the CD-ROM for additional links and 
materials.

CAMERA

Most adventure games are three-dimensional (a notable exception is the two-
dimensional Commandos series) and third person, so again the problems asso-
ciated with bad camera placement are inherent. However, because of the much 
slower pace of these types of games, this is usually an easier problem to fix, and 
cinematic-style camera cuts with precise camera placement are usually the norm. 
Certain sections of the game may require a free-form camera system, and thus 
need programmer attention. Stealth games also frequently require an around the 
corner camera angle for hiding behind cover and watching a guard walk by. This 
can be an algorithmic camera that comes up when the player crouches next to a 
corner, or specific camera parameters can be set up in the level editor for particu-
lar cover positions.

USEFUL AI TECHNIQUES

The various AI elements used in adventure games once again give rise to the need 
for a varied AI toolset in order to solve all the required logic problems. The tech-
niques that work well in adventure games include: finite-state machines, scripting 
and messaging systems, and fuzzy logic systems.

FINITE-STATE MACHINES (FSMS)

Many elements of stealth and exploration adventure games lend themselves well to 
FSM-based AI systems. If the game is digitally triggered, such as guards having an 
alerted state of yes or no, or if the game has an enumeration of states (like neutral, 
annoyed, alert, mad, berserk), then state machines provide the best bang for the 
buck. Because of the nature of state machines, you can make parts of your AI fairly 
simple, with other parts having many more states and thus much more complexity. 
For games with limited AI complexity and a large number of very straightforward 
AI tasks, you might want to stay with a state-based system.
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SCRIPTING SYSTEMS

Some adventure games use very cinematic camera placement, lots of in-game dia-
logue, and sequences that show the results of solving a particular puzzle somewhere 
else in the level. Scripting systems allow the programmers (and designers) to easily 
put extra tailoring into specific parts of the game, and this technique is readily used 
for the linear story that these games employ.

The combination of triggered events setting off scripted sequences, and having 
the trustworthy game mechanic of having to “unlock” later parts of the game by ac-
complishing tasks (which is essentially changing certain game-state flags) gives the 
best of both worlds; it allows game designers to have many places within a game in 
which to get specific things to happen, while still giving the player some feeling of 
being able to roam around uncontrolled.

MESSAGING SYSTEMS

The event-driven nature of typical adventure-game puzzles (push lever A, door 
goes up; move three stones into certain pattern, hidden chamber opens; and so 
forth) lends well to the use of messaging systems. Passing messages means that the 
disparate elements in the game don’t require direct code access to each other to 
communicate. The advanced perception systems of stealth games can use messages 
for determining perceived sounds and the like, as well as providing enemy guards 
an easy method for alerting others or calling for help.

FUZZY LOGIC

The perception systems used by stealth games can be quite complex. In the face 
of numerous, sometimes conflicting, sensory inputs, AI opponents need to in-
corporate fuzzy decision making to make full use of the rich information. Many 
of the challenges in stealth titles involve getting past guardians, and using a fuzzy-
state-based system can help make guard states feel forgiving to the player (the 
player can sneak by if the player doesn’t push the boundaries too much—like 
being able to push on a pinball table: some movement is legal, but if you overdo 
it, you tilt).

Frequently, part of the gameplay is having the guards deal with situations such 
as player-initiated distractions, diversions, ambushes, and other kinds of slight-
ing. These sorts of interactions are often scripted. Another implementation could 
use fuzzy logic to allow the guards a fuller and more flexible model of the world, 
in order to deal with the kind of imperfect information that a diversion might 
provide. The guard’s notion of his territory might be fairly clear—he hasn’t seen 
or heard anything suspicious in a while. Then, the player throws a rock into a dark 
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corner. The guard hears it, his suspicion level goes up a bit, he adds a suspicion 
target to his internal list, and he focuses most of his attention on it because it’s his 
only area of concern right now. The player tosses another rock; the guard reacts by 
getting more suspicious, adds another target to his list of things to investigate. He 
yells, “Who’s there?” and cocks his weapon, moving slowly toward the corner. You 
get the picture. The ebb and flow of suspicion, directed toward however many tar-
gets, is determined by the guard’s very unclear, sparse picture of the world, which is 
determined by his perceptions.

Note however, that this kind of system is typically much harder for the player 
to figure out. Scripted systems are usually quite telegraphed: the smart player can 
watch the guard for a bit, and notice that every two minutes he gets up and goes to 
the balcony to look outside, giving the player a window of time to make his or her 
move. A fuzzy system would instead be blending many different inputs into a final 
behavior; the player might not pick up on all the elements that are giving the guard 
his final behavior, and as such have difficulty determining what he or she needs to 
do in order to affect changes in the guard’s actions.

In practice, most of this fuzziness would be better used within the perception 
system itself, rather than in the decision structure. An FSM with fuzzy transition 
logic is much easier to program then a full fuzzy logic system is.

Examples

After the classic adventure games began to wane in popularity, crossover genres 
started to appear. Tomb Raider was the early hit that started us off on the crossover 
from shooter to adventure game. Other earlier games included Alone in the Dark, 
and Shadow Man, which added horror elements, and eventually gave us Resident 
Evil. Resident Evil in turn spawned a slew of more fully horror-based exploration 
titles like Silent Hill, American McGee’s Alice in Wonderland, and Nightmare Crea-
tures. These action-adventure games still had lots of combat involved, because the 
AI systems were still borrowing heavily from their FTPS brothers. The designers 
just increased the exploration and item-gathering challenges to round out the over-
all experience.

As the AI engines got better, and perception systems became complex and had 
gameplay depth, the stealth games came out, with Thief, Deus Ex, and Metal Gear 
Solid initially leading the pack. These games made it fun to not kill your enemies 
but, rather, to never even let them see you. Commandos was an overhead two-
dimensional stealth game: the gamer’s job was to accomplish missions by infil-
trating increasingly complex enemy bases and sneaking from spot to spot unseen. 
The game was spectacularly hard, but very well done. The line of sight of all the 
guards was actually shown as moving cones on the ground, so players could much 
more intimately time their movements to ensure their secrecy. This is a great 
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example of giving the human player more information in order to deepen the game 
mechanic.

Another notable hybrid adventure game was Blade Runner, which touted real 
multiple endings and storylines, and a somewhat alive world. The NPCs in the 
game were engaged in semi-autonomous behavior, moving through the city to get 
to stores, jobs, and so forth. The overall effect was mostly cosmetic, though, as 
interactions with the NPCs were still very state- and/or event-based.

Although a new classic-style adventure game is rare, it is not fully extinct. Some 
great examples of these games in recent years include Full Throttle, Grim Fandango,
and Circle of Blood. These games have expanded the old formula, with better (and 
more involved) puzzles, great graphics, and much more varied gameplay elements 
(Full Throttle even included a motorcycle combat stage).

The interaction system that these games use has gone up and down in com-
plexity over the years. With the initial text adventures, the player could type pretty 
much anything, and the game’s parser would either recognize the command or 
say otherwise. Players would eventually learn the commands that the parser knew. 
Later, with LucasArts’ SCUMM system (which stands for Script Creation Utility 
for Maniac Mansion, a great example of a tool being built for a specific game 
becoming the cornerstone of an entire suite of games, as the SCUMM engine 
was eventually used in no less than eighteen games. SCUMM still has a rabid fan 
base online, with new games created by fans still coming out. Visit http://www.
scummvm.org/ for more details), the possible commands were given to the player 
as buttons on the graphical interface, and the player could apply these commands 
to various elements on screen. Full Throttle went even more abstract, with icons 
depicting the player’s eye, mouth, or hand being used as context-sensitive com-
mands to apply to game objects. So, if a player used his mouth with an NPC, the 
player would talk, whereas if the player used his mouth with a beer, the player 
would drink it.

The simplification of possible inputs from the human to facilitate ease of 
interfacing with the game led the NPCs to become much more simplistic as 
well. The level of communication with the player is inherently limited, simply 
because the player no longer has any means by which to respond intelligently. 
If an NPC asks a player for the time, does the player click on the character with 
the mouth icon to talk, or with the hand icon to check the character’s watch? If 
the player chooses the wrong response, and the NPC asks what’s wrong, then 
what? This limited interface may streamline the game somewhat, but it defi-
nitely takes away from the feeling of living in an organic, much more interactive 
environment like Zork. Sure, most of the nonsense things you typed in Zork 
were ignored by the response “I don’t know what that means” but you were still 
allowed to type them. In the games with the simpler interface, you were left to 
just shout at the screen.
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AREAS THAT NEED IMPROVEMENT

As with any game genre, there are always areas within the family of released games 
for improvements in the AI realm. In adventure games, these include: additional 
types of steal goals, returning to traditional adventure game roots, better NPC com-
munication, and user interface designs.

ADDITIONAL TYPES OF STEALTH GOALS

In addition to the classic stealth mechanic of patterned movement that has to be 
circumvented, Deus Ex gave players many different ways to accomplish key story 
goals. For example, to get through a particular door, the player could shoot the 
guard and take his key, and then fight the other four guards that would come when 
they heard the shot. The player could also cause some kind of diversion, and then 
use a hacking skill to open the unguarded lock. Or, the player could climb through 
a ventilation shaft and find a different way in. The player could even find a guard 
uniform and use it to walk right by the guard. By doing this, the game designers 
made each encounter and area of the world into a puzzle. The player had to really 
experiment with the situation to uncover the hidden gameplay gems. The player 
didn’t have to sneak down one particular hallway and open one particular door. 
This forced Deus Ex’s guard AI to be more open ended, instead of being heavily 
scripted, because there were potentially so many ways to get around them.

A RETURN TO TRADITIONAL ADVENTURE ROOTS

Traditional interactive fiction provided computer gamers with some of the most 
popular games released in the 80s and 90s. Many of the classic LucasArts and Sierra 
games have loyal followings. Today’s exploratory and more action-oriented games 
must meld with classic roots of the genre to bring adventure games alive again. 
In many ways, the genre has become too action oriented. There is still a place for 
complex logic and exploration puzzles, as well as deep storylines with interesting 
NPC characters that have full personalities. Today’s “run and gun” adventure games 
sometimes suffer from not having the time necessary to build up the intricate 
stories of yesterday’s game titles.

BETTER NPC COMMUNICATION

The inherent noncombat nature of modern stealth adventure games lends itself well 
to having additional story-driven elements included as part of the experience. By 
giving NPCs in adventure games real grammar systems, or even allowing branching 
storylines within the full umbrella of the greater game story, the world in which the 
adventure is occurring could become more real, and much more personal to the 
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player. This, of course, would require an immense amount of additional work in 
story design to make up for branching and consistency problems.

USER INTERFACE

When we lost the full-text parsers of the original text adventures, we also lost the 
ability to have rich interactions with in-game characters. After going to a graphical 
interface, the complexity was gradually degraded until eventually some adventure 
games had as few as three or four basic commands that could be used with elements 
in the world. Today, with the more action-oriented variants, little interaction occurs 
other than a player positioning his or her character well and using quiet weapons 
or tools when necessary.

Imagine Sam and Max with a full-voice interface, or some other kind of general 
interface where the player could get a much richer kind of connection to the game 
if he or she spent the time to explore the capabilities of the parser. Eventually, a 
new interface could help adventure games regain some of their traditional depth, 
without having to resort to typing long sentences into a computer.

SUMMARY

Adventure games are continuing to evolve from their initial roots, which was a 
string of puzzles wrapped into a story, and were definitely not played in real time. 
The modern stealth games and the more action-oriented exploration games are 
modern variants of the classic adventure formula that will continue to give game 
players challenges and new worlds to explore.

The first adventure games were text-based and required the user to type com-
mands to a parser. These eventually gave way to the graphical adventure game, 
which added a graphical user interface to save the user from typing.
Modern adventure games are variants on the FTPS genre, and emphasize non-
combat situations such as exploration and stealth.
Enemy AI in stealth games can be somewhat pattern-based because the object 
of the game is to note patterns and circumvent confrontations. In the more 
exploratory combat-style games, enemy AI can be much more varied.
Most adventure games have a number of NPCs, as well as cooperative charac-
ters, that give the player information or new gear. The AI level of these agents 
varies greatly.
Perception systems are paramount for stealth games because overcoming the 
guards’ perceptions is the goal of the game.
Camera AI is usually necessary for these adventure games because they usually 
are done in 3D.
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FSMs, scripting, fuzzy logic, and messaging AI systems are commonly used 
within the adventure genre.
New stealth challenges (possibly by infusing the current game schemes with 
more intelligent enemies) is an area of improvement for the adventure genre.
A return to the classic adventure game roots is needed to help revive the lineage 
of the genre.
Increased NPC communication and story branching might give adventure 
games additional personal connections to the player.
An advanced user interface could help give back the richer interaction level of 
more traditional adventures to modern games.
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Real-Time Strategy (RTS) 
Games

6

The AI systems used in RTS games are some of the most computationally 
 intensive of all videogames. They usually involve large armies that must 
 coordinate their behavior and technology trees that must be navigated to 

perform goals. They must also share CPU time with the rest of the game technology, 
like collision detection and drawing routines, which also contend with numerous units.

Although RTS games have been around for years (the 1990 game Herzog Zwei
for the Sega® Genesis™ console is usually considered the first), AI performance 
has been nowhere near the level of good human players. The AI in RTS games has 
to fight against many factors: huge numbers of characters to give orders to, very 
 incomplete information about the game world (the fog of war is the most obvious 
example), heavy emphasis on micro actions (meaning that actions have limited 
effect on the overall game), and having to run in real time. By contrast, consider the types 
of games in which AI has achieved expert (or at least very good) level: turn-based 
games, with perfect information, in which most moves have global consequences 
and in which limited human-planning abilities can be outsmarted by mere brute 
force enumeration. This type of game includes chess and the like. Thus, almost 
every aspect of RTS games is considered non-optimal for AI performance. The 
burden lies on game designers to overcome these problems in a believable fashion.

COMMON AI ELEMENTS

RTS games are some of the largest consumers of AI programmer time. There are 
many differring elements within RTSs that require AI logic, which include: individual 
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units, economic units, high-level strategic AI, commanders and other medium-level 
strategic units, town building, indigenous life, pathfinding, and tactical/strategic 
 support systems.

INDIVIDUAL UNITS

The real player in RTS games is the “overseeing general” of the “army” (or whatever 
name you wish to give to the forces; military names are being used because the 
vast majority of these games involve military based setups), either the CPU or the 
human user. The goals each player is fighting for can involve the entirety of their 
society. However, this doesn’t mean that individual units are worry-free. Individual 
behaviors in RTS games are usually considered secondary, by temporarily over-
riding the primary order given by a user. Most of this local intelligence falls into 
the categories of pathfinding, obstacle avoidance, concentrating attacks, and falling 
back when the player cannot win.

The question of how much intelligence to put at this secondary tactical level 
is tricky. The amount of micromanagement your RTS is trying to achieve should 
determine this. The more individual intelligence a unit has, the less often a player 
has to check every unit in his or her army. However, for games with low-level 
tactical AI, if the CPU opponent micromanages its individual-unit AI too much 
(giving it the appearance of better individual AI), it will be seen as cheap AI trick 
because it isn’t possible for the human to replicate the computer’s efforts as fast 
or easily. One simple example of this is the archer behavior in the Age of Empires
games. The computer will send in many weak projectile units, which then shoot, 
retreat, shoot, retreat. This very simple behavioral micromanagement makes these 
weak units become much more powerful because they will string out and separate 
guards in all directions, a behavior that would be very difficult (or at least tedious) 
for a human to do. Reliance on the power of this simple individual behavior has 
also made the Age of Empires games not attempt more common strategic tech-
niques, such as setting up a wall of melee fighters and putting the archers (or other 
long-range attackers) behind them for support, which is something that almost all 
human players do.

ECONOMIC INDIVIDUAL UNITS

Sometimes called peons (the “builders” and “gatherers”), economic individual 
units are those that usually do not fight but are, instead, employed as the econ-
omy on which the player gains resources for creating his or her armies. Much 
like other individual units, the level of AI has to be carefully tuned to the level 
of micromanagement the game requires. Age of Empires recently addressed com-
mon dislikes about this area of the game’s AI by making peons automatically 
start gathering resources after building a resource-associated building, and also 
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making food gathering easier by the ability to “queue up” farms instead of hav-
ing to check back and replant them manually. Other common peon management 
techniques include:

Order queues. In most RTS games, the interface allows a player to tell a unit to 
perform multiple actions, one after another. This is a very powerful addition to 
the genre because it allows smart players to plan the behavior of their economic 
units ahead, so the player can then continue play, assured that their economic 
units will be busy during more battle-oriented points of the game. However, 
the interface still requires the player to set it up, so the AI of each individual 
unit doesn’t have to be bloated with special-case code designed to make the 
peons appear smart.
Auto-retreating. Peon units can rarely fight (or aren’t skilled at fighting), so 
most RTS games have some sort of autoretreat AI for these units. Usually it’s 
just leaving the attack range of the enemy, however. This aspect could definitely 
be improved by getting to a building for protection, or running to the nearest 
military unit (while shouting “Help!”). Also, noticing when the danger is over 
and going back to work would be another welcome addition.

HIGH-LEVEL STRATEGIC AI

High-level strategic AI might be thought of like the general of a real army. This 
is the layer that most closely maps to trying to mimic the human player. Per-
forming commands and plans from this level of direction might involve numer-
ous units, or require whole sections of the economy to shift. High-level plans 
usually include actions at many different levels of AI to complete. The percep-
tions at this level are typically built on information from the lower levels to 
determine what the enemies are doing. Given all this feedback, the high-level AI 
makes plans to deal with threats exposed in the perception data. In this way, the 
strategic level affects everything from the individual soldier (as part of a larger 
group of soldiers who are told by a commander level to respond by moving) to 
the entire economic system for the AI player (when shifting the allocation of 
units that are retrieving resources to bias a particular type that will support the 
high-level plans).

Frequently, the high-level AI is multifaceted, in that it is running resource allo-
cation between several different aspects of the game (defense versus offense versus 
research versus economy), and thus represents most of a given RTS civilization’s 
personality. Race #1 might value offense and have a strong economy. Race #2 might 
be cautious and studious. Coupled with specialty units for a given AI type, and 
some tunable parameters, the system designer can differentiate different types of 
AI opponent races easily, just from this level of the AI.
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COMMANDERS AND MEDIUM-LEVEL STRATEGIC ELEMENTS

Some games directly use “commanders” to bolster groups of units (such as Total 
Annihilation, which used its commander unit as a primary builder in addition to 
a super unit). In other games, commanders are used internally by the AI system to 
group units into fighting elements and control them in a larger war sense. This can 
be considered a medium-level AI, because it requires much more than simple indi-
vidual actions (such as shoot or go somewhere) and is not a fully high-level strategy 
(line taking command of a particular resource, or defending a base).

A simple example is a commander choosing a new destination for a group of 
units (medium level), but the individual units decide how to stay in formation and 
use the terrain features to get there (low level). By dividing the labor in this way, it 
makes the system easier to write. You can write higher-level systems to cover large 
troop movements, and lower-level code to get over and around the map. The part 
of the system that’s trying to get troops into position doesn’t have to worry about 
keeping the long-range units behind the short, or figuring out the quickest way 
through a maze-like canyon.

A more complex example: the general decides that attacking player #3 is the 
best course of action (high level). The commander (medium level) would then di-
rect twenty infantry to attack from the west, followed by a group of ranged weapon 
units, and some tanks in from the south to take out towers that could harm the 
infantry along the way. As always, the low-level pathfinding and avoidance AI 
would get all those units around the map in the best way possible given the lay of 
the land.

This middle level of strategic RTS game AI is usually sorely lacking, by and 
large because it is the most complex to create and tune. High-level goals can be 
somewhat direct, almost simple. Think of the high-level goal “Take command of 
Hill #3.” Stripped of all the details necessary to actually accomplish the goal, the 
entire plan is only five words. Low-level goals are also straightforward, involving very 
atomic behaviors and local, small-scale perceptions. In contrast, the commander 
level requires large collections of feedback information from many sources. It has 
to combine all these perceptions into short- and medium-range plans that coordi-
nate group movements, resource allocation, and in some games, form secondary 
goals involving diplomacy and trade.

TOWN BUILDING

Most RTS games involve collecting resources in order to build a town (base, 
settlement, colony, etc.) that will then provide the player with the tools and 
technology to create larger and better-equipped armies. Laying out the initial 
headquarters, as well as planning the advanced AI bases, is a difficult problem in 
its own right. A player will want to place structures somewhat close together, for 
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ease of protection (by surrounding walls, or force fields, etc.). But the player will 
also want to spread them out a bit, to get better visibility and guard against area-
effect weapons. Finding this balance, while keeping a fluid economy running, can 
be quite challenging. Many games use hard rules for town building (which are 
broken up into difficulty levels) that start out fine, but may or may not be able 
to cope with changing world conditions, and as such can look silly by the end of 
the game.

The decisions about where to place key structures need to account for many 
different elements. Economic structures need to be placed next to the resource 
they are going to store; military structures need clear exit lanes and proximity to 
the front line (if possible). Guard structures need to maximize visibility effects 
and be able to back each other up and watch over the largest possible number of 
other units.

INDIGENOUS LIFE

Most RTS games have some kind of native inhabitants within their game worlds. 
Games like Warcraft have sheep walking around in them, and Age of Empires actu-
ally uses the indigenous fauna as a resource that can be gathered. Other games treat 
the locals as a hazard, or even a source of powerups. AI for these entities is usually 
minimal, but some games give them a certain degree of intelligence.

Depending on the nature of these elements within your game (be it resource 
or hazard), you might need to balance the distribution of these elements, other-
wise your players may not have fun. Age of Empires games using random maps 
can sometimes be thrown off by having a wolf too close to a player’s initial town, 
and this random element can diminish the starting capabilities of that player 
tremendously if the wolf inadvertently kills one or more of that player’s initial 
peons.

PATHFINDING

Pathfinding is one of the biggest CPU concerns for RTS games. In the worst-case 
scenario, a huge number of units could be simultaneously ordered to go to wildly 
different faraway locations across the map. The pathfinding system must correctly 
find quality paths for everyone, load balance the CPU cycles necessary to find 
these paths, and use other optimizations to make pathfinding feasible for so many 
separate entities. Other types of movement elements such as formations, flocking 
techniques, and follow-the-leader-type systems will vastly improve the speed of 
per-unit pathfinding.

Other pathfinding concerns include handling friendly units blocking paths, 
dealing with special case choke points like bridges, and dynamic path elements 
such as user-constructed walls or level debris.



110 AI Game Engine Programming

TACTICAL AND STRATEGIC SUPPORT SYSTEMS

Many RTS games are increasingly using extended AI techniques to make the 
actions taken by their games smarter. These advanced support systems include the 
following:

Terrain analysis. By dividing the terrain into manageable chunks and then 
breaking down various characteristics of each piece, the AI can glean huge 
amounts of data that can be useful for strategic decision making. Terrain 
bottlenecks and odd landscape features can be identified and recorded for the 
pathfinding system, so that the pathfinder can more easily and quickly develop 
intelligent paths. The system can keep track of enemy base locations and re-
sources, and also find holes in the player’s (or other player’s) defenses. Most of 
this can be done by using an influence map, which is really just a fancy name 
for grid-based map attributes. The AI divides the game world up into an even 
grid, and then associates each location with data specifically describing certain 
features of each grid square. Terrain analysis data can be created offline during 
level creation, but the system becomes much more powerful when the game’s 
AI dynamically updates it during the course of the game, as scouting informa-
tion comes in or allies offer up counsel.
 Some RTS games have a special multiplayer mode in which a certain re-
source is located all in one spot on the map, leading to a vicious fight over this 
precious supply point by all the players. Human players can see quite easily 
that control of the scarce resource is the only way to win in this style of map. 
AI opponents, unless specifically analyzing the terrain for features like this, 
are usually ineffective at seeing the long-term problem with this type of map. 
Typical RTS AI will only head for far-off resources when local ones are depleted 
and will usually be overrun by human players who have already taken control. 
The same sort of situation can arise in game maps that have strong movement 
choke points, like a river crossing or a bridge across a deep canyon. A human 
player can seek out terrain elements like these and set up strong defenses on 
one side, and then wait for the computer opponents to waste a lot of resources 
trying to get through.
Opponent modeling. In games with imperfect information, like RTS games (or 
poker, for another example), a player cannot use standard AI opponent assump-
tions. AI systems for games like chess routinely are built around the premise 
“My opponent will make roughly the same decisions as I do, because we both 
use the same optimal search algorithms for the state space of this game.” In RTS 
games, the AI might not know the abilities of the other players (since it can only 
guess by observation as to what units and technology players have researched, 
as well as where players have located all their forces), and thus has no basis on 
which to make predictions about the other players.
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 By observing and noting both physical abilities of the opponents (like see-
ing a Dread Mage, or hearing a dragon scream), as well as opponent behaviors 
(the opponent has always attacked the base from the right, or has always built 
a tower near the opponent’s own gold mines), the AI can build a model of its 
opponents. Keeping this model as up-to-date as possible is very important, so 
the AI can use the model to make much more appropriate decisions in dealing 
with its opponents.
 By noting which players have specialty units in their army, the AI can build a 
fairly accurate tech tree for its opponents and know what other technologies or 
units each opponent has access to, and can plan for future attacks that might use 
these. By recording player behavioral tendencies (which types of units the player 
favors, the time between player attacks, the usual kinds of defenses the player 
uses, etc.), the AI can better assign defenses and build the correct units to answer 
upcoming challenges from its opponents. In essence, this is what human military 
generals do, as well as the meaning of the age-old saying, “know your enemy.”
Resource management. Most RTS games (Myth was a notable exception) have 
an economy that must be tended to as much, if not more, than the battles. 
Raw resource requirements such as gold or wood and the need for secondary 
resources like combat units and research structures must be balanced during 
the course of the game. Most games’ AI handle this complex task by starting the 
AI off with a build order (a string of things to build, one after another, that will 
jump-start a thriving economy), which is a technique that even human players 
use. This leads to very predictable AI behavior, however, because experienced 
human players are quick to discover this build order and, from it, learn the ap-
proximate times for attacks and when AI defenses will come online so they can 
exploit defensive holes.
 A better arrangement might involve resource allocation systems that recog-
nize supply deficiencies and rectify them by using a planner to organize goals 
necessary to fill these needs. By using a need-based system, AI opponents could 
be implemented that bias heavily toward certain units or resources and would 
rely much more on map type and personality, rather than blindly following 
a build order and then reacting to the outcome of the initial first large battle. 
Even humans who use a build order are quick to adapt the build order to spe-
cific things that they see (either in the form of map resources or enemy activ-
ity, through their scouts) so that they are not blind-sided. An early RTS game, 
Enemy Nations, used this exact approach with excellent results.
Reconnaissance. Most of these games have some form of “fog of war,” which 
is a mechanism for visually representing two things: unexplored terrain and 
line of sight. To combat these perception deficiencies, players must use units to 
explore the map, to uncover map features, such as borders or resources, and to 
find the enemy and its forces. This is a difficult assignment.
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 Most AI opponents in RTS games do a good job of exploring the map, simply 
because they can micromanage a scout unit much more effectively than most 
humans, but the concept of keeping tabs on enemy movements and encamp-
ments through additional recon is uncommon. Humans have to use continual 
scans to see what kinds of threats the AI (or other human players) are building 
up against them, as well as noticing any changes to the area that have occurred 
since the last time a scout went through (like the creation of guarding structures, 
or the depletion of resources by other players).
 One way that some games have tackled this problem is to have the AI-
controlled player use a scattered methodology when building its structures. 
The AI player doesn’t have to remember where anything is, so it can create very 
random and scattered towns that give the AI system the greatest amount of line 
of sight possible. Then, advancing armies from other players are sure to enter 
the line of sight of one of these forward buildings, thus alerting the system to 
invasion early on. This does lead to somewhat greater building loss by the AI, 
though, because the human will make sure that these forward buildings are 
taken down as they are passed. A better system would be the more complex wall 
building and guard-post placement that most humans use.
Diplomacy systems. One of the underused places for AI in today’s RTS games is 
in the area of diplomacy, which is defined as different players working together 
toward a victory. Age of Empires takes AI diplomacy to mean “we won’t kill each 
other,” and that players also share map visibility information. It doesn’t go into 
such areas as supporting an ally’s troop movements, specialization (“my opponent 
will develop many units; I’ll mine gold and build towers”), or even simply timing 
attacks to coincide more readily with allies. Human players manage all these diplo-
matic tasks very well, and AI systems should develop these tasks further. Of course, 
this involves additional AI work and additional user interface work because the 
human would need ways to communicate to the AI ally that he’s planning an 
attack from the south in sixteen minutes, or that he needs help in sector six.

USEFUL AI TECHNIQUES

All those specialized game elements requiring AI call for one of the largest required 
tool sets of any AI game engine. Some of the techniques that work well with RTS 
games include messaging, finite-state machines, fuzzy-state machines, hierarchical 
AI, planning, scripting, and data-driven systems.

MESSAGING

With such a huge number of potential units in the game, polling for game state 
changes or enemy events would be computationally wasteful. Instead, messaging 
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systems can be used for broadcasting events and game flags to a large number of 
registered units quickly and easily.

FINITE-STATE MACHINES (FSMS)

Never to be left out, FSMs can always be useful somewhere within the numerous AI 
tasks that are part of the RTS world. Individual-unit AI (most likely implemented 
as stack-based FSMs, so that they can be temporarily interrupted, then restored 
easily), systems within the strategy level (a city builder AI could be constructed as 
an FSM making use of an offline-created build-order script that has been proven 
to work), and many other game elements can take advantage of the loyal FSM. 
Small-scale modules are a great fit for FSMs, because they are easy to create and 
their primary disadvantage, that of not scaling well to large problems, isn’t an issue 
if used in this way.

FUZZY-STATE MACHINES (FUSM)

RTS games’ higher-level strategic requirements are some of the few game genre 
problems that don’t lend themselves well to regular state-machine-based solutions. 
The preponderance of imperfect information about the opponents and the world, 
combined with the number of micro decisions that need to be made, make for a 
game in which the AI opponent usually has multiple directions to play toward, all 
of which are winning decisions.

A better system is fuzzy-state machines (FuSM), which provide the structure 
and reproducibility of state machines, while accounting for the somewhat “flying 
blind” nature of RTS decision making. The AI might not know how many tanks the 
enemy has, or how much gold the opponent has in reserve to purchase additional 
reserve troops, but must still try to thrust forward toward victory. FuSMs allow this 
type of gameplay decision, without using the more straightforward method of just 
cheating and giving the AI knowledge of its opponent’s positions and army makeup 
(which it then uses to make “intelligent” decisions based on some randomness and 
the difficulty level of the game).

The parallel nature of FuSMs allows an AI system to determine, separately, how 
much effort to spend on each facet of command that might require attention at any 
given time. Thus, the complete blend of behavior that the AI is exhibiting is going 
to be much more varied and contextual, and will not rely on omniscient cheating 
to help the AI.

HIERARCHICAL AI

RTS games have multiple, sometimes conflicting AI requirements. A computer 
 opponent needs to move an army from point A to point B, but along the way, a small 
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ambush happens and its units are being attacked. Do the endangered units break 
off and return fire, does the entire army stop and make sure the problem is quelled, 
or do all the troops ignore the threat and march on? The answer is determined by 
the amount of individual versus commander (or strategic versus tactical) AI, but 
also the interface between these differing layers and how one can influence the 
other. Hierarchical systems provide a means for RTS games to form high-level goals 
but also appear smart at a unit level, without choking the primary AI system for 
resources.

PLANNING

Goal planning is a large part of the RTS AI world. To accomplish higher-level tasks 
(for example, to guard the left side of a player’s camp against air attack) any prereq-
uisite tasks must also be added to the AI’s current plan. Thus, for the just-mentioned 
task, the AI would have to also (1) gain any foundation technologies in the tech 
tree (for example, a player might need to make guard towers before he can build 
antiaircraft towers, or the game could require a communications building so that a 
player’s weapons could use radar to detect incoming planes), and (2) determine the 
necessary resource units to spend (which, if deficient, might spawn a secondary goal 
to gain more of the needed resources).

Tech-tree navigation is only one area of planning, however. Specific offensive 
or defensive goals require planning to appear intelligent as well. It has even been 
researched that to look truly intelligent, even simple tasks like running away from 
a threat need some level of forward thinking (beyond just pathfinding). So large 
troop attacks could use planning to coordinate smaller groups to work in concert. 
A diplomatic planner could determine how to “save up” the resources that an ally 
has requested in order to trade for a much-needed technology.

SCRIPTING

Although RTS games usually don’t use scripting to the same extent as other genres, 
it is still used to extend the story elements of certain games, or to more rigidly de-
scribe the behavior of certain units under certain conditions. Some titles seem to 
be concentrating on fewer units and more scripted and rich interactions between 
these units (such as Warcraft III ). This emphasis on so-called superunits has led to 
scripting being used more heavily in this style of game, in much the same way that 
Half-Life led to more scripting in FPS games.

Another place that scripting is useful within RTSs is the aforementioned build-
order scripts that most RTS games employ. Some of these scripts can become quite 
complex, and even include options for building based on early enemy attacks or 
proximity to certain resources.
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DATA-DRIVEN AI

Many of the larger RTS games are putting large portions of the AI decision making 
into non-code form, be it simplistic parameter setting (like the early Command
and Conquer games) to actual rule definitions (such as the Age of Empires scripts). 
This allows two things: Designers working on the games gain easier access to the 
game so they can tune the AI, and people who buy the game can tweak the AI set-
tings themselves. Age of Empires especially needed a system like this, with upwards 
of a dozen civilizations. See Listing 6.1 for an example of a user-defined Age of 
Empires script.

LISTING 6.1  A sample Age of Empires AI user-defined script showing simple 
rule definitions.

; attack

(defrule

    (or (goal GOAL-PROTECT-KNIGHT 1)

        (goal GOAL-START-THE-IMPERIAL-ARMY 1))

    (or (unit-type-count-total knight-line >= 25)

        (soldier-count >= 30))

=>

    (set-goal GOAL-FAST-ATTACK 1)

    (set-strategic-number sn-minimum-attack-group-size 8)

    (set-strategic-number sn-maximum-attack-group-size 30)

    (set-strategic-number sn-percent-attack-soldiers 100)

    (attack-now)

    (disable-timer TIMER-ATTACK)

    (enable-timer TIMER-ATTACK 30)

    (set-strategic-number sn-number-defend-groups 0)

    (disable-self)

)

(defrule

    (current-age == feudal-age)

    (soldier-count > 30 )

    (goal GOAL-FAST-ATTACK 1)

=>

    (set-strategic-number sn-number-explore-groups 1) 

    (set-strategic-number sn-percent-attack-soldiers 100)

    (attack-now)

    (set-goal GOAL-FIRST-RUCH 0)

    (disable-timer TIMER-ATTACK)
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    (enable-timer TIMER-ATTACK 30)

    (disable-self)

)

(defrule

    (current-age == feudal-age)

    (soldier-count > 20 )

    (or    (players-current-age any-enemy >= castle-age)

        (players-population  any-enemy >= 20)) 

=>

    (set-goal GOAL-FAST-ATTACK 0)

)

(defrule

    (current-age >= feudal-age)

    (soldier-count > 20 )

=>

    (set-goal GOAL-FAST-ATTACK 1)

)

(defrule

    (current-age == feudal-age)

    (goal GOAL-FAST-ATTACK 1)

    (timer-triggered TIMER-ATTACK)

    (soldier-count > 20 )

=>

    (set-strategic-number sn-percent-attack-soldiers 100)

    (attack-now)

    (set-strategic-number sn-number-defend-groups 0)

    (disable-timer TIMER-ATTACK)

    (enable-timer TIMER-ATTACK 30)

)

EXAMPLES

Herzog Zwei, the granddaddy of RTS games, was really more an action game with 
the added twist that players had to acquire money to get more equipment. With no 
real pathfinding, enemies constantly got stuck. A player could trick the AI builder 
unit so that it was impossible for it to fight back. For the most part, Herzog was 
probably coded using a very simple state machine, with the states defined as get 
money, attack, and defend.

Westwood Studio’s® Dune: The Building of a Dynasty came out two years later and 
started the standard RTS formula that mostly continues today, in which players build 
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a town, mine resources, span a tech tree, and fight enemies. The game didn’t have the 
best AI, but understandably so, given the minimal system requirements of the game. 
Dune used an initial defense build order, followed by a phase of finding the opponent’s 
base, and then attacking. It wouldn’t really rebuild its defenses (because they were only 
built during the opening phase), it wouldn’t attack anywhere but the side of its oppo-
nent’s base facing its base (no real flanking or trying to find weaknesses), and it cheated 
extensively (the AI never seemed to run out of money, and it could build its structures 
unconnected from each other, whereas the human could not).

The golden age of RTS games included the Command and Conquer series, 
Warcraft, Starcraft, and many spin-offs and imitations. During this time, the AI 
continued to push forward, the biggest improvement being pathfinding. But the 
games were still plagued by AI exploits that human players would find very quickly. 
This was mainly because the AI didn’t have the processing power or memory 
space necessary to use things like influence maps for full terrain analysis or better 
planning algorithms.

More modern games—such as the Age of Empires series, Empire Earth, Cossacks,
and the like—have built on these modest foundations and created full-featured 
games with plenty of challenge and fairly good AI opponents. Although some prob-
lems are perennial (such as formations interfering with pathfinding, and diplomacy 
AI being all but absent), these games can, and will, give human players a challenge 
without cheating (for the most part) and without exploits. Most of these titles use 
some form of advanced terrain costing to further their pathfinding. Most do some 
planning to determine goals and subgoals. Starting build orders are still quite popu-
lar, simply because of their ease of implementation and the tunable way that they 
affect difficulty level.

Some modern RTS games have changed direction a bit, with Warcraft III, Com-
mand and Conquer: Generals, and Age of Mythology being notable examples. These 
games have started emphasizing the use of superunits, or champions, instead of 
throngs of mindless units. These champion units are tougher, more capable, and 
more expensive to build and to lose. They also employ a much higher amount of 
mission scripting, so that the game has a much more crafted feel, instead of many 
of the missions of earlier RTS games where players were just pitted against larger 
and larger opposition forces.

AREAS THAT NEED IMPROVEMENT

RTS games, like all genres, could use some fresh perspective and new direction in 
gameplay. Many things were done unintelligently in the past due to CPU constraints, 
and have remained unintelligent due more to convention than anything else. Some of 
the areas in the RTS world that could use improvement include: learning, determining 
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when an element is stuck, helper AI, opponent personality, and using more strategy 
with less tactics.

LEARNING

RTS AI too often gets caught in the same trap repeatedly. A simple example is read-
ily seen in most RTS titles, in which the computer will march one or two units past 
a tower (which will kill them) over and over. The AI should definitely take into 
account successful travel information about map locations (using the influence 
mapping techniques described earlier) so that it can stop being kill-zoned by smart 
players who notice lines of migration.

Other learning opportunities for RTS games could include opponent model-
ing opportunities like keeping track of the direction of player attack, noting which 
types of units the player favors, or even keeping track of game strategies across 
multiple games against a particular player. Does the player use early rushes? Does 
the player rely on units that require a lot of a certain resource? Does the player 
frequently build a number of critical structures in a poorly defended place? Are 
the player’s attacks balanced, or does the player build many rocks, many paper, but 
never any scissors? When you start attacking a remote base, how long does it take 
the player to respond? The answers to these kinds of questions could be stored 
along with statistics that would allow a smart AI system to adapt to these kinds of 
issues and more.

Using this kind of information doesn’t mean that the AI slowly becomes unbeat-
able; it just means that the human has to switch tactics to win, somewhat forcing the 
player to investigate other areas of the game’s complexity. An AI opponent that is 
shutting down specific player offensive maneuvers doesn’t necessarily mean that the 
AI itself has to be aggressive, unless the player has set the difficulty very high.

DETERMINING WHEN AN AI ELEMENT IS STUCK

At some point, in almost every game, an AI element (from the lowliest economic 
peon, to an entire group of tanks) might get into a situation where it doesn’t know 
what to do at all. Maybe all the resource-gathering centers are gone, there’s not 
enough money to build another one, and a peon has an armload of coal but doesn’t 
know what to do with it. Or a group of tanks is being hounded by an aerial unit 
(and cannot fight back), but is also trapped in a close-quarters area, and stuck in a 
pathfinding/fleeing cycle that keeps the tanks going in circles as they try to get away, 
but trip each other up, over and over again. This type of nasty feedback loop can 
make an AI element look extremely stupid, but it is precisely the kind of behavior 
that almost every RTS game has in some form. Detecting this kind of “stalling” and 
either having a contingency plan, or some kind of bailout behavior, is essential to 
help the intelligence of these games.
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Another case of this is the classic problem in which a player has to kill all the 
units in the enemy’s army to win, and the AI has one peon unit, hidden behind a 
tree, somewhere on the huge world map. This leads to the player scouring the map, 
for an hour and a half, until the player happens upon the peon, who was just sitting 
there frozen with nothing to do. The AI in RTS games should be able to recognize 
when it’s been beaten (most do, but even the best get confused sometimes) and 
offer surrender. If the player wants to hunt down the last peon, the player can; but 
the designer should also give the player the chance to see his hard-won “Victory!” 
screen without spending all day hunting for some foolish unit.

HELPER AI

To alleviate micromanagement tasks that a human player performs repeatedly dur-
ing the game, helper AI is an area that screams for exploration by developers. Also 
mentioned in Chapter 4 during the discussion of RPG party members, “automatic” 
behavior that units perform on their own could be improved. A flexible system 
could add new behaviors (if the game recognizes that the player is always doing a 
specific small behavior), exhaust unwanted behaviors, and perform with mild intel-
ligence. It would make playing RTS games much more flavorful than the current 
“build up, attack, build up, attack” click-fest, in which the person who knows the 
best build order and can get things done the fastest wins. Sometimes, yes, that is 
exactly the game some people want to play. But right now we don’t have much of a 
choice, as it seems to be the way most RTS games are set up.

In effect, this system would recognize small behavior macros (groups of behav-
iors that the human is repeatedly doing) and then either ask the player if he needs 
help in doing that or just take over the task (possibly with some sort of “It’s taken 
care of” message communicated to the player). The player could select the level of 
macro help he’d like, with level 0 being no help, level 5 would find things repeated 
more than five times and would extinguish these behaviors if the player cancelled 
out of them more than once, and at level 10 it would discern anything the player re-
peated more than twice; the macro would never extinguish these rules. At any rate, 
you would probably also want little macro “flags” to appear somewhere onscreen 
(or in some quick menu), so that the player could cancel any that the player wanted 
to at any time.

OPPONENT PERSONALITY

One of the earliest RTS games, Herzog Zwei, had two opposing AI personalities 
(heavily offense-based and heavily defense-based). Each offered a very different 
playing experience. A player had lots of time to build forces against the defensive 
opponent, whereas the player had almost no time at all before the more offense-
based AI would be at the player’s main base with invaders.
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Imagine getting variation not just in difficulty level of the AI, but in other attri-
butes as well. We do this in sports games or fighting games, why not in RTS games? 
By using resource allocation systems to describe bias toward specific units, or spe-
cialization in different branches of the tech tree, we could generate opponents with 
much more flavor. In the development phase, different stable personalities could be 
tuned and played against each other, to find the combinations that lead to victory. 
These personalities could even be replaced by a singular AI opponent over time, 
so the AI opponent would start play with a very balanced game, but after a brutal 
combat loss might get “mad” and use a much more aggressive resource allocation 
table to force out more units, for retribution.

This would not only flavor the AI battle, but could carry over into the diplo-
macy game. A player might reconsider allying with an AI character that the player 
knows has a tendency to turn on its allies, or is a hothead and will become angered 
by the smallest incursion, turning the supposed ally into a liability if the AI char-
acter is off hunting a perceived enemy instead of sticking to a larger agreed-upon 
battle plan.

MORE STRATEGY, LESS TACTICS

AI micromanagement leads to better per-unit behavior. To be considered human-
like, however, RTS games need better strategic team leadership, not individual-unit 
intelligence that outdoes the human in speed or tedium. Instead of better planning 
algorithms and squad (or commander)-level AI, which is more analogous to the 
way a human plays, most games rely on the computer’s ability to quickly micro-
manage attacking units on an individual basis.

Another commonly used technique is to have unit AI that is not present when 
a human player is under control, which makes it feel like micromanagement. This 
leaves the AI able to do things that are near impossible for a human, which leads to 
frustration, and a feeling that the AI is cheating.

Perhaps the AI could be given limits on the amount of micromanaging it can 
do in a given timeframe, to simulate the time it takes a human to scroll around, 
clicking the mouse and hitting hotkeys. In any case, better strategic systems in RTS 
games will go a long way toward making the AI in these games more human and, 
ultimately, more fun to play against. Some things that a superior strategic system 
should accomplish are these:

Grouping units by type, and then using groups to back up other groups, or respond 
to specific threats with the correct counter type of units. Right now, most battles 
initiated by the AI opponent are started by the AI generating a mix of units 
based on a scripted combination that works well together, affected by the re-
sources the AI has, and to some lesser degree by the types of units they expect 
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to see from the human player. This is a good start, but that’s where the strategic 
AI in most games ends. Once a war party actually reaches the human’s forces, 
the AI could respond to the dangers it finds there more efficiently by using a 
commander level of AI decisions that targets enemies with good counter units 
and makes adjustments as the battle ensues, just like a person would, by setting 
up attack lines to take advantage of multiple fronts, and also leave support lines 
open for additional forces to come in.
 Again, most RTS games suffer from using the individual-unit AI far too much 
once the battle has begun. They also don’t use much in the way of attack sched-
uling. Splitting up an army, and coming from two sides, is a technique used 
when an advancing enemy places units where they are not protected very well. 
But it requires that these two fronts be timed so that they happen concurrently, 
otherwise all you’ve done is split your army in two.
Using terrain features to set up optimal wall structures. Wall construction sepa-
rates good RTS AI from the truly great. Some games use a random map genera-
tor to keep multiplayer games fresh, so the need for a dedicated wall constructor 
is paramount to make quality, useful walls that still use terrain features to their 
advantage.
 Schedule retreats if they are foreseeable, or just initiate them if everything 
falls apart. Battles with large numbers of units “going kamikaze” should only 
happen if there are bigger motives at play. You could use their sacrifice as a 
diversion (to attack another front, or make a run for a particular resource, 
etc.). The attack could be specifically designed to fight against some entrenched 
enemy defense. Retreats from a losing battle should be a bit more elegant than 
just selecting every unit and giving them a destination of home base.
 Set up ambush situations, or cover lines of retreat for advancing armies. 
A common strategy that human players employ is to keep a large force back 
from the front lines, and then have a few fast units go forward and draw some 
enemy forces from their entrenchments and back to this waiting ambush. Or, 
the human will use these fast units to draw a considerable number of the defen-
sive forces away from one side of the enemy’s main base, and then send in the 
larger force to this less-protected area. Either way, the essential strategy the AI 
needs to employ is to protect the line of retreat of any of the AI’s forces. If they 
have to fall back, the AI won’t have to worry about fast enemy units following 
the retreat line and picking off slower units trying to flee.

SUMMARY

RTS games have given game players the amazing opportunity to be generals in charge 
of an entire army, complete with an economy to replenish that army. Because of the 
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tremendous number of units and possible actions going on in real-time throughout 
the map, the AI challenges in RTS games are particularly large.

Individual-unit AI gives personality to units, without clogging the higher-level 
AI systems.
Economic AI needs to be carefully tuned so that human players don’t have to 
micromanage too much, or too little.
Commander-level and team-level AI provide increasingly more strategic layers 
to the system, and can help keep each layer simple and easy to maintain.
Town building AI is a unique challenge that must account for factors such as 
protection, visibility, and forward planning to look intelligent.
Pathfinding takes up a large percentage of CPU cycles because of the numbers 
of units and the complex terrains. A good pathfinder implementation is para-
mount to the success of the game.
Support AI systems that are important to RTS games include terrain analysis, 
opponent modeling, resource management, reconnaissance, and diplomacy 
systems. Each delivers an important part of the RTS experience.
Messaging is a very important AI technique for RTS games because of the high-
level communication that needs to occur.
FuSMs are a good way to model the huge amount of imperfect information 
that RTS AI systems have to process, along with the many directions that a team 
has to split its resources and attention.
Hierarchical AI systems, as well as planning algorithms and scripting systems, 
are also key elements to many RTS AI engines.
Learning, either directly, or through secondary means (like influence maps) 
can make the AI in RTS games far more adaptive.
Determining when a unit (or entire game element) is stuck is a problem that 
many RTS games have not solved very well.
Helper AI could be used when a human is playing the game to help alleviate micro 
tasks by giving the player the option of AI taking them over automatically.
Opponents in RTS games rarely exhibit any personality, and as such, your 
human players might find it hard to really connect with their opponents.
RTS games need to concentrate on more strategic battle elements, and less on 
individual-unit tactical AI.
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First-Person Shooters/
Third-Person Shooters 
(FTPS)

7

Like RTSs, First-Person Shooter/Third-Person Shooter (FTPS) games are the 
other major genre that has been blessed by both deep development from 
inside the industry, and research within the classical academic community.

One reason for this is because of early efforts by Id Software. Most of Id’s games 
have pushed the envelope for graphics and network programming, and have been 
groundbreaking in the area of user extensibility. Other leading games have followed 
suit. Many FTPSs include tools that people can use to add levels, change weap-
ons, script new AI elements, and even perform what is called a “total conversion,” 
meaning that the entire game has been changed radically. An entire “mod” (short 
for modification) scene has sprung up with many Web sites where people can get 
information about customizing their favorite game, as well as download mods cre-
ated by other users.

One type of mod that specifically uses AI techniques is called a “bot.” Short 
for robot, this is what the FTPS world refers to as an autonomous agent. Bots can 
navigate a map, find enemies, and attack them intelligently. Bots respond to injury, 
powerups, and so on. See Listing 7.1 for a sample of code from a Quake bot.

Some bot writers have gone on to get legitimate jobs in game development 
because of their independent work in the mod world. A good example is Steve 
Polge, writer of the Reaper Bot (one of the earlier and more famous bots), going 
on to be the AI programmer for Unreal. Many level editors have gotten their 
start in the mod community as well. Interviews with companies doing FTPS 
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games are often preceded by showing the interviewer levels or modifications 
that a candidate has done independently, often with good reviews from com-
munity sites.

LISTING 7.1 QuakeC sample of user-defined script for an AI-controlled bot.

void (float dist) ai_run = {

   local vector delta;

   local float axis;

   local float direct;

   local float ang_rint;

   local float ang_floor;

   local float ang_ceil;

   movedist = dist;

   if ( (self.enemy.health <= FALSE) ) {

      self.enemy = world;

      if ( (self.oldenemy.health > FALSE) ) {

         self.enemy = self.oldenemy;

         HuntTarget ();

      } else {

         if ( self.movetarget ) {

            self.th_walk ();

         } else {

            self.th_stand ();

         }

         return ;

      }

   }

   self.show_hostile = (time + TRUE);

   enemy_vis = visible (self.enemy);
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   if ( enemy_vis ) {

      self.search_time = (time + MOVETYPE_FLY);

   }

   if ( ((coop || deathmatch) && (self.search_time < time)) ) {

      if ( FindTarget () ) {

         return ;

      }

   }

   enemy_infront = infront (self.enemy);

   enemy_range = range (self.enemy);

   enemy_yaw = vectoyaw ((self.enemy.origin - self.origin));

   if ( (self.attack_state == AS_MISSILE) ) {

      ai_run_missile ();

      return ;

   }

   if ( (self.attack_state == AS_MELEE) ) {

      ai_run_melee ();

      return ;

   }

   if ( CheckAnyAttack () ) {

      return ;

   }

   if ( (self.attack_state == AS_SLIDING) ) {

      ai_run_slide ();

      return ;

   }

   movetogoal (dist);

};
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Because of this extensibility (and the product’s stability), some of Id’s games 
have become test beds for AI research in academia. Many diverse research labs are 
using their games, with heavily modified code, to test AI techniques under condi-
tions that are much closer to modeling real-world situations than used in the lab 
before, and with much more realistic time constraints. Various techniques have 
been tested from new ways to store environment information, to faster planning 
algorithms, to complete rule inference systems. There have been many presenta-
tions of these extensions given back to game developers at industry gatherings, so 
that their ideas and techniques are exchanged in something of a “feedback loop” 
that has been beneficial to both groups.

Another type of FTPS game that has become popular lately is the squad combat 
game (SCG). This is an FTPS game in which the main character isn’t a single person 
but, rather an entire squad (usually about three to ten people) working toward a com-
mon goal. SCG games started out as a multiplayer game mode in some regular FTPS 
games, called Capture the Flag. (In Capture the Flag, both teams have a flag. If you can 
get the other team’s flag and return it to your base while you’re still in possession of 
your own flag, your team gets a point.) This concept was then expanded into full-blown 
military squad simulations. The AI for these types of games can be very complex, since 
squad group maneuvers and multi-agent coordination is a much harder problem to 
solve than the problems inherent in the more straightforward FTPS games.

COMMON AI ELEMENTS

FTPS games have a number of typically common AI controlled parts. These in-
clude: enemies, boss enemies, deathmatch opponents, weapons, cooperative agents, 
squad members, pathfinding, and spatial reasoning.

ENEMIES

FTPS games are, by definition, shooters, and shooters require targets. Thus, the main 
thrust of FTPSs is to have enemies—and lots of them. So the AI used in these enemies 
is vital to the longevity of the product. Many games have touted “better enemy AI” for 
their game, only to have it shot down by exploits almost immediately upon release.

Certain FTPSs have used what some call arcade AI, which is the simple pat-
tern AI of old-style arcade games. Doom and the modern Serious Sam games use 
this technique very well. They give the player a chance to simply run around with 
the biggest gun and destroy everything in his or her path, which is just what some 
people want. Still other games, such as Half-Life, provide a much more scripted, 
intelligent, and rich gameplay experience, and were also successful.

How much work you put into your enemies is directly related to the type of game-
play experience you are striving for. Strange, though, is the notion that both the arcade 
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and scripted types of FTPS games are hard to do well. Doom hit a perfect balance with 
its mindless enemies, great level design, and weapon balance. It spawned countless copy-
cats, almost all of which were not as good. Half-Life did the same with scripted content 
in an FTPS game. It sported a great story, many hand-tuned situations complete with 
complex nonplayer character behavior, and good atmosphere. These efforts were fol-
lowed by a vast number of games seeking to do the same, with few succeeding.

BOSS ENEMIES

Some of the action-based FTPS games, such as Serious Sam, also contain Boss en-
emies as might a basic shooter or a role-playing game. At the end of any given level, 
you would come face to face with a (usually) larger and more powerful enemy, 
complete with special attacks and unique abilities. Even the more complex games 
like Half-Life had some really big creatures to tackle. These creatures are generally 
very tough but have some weakness that can be exploited if discovered. Some even 
required you to use elements of the environment to kill them.

DEATHMATCH OPPONENTS

The AI opponents necessary for FTPS games fall into two basic categories: regular 
monster enemies and deathmatch bots. Monsters are creatures that are expected to 
act like beasts, or at best, evil humanoid killers. They provide the fodder for parts of 
your game that require masses of enemies for the user to gun down. As stated, they 
could be human, but are more likely animals, zombies, or some other unthinking 
mob-style agents.

Bots, on the other hand, are trying to closely model human behavior and per-
formance during deathmatch games. Some bots have been created to caricature 
certain behaviors (such as bots that only use a particular weapon and are always 
jumping, for instance), but they are mostly trying to model good, solid, human 
deathmatch execution.

If you plan to add a multiplayer portion to your product, you are going to need 
bot AI so that players can have a multiplayer experience if they don’t have a means 
of connecting to someone else, or just want to practice. Unlike the regular enemies 
in a FTPS game, these characters are supposed to be as smart and as human as pos-
sible (with difficulty levels, of course) to provide the player with a fun, yet challeng-
ing, run through the deathmatch environments.

Bot difficulty levels usually involve tweaking different aspects of the bot’s be-
havior, such as aggressiveness, how often the bot will retreat and load up on health 
powerups, the appropriateness of weapon usage (or does the bot have a favorite 
weapon that it uses much better), as well as how good the bot’s aim is.

Another activity gradually finding its way into bot behavior in new FTPS games 
is using chat messages. Examples include sending a quick message to taunt players 
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recently killed, or commending another player on a good shot. Although still very 
simplistic, the effect is becoming better as games continue to use it. In the future, 
we may see the equivalent of full chat bots within our FTPS games, to make them 
seem even more human.

WEAPONS

FTPS weapons have run the gamut from the seminal rocket launcher to the very 
odd “voodoo doll” in Blood that had players stick pins in their enemies from afar. 
With weapons that bounce around corners, leave trails of deadly goo, or have to be 
steered like heat-seeking missiles, sometimes it takes intelligence just to use some of 
the weapons that these games employ.

Other weapon intelligence issues involve specific concerns like not shooting splash 
damage weapons when the bot itself might be hurt by the effect, or strange usages of 
weapons, such as the electricity gun discharge in the first Quake game (if a player shot 
the electricity gun into a pool of water, it would instantly kill anybody immersed in 
the pool, including the original gun owner). It could even be said that knowing which 
weapon to pick is a definite intelligence test: taking into account weapons that match 
well against other weapons, player types, enemy range, and amount of ammunition.

COOPERATIVE AGENTS

An element that started showing up within more complex, story-driven FTPS 
games, cooperative agents are “helper” bots, or special NPC types that inhabit a 
level. When the player interacts (other than in a killing sense) with these special 
characters, they might offer help, or a new weapon, etc. Some of these characters 
are quite complex, following a player around a level, helping with enemies, and 
pointing out features of the map.

Games that have used this element successfully are Half-Life, Medal of Honor: 
Underground, and many others. Just as with RPGs, cooperative agents need to have 
enough “smarts” so that the player doesn’t feel like the agent requires babysitting; 
otherwise, the player will quickly abandon the agent, or become frustrated with the 
game.

SQUAD MEMBERS

If you’re constructing a game based on squad combat, then you’re going to be 
spending a large amount of time making the individual squad member AI as smart 
as possible. Squad-based maneuvers range from the simple (leapfrogging forward 
movement while providing cover) to the very complex (part of a squad breaking 
off, to take out a guard post, while the main group continues forward, to remove a 
different guard, and then both groups meet at some point).
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The AI that controls squad members needs to be reactive (the “thinking” pro-
cess here is, if you’re being fired at don’t keep running to a spot because the player 
told you to earlier; rather, get behind some cover, look for the source of attack, and 
then use some smart means of either communicating back to the commander, or 
using the terrain features to get to the target safely), proactive (if a grenade gets 
lobbed into our trench, someone should pick it up and lob it back, or jump on 
it . . . don’t wait for my orders), and communicative (give me feedback about success 
and failure, any slowdowns the forces are incurring, additional information they 
have uncovered, etc.).

If you’re making an SCG game that is a not military-based (for example, a 
game where a player and his virtual family have to defend their home against alien 
attack), you would need to account for some additional personality issues, includ-
ing being calm under fire, dealing with injuries, panic, and the shock of seeing 
violence. These are all things that a professional soldier is trained to do well, but 
if a player sees the eight-year-old sister doing fine and giving the player a thumb’s 
up while under heavy laser fire with a serious leg wound, the player might think it 
was pretty unrealistic. Of course, this might be what you’re going for (maybe you’re 
designing the game to be specifically campy).

On top of all this, squad-level AI systems need to make the team competent, 
but not unstoppable. Such is the fine line of game balance. If the squad is too capa-
ble, the player feels like a bystander and not needed, but if the squad is not capable 
enough, the player might start to feel surrounded by idiots. This is where extensive 
gameplay testing is imperative.

PATHFINDING

Pathfinding is one of the primary AI systems in an FTPS. In real-time strategy (RTS) 
games, pathfinding usually encompasses only terrain management. FTPS pathfind-
ing further involves using in-game elements (such as elevators, teleporters, levers, 
etc.) and specialized movement techniques (the “rocket jump,” crossing underwater 
sequences that might hurt if not done correctly, etc.). As such, pathfinding in FTPS 
games usually employs a combination of specialized level data, alongside custom 
pathfinding “costing,” which can help account for special movement oddities.

Local pathfinding for dynamic objects, or obstacle avoidance, is used to help 
with more immediate problems. Avoidance can complement or completely over-
ride the normal pathfinding system, based on context. If a character has his back to 
a corner, and he’s being pinned there by some other player or environmental ele-
ment, the pathfinding system needs to recognize this state as being “stuck” and have 
some sort of exit contingency for the character. Your autonomous AI-controlled 
characters can and will find every sticky spot on the map to get wedged into, and the 
look of your pathfinding system will suffer dramatically in that they stay that way 
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for any length of time. By leaving nothing (or near nothing) to chance, you can 
allow the level designers free rein to create any environments they want to, and still 
give your creations a fighting chance to navigate them successfully.

SPATIAL REASONING

In the same way that RTS AI systems use terrain analysis to find expoitable ele-
ments in the game world (such as bottlenecks and crucial resource sites), FTPS 
games need to model the kinds of spatial determinations that humans make about 
areas of the game world. Humans are very good at looking at an environment and 
finding sniper locations, choke points, good environmental cover, and such.

However, this is a pretty difficult problem to tackle in a real-time, three-
dimensional environment (RTS games can use a cut-down, overhead two-
dimensional version of the map to simplify things). So again, this problem is 
usually solved with another step in the level-design process, by tagging areas 
of the map with helper data that the AI opponents can discern and use to their 
advantage. Systems that can perform this process automatically on a level have 
been developed, usually as a preprocessing stage that produces this spatial rea-
soning data in some usable form. Typically this autogenerated data is used in 
conjunction with designer-placed data.

USEFUL AI TECHNIQUES

In order to achieve all the required AI for these games, a number of different AI 
methods have proven themselves useful. These include: finite-state machines, fuzzy-
state machines, messaging systems, and scripting.

FINITE-STATE MACHINES (FSMS)

The staple of the AI programming world makes its appearance again. FSMs can 
be used exclusively (Serious Sam), or as part of a larger AI system (as in Half-Life). 
The life span of most enemies in these games can be very short; no real forward 
planning is usually needed. Deathmatch AI for these games involves a minimum of 
states, usually along the lines of attack, retreat, explore, and get powerup. The rest 
of the intelligence comes from special navigation systems, the movement model 
for the bot, and other support routines. See Listing 7.2 for a snippet of the AI FSM 
code from Quake 2.

This function is used to determine if certain AI states (namely ai_run and ai_
stand) should transition to ai_attack. Note the comment line labeled JDC, the 
initials of John Carmack. Also notice the //FIXME: comment that is in the final 
released code. It’s good to know that John is still human.
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LISTING 7.2 Quake 2 AI code snippet. © Id Software, licensed under the GPL.

/*

=============

ai_checkattack

Decides if we’re going to attack or do something else

used by ai_run and ai_stand

=============

*/

qboolean ai_checkattack (edict_t *self, float dist)

{

    vec3_t        temp;

    qboolean    hesDeadJim;

    // this causes monsters to run blindly to 

         // the combat point w/o firing

    if (self->goalentity)

    {

        if (self->monsterinfo.aiflags & AI_COMBAT_POINT)

            return false;

        if (self->monsterinfo.aiflags & AI_SOUND_TARGET)

        {

            if ((level.time - self->enemy->teleport_time) > 5.Ø)

            {

                if (self->goalentity == self->enemy)

                    if (self->movetarget)

                        self->goalentity = self->movetarget;

                    else

                        self->goalentity = NULL;

                self->monsterinfo.aiflags &= ~AI_SOUND_TARGET;

                if (self->monsterinfo.aiflags &

                         AI_TEMP_STAND_GROUND)

                    self->monsterinfo.aiflags &= 

                         ~(AI_STAND_GROUND | AI_TEMP_STAND_GROUND);

            }

            else

            {

                self->show_hostile = level.time + 1;

                return false;

            }

        }

    }
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    enemy_vis = false;

    // see if the enemy is dead

    hesDeadJim = false;

    if ((!self->enemy) || (!self->enemy->inuse))

    {

        hesDeadJim = true;

    }

    else if (self->monsterinfo.aiflags & AI_MEDIC)

    {

        if (self->enemy->health > Ø)

        {

            hesDeadJim = true;

            self->monsterinfo.aiflags &= ~AI_MEDIC;

        }

    }

    else

    {

        if (self->monsterinfo.aiflags & AI_BRUTAL)

        {

            if (self->enemy->health <= -8Ø)

                hesDeadJim = true;

        }

        else

        {

            if (self->enemy->health <= Ø)

                hesDeadJim = true;

        }

    }

    if (hesDeadJim)

    {

        self->enemy = NULL;

        // FIXME: look all around for other targets

        if (self->oldenemy && self->oldenemy->health > Ø)

        {

            self->enemy = self->oldenemy;

            self->oldenemy = NULL;

            HuntTarget (self);

        }

        else

        {

            if (self->movetarget)

            {

                self->goalentity = self->movetarget;
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                self->monsterinfo.walk (self);

            }

            else

            {

                // we need the pausetime otherwise the stand code

                // will just revert to walking with no target and

                // the monsters will wonder around aimlessly trying

                // to hunt the world entity

                self->monsterinfo.pausetime = level.time +

                                                   1ØØØØØØØØ;

                self->monsterinfo.stand (self);

            }

            return true;

        }

    }

    self->show_hostile = level.time + 1;// wake up other monsters

    // check knowledge of enemy

    enemy_vis = visible(self, self->enemy);

    if (enemy_vis)

    {

        self->monsterinfo.search_time = level.time + 5;

        VectorCopy (self->enemy->s.origin, self->

                                            monsterinfo.last_sighting);

    }

// look for other coop players here

//    if (coop && self->monsterinfo.search_time < level.time)

//    {

//        if (FindTarget (self))

//            return true;

//    }

    enemy_infront = infront(self, self->enemy);

    enemy_range = range(self, self->enemy);

    VectorSubtract (self->enemy->s.origin, self->s.origin, temp);

    enemy_yaw = vectoyaw(temp);

    // JDC self->ideal_yaw = enemy_yaw;

    if (self->monsterinfo.attack_state == AS_MISSILE)

    {

        ai_run_missile (self);
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        return true;

    }

    if (self->monsterinfo.attack_state == AS_MELEE)

    {

        ai_run_melee (self);

        return true;

    }

    // if enemy is not currently visible, we will never attack

    if (!enemy_vis)

        return false;

    return self->monsterinfo.checkattack (self);

}

FUZZY-STATE MACHINES (FUSMS)

Fuzzy-state machines have also been implemented within these games, especially 
because the number of fuzzy variables is usually low, so you don’t run into the prob-
lems of combinatorial calculation growth that hurts fuzzy systems. Also, the states 
of inputs from which FTPS opponents must make their determinations are rarely 
as crisp as finite states are considered to be. An AI-controlled opponent might be at 
23 percent health, but have a really good weapon, and is also coming up behind the 
human player, unseen by the player. So, even though the AI opponent is very dam-
aged, should the AI opponent take the shot? The answer is probably yes, but only 
when you think of the system using a combination of the various fuzzy inputs to 
this agent. Again, this is only relevant when you consider the types of enemies you 
are programming. Shooting the player in the back isn’t very entertaining behavior 
(for the human), unless you are creating a deathmatch opponent.

This technique also works well because of the way many of these games portray 
their animation. The upper and lower bodies of the characters are usually almost 
completely decoupled from each other. The lower half tries to play some running 
animation that corresponds to the direction of travel, while the upper half aims, 
fires, and switches weapons. This leads nicely to a fuzzy solution where two states 
might be activated at lower levels, a character might be shooting at a player, but 
also running for a health powerup, the result of a fuzzy-state system that treats 
“50 percent shoot, 50 percent get powerup” as a solution.

MESSAGING SYSTEMS

In most deathmatch-style FTPSs, the thrust of the gameplay could be described as 
“a physics model with input handlers” (meaning that the gameplay is basically just 
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taking input from the humans, using the physics code to move everything around, 
and keeping track of when the missile weapons collide with the players). Because 
of this, using a messaging system within this genre is a natural fit, in that a stable 
underlying system (the physics system, the renderer) runs constantly, with events 
marking any interesting happenings (such as firing a rocket, or player X entering 
the #23 teleporter).

Most of these games include an online multi-player element, and quite a few 
use the server-client network model. The client of a message-based game could em-
ploy a simple state-based AI system, with changes in state initiated by events from 
the server. One major reason this type of setup is common with online multiplayer 
FTPSs is that it helps guard against cheating, in that all game information comes 
directly from the server.

Messaging also works well in SCGs because of the need to pass information 
back and forth among squad members, including sharing a lot of information 
about visible threats, positions, status, and much more.

SCRIPTING SYSTEMS

Some modern developers use a high level of scripting in their FTPS games. Every-
thing, including elements in the environment, enemies, conversations, player inter-
action with specific game objects or agents, and in-game cut scenes are all (or in 
part) scripted. Scripting, in general, makes direct storytelling easier, so if your FTPS 
has a strong story element, then this is the way to go. In the more action-heavy 
titles, however, the only scripted elements are probably cut scenes, camera moves, 
or the more stylized attack patterns of a boss-type creature.

EXAMPLES

Old-school FTPS games, such as Doom and Duke Nukem 3D, used simple AI. Most 
of the enemies are directly placed in the level by a level designer. The enemies are 
generally restricted to a specific part of the level, to keep pathfinding (if it even ex-
ists) to a minimum, and the nature of the levels themselves (what was sometimes 
called 2.5D because the rendering engine could only handle elevations but not 
stacked rooms) allowed for fairly direct movement and combat maneuvers.

Later games converted to full three dimensionality (one of the first was 
Descent) and started using complex pathfinding systems to get around. However, 
the brains of the AI enemies were still pretty simplistic. Typically the only difficult 
opponents were the boss creatures, but their toughness was generally because of 
sheer hit points, damage potential, and the fact that many times players were locked 
in a small room with them as opposed to clever tactics. Games such as Hexen, Blood, 
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Heretic, and the like are all good examples of games that fell into this category. 
Heretic was one of the early third-person shooter games to really give the new for-
mula a great interface.

With the next level of FTPS games, we suddenly got a full taste of our true 
new addiction, online multi-player deathmatch. Before this time, only those lucky 
enough to work at a computer company with a LAN, or with more than one in-
home computer that they could string a null modem between had experienced this 
exciting mode. But finally, programmers discovered ways of getting decent game-
play over the Internet, even with a dialup connection, and gamers wanted in on it. 
The games got better, Quake and Unreal being the top two.

Also during this period, Id made Quake highly extensible for the end user (with 
Unreal following suit) and, thus, led to the development of the deathmatch bot, 
which forever changed the FTPS AI world. People started to see what an FTPS 
enemy could do, given a degree of intelligence, and started demanding more chal-
lenging enemies in the single-player portion as well. This led to a much higher level 
of AI complexity across the board.

Today, a new variant on these games is taking over people’s free time. It’s called 
squad combat, and some of the best are Socom and Tom Clancy’s Rainbow Six.
These games include all the regular FTPS AI, and also involve the coordination of 
multiple team members in real-time combat missions against teams of enemies. 
There is a fine balance in these games between the high-level commands that a 
player sends to his or her team members and the realistic tactical AI that they need 
to perform to operate well in concert.

The last batch of FTPS games to come out have been almost completely (be-
sides sequels to our perennial favorites, including Unreal) based in the realm of 
war-themed games. Battlefield: 1942, Call of Duty, and Battlefield: Vietnam are 
very popular games that capture much of the grit of real war, while still look-
ing very good and playing well. Purists of war gaming are not amused by some 
of the license that has been taken with historical details, or weapon details, but 
the medium-level shooter crowd really enjoys the inclusion of a more realistic 
world (without having to worry who’s going to come around the corner with 
the BFG and blow a hole in the entire world), as well as the inclusion of all the 
vehicle types that many of the war FTPS games include, like tanks, boats, and 
even planes.

AREAS THAT NEED IMPROVEMENT

Inevitably, as with all game genres, there are things to try and strive for, new 
techniques or gameplay roads we could travel to make the genre grow and 
mature. These improvement areas include: learning and opponent modeling, 
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personality, creativity, anticipation, better conversation engines, motivation, 
and better squad AI.

LEARNING AND OPPONENT MODELING

Holes in the AI’s behavior are found and exploited in FTPS games, just like any 
other game genre. Because FTPSs are often played online in multi-player situations, 
however, these holes are found even faster, and people will pass on this knowledge 
very quickly. FTPSs run the risk of becoming very repetitive, simply because even 
if you design a new game which changes the location, the enemy, and the weapon, 
the players are still just hunting enemies down and shooting them.

Therefore, FTPS games run the risk of becoming boring very quickly. AI en-
emies need to react much more to the personal playing style of their opponents to 
ensure game longevity. Enemies could keep track of various statistics to affect their 
gameplay style, such as the following:

The weapons the human uses most. Most people specialize, either because the 
damage of a certain weapon is high (such as the rocket launcher that players 
seem to love in the various Quake games), or because they have an affinity for 
a certain weapon and have practiced special techniques with it (such as the nail 
gun in the original Quake, which bounced around corners and could be really 
nasty if the player took the time to find spots to fire at that would bounce to 
commonly-tread areas of the map; or the devilish places people found to put 
Duke Nukem 3D trip mines).
The routes through the map the human uses. One popular method of playing 
these games is to learn a good route through the map that puts the player in 
contact with all the major powerups while keeping the player moving so they 
don’t get caught napping. The AI could discern these routes and either watch 
for the player along the route, or fire rockets and such down corridors that the 
human routinely uses, forcing the player to change his or her game.
The close-quarters combat style of the human. If the human always circle strafes to 
the left, for instance, the AI could use this to better dodge the oncoming fire.
The type of player the human is. This mostly refers to the level of movement that 
the human employs while playing. It usually goes from a high level of move-
ment (or a hunter type), to medium movement (or a patroller type), to almost 
no movement (a sniper, or what is known as a camper type).

Tracking other player statistics could lead you to differentiate AI play in 
other ways, but all of the above mentioned systems would lead to better, more 
human-like AI opponents. By knowing this type of information about the player, 
the AI opponent can fine tune how it looks for the player, how it attacks, and 



138 AI Game Engine Programming

how it can out-perform players that don’t mix up their playing style. By getting 
players to change their playing style frequently, we can force players to explore 
different ways to play, new weapons to master, and thus continue to further enjoy 
our games.

PERSONALITY

Even though the bots of today play well, and usually employ a minimum of out-
right cheating, they fall far short of having the kind of personality that players can 
sense when playing against another human. Especially when someone plays against 
a particular human opponent regularly, the player can get a sense of the other per-
son’s personality (aggression level, how rattled the other person gets under fire, 
does the opponent camp, etc.) and the range of the human opponent’s personality 
(for example, the opponent is usually even-headed, but in the final three minutes 
of a game, he or she goes berserk).

Bot “personality” has typically involved their weapons of choice, and their 
overall difficulty level. More personality would actually lead to a more immersive 
exchange, as players learn the ins and outs of the bot’s styles and tendencies. It can 
be very difficult to convey a bot’s personality, however, since player interaction is 
often limited to a short-duration exchange of gunfire. Obviously there’s a lot of 
tuning that needs to be done to make bot personalities work. One thing to consider 
would be to only fully work out personalities for sub-boss or boss level creatures 
that are either recurrent (meaning they come back several times after retreating 
from the fight before dying) or take such a spectacularly long time to kill that you 
can actually get their personality across during the fight.

CREATIVITY

Playing against humans, gamers can see the vast array of new and unique ways to 
use the weapons and environment that people have found. Many humans bounce 
around the map by jumping or using the backlash from weapons, and it makes 
them much harder to hit. An FTPS with a solid physics model (with few special 
cases, to allow for stable math) could either note human player trajectories and 
figure out how the human got there (by jumping and then firing a rocket sideways, 
to send the player flying high speed to another ledge), or could randomly try dif-
ferent ways of traversing a given game area and then tag their internal model of the 
level with these new ways of progression.

Although true creativity might be beyond the scope of an AI system, AI pro-
grammers could come up with a much richer degree of environment usage by the 
AI, and the overall effect would be that of a bot that “really knows the level well,” 
an affectation usually given to players that can move around the level in novel ways 
and attack their opponents by strange means.
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ANTICIPATION

One thing that good players employ all the time in FTPS games is anticipation. 
A player might watch an opponent go into a room, and because there is only one 
door, time the firing of an area effect weapon so that it will hit the player as he 
comes back out the door.

This would require the AI to keep a mental model of the other player, and estimate 
how long it would take the player to enter the room, go to whatever powerup made 
the player enter the room in the first place, and then come back out. The AI would 
then set up the shot, or a more personal ambush, to match the AI’s model of when the 
player will emerge. Shot anticipation would be a fairly advanced move, but if a human 
player truly wants to practice what online play is like, this is the type of AI opponent 
the player will need to acclimate to, since humans will use behavior like this.

A more mild anticipatory behavior would be to set up ambushes, either by 
reasoning that another player will use a certain doorway and lying in wait for the 
other player to come along, or by getting the attention of an enemy, running away, 
and waiting in some safe spot that the AI has scouted out earlier for the enemy to 
follow.

BETTER CONVERSATION ENGINES

Right now, the state of the art for FTPS AI talk-back is along the lines of canned 
one-liners that the AI shouts when it’s just killed a human player, or the player has, 
instead, killed the AI. Action movie cliches like “Enjoying lunch? I see you’re having 
the rocket surprise” or “Not your day, is it” kind of banter gets repetitive quickly 
and is almost never contextual or interesting. With a small grammar system and 
some semblance of a sentence engine, the AI could use more contextual shouts 
that actually work, thus drawing the player in by bringing a sense of realism. The 
bots used in classic MUD (Multi-User Dungeon) games such as Eliza or Julia may 
have much to offer here. Instead of generic canned sentences, an intelligent system 
would construct a snappy comeback using an ad-lib style template (that takes into 
account the weapon used, the length of the fight, the relative scoring, etc.), or pos-
sibly even a full blown AI system (like a decision tree) that takes into account large 
numbers of game perceptions, including player-to-player history, and carefully 
crafts something to shout at the player that will be contextually seamless as well as 
poignant and personalized.

MOTIVATIONS

Currently, AI FTPS bots have two primary motivations: to stay alive and to kill the 
player. Some don’t even care if they stay alive. But human players don’t fight like 
that. They get angry, sometimes with specific people. Or, they get rattled and retreat 
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for a while until they settle down. AI systems need to model this behavioral flex-
ibility, to mimic their human counterparts more truthfully.

Imagine AI bots that call for a temporary truce with the player, to team up on 
other human players, or that can’t stand campers (people who sit in hidden spots 
and snipe players from afar) and hunt them down exclusively. These types of more 
emotional behavior, combined with a bit higher verbal output, might just make 
them seem much more human.

BETTER SQUAD AI

Most of the squad-based games have relied on very simple team member com-
mands (cover me, follow, stay here, etc.). These types of commands are obviously 
easier to code, but were also used because the interface necessary to run a squad 
needs to be simple, so that it can be used quickly and efficiently during battle.

A context-based menu of possible answers to the current situation would be 
better, like playbooks for football. The commander could choose which one he 
wanted to use, and the squad would start it up. From there, the commander could 
direct single soldiers to do something different, or change the entire “play.”

With this system, the designers could implement a number of base strategies for 
any given incursion, custom tailoring squad formations, and the types of actions that 
each play entails. The human player could vary from this formula by directing certain 
soldiers to do other things, but these plays could be used to quickly set up each soldier 
with a workable plan. The different types of solutions presented to the player for each 
game situation might be attitude-based (aggressive versus defensive), goal-based (save 
ammo, spread out, etc.), or even time-based (use extreme caution versus run now). 
Thus, the type of commands employed by the human player would create the overall 
battle flavor. The player could experiment with the different solutions to find the one 
that he or she felt most comfortable with, as well as the types of formations that left 
the player open for more victories, or even more interesting game situations.

SUMMARY

FTPS games involve some fairly disparate types of AI programming, from simple 
creatures to deathmatch bots with personality and style. The mindless enemies of 
the genre’s roots have been replaced by intelligent systems that are capable of al-
most human-level play.

Early FTPS games set the stage for AI research to be done on their games by 
making most game code accessible and extensible; this led to user-made modi-
fications, or mods.
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Deathmatch bots were one of the mod types that brought another level of AI 
depth to the genre, by creating fully autonomous agents that explored the level, 
hunted players, used weapons and powerups intelligently, and generally acted 
like regular human players.
Regular enemies in a FTPS game refer to those implemented in the single-
player campaigns, either the mindless arcade-style enemies, or the more 
scripted story-following style of enemy.
Deathmatch AI is also required if you want to provide for people who don’t 
have access to an Internet connection, or just want to practice. Deathmatch AI 
allows anyone to play in a deathmatch setting against an opponent.
Cooperative AI bots have given some games an infusion of story and broken up 
the action by providing the player with human-style help during parts of the 
game, or by interacting with them in some way other than combat.
Squad AI refers to the systems that need to be in place for games in which the 
player is controlling more than one character, and the others need to be CPU-
controlled. The intelligence of these bots needs to be high, but the competence 
needs to be closely tuned, so that the player feels important, but not alone.
Pathfinding in FTPS games can be especially tricky because the environments 
are usually fully three-dimensional and can have very complex constructions. 
They also include a number of additional gameplay elements, such as ladders, 
elevators, teleporters, and the like that require pathfinding attention.
Spatial reasoning provides the AI-controlled characters with ways in which to 
find level-specific areas of concern, such as sniper points or good places for 
cover and visibility.
FSMs are put to work in FTPS games, but so are FuSMs because of the nature 
of inputs in FTPS games.
Messaging makes a lot of sense in this genre. Regular FTPS games can benefit 
from it because of the inherent event-driven gameplay (move, shoot, get hit, 
etc.), and the nature of a server-based online model. SCGs can also use the 
messaging system to coordinate information back and forth between charac-
ters easily.
Scripting is used in those FTPS games that are going for a more handcrafted feel, 
rather than the classic “we made the rules, and a bunch of levels” mentality.
By endowing our creations with even modest learning and opponent model-
ing, we stop the stale breaking down of gameplay into finding the best weapon, 
and using it repeatedly by getting the player to mix up the action a bit.
Creative solutions to movement and attack positions would give AI opponents 
a considerable advance toward true deathmatch intelligence.
Anticipation of impending events would allow AI characters to set up direct, 
as well as impromptu, ambushes by keeping a mental model of the possible 
future.
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Better conversation engines might change the canned shouts and taunts in 
today’s games to more context-based, and thus more realistic, banter.
Giving AI opponents the ability to change motivation might lead to advanced 
concepts, such as temporary truces, or to showing some sort of emotional 
flare-up.
The AI employed by most squad games is very simple, and could lend itself 
well to a contextual, quick command system that would lead to better-looking 
squad maneuvers and quicker control of the situation by the human.
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Platform Games8

Platform games are the primary staple of the console world. From the classic 
Donkey Kong to the modern epic Ratchet and Clank, platform games are one 
of the consummate gaming exercises and will most likely always be with us 

in some form or another.
Early platform games were mostly two-dimensional, single-screen, Mario Bros.-

style setups due to the limitations of system capabilities and memory. The main 
character starts on the bottom of the screen. He then has to navigate enemies and 
the environment using mostly jumping (hence the name, “platformer,” stemming 
from the need to leap from platform to platform). Platformers were very popular 
in the arcade world because they presented a new type of gaming challenge: timing. 
Before platformers, most arcade games were almost completely about recognizing 
(and memorizing) patterns, either shooters with patterns of enemies coming at 
the player like Galaga, or simple enemy patterns to be avoided like Pac-Man and 
Frogger. Platform games kept the patterned enemies (because the technical rea-
sons for using patterns hadn’t gone away), but now the player was also expected to 
precision-time jumps over enemies and from ledge to ledge to traverse the level and 
gain the summit.

Later, this concept was expanded into the scrolling platform game, which pushed 
the genre forward. The side-scroller is almost identical to the early platform game, 
but adds the notion of a continuing world, which scrolls by as the player runs for-
ward. Now, instead of an ascending single screen, the game offers an entire world 
of challenges that slowly reveal themselves as the player progresses into the level. 
Super Mario Bros., Sonic the Hedgehog, and Mega Man (see screenshot in Figure 8.1) 
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were influential games in this category, each spawning many sequels and hundreds 
of imitators.

In 1995, a PC game called Abuse was released by a company called crack.com, 
which later released the entire source code for the product. Abuse was an advanced 
two-dimensional scroller, with fully networked multi-player support, and an 
almost first-person/third-person shooter (FTPS) game feel. Listing 8.1 is a sample 
from the source code of the enemy AI in Abuse, written in the programming lan-
guage LISP. You will note that the basic setup for the AI of this creature (in this case, 
an ant) is a finite-state machine (FSM) implemented as a select statement with 
various states.

FIGURE 8.1 Mega Man screenshot. © Capcom Co., Ltd. Reprinted with permission.
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LISTING 8.1  Sample LISP source code from an enemy in the side scroller Abuse.

(defun ant_ai ()

      (push_char 3Ø 2Ø)

      (if (or (eq (state) flinch_up) (eq (state) flinch_down))

      (progn (next_picture) T)

      (progn

      (select (aistate)

          (Ø   (set_state hanging)

               (if (eq hide_flag Ø)

               (set_aistate 15)

               (set_aistate 16)))

          (15 ;; hanging on the roof waiting for the main character 

           (if (next_picture) T (set_state hanging))

           (if (if (eq (total_objects) Ø);; no sensor, wait for guy

               (and (< (distx) 13Ø) (< (y) (with_object (bg) (y))))

             (not (eq (with_object (get_object Ø) (aistate)) Ø)))

               (progn 

                  (set_state fall_start)

                       (set_direction (toward))

                  (set_aistate 1))))

          (16 ;; hiding

           (set_state hiding)

           (if (if (eq (total_objects) Ø);; no sensor, wait for guy

               (and (< (distx) 13Ø) (< (y) (with_object (bg) (y))))

             (not (eq (with_object (get_object Ø) (aistate)) Ø)))

               (progn 

                  (set_state fall_start)

                       (set_direction (toward))

                  (set_aistate 1))))

          (1 ;; falling down

           (set_state falling)

           (scream_check)

           (if (blocked_down (move Ø Ø Ø))

               (progn

                  (set_state landing)

                  (play_sound ALAND_SND 127 (x) (y))

                  (set_aistate 9))))

          (9 ;; landing /turn around(gerneal finish animation state)

           (if (next_picture) T
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             (if (try_move Ø 2)

             (progn

               (set_gravity 1)

               (set_aistate 1))

               (progn (set_state stopped)

                  (go_state 2)))))  ;; running

          (2 ;; running

           (scream_check)

           (if (eq (random 2Ø) Ø) (setq need_to_dodge 1))

           (if (not (ant_dodge))

             (if (eq (facing) (toward))

             (progn

               (next_picture)

               (if (and (eq (random 5) Ø) (< (distx) 18Ø) 

                                        (< (disty) 1ØØ)

                    (can_hit_player))

                   (progn

                      (set_state weapon_fire)

                      (set_aistate 8))  ;; fire at player

                      (if (and (< (distx)1Ø Ø)(> (distx) 1Ø)

                           (eq (random 5) Ø))

                 (set_aistate 4)  ;; wait for pounce

                   (if (and (> (distx) 14Ø)

                    (not_ant_congestion)

                    (not (will_fall_if_jump)))

                    (set_aistate 6)

                 (if (> (direction) Ø)

                     (if (and (not_ant_congestion) (blocked_right 

                                              (no_fall_move 1 Ø Ø)))

                     (set_direction –1))

                   (if (and (not_ant_congestion) (blocked_left 

                                             (no_fall_move -1 Ø Ø)))

                       (set_direction 1)))))))

               (progn

                 (set_direction (toward))

                 (set_state turn_around)

                 (set_aistate 9)))))

          

          (4 ;; wait for pounce

           (if (ant_dodge) T
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             (progn

               (set_state pounce_wait)

               (move Ø Ø Ø)

               (if (> (state_time) (alien_wait_time))

               (progn

                  (play_sound ASLASH_SND 127 (x) (y))

                  (set_state stopped)

                  (go_state 6))))))

          (6 ;; jump

           (setq need_to_dodge Ø)

           (if (blocked_down (move (direction) -1 Ø))

               (progn

                  (set_aistate 2))))

          (8 ;; fire at player

           (if (ant_dodge) T

             (if (eq (state) fire_wait)

             (if (next_picture)

                 T

               (progn

                  (fire_at_player)

                  (set_state stopped)

                  (set_aistate 2)))

                  (set_state fire_wait))))

          (12 ;; jump to roof

           (setq need_to_dodge Ø)

           (set_state jump_up)

           (set_yvel (+ (yvel) 1))

           (set_xacel Ø)

           (let ((top (- (y) 31))

             (old_yvel (yvel))

             (new_top (+ (- (y) 31) (yvel))))

             (let ((y2 (car (cdr (see_dist (x) top (x) new_top)))))

               (try_move Ø (- y2 top) nil)

               (if (not (eq y2 new_top))

               (if (> old_yvel Ø)

                 (progn

                    (set_state stopped)

                    (set_aistate 2))

               (progn

                  (set_state top_walk)

                  (set_aistate 13)))))))
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          (13 ;; roof walking

           (scream_check)

           (if (or (and (< (y) (with_object (bg) (y))) 

                (< (distx) 1Ø) (eq (random 8) Ø)) 

               (eq need_to_dodge 1))  ;; shooting at us, fall down

               (progn

                  (set_gravity 1)

                  (set_state run_jump)

                  (go_state 6))

             (progn

               (if (not (eq (facing) (toward)))

                    ;; run toward player

               (set_direction (- Ø (direction))))

               (if (and (< (distx) 12Ø) (eq (random 5) Ø))

               (progn

                 (set_state ceil_fire)

                 (go_state 14))

             (let ((xspeed (if (> (direction) Ø) (get_ability

                                                    run_top_speed)

                    (- Ø (get_ability run_top_speed)))))

               (if(and(can_see (x)(- (y) 31)(+(x) xspeed)(- (y) 31) nil)

                   (not (can_see (+ (x) xspeed) (- (y) 31) 

                              (+ (x) xspeed) (- (y) 32) nil)))

                   (progn

                      (set_x (+ (x) xspeed))

                      (if (not (next_picture)) 

                         (set_state top_walk)))

                      (set_aistate 1)))))))

    

          (14 ;; cieling shoot

           (if (next_picture)

               T

             (progn

                (fire_at_player)

                (set_state top_walk)

                (set_aistate 13))))

          )))

      

      T)

In 1996, Mario64 came out, presenting us with the next chapter in platform 
game development: the fully three-dimensional platform game. Mario64 took 
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scrolling levels into the realm of a fully-realized, three-dimensional land, but 
somehow kept all the positive elements of its earlier brothers. This game is still 
the blueprint by which modern platformers measure themselves and serves as a 
model of great gameplay, beautiful camerawork, and a highly polished overall 
experience.

Today, platform games predominantly feature three elements: exploration (the 
need to figure out where things are hidden, and how to get there), puzzle solving 
(either through specific gameplay or through combining elements found in the 
world), and physical challenges (timed jumps, performing chains of specific moves, 
overcoming a time limit, etc.). Game designers in this genre are continually push-
ing the envelope of new gameplay mechanics, new types of challenges, and new 
ways to make this genre fun and engaging.

COMMON AI ELEMENTS

Platform games tend to contain many of the same AI controlled entities. These 
include: enemies, boss enemies, cooperative elements, and the camera.

ENEMIES

Enemies within platformers are typically simple, with basic behaviors, because 
enemies are usually considered little more than obstacles in the platform world. 
They complement the difficulty of the exploration challenges (for example, by 
being placed in the exact location that an inexperienced player might jump to, or 
by forcing an incoming player to then perform another immediate jump). In this 
way, placement of enemies becomes another level of tuning for designers because 
they can find the setups that lead to the precise difficulty level for which they are 
striving.

However, some enemies are more general, being either crafty or highly skilled 
(such as the little blue thieves in the Golden Axe games who are almost impossible 
to stop). In the Oddworld games, many of the enemies were actually invincible, at 
least to direct attack. Players had to find the way to disable these enemies, by affect-
ing the environment or another character, and thus indirectly removing the threat. 
Oddworld was almost an extended puzzle game, with each enemy being another 
puzzle that the player had to determine how to disarm.

But generally, platformers are more about physical challenges (jumping, climb-
ing, etc.), so the enemies sometimes ride in the back seat. Many games have also 
used the concept of enemies that are platforms, in which the player is walking on 
the backs of large enemies like stepping stones, but that doesn’t mean the enemy 
has to like it. Thus, the enemy can fight back, tip the player off, and so forth.
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BOSS ENEMIES

Modern platform games usually have large, scripted, end-of-level boss creatures. 
Most games use scripted patterns for the boss monsters (which the player will learn 
over time), and in addition, will usually force the player into performing some sort 
of advanced jumping challenge or other game mechanic exhibition (for example, 
blasting away pieces of the floor, so that the player’s available landing positions 
become less, or temporarily covering large portions of the floor with damaging fire, 
spikes, or explosions).

Boss enemies are extremely important to the platform game experience, as in 
all games that use them. They provide a break from the regular gameplay mechan-
ics and help with pacing; commonly, their large size and surprising abilities make 
for interesting game experiences.

COOPERATIVE ELEMENTS

A lot of platformers were used as marketing vehicles to push mascot characters 
onto the public in the form of action figures, TV shows, even cereal in some cases. 
Mario, Sonic, and Crash Bandicoot were all very popular players in the platforming 
world. Eventually some games also included a supportive character, such as Rush, 
the helper dog that was added to the later Mega Man games.

The support character is either under direct control of the user, or functions 
automatically, helping as needed. In the latter case, AI code must control this char-
acter, usually as secondary attacks, some form of powerup retrieval, or some com-
bination move that augments the gameplay. Consequently, the AI is usually not 
overly complex for these game agents and is mostly reacting to what the player is 
doing.

In some ways, you do not want an overly powerful helper because a helper that 
could do too much would eventually make the player feel less important. Most 
helpers are about 80 percent autonomous (meaning they run a small script or ele-
ment that reacts to the player), and the rest of their use is in their response to some 
kind of “action” key initiated by the player. Come here, pick me up, or go get that are 
all examples of a controlled callable action for which the player is allowed to use 
the helper.

CAMERA

Once platform games made the switch to three dimensions, they faced the prob-
lem that has felled many games involving precise positioning and environmental 
challenges in three-dimensional space: where to place the camera for the best view-
ing advantage. Today, with more dynamic environments and faster gameplay, this 
problem is even more pronounced.
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Some games have used the higher graphical power of the more modern game 
consoles to try to remedy this by having environmental elements that occlude vis-
ibility by becoming transparent, so the player can see through them to the action. 
Although this does help to some degree, it distances the player from the game ex-
perience by making the player feel like an observer to the action, rather than the 
main character. Clever camera code, and a tight integration with the level itself, 
can be used to create a camera system that can give players good visibility, while 
maintaining connection with the character. Camera AI is usually created with a few 
different methods:

Algorithmically placing the camera behind the main character toward his or her 
direction of travel (or some other vector). This leads to, at the very least, de-
pendable camera movement, and with camera-relative controls, allows the least 
amount of surprise movement by the human player (meaning, that the camera 
will not suddenly cut to a dramatically different angle to the player, and hence 
affect the direction of the controls). The problem with an algorithmic system 
is that it is very hard to use it to account for things like special terrain features, 
dynamic enemy placement, special moves that might propel the character very 
rapidly or in some strange direction, and so forth. In effect, an algorithmic 
solution helps with only one-half the problem. You need a good general solu-
tion, but also a means of approaching all the special cases that a game might 
confront because of gameplay mechanics or level design.
Laying down tracks of level data for placement and orientation. This method, 
usually used in combination with the first technique, involves the level designers 
placing a number of camera paths in the map. At a specific location within the 
map, the camera knows where to position itself and orient toward by taking cues 
from the map data. This leads to a much greater use of environmentally-affected 
camera angles, and can create dramatic camera shots that give the player a sense 
of “being there.” It can also help the user determine the direction of play within 
a particularly large or open world. For instance, in your game, you might have a 
very deep pit with many platforms that a player would have to drop down onto. 
Using a camera system like this one, the camera could help the player to know 
the general direction of the next platform, by biasing the position of the camera 
as the player approached the edge of each stage.
A free camera mode. Usually meaning a “first-person” mode, in which the 
player has direct control of the orientation of the camera, looking out from 
the eyes of the main character. Most games include this mode because of the 
frustration of getting the other two modes to be all-inclusive.
 Even in games in which the automatic camera almost never fails, some devel-
opers give the player this option anyway, so that the player can pause occasionally 
and appreciate the game environment (or just feel more in control).
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USEFUL AI TECHNIQUES

Platformers handle their AI tasks just like any other game type: by matching the 
challenges to the methods best suited to help organize and formulate solutions. The 
techniques most useful to platform games include: finite-state machines, messag-
ing, scripting, and data-driven architectures.

FINITE-STATE MACHINES (FSMS)

State machines are useful in platform games as well. These games have very straight-
forward enemies, with usually only a few behaviors exhibited by any one enemy 
(except bosses, perhaps, although boss enemies in platformers are usually very
state- or script-based). Also, these behaviors are usually very crisp, meaning there is 
little gray area between them. The ghouls in Maximo, for example, are either walk-
ing very slowly in some random direction, or they see the player and charge directly 
toward that player very quickly.

MESSAGING SYSTEMS

The puzzle-style nature of most platform games lends itself well to using event 
messages to notify enemies and environment elements about game-state change 
because the game would have to poll for an undisclosed period as the human fig-
ures things out, which is a wasteful way to do things. Thus, puzzle elements could 
themselves send out an event that would advance the state of the game. For in-
stance, after the game hero has found the magic green button on top of the roof of 
the correct house and pressed it, an event is triggered so that the gate blocking the 
green cave will retract.

SCRIPTED SYSTEMS

Because of the pattern-based nature of boss enemies, not to mention some normal 
game enemies, scripting is a natural way to craft the AI for these elements. Scripting 
allows for a very fine control to be exerted over the flow of a particular part of the 
game, say that of a boss encounter, or an in-game cinematic sequence that gives the 
player information.

Some of the more complex platformers have an in-game help character that 
follows the player around for the first level and shows the player how to perform 
all the moves and special powers that the main character has at his or her disposal. 
Scripting would allow you to add all of this helper character’s actions, as well as dia-
logue, and tie it into the control scheme of the game so that the helper will wait for 
the player to practice the moves, explore on his or her own, or even ask questions 
and have the helper repeat part of the script.
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DATA-DRIVEN SYSTEMS

The camera for three-dimensional platformers can become very complex. If a suit-
able algorithmic camera solution cannot be found, camera paths must be con-
structed within the level editor for these games. Designers can also do a lot of level 
tuning when they populate the levels with enemies, by knowing the patterns of 
movement for different types of creatures, as well as the effect these placements will 
have on the human traversing that section of the level. These games can become 
very data driven if enough forethought is put into the types of challenges the de-
signer wants to incorporate, as well as the limits of the level editor and the control 
needed by the designers for level tuning.

EXAMPLES

Classic platform games like Donkey Kong, Castlevania, Sonic the Hedgehog, Mario 
Bros., and Metroid are some of the big names in the platform game hall of fame. 
Castlevania was almost too hard. Sonic was almost too fast. Samus, the main char-
acter from Metroid, was definitely “too cool.” Consumers loved them all. Each of 
these games used state-based enemies, often singular-state enemies. Usually, these 
enemies employed simple movement patterns (such as moving back and forth be-
tween two objects), or they would “hide” until a player got close, and then they’d 
jump out at the player. Many of these games used the concept that enemy contact 
hurts the player, so enemies rarely had more to their attack strategy than ramming 
into players, although some did have simple projectiles.

The next generation of platform games offered titles like Mario64 (the three-
dimensional platformer, in which many of the techniques later used by other com-
panies were all but invented by Nintendo’s prime game designer Shigeru Miyamoto), 
Spyro the Dragon, and Crash Bandicoot. The jump to three-dimensional play provided 
new challenges because of the added complexity of moving within three-dimensional 
worlds, but also brought a new evil: the bad camera system. 

The games continued to use most of the earlier styles of AI implementation, 
with patterned or scripted enemies, and slightly more complex level bosses. Sadly, 
during both the two- and three-diemnsional eras of platform games, many plat-
formers became showcases for cutesy new characters instead of gameplay. Gamers 
were inundated with edgy, slightly bad attitude and somewhat cute animals of all 
kinds, trying to hawk games that were derivative at best. Lucky for us, the industry 
got over that hurdle.

Today, platform games are doing better than ever. Platform game players 
are being given stunningly cinematic games with increasingly devious puzzles, 
smarter enemy AI, and more interactive and intricate level design. Games like 
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Ratchet and Clank, Jak and Daxter, and Super Mario Sunshine continue to push 
the envelope. Some of these games still use simple FSM and scripted AI, but aug-
ment it when necessary with smarter opponents and clever sidekicks. The camera 
systems of these modern games, although still somewhat problematic, continue 
to get better, with heavily-layered camera systems getting closer to always point-
ing in the right direction, while maintaining and enhancing the overall feel of 
the game.

AREAS THAT NEED IMPROVEMENT

Platform games have been around the block a good many times. But even a mature 
genre needs a push now and again. Two areas where platforms can always be im-
proved are camera work and help systems.

CAMERAWORK

As good as some games’ cameras are, very few games have had total success with 
camerawork, partly because players have different expectations for the camera and 
partly because it is a difficult problem. In some ways, the camera needs to some-
how anticipate the movements of the player (or even the intent to move, which 
is even more impossible) and move the camera to show the player what is in that 
direction.

The problem is also very game-specific. Characters that can jump a long way 
need to see farther out; characters engaged in heavy combat need to have bearings 
so that they can land hits on a nearby enemy, who may be returning attacks with 
much better accuracy.

In the future, we may even get a specialized peripheral, such as the microphone 
headset being used in some games today with voice recognition, except that it 
would track certain movements to help with the camera. In some ways, this was 
the promise of head-mounted virtual reality displays, but they proved far too costly 
and unwieldy when they first came out in the early 1990s.

HELP SYSTEMS

Some platformers are simply too difficult for some people, or a given location 
puzzle can stump a player for an overly long time. This kind of slowdown in the 
flow of the game can ruin the experience very quickly. If the game could discern 
that the human is stuck, and needs help, it could possibly offer hints to get the 
player moving again. This could be an option that the player could turn on or off, 
so that diehard players who want to find everything themselves wouldn’t have the 
surprise ruined for them. But casual gamers might appreciate the helping hand 
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after spending four hours trying futilely to make an impossible jump because they 
don’t realize that they need to walk around the corner and use the invisible cata-
pult to get across the chasm.

The goal-oriented nature of these games would make it possible to have a help 
manager that could be goal-based. Thus, each small section of gameplay could keep 
track of the attempts being made by the human to solve that atomic portion of 
the game, and note failures. In addition, puzzles of the same type later in the game 
could respond more quickly because the game passes on the information that the 
player had difficulty with similar earlier challenges.

But a “watchful eye” isn’t the only way that you can handle help. Your plat-
former companion could specifically watch out for you, offering hints and tips to 
make things flow more smoothly. Just make sure you don’t turn your sidekick into 
the helper paperclip from Microsoft Word.

Again, this kind of system would have to be a difficulty setting (which could be 
turned on or off, or be some level of help), but could be turned on by default in the 
first “training” level, or whatever system your game will use.

SUMMARY

Platform games have gone from simple affairs, to grandiose living worlds, all within 
ten years. Even with this vast change in the landscape, many companies have man-
aged to keep the fun formula intact, with careful adherence to the genre’s strengths 
and by minimizing the effect on all the additional technology to the gameplay 
mechanics with clever controls and good AI systems.

Most enemies in platform games are very simple, with patterned or simple 
movements, to facilitate the fact that killing enemies is secondary to the physi-
cal challenges of the game.
Boss enemies are generally much larger, and more powerful, but are generally 
still scripted. The trick is to discover the pattern, then use it against the creature 
to beat it.
Cooperative elements in platform games are more like semi-intelligent powerups, 
in that they usually just augment the main character.
The camera system, if the game is three-dimensional, is vital to the overall 
quality level of the game because seeing the right thing at the right time is 
complicated heavily by the bigger and more open worlds. Techniques involving 
algorithmic solutions, camera tracks laid down in an editor, and a free-look 
camera are typical methods of approaching the problem.
FSMs are used heavily in these games because of the simple nature of the AI 
enemies and such.
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Messaging systems make sense in this genre because of the event-driven nature 
of the puzzles and interactions.
Scripting will aid in the creation of the patterned movements of enemies, and 
give in-game, cinematic events a means by which to tailor custom animation 
and audio sequences.
Camerawork needs to strive toward giving the player a system with the best 
angle, without sacrificing control.
Help systems could be implemented, to give hints (or outright aid) to players 
who are stuck on a puzzle or physical challenge, if they so desire it. This will 
help frustrated players, but does require a significant amount of AI to achieve.
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Shooter Games9

The term shooter games refers to the fairly open genre encompassing classic 
shooters (static as well as horizontal or vertical scrolling) and the modern 
variation, which is played using a light gun. Most of these types of games 

use simple AI or patterns for their enemies. The trick to any given game level is 
finding the enemy patterns (or AI weak point) and exploiting that knowledge to 
reach the next level or enemy. Some shooters throw enough enemies at players that 
even if players know the pattern, survival is still questionable.

Shooters usually involve a spaceship, or some other kind of character, who faces 
monstrous waves of enemies that come at the player in patterns. The player kills as 
many enemies as possible while avoiding (or in some light games, ducking behind 
cover) the enemy’s incoming shots. Along the way, players pick up powerups and 
fight bosses (which tend to be massive affairs in these games).

Simple control schemes are generally the law of the land; players usually can’t 
look down to find a button in the middle of a sea of enemy bullets. A notable ex-
ception was Defender II: Stargate, a truly classic horizontal shooter, that had no less 
than seven controls: the one axis up/down joystick, thrust, reverse (to turn around), 
a hyperspace button (which randomly teleported a player), a shoot button, an “in-
viso” button (which was an invincible shield of sorts), and a smartbomb button 
(which killed all the on-screen enemies). The game was devilishly hard and was 
made even more so by the nature of the control scheme. But it was a gigantic hit 
and continues to be a classic favorite. Again, the rule seems to be that if the game is 
good enough, people will take the time to learn how to play it well.

In This Chapter

 Common AI Elements
 Useful AI Techniques
 Exceptions
 Examples
 Areas That Need Improvement
 Summary
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Shooters originated in the arcades, and although they have made a decent 
showing on the various home consoles, they never really found a huge following 
within the personal computer world.

An interesting exception to the PC rule is that numerous independently-made 
shooters can be downloaded from the Web. Many game designers get their start by 
home programming a two-dimensional shooter of some sort. This is the kind of 
game that one person can still program on his or her own (possibly with some help 
on the art). Listing 9.1 shows some of the enemy AI code from the open-source 
game Wing, which the author (Adam Hiatt) jokingly mentions is a recursive acro-
nym that stands for “Wing Is Not Galaga.” Notice that Adam’s game uses a simple 
implementation of a finite-state-based AI system, in which he has various behav-
iors written (Attack_1 through Attack_5), and the enemies cycle between them in 
patterns.

LISTING 9.1  Sample AI code from Wing, by Adam Hiatt. Licensed under the GNU.

//=====================================================================

void EnemyTYPE :: UpdateAI ( int plane_x, int plane_y )

{

    EnemyNodeTYPE * scan = enemy_list;

   for (; scan != NULL; scan = scan -> next)

   {

      if ( scan -> health <= 0 && scan->explode_stage ==

                                       ENEMY_EXPLODE_STAGES - 1 )

        DeleteNode ( scan );

      else

      {

         if ( scan -> attacking )

         {

            if ( (scan -> xpos >= plane_x && scan -> xpos < plane_x 

                  + PLANE_WIDTH) ||

                 (scan -> xpos + EnemyWidths [scan->TypeOfEnemy] >= 

                  plane_x && scan -> xpos + EnemyWidths [scan->

                  TypeOfEnemy] < plane_x + PLANE_WIDTH))

            {

                if(timer - scan -> TimeOfLastFired > BULLET_PAUSE && 

                     (plane_y > scan -> ypos + EnemyHeights [scan->

                     TypeOfEnemy] && timer- scan->TimeOfLastFired >= 

                     BULLET_PAUSE))

                {

                    scan -> TimeOfLastFired = timer;

                    enemy_bullets.Fire (scan -> xpos, scan->ypos, 

                                  XBulletVelocities [scan->weapon], 
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                                        -(YBulletVelocities [scan->

                                        weapon]), scan->weapon );

                }

            }

           switch ( scan->state )

          {

                case ATTACKING_1 : Attack_1 ( scan );

                                         break;

                case ATTACKING_2 : Attack_2 ( scan );

                                         break;

                case ATTACKING_3 : Attack_3 ( scan,plane_x );

                                         break;

                case ATTACKING_4 : Attack_4 ( scan ); 

                                         break;

                case ATTACKING_5 : Attack_5 ( scan );

                                         break;

                case ATTACKING_6 : Attack_5 ( scan );

                                         break;

                default          :       break;

          }

          scan -> state_stage ++;

          if ( (scan -> ypos < -8Ø || scan -> ypos>SCREEN_HEIGHT) ||

               (scan -> xpos + EnemyWidths[scan->TypeOfEnemy] < Ø ||

                scan -> xpos > SCREEN_WIDTH ) )

          {

              scan -> attacking = false;

              num_enemies_attacking —;

          }

       }

     }

   }

}

//==================================================================

void EnemyTYPE :: Attack_1 ( EnemyNodeTYPE * enemy )

{

    if ((enemy->xpos >= SCREEN_WIDTH - 75 && enemy->dx > Ø )|| 

       (enemy->xpos <= 5 && enemy->dx < Ø))

        enemy->dx = -(enemy->dx) ;

    else if ( enemy -> state_stage % 2Ø == Ø )

    {

       if( enemy->xpos < SCREEN_WIDTH / 2 )

       {

          if ( enemy -> xpos <= 16Ø && enemy -> dx < Ø )



160 AI Game Engine Programming

              enemy->dx /= 2;

          else if ( enemy ->dx < 8 && enemy ->dx > -8 )

              enemy->dx *= 2;

          if ( enemy->dx == Ø )

              enemy-> dx = 1;

        }

        else

        {

            if ( enemy-> xpos >= SCREEN_WIDTH-16Ø && enemy-> dx > Ø ) 

                enemy->dx /= 2;

            else if ( enemy ->dx < 8 && enemy ->dx > -8 )

                enemy->dx *= 2;

            if ( enemy->dx == Ø )

                enemy-> dx = 1;

       }

    }

    enemy->ypos += enemy->dy;

    enemy->xpos += enemy->dx;

}

//==================================================================

void EnemyTYPE :: Attack_2 ( EnemyNodeTYPE * enemy )

{

    if ( enemy -> ypos == INIT_ENEMY_Y )

   {

    enemy -> dy = 4;

        if ( enemy -> xpos < SCREEN_WIDTH / 2 )

        enemy -> dx = 3;

        else

            enemy -> dx = -3;

   }

   if ( (enemy -> ypos) % 16Ø == Ø)

        enemy->dx = -(enemy->dx);

    enemy->ypos += enemy->dy;

    enemy->xpos += enemy->dx;

}

//==================================================================

void EnemyTYPE :: Attack_3 ( EnemyNodeTYPE * enemy, int plane_x )

{

    if ( enemy -> ypos == INIT_ENEMY_Y )

    {

        enemy -> dy = 6;

        if ( enemy -> xpos < SCREEN_WIDTH / 2 )
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            enemy -> dx = 3;

        else

            enemy -> dx = -3;

    }

    else if ( enemy -> ypos > 175 )

    {

        if ( enemy -> dy == 6)

        {

            enemy -> dy = 4;

            if ( enemy -> xpos > plane_x  )

                enemy -> dx = -1Ø;

            else

                enemy -> dx = 1Ø;

        }

        if ( enemy -> state_stage % 2Ø == Ø )

            enemy -> dx /= 2;

    }

    enemy->ypos += enemy->dy;

    enemy->xpos += enemy->dx;

}

//==================================================================

void EnemyTYPE :: Attack_4  ( EnemyNodeTYPE * enemy )

{

    if ( enemy -> ypos == INIT_ENEMY_Y )

    {

        enemy -> dy = 4;

        if ( enemy -> xpos < SCREEN_WIDTH / 2 )

            enemy -> dx = 3;

        else

            enemy -> dx = -3;

    }

    if ( (enemy -> ypos) % 16Ø == Ø)

        enemy->dx = -(enemy->dx);

    if ( enemy-> ypos > Ø )

    {

        if ( enemy -> state_stage % 4Ø == Ø )

        {

            enemy-> dx = rand() % 13;

            enemy-> dy = rand () %13;

        }

        if ( enemy->dx > 7 )
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            enemy->dx = -rand ()%7;

        if ( enemy->dy > 7 )

            enemy->dy = -rand ()%7;

   }

   else

        enemy-> dy = 4 ;

   enemy->ypos += enemy->dy;

   enemy->xpos += enemy->dx;

}

//==================================================================

void EnemyTYPE :: Attack_5  ( EnemyNodeTYPE * enemy )

{

    if ( enemy -> ypos == INIT_ENEMY_Y )

    {

        enemy -> dy = 4;

        if ( enemy -> xpos < SCREEN_WIDTH / 2 )

            enemy -> dx = 3;

        else

            enemy -> dx = -3;

    }

    if ( (enemy -> ypos) % 16Ø == Ø)

        enemy->dx = -(enemy->dx);

    if ( enemy-> ypos > Ø )

    {

        if ( enemy -> state_stage % 3Ø == Ø )

        {

            enemy-> dx = rand() % 13;

            enemy-> dy = rand () %13;

        }

        if ( enemy->dx > 6 )

            enemy->dx = -rand ()%6;

        if ( enemy->dy > 6 )

            enemy->dy = -rand ()%6;

   }

   else

        enemy-> dy = 3 ;

   if ( enemy->xpos + enemy->dx < Ø || enemy->xpos + enemy->dx +

        EnemyWidths [enemy->TypeOfEnemy] > SCREEN_WIDTH )
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        enemy->dx = -(enemy->dx);

     

    enemy->xpos += enemy->dx;

    enemy->ypos += enemy->dy;

}

COMMON AI ELEMENTS

Shooters typically employ a few classic categories of AI-controlled agents: enemies, 
boss enemies, and cooperative elements.

ENEMIES

Shooter enemies are usually distinctly patterned, so that players successively learn 
more of the pattern and get farther into the game. As such, the AI for these games 
is not usually intelligent at all. The light gun games are the same basic mechanic: a 
pattern of enemies will pop out from behind things, and players have to shoot them 
before the enemies shoot the players.

Some games do stray from this basic formula and make AI enemies that read-
ily seek the player or use almost first-person shooter/third-person shooter (FTPS) 
“bot-like” behavior, using decent intelligence to counter the human player. How-
ever, even games with advanced enemies generally keep the player on some kind of 
rail (a set path through the map, so-named because to the player it feels like he or 
she is in a slow traincar riding along on rails), which keeps the player constrained 
within the game world and allows quick opponents to duck off screen to escape the 
player’s attacks. Movement rails are used in both conventional shooters and light 
gun games, mainly to control pacing of the game (rails were originally created in 
arcade games to limit players’ progress to a certain rate during gameplay).

Other games use large, moving creatures (such as the dinosaurs in Jurassic Park: 
The Lost World) that occasionally display vulnerable spots that players shoot at. This 
behavior is basically the same as targets jumping out at players, but the increased 
on-screen movement of this system adds a lot to the look and feel of the game.

BOSS ENEMIES

Just like in role-playing games (RPGs), bosses in shooter games are frequently con-
sidered a treat that players find at the end of each level. Shooters usually go overboard 
on the boss enemies because of the fairly repetitive gameplay inherent in the genre. 
Good boss creations can sometimes make the experience of the average shooter much 
better and more memorable. As such, the AI system for the bosses is very important 
and should be flexible enough to encompass any sort of specialized needs that each 
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boss in the game requires. The bosses of scrolling shooters are usually huge, horri-
bly beweaponed monoliths, spewing bullets of every shape and size in all directions. 
They generally attack in waves (which translate to states as far as implementation is 
concerned), with phases of heavy attack, followed by a brief respite, followed by an-
other blindingly large gun blast, and then it all repeats again. Bosses are most times 
impervious to all damage, except for key locations (typically colored red, or glowing 
in some way), that may or may not also be state-based (in that they are sometimes 
covered by a protective shell of some sort).

During hectic boss battles, many scrolling shooters have what hardcore players 
refer to as safe zones, which are specific locations on the screen where a player could sit 
and never be hit by an enemy bullet, but still get an occasional shot at the boss. Some 
games embraced this, making the boss very difficult, almost impossible, and counting 
on the human to find the safe spot. Other games went the other way, discouraging safe 
zones by adding an occasional “homing” shot to ferret out nonmoving players.

COOPERATIVE ELEMENTS

Some shooter games include an AI-controlled drone or some sort of helper object 
that is either an integral part of the gameplay mechanics (like the TOZ in Gaires), 
or something that becomes a weapon and, once found, helps the player (the “Op-
tion” powerup in the Gradius games). These elements are usually pretty simple, but 
this determination is completely up to the game designer. You don’t want a drone 
doing too much of the work, however. You also don’t want to have to babysit the 
drone, since the player’s attention is really at a premium in this genre.

USEFUL AI TECHNIQUES

Shooters have pretty straightforward AI requirements, and the techniques used 
to conquer those requirements are equally straightforward. Finite-state machines, 
scripted systems, and data-driven architectures tend to be in heavy use when creat-
ing shooter games.

FINITE-STATE MACHINES (FSMS)

State machines continue their usefulness in this genre, mostly because of the simple, 
straightforward nature of the AI in most of these games. The organization of the 
games themselves (level-based), with an easy start period, followed by a buildup, 
and then a boss, also lends well to a state-based architecture. Many of the enemies in 
this genre have only one state, such as the main creature in the classic game Centi-
pede, which used a simple rule for its AI. It moved forward until it hit a mushroom. 
It then moved down one row and reversed its left/right direction. The only other 
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behavior it had was the speed increase if only one segment of the creature was left. 
A very simple rule, and the layout of the level provided the variance in the game-
play. In modern AI programming, this is called emergent behavior. The elements 
of Centipede combine, and the final behavior emerges from, the interactions. Back 
then it was just called good game design. Emergent behavior is a critical aspect of a 
game’s design as it often gets the player believing that the AI is actually “smarter” or 
“better” than it truly is—an important and very desirable conclusion!

SCRIPTED SYSTEMS

The boss enemies in shooters are usually immobile behemoths with one or two 
well-guarded vulnerable spots. Even if they are more mobile, they are most likely 
just scripted affairs. Boss monsters rarely react to the human’s actions (although 
they might slowly head in in a player’s direction, or jump on top of a player, or 
something along those lines). Rather, they tend to move in patterns while spitting 
out waves of bullets and other things to harm the player. These simple chains of 
behavior are textbook uses for a simple scripting system.

By adding in the ability to randomly branch within a script, you give a degree 
of variety to your pattern scripts (because each chunk will be executed in some 
random order). Scripts also make it very easy to tag specific enemy spawns with 
difficulty-level information (so that more enemies will attack the player in harder 
games, or from different angles and locations), so that the same script can be used 
for easy, normal, and hard levels of difficulty.

DATA-DRIVEN SYSTEMS

The general enemy AI for shooters (if following the patterned waves paradigm) is 
very open for a full data-driven structure. The basic types of enemy movement and 
firing patterns could be defined using code, and then a designer (or whomever) 
could quite easily set up a database table of when and where these patterns would 
appear in the levels, or they could actually be placed into some form of level editor 
that would then generate these appearance tables. In this way, the designer could 
tweak and tune the enemy content of the levels quickly and easily, without pro-
grammer help. Of course, new patterns might require programmer intervention. 
But even this could be set up in an editor if need be, by providing the designer even 
more basic building blocks to construct behavior patterns by him- or herself.

EXCEPTIONS

Zanac, an 8-bit Nintendo Entertainment System (NES) game from 1986, claimed 
to have “automatic level of difficulty AI code,” which would take into account the 
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player’s attack patterns and skill level. The implementation they used involved 
checking a few stats (like the player’s rate of fire, the player’s hit percentage, and 
how long the player had been alive) and then adjusting the number, speed, and 
aggression of enemies. If a player survived too long, killed every ship, and used a 
turbo button-enhanced controller, it would take this system about ten minutes of 
game playing to be at the point of filling almost the entire screen with bullets. This 
was a great concept: Make the game’s difficulty scale adjust with the ability of the 
player. Right? Not really. The player could dupe the system by not killing all the 
enemies, missing shots, and occasionally dying on purpose. All of which brings up a 
big failing of games that try this method of difficulty scaling: You must consider the 
performance of the human player, and you have to filter malicious or odd behavior, 
so that the system can’t be fooled into helping the AI defeat itself.

EXAMPLES

Shooters were some of the very first true videogames. Sure, the Pong types ran 
the roost for a few years, but then came 1978 and Space Invaders, what some con-
sider to the be first true videogame—complete with a score field, lives, and enemies 
that crept ever closer, firing away at the player. Over the years, shooter controls 
have grown more involved, the enemy patterns have grown more complex, and the 
powerups have grown more elaborate and powerful. But in all actuality, the very 
first video game of them all, Spacewar!, first built on a DEC PDP-1 in 1962, was a 
shooter game. This genre really has been here since the beginning.

Other games like Gradius, 1943, Raiden, and R-Type further defined the genre. 
They involved a player versus an appalling number of enemies, and the enemies 
only stopped coming so that the huge end boss could slip in and throw some death 
in the player’s way.

Along the way, players can pick up numerous powerups, which turned their 
simple ship into a bullet-producing factory. These games continued to use pat-
terned movement for their enemies. The advancing waves of enemy craft would 
move in back-and-forth patterns, various serpentine or circular shapes, or combi-
nation lines like a football play: Move straight across to the left until the enemies 
are lined up with the player, then double the enemies’ speed and charge at the 
player.

During the late 1980s and early 1990s, the popularity of shooters started to 
wane, but then along came the light gun game. Games like Duck Hunt, Wild Gun-
man (which even made its way into the second Back to the Future movie), House of 
the Dead, Time Crisis, and Point Blank (see the screenshot in Figure 9.1) are all great 
examples of this variant. These games were functionally just like their predecessors, 
but with a different input medium. Most still require players to dodge enemy fire 
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in some fashion, by requiring the player’s on-screen persona to duck behind cover, 
or to have the player shoot and move a character around (like Cabal). Most just 
required the player to shoot first. Almost all of them include powerups that give 
players more powerful weapons or more health and the like.

Some shooter games in the arcade arena have tried to get some additional 
gameplay out of the genre by using strange control methods. Robotron and Smash 
TV used two joysticks, so players could move in one direction and shoot in an-
other. Cabal and Blood Bros used a trackball that controlled the player’s weapon’s 
aim and that of a third-person character at the bottom of the screen. Players had 
to aim while dodging the enemy fire directed at this character. Light gun games 
follow this same trend, with games that use different guns (such as automatic 
weapons, large rifles, pistols, etc.), or specialty guns (such as Silent Scope, which 
included a small LCD screen to simulate a sniper scope; or even Brave Firefighters,
which puts players in control of a fire hose that they use to put out fires as they 
appear in the game).

FIGURE 9.1 Point Blank screenshot. POINT BLANK® © 1994 Namco Ltd., All rights reserved. Courtesy of 
Namco Holding Corp.
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AREAS THAT NEED IMPROVEMENT

Shooter games have fallen from grace since the early part of the new millenium. 
This is probably because the old methods of pattern recognition and finding boss 
vulnerabilities have been done so many times that the concept is wearing thin. The 
light gun variant brought about a temporary return to these kinds of games, but 
eventually this small gameplay addition will be tired as well.

Some of the additions that could potentially revive this tired genre in-
clude: actual AI, story-driven content, and additional innovation in gameplay 
mechanics.

INFUSION OF ACTUAL AI

Possibly, the gameplay could remain, but enemies with actual AI decision making 
could be written. Scrolling shooters with this type of AI would almost be more like 
FTPS deathmatches, with the essential shooter gameplay mechanic and the bot op-
ponents of the FTPS games. Making a shooter deathmatch game with online play 
and (because of the simplified two-dimensional playing field) possibly many more 
simultaneous players might be the way to continue the dynasty of shooter-style 
games on the PC.

STORY-DRIVEN CONTENT

A technique that has invigorated other aging genres is to inject the gameplay with 
elements of drama and tension by winding the game through an elaborate single 
player, story-driven experience. Games like Half-Life almost single handedly saved 
the FTPS game, and the Grand Theft Auto series really gave racing games a boost. 
There are definitely some that would say the Star Control games were some of the 
most compelling games ever to grace our joysticks. This technique has proven itself 
again and again to take gameplay mechanics that have been around forever and re-
ally make them feel new again.

INNOVATIVE GAMEPLAY MECHANICS

Just like any genre, there is always a balance to be kept between keeping the 
control scheme “standard” for the genre, so that old fans will be able to pick 
up your new game and learn quickly, with infusing fresh gameplay mechanics 
into the game in an attempt to evolve the genre as well as bring in new play-
ers. Shooters have to become a bit riskier with this balance, and try out a few 
new things, since more of the same appears to not sell well. People are ready 
to try something new, while still playing a shooter, and we should provide it 
for them.
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SUMMARY

Shooter games are an old genre and are starting to seem stale because of the lack 
of innovation in gameplay and content. The light gun variation gave the genre 
additional fuel for a while, but the shooter game needs something new to continue 
to be a viable genre.

Enemies in shooter games are patterned; the object is to figure out the pattern 
to get further into the game.
Boss enemies are considered a treat and are very important elements of the 
shooter genre.
Cooperative elements are usually advanced powerups that involve additional 
gameplay techniques.
FSMs and/or data-driven AI are usually the methods used in shooters. The 
simple nature of the AI-controlled enemies, coupled with the fact that each 
level of a shooter is usually one long, scripted pattern of appearing enemies, 
lends well to these two approaches.
Either more complex FSMs, or a full-scripting system might be useful for the 
larger boss enemies.
An infusion of actual AI techniques, story-driven content, and innovative new 
gameplay mechanics could possibly liven up this genre; a possible direction might 
be creating AI-controlled bots capable of fighting the player in a deathmatch-style 
mode of play, except within a shooter gameplay world.
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Sports Games10

Sports games have been a part of the video gaming world since its advent. 
Technically, Pong was a tennis game. The combination of instantly recogniz-
able gameplay (everybody knows the rules to your game) combined with 

head-to-head action gives sports games a mass appeal that many other genres can 
only dream of. Coupled with a sea of rabid fans that buy perennial titles in multiple 
sports, the genre has become the money-making enterprise for companies that can 
capture the minds of sports gamers.

AI has become increasingly important in sports games. Early sports games 
were like action games, in that players learned the patterns exhibited by the other 
team and exploited them to win the game. Remember back to the handheld LED 
football games, where players could score a touchdown easily by steering their red 
dot around the “defenders” very quickly and without stopping. If players were fast 
enough, they could keep going for a very long time before the defense would react. 
This kind of system is no longer acceptable.

Today’s sports gamers want the computer opponents to play like they do in 
real life, with intelligence, quickness, and a modicum of style. Games where the AI 
opponents are merely more powerful, or employ other forms of “cheating” using the 
stats of the opponents, are quickly called out for their unfair number-juggling ways 
and are just as quickly taken back to the store.

Most competitive sports games fall into two basic categories:

 1.  Fluid gameplay sports. Sports like soccer, hockey, or basketball, in which 
the game is quick, dynamic, and continues for long periods with few or no 
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stops. The nature of these games’ constantly-changing playfield conditions 
mean that even the simplest strategies need to be watched closely, to de-
termine when a given play (a series of coordinated movements designed to 
score on the other team) isn’t working, and recover gracefully by respond-
ing to the next set of game conditions. State-based AI tends to break down 
in these types of games because so many states are connected to other states 
that a spider web results instead of a nice flow diagram. State hierarchies 
help with this problem, but the structure of working hierarchies tends to 
be anything but intuitive, as game designers tend to have more difficulty 
breaking things into tree structures instead of state-based structures.

 2.  Resetting gameplay sports. These are games that stop and reset after a set 
event or time, such as football and baseball. The AI team in this style of 
game gains the benefit of being able to frequently reset and start from 
scratch, so the organization of the AI system can be designed with this in 
mind. This type of game lends itself much better to a state-based system 
because the sport itself is divided nicely into distinct game-flow states.

One benefit of working on the AI engine for a sports title is that the game is 
usually fully designed before production starts. At least, the basic game you are 
trying to model is. If you’re making a basketball derivative that uses robots and 
weapons, you’re somewhat on your own. But a straight sports simulation has the 
advantage of a vast amount of information about how to play a successful game, 
with years of research and player statistics to back it up.

However, this strength is also a profound weakness. Everywhere you look, there 
are sports people. People who eat, drink, and breathe these games. People who know 
all the stats, follow their teams, and are very passionate about the game and the 
players. These are the kinds of people who buy sports games in the first place. The 
primary audience of your game is armed with this vast array of intimate knowledge 
of the sport, so it places great pressure on the developer. If you are making a pure 
simulation, you had better do it well. Someone who plays your game will know if 
the behavior he sees a player exhibit would never happen in real life. Some of the 
players that your game might be trying to model are celebrities, and their actions 
and performance level is a signature that people either recognize being correctly 
represented by your system, or not. Getting this wrong will greatly impact the feel 
and believability of your game.

COMMON AI ELEMENTS

Sports AI is actually quite complex, and as such there are quite a few tasks that need 
intelligence to solve when trying to simulate the workings of a professional sport. 
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These include: coach- or team-level strategic AI, player-level AI, pathfinding, cam-
era, miscellaneous elements, and mini-games.

COACH- OR TEAM-LEVEL AI

Consider coach- or team-level AI the strategic AI found in real-time strategy (RTS) 
or chess games. High-level AI makes decisions, such as which play to call, or to sub-
stitute a player because he’s in foul trouble and the smart coaching move would be 
to save the player for the last quarter. Without this level of a sports game AI system, 
the gameplay of the team can seem random, or simply without an overall purpose. 
Which is, of course, exactly the case.

The team layer encompasses whole team-level decisions, but might also 
handle slightly smaller tasks that still involve more than one player (in a coordi-
nating fashion), such as a handoff in football or a player setting an offensive pick 
for the ball handler in basketball. Usually, this level in the system uses some kind 
of shared data area (such as a blackboard system, or a team singleton class) that 
encapsulates the workings of the team level, and also provides a central place for 
the various other game elements to reference when they need access to the team 
decisions.

A common mistake when coding this section of a sports game AI system is to 
not break down the tasks or use any kind of attribute data at this level. Most sports 
games make almost constant use of attributes when working at the player level (so 
that some hit the ball better than others, or are much faster), but this same type of 
thinking should be used when coding the team level. Using team-level attributes 
and overall goals, the same system can also simulate the various ways that particular 
teams play the game. Team personality is particularly important in games in which 
the coach (the physical person himself) is one of the more important elements in 
determining how a team plays. College basketball is a prime example. The players 
are good but inexperienced, so the coaches call almost all the plays and strategies. 
Two college teams might have wildly different play styles, even though the players 
on each team have similar skill levels.

PLAYER-LEVEL AI

At the player level, AI decisions are concerned with the more personal, tactical be-
haviors that involve just the player: making a quick juke move (“juke” is a basketball 
term referring to a fast movement meant to throw your defender off balance so that 
you can quickly change direction and leave the defender behind) to try and evade 
the defender, leading off from first base, or just the way that the player catches a 
ball. The decisions and behaviors coming out of this layer are heavily based on the 
personal attributes of the particular player involved, so as to be a reflection of his 
real-life counterpart (if any).
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By perturbing the behavior of the AI with real statistics, human players will 
feel like they are playing with a character commensurate with the skill level of the 
real sports player. In this way, the AI of sports games must include a large element 
of simulation. You don’t want to design a game in which everybody is a superhero. 
Instead, players who are bad passers should actually miss more often, and poor 
defenders should break down and allow the offensive players to perform well more 
frequently.

The player level of an AI engine is actually more like two separate systems: 
the tactical decision-making part that decides upon a behavior, and selection of a 
specific animation once the specific behavior has been assigned (see Chapter 25, 
“Distributed AI Design,” for more on this). As an example, let’s look at the thought 
process behind trying to get open for a pass in football.

The strategic decision-making system decides that it wants a particular player 
to get open for a pass. The player in question has a defender watching his every 
move, keeping him from easily doing so. The player must juke in order to shake off 
his defender. So, the type of juke move to play (based on attributes, personal prefer-
ence, and defensive match-up) and the direction of movement (calculated because 
of proximity to other players and court boundaries, as well as court position in 
general) are determined.

The animation selection process would then take this behavior data and use it 
to determine the exact animation that the player will use to juke. Other factors that 
the animation layer will account for: the type of player (big, small, fast, showy, or 
some signature move), the speed of the player, the direction change (small changes 
might just rotate the player, bigger changes necessitate turnaround-type transition 
moves), some randomness so that the same animation doesn’t play all the time, and 
many other factors, depending on the behavior.

Complex animation selection can sometimes become a secondary step of al-
most every action the player does in sports games. Many sports titles use motion-
captured animation for most moves in the game. “Motion capture” refers to the 
technique of using a setup involving a special camera arrangement and a live actor 
wearing a custom suit to scan specific bobdy moves directly into animations for 
use in a game. Motion capture provides the signature moves of the stars, and shows 
the richness of secondary body movement (which is notoriously difficult to hand 
animate, and as such is usually only caught with motion-capture techniques). For 
some moves (such as football end zone dances or basketball dunks), players de-
mand a huge variety of animations because they become the in-game taunts that 
allow players to rub their victory in the face of their opponents.

With this flood of available animations for a given behavior, systems must be 
put in place that can accurately pick the most contextually correct animation from 
the large number of available animations using current game conditions. General-
ized data-driven animation selection techniques (such as table-based or scripted 
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systems) can be used to describe the links between the attribute data (as well as 
spatial, preferential, and any other determinants) and the various animations for 
each action. This can vastly improve the overall organization of your AI and limits 
duplicate code by using data-driving methods. This approach also makes it easier 
to expand or add to animations with future update packs or add-ons, an important 
consideration when dealing with season-to-season sports.

Animation selection is not generally considered purely part of the AI system 
because the human player requires this same functionality when performing the 
player behaviors. However, the process is generally delegated to the AI programmer 
because of the high level of context-sensitive determination involved (meaning that 
process can be unique on a behavior-by-behavior basis). General approaches can 
quickly make your game look bland or inappropriate. The kinds of variables and 
factors that you must take into account to make correct animation selection can 
overlap considerably with the overall AI decision-making requirements.

PATHFINDING

Finding good movement paths during the frenzy of a sports game can be truly 
frightening. Sure, the number of characters visibly on screen is limited, and the 
environment is usually free of static obstacles (although not always, you do have a 
large net in hockey and soccer), but the dynamic obstacles (the other players and 
possibly a referee) are in almost constant motion, making traditional path planning 
too slow and cumbersome. Lightweight, CPU-optimized methods must be used to 
make players move around each other as they do in the real game.

Navigation in most sports titles also requires game-specific information to be 
considered when choosing paths. For example, in basketball, if the player’s team is on 
offense, the player will not want to run right in front of the ball holder if it can be 
helped. Even though the player has technically avoided the ballholder, the player has 
also cut off the ballholder’s movement and probably even caused a traffic jam right in 
front of the ballholder, which is not desirable. In football, which has even more rules of 
this type, finding good paths (or closing them) is actually a major part of the game.

CAMERA

The camera system for a modern sports game usually has two very conflicting 
goals: 1) to show the action in the best possible way to facilitate good gameplay, 
and 2) to look like TV broadcast sports games. These two goals focus the kinds of 
camera angles, cuts, and movement styles that can be used with the game, while 
still being playable. The balance of these two goals can only be determined by 
the design of the specific game. Are you shooting for the experience of “being the 
player”? Then you could probably experiment with different camera angles that 
are almost first-person or heavily skewed toward a certain player’s perspective. 
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Are you trying to get the human to feel like he’s “at the game”? Then you’ll want 
to expand your camera focus, giving the human a wider, whole-court viewpoint 
on the action. Other camera styles that might be analogous to game-design types 
include “be the coach,” “watch the game on TV” (a very popular choice), “old 
school” (the overhead, almost two-dimensional view used by many older games), 
and so on. See Figure 10.1 for two examples of these styles in use.

MISCELLANEOUS ELEMENTS

Miscellaneous elements include things like cheerleaders, mascots, sideline coaches, 
the crowd, and everything else that makes up the side characters during sports 

FIGURE 10.1  Different camera styles used in sports games can affect gameplay.



Chapter 10  Sports Games 177

games. Although they usually use very simple AI, these elements can really add up 
to making your game look much more real by supplying the player with elements 
that are alive in the world, regardless of his direct interaction.

MINI-GAMES

Something that most sports games make use of to extend feature sets for their 
games is the concept of mini-games. These are very small game mechanic con-
cepts that form limited scope experiences, that while remaining true (at least in 
some form) to the sport involved, represent separate small games unto themselves. 
Basketball games have things like dunk contests, or skills challenges. Madden NFL 
Football even implemented a full foosball game that you could play from the sky-
box of certain arenas. This is a very open area in sports games.

USEFUL AI TECHNIQUES

The heavy simulation aspect of these games means that data-driven systems are 
typically used. Multi-agent communication lends itself well to message based tech-
nology. State machines (both fuzzy and finite) of course are always useful.

FINITE-STATE MACHINES (FSMS) AND FUZZY-STATE MACHINES (FUSMS)

Games that fall into the “resetting gameplay” category are much easier to fit into 
a purely state-based AI model than are their more dynamic brethren. However, 
all games follow a set game flow (even basketball has tip-off, inbound, gameplay, 
and freethrow states that flow from one into another). But inside certain states 
within this overall game flow, the decisions the coaches and players must make 
is anything but clear-cut. Indeed, fuzzy decisions must be made at almost every 
level of sports games, and FuSMs can be used to provide this type of cloudy 
decision making.

Another way to incorporate a level of fuzziness is at the perception level in 
your sports game. The states themselves can remain somewhat crisp, but the 
activations for each state get a little blurry. So, a perception variable that refers 
to whether or not a player has an open look to take a slap shot would have a 
bit of fuzziness in its calculation (using a reaction time, a value hysteresis, and 
taking into account some player-level attributes; instead of just shooting a ray 
from the puck to the net and declaring it clear of obstacles), so that the crisp 
“shoot the puck” state would therefore only be activated under this more fuzzy 
determination.

Listing 10.1 includes some example code from Sony’s basketball game NBA
Shootout 2004 (PS2). This code shows some (roughly 10 percent) of the high-level 



178 AI Game Engine Programming

LISTING 10.1  Example FSM Behaviors from NBA Shootout 2004. Code © Sony 
Computer Entertainment America. Reprinted with permission.

//--------------------

//--------------------

//AlleyOop

//--------------------

//--------------------

void gAlleyOop::Update(AIJob* playerjob)

{

    playerjob->ShowGoalLabel(“Alley Oop”);

}

bool gAlleyOop::GetPriority(AIJob* playerjob)

{

    bool doTheOop = false;

    int shotDistanceType = playerjob->m_pPhysic->

                                           GetShotDistanceType();

    t_Player* oopPlayer = NULL;

    if( (fmodf(GameTime::GetElapsedTime(),BP_ALLEY_OOP_INTERVAL) <

      GameTime::GetDeltaTime())&& Random.Get(BP_ALLEY_OOP_CHANCE) &&

      ( ( shotDistanceType == t_BallAI::distance_outside ) ||

        (shotDistanceType == t_BallAI::distance_three_point ) ) )

    {

        AlleyOopCoach.SetPasser( playerjob->m_Player );

        

        if((oopPlayer = AlleyOopCoach.FindAlleyOopReceiver())!= NULL)

        {

            if( oopPlayer->GetBallHandlerJob()->

                  GetNumberOpponentsLineOfSightColumn( Basket.

                  GetPosition(), BP_LINE_OF_SIGHT_WIDTH ) <= 1 )

                doTheOop = playerjob->m_Player->

                        GetBallPlayerSkill()->AlleyOop(oopPlayer);

        }

    }

    return doTheOop;

}

//--------------------

//--------------------

//LastDitchShot

//--------------------

behavior states that the AI player holding the ball could perform. The system was 
implemented using a hierarchical FSM.
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//--------------------

void gLastDitchShot::Update(AIJob* playerjob)

{

    playerjob->ShowGoalLabel(“Last Ditch Shot”);

    Team[playerjob->m_Player->team].ClearMiniPlay();

    ((BallHandlerJob*)(playerjob))->DoShootBall();

    return;

}

//--------------------

bool gLastDitchShot::GetPriority(AIJob* playerjob)

{

    if( Court.IsBehindBackboard(playerjob->m_Player) )

        return false;

    if(Team[playerjob->m_Player->team].m_humanOnMyTeam && 

    playerjob->m_Player->GetBallHandlerJob()->m_justReceivedBall)

        return false;

    // last ditch effect

    return( GameState.GameClock.GetTime() <= 2.Øf ||

                 GameState.ShotClock.GetTime() < 2.Øf );

}

//--------------------

//--------------------

//FastBreak

//--------------------

//--------------------

void gFastBreak::Update(AIJob* playerjob)

{

    playerjob->ShowGoalLabel(“Fast Break”);

    //try passing, it won’t do it if it cannot

    ((BallHandlerJob*)(playerjob))->DoFastBreakPass();

    

    Vec3 basket = Basket.GetPosition();

    Vec3 target;

    target.x    = (playerjob->m_pPhysic->position.x+basket.x)/2.Øf;

    target.y    = Ø.Øf;

    target.z    = (playerjob->m_pPhysic->position.z+basket.z)/2.Øf;

    

    playerjob->m_pPhysic->SetDestDirection

                   ( Basket.GetPlayerDirection(playerjob->m_Player) );
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    playerjob->m_pPhysic->SetTargetPositionBallHandler( target );

    playerjob->m_pPhysic->SetCPUGotoAction( PHYS_TURBO );

}

//--------------------

bool gFastBreak::GetPriority(AIJob* playerjob)

{

    if( !GameState.isFastBreak )

        return false;

    if(playerjob->m_Player->GetPlayerSkill()->m_inCollision )

        return false;

    

    return true;

}

//--------------------

//--------------------

//LongHold

//--------------------

//--------------------

void gLongHold::Update(AIJob* playerjob)

{

    playerjob->ShowGoalLabel(“Long Hold”);

    t_Player* passTo = playerjob->m_Player->m_pBestPassTo;

    int chance = (Basket.GetPlayerDistance(playerjob->m_Player) >

               FEET(15.Øf) && playerjob->m_Player->

               m_pHasDefenderInPlace)? 9Ø :playerjob->m_Player->

               Personality->passes ; 

    bool wouldPass = Random.Percent( chance );

    if( passTo != NULL && wouldPass)

    {

        GoalOffPass.Update(playerjob);

    }

    else

    {

        ((BallHandlerJob*)(playerjob))->DoJumpShot();

    }

}

//--------------------
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bool gLongHold::GetPriority(AIJob* playerjob)

{

    //the point guard on the initial bring up 

         //shouldn’t be limited as much

    if(Rules.shotClock == LowmemGameRules::ON && playerjob->

            m_Player->position == POINT_GUARD && 

            GameState.ShotClock.GetTime() > 9.Øf)

          return false;

    Time stillTime = Ø.Øf;

    stillTime = playerjob->m_Player->GetBallPlayerSkill()->

                m_ballHoldTimer.Get();

    

    Time decisionTime = lerp(playerjob->m_Player->Personality->

                             dribbles/1ØØ,3.Øf,5.Øf);

    if(playerjob->m_Player->m_isOut)

    {

        if ( GameState.period >= 3 && 

            GameState.GameClock.GetTime() < 6Ø.Øf)

            decisionTime = 6Ø.Øf;

        else

            decisionTime = lerp(playerjob->m_Player->Personality->

                                  playsPerimeter/1ØØ,3.Øf,6.Øf);

    }

    

    if( Court.IsInKey( playerjob->m_Player ) )

        decisionTime = 1.5f;

    bool result = false;

    if ( stillTime > decisionTime )

    {

        dbgprintf( “Long hold timeout: decision - %f still - %f\n”,

                  decisionTime, stillTime );

        result = true;

    }

    return result;

}

//--------------------

//--------------------

//OffPass
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//--------------------

//--------------------

void gOffPass::Update(AIJob* playerjob)

{

    char msg[8Ø];

    sprintf(msg,”Offense pass, chance:%d”,chance);

    playerjob->ShowGoalLabel(msg);

    t_Player* m_passTo  =  playerjob->m_Player->m_pBestPassTo;

    //if invalid, try the team stuff

    if((!m_passTo || m_passTo == playerjob->m_Player))

        m_passTo = Team[playerjob->m_Player->

                             team].m_bestPlayerToShoot;

    if(!m_passTo || m_passTo == playerjob->m_Player)//failsafe

        m_passTo = playerjob->m_Player->

               GetClosestPlayerToPlayer(playerjob->m_Player->team);

    if(m_passTo && (((m_passTo==GameRules.LastPossession.player) &&

    (playerjob->m_Player->GetBallPlayerSkill()->

     m_ballHoldTimer.Get()>1.Øf)) ||

    ( m_passTo != GameRules.LastPossession.player ) ) )

    {

      playerjob->m_Player->GetBallPlayerSkill()->PassBall(m_passTo);

         playerjob->m_Player->GetOffenseSkill()->

                    m_targetTimer.Clear();//go back to where ya from

    }

}

//--------------------

bool gOffPass::GetPriority(AIJob* playerjob)

{

    //if nobody to pass to...

    if(!playerjob->m_Player->m_pBestPassTo)

        return false;

    if(playerjob->m_Player == playerjob->m_Player->m_pBestPassTo)

        return false;

    chance =Ø;

    if(playerjob->m_Player->IsInsidePlayer())

    {   //inside players

        if(Basket.GetPlayerDistance(playerjob->m_Player) <=
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                FEET(2.Øf))

            chance      = 1Ø;//basket is close

        else if(playerjob->m_Player == t_Team::m_pDoubledOffPlayer)

            chance      = (playerjob->m_Player->position==CENTER)?

                               7Ø:8Ø;

        //double team

        else if(playerjob->m_Player->m_pHasDefenderInPlace)

        {

            if(playerjob->m_Player->GetPlayerSkill()->m_canDribble)

            {

                if(playerjob->m_Player->Ratings->insideShooting<75)

                    chance  = (playerjob->m_Player->

                              position==CENTER)? 6Ø:5Ø;

                    //covered, can dribble, low inside shot

                else

                    chance  = (playerjob->m_Player->

                              position==CENTER)? 2Ø:4Ø;

                    //covered, can dribble, high inside shot

            }

            else

                chance  = (playerjob->m_Player->

                          position==CENTER)? 5Ø:7Ø;

                //covered, can’t dribble

        }

        else

            chance = 1Ø;//not covered (or dteamed, or really close)

    }

    else // outside players

    {

        if(!playerjob->m_Player->GetPlayerSkill()->m_canDribble)

            chance      = 1ØØ;//can’t dribble

        else if(playerjob->m_Player->m_pHasDefenderInPlace)

            chance      = 3Ø;//covered

        else

        {

            if(!playerjob->m_Player->m_pHasDefenderInPlace)

                chance      = 1Ø;//wide open

            else

                chance      = 3Ø;//not covered, no lane

        }

    }

    //offset for longer holds, greater increase if 

    //you’re inside or can’t dribble
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    float modVal;

    if(playerjob->m_Player->IsInsidePlayer() || 

       !playerjob->m_Player->GetPlayerSkill()->m_canDribble)

    {

        modVal = GameTime::GetGoalDeltaTime(); 

    }

    else

    {

        modVal = Ø.1f;

    }

    float rem = fmodf(playerjob->m_Player->GetBallPlayerSkill()->

                m_ballHoldTimer.Get(), modVal);

    int holdAdj = int(rem/GameTime::GetGoalDeltaTime());

    chance += holdAdj;

    

    //now check for tendencies

    bool wouldI = Random.Percent( playerjob->m_Player->

                                       Personality->passes);

    return (wouldI && Random.Percent(chance));

}

//--------------------

//--------------------

//Dunk

//--------------------

//--------------------

void gDunk::Update(AIJob* playerjob)

{

    playerjob->ShowGoalLabel(“Dunk”);

    if(playerjob->m_Player->GetBallPlayerSkill()->DunkBall())

        playerjob->m_Player->Task.SetCPUSequence(TaskDoChargeMove);

    

}

//--------------------

bool gDunk::GetPriority(AIJob* playerjob)

{

    //don’t try if you can’t

    if(!playerjob->m_Player->m_canDunk)

        return false;
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    //always dunk if you’re wide open

    else if(playerjob->m_Player->m_laneCoverage <= Ø.1f)

        return true;

    //otherwise, use personality

    return(Random.Percent(playerjob->m_Player->Personality->dunks));

}

DATA-DRIVEN SYSTEMS

With huge numbers of players and callable plays, vast statistical data, and a huge 
amount of animation, almost all sports games rely on at least some data-driven 
AI. Plus, with a push toward ever more realistic sports AI as well as online play, 
data-driven systems will make it much easier to tune the AI, and to update it online 
with changes that reflect either real-life player statistical changes or further game-
balancing polish. Some things that are commonly performed with data driven tech-
niques are:

Playbooks. Instead of creating plays for the AI system, a better system is to cre-
ate atomic behaviors that the AI-controlled players can perform, and then have 
an editor that designers can use to chain these behaviors into full plays to create 
the playbook for the teams in your game. In this way, the designers can experi-
ment with new plays and handpick the best ones (or the ones that each team 
likes to use most in real life), and the AI programmer can now concentrate on 
additional behaviors, instead of trying to tune hardcoded plays.
Animation picking. By being able to specify (through a visual editor or some 
kind of scripting tool) the types of conditions that specify the best animation 
for a given behavior, designers can quickly spell out the kinds of animations 
that make sense for each in-game action and can change or expand these ani-
mation lists as needed, without any code changing.
Player statistics. At this level, the players need statistical data that approaches 
the levels represented by their real life counterparts, and additional in-game 
statistics must be created so that the myriad attributes can be related in some 
way to the game simulation.

MESSAGING SYSTEMS

With many players having to communicate to each other, and such a dynamic envi-
ronment, it makes good sense to include a messaging system into the AI framework 
for your sports game. Everything from coordinating plays between two players (or 
even collision events), to noting actions by the human, could be sent through the 
messaging system, with the AI responding to only those messages that it is interested 
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in, instead of having to monitor the entire playing field continuously. Different levels 
of the AI system can use the same system as well so the physics layer will respond 
to the collision event, in which the team level will respond to a coordination event 
between two players.

EXAMPLES

Early sports games, such as Football and Basketball on the Intellivision and Atari, 
couldn’t even support the full number of players on each team, since the hardware 
just couldn’t push that many sprites. They also used simplified AI, with opponents 
that more closely resembled pillars players had to negotiate around, instead of the 
reactive players that we are used to in modern games.

Sports games really began to come into the spotlight with the NES game sys-
tem, as programmers finally had the processing and graphical power necessary to 
do a much better job of approximating the games, although still at a somewhat 
primitive level. Games like RBI Baseball, Tecmo Super Bowl, Ice Hockey, and Double
Dribble are still loved by sports games fans. The gameplay employed by these titles 
was simplified, but did approach a simulation of actual play, and we finally started 
to see a greater use of statistics (instead of two equal teams playing against each 
other).

Many of today’s games, even with their greater graphical look, still employ 
most of the gameplay institutions that were created during this early period, which 
has in some ways stalled sports games gameplay evolution. But it has the advan-
tage of making most games instantly playable by longtime fans because the control 
scheme, overall game mechanics, and general game strategies are still somewhat 
familiar. A similar situation occurred in the fighting game genre when most of 
the “copycat” games borrowed Street Fighter’s six-button control layout and special 
joystick moves.

The 1990s continued seasonal versions of all the popular games, now in 16-bit 
versions and beyond. As the games incrementally increased in quality and scope, 
and as the consoles began to use more sophisticated controllers, the games gave 
players more controls and options. This means the AI has to follow suit, so its com-
plexity increases.

Today’s sports games are marvels of AI, with perennial games like Madden NFL,
Sega’s NBA and NFL 2K series, and World Soccer playing sophisticated simulations 
of their sports, while showing the personalities of the players and giving the game 
player a great sports experience. These games use a variety of AI systems, includ-
ing complex FSMs to make play calling and tactical decisions against the human 
player, data-driven systems to choose the correct animations based on several fac-
tors, sophisticated simulation calculations to make game characters perform like 
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they do in real life, and even more in an increasing attempt to make the games more 
realistic and fun.

AREAS THAT NEED IMPROVEMENT

Sports games, being annual titles that are sold largely to the same people year after 
year, live and die by their incremental improvements. But, considering the amount 
of time and money being spent on these games, they have tended to play it safe in 
many areas that could benefit greatly from extended AI programming. These in-
clude: learning, game balance, and gameplay innovation.

LEARNING

Sports game AI continues to fall the victim of exploits, with even the best AI-
controlled team losing because the human did something repeatedly that the AI is 
poor at stopping. If the AI could compensate for this by specifically targeting this 
repetitive behavior, it would force the human player to either change his game tactic, 
or stop scoring so easily.

Team AI could also learn from this, by discerning favorite plays that the human 
employs and better defend against that play if it were to happen again. This type 
of sports learning has been implemented using influence maps (by incrementally 
changing positioning data to reflect more winning positions) and by statistical 
learning (by keeping track of behaviors that work, or don’t work, and adjusting 
future decisions appropriately). This system doesn’t have to increase difficulty of 
the game; it will just stop exploits from ruining the overall performance of the AI 
system. In the end, this system will merely cause the player to change his game plan 
a bit more often, and the overall experience will just be that much closer to a real 
game.

Of course, this same system can be used to increase difficulty, because the sys-
tem can learn the kinds of things that the human is poor at stopping quite quickly, 
and have bias toward those kinds of behaviors (in effect, the system is finding ex-
ploits against the human’s intelligence).

GAME BALANCE

The primary issue with sports games is the problem of game balance. Certain sports 
tasks, like defense in basketball, are much harder to do than others (the reason 
for this is that basketball is a very fast sport, and the actions of the defense are by 
definition reactive, thus always slightly behind the offense). How do we support 
basketball defense for the human (to make this task fun), without killing the bal-
ance of the game by making it too easy to defend, and therefore shutting down the 
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offense? As this issue continues to evolve, on a case-by-case basis, it will continue 
to consume AI programmers’ time as they come across problems that require deci-
sions based on the game at hand and the fun factor of the game.

Online play further complicates the task of game balancing. So far, there 
has been an inherent lag associated with all but the fastest connections in online 
games because of bandwidth limitations, as well all the related problems deal-
ing with packet confirmation and loss. The kinds of highly reactive behaviors 
in sports games end up suffering visually because of it, more so than in more 
physics-based games like FTPS, which have very simple animations and can use 
physics to predict character and projectile movement to fill in the gaps caused 
by lag.

Another issue in online sports games is that of discontinuity. Basically, this 
means that one of the players sees behavior that actually hasn’t happened, or that 
is dramatically different from what really happened. Think of it as a much worse 
version of normal online game lag, where you think you shot a guy in an online 
Quake game but you have a slow network connection and he actually moved out 
of the way.

Most online games are written such that both machines are running the game 
in a synched fashion, such that the same exact game is running on both player’s 
machines. The network code then sends each player’s joystick inputs back and forth 
to the other, so that the two games can continue to play, still synched, with both 
players seeing the same results. Discontinuity will occur if a bug in the code, or a 
bad network connection, causes the two games to somehow get out of synch with 
each other.

If an event-based networking scheme is employed (where game events are 
passed instead of player input, and each player’s game essentially “catches up” to 
the other by performing these events as they come in) then the game will have a 
much greater chance of showing discontinuous moments. If one player sees that 
he caught the pass, but the server machine says that he did not, then the first player 
is going to be pretty confused when he suddenly doesn’t have the ball anymore. If 
this happens once, it might be overlooked as an online jitter. But if it is a systemic 
problem, where the clients of your game are continually catching up to the server’s 
reality, by popping animations, behaviors, and positions, the game becomes un-
playable in a hurry.

GAMEPLAY INNOVATION

Sports games have become increasingly similar in how they play, and hence the 
genre is somewhat stagnant. Marketing has driven innovation almost out of this 
highly profitable sector of the game industry. Even Madden, arguably one of the 
best and most successful franchises in all of sports gaming, hasn’t done anything 
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really innovative in many years. The Madden team has incrementally improved 
graphical quality, presentation, and animations and have also made some small 
changes to the interface. But, the game is almost identical, gameplay wise, to the 
some of the earliest Madden football games. It’s just a lot prettier. Is this really what 
the consumer wants? Or is this what the consumer has been given? The motiva-
tion, of course, is to not lose any market share by scaring people off with strange 
gameplay mechanics or AI behaviors that people either don’t enjoy immediately 
or can’t learn quickly enough. No matter what marketing thinks, people will buy a 
game and actually spend the time to learn a new interface or game mechanic if the 
experience is good enough. Nobody knew how to control a basketball game when 
the first one came out, yet customers still bought it.

There is plenty of room for innovation in the sports game world, both in game-
play and in competitive and cooperative AI. We must strive to offer something 
new to the consumers, lest this genre grows stale and dies. Imagine an AI system in 
football that discusses things with you during a huddle and helps to develop a plan 
against the other team. Imagine a commentator AI system that does television-
style slow motion while remarking about the play and drawing things on the screen 
for emphasis. Imagine more intuitive voice controls for these games, where you 
could shout “toward” a certain player (with head movement tracking or some other 
means) and get an appropriate response. These are the kinds of things that will 
keep the genre fresh and growing.

SUMMARY

Sports games have come a long way from the incredibly simplistic versions that 
were first created for home consoles in the 1970s. With ever more realistic visuals 
and gameplay, the need for high-quality AI-controlled athletes is greater. Sports 
games are some of the highest money making games in the business right now, and 
the players who shell out that money demand quality in every element.

The two main categories of sports gameplay are fluid and resetting games. 
Fluid refers to games that have mostly nonstop gameplay, with very dynamic 
situations. Resetting games are those that have periodic resets or stops in the 
action, and so are more linear.
The common sports game purchaser has a high level of sports knowledge, 
and that means that a higher level of detail needs to be to be implemented for 
simulation-style sports titles.
A coach- or team-level AI layer provides the system with more far-reaching 
decision making and provides a means for coordinating actions among multiple 
players.
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Player-level AI systems are usually more tactical than the coach-level and usu-
ally include both decision-making and animation selection elements.
Pathfinding in sports games usually involves much higher numbers of dynamic 
obstacles and needs to take into account special means of travel with the rules 
of a specific game.
Animation selection systems are very important to sports games because the 
system needs a fast way to query a large database of animations and make intel-
ligent decisions.
Miscellaneous elements make the world bigger than the game court and give 
the player a greater sense of immersion.
FSMs and FuSMs are used widely in sports games. The type of game (fluid or 
resetting) can sometimes be a factor when using these techniques, but because 
of the inherent nature of any sports game, some degree of state machine will be 
used in the construction of the game.
Data-driven systems help offload some of the tremendous amount of detail 
that needs to be addressed on a player, team, and animation level.
Messaging will help the various layers of the AI system communicate and pro-
vides a quick means of cutting through the very dynamic environment.
Learning will help to solve the problem of AI exploits and could aid the player 
in learning the system.
AI systems need to extend their abilities in those areas in which game balance 
and fair gaming need to be addressed because additional intelligence in the 
system will give more aid to the player, but may wreck game balance.
The genre must continue to innovate in gameplay and opponent and coopera-
tive AI systems, so it doesn’t go stale.
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Racing Games11

The racing genre is an interesting one, both from a gameplay standpoint and 
from an AI standpoint. The genre is divided into two main groups for the 
most part—vehicular and specialty. The two groups have a common thread, 

which is that gameplay has at least some resemblance to a physics-based simulation 
of racing. For our purposes, racing is loosely defined as moving about a set course 
in a timed competition against others.

Early games like Pole Position (or even its granddad, the 1974 Atari game, Gran 
Trak) are much more along the lines of action games, in that the processing power of 
the hardware at that time didn’t allow for much simulation. They were really just fun 
gameplay systems. Most racing games (even modern ones) take liberties with their 
physics, but that’s what videogames are about. We keep some areas of reality that we 
don’t mind being limited by, and strip out the parts of reality that we do. This means 
we mostly want controls that provide realistic cornering and handling (which gives 
us more control over the game by providing recognizable feedback like a real vehicle), 
but we also want to be able to jump a car over ten semi-trucks and still be able to drive 
away after landing (because we’ve always dreamed of doing it in real life). This is much 
like the gamers who don’t mind having to reload a rocket launcher between shots, but 
they would mind if they could only carry three rockets at a time; they want a hundred 
shots in the backpack, never mind that a load like that would probably weigh far more 
than the character could carry for any distance, much less jump with.

Two variants of vehicular racing games appeared early, and the split stuck. They 
are differentiated by their camera perspective: the first-/third-person racing game 
(such as OutRun, or Stun Runner) and the overhead view (RC Pro-AM, or Ivan 
Stewart’s Off Road Challenge). The overhead games tended to be skewed toward the 
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action-oriented, simpler arcade-style game, with very unrealistic physics. The other 
group stayed more true to its roots, with a more reasonable simulation of vehicular 
physics.

The specialty racing games are mostly fad-driven—they involve the trendy 
racing-style sport at the time. Past examples that received some degree of success 
include snowboarding, skiing, boating, wave runners, hovercraft, dirt bikes, and the 
like. These games had to augment traditional racing AI with sport-specific behav-
iors, such as performing tricks or dealing with futuristic or non-traditional physics 
systems.

One last subtype is the cart racing game (made popular by Mario Kart, but 
since has seen decent success with quite a few different characters), which simpli-
fies the driving portion of the game and adds obstacles, strange tracks, and other 
action elements. By calling this style of racing “cart racing,” players know that the 
vehicles are more like go-carts, which are very simplified cars. Most go-carts only 
have a gas pedal and a brake, and this is also usually the control setup of most cart-
style racing games.

Pure vehicular simulation can be a fairly technology-intensive undertaking. 
You need complex mathematical solutions to deal with the different suspension 
systems used in modern vehicles, good multibody collision handlers, AI opponents 
that can adjust to differing road conditions (especially for off-road racing or in 
games that include rain, oil, or ice hazards), as well as any special concerns your 
game might bring. Some of the best racing games have been showcases for the 
computational and graphical power of new game systems as they first are released. 
The physics models and control schemes that these games use have been so highly 
polished that they need almost no tweaking at all. Designers work on a nice graph-
ics engine, produce some higher-quality car models, and deliver a finished, high-
quality launch title.

Overall, the AI of pure racing games has gotten very advanced over the years, 
with many great examples of track AI that does a competitive job without cheating. 
In fact, the racing genre was starting to lose popularity because of a lack of fresh-
ness. Too many games came out in which the primary driving simulation was so 
good, and so close to reality, that almost nothing could be done better. The genre 
needed a shot in the arm to revive it.

In 1995, Twisted Metal was released, and the first true vehicular combat game 
was born (although other games released earlier had cars and weapons, they were 
usually more cartoony, like Mario Kart, or just plain action games, like SpyHunter.
So they weren’t really driving simulations, but they were definitely an influence 
on the genre). Twisted Metal was a moderately realistic driving simulation (for 
its time), coupled with arena-style levels and weapons. People forgave the subpar 
graphical quality and the very strange control setup because the additional game-
play elements were truly original, and it was very fun to play. It wasn’t enough, 
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however, mostly because the single-player experience suffered from bad AI (both 
the performance as well as the difficulty level), and the gameplay was repetitive 
when the player was not playing against another human (trash talking side by 
side with friends, and hearing them scream as they are killed, seems to add replay 
value for most gamers). Other games came out, including the stylish Interstate ’76,
which added the concept of a linear story and an overall “bad ass” attitude that 
worked well. But it also suffered from the replayability and single-player problems 
of Twisted Metal. Again, the genre needed more.

Recently, something more has arrived. By going one step further, and adding 
complex adventure and story elements to the racing genre in addition to weapons, 
racing games have opened enormous possibilities. Grand Theft Auto started out in 
1997 as a somewhat primitive, overhead two-dimensional game with a very simple 
concept: provide a living city in which the player can perform many different ac-
tivities, including driving, to eke out a life as a thuggish-criminal.

Over the years, the concept remains, but it has since moved to the full splen-
dor of a completely realized three-dimensional world, with a realistic, if somewhat 
over-the-top driving simulation, and a high degree of sex, violence, and rock music. 
It has also become one of the best selling games of all time, with the four games 
in the series selling a combined total of more than 70 million copies as of 2008. 
The combination of providing open-ended gameplay and adult content has proved 
hugely popular.

Many other games have since capitalized on this formula, so the full-blown ve-
hicular action genre has picked up where the pure racing simulation and the combat 
games have left off. The action elements of these games venture quite far into the 
adventure or first-person shooters/third-person shooters (FTPS) game’s territory, 
but the primary gameplay system is vehicular, or at least it has been until now.

COMMON AI ELEMENTS

Classic racing games didn’t require much AI, but modern games, with their em-
phasis being on cross-pollination into other genres, can require quite a few AI ele-
ments. Some of these include: track AI, traffic, pedestrians, enemies and combat, 
non-player characters, and other competitive behaviors.

TRACK AI

The most obvious of racing AI requirements is the system needed to keep a CPU-
controlled car on a racetrack (or city street) at high speed and within the rules of the 
game. Usually, this is a state-based system, with the different vehicle states detailing 
the main ways that a racer can exist on the track (most likely OnTrack, OffTrack, 
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WrongWay, and Recovering, or something similar). Each vehicle state would have 
ways of steering and applying the throttle and brake to best serve the particular 
state the vehicle is in, combined with the vehicle’s position, and its place relative to 
the position of the other racers. As guidelines, most games use a combination of 
physics and “optimal lines of travel” (which are either data paths laid down in the 
track editor, or calculated automatically by a technique known as “finding the path 
of minimum curvature,” as shown in Figure 11.1) that mimic the invisible lines of 
travel that humans use when they race on tracks and roads. In addition, there are 
also optimal offset positions, if the true optimal position is already occupied. These 
optimal lines of travel are then modified by the particulars of the vehicle involved 

FIGURE 11.1 Track with path of minimum curvature shown.
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(one vehicle might be lighter and more agile, and can thus take a turn more aggres-
sively then another).

Another form of “track AI” is to actually embed the “AI” into the track itself . . . 
that is, the track guides the cars and makes decisions for each non-player vehicle 
based on conditions in the game at the moment. This approach is generally simpler 
than customizing an AI for each car’s peculiar capabilities, but requires a more 
thorough cycle of planning to avoid every car behaving the same way.

Some racing games don’t occur on roads. There are racing games on water 
(with boats or jet-skis), snowy mountains (with snowboarding), or even more ex-
otic terrains (like the tubes and chutes of Stun Runner). Thus, they might not use 
a pure version of the minimum curvature technique because the dynamics of the 
surface might entail other types of optimal maneuvers.

TRAFFIC

A number of these games are built around racing in functional cities, so they have 
working traffic simulations, complete with stoplights, highway systems, and nu-
merous cars. The traffic in these games is usually just good enough to be realistic 
looking, but rarely does traffic react much to the player’s movements (in fact, the 
games are usually intentionally designed this way; gamers wouldn’t want everyone 
getting out of their way and ruining the excitement).

Some games, however, use complex traffic systems that are very realistic, with 
lane changes, cars pulling over for police vehicles, proper use of traffic lights and 
intersections, and so on. These are mostly FSM-based behaviors, with a lot of syn-
chronization to ensure that accidents don’t happen (unless some rowdy human 
happens along at 130 mph), and some randomness to ensure that these actions and 
events don’t look repetitive.

PEDESTRIANS

Ever since race games started appearing with cities for backdrops, pedestrians have 
been part of the equation. Different games take different approaches. The Mid-
town Madness games, being a bit more family friendly, have the pedestrians walk-
ing around on paths randomly, and if a car gets too close they dive out of the way. 
Other games, like Grand Theft Auto or Carmageddon, let the user pretty much run 
over anybody he wants. The pedestrians try to get out of the way, but clever vio-
lence hounds will always find some means, and the people will fall. In fact, Grand 
Theft Auto has quite a range of pedestrian types, all of which are running different 
AI, based on function. In most games, this type of behavior is state-based, probably 
with some global messaging.

Other systems use very simple flocking-type behaviors, with areas in the level 
being assigned particular values of attract and repel (thus, certain storefronts might 
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attract people, who would look in the window for a while and then walk toward 
the next attractor, whereas a dead body might be a powerful repelling force, so that 
people look like they’re avoiding the accident). State of Emergency made good use 
of a system similar to this. The crowds were very fluid and reacted well to most of 
the action.

ENEMY AND COMBAT

This is the car equivalent of deathmatch bot code. Some games allow full com-
bat either car-on-car, or pedestrian-on-car, or some other combination. This 
code needs to combine the race AI mentioned earlier with the bot AI from FTPS 
games, including the human-level performance-checking that would do things 
like making the AI misfire and drive into walls occasionally, to ensure that the 
player doesn’t feel cheated (or merely that the player is being pursued by a re-
lentless evil robot, unless that’s your design intention). It might also include 
multiple cars working together, as in police cars taking different streets to cut 
off multiple escape routes, or two cars boxing the player in so it is impossible 
for him to turn.

NONPLAYER CHARACTERS (NPC)

NPCs are the other people players deal with in the game world, usually not in com-
bat, such as characters who are going to give the player information, or sell the 
player a better car. As in role-playing games, NPCs usually have scripted behaviors 
and dialogue to facilitate these encounters. They generally aren’t very reactive be-
cause most of these games don’t have sophisticated conversation engines (it’s really 
not the point; if people want that, they’ll play an RPG), so most NPCs are usually 
handled in a non-interactive cut scene.

OTHER COMPETITIVE BEHAVIOR

Some racing games also require specialized behavior from their AI opponents, such 
as performing tricks in snowboarding or motocross games. These systems need 
to have either scripted chains of moves that look well together or a decent under-
standing of physics and timing so that they pick moves that they can pull off suc-
cessfully and stylishly.

This kind of decision structure is more like a fighting game, taking into account 
the appropriateness and timing of moves. Each move would have some length of 
time associated with it (that is, how long it takes to perform the move as well as 
recover). The AI makes its move determinations based on how much time it has 
(from simple physics calculations that take into account speed and height achieved), 
as well as skill level and personality.
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USEFUL AI TECHNIQUES

As in any genre, FSMs make themselves useful in racing game engines. Scripted 
systems make the story-driven elements of these games easier to develop. The heavy 
synchronization required by pedestrian and traffic systems means ample places for 
messaging systems to be taken advantage of. Finally, racing games are one of the 
primary users of an advanced AI technique, that of genetic algorithms, although it 
is typically an offline usage.

FINITE-STATE MACHINES (FSMS)

Race games have a fairly straightforward AI layout, mostly defined by the laws of 
physics, and the (usually) simple objectives of the current “race” (be it to get to the 
finish line first, or to pick up a package and bring it back while surviving the attacks 
of the other players). Also, the state layout for the game flow of most classical rac-
ing games is very straightforward (start, racing, off the track, overtake, pacing, pit). 
FSMs make themselves useful again.

SCRIPTED SYSTEMS

The vehicular action genre usually follows a story of some sort (although some are 
extremely open-ended) and work well with the scripting paradigm. Also, some of the 
ambient pedestrian and traffic systems can lend themselves well to a scripted system, 
in which various patterns of movement are scripted and interact with the street lay-
out of the city. Sometimes this is just a first layer, with overriding reactive systems in 
place to affect this scripted behavior when the need arises. So, if you have a crowd 
milling about in a mall, checking out the merchandise, using the escalators, and such, 
this could be a series of small scripts that each AI-controlled person would use to look 
like the character has intimate knowledge of the environment. But if a car suddenly 
comes crashing through the window, the pedestrians’ flee behaviors would kick in, 
overriding the normal script, in a mad dash to escape being crushed.

MESSAGING SYSTEMS

The ambient traffic and pedestrian systems most commonly use messaging sys-
tems to talk to one another and coordinate movement in the complex ways that 
these things happen in real life. Of course, it is also possible to code these types 
of behavior using FSMs (even if you use a messaging system, you’ll still probably 
want to control overall behavior of traffic and pedestrians with scripting or state 
machines), but if you’re going to have a large number of ambient vehicles and walk-
ers, and want them to respond to periodic or situational events either singly or in 
coordination, this is probably the way to go.
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GENETIC ALGORITHMS

Some of these games have an enormous number of cars (Gran Turismo 2 has more 
than 500), each of which require tuning of their handling and performance abili-
ties to be as close to reality as possible. In response, some companies have used 
techniques to automate this tuning task with a simple offline genetic algorithm 
application used to modify the car’s performance parameters until optimal results 
are achieved. These results are then stored and used directly during actual game-
play. This is a very straightforward use of genetic techniques (as a preprocessor 
that optimally tunes a system of parameters), and the amount of time the genetic 
algorithm will take to perform these calculations is dramatically less than the time 
it would take a programmer or designer working within the game using trial and 
error. Note that none of these games use genetic algorithms to tune behavior after
the game has shipped. As neat as this might sound, it has the potential to lead to 
too much chaos with individual players. This approach is used solely to tune cars 
during development and testing.

Examples

Driving games have been with us almost from since the beginning of video games 
themselves, with the earliest ones coming out in the beginning of the 1970s. These 
early driving titles were little more than a scrolling field of two small lines that 
players had to stay between. But this simple representation is all the mind needs to 
engage the competitive spirit, if also given a steering wheel and a gas pedal.

The driving game has come a long way, with the older Pole Position and 
SpyHunter looking dated next to the almost movie-quality visuals of today’s Gran 
Turismo. Also, the arcade-style, fast-and-loose gameplay of the past has been all but 
lost to the almost perfect rendition of the handling and performance modeling in 
today’s better racing games. Not that gamers missed realism in games like Crazy Taxi,
however. Midtown Madness gave players great city traffic, The Simpsons: Hit and Run
successfully extended the game model to a comic license and managed to keep the 
comedy, Interstate ’76 infused a degree of style and a good story into the mix, and 
Carmageddon actually had players using the windshield wiper to clean off the blood.

AREAS THAT NEED IMPROVEMENT

Classical racing simulation games have been all but mastered. If your racing simu-
lation doesn’t include a well-built, solid physics model combined with a polished, 
intuitive control scheme, ultrarealistic visuals, and some way to differentiate your-
self from the games that already have accomplished all these things, don’t even 
bother putting it on the market. However, the new variations of incorporating 
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vehicular racing with other elements of gameplay still have many areas in which 
to improve.

AREAS OF INTEREST OTHER THAN CRIME

To possibly push these games more mainstream (which is hard to imagine con-
sidering the many millions of units these types of games have already sold), more 
parent-palatable game types could be found—most mothers do not want to see 
their child running over a prostitute for her wallet. Violence in videogames does 
sell, but it doesn’t have to be as extreme as in Grand Theft Auto.

MORE INTELLIGENT AI ENEMIES

Imagine you are being chased by teams of cars, but instead of working together to 
set up roadblocks and head you off, the whole event becomes a Blues Brothers–style 
chase with one lead vehicle being trailed by forty cop cars. This scenario is pretty 
much the norm for the genre, but more complex maneuvers could (and should) 
be used for the opponents. Just give the human “criminal” player a police scanner, 
so the player can hear about the roadblocks slightly ahead of time and circumvent 
capture. Some games are making headway in this area, but they are rare.

Other problems can be seen in simple overtake maneuvers in some games. 
AI-controlled cars sometimes pay very little attention to other AI-controlled cars; 
they do adjust their speed and turning to some degree, but the collision between 
AI vehicles is tuned to minimize the effect they have on each other to simplify the 
overall race simulation. Thus, AI cars in some games don’t use real overtake moves 
to get by each other—one car will bump the other out of the way, in a subtle way 
that looks okay from afar, but doesn’t hold up to close scrutiny. Instead, why not 
give each vehicle a more realistic AI race model, so that the human doesn’t notice 
this AI cheat? In real life, race drivers are members of larger teams, and multiple 
cars will work together on the track to win races.

PERSISTENT WORLDS

A vehicular action game has not yet been adapted to the multi-player online model, 
but this could be a big boon to the genre. Imagine a game based on the Autoduel
world (the 1985 game from Origin™ based on the Steve Jackson Car Wars pen-and-
paper RPG—it’s sort of a Mad Max after the collapse of civilization scenario), or 
Grand Theft Auto, for that matter. The dynamics of these kinds of story worlds lend 
themselves well to the gameplay mechanics of racing with the large, open worlds 
that online games require.

The problems lie in simple computing power; driving the complex mathemat-
ics of the vehicle simulations and running traffic AI for an entire city (rather than a 
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small sphere of traffic centered on the player, as is used in Midtown Madness) does 
not work well with the limited bandwidth capabilities of the Internet. Online game 
choppiness caused by CPU usage spikes (which is somewhat tolerated and can be 
compensated for in some game types) might make the game unplayable. We shall 
see whether or not these limitations can be breached and bring racing-style game-
play to the online community.

SUMMARY

Racing games went from very simplistic toys in the 1970s arcades, to some of the 
most graphically and technologically sound games of all time. This quick rise in 
quality came at the price of gameplay innovation, however, and the genre almost 
stalled out. The modern infusion of additional gameplay elements into racing 
games has truly invigorated the genre and given it a new life.

The racing genre is globally defined as a game using a somewhat physics-based 
model of racing.
Vehicular racing games involve the more common types of vehicles: cars, mo-
torcycles, F1 racers, and so on. The vehicles can be on- or off-road, and involve 
an actual racetrack, or take place in a city or other locale.
Specialty racing games involve competitive racing of some other type, like jet 
skis, snowboarding, or the like.
The creation of vehicular combat games increased the gameplay potential of 
the genre. Adventure and action elements were also eventually added into the 
mix, extending to the vehicular action game.
Track AI is the system by which CPU-controlled racers maintain control while 
racing over the terrain within the confines of the physics system and rules of 
the game.
For games that take place within urban areas, traffic and pedestrian systems 
greatly add to the visual and situational realism of the city.
Combat AI is required in games that use additional gameplay elements beyond 
the racing competitions.
NPC AI would be required if your game uses additional character interaction 
other than combat or specialized areas of economy or information.
Other competitive elements would also require AI work, if your game was such 
that it involved doing tricks or other actions while racing.
FSMs make themselves useful in this genre because of the linear nature of most 
race scenarios.
Scripting lends itself well to the story of a vehicular action game, as well as to 
the nature of traffic and pedestrian systems.
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Messaging will ease the need for communication between game elements in 
complex race and traffic AI systems.
Genetic algorithms can help automate the process of tuning the handling and 
performance parameters of the hundreds of cars that are sometimes repre-
sented in a large racing game.
Areas of interest other than crime need to be explored for vehicular action 
games. This will continue the push toward mass appeal and provide appropri-
ate games for children.
The opponent AI needs additional intelligence because the level of pathing 
through cities and overtaking on racetracks is still inferior to human level.
A persistent world game for Internet use in this genre could do much to extend 
the genre.
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Classic Strategy Games12

Game theory can be roughly thought of as the study of human behavior when 
dealing with interactions in which the outcomes depend on the strategies of 
two or more persons who have opposing or, at best, mixed motives. John von 

Neumann virtually founded the field in 1928 by studying the concept of bluffing in 
poker and discovering that the analysis had significant ramifications for economics. 
He officially fathered the field in 1944 with the publishing of his classic Theory of 
Games and Economic Behavior (written with Oskar Morgenstern). The book took 
his earlier researched work on minimax theory (discussed later in the chapter) and 
extended it to include more complex games, like economics.

In game theory, the concept of a game takes on special meaning. Instead of 
the more common entertainment-oriented definition of the word, game theory 
uses a more broad meaning; a game is an undertaking in which several agents strive 
to maximize their payoff by taking actions, but the result relies on the actions of all 
the players. By discovering that this generalization exists across different types of 
“games,” game theory hopes to explain some kinds of human interactions across 
many varying playfields, from business to war, and from the checkerboard to 
overpopulation.

Some of the classic “games” that have been studied under game theory include 
barbarians at the gate, mutually assured destruction, the prisoner’s dilemma, and 
caveat emptor. These are all mathematical constructs that attempt to define what 
are called dominant strategies of the various human behaviors that each detail.

In some of his earliest work, von Neumann made a very important discovery, 
with one very large requirement. The discovery was that for some games, rational-
ity (meaning the best action to take) could be mathematically calculated, given the 

In This Chapter
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strategies and payoffs inherent in the game. The requirement was that the game 
be what is called a zero-sum game, which is a game in which one player’s winning 
actions directly result in another’s equivalent loss. In other words, these are games in 
which a number of players engage in a system of pure competition, in which there 
is only one winner.

This is not a trivial requirement. Many of the more socially important prob-
lems that game theory had hoped to tackle (such as economics, dealing with use of 
natural resources, and political systems) are not zero-sum games. Although game 
theory can still give insights into these other kinds of games, it cannot help define 
game-specific rationality like it can in the limited world of zero-sum games.

Von Neumann’s work became a foundation for early AI researchers’ work, as 
they set out to create programs that could accomplish complex tasks requiring ra-
tionality. How best to test their creations than by finding some abstract version of 
worldly problems, that also manages to fit neatly into a clean mathematical model, 
so that rationality can be assured? Zero-sum games answered the call and are still 
some of the most studied of all AI problems.

Classical strategy games such as chess, checkers, tic-tac-toe, and even poker are 
all examples of zero-sum games. It also turns out that non-zero-sum games like 
Monopoly (in which it might be possible that two people could form an alliance, 
and both “win” money from the bank) can be converted to a zero-sum game by 
considering one of the players to be the board itself (or the bank, in Monopoly). 
This ghost player is in essence losing the sum of the amount won by the players, 
and thus all the formal assumptions and proofs concerning zero-sum gaming can 
be employed.

Researchers began using computers to build an “intelligent program” capable 
of playing these games almost as soon as computers made their appearance. Alan 
Turing (of the Turing test fame) and Claude Shannon wrote some of the first chess 
programs in 1950, barely five years after ENIAC came online. Both men put forth 
that a program that could competently play these games epitomized the definition 
of something requiring (and exhibiting) intelligence.

This brings up an interesting parable about AI problems in general. In the past, 
if a task was too difficult for a computer to accomplish, it was said that if someone 
could devise a program to do that task, then that program would be intelligent. But, 
after years of work, when someone finally does release a program that performs the 
task, the detractors declare it to be simple brute force search (or whatever computer 
technique the program uses), and not real intelligence. Thus, AI never gets to actu-
ally solve any problems. In effect, the bar keeps moving.

Researchers turned to games for a number of reasons. They are more com-
plex and lend themselves more to real-world situations than so-called toy prob-
lems do and represent a more uncertain and (somewhat) exciting world than 
massive search ventures like the traveling salesman problem (finding the optimal 
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non-repeating route a salesman should take to connect a number of cities), or 
integrated circuit design.

Classic strategy games also personify the optimal conditions for classic AI 
search techniques. They are games of perfect information (both players know ev-
erything about the game world), the moves are mostly global in effect (rather than 
within some small sphere of influence). The games are turn-based, which gives the 
computer time to think. Strategy games are also very complex (in terms of state 
space), thus requiring intelligent methods for finding rational solutions.

This is precisely the list of attributes that typically make a good computer AI 
simulation. However, because these games also add the element of an opponent, 
they provide the problem with elements of uncertainty and, more specifically, di-
rected uncertainty. Undirected uncertainty would be randomness introduced by 
dice or some similar means, and is thus unbiased and is merely part of the cost of 
playing. But directed uncertainty deals with things like bluffing, mixing strategies 
to appear random, or using irrational moves to confuse your opponent.

If you consider the previously mentioned optimal conditions for AI problem 
solving, it is easy to determine the parts of strategy games that will be weak for an 
AI system. Closed chess endgames (the term “closed” refers to a state with a number 
of interlocked pawns across the middle of the board; see Figure 12.1) are notori-
ously difficult for traditional AI systems. The reason? The moves are no longer 
global, in effect. Suddenly, we can cut up the chessboard into separate chunks and 
throw off the computer by making diversionary moves on the other side, to make 
the AI system think something is going on. Tactics like this are one way that Gary 
Kasparov beats many of the computer chess programs (and because he’s one of the 
best chess players in the history of the game, of course).

What separates most academic studies from more traditional entertainment 
versions of classical game playing programs is the notion of a time limit. Given the 
unreasonable request of an infinite amount of time, the best solution can almost 
always be found. But given the limits of the real world, gameplaying programs al-
ways have some form of time limitation, and we must make do with the amount 
of time that we have allotted to us. Of course, as computation speeds increase, we 
are getting closer and closer to the point when brute force methods will be pos-
sible, given even modest time constraints. But there will always be another, more 
complex game that will force AI researchers to use alternate methods to find better 
solutions fast, without relying on total brute search.

AI researchers have “solved” several of these games, meaning that the entire 
state space has been mapped out and can be easily searched by today’s computers 
to result in optimal performance (that being a win for the first player to move, or 
a draw). Games that have been solved include tic-tac-toe, checkers, Connect Four,
Go-Moku, and Othello. Several others are in various states of being solved. Chess 
is getting close. The highest-classed chess programs use a stored “opening book” 
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(chains of moves that have been researched over the centuries by chess masters to 
give good play) for the opening moves. They use a smart search technique of some 
kind for the transitory middle game phase, and then have another stored database 
of good moves for the endgame phase. See Figure 12.2 for a listing of solved and 
partially solved games. Bear in mind that while much was made of IBM’s Deep Blue
beating Gary Kasparov in 1997, most chess programs were able to beat most human 
players long before that (the first real computer chess programs that came out in 
the late 1950s could surely have beaten most human players).

FIGURE 12.1 A closed chess game position.
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Some games can have such huge state spaces (the game of Go has a game tree 
size of around 10400, which is a number larger than the amount of atoms in the uni-
verse, give or take) that they are all but immune to brute force search methods and, 
thus, require either very clever directed search routines within recognized portions 
of the state space, or intelligent algorithms to develop novel solutions given the 
game rules. Either way, these are some of the most classically-defined AI problems 
there are.

Listing 12.1 shows the search() and think() functions from the open source 
chess program, Faile, written by Adrien M. Regimbald. The entire source is on the 
CD-ROM, along with its corresponding Web links for more information. Faile is a 
very compact (the entire source zip file is 42 K), yet full-featured, alpha-beta search 
system, which gives this tiny little program expert-level AI play capability.

Notice that the search function uses bounded optimality, in that it has a time 
limit, and will make decisions based on the best move it has seen given the time it 
has left, and will even make decisions on whether to continue searching or not based 

FIGURE 12.2 Classic games that have been solved, in whole or partially.
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on time. More detail will be given on this later in the chapter when alpha-beta 
search is discussed.

LISTING 12.1 search() and think() from Faile. Distributed under the MIT license.

long int search (int alpha, int beta, int depth, bool do_null) {

  /* search the current node using alpha-beta with negamax search */

  move_s moves[MOVE_BUFF], h_move;

  int num_moves, i, j, ep_temp, extensions = 0, h_type;

  long int score = -INF, move_ordering[MOVE_BUFF], 

            null_score = -INF, i_alpha,h_score;

  bool no_moves, legal_move;

  d_long temp_hash;

  /* before we do anything, see if we’re out of time 

          or we have input: */

  if (i_depth > mindepth && !(nodes & 4095)) {

    if (rdifftime (rtime (), start_time) >= time_for_move) {

      /* see if our score has suddenly dropped, and if so, 

              try to allocate some extra time: */

      if (allow_more_time && bad_root_score) {

    allow_more_time = FALSE;

    if (time_left > (5*time_for_move)) {

      time_for_move *= 2;

    }

    else {

      time_exit = TRUE;

      return 0;

    }

      }

      else {

    time_exit = TRUE;

    return 0;

      }

    }

    #ifndef ANSI

    if (xb_mode && bioskey ()) {

      time_exit = TRUE;

      return 0;

    }

    #endif

  }
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  /* check for a draw by repetition before continuing: */

  if (is_draw ()) {

    return 0;

  }

  pv_length[ply] = ply;

  /* see what info we can get from our hash table: */

  h_score = chk_hash (alpha, beta, depth, &h_type, &h_move);

  if (h_type != no_info) {

    switch (h_type) {

      case exact:

    return (h_score);

      case u_bound:

    return (h_score);

      case l_bound:

    return (h_score);

      case avoid_null:

    do_null = FALSE;

    break;

      default:

    break;

    }

  }

  temp_hash = cur_pos;

  ep_temp = ep_square;

  i_alpha = alpha;

  /* perform check extensions if we haven’t gone past maxdepth: */

  if (in_check ()) {

    if (ply < maxdepth+1) extensions++;

  }

  /* if not in check, look into null moves: */

  else {

    /* conditions for null move:

       - not in check

       - we didn’t just make a null move

       - we don’t have a risk of zugzwang by being in the endgame

       - depth is >= R + 1

       what we do after null move:

       - if score is close to 

            -mated, we’re in danger, increase depth

       - if score is >= beta, we can get an early cutoff and exit */
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    if (do_null && null_red && piece_count >= 5 && 

             depth >= null_red+1) {

      /* update the rep_history just so things don’t get funky: */

      rep_history[game_ply++] = cur_pos;

      fifty++;

      xor (&cur_pos, color_h_values[0]);

      xor (&cur_pos, color_h_values[1]);

      xor (&cur_pos, ep_h_values[ep_square]);

      xor (&cur_pos, ep_h_values[0]);

      white_to_move ^= 1;

      ply++;

      ep_square = 0;

      null_score = -search (-beta, -beta+1, 

                                 depth-null_red-1, FALSE);

      ep_square = ep_temp;

      ply—;

      white_to_move ^= 1;

      game_ply—;

      fifty—;

      xor (&cur_pos, color_h_values[0]);

      xor (&cur_pos, color_h_values[1]);

      xor (&cur_pos, ep_h_values[ep_square]);

      xor (&cur_pos, ep_h_values[0]);

      assert (cur_pos.x1 == compute_hash ().x1 &&

          cur_pos.x2 == compute_hash ().x2);

      /* check to see if we ran out of time: */

      if (time_exit)

    return 0;

      /* check to see if we can get a quick 

              cutoff from our null move: */

      if (null_score >= beta)

    return beta;

      

      if (null_score < -INF+10*maxdepth)

    extensions++;

    }

  }



Chapter 12  Classic Strategy Games 211

  /* try to find a stable position before passing 

          the position to eval (): */

  if (!(depth+extensions)) {

    captures = TRUE;

    score = qsearch (alpha, beta, maxdepth);

    captures = FALSE;

    return score;

  }

  num_moves = 0;

  no_moves = TRUE;

  /* generate and order moves: */

  gen (&moves[0], &num_moves);

  order_moves (&moves[0], &move_ordering[0], num_moves, &h_move);

  /* loop through the moves at the current node: */

  while (remove_one (&i, &move_ordering[0], num_moves)) {

    make (&moves[0], i);

    assert (cur_pos.x1 == compute_hash ().x1 &&

        cur_pos.x2 == compute_hash ().x2);

    ply++;

    legal_move = FALSE;

    /* go deeper if it’s a legal move: */

    if (check_legal (&moves[0], i)) {

      nodes++;

      score = -search (-beta, -alpha, depth-1+extensions, TRUE);

      no_moves = FALSE;

      legal_move = TRUE;

    }

    ply—;

    unmake (&moves[0], i);

    ep_square = ep_temp;

    cur_pos = temp_hash;

    /* return if we’ve run out of time: */

    if (time_exit) return 0;

    /* check our current score vs. alpha: */

    if (score > alpha && legal_move) {
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      /* update the history heuristic since we have a cutoff: */

      history_h[moves[i].from][moves[i].target] += depth;

      /* try for an early cutoff: */

      if (score >= beta) {

    u_killers (moves[i], score);

    store_hash (i_alpha, depth, score, l_bound, moves[i]);

    return beta;

      }

      alpha = score;

      /* update the pv: */

      pv[ply][ply] = moves[i];

      for (j = ply+1; j < pv_length[ply+1]; j++)

    pv[ply][j] = pv[ply+1][j];

      pv_length[ply] = pv_length[ply+1];

    }

  }

  /* check for mate / stalemate: */

  if (no_moves) {

    if (in_check ()) {

      alpha = -INF+ply;

    }

    else {

      alpha = 0;

    }

  }

  else {

    /* check the 50 move rule if no mate situation 

            is on the board: */

    if (fifty > 100) {

      return 0;

    }

  }

  /* store our hash info: */

  if (alpha > i_alpha)

    store_hash (i_alpha, depth, alpha, exact, pv[ply][ply]);

  else

    store_hash (i_alpha, depth, alpha, u_bound, dummy);
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  return alpha;

}

//--------------------

move_s think (void) {

  /* Perform iterative deepening to go further in the search */

  move_s comp_move, temp_move;

  int ep_temp, i, j;

  long int elapsed;

  /* see if we can get a book move: */

  comp_move = book_move ();

  if (is_valid_comp (comp_move)) {

    /* print out a pv line indicating a book move: */

    printf (“0 0 0 0 (Book move)\n”);

    return (comp_move);

  }

  nodes = 0;

  qnodes = 0;

  allow_more_time = TRUE;

  /* allocate our time for this move: */

  time_for_move = allocate_time ();

  /* clear the pv before a new search: */

  for (i = 0; i < PV_BUFF; i++)

    for (j = 0; j < PV_BUFF; j++)

      pv[i][j] = dummy;

  /* clear the history heuristic: */

  memset (history_h, 0, sizeof (history_h));

  /* clear the killer moves: */

  for (i = 0; i < PV_BUFF; i++) {

    killer_scores[i] = -INF;

    killer_scores2[i] = -INF;

    killer1[i] = dummy;

    killer2[i] = dummy;

    killer3[i] = dummy;

  }
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  for (i_depth = 1; i_depth <= maxdepth; i_depth++) {

    /* don’t bother going deeper if we’ve 

            already used 2/3 of our time, and we

       have finished our mindepth search, since 

            we likely won’t finish */

    elapsed = rdifftime (rtime (), start_time);

    if (elapsed > time_for_move*2.0/3.0 && i_depth > mindepth)

      break;

    ep_temp = ep_square;

    temp_move = search_root (-INF, INF, i_depth);

    ep_square = ep_temp;

    /* if we haven’t aborted our search on time, 

            set the computer’s move

       and post our thinking: */

    if (!time_failure) {

      /* if our search score suddenly drops, and 

              we ran out of time on the

         search, just use previous results */

      comp_move = temp_move;

      last_root_score = cur_score;

      /* if our PV is really short, try to get some 

              of it from hash info

         (don’t modify this if it is a mate / draw though): */

      if (pv_length[1] <= 2 && i_depth > 1 && 

               abs (cur_score) < (INF-100) &&

          result != stalemate && result != draw_by_fifty &&

          result != draw_by_rep)

          hash_to_pv (i_depth);

      if (post && i_depth >= mindepth)

         post_thinking (cur_score);

    }

    /* reset the killer scores (we can keep the 

            moves for move ordering for now, but the 

            scores may not be accurate at higher depths, so we need

       to reset them): */

    for (j = 0; j < PV_BUFF; j++) {

      killer_scores[j] = -INF;

      killer_scores2[j] = -INF;

    }

  }
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  /* update our elapsed time_cushion: */

  if (moves_to_tc) {

    elapsed = rdifftime (rtime (), start_time);

    time_cushion += time_for_move-elapsed+inc;

  }

  return comp_move;

}

COMMON AI ELEMENTS

 Classic strategy games don’t typically require too much in the way of overall 
AI-controlled content. An opponent to play against,  and in some cases a helper or 
tutorial system, is really all that these types of games implement.

OPPONENT AI

By definition, a zero-sum game must have an opponent to challenge. In an enter-
tainment sense, this opponent must become another “person,” in effect, and play 
the rules with some semblance of personality. For most games, this personality is 
simply represented by a difficulty rating. By playing against the program enough 
times at each rating, a human being will eventually determine the kinds of moves 
that the particular AI-controlled player will make and not make.

HELPER AI

Consumer games like chess usually include a tutor mode, in which the computer 
offers players a number of drills and lessons to improve their game. Although some 
games only provide minimal tutoring content in the form of scripted lessons, 
others actually include intelligent help systems that see flaws in the player’s game 
and can steer to the person-scripted lessons, or give advice about a board setup in 
real time. Many people buy chess products for this feature alone, because they want 
to learn or improve their games by getting instruction and practice from the AI sys-
tem. Other games like Bridge that have somewhat large or confusing rule sets also 
use helper-AI systems to teach the basic strategies of the game. It is very important, 
however, that such systems not be intrusive and can be ignored or switched off by 
the player so they don’t feel “nagged” by the computer.
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USEFUL AI TECHNIQUES

Classic strategy games tend to use different techniques than most other game genres. 
That doesn’t stop them from using FSMs, though. In addition, the classic strategy 
genre also makes use of alpha-beta search, neural nets, and genetic algorithms.

FINITE-STATE MACHINES (FSMS)

Most of these games are fairly linear (although some only have one basic state 
change: that of ending the game). The gameplay can be broken down into smaller 
parts (as in the opening, midgame, and endgame phases of chess), which are eas-
ily identifiable and can therefore allow the system to switch between different AI 
methods based on these sub-states.

ALPHA-BETA SEARCH

This is pretty much the de facto standard for search in classical games that need min-
imax trees searched. Minimax trees are specially set-up game-state trees, with the 
layers of the tree comprising nodes representing the choices each player can make, 
and in which the values associated with each node of the tree depict its closeness to 
a winning value (see Figure 12.3 for a simplified example of a minimax tree). The 
algorithm then follows at each choice, the first opponent moves with the max score 
at his level of the tree, and the other player plays the minimum scored at his. This is 
because the first player is trying to maximize his score, and the second player is try-
ing to minimize the first player’s score. This technique leads to an optimized move 

FIGURE 12.3 Simplified example of a minimax search tree showing one turn or “ply” for each player.
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direction for these types of games, but has the problem of assuming a completely 
rational and defensive second player.

Minimax methods can be extended to games that also contain an element of 
pure chance, such as backgammon. This extension is called an expectimax tree and 
merely adds the element that a pure minimum and maximum value cannot be 
calculated at each tree node, thus introducing chance nodes that use an estimate of 
the random values that are being introduced into the game.

The problem with a full minimax search is that it takes into account the whole 
tree. Consider chess, for which, at any given board position, there are usually about 
35 legal moves. This means that a 1-level search is 35 entries, 2 levels is 352, 6 levels 
is almost 2 billion entries, and a 10-level search (which is in reality only 5 moves per 
player) is more than 2 quadrillion tree nodes.

It is important to search as deeply as possible (average human players can usu-
ally make decisions based on looking 6 to 8 moves ahead, and grandmaster players 
sometimes make decisions 10 to 20 moves ahead). An alpha-beta search allows us 
to prune whole tree branches with total safety, so this vastly reduces the number 
of comparisons to perform, unless you get unlucky enough to have your game-
state tree set up in the worst-case scenario, which would mean that the optimiza-
tion would be completely nulled out, and you would end up performing a regular 
minimax search.

NEURAL NETS (NNS)

Strategy games with larger state spaces or somewhat strange evaluations of board 
positions (such as Go, in which most of the position scoring involves very esoteric 
things like “influence” and “territory”) have lent themselves well to the kinds of 
esoteric knowledge that can be stored in NNs. However, this kind of data structure 
is fiendishly hard to train, and even harder to debug. It is used in these sorts of situ-
ations because nothing else will really do the job.

GENETIC ALGORITHMS (GAS)

GAs can be considered another type of search, the so-called random walk search. 
This means searching the state space for solutions using some form of guided ran-
domness. In this case, we use natural selection as our guide, and random mutation 
as our random element. We will discuss more of the specifics of this family of algo-
rithms in later in this book.

Examples

Chess computer programs have been with us since the creation of the computer, 
starting in the early 1950s; they are still among the more popular classic games 
played as an entertainment. Early commercial games, like Sargon, weren’t terribly 
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intelligent and ran quite slowly. Today, chess games have improved so much that 
you can go to the store and buy a grandmaster-level, very fast chess program to 
play against for less than thirty dollars. Over the years, some companies have 
tried to mix up the formula, while still keeping the same game, such as Battle 
Chess (1988), which showed animated death sequences whenever players took an 
opponent’s piece.

Most strategy games play straightforwardly, without malice or bias. However, 
some people have crafted their games to have some semblance of personality, such 
as Checkers with an Attitude, from Digenetics™, a game using various neural nets 
to play a very good, and distinctly personable, game of checkers.

AREAS THAT NEED IMPROVEMENT

As with any game genre, there are always things that could be better. Classic strat-
egy games can be a bit stuffy. Some advanced technqiues that give AI opponents 
creativity could give the genre some life. Plus, more CPU horsepower will always 
improve the overall speed of these games, such that they’ll make better decisions 
in less time.

CREATIVITY

Extended use of GAs might lead these types of AI opponents to find increasingly 
nonintuitive solutions, which GAs are known for. GAs have the ability to find cor-
relating features across a much larger number of variables simultaneously than 
many other techniques, sometimes leading them to surprising results. Also, differ-
ent heuristic-based searches could be implemented with NNs or GAs determining 
the heuristic, again so that creative, local solutions could be found. In an indirect 
way, these solutions could be thought of as “creative” ways of playing the games, 
and could even change the way that people play. Real creativity might be a tall 
order, but by building strategy games to incorporate some of these more exotic 
techniques, games could eventually appear to players to utilize novel tactics and 
strategies.

SPEED

Speed is always an overriding factor in game AI programming, especially in strat-
egy games, which may entail tremendous amounts of searching. By improving our 
brute-force methods, we may eventually find clever ways of arriving at decisions, 
without taking the time necessary to search massive trees to find the best solution. 
Or, the computers will just get so fast that the optimal search can be done trivially, 
and we’ll take our AI somewhere else to play.
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SUMMARY

Classic strategy games were some of the first to use academic AI techniques to 
build opponents because they represent the ideal candidate for AI-directed search 
methods. Strategy games have shown the entertainment industry the benefit of 
using real AI solutions for these types of problems (and for far less ideal situations 
like videogames) and have even provided us with most of our data structures and 
methodologies.

Classic strategy games are defined as being zero-sum games of perfect informa-
tion, with mostly global moves that are turn-based.
The type of opponent AI you are coding is based on the type of game: a com-
petition opponent requires optimal performance, but an entertainment oppo-
nent must use difficulty settings and such.
Helper AI in entertainment strategy games is sometimes included for teaching 
and giving advice during practice games.
FSMs can still be used in these games to break the state space into smaller 
chunks.
Alpha-beta search is the primary opponent modeling means by which most 
classical strategy games consider opponent moves during planning.
Genetic algorithms and neural nets can help facilitate directed search in new 
ways, or find unintuitive solutions.
Creativity is a common lacking element in these games; they usually use more 
brute force in their search for the correct answer.
Speed of the AI system is always a concern for these kinds of games because AI 
represents the largest percentage of the CPU time that the game is using.
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Fighting Games13

Fighting games are a strange mix of the action and opponent puzzle genres. 
In the arcades of the 1980s and 1990s, fighting games used to be the genre, 
easily outnumbering all other types of coin-operated games.

Early fighters, simple side-scrolling games with tough-sounding names and
main characters (sometimes referred to as “brawlers” or “beat-em-ups,” like Double
Dragon, Bad Dudes, and Final Fight) were more like horizontal scrolling shooter 
games, in which you used martial arts instead of projectiles. Other types of early 
brawlers included boxing games (like Nintendo’s Punch Out) and wrestling com-
petitions (Pro Wrestling, for the NES). All these games were popular, but fighting 
games were still just another genre.

However, the fighting genre reached the height of popularity in the early 
1990s with Street Fighter 2: The World Warrior (SF2) from Capcom (screenshot in 
Figure 13.1). SF2 leapt onto the scene by taking the simple brawler formula and 
making the combat the entire experience, going over the top with concepts like 
combos, blocks, super moves, and in-your-face man-against-man action (although 
an earlier game, Karate Champ, did some of these things first, SF2 did them all so 
much better that it stole the title of first real head-to-head fighter).

Arcades moved all their other machines out, and lined up SF2 machines. Peo-
ple everywhere got in line, “put their quarter up” on the ledge of the machine, 
and waited their turns. One important thing that SF2 did was to reintroduce the 
concept of complex game controls to the game world. The special moves that SF2
required of its advanced players were unlike anything the game world had seen 
before, and people loved being able to pull off monster combinations using complex
hand movements that took days or even weeks of practice.
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The game proved to be so popular that it is usually credited with being a 
major reason that the Super Nintendo console finally caught up in sales to the 
Sega Genesis; because the Super Nintendo version of SF2 was a better version, 
fans couldn’t get enough, and the sales of SF2 and the SNES were 1 for 1 (mean-
ing for every SNES console that was sold, a copy of SF2 was also sold) for many 
months.

Fighters, like the other genres, gradually made the switch to three-dimensions, 
but not all the way. While games like Virtua Fighter and Tekken Tag Tournament
(screenshot in Figure 13.2) carved niches for themselves using three-dimensional 
combat methods, the Street Fighter series stayed in the two-dimensional realm and 
instead created deeper systems of gameplay that couldn’t be replicated in three-
dimensions because of the problems with cameras, targeting, and the super-quick 
timing necessary to pull off the advanced moves.

Wrestling games didn’t really suffer from the transition to three dimensions, 
however. Wrestling involves grappling (by definition), so the kinds of character 
interactions become much more numerous, and you can set up very deep chains 
of moves as the characters move into and out of various locks and takedowns by 
initiating attacks and counterattacks. The characters are grappled together, so they 
don’t have the problems of lining up with their opponent, and the camera can be 
more tightly positioned because of the proximity of the wrestlers.

FIGURE 13.1 Street Fighter 2: The World Warrior screenshot. © Capcom Co., Ltd. Reprinted with permission.
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In recent years, even though fighting games have fallen from their number-one 
spot, they are still around and are invading other genres with games like Buffy the 
Vampire Slayer, which could be described as half-fighter and half-adventure game.

Such is the trend of all genres: start with a bang, and then develop until a 
level of maturity (and complexity) is reached. From there, any additional im-
provement is incremental at best. Languish in unpopularity for a while, and then 
in semidesperation, merge with other genres to add content and flavor to the 
experience.

COMMON AI ELEMENTS

Fighting games, like any genre that has started to merge with other genres, can 
sometimes contain a large number of AI-controlled components. Some of the 
commonly used elements in fighting games include: enemies, collision systems, 
boss enemies, cameras, and action adventure elements.

FIGURE 13.2 Tekken Tag Tournament screenshot. TEKKEN TAG TOURNAMENT® ©1994, 1995, 1996, 1999 Namco, 
Ltd., All rights reserved. Courtesy of Namco Holding Corp.
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ENEMIES

The enemies in fighting games use some of the most heavily tuned and balanced 
opponent AI code ever written. One of the biggest selling points of most successful 
fighters was that the game was balanced; no one character was intrinsically easier 
to win with than any other. Some might be harder or easier to control, but with 
practice, you could be equally deadly with any of them.

Because of this, precise control over individual characters’ moves, down to the 
single frame of animation level, was exercised by the game developers. As such, 
most of these games use a form of scripting language that can describe events on a 
frame-by-frame basis, including sounds, particle effects, turning on/off defensive 
and offensive collision spheres, marking points in the animation where branches 
are possible (for combos), and anything else the move might need to trigger. Char-
acter scripters would spend months working balance issues out of the game.

In some fighting games, the background is more than just a backdrop and 
might contain elements that can be used in battle, or hidden behind, or simply 
smashed to receive some kind of powerup. Enemies in these games need to be able 
to react intelligently with these elements as well. For instance, an enemy approach-
ing the main character for a fight has a big wooden crate sitting in between himself 
and his opponent. Does he use an avoidance system to move around it? Does he 
pick it up and throw it either out of the way or at his opponent? Does he jump over 
it? Does he jump on top of it to gain a height advantage at the expense of agility 
of movement? Or does he just smash through it with a huge punch? These are the 
kinds of advanced decisions that your enemies might have to make if you’re work-
ing on a fighting game with background interactions.

COLLISION SYSTEMS

Collision systems at the character level are also supremely important to the fighting 
genre. Each character typically had a number of collision areas, each of which might 
change size for any given animation frame, or even be disabled for certain periods 
of time. To facilitate gameplay, the collisions were never really physics-based but, 
rather, relied on tuned data that detailed such things as the amount of knock-back 
felt by each player, the animation to play upon collision, a sound or effect to spawn, 
any “recover” time associated with the move (meaning, the amount of time after a 
move that a player can’t throw another move at all), and a host of other data values 
that the games needed.

BOSS ENEMIES

Like RPGs and some other genres, certain fighting games use boss enemies to treat 
the player to a bigger, nastier enemy at the end of the game, or each level. In the 
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two-dimensional brawlers, these were sometimes the only memorable enemies in 
the whole game, another similarity to horizontal scrolling shooter games. Head-
to-head fighting games traditionally only had one boss, the character a player had 
to fight after the player defeated everybody else. This character was traditionally 
very tough to beat, the difficulty being much harder than whatever the rest of the 
game was set at.

CAMERA

In the three-dimensional fighting games, you run into the problem of camera po-
sitioning, just as in three-dimensional platformers. However, because of the fast-
paced nature and camera-relative controls that the fighting character is using, the 
camera for three-dimensional fighters needs special attention; otherwise, it will 
ruin the fighting game by messing up combos, causing moves to miss the target 
because of orientation problems, and generally make the game a mess to play.

Another difference from platform games is that the player really doesn’t have 
the time to use a free-look camera because the player is engaged in close-quarters 
combat. Also, because there are potentially two (or more) human players, a free-
look camera wouldn’t be viable from a control or visibility standpoint. Therefore, a 
good algorithmic or tracked camera system is essential.

ACTION AND ADVENTURE ELEMENTS

Some of the genre-crossing variants to the fighting genre are using more action 
or adventure game ingredients. Some involve heavy amounts of exploration and 
puzzle solving similar to adventure games. But some also involve the jumping and 
climbing challenges of the platform game world. By blending in these additional 
game elements, developers are keeping the fighting game alive, while inventing new 
combinations of gameplay experiences that keep games fresh.

USEFUL AI TECHNIQUES

Fighters typically are not that complex in regard to code. Their development instead 
tends to be design intensive, so the techniques associated with them are typically 
more geared to designer implementation. FSMs still make a showing, but data-
driven and scripted systems are the commonly used techniques here.

FINITE-STATE MACHINES (FSMS)

Fighting games are usually state-based, with the AI-controlled opponent perform-
ing a move, sitting there, or responding to a collision. A simple FSM can keep most 
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fighter games in line and provide the developer with more than enough structure 
to add complexity without maintenance headaches. Usually the structure of any 
particular character’s FSM is data driven in some way, to facilitate the fact that dur-
ing tuning and play testing, the state diagram of any given character might change 
dramatically and often.

DATA-DRIVEN SYSTEMS

Fighting games employ a huge number of characters, moves, blocks, throws, and 
combos. Given the level of tuning and balance that these games require, driving 
the primary fighting engine with designer-accessible scripting is really the only 
way to go.

Usually, each move is scripted to allow very precise determination of attack, 
defense, combo branching, sound effects, collision times, and size of collision area, 
as well as damage inflicted. The collision system is usually quite complex (even the 
first SF2 game had many collision areas per enemy sprite, with separate head, arms, 
body, legs, etc.), with data tables detailing the animations to play if areas on the 
enemy are hit, blocked, or whatever. Additional tables would describe the “person-
ality” of each fighter, by listing out bias values on moves and combos, how aggres-
sive the player was defensively, and just about everything else about the character.

SCRIPTING SYSTEMS

In addition to the notion that the designers need strict control over fighting anima-
tions (thus, they usually require a script to detail everything that needs to happen 
during each move), story elements and the like are still very prevalent. This occurs 
in some of the adventure-style fighting game variants especially, so scripting sys-
tems are used in fighters frequently.

Scripting systems are also useful for in-game cinematic moments, for example, 
when the fight starts and the characters enter the arena, or after someone wins and 
the winner exhibits some kind of victory dance. Hugely complex moves (sometimes 
called “super combos” or the like) might also require a level of scripting because 
super combos are usually constructed from other moves, all strung together in a 
specific fashion. Of course, you could implement this kind of behavior with state 
machines, but if your game is going to require scripting for other things, you might 
as well incorporate its use in other areas as well.

Examples

Early fighters were simple affairs. You usually had a punch button, or maybe a 
punch and kick button. Games in this realm were the side scrollers (or brawlers), 
such as Bad Dudes, Kung-Fu Master, Golden Axe, and Ninja-Gaiden. The enemies 
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had very simple AI—usually they would just try to surround the player and throw 
whatever simple move or combination of moves they had in their arsenal. The 
side-scrolling fighters had boss characters, but the bosses were usually just very 
fast, or had a lot of hit points, or some huge weapon; they were almost never 
smarter.

Then the head-to-head fighters started appearing, and were so popular 
that many different game franchises were started: Samurai Showdown, King of 
Fighters, Mortal Kombat, and of course, the Street Fighter series. As the years 
progressed, sequels continued to be better, with more complex, more technically 
enhanced games.

The AI-controlled enemies in head-to-head fighting games were completely 
fleshed-out fighting opponents, with the full abilities of almost any human, and 
usually beyond. The difficulty of the AI could be set by the operator (in the arcades) 
or by the player (on the home consoles) to fit any user skill level—everything from 
totally inept to almost invincible. This was only possible because in the course of 
constructing these games, with their finely-tuned input windows, animation frame 
counting, and rigorously adjusted collision systems, the game developers allowed 
the entire system to be scaled up or down by raw difficulty, as well as time scaling 
(for various turbo speed modes of play). The scripts and data associated with each 
move could handle sliding skill levels internally.

The three-dimensional brawlers have also come a long way, with initial games 
like Battle Area Toshinden (the game that came with a lot of people’s first Playsta-
tion console), all the way to the current brands: Soul Calibur, Dead or Alive, and the 
Virtua Fighter games. These games use all the data-driven AI systems of their two-
dimensional brothers. They also use extensive camera work, and some even use a 
degree of pathfinding because of the advanced terrain usage.

Games like Buffy the Vampire Slayer (which used a popular license and lots of 
exploration challenges), The Mark of Kri (with its great integration of cinematics), 
and Viewtiful Joe (a throwback game that took today’s advanced technology and 
married to it to a hardcore old-style brawler) are all examples of the use of heavy 
fighting systems in various other game types. All of these titles have used techniques 
from pure fighting games to solve specific combat problems, as well as have had to 
deal with the AI challenges preset in mainstream action and adventure games.

AREAS THAT NEED IMPROVEMENT

The primary interaction between players and AI-controlled fighting game charac-
ters is single combat. There will most likely always be room for games of this type, 
simply because this is a simple human please, that of man-on-man competition. It 
is a simplified “king of the hill” sort of game experience that resonates deeply with 
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many game players. Some ways in which we could improve the fighting game expe-
rience include learning and additional crossover/story elements.

LEARNING

Fighting games are like most video games; eventually, the human will find a weak 
point and exploit it repeatedly to make the game easier for himself. This was evi-
dent even in SF2, where continually jumping and doing a fierce punch over and 
over again could almost always defeat the usually difficult character, Zangief. 
If poor Zangief had even a smidgen of learning AI, he could have eventually seen the 
pattern of the human’s attacks, and taken precautions. A learning system could also 
help with general case exploits and actually help keep the gameplay even (against 
the computer at least) by having the AI notice if the human is repeating a single, 
very powerful attack and circumventing it.

An AI set to lower difficulty could even help out the player by adjusting its at-
tack patterns if some of its attacks were always hitting. In this way, the fight would 
be a bit more interesting, even if the human kept making the same mistakes.

ADDITIONAL CROSSOVER/STORY ELEMENTS

Fighting games have barely begun to scratch the surface of genre crossover. Role 
playing elements have yet to be deeply explored. Imagine an open world game, 
where you find new fighting techniques, master them, and then fight in competi-
tions against AI-controlled enemies or other human players. Boxing games are still 
very arena based, as opposed to having to build up your fighter outside the ring 
with an overall story thread that could take you from amateur to world champ.

Several fighting games (including Fighter Maker and MortalKombat Armageddon)
included “create a fighter” modes within their games. However, these almost all 
used pre-made moves (that you could rename at best) and were more for making 
characters that you then used to play. Imagine a more open ended fighting game 
creation mode, where players would not only craft visual character distinctions, 
but could tweak the AI of a character so that they could custom create whole new 
characters complete with new ways of attacking the player. A game with a mode like 
this could become a sort of “gladiator” system, where players could pit fight their 
creations against one another to determine king of the hill status indirectly through 
the performance of the player’s creations.

SUMMARY

Fighting games, both two-dimensional and three-dimensional, give the player a 
level of character control that most other games do not. They appeal to both twitch 
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gamers (who love fast action, button-mashing style gameplay), as well as to tacti-
cians who study the various blocking-and-attack systems looking for advantages as 
well as crowd-pleasing mega combos.

Fighting games started out as two-dimensional side-scrolling brawlers, with 
simple controls and little strategy.
Head-to-head fighters infused the genre with the depth of gameplay it needed 
to survive, and also made it the most popular genre for almost a decade.
Fighting game characters and boss enemies require heavy tuning to preserve 
game balance. This needs to be taken into account when coding them.
The collision systems used in fighters are also very complex, requiring much 
higher resolution of targets then most games.
The camera system (for three-dimensional fighters), and any additional action 
or adventure elements may also require AI code.
FSMs and scripting (or some other form of data-driven AI) constitute the most 
common means by which fighting game AI is created. Data driving a fighter is 
important because of the high amount of tuning and designer input that needs 
to occur at many levels of gameplay.
Learning in fighting games could help against AI exploits and keep gameplay 
from becoming repetitive. Continuing to explore crossover/story elements will 
extend the fighting game universe.
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Miscellaneous Genres 
of Note

14

Although most games fall into the general categories explored in the previous 
chapters, many games are either hard to categorize, or in a class all by them-
selves. This chapter will highlight some of the most notable of these games 

and will briskly discuss the artificial intelligence methodologies used in their creation.

CIVILIZATION GAMES

Civilization (or civ) games are turn-based strategy games. These are big turn-based 
strategy games; sometimes with monstrous amounts of units to control, and hun-
dreds of things for the player to manage and tweak on any given turn. Almost ex-
clusively a PC genre (mostly because of interface concerns), there are a few console 
games of this type—Final Fantasy Tactics and even the handheld game Advance 
Wars are good examples.

The genre is almost owned by one man, Sid Meier. He was designing a spin-off 
of the 1989 hit game SimCity™ (which will be discussed later, with God games) 
when he came up with the idea, and two years later managed to create an entirely 
new genre. The game was called Civilization, and has since spawned an entire series, 
as well as dozens of other civ games. The Civilization series (Figures 14.1 and 14.2 
show the evolution from Civilization to Civilization 3), as well as the recent Alpha 
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Centauri and many others, are all civ games, with incredibly deep strategy, chal-
lenging AI systems, good interfaces, and almost infinite replay value. Some other 
great examples of civ games are X-Com, the Heroes of Might and Magic games, and 
the Master of Orion series.

In a turn-based interface, players (a mix of humans and AI opponents) take 
turns issuing orders to their armies, cities, etc., and then watch the turn’s total ac-
tivities unfold. This process continues, back and forth, until the game is over. The 
player can control everything: which battles are instigated, what cities and towns are 
producing, what types of research are being studied, what new inventions are having 
resources allocated to them, and so forth. These games can last a long time—many 
hours or even days. But, because of this turn-based mechanic, both sides have longer 
time in which to make decisions, and so deep gameplay strategies can emerge. The 
concept of bounded optimality discussed in Chapter 1, “Basic Definitions and Con-
cepts,” really takes effect here; the time restriction felt by more real-time AI systems 
is all but lifted for the AI-controlled opponents of these games. Humans don’t really 
enjoy waiting for the computer to make moves and decisions, so the AI engines for 
most civ style games do many calculations while the human is performing his turn 
and, thus, can limit the amount of time taken for the computer opponent’s turn.

FIGURE 14.1 Civilization screenshot. Sid Meier’s Civilization® and Sid Meier’s Civilization® III courtesy of Atari 
Interactive, Inc. © 2004 Atari Interactive, Inc. All rights reserved. Used with permission.
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Unlike real-time strategy (RTS) games, these games have very little unit-based 
intelligence. Almost all decisions are strategic, with the conflicts between individ-
ual combat units (or even between units and defended cities) reduced to random 
rolls based on the unit’s strength and defense numbers. This leads to more of a 
simulation feel, rather than the action element that individual combat adds to the 
RTS genre.

Typical AI systems used in civ games have the following attributes:

They use most of the same types of AI methods required by RTS games, includ-
ing finite-state machines (FSMs), fuzzy-state machines (FuSMs), hierarchical 
AI systems, good pathfinding, and messaging systems.
Civ games borrow most of the support systems also used by RTS games, in-
cluding terrain analysis, resource management, city planning techniques, and 
opponent modeling.

FIGURE 14.2 Civilization 3 screenshot. Sid Meier’s Civilization® and Sid Meier’s Civilization® III courtesy of Atari 
Interactive, Inc. © 2004 Atari Interactive, Inc. All rights reserved. Used with permission.
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A heavy data-driven element is usually employed because of the number of 
civilization types (as well as the many types of units, technologies, resources, 
etc.) usually represented in these games, as well as the heavy tuning required 
for balancing.
Robust planning algorithms are used because these games usually have expan-
sive technology trees and huge game worlds. See Listing 14.1 for a very small 
sample of AI code from FreeCiv, an open-source recreation of Civilization. 
FreeCiv has a huge following and has been ported to many platforms.
Civ games have advanced AI systems for counselors and diplomacy. Many of these 
games have such a large amount of “work” to be done that some people would 
find it boring or tiresome to do everything, so the concept of counselors was in-
troduced. These AI characters can offer to help the player with parts of the game 
that the player finds tedious or confusing by offering advice when asked. This 
system uses the AI decision-making engine to pass over the game world while the 
human is in control, and then inform the human what the computer would do 
right now, as a suggestion that can be taken or discarded. Typically, these counsel-
ors were specialized into the various parts of the game, such as trade, or research, 
or government. In that way, the player only needs to consult those counselors 
that the player wants to and can ignore the counselors at other times. Diplomacy 
systems are also much more complex. Different groups will make alliances, and 
leaders might manipulate, outright lie, or hold grudges. The states of mind of 
these diplomatic types varies greatly during a game, and satisfying everybody is 
not possible, just like in real life. In fact, in the original Civilization, it is all but 
impossible to run an entirely bloodless game, in which the civs all live in peace 
and prosperity until someone wins through technical superiority.

LISTING 14.1 Sample AI code from FreeCiv.

/*********************************************************************

   Buy and upgrade stuff! 

*********************************************************************/

static void ai_spend_gold(struct player *pplayer)

{

  struct ai_choice bestchoice;

  int cached_limit = ai_gold_reserve(pplayer);

  /* Disband troops that are at home but don’t serve a purpose. */

  city_list_iterate(pplayer->cities, pcity) {

    struct tile *ptile = map_get_tile(pcity->x, pcity->y);

    unit_list_iterate(ptile->units, punit) {

      if (((unit_types[punit->type].shield_cost > 0

            && pcity->shield_prod == 0)
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           || unit_has_role(punit->type, L_EXPLORER))

          && pcity->id == punit->homecity

          && pcity->ai.urgency == 0

          && is_ground_unit(punit)) {

        struct packet_unit_request packet;

        packet.unit_id = punit->id;

        CITY_LOG(LOG_BUY, pcity, 

                      “disbanding %s to increase production”,

                 unit_name(punit->type));

        handle_unit_disband(pplayer, &packet);

      }

    } unit_list_iterate_end;

  } city_list_iterate_end;

  do {

    int limit = cached_limit; /* cached_limit is our gold reserve */

    struct city *pcity = NULL;

    bool expensive; /* don’t buy when it costs x2 unless we must */

    int buycost;

    /* Find highest wanted item on the buy list */

    init_choice(&bestchoice);

    city_list_iterate(pplayer->cities, acity) {

      if (acity->anarchy != 0) continue;

      if (acity->ai.choice.want > bestchoice.want &&

                                       ai_fuzzy(pplayer, TRUE)) 

           {

        bestchoice.choice = acity->ai.choice.choice;

        bestchoice.want = acity->ai.choice.want;

        bestchoice.type = acity->ai.choice.type;

        pcity = acity;

      }

    } city_list_iterate_end;

    /* We found nothing, so we’re done */

    if (bestchoice.want == 0) break;

    /* Not dealing with this city a second time */

    pcity->ai.choice.want = 0;

    ASSERT_REAL_CHOICE_TYPE(bestchoice.type);

    /* Try upgrade units at danger location 

          * (high want is usually danger) */
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    if (pcity->ai.danger > 1) {

      if (bestchoice.type == CT_BUILDING && 

               is_wonder(bestchoice.choice)) {

        CITY_LOG(LOG_BUY, pcity, 

                      “Wonder being built in dangerous position!”);

      } else {

        /* If we have urgent want, spend more */

        int upgrade_limit = limit;

        if (pcity->ai.urgency > 1) {

          upgrade_limit = pplayer->ai.est_upkeep;

        }

        /* Upgrade only military units now */

        ai_upgrade_units(pcity, upgrade_limit, TRUE);

      }

    }

    /* Cost to complete production */

    buycost = city_buy_cost(pcity);

    if (buycost <= 0) {

      continue; /* Already completed */

    }

    if (bestchoice.type != CT_BUILDING

        && unit_type_flag(bestchoice.choice, F_CITIES)) {

      if (!city_got_effect(pcity, B_GRANARY) 

          && pcity->size == 1

          && city_granary_size(pcity->size)

             > pcity->food_stock + pcity->food_surplus) {

        /* Don’t build settlers in size 1 

              * cities unless we grow next turn */

        continue;

      } else {

        if (city_list_size(&pplayer->cities) <= 8) {

          /* Make AI get gold for settlers early game */

          pplayer->ai.maxbuycost = 

                                MAX(pplayer->ai.maxbuycost, buycost);

        } else if (city_list_size(&pplayer->cities) > 25) {

          /* Don’t waste precious money buying settlers late game */

          continue;

        }

      }

    } else {

      /* We are not a settler. Therefore we 
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            * increase the cash need we

       * balance our buy desire with to 

            * keep cash at hand for emergencies 

       * and for upgrades */

      limit *= 2;

    }

    /* It costs x2 to buy something with no shields contributed */

    expensive = (pcity->shield_stock == 0)

                || (pplayer->economic.gold - buycost < limit);

    if (bestchoice.type == CT_ATTACKER 

        && buycost > unit_types[bestchoice.choice].build_cost * 2) {

       /* Too expensive for an offensive unit */

       continue;

    }

    if (!expensive && bestchoice.type != CT_BUILDING

        && (unit_type_flag(bestchoice.choice, F_TRADE_ROUTE) 

            || unit_type_flag(bestchoice.choice, F_HELP_WONDER))

        && buycost < unit_types[bestchoice.choice].build_cost * 2) {

      /* We need more money for buying caravans. Increasing

         maxbuycost will increase taxes */

      pplayer->ai.maxbuycost = MAX(pplayer->ai.maxbuycost, buycost);

    }

    /* FIXME: Here Syela wanted some code to check if

     * pcity was doomed, and we should therefore attempt

     * to sell everything in it of non-military value */

    if (pplayer->economic.gold - pplayer->ai.est_upkeep >= buycost

        && (!expensive 

            || (pcity->ai.grave_danger != 0 && 

                     assess_defense(pcity) == 0)

            || (bestchoice.want > 200 && pcity->ai.urgency > 1))) {

      /* Buy stuff */

      CITY_LOG(LOG_BUY, pcity, “Crash buy of %s for %d (want %d)”,

               bestchoice.type != CT_BUILDING ? 

                      unit_name(bestchoice.choice)

               : get_improvement_name(bestchoice.choice), buycost,

               bestchoice.want);

      really_handle_city_buy(pplayer, pcity);

    } else if (pcity->ai.grave_danger != 0 

               && bestchoice.type == CT_DEFENDER

               && assess_defense(pcity) == 0) {
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      /* We have no gold but MUST have a defender */

      CITY_LOG(LOG_BUY, pcity, 

                “must have %s but can’t afford it (%d < %d)!”,

           unit_name(bestchoice.choice), 

                pplayer->economic.gold, buycost);

      try_to_sell_stuff(pplayer, pcity);

      if (pplayer->economic.gold - pplayer->ai.est_upkeep >=

               buycost) {

        CITY_LOG(LOG_BUY, pcity, 

                        “now we can afford it (sold something)”);

        really_handle_city_buy(pplayer, pcity);

      }

      if (buycost > pplayer->ai.maxbuycost) {

        /* Consequently we need to raise more money through taxes */

        pplayer->ai.maxbuycost = 

                                MAX(pplayer->ai.maxbuycost, buycost);

      }

    }

  } while (TRUE);

  /* Civilian upgrades now */

  city_list_iterate(pplayer->cities, pcity) {

    ai_upgrade_units(pcity, cached_limit, FALSE);

  } city_list_iterate_end;

  if (pplayer->economic.gold + cached_limit < 

           pplayer->ai.maxbuycost) {

    /* We have too much gold! Don’t raise taxes */

    pplayer->ai.maxbuycost = 0;

  }

  freelog(LOG_BUY, “%s wants to keep %d in reserve (tax factor %d)”, 

          pplayer->name, cached_limit, pplayer->ai.maxbuycost);

}

#undef LOG_BUY

/*******************************************************************

 cities, build order and worker allocation stuff here..

*******************************************************************/

void ai_manage_cities(struct player *pplayer)

{

  int i;

  pplayer->ai.maxbuycost = 0;
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  city_list_iterate(pplayer->cities, pcity)

    ai_manage_city(pplayer, pcity);

  city_list_iterate_end;

  ai_manage_buildings(pplayer);

  city_list_iterate(pplayer->cities, pcity)

    military_advisor_choose_build(pplayer, pcity, 

                                       &pcity->ai.choice);

    /* note that m_a_c_b mungs the seamap, but we don’t care */

    establish_city_distances(pplayer, pcity); 

         /* in advmilitary for warmap */

    /* e_c_d doesn’t even look at the seamap */

    /* determines downtown and distance_

          * to_wondercity, which a_c_c_b will need */

    contemplate_terrain_improvements(pcity);

    contemplate_new_city(pcity); 

         /* while we have the warmap handy */

    /* seacost may have been munged if we found 

          * a boat, but if we found a boat we don’t rely on the seamap

          * being current since we will recalculate. — Syela */

  city_list_iterate_end;

  city_list_iterate(pplayer->cities, pcity)

    ai_city_choose_build(pplayer, pcity);

  city_list_iterate_end;

  ai_spend_gold(pplayer);

  /* use ai_gov_tech_hints: */

  for(i=0; i<MAX_NUM_TECH_LIST; i++) {

    struct ai_gov_tech_hint *hint = &ai_gov_tech_hints[i];

    if (hint->tech == A_LAST)

      break;

    if (get_invention(pplayer, hint->tech) != TECH_KNOWN) {

      pplayer->ai.tech_want[hint->tech] +=

      city_list_size(&pplayer->cities) * (hint->turns_factor *

                          num_unknown_techs_for_goal

                          (pplayer,

                           hint->tech) +

                          hint->const_factor);
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      if (hint->get_first)

    break;

    } else {

      if (hint->done)

    break;

    }

  }

}

On October 28, 2003, Activision® released the source code for Call to Power II,
an offshoot from the main Civilization line. The game has been heralded by its 
many fans for the level of extensibility it allows. It contains a very powerful script-
ing system (in fact, before the source was released, a number of actual bugs in the 
game code had clever game players creating script-based workarounds and distrib-
uting them on the Internet).

GOD GAMES

Another genre that is unique and virtually owned by a few franchises is the “God 
game.” They are called God games because the player takes the role of creator, over-
seer, and the force of change for the entirety of the game, yet does not have direct
control over the other inhabitants of the game.

In some ways, this makes the experience much like an artificial life (alife) game, 
but on a much larger scale. Alife games are usually about molding just one creature 
(or maybe a few) by training and caring for them somewhat directly. God games 
give players more global control, affecting the lives of many. The two fathers of 
the genre, Will Wright and Peter Molyneux, designed and created the earliest God 
games. Wright’s game, released in 1987, is called SimCity™ (see Figures 14.3 and 
14.4 for screens from SimCity and SimCity 2000™). SimCity was a real-time game, 
in which the player builds an ever-growing city and tries to keep the AI-controlled 
city inhabitants happy and healthy. In 1989, Molyneux released Populous™ (screen-
shot in Figure 14.5), which took the concept one step further by casting the player 
in the position of the Supreme Being over the land.

The player could create and destroy land elements, used far reaching powers 
to create plagues or volcanoes, and tried to get the game’s inhabitants to wor-
ship the player which added to the player’s power. Over the years, both Wright 
and Molyneux have both released additional games in this genre, including 
SimCity variants (SimAnt™, SimEarth™, SimFarm™, etc.) from Wright’s camp, 
and games like Dungeon Keeper™ and Populous 2 from Molyneux. Both men are 
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currently working on projects that evolve more into the alife genre and will be 
discussed later.

This style of game requires a large quantitiy of strategic AI for the opponent, 
if there is one. But in many of these games, especially the SimCity variants, there 
are no strategic AI systems at all. The human supplies all the strategic decisions for 
his or her side, and the “opponent” is merely the force of entropy. The game will 
incrementally add elements to the simulation that require player supervision, or 
constantly try to tear down whatever structure, city, and so forth that the player 
is trying to build with random accidents, durability issues, increasing occupants, 
resource demands on the system, and the like.

    All these games have one type of AI element in common—the somewhat au-
tonomous characters that the player rules over as a supreme being,     be they humans or 
ants,     etc. They are the beings that will inhabit and live under the light of the player’s 
rule. Generally,     these individual characters are brought into the game world as a col-
lection of needs: each being needs X amount of food,     Y amount of space,     and Z 
amount of happiness (or the equivalent for any particular game). They will wander 
through the game world,     looking for ways in which to satisfy these needs,     and if a 
player has set up the city,     world,     or ant farm correctly,     the characters will find satisfac-
tion. If not,     the characters get angry or leave,     costing the player simulation setbacks.

FIGURE 14.3 SimCity screenshot. Populous, SimCity, SimCity 2000 and Ultima 7 screenshots  
© 2004 Electronic Arts Inc. Populous, SimCity, SimCity 2000, SimAnt, SimEarth, SimFarm, 
Dungeon Keeper, The Sims and Ultima are trademarks or registered trademarks of Electronics 
Arts Inc. in the U.S. and/or other countries. All rights reserved.
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Typical AI systems used in God games are the following:

Like civ games, this genre uses the same strategic AI systems as RTS games, but 
only if there is an opponent god that competes with the player for followers or 
control of the world and that would require this kind of decision-making ability.
Autonomous characters most likely use a state-based system of needs. At the 
top level, each basic need would be tied to a state, such as GetFood or GetAHouse,
the activation of which would be the perception that the characters were hun-
gry or homeless. The actions the characters take during each state would then 
get them the required resource, ending the perception that they need it, and 
thus, changing their state. A well-balanced game of this type will almost never 
have an autonomous character needing nothing; characters will always be in a 
state of getting something, and always be busy.

FIGURE 14.4 SimCity 2000 screenshot. Populous, SimCity, SimCity 2000 and Ultima 7 screenshots  © 2004 Electronic 
Arts Inc. Populous, SimCity, SimCity 2000, SimAnt, SimEarth, SimFarm, Dungeon Keeper, The Sims and Ultima are 
trademarks or registered trademarks of Electronics Arts Inc. in the U.S. and/or other countries. All rights reserved.
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The “world” AI level determines that the player’s town is attractive enough so 
that more people would flock to it, or sets off random events to further chal-
lenge the player. This includes the so-called rules of the game, which in most 
games includes things like the physical laws, as well as provisions for magic or 
respawning when a character dies. In God games, however, the rules might be 
the actual opponent with whom the player is competing. So, the player must 
keep in mind rules such as “There must be 50 square feet of living space for 
each person in the city,” and “For every 300 worshippers, you must build an-
other temple,” lest the player’s control over the game starts to slip away.

WAR GAMES

Not referring to the recent glut of war-themed FTPS games (like Battlefield:1942
or WW2Online), this group instead pertains to the classic turn-based strategy war 
games with no or very indirect control of an economy to restock armies. These 
games try to restage historic battles so that armchair generals can see if they have 
the same instincts as the professionals, or could have even done it better. These 
games have always been a niche market, even in their original form as very complex 
board games. Avalon Hill is the company that created most of the better-known 

FIGURE 14.5 Populous screenshot. Populous, SimCity, SimCity 2000 and Ultima 7 screenshots  © 2004 Electronic 
Arts Inc. Populous, SimCity, SimCity 2000, SimAnt, SimEarth, SimFarm, Dungeon Keeper, The Sims and Ultima are 
trademarks or registered trademarks of Electronics Arts Inc. in the U.S. and/or other countries. All rights reserved.
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board games, and most of the successful computer war games have some basis, or 
are actually renditions of, the classic Avalon Hill games.

These games require much more realistic simulation than do regular strategy 
games because historic recreation is the entire point. If elements don’t act the way 
they did in real life, the game will be unacceptable to the tiny niche market the 
game designer is shooting for in the first place. Things like terrain traversal, line-of-
sight calculations, realistic weather simulations, and statistical modeling of almost 
every angle of combat are paramount to the success of the war simulation.

Some examples of good war games include the Combat Mission games and the 
Airborne Assault series. Listing 14.2 shows a function, buildObjective(), from the 
open-source project Wargamer: Napoleon 1813. The game, originally published in 
1999 by Empire® Interactive, is a deep simulation of some of Napoleon’s most fa-
mous battles and has been taken over by the open-source community. The sample 
function is part of a higher-level system that the AI is using to determine strategic 
plans for the future.

LISTING 14.2 buildObjective() from Wargamer: Napoleon 1813. Distributed under the GNU 
license.

bool AIC_ObjectiveCreator::buildObjective(const AIC_TownInfo& tInfo)

{

#ifdef DEBUG

   d_sData->logWin(“Assigning units to %s”, d_sData->campData()->

                                         getTownName(tInfo.town()));

#endif

   /*

    * Pass 1:

    *    build list of units and keep track of SPs removed from

    *    other objectives

    *

    *    Ony units that would not destroy an objective with

    *    a higher townImportance can be used

    */

   std::map<ITown, int, std::less<int> > otherObjectives;

   std::vector<TownInfluence::Unit> allocatedUnits;

   SPCount spNeeded = d_townInfluence.spNeeded();

   SPCount spAlloced = 0;

   SPCount spToAllocate = d_sData->rand(spNeeded,

                          d_townInfluence.spAvailable());
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   TownInfluence::Unit infUnit;

   while((spAlloced < spToAllocate) &&

      d_townInfluence.pickAndRemove(&infUnit))

   {

      ASSERT(infUnit.cp() != NoCommandPosition);

      if(infUnit.cp()->isDead())

         continue;

      AIC_UnitRef aiUnit = d_units->getOrCreate(infUnit.cp());

      TownInfluence::Influence unitInfluence = infUnit.influence();

      // friendlyInfluence.influence(aiUnit.cp());

      float oldPriority = d_townInfluence.effectivePriority(aiUnit);

      if(unitInfluence >= oldPriority)

      {

         SPCount spCount = aiUnit.spCount();

#ifdef DEBUG

         d_sData->logWin(“Picked %s [SP=%d, pri=%f / %f]”,

            (const char*) infUnit.cp()->getName(),

            (int) spCount,

            (float) unitInfluence,

            (float) oldPriority);

#endif

         /*

          * If it already has an objective

          * Then update the otherObjective list

          */

         AIC_Objective* oldObjective = aiUnit.objective();

         if(oldObjective)

         {

            ITown objTown = oldObjective->town();

            if (spAlloced > spNeeded)

            {

#ifdef DEBUG

               d_sData->logWin(“Not using %s from %s because we already have

               enough SPs”,

                  (const char*) infUnit.cp()->getName(),

                  (const char*) d_sData->campData()->

                                getTownName(objTown));

#endif
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               continue;

            }

            if (objTown != tInfo.town())

            {

               const AIC_TownInfo& objTownInf = 

                          d_towns->find(objTown);

               if(objTownInf.importance() >= tInfo.importance())

               {

                  int* otherCount = 0;

                  if(otherObjectives.find(objTown) == 

                     otherObjectives.end())

                  {

                     otherCount = &otherObjectives[objTown];

                     *otherCount = oldObjective->spAllocated() – 

                                   oldObjective->spNeeded();

                  }

                  else

                     otherCount = &otherObjectives[objTown];

                  if(*otherCount >= spCount)

                     *otherCount -= spCount;

                  else

                  {

#ifdef DEBUG

                     d_sData->logWin(“Can not use %s because it would break 

objective at %s”,

                        (const char*) infUnit.cp()->getName(),

                        (const char*) d_sData->campData()->

                                           getTownName(objTown));

#endif

                     continue;

                  }

               }

            }

         }

         allocatedUnits.push_back(infUnit);

         spAlloced += spCount;

      }

   }
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   if (spAlloced < spNeeded)

   {

#ifdef DEBUG

      d_sData->logWin(“Can not be achieved without breaking more important 

      objective”);

#endif

      return false;

   }

   /*

    * Assign the allocated Units to objective

    */

   Writer lock(d_objectives);

   AIC_Objective* objective = d_objectives->

                          addOrUpdate(tInfo.town(), tInfo.importance());

   ASSERT(objective != 0);

   if(objective == 0)   //lint !e774 ... always true

      return false;

#ifdef DEBUG

   d_sData->logWin(“Creating Objective %s”, d_sData->campData()->

                                              getTownName(tInfo.town()));

   d_sData->logWin(“There are %d objectives”, (int)d_objectives->size());

#endif

   objective->spNeeded(spNeeded);

   for (std::vector<TownInfluence::Unit>::iterator it =

             allocatedUnits.begin();

        it != allocatedUnits.end();

        ++it)

   {

      const TownInfluence::Unit& infUnit = *it;

      AIC_UnitRef aiUnit = d_units->getOrCreate(infUnit.cp());

      TownInfluence::Influence unitInfluence = infUnit.influence();

      // friendlyInfluence.influence(aiUnit.cp());

#ifdef DEBUG

         d_sData->logWin(“Adding %s”,

            (const char*) infUnit.cp()->getName());

#endif
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      // Remove unit from its existing Objective

      // Unless it is already attached to this one

      AIC_Objective* oldObjective = aiUnit.objective();

      if(oldObjective != objective)

      {

         if(oldObjective != 0)

         {

            // Remove Unit from Objective

            // If objective does not have enough SPs then

            // remove the objective

            removeUnit(infUnit.cp());

         }

         ASSERT(aiUnit.objective() == 0);

         // Add it to the objective table

         aiUnit.objective(objective);

         objective->addUnit(infUnit.cp());

      }

      // Set priority to a higher value to

      // reduce the problem of objectives being

      // created and destroyed too quickly.

      const float PriorityObjectiveIncrease = 1.5;

      aiUnit.priority(unitInfluence * PriorityObjectiveIncrease);

   }

#ifdef DEBUG

   if(d_objectiveDisplay)

      d_objectiveDisplay->update();

   if(campaign)

      campaign->repaintMap();

#endif

   return true;

}
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Typical AI systems used in war games are the following:

 1.  The same level of strategic AI found in civ games is used, but in war games, 
the AI is focused more on direct combat experiences.

 2.  Data-driven systems are often employed because most of these games have 
huge numbers of battles in which the can engage, as well as numerous sta-
tistical details for each piece of equipment, tactical unit, and location.

 3.  Scripting comes into play quite regularly, to accurately model unusual or 
signature battle movements and strategies that were used by specific com-
manders in particular battles.

FLIGHT SIMULATORS (SIMS)

Another niche market, flight simulators (sims), try to accurately model the piloting 
of specific planes and give the player a realistic cockpit view and all the controls the 
player would use in an actual aircraft. The most popular example is the Microsoft 
Flight Simulator, which originally came out in 1982 and is still going strong today. 
Even though pure flight sims have no real AI (players are basically fighting gravity, 
trying not to crash), some variants to the flight sim model were released, in an at-
tempt to make a more mass-appeal game.

Some of the most famous of these “popularized flight sims” were based on the 
Star Wars universe, such as X-Wing and Tie Fighter. Both of these games were much 
lighter on their flight sim elements (there were only a handful of cockpit controls, 
and players flew in outer space, so they didn’t have stalls or strange atmospheric 
disturbances). They simulation was just enough to immerse the player in the Star 
Wars world without overwhelming the player, and gave many more people a taste 
for the flight sim experience than had ever tried it before. The Wing Commander
series was also in this category, though perhaps focusing even less on realism and 
even more on an immersive experience.

Other games, like Descent, took the flight sim to the world of the FTPS game. 
Descent was deathmatch play with flying vehicles. The Privateer and Freelancer games 
added a full story to a light flight sim, and did very well. Also in this grouping are 
the numerous war-based flight sims, in which players perform historic missions, 
just like in war games, but from the cockpit of one of the planes involved, for a more 
personal feel.

Typical AI systems used in flight sims are the following:

 1.  The pure flight sims have no competitive AI elements—players are sim-
ply fighting the forces of physics, mostly gravity and aerodynamics, to keep 
control over an aircraft. Some of these games do have a form of AI system 
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for teaching the player how to pilot the plane, but it is usually just scripted 
sequences to show the various aircraft systems and abilities. Listing 14.3 
shows the main AI loop for the open-source flight sim project FlightGear,
which has simple AI elements that will engage in dogfights with the player.

 2.  Action-oriented flight sims are like action racing games in that they need 
AI systems that can competently handle the vehicles of the game, as well 
as deal with the additional elements (combat, using powerups, etc.) that 
the game brings. These games might also include land-based AI-controlled 
enemies and require additional functionality beyond simple vehicular con-
trol. These games are much like other complex, genre-combining games 
and use a mixture of FSMs, messaging, and scripting.

LISTING 14.3 Main AI Loop from FlightGear. Distributed by the GNU license.

void FGAIAircraft::Run(double dt) {

   FGAIAircraft::dt = dt;

    

   double turn_radius_ft;

   double turn_circum_ft;

   double speed_north_deg_sec;

   double speed_east_deg_sec;

   double ft_per_deg_lon;

   double ft_per_deg_lat;

   double dist_covered_ft;

   double alpha;

   // get size of a degree at this latitude

   ft_per_deg_lat = 366468.96 - 3717.12 * 

                    cos(pos.lat()/SG_RADIANS_TO_DEGREES);

   ft_per_deg_lon = 365228.16 * cos(pos.lat() /

                         SG_RADIANS_TO_DEGREES);

   // adjust speed

   double speed_diff = tgt_speed - speed;

   if (fabs(speed_diff) > 0.2) {

     if (speed_diff > 0.0) speed += performance->accel * dt;

     if (speed_diff < 0.0) speed -= performance->decel * dt;

   } 

   

   // convert speed to degrees per second

   speed_north_deg_sec = cos( hdg / SG_RADIANS_TO_DEGREES )

                          * speed * 1.686 / ft_per_deg_lat;
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   speed_east_deg_sec  = sin( hdg / SG_RADIANS_TO_DEGREES )

                          * speed * 1.686 / ft_per_deg_lon;

   // set new position

   pos.setlat( pos.lat() + speed_north_deg_sec * dt);

   pos.setlon( pos.lon() + speed_east_deg_sec * dt); 

   // adjust heading based on current bank angle

   if (roll != 0.0) {

     turn_radius_ft = 0.088362 * speed * speed

                       / tan( fabs(roll) / SG_RADIANS_TO_DEGREES );

     turn_circum_ft = SGD_2PI * turn_radius_ft;

     dist_covered_ft = speed * 1.686 * dt; 

     alpha = dist_covered_ft / turn_circum_ft * 360.0;

     hdg += alpha * sign( roll );

     if ( hdg > 360.0 ) hdg -= 360.0;

     if ( hdg < 0.0) hdg += 360.0;

   }

   // adjust target bank angle if heading lock engaged

   if (hdg_lock) {

     double bank_sense = 0.0;

     double diff = fabs(hdg - tgt_heading);

     if (diff > 180) diff = fabs(diff - 360);

     double sum = hdg + diff;

     if (sum > 360.0) sum -= 360.0;

     if (fabs(sum - tgt_heading) < 1.0) { 

       bank_sense = 1.0;

     } else {

       bank_sense = -1.0;

     } 

     if (diff < 30) tgt_roll = diff * bank_sense; 

   }

   // adjust bank angle

   double bank_diff = tgt_roll - roll;

   if (fabs(bank_diff) > 0.2) {

     if (bank_diff > 0.0) roll += 5.0 * dt;

     if (bank_diff < 0.0) roll -= 5.0 * dt;

   }

   // adjust altitude (meters) based on current vertical speed (fpm)

   altitude += vs * 0.0166667 * dt * SG_FEET_TO_METER;

   double altitude_ft = altitude * SG_METER_TO_FEET;
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   // find target vertical speed if altitude lock engaged

   if (alt_lock) {

     if (altitude_ft < tgt_altitude) {

       tgt_vs = tgt_altitude - altitude_ft;

       if (tgt_vs > performance->climb_rate)

         tgt_vs = performance->climb_rate;

     } else {

       tgt_vs = tgt_altitude - altitude_ft;

       if (tgt_vs  < (-performance->descent_rate))

         tgt_vs = -performance->descent_rate;

     }

   }

   // adjust vertical speed

   double vs_diff = tgt_vs - vs;

   if (fabs(vs_diff) > 1.0) {

     if (vs_diff > 0.0) {

       vs += 400.0 * dt;

       if (vs > tgt_vs) vs = tgt_vs;

     } else {

       vs -= 300.0 * dt;

       if (vs < tgt_vs) vs = tgt_vs;

     }

   }

   // match pitch angle to vertical speed

   pitch = vs * 0.005;

   //###########################//

   // do calculations for radar //

   //###########################//

   // copy values from the AIManager

   double user_latitude  = manager->get_user_latitude();

   double user_longitude = manager->get_user_longitude();

   double user_altitude  = manager->get_user_altitude();

   double user_heading   = manager->get_user_heading();

   double user_pitch     = manager->get_user_pitch();

   double user_yaw       = manager->get_user_yaw();

   double user_speed     = manager->get_user_speed();

   // calculate range to target in feet and nautical miles

   double lat_range = fabs(pos.lat() - user_latitude) * 

                                ft_per_deg_lat;
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   double lon_range = fabs(pos.lon() - user_longitude) * 

                                ft_per_deg_lon;

   double range_ft  = sqrt(lat_range*lat_range +

                                lon_range*lon_range );

   range = range_ft / 6076.11549;

   // calculate bearing to target

   if (pos.lat() >= user_latitude) {

      bearing = atan2(lat_range, lon_range) * SG_RADIANS_TO_DEGREES;

        if (pos.lon() >= user_longitude) {

           bearing = 90.0 - bearing;

        } else {

           bearing = 270.0 + bearing;

        }

   } else {

      bearing = atan2(lon_range, lat_range) * SG_RADIANS_TO_DEGREES;

        if (pos.lon() >= user_longitude) {

           bearing = 180.0 - bearing;

        } else {

           bearing = 180.0 + bearing;

        }

   }

   // calculate look left/right to target, without yaw correction

   horiz_offset = bearing - user_heading;

   if (horiz_offset > 180.0) horiz_offset -= 360.0;

   if (horiz_offset < -180.0) horiz_offset += 360.0;

   // calculate elevation to target

   elevation = atan2( altitude_ft - user_altitude, range_ft )

                      * SG_RADIANS_TO_DEGREES;

   // calculate look up/down to target

   vert_offset = elevation + user_pitch;

/* this calculation needs to be fixed

   // calculate range rate

   double recip_bearing = bearing + 180.0;

   if (recip_bearing > 360.0) recip_bearing -= 360.0;

   double my_horiz_offset = recip_bearing - hdg;

   if (my_horiz_offset > 180.0) my_horiz_offset -= 360.0;

   if (my_horiz_offset < -180.0) my_horiz_offset += 360.0;

   rdot =(-user_speed * cos(horiz_offset * SG_DEGREES_TO_RADIANS ))

               + (-speed * 1.686 * cos( my_horiz_offset *

                                        SG_DEGREES_TO_RADIANS ));

*/
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   // now correct look left/right for yaw

   horiz_offset += user_yaw;

   // calculate values for radar display

   y_shift = range * cos( horiz_offset * SG_DEGREES_TO_RADIANS);

   x_shift = range * sin( horiz_offset * SG_DEGREES_TO_RADIANS);

   rotation = hdg - user_heading;

   if (rotation < 0.0) rotation += 360.0; 

}

RHYTHM GAMES

A popular genre of game that has recently been developed is the rhythm game. 
In some ways, they are the videogame equivalent to the 1978 classic handheld 
electronic game Simon, in which the player is supposed to repeat increasingly long 
sequences of a musical and visual pattern. The first rhythm game was the 1997 
game PaRappa The Rapper. Since then, games have included everything from sing-
ing, to playing various instruments, to dancing. They all follow the same Simon
formula, for the most part. These games are really puzzle games, but are much 
more patterned, so that players who continue to replay the games can get further 
and further along.

In 2005, a new rhythm game property was created by Harmonix Music Sys-
tems, called Guitar Hero. This game came out for the Playstation 2 platform, and 
included a large plastic guitar-like peripheral which served as the player’s control-
ler instead of the standard pad. This did two things: it gave the player a much more 
immersive guitar experience, and also propelled Guitar Hero from mere game into 
the realm of cultural phenomenon, selling over 1.5 million copies. Subsequent 
sequels have pushed the franchise to earnings of over $1 billion, at more than 
21 million units as of 2008. In 2007, a “competitor” finally appeared, in the guise 
of Rock Band. Calling this game a competitor is strange because the creator of Rock 
Band is also Harmonix, having been removed from creating further Guitar Hero
games in 2006 following several corporate acquisitions. But things worked out for 
the best. Now we have two franchises that are very well done, and differentiated 
enough that they’re not stealing each other’s thunder. The Rock Band franchise 
has also sold millions of copies, and with its ability to download additional music 
packs, it has created an entirely new income stream for EA, who distributes the 
game.

Both of these games build on PaRappa’s use of the Simon formula by timing the 
hitting of streaming “notes” using the controller. But with the immersive quality of 
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the controllers (Rock Band actually includes a multitude of instruments, including 
bass/lead guitar, drums, and a microphone), and the very addictive social aspects 
of the game (some bars have Guitar Hero night somewhat like karaoke, and people 
will gather for large Rock Band parties at a friend’s house) these franchises have 
proven to be a world-spanning hit for the developers, and one that it sure to stick 
around for a while.

Although many of these games just have the player battling against the actual 
notes of the music, some do include opponents that are trying to outperform the 
player. Even PaRappa had a final freestyle stage to finish the game. But, the AI in-
volved even in these opponents is at best very scripted. The script that is played could
take into account the level of playing by the player, forcing the opponent to step up 
to the challenge, as they say. But actual improvisational music using AI that would 
sample the types of things the human was doing and build on them with more com-
plexity (similar to real jam sessions) has definitely not been used in these games yet.

Typical AI systems used in rhythm games are the following:

 1.  Scripting matches the AI-controlled character’s movements and dialogue 
to the songs, as well as sets up story elements.

 2.  Data-driven gameplay, in which a general lightshow system (or other visuals) 
might be tied to music analysis software, and a large number of songs are 
included with the game. Examples of this are Vib Ribbon, Frequency, and 
Amplitude.

 3.  Some rhythm games have additional elements, like Rez (which was a scroll-
ing shooter) and Chu Chu Rocket (a sort of puzzle or party game along the 
lines of Bomberman). These games use fairly simple state-based or scripted 
intelligence systems, which also works with the music.

PUZZLE GAMES

Puzzle games are small, simple games of skill, which usually continue forever, but 
increase in difficulty over time. They usually have very simple interfaces, and even 
simpler descriptions of how to play. But, because of this simplicity, they are also 
some of the most addictive and widely played games in the world. It has been said 
that the main reason the Nintendo Gameboy became a worldwide phenomenon 
was because of a little game called Tetris (shown in Figure 14.6), and the most 
played computer game of all time is still Freecell, the card game that comes with 
Microsoft Windows. These games require very little of a player’s attention, or time. 
Players can play ten minutes of a game, and then just shut it off. The very nature 
of these games allows players to have a little taste of challenge, without having to 
commit to anything in terms of emotion or time.
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Two areas have become major selling points for these games: the online world 
and cell phones and PDAs. Online, puzzle games make a lot of sense. Designers can 
code a puzzle game with minimal resources (perfect for keeping download speeds 
low) and allow people everywhere to come to the game site to play the games for 
free, or for next to nothing. This minimal game size also lends itself well to the 
space-restrictive world of cell phones and PDAs. People want some kind of distrac-
tion that they can use if they’re stuck in an airport, or waiting for the bus, and most 
people have one of these devices already. It was a natural mix, once the hardware 
could support it. The bad news is that most puzzle games don’t really use AI, the 
gameplay comprises simple patterns or specific setups that the player must over-
come or unravel. However, some games do use AI, such as PopCap’s Mummy Maze,
although it is usually very simple state-based behavior.

Typical AI systems used in puzzle games are simple state-based behaviors, if a 
game has any elements of AI usage at all.

ARTIFICIAL LIFE (ALIFE) GAMES

These titles are not considered games by some people, but are more like 
videogame-based pets of a sort. There are not many of these games, but some 
of them use some of the most cutting-edge game AI programming we have so far. 

FIGURE 14.6 Tetris screenshot. Tetris®: Elorg 1987. Reprinted with permission.
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These represent the pinnacle of exotic AI techniques in a real-time game experi-
ence. Other games in the alife genre are not so complex, AI-wise, but represent 
an additional way of constructing AI systems to maximize traditionally difficult 
elements to model.

The first of these games were actually small electrical gadgets, called Tamagotchi,
that were a huge craze in Japan. They were essentially small (key chain–sized) LCD-
based units that had a lumpish looking creature pictured on it.

The creature would demand to be fed, or to be petted, or whatever, based on a 
set of needs. The human then pushed the corresponding button that gave the crea-
ture what it wanted. If the human failed to perform the correct tasks for too long, 
the creature might become angry with its “owner,” or even die. But if human players 
did things right, the creature would flourish, and live a long, full life, all the while 
growing and getting small visual differences that people could use to differentiate 
their pets. Although this is a very strange concept by gaming standards, it was also 
a very popular one.

These toys eventually lead game developers to create videogames using this 
premise. Some examples are Seaman (a game in which players caretake a very rude 
fish with a man’s head), the Monster Rancher games (which use random data from 
any CD to create unique creatures that players then train for battle), and the Petz
games (pure Tamagotchi-style pets).

Another series of products in this same line is the Creatures series developed by 
Cyberlife. These games are notable because of the actual systems they use to evolve 
their game characters. Whereas the other games use mostly some kind of advanced 
fuzzy-state machines (FuSMs), or just keep a lot of statistics about human interac-
tion and hash that into large behavior lookup tables, the Creatures games have gone 
the high-tech route. Their games use advanced neural nets (NNs) to model learn-
ing and emotion and use a kind of genetic system to allow users to cross breed and 
evolve the creatures through genetic selection. The products are barely games, more 
like high-tech fish bowls, and even the developers consider it a technology demo. 
They are CPU intensive and have to run constantly for quite a bit to learn things, 
but they are quite impressive from a game AI standpoint.

Other types of alife games strive to make a bit more of a true game experience, 
and this includes Wright’s newest batch of games, The Sims™, as well as Black & 
White, from Molyneux.

In The Sims, the simulated element players now control is a person’s life. At 
the start of the game, players are given a Sim, a semiautonomous character that 
has a number of needs. Sims are semiautonomous in that they will perform need 
procurement to survive (if there’s food around and the character is hungry, the 
Sim will eat), but to really excel or progress, the human player has to basically 
baby-sit the Sim, getting it to perform its duties faster and more efficiently, and en-
couraging additional interactions, especially those with other Sims. The game has 
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broken new ground by creating a simple AI paradigm known as smart terrain. In 
this concept, the agent has only basic needs that require fulfillment, is smart enough 
to get around the world to reach things that can satisfy those needs, and has a fuzzy 
system that allows it to have some biases and rudimentary learning. But the true 
brains of the system are spread over the land by embedding AI in the objects that 
populate the game world. Every object in the game that the Sims can interact with 
contains all the information about how this interaction will take place and what 
it will give the Sim, including the animation to play. In this way, new items can 
be added to the world at any time and can be instantly used by the Sims (which is 
easy to see, considering the number of expansion packs that have come out for the 
game). Because of its massive open endedness, its mass appeal because of its mostly 
nonviolent nature, and the sheer customization and expansion capabilities of the 
game, The Sims has become one of the best-selling games of all time.

Black &White takes the God game concept and adds a twist. Each player must 
take care of a small village of people that worship the player. The twist is the ad-
dition of a totem animal which serves as the physical manifestation of the player’s 
power within the game world. This totem character is controlled by a sophisticated 
AI system (at least by game AI standards), including dynamic rule building and 
decision-tree creation, as well as the use of simple neural networks (called percep-
trons) to allow the player’s totem animal to learn new behaviors directly from the 
player’s instruction.

To facilitate this learning, the game allows a number of different ways for these 
totem animals to gain knowledge: by direct command, by observation, by reflec-
tion, and by behavioral feedback from the player (players could slap or stroke the 
creature, communicating to the creature that he recently did something bad or 
good). By allowing the creature so many ways to learn, all of which would affect the 
creature’s beliefs and desires, the overall behavior set of the creature was very mal-
leable, and thus, unique from creature to creature. It also led to more rapid learning 
than might be gained from any one method.

Typical AI systems used in alife games include the following:

 1.  FuSMs are heavily used because they are easier to train and provide more 
directed behavior patterns.

 2.  Neural nets are becoming increasingly researched and used, as developers 
find better ways to train and tune neural nets, and to watch out for the 
wildly wrong behaviors they might cause.

 3.  Genetic algorithms are being used in some of these games, facilitating 
breeding programs, and helping generations of game characters to evolve 
in various ways.

 4.  A solid helping of standard game AI techniques are in use, including regu-
lar FSMs, messaging, and scripting.
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SUMMARY

In this chapter, we’ve covered a broad range of game types. Every game, from the 
most sweepingly epic war game to the lightest puzzler, requires highly proprietary 
AI code in order to challenge players. The list of covered genres in this chapter (plus 
the other game genre chapters) is by no means a complete list of all game types. The 
hope is that you can begin to see the patterns for which AI techniques work best 
with the various AI challenges inherent in the various styles of games.

Civilization games require much of the same technology as RTS style games. 
FSMs, FuSMs, hierarchical systems, pathfinding, messaging, and data-driven 
techniques are all useful. Support systems like terrain analysis, resource man-
agement, city planning, opponent modeling, tech-tree planning, and counselor/
diplomat AI are also usually necessary for a full-fledged civ game.
God games, if they have an “opponent God” element, will use the same kinds of 
AI technology as civ games. They additionally have (typically) simple autono-
mous agents beneath/beholden to the player’s “God.”
The war game genre again uses the same technologies as the civ genre, with a 
lot more combat focus. They rely heavily on data-driven techniques and script-
ing in order to model real battles and equipment.
Flight sims are broken into two major genres: “pure” flight sims (which usually 
have no AI elements at all; they sometimes use scripted tutorials, or dogfight-
ing opponents), and “action-oriented” flight sims. This latter category is like 
the racing game category, and tends to employ a mix of FSMs, messaging, and 
scripting.
Rhythm games use the data-driven systems, including scripting. They also use 
FSMs like so many other of the game genres.
Puzzle games are typically devoid of anything but the simplest of AI, and usu-
ally require nothing but FSM support.
Artificial life games use some of the most advanced AI techniques being used in 
games today. Some of the recent examples of this genre have employed FuSMs, 
neural nets, and genetic algorithms. They also make use of more common AI 
systems, like FSMs, messaging, and scripts.
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Finite-State Machines15

In the world of game AI programming, no single data structure has been used 
more than the finite-state machine (FSM). This simple yet powerful organiza-
tional tool helps the programmer to break an initial problem into more man-

ageable subproblems and allows programmers to implement intelligence systems 
with flexibility and ease. Even if you have not used a formal FSM class, you have 
probably used the principles that this structure follows, as it is a basic way of think-
ing about software problems in general. If your game uses a more exotic AI tech-
nique for some element of decision making, you will probably also use some form 
of state-based paradigm in your game.

FSM OVERVIEW

At its heart, a state machine is a data structure that models the behavior of a system. 
FSMs help organize a system by dividing it into separate, discernable circumstances. 
An FSM contains three things: the states inherent in the object being modeled, the 
transitions that serve as the lines of connectivity between the states, and the condi-
tions that must be met to engage each transition. It’s really just that simple. A given 
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state will continue to run until a transition condition becomes true, at which point 
the machine takes the transition to the correpsonding new state.

Classically, an FSM is a pure data structure. The FSM is initialized by first de-
claring all the states, then declaring each state’s transitions with its required condi-
tions (which are typically just events). To update the machine, the game calls the 
FSM’s Update() function (passing it a list of the game events that occurred during 
this game loop). The Update() function then returns the current state of the ma-
chine, after it has determined if any state transitions have occurred.

This book packages the individual states into full-fledged C++ classes. The state 
class will include all the in-state logic and behavior in its update code, as well as all 
the transition logic. The separate state machine class keeps track of the current state, 
and serves as the master controller for the state collection. Figure 15.1 shows the dif-
ferences between the classic FSM and the “modular” system used in this book.

FIGURE 15.1 Comparison of execution flow between classic and modular FSMs.
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The reason behind this architectural difference is that it keeps the machine 
class from becoming the repository of all the game logic. Instead, each state is a 
stand-alone module that has its update logic, transition logic, and special code such 
as enter and exit functions. This modularity makes the overall system more man-
ageable and scaleable.

Another difference between the standard implementation and the one this 
book uses is the transition system. In classic FSM methods, the transitions 
are expressed as events, usually an enumerated list of some kind, that the per-
ception system can use to trigger transitions. Each state then registers its transi-
tions into a list constituting an input-output matching (e.g., PLAYER_IN_RANGE 
and AttackState, or SHOT_IN_HEAD and DeathState). The transition checking is 
then accomplished by sending all the states in the machine the current input 
events, and determining if any state has a transition that responds to any of the 
input events.

The modular states in this book will instead use an internal member function 
for checking transitions. In this way, the skeletal framework given in this book is 
more than capable of emulating the classical FSM setup by creating an enumera-
tion of input types and then testing to see if any of them have been triggered in the 
transition function of the current state. This also allows for much more complex 
computations to determine state transition, on a state-by-state basis.

In electrical engineering terms (from which computer science borrows the con-
cept of the FSM in the first place), most FSMs in games are coded using the Moore 
model, which just means that you put your actions inside the state. If you initiate 
actions on the transitions between states, you are instead following the Mealy ma-
chine model. Thus, during the Sit state, you want the character to play a sit anima-
tion. In the Moore model, the update function itself starts the animation. In a Mealy 
machine, the character would start the sit animation during the transition between 
the StandState and the SitState and would do nothing during the SitState except 
wait for a transition out.

However, with just a bit of clever code placement, you can achieve either effect 
with the generic structures in this chapter. Specifically, you could use the Enter()
function to launch animations, which simulates the Mealy model, or use the Moore 
method by placing action code within the Update() function directly.

Let’s look at a simple FSM example in Figure 15.2. Here we see an FSM diagram 
for Blinky, the red ghost from Pac-Man. Blinky was the aggressive ghost, the one 
that most directly chased the player. All the ghosts start life in the Rise state because 
they’re currently located in the center part of the maze. During this state, the ghost 
gets another body (if it doesn’t have one), and then exits the center box. Doing this 
triggers the FSM to transition to Blinky’s primary state, ChasePlayer. Blinky will 
stay in this state until one of two things happens: the player dies, or eats a power 
pellet.
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If the player dies, Blinky will then transition to MoveRandomly. The other exit is 
to the state RunFromPlayer, which will cause Blinky to flee now that Blinky has been 
turned blue by the power pellet. When running away, Blinky will transition back 
to chasing the player if the power pellet wears off. If Blinky is eaten by Pac-Man, 
he then transitions to the Die state, which converts Blinky to a set of eyeballs and 
walks Blinky back to the center of the maze. As soon as Blinky enters the center, he 
transitions to Rise, and the whole thing starts over again.

You can see the clear delineation between states of being and transition lines 
in the diagram. By diagramming out the overall behavior in this way you can also 
see the atomic actions that need coding to achieve the entire FSM. Dividing the 
behavior of your AI system into atomic units is very useful, especially if you are 
going to have different AI-controlled characters that differ in only a few ways, or 
have specific behaviors missing.

FIGURE 15.2 Simple FSM diagram of the red ghost from Pac-Man.



Chapter 15  Finite-State Machines 265

The state diagram for Inky, another ghost in Pac-Man that was not as aggres-
sive as Blinky, might be very similar. An entirely different personality is created by 
simply having different reasons for switching between the three movement states: 
RunFromPlayer, ChasePlayer, and MoveRandomly. Inky could transition between 
these states randomly (totally erratic behavior), based on the physical distance to 
Pac-Man (avoidance or a limited line-of-sight simulation), or maybe just change 
his mind every so often (so that Inky appears to be single-minded, but flighty). Inky 
would, of course, still need to have the same power pellet and death logic as Blinky 
because that is basic ghost behavior, rather than each ghost’s personality (which 
could be defined by the ghost’s movement style within the maze).

This very simple FSM controlling Blinky’s state could be coded as in Listing 
15.1, using a simple switch statement. In fact, many games still use this type of 
free-form FSM for simple game elements. However, if this were not Pac-Man but, 
rather, Madden Football, and thus many hundreds of times more complex, you 
can imagine how this level of organization would be incredibly inadequate, and 
excessively complex. The priority of transitions becomes harder and harder to de-
termine because it depends on the order of execution. The function housing this 
switch statement will get progressively larger as more states are added to the game. 
The modular system this book uses will give you a formal organizational model for 
combating these problems.

LISTING 15.1 Free-form FSM implementation for Pac-Man.

switch(m_currentState)

{

case STATE_RISE:

    if(AtCenter())

        GetNewBodyAndExitCenter();

    else

        ChangeState(STATE_CHASEPLAYER);

    break;

    case STATE_DIE:

    if(!AtCenter())

        ChangeToEyesAndMoveBacktoCenter();

    else

        ChangeState(STATE_RISE);

    break;

    case STATE_RUNFROMPLAYER:

    if(!PoweredPacMan())

        ChangeState(STATE_CHASEPLAYER);
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    else if(Eaten())

        ChangeState(STATE_DIE);

    else

        MoveAwayFromPacMan();

    break;

    case STATE_CHASEPLAYER:

    if(PoweredPacMan())

        ChageState(STATE_RUNFROMPLAYER);

    else if(!PacMan)

        ChangeState(STATE_MOVERANDOMLY);

    else

        MoveTowardsPacMan();

    break;

    case STATE_MOVERANDOMLY:

    if(PacMan)

        ChangeState(STATE_CHASEPLAYER);

    else

        MoveRandomly();

    break;

    default:

    PrintError(“Bad Current State”); 

    break;

};

FSM SKELETAL CODE

The code for a skeletal FSM will be implemented within the following classes:

The FSMState class, the basic state in the system.
The FSMMachine class, which houses all the states and acts as the state 
machine.
The FSMAIControl class, which houses the state machine, as well as game-specific 
code such as perception data.

The next sections will discuss these classes in more detail, and will then discuss 
the specific implementation of the FSMAIControl class and each FSMState needed for 
our AI test-bed application.
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THE FSMState CLASS

When implementing a state system, it is best to code each state as if it is the only 
state in the world, with no knowledge of other states, or of the state machine itself. 
This leads to very modular states, which can be arranged in any order without 
prerequisite or future requirement. At its most basic, each state should have the 
following functions:

Enter(). This function is always run immediately upon first entering the state. 
It allows the state to perform initialization of data or variables.

Exit(). This function is run when you are leaving the state and is primarily 
used as a cleanup task, as well as where you would run any additional code that 
you wanted to happen on specific transitions (for Mealy-style state machines).

Update(). This is the main function that is called every processing loop of the AI 
when this state is the current state in the FSM (for Moore-style state machines).

Init(). Resets the state.

CheckTransitions(). This function runs through the logic by which the state 
will decide to end. The function should return the enumeration value of the 
state to run, coming back with the same state if no change is needed. Note that 
the order in which the logical state transitions are determined becomes the pri-
ority of the different transitions. So, if your function first checks for a switch to 
the AttackingState, and then checks for the DodgingState, the AI will be much 
more offensive than if those checks were reversed.

The skeletal code header for this class can be seen in Listing 15.2. The class 
complexity has been kept to a minimum, so that this code can be the foundation 
for any system that you might need to build using an FSM. The class also contains 
two data members, m_type, and m_parent. The type field is used by both the overall 
state machine and by the interstate code to make determinations based on which 
particular state is being considered. The enumeration for these values is stored in a 
file called FSM.h, and is currently empty, containing only the default FSM_STATE_NONE
value. When you actually use the code for something, you would add all the state 
types to this enumeration, and go from there. The parent field is used by individual 
states, so they can access a shared data area through their Control structure.

LISTING 15.2 Base class header for state.

class FSMState:

{

public:

        //constructor/functions
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        FSMState(int type=FSM_STATE_NONE,Control* parent=NULL)

          {m_type = type;m_parent = parent;}

        virtual void Enter()                 {}

        virtual void Exit()                  {}

        virtual void Update(int t)           {}

        virtual void Init()                  {} 

        virtual void CheckTransitions(int t) {}

        //data

     Control* m_parent;

        int      m_type;

};

THE FSMMachine CLASS

The state machine class (see Listing 15.3 for the header) contains all the states as-
sociated with machine in an STL vector. It also has a general case UpdateMachine()
function, the implementation of which is shown in Listing 15.4. It also contains 
functions for adding states to the machine and setting a default state. Notice that 
the state machine is actually derived from the state class. This is to facilitate a state 
that is actually a completely different state machine. Again, like the state class, the 
machine class has a type field, the types of which are declared in an enumeration in 
FSM.h, which is essentially empty for now.

LISTING 15.3 FSMMachine header.

class FSMMachine: public FSMState

{

     public:

     //constructor/functions

     FSMMachine(int type = FSM_MACH_NONE)

          {m_type = type;}

     virtual void UpdateMachine(int t);

     virtual void AddState(FSMState* state);

     virtual void SetDefaultState(FSMState* state)

          {m_defaultState = state;}

     virtual void SetGoalID(int goal) {m_goalID= goal;}

     virtual TransitionState(int goal);

     virtual Reset();

     

     //data

     int m_type;
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private:

     vector<FSMState*> m_states;

     FSMState* m_currentState;

     FSMState* m_defaultState;

     FSMState* m_goalState;

     FSMState* m_goalID;

};

LISTING 15.4 The machine class UpdateMachine( ) function.

void FSMMachine::UpdateMachine(int t)

{

     //don’t do anything if you have no states

     if(m_states.size() == 0 )

          return;

     //don’t do anything if there’s no current 

     //state, and no default state

     if(!m_currentState)

          m_currentState = m_defaultState;

     if(!m_currentState)

          return;

     //update current state, and check for a transition

     int oldStateID = m_currentState->m_type;

     m_goalID = m_currentState->CheckTransitions();

     //switch if there was a transition

     if(m_goalID != oldStateID)

     {

          if(TransitionState(m_goalID))

          {

               m_currentState->Exit();

               m_currentState = m_goalState;

               m_currentState->Enter();

          }

     }

     m_currentState->Update(t);

}

The UpdateMachine() function is very simple. It has two quick optimizations: 
It will bail out if the machine wasn’t given any states, and will also return if there 
is no current state set and no default state to fall back on. The next block calls the 
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current state’s CheckTransition() function, followed by a block that determines if 
the state triggered a transition. If so, the function TransitionState() queries the 
machine’s list of states to see if the machine actually has the new state that was re-
quested, and if it exists, calls Exit() on the state the system is leaving, and Enter()
on the new state. Finally, the current state’s Update() function is called.

THE FSMAICONTROL CLASS

The final part of the basic FSM system (and also the beginning of the game-specific 
code) is the Control class (which was covered briefly in Chapter 3, “AIsteroids: Our 
AI Test Bed”). As you recall, this class is the behavior controller for the main in-
game ship. It also serves as the branching point between the human controls and the 
primary location for the AI framework. For an AI-controlled ship, we inherit from 
AIControl and create the child class FSMAIControl (see Listing 15.5 for the header).

LISTING 15.5 FSMAIControl header.

class FSMAIControl: public AIControl

{

     public:

     //constructor/functions

     FSMAIControl(Ship* ship = NULL);

     void Update(int t);

     void UpdatePerceptions(int t);

     void Init();

     //perception data 

     //(public so that states can share it)

     GameObj*       m_nearestAsteroid;

     GameObj*       m_nearestPowerup;

     float          m_nearestAsteroidDist;

     float          m_nearestPowerupDist;

     Point3f        m_collidePt;

     bool           m_willCollide;

     bool           m_powerupNear;

     float          m_safetyRadius;

private:

     //data

     FSMMachine* m_machine;

};

The FSMAIControl class contains the standard Update() function, which up-
dates the state machine and runs the UpdatePerceptions() method. This class also 
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includes the game-specific blackboard data members that will be shared by all the 
states in the machine. If this was a much more complex game, with large numbers 
of these kinds of global data members (or a variety of data members that require 
extensive management), it would be much better to construct a full-perception 
manager class and then have the FSMAIController contain a pointer to the per-
ception manager for this game. But for the simple needs of our test-bed demo, 
storing the perceptions directly into the controller will do fine. Having a minimal 
list of data members to maintain, we don’t have to worry about the calculations 
taking too long, or having to wade through an unwieldy long perception update 
function.

IMPLEMENTING AN FSM-CONTROLLED SHIP INTO OUR TEST BED

To get our AIsteroids program to use an FSM, we first need to determine the entire 
state diagram for the behavior exhibited by a ship during a game of asteroids that 
we want our system to model. For our purposes, Figure 15.3 should perform fine.

As Figure 15.3 shows, there are five basic states to an AI-controlled AIster-
oids ship:

 1.  Approach, which will get the ship within range of the closest asteroid.
 2.  Attack, which will point the ship toward the closest asteroid within range, 

and then fire.
 3.  Evade, which will initiate avoidance of an asteroid on a collision course.
 4.  GetPowerup, which will try to scoop up powerups within some range.
 5.  Idle, which will just sit there if nothing else is valid.

The game also needs the following conditions to make the necessary logical 
connections between these states:

Asteroid in firing range. A simple distance check, but it also requires that we 
keep track of the closest asteroid.
Asteroid on collision course. Another distance check, but also a trajectory in-
tersection. The intersection is more costly, so we’ll only do it if the asteroid is 
within the distance check.
Powerup in pickup range. One more distance check, this also requires that we 
keep track of the closest powerup.

Notice one other thing about the state diagram: Every state needs to check for 
the condition “Asteroid on collision course,” to then switch to the Evade state. This 
shows one of the inherent weaknesses of building the logic into each state. This 
type of determination would have to be repeated in each state.
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However, this implementation uses the Control class’s UpdatePerceptions()
function as a global data location, essentially using the Control class as a central 
location that will hold calculations common to the entire state machine. This gives 
us the best of both worlds, by keeping the number of recalculations to a minimum 
(through a central storage location) and giving us the ability to separate out the 
nonrepetitious portions of the calculations to be done only when needed (by put-
ting logic and calculations within specific states).

EXAMPLE IMPLEMENTATION

Now we will take the FSM classes we have discussed and use them to construct a 
working AI ship for our test application. We will first set up the Control class, and 
then implement each of the requisite states for the system.

FIGURE 15.3 FSM diagram for asteroids.
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CODING THE CONTROL CLASS

The controller class for the FSM model (see earlier Listing 15.5 for the header, and 
Listing 15.6 for the implementation of the important functions) contains the state 
machine structure, as well as the global data members for this AI model.

The constructor for the class builds the FSM structure, by instantiating the ma-
chine class, and then adding an instantiation of each requisite state. The constructor 
also sets the default state, which is also used as the startup state for the machine.

The Update() method is straightforward and ensures that the ship this class is 
controlling exists, and if so, updates the perceptions and the state machine.

The UpdatePerceptions() function is where all the action is. The closest aster-
oid and powerup are noted, the ship’s distance to these objects is determined, and 
the status variables are set (m_willCollide and m_powerupNear). These perceptions 
allow all the transition checking in the individual states to be simple comparisons, 
instead of having to calculate these things individually. This approach also consoli-
dates this code—better or faster methods can be implemented here and the effects 
will be seen throughout the states.

LISTING 15.6 FSMAIControl function implementations.

//--------------------

FSMAIControl::FSMAIControl(Ship* ship):

AIControl(ship)

{

    //construct the state machine and add the necessary states

    m_machine = new FSMMachine(FSM_MACH_MAINSHIP,this);

    StateApproach* approach = new StateApproach(this);

    m_machine->AddState(approach);

    m_machine->AddState(new StateAttack(this));

    m_machine->AddState(new StateEvade(this));

    m_machine->AddState(new StateGetPowerup(this));

    m_machine->AddState(new StateIdle(this));

    m_machine->SetDefaultState(approach);

}

//--------------------

void FSMAIControl::Update(int t)

{

    if(!m_ship)

    {

        m_machine->Reset();

        return;

    }
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        UpdatePerceptions(t);

    m_machine->UpdateMachine(t);

}

//--------------------

void FSMAIControl::UpdatePerceptions(int t)

{

    //store closest asteroid and powerup

    m_nearestAsteroid = Game.GetClosestGameObj

                        (m_ship,GameObj::OBJ_ASTEROID);

    m_nearestPowerup  = Game.GetClosestGameObj

                        (m_ship,GameObj::OBJ_POWERUP);

    

    //asteroid collision determination

    m_willCollide = false;

//small hysteresis on this value, to avoid

//boundary oscillation

    if(m_willCollide)

        m_safetyRadius = 30.0f;

    else

        m_safetyRadius = 15.0f;

    if(m_nearestAsteroid)

    {

        float speed = m_ship->m_velocity.Norm();

        m_nearestAsteroidDist = m_nearestAsteroid->

                     m_position.Distance(m_ship->m_position);

        float dotVel;

        Point3f normDelta = m_nearestAsteroid->m_position – 

                            m_ship->m_position;

        normDelta.Normalize();

        float astSpeed = m_nearestAsteroid->

                            m_velocity.Norm();

        if(speed > astSpeed)

            dotVel  = DOT(m_ship->UnitVectorVelocity()

                          ,normDelta);

        else 

        {

            speed = astSpeed;

            dotVel= DOT(m_nearestAsteroid->

                    UnitVectorVelocity(),-normDelta);

        }

        float spdAdj = LERP(speed/AI_MAX_SPEED_TRY

                            ,0.0f,50.0f)*dotVel;
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        float adjSafetyRadius = m_safetyRadius + spdAdj +

                                m_nearestAsteroid->m_size;

        

        //if you’re too close, and I’m heading somewhat 

        //towards you, flag a collision

        if(m_nearestAsteroidDist <= adjSafetyRadius 

           && dotVel > 0)

            m_willCollide = true;

    }

    //powerup near determination

    m_powerupNear = false;

    if(m_nearestPowerup)

    {

        m_nearestPowerupDist = m_nearestPowerup->m_position.

                               Distance(m_ship->m_position);

        if(m_nearestPowerupDist <= POWERUP_SCAN_DIST)

        {

            m_powerupNear     = true;

        }

    }

}

CODING THE STATES

The five listings discussed below (15.7 to 15.11) are the implementations for the 
necessary states. These states include: StateApproach, StateAttack, StateEvade,
StateGetPowerup, and StateIdle. They will be discussed separately, followed by the 
relevant listing.

StateApproach

This state’s purpose is to turn to face the nearest asteroid and then thrust toward 
it. For simplicity’s sake, the AI system for this demo doesn’t try to deal with the 
wraparound effect of the game world—that would require more math, and is not 
the focus of this text.

The Update() function does some calculations to find the approach angle to 
the nearest asteroid and will add a braking vector if the speed of the ship is overly 
high. This is to keep the AI-controlled ship from occasionally getting into trouble 
because of too much speed.

After the angle is computed, the code then turns the ship in the proper di-
rection, or turns on the appropriate thruster if the ship is already pointing cor-
rectly. This type of movement is a bit more digital than most human players, so it 
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looks a little more robotic than human. It could be made more natural-looking by 
using the thrusters during turning (which is what most humans do), but again, this 
would complicate the calculations and this example is being coded specifically for 
readability, not to show the optimal implementation.

The CheckTransitions() function is straightforward enough, checking in turn 
for the three possible transitions from this state, FSM_STATE_EVADE (if you’re going 
to collide), FSM_STATE_GETPOWERUP (if there’s one nearby), and FSM_STATE_IDLE (if 
there’s no asteroid to approach).

The Exit() function assures the system that anything the state sets in the larger 
game world will be reset. In this case, the ship’s turn and thrust controls may be 
turned on, so this function turns them both off.

LISTING 15.7 The StateApproach class functions.

//--------------------

void StateApproach::Update(int t)

{

    //turn and then thrust towards closest asteroid

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    GameObj* asteroid = parent->m_nearestAsteroid;

    Ship*    ship     = parent->m_ship;

    Point3f deltaPos  = asteroid->m_position – 

                            ship->m_position;

    deltaPos.Normalize();

    //add braking vec if you’re going too fast

    float speed = ship->m_velocity.Norm();

    if(speed > AI_MAX_SPEED_TRY)

        deltaPos += -ship->UnitVectorVelocity();

    //DOT out my velocity

    Point3f shpUnitVel = ship->UnitVectorVelocity();

    float dotVel = DOT(shpUnitVel,deltaPos);

    float proj = 1-dotVel;

    deltaPos -= proj*shpUnitVel;

    deltaPos.Normalize();

    

    //find new direction, and head to it

    float newDir = CALCDIR(deltaPos);

    float angDelta = CLAMPDIR180(ship->m_angle - newDir);

    if(fabsf(angDelta) <2 || fabsf(angDelta)> 172)

    {

        //thrust
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        ship->StopTurn();

        if(speed < AI_MAX_SPEED_TRY || 

           parent->m_nearestAsteroidDist > 40)

            fabsf(angDelta)<2? ship->ThrustOn() : 

                               ship->ThrustReverse();

        else

            ship->ThrustOff();

    }

    else if(fabsf(angDelta)<=90)

    {

        //turn when facing forwards

        if(angDelta >0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

    else

    {

        //turn when facing rear

        if(angDelta<0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

    

    parent->m_target->m_position = asteroid->m_position;

    parent->m_targetDir = newDir;

    parent->m_debugTxt = “Approach”;

}

//--------------------

int StateApproach::CheckTransitions()

{

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    if(parent->m_willCollide)

        return FSM_STATE_EVADE;

    if(parent->m_powerupNear&&(parent->m_nearestAsteroidDist

   >parent->m_nearestPowerupDist)&& parent->m_ship->

   GetShotLevel() < MAX_POWER_LEVEL)

        return FSM_STATE_GETPOWERUP;

    if(!parent->m_nearestAsteroid || 

       parent->m_nearestAsteroidDist < APPROACH_DIST)
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        return FSM_STATE_IDLE;

    return FSM_STATE_APPROACH;

}

//--------------------

void StateApproach::Exit()

{

    if(((FSMAIControl*)m_parent)->m_ship)

    {

        ((FSMAIControl*)m_parent)->m_ship->ThrustOff();

        ((FSMAIControl*)m_parent)->m_ship->StopTurn();

    }

}

StateAttack

The StateAttack class will turn the ship toward the nearest asteroid, and then fire the 
cannon. The class accounts for multiple guns (awarded to the player when the player 
obtains powerups) by calling the ship function GetClosestGunAngle(), which will 
pass in the closest gun to an angle parameter.

Update() calculates the position of the nearest asteroid, and must also per-
form some additional calculations to find the projected position of the asteroid, 
to find the leading angle to fire a bullet toward in order to hit the asteroid while 
it’s moving. After finding this position, it gets an angle to it, turns the ship, and 
fires the guns.

CheckTransitions() for this state is just like StateApproach, with branches to 
FSM_STATE_EVADE, FSM_STATE_GETPOWERUP, and FSM_STATE_IDLE.

This state potentially turns the ship, so the Exit() function must concern itself 
with resetting that particular flag.

LISTING 15.8 The StateAttack class functions.

//--------------------

void StateAttack::Update(int t)

{

    //turn towards closest asteroid’s future position,

    //and then fire

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    GameObj* asteroid    = parent->m_nearestAsteroid;

    Ship*    ship        = parent->m_ship;

    Point3f futureAstPosition = asteroid->m_position;
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    Point3f deltaPos = futureAstPosition - ship->m_position;

    float dist  = deltaPos.Norm();

    float time = dist/BULLET_SPEED;

    futureAstPosition += time*asteroid->m_velocity;

    Point3f deltaFPos = futureAstPosition - ship->m_position;

    deltaFPos.Normalize();

    

    float newDir   = CALCDIR(deltaFPos);

    float angDelta = CLAMPDIR180(ship->GetClosestGunAngle

                                  (newDir) - newDir);

    if(angDelta >1)

        ship->TurnRight();

    else if(angDelta < -1)

        ship->TurnLeft();

    else

    {

        ship->StopTurn();

        ship->Shoot();

    }

    

    parent->m_target->m_position = futureAstPosition;

    parent->m_targetDir = newDir;

    parent->m_debugTxt = “Attack”;

}

    

//--------------------

int StateAttack::CheckTransitions()

{

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    if(parent->m_willCollide)

        return FSM_STATE_EVADE;

    

    if(parent->m_powerupNear && parent->m_nearestAsteroidDist

       >parent->m_nearestPowerupDist && parent->m_ship->

       GetShotLevel() < MAX_POWER_LEVEL)

        return FSM_STATE_GETPOWERUP;

    

    if(!parent->m_nearestAsteroid || 

       parent->m_nearestAsteroidDist > APPROACH_DIST)

        return FSM_STATE_IDLE;

    

    return FSM_STATE_ATTACK;

}
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//--------------------

void StateAttack::Exit()

{

    if(((FSMAIControl*)m_parent)->m_ship)

        ((FSMAIControl*)m_parent)->m_ship->StopTurn();

}

StateEvade

This important state simply tries to stop collisions with asteroids, by both perform-
ing thrusting maneuvers, as well as firing the guns to possibly clear the way.

The Update() function computes a steering vector that comprises a sideways 
normal vector to the line between the player and the asteroid and adds in a braking 
vector if the player is headed at the asteroid. The Update() function then calculates 
the angle to this thrust vector, and like StateApproach, turns the ship and thrusts 
when appropriate, but will also fire the ship’s guns when using its thrusters, which 
has the added benefit of sometimes clearing out the area.

CheckTransition() has only one state to check for, that of FSM_STATE_IDLE.
We could check for transitions to the other states directly, but this is undesir-
able. By keeping the state connections to a minimum, we lessen the CPU require-
ments of running the state machine (especially if the transition determinations 
are more complex than simple comparisons) and make the overall state diagram 
simpler and easier to add to in the future when we want to insert more states into 
the system.

The Exit() method for StateEvade is like any other state that controls movement, 
in that it must reset the turning and engine status of the ship being controlled.

LISTING 15.9 The StateEvade class functions.

//--------------------

void StateEvade::Update(int t)

{

    //evade by going to the quad opposite as the asteroid

    //is moving, add in a deflection,

    //and cancel out your movement

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    GameObj* asteroid    = parent->m_nearestAsteroid;

    Ship*    ship        = parent->m_ship;

    Point3f vecSteer = CROSS(ship->m_position,asteroid->

                       m_position);

    Point3f vecBrake = ship->postion - asteroid->m_position;

    vecSteer += vecBrake;
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    float newDir = CALCDIR(vecSteer);

    float angDelta = CLAMPDIR180(ship->m_angle - newDir);

    if(fabsf(angDelta) <5 || fabsf(angDelta)> 175)//thrust

    {

        ship->StopTurn();

        if(ship->m_velocity.Norm() < AI_MAX_SPEED_TRY ||

           parent->m_nearestAsteroidDist< 20 +asteroid->

           m_size)

            fabsf(angDelta)<5? 

                 ship->ThrustOn() : ship->ThrustReverse();

        else

            ship->ThrustOff();

        //if I’m pointed right at the asteroid, shoot

        ship->Shoot();

    }

    else if(fabsf(angDelta)<=90)//turn front

    {

        if(angDelta >0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

    else//turn rear

    {

        if(angDelta<0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

    

    

    parent->m_target->m_position=asteroid->m_position;

    parent->m_targetDir = newDir;

    parent->m_debugTxt = “Evade”;

}

//--------------------

int StateEvade::CheckTransitions()

{

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    if(!parent->m_willCollide)

        return FSM_STATE_IDLE;
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    return FSM_STATE_EVADE;

}

//--------------------

void StateEvade::Exit()

{

    if(((FSMAIControl*)m_parent)->m_ship)

    {

        ((FSMAIControl*)m_parent)->m_ship->ThrustOff();

        ((FSMAIControl*)m_parent)->m_ship->StopTurn();

    }

}

StateGetPowerup

This state recognizes the locality of a powerup and will attempt to force a collision 
with the powerup, to gain its effects.

Update() is much like in StateApproach, only we need a more precise collision, 
instead of just moving in the general direction. So, this state must compute projected 
movement of the powerups. Also like StateApproach, it tries to keep the maximum 
velocity of the ship under check, by imposing a braking factor if the ship is moving 
too fast. As in some of the other states, Update() then computes a new direction, 
turns to it, and fires up the engines.

CheckTransitions() has determinations for both exit clauses from this state, 
FSM_STATE_EVADE and FSM_STATE_IDLE.

Exit() must reset the ship’s turn and thrust controls to ensure leaving them in 
a neutral manner.

LISTING 15.10 The StateGetPowerup class functions.

//--------------------

void StateGetPowerup::Update(int t)

{

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    GameObj* powerup     = parent->m_nearestPowerup;

    Ship*    ship        = parent->m_ship;

    

    //find future position of powerup

    Point3f futurePowPosition = powerup->m_position;

    Point3f deltaPos = futurePowPosition - ship->m_position;

    float dist  = deltaPos.Norm();

    float speed = AI_MAX_SPEED_TRY;
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    float time = dist/speed;

    futurePowPosition += time*powerup->m_velocity;

    Point3f deltaFPos = futurePowPosition - ship->m_position;

    deltaFPos.Normalize();

    

    //add braking vec if you’re going too fast

    speed = ship->m_velocity.Norm();

    if(speed > AI_MAX_SPEED_TRY)

        deltaFPos += -ship->UnitVectorVelocity();

    

    //DOT out my velocity

    Point3f shpUnitVel = ship->UnitVectorVelocity();

    float dotVel       = DOT(shpUnitVel,deltaFPos);

    float proj         = 1-dotVel;

    deltaFPos         -= proj*shpUnitVel;

    deltaFPos.Normalize();

    

    float newDir   = CALCDIR(deltaFPos);

    float angDelta = CLAMPDIR180(ship->m_angle - newDir);

    if(fabsf(angDelta) <2 || fabsf(angDelta)> 177)//thrust

    {

        ship->StopTurn();

        if(speed < AI_MAX_SPEED_TRY || 

           parent->m_nearestPowerupDist > 20)

            fabsf(angDelta)<2? 

            ship->ThrustOn() : ship->ThrustReverse();

        else

            ship->ThrustOff();

    }

    else if(fabsf(angDelta)<=90)//turn front

    {

        if(angDelta >0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

    else//turn rear

    {

        if(angDelta<0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }
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    parent->m_target->m_position = futurePowPosition;

    parent->m_targetDir          = newDir;

    parent->m_debugTxt           = “GetPowerup”;

}

//--------------------

int StateGetPowerup::CheckTransitions()

{

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    if(parent->m_willCollide)

        return FSM_STATE_EVADE;

    if(!parent->m_nearestPowerup || parent->

       m_nearestAsteroidDist < parent->m_nearestPowerupDist)

        return FSM_STATE_IDLE;

    return FSM_STATE_GETPOWERUP;

}

//--------------------

void StateGetPowerup::Exit()

{

    if(((FSMAIControl*)m_parent)->m_ship)

    {

        ((FSMAIControl*)m_parent)->m_ship->ThrustOff();

        ((FSMAIControl*)m_parent)->m_ship->StopTurn();

    }

}

StateIdle

The last necessary state is merely a catchall—a purely transitory state. The state 
machine for this simple demo has so few states that StateIdle connects to every 
other state in the machine, but high connectivity is rare, in general. If we added ad-
ditional behaviors to this game (such as specialized attack states, or game-specific 
environment elements) then these would be more isolated in the state graph. But 
the simple nature of this game leads this state to be a common return point from 
all the other states. After finishing any of the other states, the ship will always fall 
back into idle.

The Update() function of this state does nothing, except provide the debugging 
system with a label to use when drawing debug information to the screen.

CheckTransitions() has determinations for all the other states in the game 
because of the foundation nature of the idle state in this game.
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There is no Exit() function for this state, as it changes nothing in the greater 
game sense.

PERFORMANCE OF THE AI WITH THIS SYSTEM

The AI is quite able to play a good game of asteroids with this simple framework, 
being able to occasionally achieve scores well over 2 million. The added behavior of 
shooting while in the StateEvade state seems to be key to the ability of the system 
to survive later levels because the craft is almost continuously evading the extreme 

LISTING 15.11 The StateIdle class functions.

//--------------------

void StateIdle::Update(int t)

{

    //Do nothing

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    parent->m_debugTxt = “Idle”;

}

//--------------------

int StateIdle::CheckTransitions()

{

    FSMAIControl* parent = (FSMAIControl*)m_parent;

    if(parent->m_willCollide)

        return FSM_STATE_EVADE;

    if(parent->m_nearestAsteroid)

    {

        if(parent->m_nearestAsteroidDist > APPROACH_DIST)

            return FSM_STATE_APPROACH;

        if(parent->m_nearestAsteroidDist <= APPROACH_DIST)

            return FSM_STATE_ATTACK;

    }

    

    if(parent->m_nearestPowerup)

        return FSM_STATE_GETPOWERUP;

    return FSM_STATE_IDLE;

}
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numbers of asteroids. However, by just watching it for a while, you will notice a 
number of things that could be improved:

The addition of some specialty states. Getting the first powerup significantly 
improves the AI’s chance of survival, so this could be a priority state. Specifi-
cally filling up on powerups when the number of asteroids is low would be 
a big help, so that it will start the next level with maximum guns. Also, hu-
mans can play this game forever if they just get full powerups and then sit in 
the middle of the screen and continuously rotate and fire. This “spiral death 
blossom” attack is something that the AI could do at appropriate times, such 
as when it’s surrounded. Taking advantage of invincibility would be another 
state—the AI ship could make a beeline for powerups or ignore evasion tactics 
when invincible.
Increased complexity of the math model. This gives the AI system the ability to 
deal with the world coordinates wrapping. Right now, the AI’s primary weak-
ness is that it loses focus when things wrap in the world, and considering this 
during targeting and collision avoidance would greatly increase the survivabil-
ity of the AI ship.
Bullet management for the ship. Right now, the ship just points, and then starts 
firing. There is no firing rate on the guns, so it tends to fire clumps of shots 
toward targets. This is somewhat advantageous; when it fires a clump of shots 
into a large asteroid, the remaining shots will sometimes kill the pieces as the 
asteroid splits. But this can get the ship in trouble when it has fired its entire 
allocation of bullets and must wait for them to collide or expire before it can 
shoot again, leaving it temporarily defenseless.
Better positioning the ship for attacks. This means the ship doesn’t miss fast-
moving targets quite so often. Humans tend to move to some position that the 
asteroid will eventually travel by, and then stop at that position and wait for the 
asteroid to come. Because the math was specifically kept simple for the demo, 
the system moves directly toward the asteroid. Even this simple method is re-
ally only a problem because of the world-wrapping effect. This method of play 
doesn’t really look as intelligent as the human scheme.
Better evade behaviors. Right now, the ship is using simple steering behavior 
(modified slightly, because we can only thrust forward and reverse) for obstacle 
avoidance. Humans use a much more complex determination for avoidance, 
including shooting though a potential collision (not making any thrust ad-
justments), noting clumps of asteroids coming and evading them as a group, 
preemptive positioning before an asteroid gets too close, or even braking to a 
stop to just slow down the action a bit. A bit of simple playfield analysis would 
help the AI with some of these actions. By knowing which parts of the map 
had the lesser concentrations of asteroids, it could perform evasion tactics in 
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the general direction of “more space,” or even set itself up in low-concentration 
areas preemptively to give itself a better chance for survival.

PROS OF FSM-BASED SYSTEMS

FSMs are easy and intuitive to picture, especially when dealing with Moore-style 
machines. Our implementation into the test bed, which used a Moore-style state 
machine, in which the actions are in the states (rather than the transitions), is how 
most people tend to think about AI behaviors. Even within this paradigm, however, 
you could have coded the FSM in many ways for the demo game to achieve similar 
performance.

FSMs are also easy to implement, as you’ve seen in this chapter. Given a well-
thought-out state diagram, the structure of the state machine practically writes 
itself. Its simplicity is its greatest strength because the nature of the methodology 
lends itself well to splitting AI problems into specific chunks and defining the link-
ages between them. After a while, writing FSM structures becomes a fairly rote task 
for most programmers.

State-based systems are easy to add to because the game flow is very determin-
istic and connections between states are so explicit. In fact, it is a good idea to make 
a paper copy of your FSM diagram (or specific portions of it, if it is very large) and 
continue to keep it current as you extend the system. This will augment your abil-
ity to maintain a mental picture of the overall FSM structure and will help you find 
logical holes or areas where you need a connection but don’t have one. This kind of 
bookkeeping could even be achieved by inserting special debugging code into your 
states, so that the state diagram could effectively be written to a file by your game 
and examined offline, to look for any transitions that you missed or are misplaced.

FSM methods are also very straightforward to debug. The deterministic nature 
of state machines makes it easy (usually, that is) to replicate bugs, and the central-
ized nature of the FSMMachine class makes an easy code location to trap specific AI 
characters or behaviors when they occur. Visual debugging is also simplified in this 
paradigm because it is trivial to output state information to the screen on an indi-
vidual character basis and watch the AI make determinations on the fly. This kind 
of information can also be useful written to a file as a log of the state transitions 
leading up to a certain condition.

Finally, because of their nonspecific nature, FSM systems can be used for any 
number of problems, from simple game flow between screens, to the most intricate 
of NPC dialogues. This inherent general-purpose quality means that at some level, 
almost every game will have some sort of state-based element to them. Not that 
very simple state systems need a full, formal framework to run, but almost every 
game will use FSMs in some form simply because they can be applied to such a vast 
array of different game issues.
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CONS OF FSM-BASED SYSTEMS

The primary strength of FSM systems, their ease of implementation, tends to be 
their greatest weakness as well. Projects can run into problems when state-based 
systems weren’t initially designed with a static framework from the start and, in-
stead, used more “switch and case”-based FSMs, mixed in with more formal-state 
machines. Programmers sometimes code a behavior quickly (during a crunch pe-
riod, or during a moment of experimentation) and then don’t bother to go back 
and reimplement it correctly into the overall game structure.

This kind of willy-nilly implementation leads to fragmented systems that have 
logic spread out in directions and places that are not organizationally sound, lead-
ing to maintenance problems.

FSM systems also tend to grow in complexity during the project, as more spe-
cialized behaviors are found (such as those mentioned earlier that could improve 
the asteroids-playing FSM from the start of this chapter). Although it is good to try 
to improve the abilities of your AI systems over time, FSMs tend to not scale well to 
this kind of iterative work. The state diagram will become incredibly complex as the 
number of transitions grows exponentially to the number of new states and, as such, 
resolving transition determination and priority of actions becomes unwieldy.

 Another downfall of the state-based model is the issue of state oscillation.  
This occurs when the perception data boundary that separates two or more states 
is too crisp—that is, there is no room for overlap. For example, let’s say that a 
game creature (see Figure 15.4) has only two states, Flee and Stand. Flee runs 
directly away from any enemy less than four feet from the creature, and Stand 
causes the creature to simply sit there. Now, an enemy character enters the scene, 
and stands 3.99 feet from the creature. The creature enters its Flee state, but as 
it starts its animation, the creature’s position changes slightly, and suddenly, it’s 
instead 4.001 feet from the enemy. So the creature transitions to Stand. The Stand
state plays a different animation, and in transitioning back to the standing ani-
mation, it might move the creature back a touch, and start the whole situation 
over again. Although this is a very specific and simplistic example, the lesson is 
that the inherent crispness of the state system can lead to vacillating states like 

FIGURE 15.4 Common state-based problem of oscillation.
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this unless care is taken. Some ways to fight this problem will be given in the fol-
lowing section.

EXTENSIONS TO THE PARADIGM

Because of the extremely open-ended implementation of FSMs, a number of useful 
variants have been used over the years to combat the weaknesses of FSM systems. 
Some of the more useful of these extensions are covered here.

HIERARCHICAL FSMS

Sometimes, a given state in an FSM will be quite complex. In our AIsteroids exam-
ple, the Evade state could be made much more complicated in an attempt to make 
it more foolproof. Special case code could be written to separate situations such as 
when the ship is surrounded, or a tight grouping of asteroids is coming toward the 
player. Other code could try to preempt collisions by moving to more open areas, 
or shooting straight through oncoming traffic. Some of these things could be taken 
care of within the current Evade::Update() method, but a better way to approach 
this would be to make the Evade state an entirely different state machine. Within 
this state machine, you could deal with threats iteratively and separate code into 
more manageable sections. So, the Evade state machine would contain states for 
first dealing with being surrounded, then dealing with any immediate threats by 
either shooting or dodging, and then trying to get to a safer location so that the 
code can exit the Evade state completely.

This technique is a great way to add complexity to an FSM system without 
creating undue connectivity within the greater state machine. In effect, you are 
grouping states into more locally scoped areas, and taking advantage of similarities 
among these local states. By grouping similar states within their own state machine, 
the “super state” that contains this new machine can also house common function-
ality and shared data members, much like the FSMAIControl structure does for the 
AIsteroids example.

Substates do not have to be true states, either. Another commonly used tech-
nique is to have a state in the larger FSM contain many substates, all of which 
are treated as equal choices. The specific resultant substate can either be chosen 
randomly, or because of some combination of perception triggers. This is the 
same as having two or more states as equal branches in a classic state diagram, 
but having the logic for which branch to take embedded in a state Update ()

method, instead of indirectly through perception order priority or some other 
roundabout manner.
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MESSAGE- AND EVENT-BASED FSMS

In some games (or merely some states), transitions may happen infrequently. If this 
is the case, and if your game also contains numerous states or the computations 
to determine transitions are complex, then it becomes computationally expensive 
to check for transitions in a polling model. Instead, an FSM system can be imple-
mented easily that uses messages as triggers instead of having to poll.

The overall structure of our state-machine framework could be converted 
to use this type of system. The game (most likely through the Control class in 
some way) would have to pass messages down to the state machine, which would 
then distribute them to the various states. The FSMMachine : : UpdateMachine()
method would become the message pump for the state machine, and each state’s 
CheckTransitions() function would become a switch statement (or the like) for 
handling the various messages that it wants to consider. The rest of the code would 
remain mostly unchanged. Even the Enter(), Exit(), and Update() functions could 
be triggered by automatically sending messages through the system. Note that 
combination systems could be implemented, in which each state could store a flag 
indicating whether it is a polling or event-driven state, and the UpdateMachine()
function could handle it appropriately.

FSMS WITH FUZZY TRANSITIONS

FSMs can be written so that instead of events or some kind of perception trigger 
causing transitions in the machine, fuzzy determinations (such as simple compari-
sons or calculations) can be used to trigger state transitions. Because of the way 
the framework in this chapter has been coded, this technique requires no code 
changes to implement. In fact, the implementation of AIsteroids laid out earlier in 
the chapter uses this technique. If it had been coded using the more traditional style 
of FSM, then all state transition logic would have been performed in the Control
class, and each state’s CheckTransition() method would have just been triggered by 
input events.

For example, in the StateIdle state, the CheckTransition() function checks 
whether there is a nearby asteroid, and if so, then checks the distance to it, and then 
assigns a transition. A classically designed FSM would have done the existence and 
distance checking from the Control class, and passed (or set a Boolean value that 
the function could check for) the input type ASTERIOD_CLOSE_TO_PLAYER, which the 
idle class would have then used to assign the transition to the Attack state. In this 
example, the transitions are still crisply defined, but they could have a fuzzier deter-
mination that takes into account a ramping-up phase (so that it wouldn’t notice the 
asteroid for some set reaction time), or some set minimum time (so that the ship 
couldn’t break out of a state until after some minimum has passed), or any other 
types of calculations you might want.
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By allowing a more flexible means by which to assign transitions, the code 
framework opens the door to other, richer methods of assigning transitions. It also 
keeps some of the proprietary logic calculations within the confines of the state it-
self, instead of within a large controller class that would perform all the logic within 
its perception functionality.

STACK-BASED FSMS

Another variation on regular FSM layout is to extend the m_currentState member 
in the state machine class to instead be a stack data structure. As the machine makes 
transitions from state to state, it keeps a history of the preceding states by pushing 
them onto the stack. Once a state is completely finished, it is popped off the stack, 
and the next topmost state is made current again. This allows characters to have a 
limited form of memory, and their tasks can be interrupted (by a command from 
another character, or to deal with more pressing concerns, like being shot sud-
denly), but after the interruption is taken care of, they then return to whatever it 
was they were doing before.

Care must be taken when using this variant that interruptions clean up any er-
rant stack problems when entering and leaving current status. So, let’s say that an 
AI-controlled character that was in a Patrol state is interrupted by being sniped by 
the player and immediately switches to a Take Cover state. If the character were hit, 
it really wouldn’t make sense for the character to go back to Patrol after the sniping 
danger is clear. The Patrol state being interrupted by the Take Cover state should 
actually be flagged as a replacement behavior, in that it replaces Patrol as the top-
most behavior on the stack. This new state might also want to set an exit behavior, 
based on whether or not the character was wounded, so that the AI will have some 
state to go to that makes more sense. In that way, when the character comes out of 
hiding, the character won’t just blindly start patrolling again but would, instead, 
call for help (if wounded), or investigate the area from which the shot came. Unless, 
of course, that’s what you want your game to do.

MULTIPLE-CONCURRENT FSMS

The question of synchronizing or coordinating multiple FSMs is split into two cat-
egories: FSMs between multiple characters, and multiple FSMs controlling a single 
character. Multiple-character coordination is usually handled by a manager of some 
type, an observer class that gives both characters orders from above and can set up 
complex scenarios as a puppeteer of sorts. Some games handle this kind of activity 
with clever use of regular FSM systems that simply play off each other, state-wise, 
but really don’t know anything about each other.

A situation that is a bit uncommon is multiple intracharacter FSM interac-
tion. This requires that characters can be truly doing two things at once. This could 
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be as simple and straightforward as a Robotron AI character using one FSM for 
movement and another for shooting (although these two systems are so completely 
separate in Robotron that it might be better to use a fuzzy state machine here; see 
Chapter 16, “Fuzzy-State Machines”). It could also be as complex as a series of FSMs 
running alongside each other for a real-time strategy (RTS) game AI opponent. 
An RTS opponent would need separate decision state machines for resource 
 management, research, combat, and so on.

These FSMs might communicate with one another through an observer of 
some kind (possibly even another FSM, a “general” FSM that uses output from 
the other FSMs as transition conditions), through a shared data area (like in our 
AIsteroids FSM implementation), or by passing messages and event data between 
states and state machines.

Things to watch for in this kind of system would be problems that network 
code or parallel processing systems encounter. One state machine might overwrite 
a shared data member that a different state machine needs, two state machines 
might be in a feedback loop with each other, causing oscillation, there might be an 
inherent order to some calculations that cannot be guaranteed because of process 
timing issues, or the like.

DATA-DRIVEN FSMS

The push toward more richly defined AI behavior sets has led many developers to 
think about creating their FSM systems such that their construction is mostly done 
by nonprogrammers (likely designers and producers). This means that new (or im-
proved) behaviors can be added to the system without much programmer involve-
ment, giving more people on the project the ability to shape gameplay. There have 
been many different methods for implementing a data-driven FSM system. Some 
of the more popular ways to accomplish this are the following:

Scripted FSMs, using actual text files, or a simple macro language from within 
a regular code environment. This is probably the simplest to create, but also 
calls for a greater technical effort from the designers, especially because most 
scripting languages end up being subsets of a regular language anyway (most 
are generally a light version of C, although Python, LISP, or even assembly 
code-style scripting languages are not unheard of). A simplified version of a 
scripting system might comprise solely generic comparison evaluators (>, <, 
==, !, =, etc.), and the script writer would set up the state machine by defining 
the transition connections between states by using predefined variables and 
values. Macro languages are a bit simpler to implement than a full language 
parser is (except for extremely simple languages) and have the advantage of 
being actual code, making them easier to debug. They have the disadvantages 
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of code as well: Your designers now have to compile the game to run their new 
scripts (as well as obviously requiring the company to buy additional copies 
of the programming environment), although this is offset by being able to use 
modern source control tools on these macro files and, hence, provide for things 
like multiple people working on the same file with automatic merging, as well 
as setting up protected files that cannot be changed without permission.
Visual editors have been written that allow designers to set up FSMs in much 
the same way as they would prototype them using standard FSM diagrams to 
show state connectivity and flow of the system. This kind of system is very easy 
for designers to use, but calls for a much greater commitment to coding than 
other systems do. The regular game has to be written to expose states, transition 
conditions, and other information to the editor, so the designers can build the 
FSM diagrams from these elements as this list grows or changes in the game. In 
addition to this, the editor itself must be written and maintained over the life 
of the product (and beyond, in some cases).

INERTIAL FSMS

One of the problems with FSMs is the concept of state oscillation (as detailed earlier 
in the chapter). This is caused when the events that cause transitions between states 
are too close in onset. An example might be a perception in a basketball game that 
keeps track if a player has an open lane to the basket. This perception could be created 
by doing a line-of-sight check between the player and the basket, and then checking 
that line of sight for collisions against all the other team’s players. If this check is being 
performed very often (let’s assume you have no optimizations in yet, and it is actually 
being checked every frame), then you can see how it would be very easy for this player 
to fluctuate wildly between the Stand state, and the DriveToTheBasket state because 
the line-of-sight collisions might vary slightly on each frame as other players moved 
about the court. This is exactly the kind of behavior you have to avoid, otherwise your 
characters will look very twitchy as they switch back and forth quickly between two 
or more behaviors.

The way to combat this is to introduce the notion of inertia into the system. 
This simply means that if a state has been actuated, it stays actuated for some time, 
or that new states have to overcome some inertia before they can fire in the first 
place. This can be done at either (or both) of two levels: the states themselves, or the 
perceptions that fire the states.

At the state level, the state machine itself can keep track of the current state 
and enforce minimum running times; this would model inertia to change, or what 
could be thought of as the single-mindedness of the AI system, “how often does 
it change its mind?” Oncoming states need to request promotion several times 
before actually becoming the current state; which models static inertia, analogous 



294 AI Game Engine Programming

to some kind of environmental awareness, or what might be called reaction time. 
In this way, the perceptions would be kept as raw as possible, and the state machine 
would sample the perception stream to take notice of trends (instead of individual 
data change spikes) in the perception variables, and use this to make state changes. 
Also at the state level, you could also employ time functions when checking for 
transitions; the longer a state has been the current state in the machine, the more 
possible transitions out of it become. The transitions out always exist, they just 
become more freely accessible as time goes on. Say a game character is waiting for 
you to perform some feat in order to give you a prize. He could patiently wait until 
you performed the specific task to unlock his next state transition, or his AI system 
could recognize that a huge amount of time has passed within the game, and deter-
mine that the character should relax his requirements in order to advance the story. 
This could be done by giving the player a hint, or just giving him a secondary prize 
and some remark.

Inertia at the perception level is precisely the opposite. The state transitions are 
crisp, but the actuations of perception events are modeled in such a way that they 
represent the inertia in the system. Perceptions can take multiple firings to actu-
ate (reaction time), require a certain level of perception to fire (sensitivity), con-
tinue to keep actuation after the perception has finished (ramp down, or extinction 
sensitivity), or even require another perception to fire before they themselves will 
fire, even in the event of the first perception’s values becoming true (prerequisite 
conditions, or cascading actuation). An example from a basketball sports game: a 
condition called, “Has open line to the offensive basket” is used as a prerequisite 
for another condition, “Should I take the ball to the Hoop?” The second condition 
requires that the first condition be true for a number of game loops, so that the 
higher-level decision of taking the ball somewhere doesn’t happen after a tiny, mo-
mentary opening in the defense.

Inertia from the perception side is sometimes more desirable because percep-
tions might be shared as triggers across many different states, and so building iner-
tia into a single, commonly used perception might stop oscillation in a large part of 
the system. But, state-side inertia is more general and has the potential to be quicker 
to implement. A combination of the two methods can be used quite easily to get the 
exact level of smoothness (versus reactivity) that you want from your system.

Finally, remember that if your AI system requires extreme reactivity (in an action 
game, for instance, with very fast gaming requirements and instant AI player reac-
tions), you might need to forgo these kinds of decision-smoothing techniques to rely 
instead on things such as the animation engine to help smooth out twitchy character 
artifacts. If the animation engine has a degree of inertia built into the blending sys-
tem, or simply doesn’t change the animation for a tick or three when actions change, 
the AI system could effectively jump around quite a bit and the overall look of the 
game wouldn’t be harmed too much. In the end, however, this level of reactivity is 
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rarely necessary because enemies that react at 1/60th of a second (or less) are not usu-
ally considered more intelligent and rarely end up being much fun. However, if the 
game includes a Boss monster with superhuman reactions, and the player has to use 
a magic item that will slow down the Boss, then it’s a whole different story.

OPTIMIZATIONS

FSMs are easy to code and are probably the most efficient of all AI methodologies 
because they logically break the code into manageable chunks, both organization-
ally and computationally. There is room for optimization for both the algorithm 
(in speed of processing) and the overall data structure (for memory usage and 
such), so long as the code doesn’t become too “overdesigned” as a result—you are 
trying to develop an FSM for your game, after all, not develop a generic class usable 
for any purpose. The common techniques are explored here.

LOAD BALANCING BOTH FSMS AND PERCEPTIONS

Load balancing refers to spreading the amount of computation to be done over 
time to lessen the immediate load on the processor. Think of it as buying some-
thing on credit: You get the object, but there’s an increased cost. In purchasing, that 
cost is interest payments. In our system, the cost is overhead of having to create 
either time scheduling systems for our AI and perception systems or having to cre-
ate incremental algorithms.

Load balancing is generally tackled one of two ways (both methods working 
just as well at both the AI and perception level): by having the system run at a set or 
scheduled rate (e.g., twice a second, or every other second), or by having a system 
that gives incrementally better results the more time it is given. Many pathfinding 
systems work under the latter system, in which they initially just give a rough di-
rection to move toward, then give better and better paths as the time spent in the 
algorithm increases. Another kind of system along this path is an interruptible FSM 
system, in which the entire machine can be stopped after a set time limit, and then 
will start right where it left off when it gets another time slice from the system.

This kind of computational complexity isn’t necessary for everything because 
simple time scheduling will work fine for most perceptions (we’re modeling human 
behavior, and humans’ own perception systems rarely work at 60+ frames per sec-
ond), as well as for general AI decision-making systems (again, humans also rarely 
change their minds at 60+ fps). If the number of things needing scheduling be-
comes large, a good way to handle spreading out all the computations is to use 
an automated load-balancing algorithm to try to minimize the spikes in process-
ing that invariably occur, while the system programmer keeps rough control over 



296 AI Game Engine Programming

update scheduling. These kinds of algorithms keep statistical data on computation 
times and use extrapolation to predict future needs by the various game elements, 
and then use this data to determine the order in which to update objects to try to 
smooth out the processing.

LEVEL-OF-DETAIL (LOD) AI SYSTEMS

Level-of-detail (LOD) systems were originally (and still are) used by 3D graph-
ics programmers to ease the amount of work that the rendering pipeline needs to 
perform, by having objects that are far away be displayed using models comprising 
fewer polygons and textures because the player won’t notice the difference anyway. 
In some games, in which the player can see a very long way off, some LOD systems 
will actually reduce a game character to a single triangle with a certain color. But 
because it’s so far off, the player can’t tell, and the rendering engine isn’t spending 
all the time it would take to compute everything for the 2,000 polygon model that 
it would usually use for that character.

This same sort of thinking is starting to migrate into AI work because we are 
now struggling with CPU-intensive AI routines, and we still have a limited player 
view of the world. So, why not simplify things for the AI when the player might not 
notice? Instead of generating a real path from A to B using the pathfinding system, 
a character in another part of the world from the human might just estimate how 
long it would take to get to some destination, and just teleport there after that 
time was up (a better way would be to teleport there in chunks, to minimize the 
chances of this behavior screwing things up or being noticed). A retreating char-
acter that manages to escape the human player might just get its health back after 
a set time, instead of actually having to hunt down health powerups and use them. 
This sounds a bit like cheating, and it can be if overused. However, by simulating 
the effect of things over time, as well as assuring that the human won’t run into 
somebody in the wrong LOD or that the AI uses it too soon after the human is out 
of view, the feeling of cheating can be mitigated.

The problem with LOD systems in the AI world, as opposed to the graphics 
world, is that AI systems are unlike LOD systems for graphics rendering, which 
are mostly automatic. Some graphical LOD systems require special art be worked 
out for each step of LOD, but others autogenerate these additional detail levels. 
Then, the graphics engine just has to determine line of sight and distance from the 
player to determine the correct LOD to display the character at. With AI program-
ming, behavior usually needs to be specially written for each LOD, so it should 
only be used in situations where there will be a significant savings in CPU expense 
that will not hinder gameplay. Consider a game that has dynamic crowds that mill 
about and interact with the environment. At the closest LOD, the crowd members 
could use full avoidance, collision response, interact with each other using facial 
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expressions and animations, and spawn other objects like trash that they throw 
away. At the farthest LOD, they would still probably look pretty good as single poly-
gons that have no collision at all, don’t animate, and are simply moving along set 
path lines laid down in the city.

SHARED DATA STRUCTURES

This is one of the most basic and powerful techniques to optimize FSM computa-
tion speed. FSMs (at some level) need a system in which environmental conditions 
are triggering state transitions, and these conditions may be in some way shared by 
differing states, so an immediate speedup can ensure that different conditions are 
not recomputed by each state but, rather, are computed in some common area that 
is shared by the states. This is done in the AIsteroids demo by having some determi-
nations directly in the states’ CheckTransitions() methods, while having other cal-
culations performed in the FSMAIControl structure’s UpdatePerceptions() function.

Sometimes this functionality is so basic to the engine of the game that an 
entire shared-data framework paradigm is used when building the game engine. 
The blackboard architecture model is one such paradigm; it provides a formal way 
for any game object to publish information to a central data area, and interested 
objects can request this information or be given an event message with a location 
to look if they are concerned.

DESIGN CONSIDERATIONS

Before deciding to plunge fully into a state-based system, you should consider all 
the factors discussed in Chapter 2, “An AI Engine: The Basic Components and De-
sign,” concerning your game, and note the types of systems that FSMs model well: 
types of solutions, agent reactivity, system realism, genre, content, platform, devel-
opment limitations, and entertainment limitations.

TYPES OF SOLUTIONS

Because of their general-purpose nature, FSMs can be adapted to any kind of solu-
tion type, both strategic and tactical. They are most at home with (obviously) state
types of solutions, however, so note that the more specific the solution you require 
from your system, the more specific the state will have to be that provides that solu-
tion. Or, this means that you will require hierarchical FSMs to achieve more speci-
ficity. In general, FSMs really show their power if the number of states in a game is 
relatively small and the states themselves are much more separate and discrete. A 
system comprising 400 states that are all the same with small differences is going to 
incur quite a bit of overhead by an FSM structure, with little benefit.
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AGENT REACTIVITY

FSM systems can be tuned to provide the system with any level of agent reactivity 
because of the simple nature of their processing models. In fact, most FSM systems 
run fast enough that decision stability needs to be a factor when you build FSMs 
(discussed with state oscillation in the Cons of FSMs section). The time it takes to 
make a transition decision by an FSM is practically instantaneous; the real cost is 
in the perception calculations.

This isn’t how humans make decisions, however (except for very simple, hard-
wired behaviors like reflex actions or instinctive acts). Humans are deliberative, 
have reaction times, and are affected by their environments when making decisions. 
When an AI makes decisions too fast, it seems robotic and jittery. This type of de-
cisional jitter can be dealt with at either (or both) of two levels: the state machine 
itself, or at the perception level. Given that FSMs make all their transition determi-
nations as a result of changes in perception, we can stop jitter in the state machine 
by stopping jitter in the perceptions.

You can handle this by implementing some of the techniques discussed in 
Chapter 2’s section “Input Handlers and Perception,” or this chapter’s section on 
“Inertial FSMs.” Thus, the reactivity of the AI-controlled characters can be explicitly 
controlled at many levels in an FSM system.

SYSTEM REALISM

FSM-based decision making tends to be unrealistic, unless the FSM system in-
volved is very complex and the modeled behaviors wanted from the system are 
somewhat narrow. FSMs are static, and unless you have a complex hierarchical 
system that covers every possible event, they will respond in the manner in which 
the subset of possibility is shown to them through their perceptions. By their very 
nature, they can only respond to changes in the game with the states they’ve been 
provided with.

Humans tend to be very good at finding AI patterns of FSM behavior and 
can locate “missing” perceptions or states that can be exploited by the player very 
quickly. This might be what your game requires (for instance, in coding the Boss 
monster in a shooter game, the Boss might follow a set pattern of states for the 
duration of the battle, and finding this pattern is the player’s key to getting past the 
Boss). Thus, FSM behavior models are usually used for more static behavior sets, or 
where unchanging lines of reaction are the goal of the system.

GENRE

FSMs have been used in every genre of game, again because of their lack of problem-
specific context and simplicity of design. They thrive in genres with perceptions that
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can be calculated in simple terms, as well as unique sets of terms, so that the input 
space can be divided into usable states by the system. Our demonstration program, 
AIsteroids, is actually not an ideal candidate for FSMs because the gameplay is 
mostly similar across the whole of each wave (attack everything and get powerups), 
and the types of behaviors are so similar (usually turning and thrusting toward 
some target).

However, FSMs can be built in such a modular way that they can be used for 
a given subset of a game’s decision structure, and not bleed into the rest of the AI 
engine. This means that if your game has a specialized element that is very state 
oriented, you can use this type of paradigm for just that part. This is usually the 
case in most games and is one of the reasons that FSMs are used in almost every 
game in some form or another.

CONTENT

This varies depending on the game being created. Does your game require decision-
making elements that follow a state driven flow? Can this additional behavior be split 
into specific states, that are connected in some way by a system of transitions? If so, 
then an FSM can be used to control it. But if not, then you might need other types of 
control structures to capture the behavior of specialized systems that result from spe-
cific game content designs. One of the other techniques in this book might be a fit.

PLATFORM

FSMs are also platform independent because they don’t have large demands of 
computing power or memory footprint. Old-style arcade games used to be some-
what more FSM dependant, because of these low demands. In fact, some very old 
arcade games used actual solid-state logic for their AI opponents (or patterns of 
enemy movement), and used FSMs in the electrical engineering sense.

DEVELOPMENT LIMITATIONS

FSMs lend themselves well to games with heavy development limitations because of 
their speed of development and debugging. Especially in very short projects, FSMs 
don’t usually have the time to get convoluted by excessive additions and tweaking, 
which can plague FSM systems in the long run. Also, smaller-scale games that only 
have one AI programmer (or possibly a few) are also good candidates for FSMs, if 
everything else is a match, of course. It is easier for a limited number of people to 
remember the changing structure and connectivity of a developing state machine 
than it is for large teams or extremely separated teams.

Additional gameplay elements can be folded into FSMs much more easily 
than some systems, simply because if you can fit a new state into the state diagram 
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completely, then the system can be coded to incorporate this change. FSM sys-
tems are easy to understand by incoming programmers; unlike more exotic AI 
systems that may require extended learning curve periods by new staff. Quality 
assurance is also generally quite painless with state-based models—behavior is 
usually quite simple to reproduce, and behavior logs and the like are trivial to 
implement and use.

ENTERTAINMENT LIMITATIONS

Entertainment concerns, especially difficulty levels and game balancing, are eas-
ily handled by state-based systems. If the difficulty level of gameplay is going to 
change during the game, then this setting itself might be controlled by an FSM that 
is responding to particular happenings in the game to respond with difficulty level 
switching. Game balance is made more straightforward because the system requires 
a state to respond to a change in any given perception state, in effect enforcing a 
rock-paper-scissors scenario. Thus, if your opponent is coming at you in the Rock 
state, you should be transitioning to the Paper state. Obviously, this assumes that 
your FSM model is working under reactive conditions, instead of predictive con-
ditions, but there’s no rule that says that the perceptions being fed into the state 
machine cannot be computed using predictive methods.

SUMMARY

FSMs are the duct tape of the game industry. They are simple, powerful, easy to 
use, and can be applied to almost any AI problem. However, just like duct tape, the 
resulting solution may work, but won’t be pretty, is marginally hard to extend and 
modify, and might break if flexed too often.

A state machine is defined as a list of states, and a structure that defines con-
nectivity between the states given certain conditions.
The FSM framework given in this book is more modular than most, in that it 
encapsulates the types of transitions and the transition logic within a single 
state. Each state is modular because it contains everything it needs to interact 
with the other states. This also allows more complex transition determinations 
than the classical input event method.
The FSM system in this book comprises three main classes: FSMState, FSMMachine,
and FSMAIControl.
Our implemented FSM, in the AIsteroids test bed, uses only five states 
(Approach, Attack, Evade, GetPowerup, and Idle) to achieve fairly high perfor-
mance, if a little superhuman.
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Extensions to the test bed for better performance include the addition of states, 
better math to handle wrapping, bullet management, and better attack and 
evade maneuvers.
The pros of FSM systems are their ease of design, implementation, extension, 
maintenance, and debugging. They are also such a general problem-solving 
methodology that they can be applied to a broad range of AI issues.
The cons of FSM systems are organizational informality, inability to scale, and 
state oscillation problems.
Hierarchical FSMs allow increased complexity while allowing the overall state 
machine to maintain a level of organization through grouping. Code and data 
can also be shared locally to these states, instead of cluttering the global FSM 
structure.
Message-based FSMs are great for systems that have a large number of states, 
or sporadic transition events. This system will broadcast transitional informa-
tion instead of individual states having to poll perception systems for transition 
triggers.
Stack-based FSM variants allow states to be interrupted by more pressing activ-
ities, and then returned to by means of the simple “memory” of a state stack.
Multiple FSMs can control different aspects of a single AI-controlled character 
and tackle separate portions of the character’s decision-making problems but 
still keep the system simple from an organization point of view.
Data-driven FSMs using scripts or visual editors are a great way to empower 
designers to take control of the AI decision flow of a character, as well as add to 
the speed of creation and the extensibility of the product.
Load-balancing algorithms can be applied to FSM systems, as well as to their 
perception systems, to achieve more stable CPU usage.
Level-of-detail (LOD) AI systems can dramatically reduce CPU usage in games 
with many AI-controlled characters or large worlds that may be partially hid-
den to the human player.
Shared data structures help curtail repetitive condition calculation in transi-
tional logic for the various states in an FSM.
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Fuzzy-State Machines 
(FuSMs)

16

In the last chapter, we covered finite-state machines, which involved transitions 
between distinct states, only one of which could be occupying the system at a 
time. This chapter will cover a variant, but fairly far removed version of state 

machines called fuzzy-state machines (FuSMs).

FUSM OVERVIEW

FuSMs are built on the notion of fuzzy logic, commonly defined as a superset of 
conventional (Boolean) logic that has been extended to handle the concept of partial 
truths. It should be noted that FuSMs build on this notion, but do not represent 
actual fuzzy logic systems.

While the concept of partial truths is a very powerful notion, FuSMs are much 
less general in scope than regular FSMs. Like FSMs, FuSMs keep track of a list of 
possible game states. But, unlike FSMs, which have a singular current state and then 
respond to input events by transitioning into a different state, FuSMs instead have 
the possibility of being in any number of their states at the same time, so there are 
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no “transitions.” Each state in a fuzzy system calculates an activation level, which 
determines the extent to which the system is engaged in any given state. The over-
all behavior of the system is thus determined by the combination of the currently 
activated state’s contributions.

FuSMs are really only useful for systems that can be in more than one state at 
a time and have more than simple digital values, such as on or off, closed or open, 
and alive or dead. Fuzzy values are more like halfway on, almost closed, and not 
quite dead.

A way of quantifying these kinds of value types is to use a unitary coefficient 
(a number between 0.0 and 1.0) that represents the condition’s membership to each 
end state (0.0 == fully off, 1.0 == fully on), although being unitary is not neces-
sary to the workings of the FuSM. It is simply an easy way to not have to remember 
specific limits on each state’s membership, as well as ensuring ease of comparison 
between state membership values (both in direct comparison, as well as the multi-
plicitive value of a unitary value; you can multiply unitary numbers together and 
get an average value overall).

There is some confusion about what exactly FuSMs are (in the game AI com-
munity), because there are several FSM variants that are in the same family as 
FuSMs. These variants (which will be covered in further detail later in the chapter) 
include the following:

FSMs with prioritized transitions. This model is still an FSM, so each state still 
has a list of possible transitions. In this model, the activation level of each ap-
plicable state is computed, and whoever has the highest activation level wins 
and becomes the new current state. This is how many programmers use the 
concept of fuzziness to enhance their decision-state machines, but the reality is 
that the system is still an FSM, and the predictability of the behaviors output by 
a system like this is only mildly less than that of a regular FSM.
Probabilistic FSMs. In this form of FSM, there are probabilities placed on tran-
sitions out of states, so that the traversal of the FSM is more nondeterministic 
and thus less predictable. These probabilities could change over time, or could 
be set within an FSM, with the game using multiple FSMs to group together 
different probability sets. 
 This is sometimes used when certain transitions have a number of equivalent
output states. For example, approaching an enemy might cause an AI charac-
ter to want to switch to one of three states (of equivalent value): Punch, Kick, or
HeadButt. If there is only one output state in a given transition, the FSM functions 
as normal. But if there are multiple states, then probabilities are assigned to the 
multiples (either evenly, for total equivalence of choice, or biased toward certain 
states, or more complex determinations that consider whether one branch was 
recently taken or if the human keeps blocking a certain move, etc.).
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Markov models. These are like probabilistic FSMs, but the transition logic is 
completely probability-based, so they are useful for inducing some change in 
coupled states. As an overly simplistic example, say you have two states, Aim
and FireWeapon. In this game, these two states are normally totally linked, in 
that whenever you’re done aiming, you will fire your weapon. But, suppose in-
stead you wanted to model a more realistic gun model, and so 2 percent of the 
time, Aim will instead transition to WeaponJam. This type of state transitioning 
is sometimes referred to (in other fields that use Markov models) as reliability 
modeling.
 In this example, the weapon is 98 percent reliable. Markov models are mainly 
used for these kinds of statistical modeling because one of the assumptions of 
the system is that the next state is related through probability to the current 
state. Thus, Markov models are very useful in fields such as risk assessment 
(in determining rates of failure), gambling (in finding ways to increase house 
profits), and engineering (to determine the tolerances necessary in fabrication 
to ensure reliability of the finished product to acceptable levels).
 A reactive videogame may have some elements that fall under this category, 
but because the main reasons that AI opponents may be changing states is in 
answer to the folly of a human player’s actions, this kind of state prediction is 
rarely the norm. An interesting usage of this kind of system might be to actu-
ally model the accidents expressed by humans occasionally. An AI opponent 
could occasionally trip, drop the ball, or shoot himself in the foot.
 All these accidents could be handled at the basic run, hold ball, or shooting 
action level and could just happen from time to time by taking very unlikely 
branches in the tightly coupled animations of these activities. Whether or not 
this kind of realistic behavior fits in your game simulation, or is entertaining to 
the player at all, is left up to you.
Actual fuzzy-logic systems. Contrary to popular belief, FuSMs are not really 
fuzzy-logic systems. Fuzzy logic is a process by which rules expressed in partial 
truths can be combined and inferred from to make decisions. It was created 
because many real-world problems couldn’t always be expressed (with any de-
gree of accuracy) as finite events, and real-world solutions couldn’t always be 
expressed as finite actions. Fuzzy logic is merely an extension of regular logic 
that allows us to deal with these kinds of rule sets.
 The simplest form of actual fuzzy rule in game usage (which is very com-
mon), is straightforward if . . . else statements (or their equivalents, through a 
data table or some kind of combination matrix) that describe changes in behav-
ior. For example, the statement “If my health is low, and my enemy’s health is 
high, I should run away” is a straightforward fuzzy rule. It compares two percep-
tions (my health and my enemy’s health) in a fuzzy manner (low versus high) 
and assigns it an action (run away). This statement has probably been written as 
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an if statement in hundreds of games over the years. This represents the barest 
minimum of an actual fuzzy system. A real fuzzy-logic system would comprise 
many general fuzzy guidelines for any given combination of the player’s health, 
the enemy’s health, and all the other variables of concern into matrices of rules 
that will give a response action through algorithmic combination. 
 This tends to be a powerful way of getting results from a fuzzy system, but 
suffers when there are many fuzzy variables (each of which may have numerous 
possible value states or ranges) by creating a necessary rule set of quickly un-
manageable size, a problem called combinatorial explosion. This can be worked 
around using a statistics technique called Combs method, which can reduce the 
required rule set, but also reduces accuracy.

FuSMs (as well as the previously mentioned similar variants) are rapidly becom-
ing much more common in game AI usage. The predictability of FSMs is becoming 
undesirable, and the overall content of many games is becoming rich enough to 
warrant the additional design and implementation complexity of FuSMs.

FuSMs definitely require more forethought than their finite brothers do. The 
game problem must really be broken into the most independent elements that the 
problem allows. An FSM could be implemented within the confines of an FuSM 
system, by calculating digital activation levels and designing the system so that 
there is no overlap in state execution. Some people do this by accident (or through 
ignorance) when setting up a fuzzy system. It is much more natural for many prob-
lem situations to think in a finite way, so if you are finding it hard to come up with 
a methodology for FuSMs in your game, then it’s probably because you shouldn’t 
be using the fuzzy method in the first place. FuSMs are not as suited to the general 
range of problems as FSMs are. FuSMs are a kind of FSM that simply allow for the 
activation of multiple states as the current state, as well as being able to have a level 
of activation equivalent to the degree that the game situation merits each state.

In fact, many people will contend that FuSMs are not even really state machines 
at all (because the system isn’t in a solitary state) but, rather, are more like fuzzy 
knowledge bases where multiple assertions can be partially true at the same time. 
But, by coding independent states to take advantage of these multiple assertions, 
we can use FuSMs to accomplish our AI goals that require this kind of blended 
behavior.

A very simple example of how a system like this might be used would be in 
coding a decision-making system for an AI-controlled enemy in Robotron. An FSM 
state diagram for a straightforward Robotron player is shown in Figure 16.1. There 
are three main states (this game is very similar to Asteroids, so the FSMs should 
look familiar): Approach, Evade, and Attack. In a strict FSM-based system, to move 
and shoot at the same time, the code would need to be written so that the Approach
and Evade states start movement in a particular direction, but don’t stop movement 
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when the state is changed. Thus, when the Attack state is in control, the player would 
still be moving from the last movement state that it was in. This works, but isn’t 
very clean. The Attack state would have to keep checking for transitions to the other 
states, so that the player wouldn’t run into enemies while shooting in another direc-
tion, or end up in a corner far away from all the enemies. A better way would be to 
create a FuSM for this game. Then, the player could Approach, Evade, and Attack all 
at the same time.

Like FSMs, FuSMs can be written in a free-form way. You could write an FuSM 
to better accomplish the FSM Robotron behavior as shown in Listing 16.1. Here 
you see the Update() function for a Robotron player using three different functions 
that will update if a condition has been met. The player class encapsulates both the 
methods to handle the different aspects of the overall behavior and the determina-
tion functions that establish which methods to use.

This is fine for relatively simple examples like this one, but generally is insuf-
ficient in a complex system. Consider an real-time strategy game in which you have 
an FuSM running the decision-making engine; it would divide the time it has for 
computation based on the activation levels of each independent decision-making 
system that needs updating, be it combat, resource, building, strategic, or whatever. 
You want to separate this logic into the various modules, making the system more 
organized, readable, and approachable by more than one programmer at a time.

FIGURE 16.1 FSM diagram for a Robotron player.

LISTING 16.1 Update code for a free-form FuSM Robotron player.

void RobotronPlayer::Update(float dt) 

{

    float urgency;

    if(CalculateApproachUrgency(urgency))

        Approach(dt,urgency);
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    if(CalculateEvadeUrgency(urgency))

        Evade(dt, urgency);

    if(CalculateAttackUrgency(urgency))

        Attack(dt, urgency);

}

Also notice in this Robotron example that one of the states, Attack, really can’t 
be completely fuzzy. The player is either shooting, or not shooting, because you 
cannot partially fire a laser (although you could think of a partial attack as one 
meant to cripple instead of to kill). This is not the case with the other states, in 
which movement can be expressed as a smooth gradient between not moving and 
moving at full speed. This “defuzzification” of the Attack state doesn’t hurt the rest 
of the system, however, and doesn’t invalidate the method. FuSMs can easily blend 
in more digital states by having the activation level be calculated in a digital way; 
the system will still respond to this digital state just like the others.

FUSM SKELETAL CODE

Like FSMs, the code for FuSMs will be implemented in three main classes:

 1.  The FuSMState class, the basic fuzzy state.
 2.  The FuSMMachine class, the fuzzy-state machine.
 3.  The FuSMAIControl class, the AIControl class that handles the working of 

the machine, and stores game-specific information and code.

THE FuSMState CLASS

At their most pure level of implementation, states in an FuSM system are wholly dis-
connected systems. Each state will use perception variables (from the Control class, 
or a more complex and dedicated perception system) to determine activation level 
(which will be represented in this book by a number between 0 and 1), which is the 
measure of how fully active the state needs to be to respond to the perceptions. The 
activation level could correspond to the amount of some value in the game, such as 
aggression; an activation level of 0.0 means the character is not aggressive at all, 1.0 
means it is completely consumed with rage.

The minimum requirements for an FuSM state are much like an FSM state:

Enter(). This function is always run as soon as you enter the state. It allows the 
state to perform initialization of data or variables.
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Exit(). This function is run when you are leaving the state and is primarily used 
as a cleanup task, or where you would run (or start running) any additional code 
that you wanted to occur on specific transitions (for Mealy-style state machines).
Update(). This is the main function that is called every processing loop of the AI, 
if this state is the current state in the FSM (for Moore-style state machines).
Init(). This function initializes the state.
CalculateActivation(). This function determines the fuzzy activation level of 
the state. It returns the value, and stores it in the state as the m_activationLevel
data member. As you will see later in the chapter, more digital states (such as 
the Attack state in our test bed) can be modeled here by returning Boolean 
values instead of the normal unitary value.

The header for this class is given in Listing 16.2. Again, this class has been cre-
ated to be as general as possible to allow for the maximum flexibility in implement-
ing it into your game. As you can see, it is very similar to the FSM class, with the 
exception of the m_activationLevel data member. In fact, this data member could 
be combined into the FSM class, and a hybrid system could be developed that uses 
both kinds of states interchangeably.

LISTING 16.2 FuSMState header.

class FuSMState

{

public:

    //constructor/functions

    FuSMState(int type = FUSM_STATE_NONE,

              Control* parent = NULL)

       {m_type = type;m_parent = parent;

        m_activationLevel = 0.0f;}

    virtual void Update(float dt){}

    virtual void Enter()         {}

    virtual void Exit()          {}

    virtual void Init()          {m_activationLevel = 0.0f;}

    virtual float CalculateActivation() 

                     {return m_activationLevel;}

    virtual CheckLowerBound(float lbound = 0.0f)

            {if(m_activationLevel < lbound) 

             m_activationLevel = lbound;}

    virtual CheckUpperBound(float ubound = 1.0f) 

            {if(m_activationLevel > ubound) 

             m_activationLevel = ubound;}
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    virtual CheckBounds(float lb = 0.0f,float ub = 1.0f) 

            {CheckLowerBound(lb);CheckUpperBound(ub);}

    //data

    Control*   m_parent;

    int        m_type;

    float      m_activationLevel;

};

The class has three bounds-checking functions, which are really just floor and 
ceiling checkers for your activation levels. You can call any of these from your states, 
or none at all if you want totally raw activation levels.

Like normal FSMs, the class also contains two data members, m_type, and 
m_parent. The type field can be used by both the overall state machine and the 
interstate code, to make determinations based on which particular state is being 
considered. The enumeration for these values is stored in a file called FuSM.h and 
is currently empty, containing only the default FuSM_STATE_NONE value. When you 
actually use the code for something, you would add all the state types to this enu-
meration, and go from there. If you wanted to be more data-driven and not pollute 
the base class at all, you could set up a system in which you register all the state 
types with the base class. The parent field is used by individual states, so they can 
access a shared data area through their Control structure.

THE FuSMMachine CLASS

This class (the header is Listing 16.3) contains all the states that the machine needs 
to keep track of, just like the equivalent FSMMachine class. It also contains a list of all 
the currently activated states. Also like the FSMMachine, the fuzzy machine is a child 
of the FuSMState class, so that hierarchical FuSMs can be constructed by making a 
particular fuzzy state be an entire FuSM.

LISTING 16.3 FuSMMachine header.

class FuSMMachine: public FuSMState

{

public:

    //constructor/functions

    FuSMMachine(int type = FUSM_MACH_NONE,Control* parent = NULL);

    virtual void UpdateMachine(float dt);

    virtual void AddState(FuSMState* state);

    virtual bool IsActive(FuSMState* state);

    virtual void Reset();
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    //data

    int m_type;

protected:

    std::vector<FuSMState*> m_states;

    std::vector<FuSMState*> m_activatedStates;

};

UpdateMachine(), which runs the general fuzzy machine, is shown in Listing 
16.4. As you can see, the system is simple: run each state’s CalculateActivation()
function, separate out the activated states, Exit() all the nonactivated states as a 
group, and then call Update() for all the activated states. Although it might seem 
attractive to simply call the exit or update method for each state in turn, rather than 
store the states in separate vectors, it would be very restrictive to do so. It needs to 
be done in this manner because the Exit() function from some nonactivated states 
might reset some things that activated states have turned on or need to change 
while updating.

LISTING 16.4 FuSMMachine::UpdateMachine() function.

void FuSMMachine::UpdateMachine(float dt)

{

    //don’t do anything if you have no states

    if(m_states.size() == 0)

        return;

    

    //check for activations, and then update

    m_activatedStates.clear();

    std::vector<FuSMState*> nonActiveStates;

    for(int i =0;i<m_states.size();i++)

    {

        if(m_states[i]->CalculateActivation() > 0)

            m_activatedStates.push_back(m_states[i]);

        else

            nonActiveStates.push_back(m_states[i]);

    }

    //Exit all non active states for cleanup

    if(nonActiveStates.size() != 0)

    {

        for(int i =0;i<nonActiveStates.size();i++)

            nonActiveStates[i]->Exit(); 

    }
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    //Update all activated states

    if(m_activatedStates.size() != 0)

    {

        for(int i =0;i<m_activatedStates.size();i++)

            m_activatedStates[i]->Update(dt);

    }

}

THE FuSMAIControl CLASS

Finally, Listing 16.5 shows the control class for the FuSM system. It is virtually 
identical to the FSM control class and contains the global data members neces-
sary to run the system, as well as a pointer to the fuzzy machine structure. In more 
formalized games, with many global data members, or complex perception update 
calculations, it would probably be better to create a dedicated perception system 
instead (controlled through the control class), but this small list being updated 
directly with the UpdatePerceptions() method is fine for our test application.

LISTING 16.5 FuSMAIControl header.

class FuSMAIControl: public AIControl

{

public:

    //constructor/functions

    FuSMAIControl(Ship* ship = NULL);

    void Update(float dt);

    void UpdatePerceptions(float dt);

    void Init();

    

    //perception data 

    //(public so that states can share it)

    GameObj*    m_nearestAsteroid;

    GameObj*    m_nearestPowerup;

    float       m_nearestAsteroidDist;

    float       m_nearestPowerupDist;

    bool        m_willCollide;

    bool        m_powerupNear;

    float       m_safetyRadius;

    

private:

    //data

    FuSMMachine* m_machine;

};
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IMPLEMENTING AN FUSM-CONTROLLED SHIP INTO OUR TEST BED

The AI system necessary to run our AIsteroids main ship doesn’t lend itself to 
the fuzzy system, because most states are just transitions to other states (you 
have to turn to shoot, but also turn to thrust). So, in our FuSM test bed example, 
we have a second kind of ship, the Saucer, which is dramatically different from 
our main ship. The Saucer doesn’t require turning to thrust. It flies with anti-
gravity, and thus doesn’t suffer from inertia or slow acceleration. It can thrust 
in any direction it wants and has dampeners internally to keep the pilot safe. 
Because of this amazing ability, it has also been equipped with a gun turret that 
can fire in any direction. It also has a tractor beam that it can use to drag objects 
toward itself.

This kind of craft has independent systems and is relatively free from having 
to connect the different parts of its decisions (movement is almost completely 
separate from attacking, and grabbing objects has also been decoupled), so it is 
now a good candidate for an FuSM system to run it. Given some basic percep-
tions, each system (guns, engines, tractor beam) can operate independently, and 
concurrently. Thus, our ship will no longer use a state system, in that it progresses 
from one state to another but, rather, will operate under the fact that each in-
dependent activity will control whether or not it is contributing to the overall 
behavior of the ship.

EXAMPLE IMPLEMENTATION

In the following sections, the necessary classes to implement the Saucer and an 
FuSM controlling its behavior will be introduced and fully described.

A NEW ADDITION, THE Saucer

The Saucer is the game implementation of the new ship type (see the header in 
Listing 16.6). As you can see, it is very similar, although the GetClosestGunAngle()
method just returns the passed-in angle because the turret can fire in any direction.

LISTING 16.6 Saucer header.

class Saucer : public Ship

{

public:

    //constructor/functions

    Saucer(int size = 7);
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    void Draw();

    void Init();

    //bullet management

    virtual void Shoot();

    virtual float GetClosestGunAngle(float angle) 

                                  {return angle;}

};

OTHER GAME MODIFICATIONS

To allow the saucer to work, several other systems were included. The base ship 
class was given controls to deal with the tractor beam and the AG thruster (an-
tigravity, or noninertial drive). It was also given a vector for the direction of the 
AG drive m_agNorm. This vector can be assigned in two different ways: you can use 
AGThrustOn(vector) to turn on the drive and set the direction to the normalized 
value of the passed in vector, or you can use AGThrustAccumulate(vector), which 
will turn on the drive but then add the vector into the m_agNorm variable. It will then 
be normalized as it is used by the ship’s update method for movement. This is an 
important part for the fuzziness of the system. Each state that requires movement 
will use the AGThrustAccumulate() method to request ship movement and will scale 
the vector it will pass in by multiplying it by its current activation level. By doing 
this, a state with a high activation level will contribute more to the ship’s direc-
tion of movement than will a state with a low activation level. The base class ship 
Update function then checks whether the AG drive is turned on, and if so, applies 
the m_agNorm vector to the position of the ship, thereby giving it instant acceleration 
and the ability to ignore inertia.

Another addition to the code is the new GameSession::ApplyForce() function. 
This function is overloaded twice, the first takes an object type, a force vector, 
and a delta time as parameters to apply the force. It will run through the game’s 
object list and add the force to any objects of the types passed in. The second 
ApplyForce() method takes an object type, a force line, the force vector, and a delta 
time to apply the force. We will be using this method to simulate the tractor beam, as it 
first checks if the object has collided with this force line before it will apply the force.

THE FUSM SYSTEM

In Figure 16.2, you can see the diagram of the FuSM. Unlike the FSM implemen-
tation for the asteroids game, there are only four states instead of five. An FSM 
system is essentially a closed loop and must have a current state at all times. In the 
FSM implementation, the Idle state worked as the primary branching point for all 
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the other states in the system, serving as the state of last resort. But, an FuSM can 
run any number of states (including none), so this state isn’t necessary in the fuzzy 
system. As seen in Figure 16.2, these basic states are the following:

Approach, which will get the ship within range of the closest asteroid.
Attack, for the saucer, is merely firing the guns in the direction of the nearest 
asteroid. The ship has forward-firing weapons and needs to turn and face its 
target, but the saucer has a gun turret.
Evade, which will initiate avoidance of an asteroid on a collision course by 
monitoring the ship’s speed.
GetPowerup, which will try to scoop up powerups within some range. Unlike 
the ship, however, the saucer has a tractor beam that it will use to grab the 
powerups.

The FuSM requires a few bits of data so it can calculate each state’s activation 
level. These are the following:

 1.  The distance to the nearest asteroid is used to determine the activation of 
three of the states, Approach, Evade, and Attack. The closer an asteroid is, 
the more the craft will evade and attack; the further away, the greater the 
activation of the approach behavior.

 2.  The distance to the nearest powerup. This affects the activation of the 
GetPowerup state. The closer the saucer is to the powerup, the more it will 
try to get it.

FIGURE 16.2 FuSM diagram for the asteroids game.
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There are a few things to notice about the system. Each fuzzy state has no informa-
tion about other states in it. Each state is only concerned with the perception checks that 
directly deal with itself only. In the FSM implementation, almost every state needed to 
watch for the m_willCollide field to be true, to transition to the Evade state.

Also note the reduction of redundant state transition checks that are found in the 
finite system. Many of the states in our asteroids FSM example were interconnected 
because of the somewhat even priority rating of all the states in the FSM. If you find 
that your FSM is employing an almost completely connected state diagram, your 
system may be a good candidate for an FuSM. This is not always the case, but if your 
game can traverse from any state to any other, the likelihood is that there isn’t too 
much in the way of prerequisite, linear behavior being exhibited by your system.

CODING THE CONTROL CLASS

The controller class for the FuSM model (see Listing 16.7 for the header, Listing 
16.8 for the implementation of the important functions) contains the state ma-
chine structure, as well as the global data members for this AI model.

LISTING 16.7 FuSMAIControl class header.

class FuSMAIControl: public AIControl

{

public:

    //constructor/functions

    FuSMAIControl(Ship* ship = NULL);

    void Update(float dt);

    void UpdatePerceptions(float dt);

    void Init();

    

    //perception data 

    //(public so that states can share it)

    GameObj*    m_nearestAsteroid;

    GameObj*    m_nearestPowerup;

    float       m_nearestAsteroidDist;

    float       m_nearestPowerupDist;

    bool        m_willCollide;

    float       m_safetyRadius;

    

private:

    //data

    FuSMMachine* m_machine;

};
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The fuzzy control class is much simpler from a perception point of view. 
However, we can attribute this to breaking the rules of asteroids (such as the saucer 
having no inertia, a gun turret, and a tractor beam), not because we’re using an 
FuSM. It is simply easier, mathwise, to get the saucer to move to and avoid specific 
locations because it doesn’t have to worry about its own velocity as much.

The FSM AI data member m_powerupNear is no longer necessary; it was more 
of an event trigger that the FSM could respond to, but the fuzzy system uses 
the distance from the powerup to directly relate to the activation level of the 
GetPowerup state.

The Update() method is exactly the same as in the FSM implementation. It 
won’t run the controller if there is no ship to control, and it simply updates the 
perceptions and the fuzzy machine itself.

LISTING 16.8 FuSMAIControl important function implementations.

FuSMAIControl::FuSMAIControl(Ship* ship):

AIControl(ship)

{

    //construct the state machine and add the necessary states

    m_machine = new FuSMMachine(FUSM_MACH_SAUCER,this);

    m_machine->AddState(new FStateApproach(this));

    m_machine->AddState(new FStateAttack(this));

    m_machine->AddState(new FStateEvade(this));

    m_machine->AddState(new FStateGetPowerup(this));

}

//--------------------

void FuSMAIControl::Update(float dt)

{

    if(!m_ship)

    {

        m_machine->Reset();

        return;

    }

    

    UpdatePerceptions(dt);

    m_machine->UpdateMachine(dt);

}

//--------------------

void FuSMAIControl::UpdatePerceptions(float dt)

{

    if(m_willCollide)

        m_safetyRadius = 30.0f;
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    else

        m_safetyRadius = 15.0f;

    

    //store closest asteroid and powerup

    m_nearestAsteroid = NULL;

    m_nearestPowerup  = NULL;

    m_nearestAsteroid = Game.GetClosestGameObj(m_ship,

                               GameObj::OBJ_ASTEROID);

    if(m_ship->GetShotLevel() < MAX_SHOT_LEVEL)

        m_nearestPowerup  = Game.GetClosestGameObj(m_ship,

                               GameObj::OBJ_POWERUP);

    

    //asteroid collision determination

    m_willCollide = false;

    if(m_nearestAsteroid)

    {

        m_nearestAsteroidDist = m_nearestAsteroid->

                    m_position.Distance(m_ship->m_position);

        float adjSafetyRadius = m_safetyRadius +

                               m_nearestAsteroid->m_size;

    

        //if you’re too close,

        //flag a collision

        if(m_nearestAsteroidDist <= adjSafetyRadius )

            m_willCollide = true;

    }

    

    //powerup near determination

    if(m_nearestPowerup)

        m_nearestPowerupDist = m_nearestPowerup->

                   m_position.Distance(m_ship->m_position); 

}

CODING THE FUZZY STATES

The four state implementations: FStateApproach, FStateAttack, FStateEvade, and 
FStateGetPowerup (Listings 16.9 to 16.12) will be discussed separately in the follow-
ing sections.

FStateApproach

FStateApproach merely computes the vector to the closest asteroid and uses it as 
a thrust vector for the antigravity drive of the saucer. There’s no magic here; the 
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antigravity drive simply works as discussed earlier by directly affecting position 
instead of acceleration.

The CalculateActivation() method returns a zero if there aren’t any nearby 
asteroids; otherwise it returns a normalized value that is between 0.0f (when the 
distance to the asteroid is almost zero) and 1.0f (when the distance is at or above 
FU_APPROACH_DIST). The CheckBounds() call ensures that the activation value falls in 
this range.

Finally, the Exit()function stops the AG drive because this is the only mode 
that the state dealt with.

LISTING 16.9 FStateApproach implementation.

//--------------------

void FStateApproach::Update(float dt)

{

    //turn and then thrust towards closest asteroid

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    GameObj* asteroid = parent->m_nearestAsteroid;

    Ship*    ship     = parent->m_ship;

    Point3f deltaPos  = asteroid->m_position – 

                        ship->m_position;

    

    //move there

    ship->AGThrustAccumulate(deltaPos*m_activationLevel);

    

    parent->m_target->m_position = asteroid->m_position;

    parent->m_debugTxt = “Approach”;

}

    

//--------------------

float FStateApproach::CalculateActivation()

{

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    if(!parent->m_nearestAsteroid)

        m_activationLevel = 0.0f;

    else

        m_activationLevel = (parent->m_nearestAsteroidDist –

         parent->m_nearestAsteroid->m_size)/FU_APPROACH_DIST;

    CheckBounds();

    return m_activationLevel;

}
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//--------------------

void FStateApproach::Exit()

{

    if(((FuSMAIControl*)m_parent)->m_ship)

        ((FuSMAIControl*)m_parent)->m_ship->StopAGThrust();

}

FStateAttack

FStateAttack is also a bit simpler than the FSM version. Again, the saucer doesn’t 
have to turn like the regular ship, so all it needs to do is calculate a leading angle 
and fire.

The activation function for this state is digital, either 0 or 1, because you cannot 
partially fire a gun at something. In a more complex game, we could create a more 
analog system by strategically targeting specific areas of a target (like the shield gen-
erators on a large spacecraft) or to discriminate between targets. The state is simply 
on if there is an asteroid and it is within firing range, or it is off.

There is no Exit() method for this state because the shoot command is not an 
on/off toggling command. It only fires one shot at a time.

LISTING 16.10 FStateAttack implementation.

//--------------------

void FStateAttack::Update(float dt)

{

    //turn towards closest asteroid’s future position, and then fire

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    GameObj* asteroid = parent->m_nearestAsteroid;

    Ship*    ship     = parent->m_ship;

    

    Point3f futureAstPosition = asteroid->m_position;

    Point3f deltaPos = futureAstPosition - ship->m_position;

    float dist  = deltaPos.Norm();

    float time = dist/BULLET_SPEED;

    futureAstPosition += time*asteroid->m_velocity;

    Point3f deltaFPos = futureAstPosition - ship->m_position;

    float newDir = CALCDIR(deltaFPos);

    ship->Shoot(newDir);

    

    parent->m_target->m_position = futureAstPosition;

    parent->m_debugTxt = “Attack”;

}
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//--------------------

float FStateAttack::CalculateActivation()

{

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    if(!parent->m_nearestAsteroid)

        m_activationLevel = 0.0f;

    else

        m_activationLevel = parent->m_nearestAsteroid &&

           parent->m_nearestAsteroidDist < FU_APPROACH_DIST;

    return m_activationLevel;

}

FStateEvade

This state follows suit with the other movement states. It calculates a vector away 
from the nearest asteroid and sets up the AG drive to thrust in that direction.

Its activation level goes up as it gets to the nearest asteroid, to simulate getting 
more single-minded about evasion as it closes in on a collision.

It turns off the AG engine when exiting, like other states that use the antigravity 
system.

LISTING 16.11 FStateEvade implementation.

//--------------------

void FStateEvade::Update(float dt)

{

    //evade by going away from the closest asteroid

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    GameObj* asteroid = parent->m_nearestAsteroid;

    Ship*    ship     = parent->m_ship;

    Point3f vecBrake = ship->m_position - asteroid->

                                              m_position;

    ship->AGThrustAccumulate(vecBrake*m_activationLevel);

    

    parent->m_target->m_position = parent->

                           m_nearestAsteroid->m_position;

    parent->m_debugTxt = “Evade”;

}

//--------------------

float FStateEvade::CalculateActivation()

{

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    if(!parent->m_nearestAsteroid)
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        m_activationLevel = 0.0f;

    else

        m_activationLevel = 1.0f - (parent->

                         m_nearestAsteroidDist - parent->

                         m_nearestAsteroid->m_size)/

                         parent->m_safetyRadius;

    CheckBounds();

    return m_activationLevel;

}

//--------------------

void FStateEvade::Exit()

{

    if(((FuSMAIControl*)m_parent)->m_ship)

        ((FuSMAIControl*)m_parent)->m_ship->StopAGThrust();

}

FStateGetPowerup

Unlike the normal ship, the saucer is equipped with a powerful tractor beam that 
drags powerups toward itself when activated. It still will approach the powerup, and 
the urgency of the approach will be controlled by the state’s activation level. The 
state will also turn on the tractor beam to drag the powerup in.

The activation calculation method is much like the FStateEvade state, in that 
the closer to the powerup, the stronger the activation. This is so that the saucer will 
make more of an effort (with its maneuvers) to pick up the powerup if it is very 
close by. Otherwise, the tractor beam will do most of the work.

The Exit() method needs to turn off both the tractor beam and the AG engine 
because it uses both.

LISTING 16.12 FStateGetPowerup implementation.

//--------------------

void FStateGetPowerup::Update(float dt)

{

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    GameObj* powerup = parent->m_nearestPowerup;

    Ship*    ship    = parent->m_ship;

    

    Point3f deltaPos = powerup->m_position – 

                       ship->m_position;
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    ship->AGThrustAccumulate(deltaPos*m_activationLevel);

    ship->TractorBeamOn(-deltaPos);

    

    parent->m_target->m_position = powerup->m_position;

    parent->m_debugTxt = “GetPowerup”;

}

//--------------------

float FStateGetPowerup::CalculateActivation()

{

    FuSMAIControl* parent = (FuSMAIControl*)m_parent;

    if(!parent->m_nearestPowerup)

        m_activationLevel = 0.0f;

    else

        m_activationLevel = 1.0f - (parent->

                    m_nearestPowerupDist - parent->

                    m_nearestPowerup->m_size)/

                    FU_POWERUP_SCAN_DIST;

    CheckBounds();

    return m_activationLevel;

}

//--------------------

void FStateGetPowerup::Exit()

{

    if(((FuSMAIControl*)m_parent)->m_ship)

    {

        ((FuSMAIControl*)m_parent)->m_ship->StopAGThrust();

        ((FuSMAIControl*)m_parent)->

                                 m_ship->StopTractorBeam();

    }

}

PERFORMANCE OF THE AI WITH THIS SYSTEM

With the FuSM system in place, as well as the much more lenient gameplay rules 
that the saucer has to follow, it is all but unstoppable at destroying the asteroids in 
the test-bed game. It will play as long as you let it, and it has survived several hours 
of continuous play in testing. Figure 16.3 shows the saucer going to work. It does 
still die occasionally, but could be made completely unstoppable with the same 
kinds of improvements that would help the FSM system.
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Increase the complexity of the math model to give the AI system the ability 
to deal with the world coordinates wrapping. Right now, the AI’s primary weak-
ness is that it loses focus when things wrap in the world, so accounting for this 
during targeting and collision avoidance would greatly increase the survivability 
of the AI ship. Even this weakness is considerably lessened by the saucer’s capa-
bilities over the regular ship because the saucer never floats across a border like 
the ship does.

FIGURE 16.3 FuSM implementation of the AIsteroids test bed.
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Bullet management for the ship. Right now, it just points, and then starts fir-
ing. With such a fast firing rate on the guns, the saucer tends to fire clumps of shots 
toward targets. This is somewhat advantageous; when firing a clump of shots into 
a large asteroid, the remaining shots will sometimes kill the pieces as the asteroid 
splits. But this can get the ship in trouble when it has fired its entire allocation of 
bullets, and must wait for them to collide or expire before it can shoot again, leav-
ing it temporarily defenseless.

PROS OF FUSM-BASED SYSTEMS

FuSMs are very straightforward to design, for the right problems. If your AI situa-
tion involves independent, concurrent systems, then this model allows you to de-
sign the separate systems as just that: separate systems without any concern for 
each other. Therefore, you don’t incur the effort of designing the transition events 
and links between states that FSM systems require. The model provides a simple 
way in which to activate each state according to a scale that you can define for the 
particular problem. FuSMs also allow digitally activated states to be mixed in freely 
with the more fuzzy ones by simply setting up the activation calculator to return 
digital values.

Implementating an FuSM system is typically easier than FSMs because of the 
lack of transitions. Each state can be implemented in a pure vacuum, with only the 
global perception data (stored in the control class) as the glue holding the system 
together.

Extending a fuzzy system is as uncomplicated as finding other states that will 
freely mix with the system. In our asteroids example, another state could be added 
to aid evasion in the form of a repulsion beam, the opposite of the tractor beam. 
This would shoot out from the ship and deflect incoming asteroids. Adding a state 
that controlled the use of the repulsion beam to the FuSM would be almost effort-
less; by copying the GetPowerup state and changing a few lines to affect the nearest 
asteroid instead of powerups and changing the direction of the force that will be 
applied to the rocks.

Debugging a fuzzy system is also quite straightforward. Because of the uncou-
pled nature of the states, you can disable any that you are not concerned with at the 
time, and then concentrate on the remaining active states. You can see how minimal 
the evasion code for the saucer is by disabling the attack state. The saucer will try 
to evade the rocks, but because it is taking only one asteroid into account at a time, 
it will invariably be surrounded and crushed. To extend the abilities of the craft, 
advanced evasion techniques (possibly involving moderate pathfinding or some 
form of influence map analysis) could be implemented and tested, without having 
to worry about the very efficient attack behavior mowing everything down and 
clearing the way for the saucer.
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FuSMs scale very well, again because of the disconnected nature of the states. 
The only problem that you have to deal with is the notion of too much blending, 
which might lead to very average or muddy behaviors on the whole. Say that our 
test bed not only had Approach, Evade, and Get Powerup behaviors vying for the 
movement of the ship. Instead, it also has states trying to dock with floating bases, 
maneuvering for the use of transportation gates of some kind, responding to for-
mation requests from other friendly saucers, and maybe even responding to emer-
gencies like wormholes. Eventually, so many states would be affecting the direction 
of thrust for the AG drive that the ship might not be able to move at all. The more 
states that are blending into a particular trait of the system, the more diluted each 
individual state’s contribution becomes. This dilution can be overcome by trying to 
combine states into like-minded groups (the previous example of a transportation 
gate-handling state could possibly be considered a different kind of powerup, and 
the wormhole handler could be grouped into Evade, for instance).

Fuzzy systems allow a much greater range of behavioral personality to be ex-
hibited by your AI-controlled agents. The current FuSM saucer implementation 
can be made more “aggressive” by lowering the FU_APPROACH_DIST define. By upping 
the priority of the evasion behavior and raising the overall activation level of the 
powerup state, you would end up with a more defensive character, which would 
even appear greedy when powerups were present. Different saucers could be coded 
using separate classes that redefined the CalculateActivation() methods of the 
various states, or they could use a data-driven interface that would access a list of 
attributes to tweak the overall mix of behaviors toward specific personality traits.

The FSM problem of state oscillation is nonexistent in the FuSM world. FuSMs 
can actually be in every state at once, or none at all, so there is no real concept of 
switching back and forth between states. The problem is somewhat replaced by the 
notion of behavior oscillation, however, and is discussed in the next section.

CONS OF FUSM-BASED SYSTEMS

FuSMs are not as general a problem solver as FSMs. FSMs are a way of modeling 
behaviors that happen, one after another, in sequence; they represent a circular, 
progressive system that allows reactivity, proactive tasking, and prerequisite actions. 
FuSMs are better suited to a complex behavior system that can be constructed by 
blending smaller, unconnected behaviors together. This concept of blending is key. 
FuSMs are uniquely qualified for dealing with gradients of behavior. Games don’t 
always require or even want this kind of behavior, because subtle behavioral differ-
ences are often lost in the fast movement, low graphical resolution, fixed animation, 
and simplified art assets of the game world. In the future, when advances in facial 
animation and physics-based movement systems (which would model movement 
based on the forces acting on a person, rather than a hand made or motion captured 
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animation that is being played by a character) are the norm, FuSMs will be an 
integral part of bringing the full range of emotion and ambiance to AI-controlled 
characters. For right now, pure FuSM systems are a niche technique useful for spe-
cific groups of behaviors.

Badly designed FuSMs can exhibit behavior oscillation. This is when an 
AI-controlled character cycles one or more behaviors on and off in a rapid fash-
ion. With our asteroids saucer, we don’t have to worry about this because the only 
states that might fight each other are exact opposites, the Approach and Evade states. 
However, they cancel each other out if both states are at maximum values, and the 
ship will sit still. But if Approach and Evade used nonopposite vectors, and Approach
wanted to get closer than Evade wanted to allow, the ship might behave oddly: it 
might move in circles or with some kind of cyclical diagonal zigzagging. The way to 
solve this is precisely the way that our asteroids saucer does: model behaviors like 
the human body uses its muscles, with complementary yet opposite states that get 
the job done and work together to mute activation inconsistencies.

EXTENSIONS TO THE PARADIGM

As discussed at the start of this chapter, FuSMs are somewhat misunderstood. The 
various reasons that people employ FuSM-like behavior structures are many. Some 
of the more useful of these extensions and variants will be covered here.

FUSMS WITH A LIMITED NUMBER OF CONCURRENT STATES

You might have a system where you want a series of behaviors that have a smooth 
gradient of activation, but only one or possibly a few behaviors are going to be able 
to update. FuSMs can be easily extended to treat the activation level of each state as 
a priority function, and the winner (or some number of the highest priority states) 
will end up being the only one to update. With a single state, this system becomes 
more like the FSM with fuzzy transitions variant discussed in Chapter 15.

If you still allow multiple current states, you could think of this method as a 
means of fighting the dilution problem discussed earlier in the previous section. 
Particular fuzzy states could be tagged with subtypes, and the highest priority sub-
type would win for that particular subtype category. In our AIsteroids example, 
attack would be a subtype, along with movement and tractor beam. So, Approach
and Evade would fight to be the winner of the sole movement state that gets to 
function. This works to help with dilution, but also defuzzies the system because 
you are taking additional blended elements out of the overall behavior. Limiting the 
max number of executing states can also be employed as a computation cost-saving 
optimization for games in which CPU time is a concern.
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AN FUSM USED AS A SUPPORT SYSTEM FOR A CHARACTER

Although fully fuzzily-controlled characters are somewhat rare (look at how many 
rules we had to break in the original AIsteroids example to get a good candidate 
for FuSMs), specific parts of a character might be extremely good places for this 
method. A facial expression system might be a very good fit for this kind of scheme. 
Each state would be a particular emotion: happy (would curl the mouth and squint 
the eyes), sad (would arch the eyebrows and droop the mouth), mad (bares the 
teeth, brings together eyebrows, opens eyes), and so on. Each emotion would ac-
tivate to a level based on separate perceptions, and the whole system would run 
concurrently with whatever the rest of the AI system was doing.

AN FUSM USED AS A SINGLE STATE IN A LARGER FSM

Even though not all the states or behaviors a given character employs might be 
independent or fuzzy, specific sections might. A simple example is a character that 
runs a normal state machine while running around the map, getting items and in-
teracting with others. But when the character stands still, a fuzzy state might start 
up that would blend together three separate behaviors: looking around (the shorter 
time he’s been in this environment, the more inquisitive he is about it), fidget-
ing (the more tasks he has, or the longer he’s waited, or the less time since his last 
enemy encounter, the more nervous he is), and whistling (the more safe he feels, 
the noisier he’ll be when standing around). This idle behavior is the overall FSM’s 
current state, but it will also be running any or all of these fuzzy substates to model 
the standing behavior of the character.

HIERARCHICAL FUSMS

Just like FSMs, FuSMs can easily be made hierarchical. The skeletal code has the 
FuSMMachine class inheriting from the FuSMState class to facilitate this. However, this 
isn’t the most useful notion, design-wise. Multiple states could be running simultane-
ously, so there is little reason to group states together, except for organization. If you 
are combining some of these variant methods, this would be more useful. You could 
use an FuSM to contain additional FuSMs that use the “limited number of current 
states” method mentioned earlier. Each sub-FuSM would return the highest priority 
state within its subtype, and then all the winners would run under the parent FuSM.

Another type of combination system might be an FSM in which each state is an 
FuSM. This becomes, in effect, a fuzzy system that can switch out its entire fuzzy- 
state system based on game events or perception changes. This is a very powerful 
and general-purpose system.

Imagine a hierarchical FSM containing states that are either FuSMs (for more 
dynamic and emergent behavior), or regular FSMs (for more static or semiscripted 
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reactions to game events), giving the programmer the ability to use the exact system 
that best suits the specific state of the game.

DATA-DRIVEN FUSMS

Data driving an FSM usually means allowing designers some method (either in 
script or through a visual interface of some kind) to set up states and be able to 
show transition connectivity between the states, as well as assign conditions to the 
transitions.

In FuSMs, the control is changed, in that the designers would instead decide 
which states they want to add to the total machine (which will become the differ-
ent elements that are blended to become the end behavior), and then control the 
activation calculations of each state, either by laying down conditions and simple 
equations directly, or by affecting a standard calculation with modifiers (such as 
adjusting the state’s activation level boundaries, or by applying some scale factor). 
This kind of data could be tweaked on a per-character level, to get different per-
sonality types out of the system, or on a difficulty basis, to affect how behaviors are 
selected to affect the overall difficulty of the game.

OPTIMIZATIONS

FuSMs have the potential of running many different states concurrently, and so can 
become more computationally expensive than their FSM brothers. FuSMs do not 
incur the transition calculations of a finite system, but have their own activation 
computation costs. The same kinds of optimizations that FSMs use apply to fuzzy 
systems: load balancing, level-detail systems, and shared data.

DESIGN CONSIDERATIONS

FuSMs are good for AI problems that are quite different from those that their FSM 
brothers handle. The checklist of considerations when deciding on an FuSM-based 
system include types of solutions, agent reactivity, system realism, genre, platform, 
development limitations, and entertainment limitations.

TYPES OF SOLUTIONS

FuSMs are another very general problem-solving tool and can be used to imple-
ment many kinds of solution types. FuSMs are a bit paradoxical, in that they work 
very well for very high-end solution types, and for very low-end solution types. 
The reason being is that both tend to be organic solutions that combine several 
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elements to achieve a final solution. More stylized or scripted behaviors (the kinds 
that end up being in the middle of the road, behavior-wise) tend to be more suited 
to state-based systems because they usually have a lot of prerequisite activity and 
are typically activated by crisp perceptions.

A high-level decision maker for an RTS game might combine the output of 
several fuzzy states such as reconnaissance, resource gathering, diplomacy, combat, 
and defense to determine its overall activity. An even higher-level decision process 
could have a counselor state for each of these areas, and then blend the advice from 
these counselors to form an overall decision about how to run a civilization as a 
whole. Lower-level, or tactical decision-making examples might include blending 
immediate orders or goals (go here, attack this unit, gather this resource) with sec-
ondary states of behavior (motioning to other units for support, combat evasion 
when that unit is not a combat unit, fleeing when badly hurt, etc.).

AGENT REACTIVITY

Given a sparsely connected state structure, FuSMs are generally more reactive than 
FSMs because there isn’t a transition structure that the character has to traverse 
to reach a goal. But, with simple FSMs or interconnected FSMs, there is very little 
cost difference between the two methods, and almost any level of reactivity can 
be built into each state of the system. The techniques described in the section on 
Inertial FuSMs can be used to help tune the level of agent reactivity that your game 
requires.

SYSTEM REALISM

Games based on FuSMs can have a much greater sense of realism because the final 
behavior of the system is a continuous curve of perception reaction. This feels 
much more realistic than does a character hitting some threshold and then chang-
ing to some other state. A well-designed FuSM will react to perception changes in 
a realistic manner, by adjusting its current behavior, not completely changing to 
something new. Most people respond to a new situation by slightly modifying their 
ongoing behavior (unless the new situation is life-threatening or very shocking, 
although even then the new behavior is initiated as a delta from what the person 
was already doing, but this kind of quick change in behavior can be modeled by an 
FuSM as well).

GENRE

FuSMs, because they are a fairly general technique, will work with any genre of 
game in some limited fashion. When considered as a primary game-wide AI frame-
work, they are definitely limited by genre. You wouldn’t want to try to implement 
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a linear, scripted game using a fuzzy-state system. But even in a game that doesn’t 
require this kind of problem solving generally, there might be a use for the kind of 
fuzzy behaviors that FuSMs can accord.

The perception system of a game could be written using an FuSM as the frame-
work. Perceptions are usually independent and can usually be coded with very little 
thought to any other perception. The fact that perceptions have arbitrary output 
values (Booleans, continuous floating-point values, enumerated types, etc.) is fine 
with the FuSM system. An FuSM doing this kind of work would use the different 
states to represent each perception, with the state’s Update() method computing 
the perception value, and the activation level operating as the indicator that the 
game needs to update the perception. All the secondary perception calculations, 
such as reaction time, load balancing, and so on could be handled through the 
CalculateActivation() function. Time-scheduled updates could be handled within 
special data members of the FuSMState class, which could keep records for any 
scheduling system, so that the fuzzy machine could decrement timers or determine 
triggers for updating states.

PLATFORM

The memory and CPU requirements for FuSMs are as minimal as any other basic 
game AI technique, and so FuSMs are generally platform independent. However, 
they do lend themselves to more subtle behavior, which is usually the realm of PC 
games. Whether to use them or not is usually more a game design issue.

DEVELOPMENT LIMITATIONS

If your AI problem falls into the kinds of situations that FuSMs handle well, then 
there is no better means by which to implement them. FSMs are easy to understand 
and implement, but FuSMs are not much more difficult and provide a much richer 
and more dynamic product. FuSMs are just as straightforward to debug as FSMs; 
even though they have a greater range of behavioral outputs, they are still deter-
ministic (unless you have specifically set them up not to be).

ENTERTAINMENT LIMITATIONS

Tuning difficulty settings, balancing specific behaviors, and other entertainment 
concerns are generally quite easily performed with FuSM based behavior. They can 
be tuned from a state-by-state basis, at the perception level, or any combination. 
Some behaviors might have a synergistic effect with another behavior (such as the 
attack state’s ability to bail out the simplistic Evade state in the AIsteroids imple-
mentation), and make some tuning a careful affair, but usually individual states can 
be tuned separately.
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SUMMARY

FuSMs build on the straightforward FSM system, by allowing complex behaviors 
that can be broken into separate, independent actions to be constructed by blend-
ing these actions together at different levels of activation. This powerful extension 
to the FSM concept gives the FuSM method the ability to create a much broader 
range of output behavior, but adds the requirement of this style of aggregate 
behavior-building.

The definition of FuSMs is somewhat hazy, with confusion existing between 
real FuSMs and similar systems, such as FSMs with fuzzy transitions, probabi-
listic FSMs, Markov models, and actual fuzzy-logic systems.
FuSMs do not use a single current state but, rather, can have any number of 
active states, each with a variable level of activation.
Some states in an FuSM can have digital activation levels, and this defuzzifica-
tion of some part of the system is fine and will not affect the overall method.
The skeletal FuSM framework discussed in this book is built on three base 
classes: FuSMState, FuSMMachine, and FuSMAIControl.
The original game doesn’t fit well into the FuSM model, so we added a new 
ship class, the saucer, that flies with antigravity (no inertia or acceleration), has 
a gun turret that can fire in any direction, and a tractor beam to drag powerups 
toward itself. This provides us with a much more ideal candidate for an FuSM 
control structure because the saucer uses mostly independent systems, most of 
which have variable levels of activation.
The implementation of an FuSM into the AIsteroids test bed needs only four 
states: Approach, Attack, Evade, and GetPowerup. Its state implementations are 
much simpler than those of the FSM system, and the perception calculations 
are also simpler, but this is more because of the saucer breaking some of the 
game rules that the regular ship was following, rather than because of the switch 
in AI techniques. However, the saucer is superior to the FSM implementation 
in performance and can play almost indefinitely.
Extensions to the AIsteroids game for better performance would be to figure 
world wrapping into attacking and evasion, and bullet management routines.
The pros of FuSM systems are their ease of design (for the right style of prob-
lems), implementation, extension, maintenance, and debugging. They allow a 
much greater range of behavioral personality and do not suffer from the FSM 
problem of state oscillation.
The cons of FuSM systems are that they are not as general of a solution system 
as FSMs are, and they can have behavioral oscillation problems if designed 
poorly, but this can easily be countered with forethought.
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FuSMs with a limited number of current states can be written to tune the level 
of fuzziness you want to use in your game. You can have one current state, a 
few, or limit current states within subtypes of states.
An FuSM used as a support system for a character is a great way of adding 
fuzziness only where it is needed in the implementation of complex characters, 
such as in a facial expression system.
An FuSM used as a single state in a larger FSM can be used to represent a char-
acter that has very fuzzy behavior determination, but only within the confines 
of a larger finite game state.
Hierarchical FuSMs are usually quite rare in their most pure form because they 
don’t make much sense, but when combined with other state machine variants, 
their true power is seen.
Data driving FuSMs involves designer control over the particular states a char-
acter might use, as well as affecting activation level calculation.
FuSMs can benefit from the same kinds of optimizations used in regular 
FSMs.
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Message-Based Systems17

In the world of modern game programming, only one technique is used more 
than state machines. That technique is the use of messaging (or events, as 
they are also called). The concept of messaging is simple. Instead of game 

entity A checking game entity B for particular changes every tick, or even on 
some time schedule, A is informed of changes from a message that is delivered 
to A from B only when the change has occurred. This means that nobody has 
to waste computation cycles or code space by making checks throughout the 
game engine to determine if things are happening. The game informs the entity 
with messages about the kinds of occurrences it is interested in, and then goes 
about its merry way, not worrying about it until another message comes in for 
delivery.

MESSAGING OVERVIEW

Unlike many of the other techniques discussed in this book, messaging is not a 
decision-making structure, per se. It is more of a communication technique that 

In This Chapter
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can be used in the game to help with organization, optimization, and ease of com-
munication between disparate objects and classes in the game. Messaging serves 
as a secondary system that resides below the underlying decision structure of your 
game. It is used in games in which this type of communication is cost-effective, and 
as games become more complex, that category is growing. Most modern games can 
benefit from using messaging systems in their engines.

AI systems have two main traits that make them good candidates for using 
message-based communication:

 1.  AI-controlled characters are most often created to be reactive, in that they 
regularly depend on an outside perception change to affect the behavior of 
the character. This makes sense; we are reacting to the human player inter-
acting with the game. But this also means that AI systems can do a lot of 
waiting for perception changes or perform many computations determin-
ing those perception changes. AI characters might be completely inactive, 
especially if they are not visible to the human player, for large chunks of 
gameplay time. Spending time performing calculations during these peri-
ods would be wasteful.

 2.  AI is a very high-level part of game development. The AI programmer 
might have to communicate with many other game systems (including 
animation, character and world physics, gameplay, controls, sound, etc.) 
when creating the condition checks and behaviors for the AI system. 
Without some form of abstraction when performing this communica-
tion between parts of the engine, your game will be strapped with an AI 
system that has access into every other area in the game engine. Although 
this gives the AI programmer a lot of power (to do harm as well as good), 
this is generally considered bad programming methodology and can lead 
to un-maintainable systems that are all but impossible to extend, debug, 
and understand.

   Messaging is uniquely qualified to conquer these issues. It creates a sys-
tem that is completely reactive because the system is only responding to 
event messages. It also decouples data from the code, so that AI systems 
can request data from other areas in the game, and not have to have full 
access to the underlying class structure of those systems. It provides a 
central way of moving data and events between AI code sections and 
the greater game, so that the underlying AI system can change, without 
 having to recode the entire process of getting information from the rest 
of the game.

   This chapter will lay the framework for a general case event messaging 
system that you can use for your entire game, or for parts of a game. This 
general framework will comprise three main parts: a message object, the 
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message pump, and client handlers. See Figure 17.1 for a visual represen-
tation of this architecture.

MESSAGING SKELETAL CODE

The general messaging system this chapter will introduce is implemented using 
these base classes:

The Message class that stores the individual information requirements of a 
 message.
The MessagePump class, which is the central message router.
  Client handlers,   which run code to accommodate any given incoming 
message.

In the following sections, each of these classes will be fully discussed.

FIGURE 17.1 Messaging system overview.
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THE MESSAGE OBJECT

The message object is a general structure that is used to store a message. You can see 
that the header in Listing 17.1 contains only a few data fields:

m_typeID is the type of message.

m_fromID is the unique ID of the object that sent the message. This is an 
optional data field for a message because messages can be sent anonymously.

m_toID, is the ID of the object that the message is to be delivered to. Again, this 
is an optional field because the message pump can also have messages that have 
been registered for delivery by a given object, so the message itself doesn’t need 
to specify.

m_timer is used for setting delays in delivering messages.

m_delivered is used by the message pump to mark messages that have been 
processed so that they can be removed from the queue.

DataMessage is also included in the file and is a simple template class that has a 
single data field of whatever type you pass in. You can use this class to pass mes-
sages with simple data fields, but you’ll have to implement additional types of 
messages if you require more complex data sending. In any case, a message han-
dling callback function would just cast the incoming message to the type it knows 
it is (from the message ID type) and access the data through the cast pointer.

LISTING 17.1 Message class header.

class Message

{

public:

    //constructor/functions

    Message(int type = MESSAGE_DEFAULT){m_typeID =

                type;m_delivered = false;m_timer = 0.0f;}

    ~Message(){}

    //data

    int   m_typeID;

    int   m_fromID;

    int   m_toID;

    float m_timer;

    bool  m_delivered;

};

//simple template message class for simple data passing

template <typename T>
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class DataMessage: public Message

{

public:

    DataMessage(int type, T data):Message(type){m_dataStorage = data;}

    ~DataMessage(){}

    //data member

    T m_dataStorage;

};

THE MessagePump

The MessagePump is the class that will store all the possible message types, as 
well as be the central location that messages are delivered to and from. The 
MessagePump will keep track of delayed messages, broadcast messages to inter-
ested objects, and generally act as the post office for the system. Listing 17.2 
shows the header for the class, and Listing 17.3 shows the important method 
implementations.

As the header shows, we will be implementing the MessagePump as a singleton, 
which is a software design pattern that just means that there will be only one global 
instance of this class for the entire game. The #define at the bottom of the header 
provides clean access to the singleton class structure.

LISTING 17.2 MessagePump header.

typedef std::list<Message*> MessageList;

typedef std::map<int,MessageType*> MessageTypeMap;

class MessagePump 

{

public:

    static inline MessagePump& Instance()

    {

        static MessagePump inst;

        return inst;

    }

    

    static void Update(float dt);

    static void AddMessageToSystem(int type);

    static  int RegisterForMessage(int type, int objected,

                                   Callback& cBack);

    static void UnRegisterForMessage(int type, int objectID);

    static void SendMessage(Message* newMessage);
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protected:

    MessagePump();

    MessagePump& operator= (const MessagePump&){}

private:

    static MessageTypeMap m_messageTypes;

    static MessageList    m_messageQueue;

};

#define g_MessagePump MessagePump::Instance()

The implementation listing shows the important functions for the MessagePump
class.

The Update() method checks each message in the queue, and either decrements 
its timer if it is a delayed message, or delivers the message to anyone that has regis-
tered for that message by supplying a callback function. The function then removes 
all the delivered messages from the queue.

AddMessageToSystem() is used to insert message types into the pump’s list of 
possible messages. This can be performed at any time, whether it is class creation 
or as you get new objects that require the system to store information on new 
message types.

RegisterForMessage() requires two things: that the message type be in the system, 
and that you aren’t already registered for the message. If both of these things are true, it 
will add you to the notification list for the specific message type that you passed in.

UnRegisterForMessage() does just what its name implies. It cycles through all 
the registrations for a specific message and removes the player from the list.

LISTING 17.3 MessagePump implementation.

//--------------------

void MessagePump::Update(float dt)

{

    if(m_messageQueue.size() == 0)

        return;

    //process messages

    MessageList::iterator msg;

    for(msg=m_messageQueue.begin();

        msg!=m_messageQueue.end();++msg)

    {

        if((*msg)->m_timer > 0)

        {

            //delayed message, decrement timer



Chapter 17  Message-Based Systems 341

            (*msg)->m_timer -= dt;

        }

        else

        {

            //check for registrations

            MessageTypeMap::iterator mType;

            mType = m_messageTypes.find((*msg)->m_typeID);

            if(mType == m_messageTypes.end())

                continue;

            MessageRegList::iterator msgReg;

            for(msgReg=(*mType).second->

                m_messageRegistrations.begin();

                msgReg!=(*mType).second->

                m_messageRegistrations.end();++msgReg)

            {

                //deliver message by launching callback

                if((*msgReg)->m_callBack)

                    (*msgReg)->m_callBack.function

                              ((*msgReg)->m_objectID,(*msg));

            }

            (*msg)->m_delivered = true;

        }

    }

    //remove all delivered messages from queue

    MessageList::iterator end    = m_messageQueue.end();

    MessageList::iterator newEnd = std::remove_if

                (m_messageQueue.begin(),m_messageQueue.end(),

                 RemoveIfDelivered);

    if(newEnd != end)

        m_messageQueue.erase(newEnd,end);

}

//--------------------

void MessagePump::AddMessageToSystem(int type)

{

    //ensure that this type isn’t already in the system

    MessageTypeMap::iterator mType;

    mType = m_messageTypes.find(type);

    if(mType == m_messageTypes.end())

    {

        MessageType *newType = new MessageType;
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        newType->m_typeID = type;

        m_messageTypes[type] = newType;

    }

}

//--------------------

void MessagePump::SendMessage(Message* newMessage)

{

    m_messageQueue.push_back(newMessage);

}

//--------------------

int MessagePump::RegisterForMessage(int type, int objectID,

                                         Callback& cBack)

{

    //only register once

    MessageTypeMap::iterator mType;

    mType = m_messageTypes.find(type);

    if(mType == m_messageTypes.end())

        return REGISTER_ERROR_MESSAGE_NOT_IN_SYSTEM;

    MessageRegList::iterator msgReg;

    for(msgReg=(*mType).second->

        m_messageRegistrations.begin();

        msgReg!=(*mType).second->

        m_messageRegistrations.end();++msgReg)

    {

        if((*msgReg)->m_objectID == objectID)

            return REGISTER_ERROR_ALREADY_REGISTERED;

    }

    //add new registration

    MessageReg* newRegistration  = new MessageReg;

    newRegistration->m_callBack  = cBack;

    newRegistration->m_objectID  = objectID;

    (*mType).second->m_messageRegistrations.

                     push_back(newRegistration);

    return REGISTER_MESSAGE_OK;

}
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//--------------------

void MessagePump::UnRegisterForMessage(int type, int objectID)

{

    //find entry

    MessageTypeMap::iterator mType;

    mType = m_messageTypes.find(type);

    

    if(mType == m_messageTypes.end())

        return;

    

    MessageRegList::iterator msgReg;

    for(msgReg=(*mType).second->

        m_messageRegistrations.begin();

        msgReg!=(*mType).second->

        m_messageRegistrations.end();++msgReg)

    {

        if((*msgReg)->m_objectID == objectID)

        {

            (*mType).second->

               m_messageRegistrations.erase(msgReg);

            delete (*msgReg);

            //you can exit out here, there is only one 

            //registration allowed per message type

            return;

        }

    }

}

CLIENT HANDLERS

In this implementation, the message handler functions will be written as call-
backs. Callbacks are functions that, when the message is delivered to a particular 
game object, represent the code that the game object wants to run to respond to 
the message.

Another type of general message handling system that is often used is sim-
ply having a ProcessMessage() function, which would, in essence, be a big switch 
statement with either code or function calls to answer any passed-in message type. 
Using callbacks offers a more flexible system than this, and avoids the cumbersome, 
all-encompassing processing function.

C++ doesn’t allow direct member functions to be used as callbacks, so we will 
be using the common method of having a dummy callback class (with a virtual 
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function representing the form of the callback method), for callback objects to 
inherit from. These callback objects are then used in the place of traditional C-style 
callbacks. Listing 17.4 shows the dummy callback header, as well as an example 
function using the interface.

LISTING 17.4 Callback system, with example.

class Callback

{

public:

    virtual void function(int pid, Message* msg);

};

class EvadeCallback : public Callback

{

    void function(int pid, Message* msg);

};

EXAMPLE IMPLEMENTATION IN OUR AISTEROIDS TEST BED

In this section, we will rework the FSM version of our test bed to use messaging to 
perform all state transitions, as well as use the system to effect other game changes, 
such as giving orders to the ship from a state. To do this, we will need to make some 
changes to the original finite-state system and incorporate the new code for the 
transition callbacks and messaging functions.

The AIsteroids test bed really isn’t a game that demands this technique. The 
state transitions happen frequently. There is very little time when the main ship 
is waiting for something to do. Very few objects in the game world require a 
clear channel of communication or interaction. Messaging in this game will 
 actually add overhead, and probably slow down the system a bit, because it will 
be continually registering and unregistering for messages as it changes states. 
This implementation is really just to show practical application of the method, 
but should not be taken as a good example of when to use messaging in a game 
environment.

THE MessState CLASS

Listing 17.5 shows the header for the MessState class. Very little has to change from 
the original state class that we used in the FSM chapter. We no longer need the 
CheckTransition() function because this logic will no longer be in each individual 
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state. Instead, the Control class will do the calculations and send off the correct 
messages to set off the transition callbacks.

The Enter()  and Exit() methods will now be responsible for setting up the 
message registrations for the state, as well as any other cleanup functionality. In this 
way, messages are scoped to the particular state because any given state will then 
respond only to those messages that have meaning within the state.

The Init() method can be used to add any additional message types to the 
system that the state requires. This is useful for self-directed messages that a state 
might use. For example, a state called Flee might first notice the enemy, wait for a 
half second (simulating a reaction time), and then start to flee. You could set this up 
as two states (Notice and then Flee), or the Flee state itself could, upon entry, put 
itself in a wait mode (during which the previous behavior of the character wouldn’t 
change) and send itself a wakeup message delayed for half a second. When this mes-
sage comes back, it would change the wait status of the character, and the character 
would then flee.

LISTING 17.5 MessState header.

class MessState

{

public:

    //constructor/functions

    MessState(int type = FSM_STATE_NONE,Control* parent = NULL)

                                    {m_type = type;m_parent=parent;}

    virtual void Enter()            {}

    virtual void Exit()             {}

    virtual void Update(float dt)   {}

    virtual void Init()             {}

    //data

    Control*   m_parent;

    int m_type;

};

THE MessMachine CLASS

The state machine itself has only one change from the finite version, in the 
UpdateMachine() function. As Listing 17.6 shows, a single line is missing from 
this method, where the current state’s CheckTransitions() function is called. 
This model will not poll for transition changes. Instead, messages for state 
transitions will be sent from the individual states to the control class, which 
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will respond to those messages by directly setting the m_goalID member of the 
MessMachine.

THE MESSAICONTROL CLASS

Listing 17.7 contains the header for the MessAIControl class, as well as the call-
back class that the controller will use to respond to requests to change the state of 
the machine. You will notice that it is very similar to the regular FSM controller. 
The real difference between the controllers is in their implementation; Listing 17.8 
shows the relevant functions in the message controller file.

LISTING 17.6 MessMachine update implementation.

void MessMachine::UpdateMachine(float dt)

{

    //don’t do anything if you have no states

    if(m_states.size() == 0 )

        return;

    //don’t do anything if there’s no current 

    //state, and no default state

    if(!m_currentState)

        m_currentState = m_defaultState;

    if(!m_currentState)

        return;

    //check for transitions, and then update

    int oldStateID = m_currentState->m_type;

    //switch if there was a transition

    if(m_goalID != oldStateID)

    {

        if(TransitionState(m_goalID))

        {

            m_currentState->Exit();

            m_currentState = m_goalState;

            m_currentState->Enter();

        }

    }

    m_currentState->Update(dt); 

    

}
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LISTING 17.7 MessAIControl header.

class ChangeStateCallback : public Callback

{

    void function(int pid, Message* msg);

};

class MessAIControl: public AIControl

{

public:

    //constructor/functions

    MessAIControl(Ship* ship = NULL);

    void Update(float dt);

    void UpdatePerceptions(float dt);

    void Init();

    void SetMachineGoalID(int state);

    

    //perception data 

    //(public so that states can share it)

    GameObj*    m_nearestAsteroid;

    GameObj*    m_nearestPowerup;

    float       m_nearestAsteroidDist;

    float       m_nearestPowerupDist;

    bool        m_willCollide;

    bool        m_powerupNear;

    float       m_safetyRadius;

    

private:

    //data

    MessMachine* m_machine;

    ChangeStateCallback m_changeStateCallback;

};

The implementation differences are much more noticeable. The constructor 
must also set up the messaging system for the game, so it has to add all the appli-
cable message types to the pump. The constructor also registers for the change state 
message because the controller will now be causing the state-machine transitions 
by responding to message requests from the states.

The biggest change is in the UpdatePerceptions() method. Here you can see 
that some of the logic that was contained in the CheckTransitions() state func-
tions has been transferred here instead. This does go against the modular orga-
nization model that the initial FSM system was written to incorporate, and this 
code showing up here is a sure sign that you shouldn’t be using this method for 
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your game. Although this function is straightforward enough in this simple test 
application, even a moderately complex game would require a great deal more 
logic to generate the messages necessary to perform all the transitions. Again, this 
implementation is merely showing the code in use, but is not warranting this as 
a good game usage.

LISTING 17.8 MessAIControl implementation.

//--------------------

MessAIControl::MessAIControl(Ship* ship):

AIControl(ship)

{

    //construct the state machine and add the necessary states

    m_machine = new MessMachine(FSM_MACH_MAINSHIP,this);

    MStateApproach* approach = new MStateApproach(this);

    m_machine->AddState(approach);

    m_machine->AddState(new MStateAttack(this));

    m_machine->AddState(new MStateEvade(this));

    m_machine->AddState(new MStateGetPowerup(this));

    m_machine->AddState(new MStateIdle(this));

    m_machine->SetDefaultState(approach);

    g_MessagePump.AddMessageToSystem(MESSAGE_WILL_COLLIDE);

    g_MessagePump.AddMessageToSystem(MESSAGE_NO_ASTEROIDS);

    g_MessagePump.AddMessageToSystem(MESSAGE_NO_POWERUPS);

    g_MessagePump.AddMessageToSystem(MESSAGE_ASTEROID_NEAR);

    g_MessagePump.AddMessageToSystem(MESSAGE_ASTEROID_FAR);

    g_MessagePump.AddMessageToSystem(MESSAGE_POWERUP_NEAR);

    g_MessagePump.AddMessageToSystem(MESSAGE_POWERUP_FAR);

    g_MessagePump.AddMessageToSystem(MESSAGE_CHANGE_STATE);

    g_MessagePump.RegisterForMessage(MESSAGE_CHANGE_STATE,

                       m_ship->m_ID,m_changeStateCallback);

}

//--------------------

void ChangeStateCallback::function(int pid, Message* msg)

{

    ChangeStateMessage* csMsg = (ChangeStateMessage*)msg;

    int newState = *((int*)(csMsg->m_data));

    ((MessAIControl*)Game.m_AIControl)->

                              SetMachineGoalID(newState);

}



Chapter 17  Message-Based Systems 349

//--------------------

void MessAIControl::SetMachineGoalID(int state)

{

    m_machine->SetGoalID(state);

}

    

//--------------------

void MessAIControl::Init()

{

    m_willCollide  = false;

    m_powerupNear  = false;

    m_nearestAsteroid = NULL;

    m_nearestPowerup  = NULL;

    m_safetyRadius    = 15.0f;

    m_target = new Target;

    m_target->m_size = 1;

    Game.PostGameObj(m_target);

}

//--------------------

void MessAIControl::Update(float dt)

{

    if(!m_ship)

    {

        m_machine->Reset();

        return;

    }

    

    UpdatePerceptions(dt);

    m_machine->UpdateMachine(dt);

}

    

//--------------------

void MessAIControl::UpdatePerceptions(float dt)

{

    if(m_willCollide)

        m_safetyRadius = 30.0f;

    else

        m_safetyRadius = 15.0f;

    

    //store closest asteroid and powerup

    m_nearestAsteroid = Game.

           GetClosestGameObj(m_ship,GameObj::OBJ_ASTEROID);



350 AI Game Engine Programming

    if(m_ship->GetShotLevel() < MAX_SHOT_LEVEL)

        m_nearestPowerup  = Game.

            GetClosestGameObj(m_ship,GameObj::OBJ_POWERUP);

    else

        m_nearestPowerup = NULL;

    

    //reset distance to a large bogus number

    m_nearestAsteroidDist = 100000.0f;

    m_nearestPowerupDist  = 100000.0f;

    //asteroid collision determination

    m_willCollide = false;

    if(m_nearestAsteroid)

    {

        float speed = m_ship->m_velocity.Norm();

        m_nearestAsteroidDist = m_nearestAsteroid->

                    m_position.Distance(m_ship->m_position);

        float dotVel;

        Point3f normDelta = m_nearestAsteroid->m_position – 

                    m_ship->m_position;

        normDelta.Normalize();

        float astSpeed = m_nearestAsteroid->

                                         m_velocity.Norm();

        if(speed > astSpeed)

            dotVel  = DOT(m_ship->UnitVectorVelocity(),

                          normDelta);

        else 

        {

            speed = astSpeed;

            dotVel = DOT(m_nearestAsteroid->

                         UnitVectorVelocity(),-normDelta);

        }

        float spdAdj = LERP(speed / AI_MAX_SPEED_TRY, 0.0f, 

                            50.0f)*dotVel;

        float adjSafetyRadius = m_safetyRadius + spdAdj + 

                                m_nearestAsteroid->m_size;

        

        //if you’re too close, and I’m heading 

        //somewhat towards you, flag a collision

        if(m_nearestAsteroidDist <= adjSafetyRadius && 

           dotVel > 0)

        {

            m_willCollide = true;

            Message* msg = new Message(MESSAGE_WILL_COLLIDE);



Chapter 17  Message-Based Systems 351

            g_MessagePump.SendMessage(msg);

        }

        else

        {

            Message* msg = new Message(MESSAGE_WONT_COLLIDE);

            g_MessagePump.SendMessage(msg);

        }

    }

    else

    {

        Message* msg = new Message(MESSAGE_NO_ASTEROIDS);

        g_MessagePump.SendMessage(msg);

    }

    //powerup near determination

    m_powerupNear = false;

    if(m_nearestPowerup)

    {

        m_nearestPowerupDist = m_nearestPowerup->m_position.

                               Distance(m_ship->m_position);

        if(m_nearestPowerupDist <= POWERUP_SCAN_DIST)

            m_powerupNear = true;

    }

    else

    {

        Message* msg = new Message(MESSAGE_NO_POWERUPS);

        g_MessagePump.SendMessage(msg);

    }

    //arbitrate asteroid/powerup near messages

    if(m_powerupNear && m_nearestAsteroidDist > 

                        m_nearestPowerupDist)

    {

        Message* msg = new Message(MESSAGE_POWERUP_NEAR);

        g_MessagePump.SendMessage(msg);

    }

    else if(m_nearestAsteroid)

    {

        if(m_nearestAsteroidDist > APPROACH_DIST)

        {

            Message* msg = new Message(MESSAGE_ASTEROID_FAR);

            g_MessagePump.SendMessage(msg);

        }
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        else

        {

            Message* msg =new Message(MESSAGE_ASTEROID_NEAR);

            g_MessagePump.SendMessage(msg);

        }

    }

}

CODING THE STATES

The individual states themselves are barely changed. This book will show one 
of them, the Idle state, to illustrate the differences. Listing 17.9 is the MStateIdle
header (including all the required callback object declarations), and Listing 17.10 
shows the implementation differences from the regular FSM method.

LISTING 17.9 MStateIdle header.

//callbacks for handling messages

class EvadeCallback : public Callback

{

    void function(int pid, Message* msg);

};

class ApproachCallback : public Callback 

{

    void function(int pid, Message* msg);

};

class AttackCallback : public Callback

{

    void function(int pid, Message* msg);

};

class GetPowerupCallback : public Callback

{

    void function(int pid, Message* msg);

};

class MStateIdle : public MessState

{

public:

    //constructor/functions

    MStateIdle(Control* control):

               MessState(FSM_STATE_IDLE,control){}

    void Enter();
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    void Exit();

    void Update(float dt);

    EvadeCallback      m_evadeCallback;

    ApproachCallback   m_approachCallback;

    AttackCallback     m_attackCallback;

    GetPowerupCallback m_getPowerupCallback;

};

LISTING 17.10 MStateIdle implementation differences beyond the normal FSM version.

//--------------------

void MStateIdle::Enter()

{

    g_MessagePump.RegisterForMessage(MESSAGE_WILL_COLLIDE,

                                 m_parentID,m_evadeCallback);

    g_MessagePump.RegisterForMessage(MESSAGE_ASTEROID_FAR,

                              m_parentID,m_approachCallback);

    g_MessagePump.RegisterForMessage(MESSAGE_ASTEROID_NEAR,

                                m_parentID,m_attackCallback);

    g_MessagePump.RegisterForMessage(MESSAGE_POWERUP_NEAR,

                            m_parentID,m_getPowerupCallback);

}

//--------------------

void MStateIdle::Exit()

{

    g_MessagePump.UnRegisterForMessage(MESSAGE_WILL_COLLIDE,

                                       m_parentID);

    g_MessagePump.UnRegisterForMessage(MESSAGE_ASTEROID_FAR,

                                       m_parentID);

    g_MessagePump.UnRegisterForMessage(MESSAGE_ASTEROID_NEAR,

                                       m_parentID);

    g_MessagePump.UnRegisterForMessage(MESSAGE_POWERUP_NEAR,

                                       m_parentID);

}

//--------------------

void EvadeCallback::function(int pid, Message* msg)

{

    DataMessage<int>* newMsg = new DataMessage<int>

              (MESSAGE_CHANGE_STATE,MFSM_STATE_EVADE);
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    newMsg->m_fromID  = pid;

    g_MessagePump.SendMessage(newMsg);

}

//--------------------

void ApproachCallback::function(int pid,Message* msg)

{

    DataMessage<int>* newMsg = new DataMessage<int>

                    (MESSAGE_CHANGE_STATE, FSM_STATE_APPROACH);

    newMsg->m_fromID  = pid;

    g_MessagePump.SendMessage(newMsg);

}

//--------------------

void AttackCallback::function(int pid,Message* msg)

{

    DataMessage<int>* newMsg = new DataMessage<int>

                   (MESSAGE_CHANGE_STATE, FSM_STATE_ATTACK);

    newMsg->m_fromID  = pid;

    g_MessagePump.SendMessage(newMsg);

}

//--------------------

void GetPowerupCallback::function(int pid,Message* msg)

{

    DataMessage<int>* newMsg = new DataMessage<int>

                    (MESSAGE_CHANGE_STATE, FSM_STATE_GETPOWERUP);

    newMsg->m_fromID  = pid;

    g_MessagePump.SendMessage(newMsg);

}

In Listing 17.10, you can also see the use of the DataMessage template, for 
sending messages with additional data. The DataMessage contains the member 
m_dataStorage, the type of which is passed into the template on instantiation. When 
this message is delivered, the receiving callback function can cast the incoming 
message pointer to the correct type of  DataMessage structure, and gain access to the 
data. More complex data would use the same system. If a message passed multiple 
data fields, the message would only need to be created with a struct containing 
the necessary data fields. At send time, the struct’s fields would be initialized to 
the relevant values, and the receiver would again just cast the incoming message 
pointer to the type of the DataMessage struct used.
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PERFORMANCE OF THE AI WITH THIS SYSTEM

The game performance of this system is virtually identical to that of the regular 
FSM implementation. Nothing has changed other than the method by which tran-
sitions occur. As previously discussed, however, the actual CPU performance has 
most likely gone down a bit because we are using the messaging system somewhat 
wastefully; the states are registering and unregistering themselves from specific 
messages whenever they enter or exit.

One thing that is different from the regular FSM implementation is that this 
version has much more difficulty evading asteroids. This shows one of the draw-
backs of making a state machine use messages to drive the state changes, that of 
transition priority. The state changes are currently being triggered by callbacks that 
have been registered for message events, so we no longer have control of the prior-
ity of multiple callbacks that could occur within a single game loop. The system 
simply changes state on the first incoming message. In fact, the system will change 
state for each incoming message (because the message pump updates before the 
state machine does), and so the only state change that matters ends up being the 
last state change message in the queue.

This could be fixed by simply arbitrating the priorities at the perception level, 
but then you lose the decoupling of logic that the messaging system is giving you 
in the first place. You end up only sending out the highest priority messages, and 
essentially the system becomes a very convoluted way of calling a member function. 
A better way could be an incoming queue of state change requests to the machine, 
which could then determine priorities. This method isn’t very clean either; you will 
again be centralizing logic that should be at the state level. The real solution for 
this problem would be to implement a change state queue, as mentioned before, 
but also assign priority numbers on the messages themselves, and use these num-
bers for arbitration. Messaging priority will be discussed later in this chapter in the 
“Extensions” section.

PROS OF MESSAGING SYSTEMS

Messaging systems, in effect, optimize the client-side code. In our game, this means 
that the states, which represent the client side, are optimized in that they do not 
have to worry about transition determinations. The server side (the controller class 
in our game) has to perform the necessary calculations, and the states merely wait 
until they get the correct signal from the server. We’re really not saving anything 
(the code is moving from the states to the controller), so it might not seem like 
anything special.

The limited test bed implementation is only the beginning of what could be 
done with the messaging system. We could also have run the collision system with 
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messages, informing game objects that they’ve collided. Powerups could send a 
message to the ship when collected, to inform the ship of the results, instead of the 
switch statement that the ship class has for getting powerups. Individual asteroids 
could check for proximity to the main ship and could send out messages when 
within a set boundary or when a collision is imminent, which would speed up the 
colliding determination in the controller class’ UpdatePerception method. When 
all these examples are incorporated, as well as the many other ways the game could 
take advantage of a general messaging system, then the real power of the technique 
comes into play. The decoupling of class-level communication frees the program-
mer to use the messaging system to do things that previously would have required 
full-class access between game areas.

Most of the system is event-driven, so debugging the system can be aided by 
logging the message stream. If the system is written for it, the message stream could 
even be recorded and played back through the system to reproduce bugs or specific 
game behavior directly.

By using the messaging system as the primary means of communication with 
disparate game sections, a class can be written in a completely modular way. This 
will speed up compile time for the class (because it doesn’t need to include files 
from all over the place to gain access to other classes) and make it easier for internal 
methods to change over time because the only interface to the outside is through 
the messages passed in and out. How the messages are determined and sent from 
each class doesn’t matter anymore, it is only important that they are sent.

CONS OF MESSAGING SYSTEMS

Messaging systems have very few detracting points because their simplicity and 
common sense understandability make them easy to work with, and their very 
 nature (distributed computation with notification instead of centralized, polled 
computation) makes them less CPU-intensive. Event-driven architectures usually 
have an additional memory footprint, caused by having to keep track of  messages 
(and any attached data). But with simple messaging systems (such as the one 
 implemented in this chapter), there are no insurmountable problems.

Even with systems that require huge numbers of incoming and delayed mes-
sages and large amounts of passed data, load-balancing techniques can be applied 
to the message pump, which could smooth out processing of the system, as well as 
address memory concerns. But even without that level of complexity, a simple sys-
tem can provide a game engine with most of the advantages of messaging.

There is the notion of too much of a good thing, however. Systems that try to 
incorporate messaging completely might suffer from specialization. If your game 
framework is completely event-driven, certain parts of your game might find it 
hard to perform the polling functionality that it requires, or the overhead involved 
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in polling within the messaging system might become cumbersome if the number 
of polled objects is large. Monitoring CPU usage to notice this would be important, 
and you (and your game engine) should be flexible enough to allow a module that 
uses a more optimized approach to getting the data it requires.

Another downside is the problem discussed earlier in the chapter dealing with 
messaging in the AIsteroids game, that of message priority. Without extending 
the system by giving messages a level of priority, you lose much of the control of 
 incoming messages implicit in a normal state-based system.

EXTENSIONS TO THE PARADIGM

The messaging system presented in this chapter is very straightforward and  simple. 
It is easy to understand, use, and add to the system. Some things that would 
 advance the system include message priority, message arbitration, and automatic 
and  extended message types.

MESSAGE PRIORITY

By attaching a priority to messages, the message pump could sort the messages 
so that the more important messages get processed first. This is especially useful 
in games in which the message system is given a finite amount of time and has to 
 allocate its time in the most urgent direction.

However, this can cause the new problem of message starvation. Care must be 
taken that low-priority messages eventually grow in priority (the longer they are 
in the queue) so that they don’t sit at the bottom of the queue forever, continually 
pushed back by a steady stream of higher-priority messages. Starvation is okay if 
you have ambient messages that do not require attention, but are merely fallback 
status events. But in an online game that is using the messaging system to keep up-
to-date across a network, message starvation might lead to a complete loss of game 
synchronization.

MESSAGE ARBITRATION

Another common messaging technique is that of arbitration. This is a sort of 
bookkeeping procedure that is performed by reading through the list of incoming 
messages, before processing, and looking for things such as message redundancy, 
message collision (two messages effectively canceling each other out), starving mes-
sages, or any other problems that the system sees a need to fix on the fly. The arbiter 
would then deal with each problem according to built-in rules. Message collisions 
might result in both messages being removed from the queue. If the two messages 
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don’t completely cancel each other out, they might be removed and require a small 
cleanup code segment to be run.

Message redundancy might simply involve removing the excess messages, 
 unless there is some meaning to the redundancy, such as additional messages  having 
slightly different and more recent data elements, even though they’re the same type
of message. In this case, they should all be thrown out except for the last one. This 
kind of message preprocessing can be taken quite far, with many levels of optimiza-
tion and clean up. An arbitration system can become quite complex (if allowed to 
be), so care must be taken that a nice clean message-based system doesn’t become 
convoluted because of a messy arbitration phase.

AUTOMATIC AND EXTENDED MESSAGE TYPES

Message types can streamline the messaging process and make frequent or auto-
mated tasks more convenient. Other message types might include special case mes-
sages that are handled differently by the system. Several common types of messages 
that are used include the following:

Periodic messages. These are messages that happen on a constant time sched-
ule, such as every second, or twice a minute. Some games that are heavily 
event-driven use an update message that happens automatically every game 
tick and is what signals all the objects in the game to call their Update()
method.
Debugging messages. Messages can be embedded into the system that will be 
perceived by a central debugging system (a very easy system would emulate 
asserts; instead of stopping program execution, it would merely trap the pro-
gram in a central place for observation or to ignore the asserted code). The 
debugging system could discern these hidden messages (in that the rest of the 
game doesn’t know or care that they exist), as well as normal game variables to 
provide the programmer with whatever he or she needs to fix/tune code seg-
ments. These messages can be written so that they are compiled by setting a 
define, so that the final code isn’t slowed down by debugging information and 
processes.
Confirmation messages. Some systems might require stalling messages; when 
game object A sends B a message, A then waits (or stalls) for a response from 
B before continuing. Confirmation could be sent automatically to the sender 
upon receipt of a message, and this behavior could thus be accommodated.
Immediate messages. In the current implementation, messages are stored 
in a queue and are processed all at once every game loop. Immediate mes-
sages would skip this convention, and be sent immediately to the other game 
 object for processing. This is necessary when you have overriding messages 
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that require immediate attention, or have some game states that are more 
important than others but don’t have a priority system built into your mes-
saging structure.

OPTIMIZATIONS

Event-driven AI is fairly optimized (compared with the more traditional polling 
models), but only for systems that contain an event-friendly environment. Other-
wise, messaging can add overhead and complexity.

As we saw in our AIsteroids test bed, some games don’t lend themselves well to 
a messaging paradigm. Although implementing messaging into the test bed (that of 
having the transitions be event-based) may be a questionable example, other parts 
of the game would benefit from messaging, and later game extensions could then 
take advantage of an already instantiated event system.

DESIGN CONSIDERATIONS

Messaging systems can find their way into almost any game, given that they are a 
very straightforward and efficient means of communicating between game objects 
and code sections. They allow fast, unconnected systems that have a centralized 
means for passing data and events back and forth without complicated, heavily 
coupled class structures. They can also make it easier to add network capabilities to 
an otherwise solo game if desired.

TYPES OF SOLUTIONS

Messaging usually helps more with higher-order types of solutions, strategic  versus 
tactical. This is because strategic thinking is more about coordinating multiple 
 elements (either separate game entities, or even different aspects of a singular 
game entity) toward a greater goal, which implies a large degree of communication 
 between disparate game elements.

Tactical solution types, on the other hand, have more to do with physical 
actions in response to a given order, or to determine the best way to go about a 
simple task. Even at the tactical level, however, messaging provides a good means 
for tactical feedback to the strategic systems for increased strategic response. So, 
messaging works from the top down (by providing an efficient means for distrib-
uting strategic plan information to many elements), but also from the bottom up 
(by providing the means for many separate game elements to provide feedback 
into the system).
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AGENT REACTIVITY

Event-driven agents are all about reactivity because they are simply waiting 
for something to happen so they can respond. With the proper perception sys-
tem, any level of reactivity can be implemented with messaging-based agent 
communication.

SYSTEM REALISM

Event-driven games need to be watchful that their possible event list isn’t too nar-
row, otherwise the AI-controlled characters will be too predictable and static, be-
haviorally. This is not to say that event-driven systems themselves are predictable. 
But some games drive the actual behavior of the characters almost completely from 
perception events, and this can dull the richness of the character dramatically. In 
effect, you’ve limited the total number of states that the system can be in.

Usually, event-driven characters also need to use other techniques, such as 
scripting, to respond to key game events with proprietary, rich behavior. This is 
only one example of how messaging could be combined with another AI technique 
to provide additional realism or depth of play.

GENRE AND PLATFORM

Genre and platform are of almost no concern to messaging methods. Messaging 
excels with games that have either numerous game objects that require com-
munication (such as RTS games with huge armies that are being ordered around 
and are sending back constant feedback), or very rich interaction between game 
objects (such as a football game, in which two or more players are responding 
to each other’s positions relative to each other, are engaged in complex collision 
with each other, and are dealing with other factors during a play). Messaging 
systems do require additional memory, but usually make up for it by simplify-
ing the code base and can be implemented on even the smaller, more restrictive 
platforms.

DEVELOPMENT LIMITATIONS

Development limitations might actually push a team toward a message-based 
system, which provides amazing bang for the buck, and can speed up implemen-
tation of game features that require cooperation between classes and game ob-
jects. Message-based systems (if done properly) are generally quicker to compile 
and build, because of the class decoupling that the method enforces. Debugging 
systems can be integrated directly into the messaging stream (or at the object 
level) and provide many access points for fixing potential problems and logging 
behaviors for review.
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ENTERTAINMENT LIMITATIONS

Tuning difficulty settings, balancing specific behaviors, and other entertainment 
concerns are generally independent of messaging system use, so are not usually a 
problem.

SUMMARY

Messaging systems can provide a variety of decision-making paradigms with addi-
tional flexibility in communication between game objects, as well as between sepa-
rate code segments that must act in concert.

AI characters are usually reactive, which lends itself well to an event-driven 
methodology.
AI systems are usually high level, meaning that they have access to many sepa-
rate parts of the game engine, so they can perform the kinds of determinations 
and behaviors necessary. Messaging provides a clean interface for this access to 
occur without giving global class access.
The simple messaging system in this chapter was implemented in three parts: 
the message pump, the message object, and client handlers.
The client handlers in this method will be coded as callback objects to facilitate 
greater flexibility and organization over more centralized methods, such as a 
general ProcessMessage() function.
The test bed will be implemented so that all transitions occur because of events. 
Although this is not the ideal messaging example, it does show off the power of 
the technique and provides a clear example of how messaging can be used.
Message-based systems work best when most of the game takes advantage of 
the system. Debugging and other secondary systems can also use the messaging 
engine to ease those tasks as well.
Messaging does require additional memory to store messages and attached 
data, but load-balancing and arbitration systems can optimize the level of CPU 
and memory necessary.
Adding the ability to set message priority, allow message arbitration, and add 
automatic or extended message types to the system can extend the use of mes-
saging beyond its most simple implementation.
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Scripting Systems18

So far, we have explored ways of constructing game logic and behavior in code. 
This results in custom AI systems that are tied closely to the product and can 
be optimized to perform well. But, as we have seen, this requires dedicated 

programmers to implement, debug, and extend. However, programmers may not 
be the people that are creatively overseeing the product. Considerable roadblocks 
can exist in communicating the creative vision to the programmers. More com-
monly, the level of creative content that must be included in the game is simply too 
great to allow a limited number of programmers to custom code everything to the 
quality level required.

SCRIPTING OVERVIEW

A common technique for getting more hands into the guts of the AI system without 
having to hire more programmers is called scripting. Scripting means using a sim-
plified programming-style language (although scripting tools can be made visual, 
as well as written) to build AI elements, logic, or behaviors. The conversation tree 
in a role-playing game, the cinematic movement and visuals of various characters 
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during story sequences, the specifics of each move in a complex fighting game, or 
the way that groups of enemies coordinate attacks can and have all been performed 
using scripting systems in various games.

Scripting languages range from the very simple (sometimes called predicate 
languages), to full-fledged programming languages (Neverwinter Nights uses Java 
as its scripting language).

Making a scripting language for your product is not a trivial task. You are 
 essentially creating another product, with a specific user (in this case, game design-
ers or end users who are creating mods for your game), input and output require-
ments, and a design, implementation, and debug schedule separate from the actual 
game you intend on creating. The design phase of your scripting system requires 
careful thought to many different technical and creative elements:

The kinds of functionality that the language will require. Does your game need 
linear triggering of events, or does the script need to include conditional 
branches? Will the scripters need variables? Essentially you are defining the 
complexity of the scripting system. Let us consider an example, that of a verti-
cal shooter. In this game, you will fly a ship along a set length of game world, 
with attacking enemies flying in patterns along the way. A simple scripting sys-
tem for this game could be one that merely allows the scripter to define the 
points at which specific enemy types spawned and could even modify starting 
parameters for each enemy as the scripter saw fit.
 The specifics of the enemy behavior would be left in code. A more complex 
system might allow the scripter to define enemy movement patterns within 
script and allow assignment of these patterns to enemies. An even more in-
volved system might completely drive the creation of enemies: A scripter would 
define each as a set of attributes (body type, speed, duration, armor level, etc.) 
and behavior types (attack method, movement style and pattern, etc.) from a 
laundry list of possibilities that the game engine can complete. Finally, a system 
could be implemented that would also allow enemies to assess game-side values
and respond to them within scripted sequences. This would allow the scripters 
to write reactive systems that could account for the state of the player or other 
enemies in the game.
Will the runtime engine interpret the scripts, or will they be precompiled into 
some kind of bytecode? Interpreted scripts tend to be slower and larger. But 
they also allow more flexibility (you could enter a new script from an in-
game console, and it could then be reinterpreted by the engine on the fly). 
Interpreted scripts are a little simpler to implement because of the lack of 
the intermediary compilation step. Precompiled scripts generally run faster, 
because the compiler parses the script into codes that the system can execute 
directly.
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How big will the scripts be in size? Code tends to compile down into small 
chunks, whereas script code (especially interpreted script) does not. Care must 
be taken that the platform for which you are developing has enough memory
(or memory bandwidth, if you will be streaming scripts into the game from 
disk) to accommodate the sum of the script requirements for the game. 
Remember also that you might require additional memory buffers for decom-
pressing and/or parsing.
Who will be using the scripting language? If junior programmers will be using 
the language, it can be fairly complex and full featured. Are the primary users 
high-level designers who don’t have much technical knowledge? For the se-
verely nontechnical, the scripting system needs to be simple enough to use, 
robust enough to handle errors without crashing, and include a decent amount 
of debugging hooks to be useful.
 A very common mistake in creating a scripting system is to make something 
that is far too complex and powerful for nontechnical designers. They usually 
end up overwhelmed by the system and not using it to its full potential. Better to 
make the initial system easy to use, then gradually add more advanced features 
as the designers become comfortable with the system. If you are going to expose 
your scripting language (and your scripting development tools, potentially) to 
the public to make modding your game easier, realize that the average person 
who might try and use it may have very little programming experience.
 The learning curve can be simplified if your scripting language follows simi-
lar rules to an already established language (this is the primary reason for the 
large number of “C-like” scripting languages), or is so simple that a few example 
scripts can be included with the game to show how to use all the functionality.

EXAMPLE IMPLEMENTATION IN OUR AISTEROIDS TEST BED

This chapter covers two different approaches to developing a scripting system 
within a game. First, we will implement a simple configuration scripting system 
that will allow you to bind in-game variables or actions to scripting tokens. Second, 
we will cover a more general and full-featured method, by discussing the Lua lan-
guage and how it can be embedded within a game application as well as exposing 
game functions and variables to Lua.

A CONFIGURATION SCRIPT SYSTEM

The first scripting system we cover is basic and allows the programmer to set up a 
simple grammar using keywords and parameters. There are no variables, scoping, 
parameter passing, or any other of the more advanced language constructs, but it 
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still allows for barebones “languages” that can be used to set up transition rules, 
triggers, or simple behaviors. Think of this system as a formalized way of configur-
ing or initializing variables from within a script. You expose whatever flags, values, 
and triggers you want to the scripting language, and then a script can be written 
that uses the correct tokens to perform the setup tasks that you require.

The implementation we will use for the AIsteroids game is split into four parts: 
a parser, a list of tokens, in-game token callbacks, and the actual script files.

 1.  The parser is the code that loads in the script file, scans it for applicable 
tokens, and then executes any tokens it finds.

 2.  Tokens comprise a token name, and a corresponding Execute() function, 
which is called by the parser when it finds each token. Executing a token 
involves scanning the file for any additional parameters that the token ex-
pects, and then sending the game a message that includes this data.

 3.  The in-game callbacks are the functions that respond to the messages sent 
by the token Execute() calls. This is where you will actually bind real-game 
variables to incoming script data.

 4. The scripts themselves can be written in any text editor. The only real 
grammar that the system uses is that each line must end in a semicolon. 
The example scripts included in this implementation (see Listing 18.1 
for the file test.txt) use the general grammar “Token= parameter;” but 
the = sign is actually part of the token name, so it could be anything you 
want. The “comment” lines at the top of the file do not require the com-
ment signifier //, they are just there for readability. In fact, if a real token 
had been included in the comment line, it would have been found and 
parsed.

LISTING 18.1 test.txt script file.

//don’t need to put anything in a certain order,

//the parser ignores whitespace after the = sign,

//all lines begin with a token and end in a semicolon,

//and tokens are case insensitive

//all values in the script Override the default values 

//that are set up in the Init() functions.

PowerupScanDist= 150.0;

SeekPowerups= true;

MaxSpeed= 80.0;

ApproachDist= 180.0;

AttackDist= 260.0;

SafeRadius= 15.0;
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To initialize the system, register the parser with all the Tokens (Listing 18.2 
is the header) you intend on using in your script. As the code shows, each token 
stores an ID, an internal value m_matchPos (used by the parser when scanning for 
tokens), and the name string that is used to identify the token in a script file. 
The Get functions are all standard retrieval methods to extract the various kinds 
of parameter types from a text file. If you had any other widely used parameter 
types (be they different data types, or more complex data structures) you could 
add methods for loading them here. The enum stores all the ID types for the tokens 
used in the game.

LISTING 18.2 Token header information.

class Token

{

public:

    enum

    {

        TT_NONE,

        TT_POWERUPDIST,

        TT_POWERUPSEEK,

        TT_APPROACHDIST,

        TT_ATTACKDIST,

        TT_MAXSPEED,

        TT_SAFERADIUS,

    };

    

    //constructor/functions

    Token(int type = TT_NONE, char* name = “”)

         {m_tokenAsStr=new char(MIN(strlen(name),MAX_TOKEN_LENGTH)); 

          m_tokenAsStr = name;m_tokenID = type;m_matchPos = 0;}

    ~Token(){}

    virtual void Execute(_iobuf* fileName) {}

    //Additional data acquisition

    float GetFloat(_iobuf* fileName);

    char  GetChar(_iobuf* fileName);

    int   GetInt(_iobuf* fileName);

    bool  GetBool(_iobuf* fileName);

    void  GetString(_iobuf* fileName, string& storageStr);

    

    //data

    int             m_tokenID;
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    int             m_matchPos;

    char*           m_tokenAsStr;

};

The parser (Listing 18.3 is the header, 18.4 is the important function imple-
mentations) is about as simple as a file parser can get. As the header shows, it only 
stores one data structure: a pointer to the list of tokens, passed in when you instan-
tiate the parser. This facilitates using the parser in a general sense for the whole 
game; you can change the token list and reparse a file, or parse a different file. You 
could have different token lists for many disparate occurrences within your game 
engine: different states of the game, different game levels, or for various specialized 
systems within the AI engine that you might use scripting.

LISTING 18.3 Parser header information.

class Parser

{

public:

    Parser(TokenList *tList = NULL):m_tokenList(tList){}

    int         CheckForToken(char currentChar);

    bool        ParseFile(char* fileNameStr);

    void        Reset();

    void        SetTokenList(TokenList *tList){m_tokenList = tList;}

    

protected:

    TokenList*  m_tokenList;

};

The parser works on a “single character at a time” basis. It gets a character out 
of the file, and then checks that against the list of tokens. If it finds a token with 
a matching character, it adds to its m_matchPos variable. Any time it finds a token 
that has matched all its characters to the incoming stream, it flags the incoming 
phrase as a token, resets all other parsing-related variables, and returns. If it is in 
the middle of a token string, and an incoming character doesn’t match, it resets the 
count because the matches need to be in order. Two things to notice:

 1. Tokens are scanned for using case insensitivity. Users can enter tokens in 
either upper- or lowercase. If nontechnical people are going to be the 
primary users of this system, using case-insensitive tokens will save you 
some of the headache of looking for bugs caused by mistyping.  Notice 
too that the GetBool() method in Token.cpp will accept a variety of 
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symbols as true or false so that it makes it easier for nonprogrammers 
to use.

 2. Tokens whose names are subsets of other tokens’ names might be a 
problem. If you had two tokens, “Shout=” and “Out=”, you will have 
collision problems because “out=” is in both strings. So, based on the 
order in which they were registered, only one token will ever be called. 
You could either extend the system to allow for this (by flagging tokens 
for execution and then batch executing them after scanning, or whatever 
means you see fit), or by simply keeping the token names from colliding 
with each other (you can enforce the convention verbally to the pro-
grammers, or make a RegisterToken() function and have it flag incoming 
name collisions as an error).

LISTING 18.4 Parser implementation.

//--------------------

int Parser::CheckForToken(char currentChar)

{

    TokenList::iterator tListiterator;

    for (tListiterator = m_tokenList.begin();

         tListiterator != m_tokenList.end(); ++tListiterator)

    {

        Token* pToken = *tListiterator;

        if (tolower(currentChar) == 

            tolower(pToken->m_tokenAsStr[pToken->m_matchPos])) 

        { 

            // if the currentChar matches the requested 

            // character of the current token,...

                 // increase the “match-position” counter

            pToken->m_matchPos++; 

            

            if (pToken->m_matchPos == strlen(pToken->m_tokenAsStr)) 

            { 

                // if the counter equals the length of the current 

                // token, we found a token. Thus,...

                // ...reset the counters of all the 

                     // other tokens and...

                Reset();

                // ...return the token found

                return pToken->m_tokenID;

            }

        }
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        else 

        {

            // if the currentChar does *not* match the requested

            // character of the current token,...

            // reset the corresponding counter

            pToken->m_matchPos = 0; 

        }

    }

    return NO_TOKEN;

}

//--------------------

void ZeroPosition(Token* pToken)

{

    pToken->m_matchPos = 0;

}

//--------------------

void Parser::Reset()

{

    for_each(m_tokenList.begin(),m_tokenList.end(),ZeroPosition);

}

//--------------------

bool Parser::ParseFile(char* fileNameStr)

{

    FILE* pFile;

    if ((pFile = fopen(fileNameStr,”r”)) == NULL)

    {

        return false;

    }

    

    char buffer;

    Reset();

    while (fread(&buffer, 1, 1, pFile) == 1)

    {

        int currentToken = CheckForToken(buffer);

        if(currentToken == Token::TT_NONE)

            continue;

        else

        {

            TokenList::iterator tListiterator;

            for (tListiterator = m_tokenList.begin();

                 tListiterator!=m_tokenList.end();++tListiterator)



Chapter 18  Scripting Systems 371

            {

                Token* pToken = *tListiterator;

                if(pToken->m_tokenID == currentToken)

                    pToken->Execute(pFile);

            }

        }

    }

        

   fclose(pFile);

    return true;

}

Once a token is found, its Execute() call is performed (Listing 18.5 shows 
the execute method for a couple of the example tokens). The Execute() method is  
responsible for retrieving any additional parameters from the file, then setting up 
and sending the correct message to the engine. The method allows for any imple-
mentation you want, so this could be used for any kind of structure.

The single parameter shown in the examples could be extended to multiple pa-
rameters separated by commas, or a token could be a kind of state indicator. An “if” 
token’s execute method can be an entirely new parse phase that looks for any num-
ber of additional conditions. It can have its own list of conditional tokens and call 
the parser on the current file with this new token list. A “then” token would mark 
the latter phase of the “if” clause; it would stop looking for conditions and instead 
start scanning for actions to perform. This style of complex, nested structure might 
actually read in many lines of the script, all triggered by a single token (if). Again, 
because of the generic structure of this parsing system, you can implement almost 
anything you require for simple parsing situations.

LISTING 18.5 Some execute method implementations.

//--------------------

void TokenSafeRadius::Execute(_iobuf* fileName)

{

    float safeRad = GetFloat(fileName);

    

    //send out message with data of incoming token

    DataMessage<float>* newMsg = new DataMessage<float>

                    (MESSAGE_TOKEN_SAFERAD,safeRad);

    g_MessagePump.SendMessage(newMsg);

    

}
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//--------------------

void TokenPowerupSeek::Execute(_iobuf* fileName)

{

    bool seekPowerups = GetBool(fileName);

    

    //send out message with data of incoming token

    DataMessage<bool>* newMsg = new DataMessage<bool>

                     (MESSAGE_TOKEN_POWSEEK,seekPowerups);

    g_MessagePump.SendMessage(newMsg);

    

}

PERFORMANCE OF THE AI WITH THIS SYSTEM

Our simple example scripting setup is built directly on top of the messaging-based 
system from the last chapter. It is used solely to set up initial variables, so it  performs 
exactly like the purely message-based method. The small file that is parsed at load 
time adds negligible time to level start up, and even a large configuration file with a 
huge number of possible tokens would still not be much of a concern to the game’s 
performance.

EXTENSIONS TO THE CONFIGURATION SCRIPT PARADIGM

This solution is so open and generic that you could technically code whatever kind 
of advanced token type you needed for your game. You could construct tokens that 
require any number of parameters. You could use the “//” token to signify a com-
ment, and discount parsing the rest of the entire line. A more complex addition 
would be tokens that effectively put the parser into a special mode, so that it’s then 
looking for different tokens. This would be roughly equivalent to a block signifier 
within a regular programming language. For example, when the C compiler sees an 
if token in the code, it then looks for a left parenthesis (signifying the start of an 
expression block), or else there’s a syntax error. After the expression, the C compiler 
then looks for a single statement, which may be a curly brace, signifying another 
block. Your language could technically build any type of block structure that it 
wanted to give the script advanced organization and structure. Of course, with the 
simplistic and rough parsing being done in this system, you would probably have a 
bit of a hurdle dealing with the possible errors that scripters might introduce trying 
to follow anything but a very basic grammar within this code.

EMBEDDING LUA

In this section, we will take an entirely different scripting route, and embed Lua 
in a game environment as a substitute for creating our own scripting language. 
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We will cover a light review of the Lua language, and then move on to the details of 
integrating the language into your game and passing information back and forth 
between Lua and a C/C++ program environment.

LUA OVERVIEW

Lua is a lightweight programming language developed by a team at the Computer 
Graphics Technology Group at the Pontifical Catholic University in Brazil. In 
addition to being used as a stand-alone language, many developers are using Lua as 
a general-purpose scripting and extension system for their games.

You might decide to go in this direction for a number of reasons. You might not 
have the time to write, debug, and maintain your own custom system. You might 
have many areas in your game that you would like to use scripting with to allow 
maximum extensibility, and thus, want a very general scripting system to encom-
pass the many areas of your game code you want to affect. You might even have a 
number of people on your staff that already know the Lua language because it has 
been around for a while, and has been used in a number of well-known commercial 
games (Baldur’s Gate and Grim Fandango are two examples).

Lua is slowly but surely beating out older embedded languages like Python for 
many reasons:

It is generally faster, has a smaller memory footprint, and is easier to learn.
Its syntax is largely procedural and has dynamic typing.
It can be interpreted from script or compiled bytecode.
It has automatic memory management with garbage collection facilities.
It is easy for both programmers and nontechnical people to learn, with a sort 
of free-form Pascal syntax (at the 2003 Game Developer’s Conference, it was 
discussed that seasoned programmers should pick it up in an hour or so, and 
nontechnical people would need just a bit longer for simple Lua tasks).
The biggest reason that Lua is gaining steam is its abilities in the area of integra-
tion with other languages. Instead of implementing numerous internal language 
features, Lua includes an easy-to-use API for exchanging data back and forth 
 between your game and Lua. In this way, Lua can be thought of as a tool for 
 building game-specific languages. You are effectively building a set of functions (in
Lua and your code) that allow designers, or whoever is using the scripting system, 
to write game-specific scripts to perform actions within your game. Coupled 
with the very forgiving syntax of Lua, very usable and human-readable code can 
be generated quickly and easily. This also keeps the core language small and fast.

LUA LANGUAGE FUNDAMENTALS

In this section, we will give a brief overview of the Lua language. It is not meant 
to be exhaustive but, rather, to simply show some of the primary language features. 
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For a much broader look at how Lua is programmed, go directly to the source: http://
lua-users.org/wiki/TutorialDirectory, which has a nice selection of topics that are covered 
well. These tutorials can be followed easily because the stand-alone interpreter can be 
run, and Lua commands can be entered directly into an internal prompt for immediate 
execution. Lua’s syntax is easy to pick up if you have any experience programming more 
high-level languages. Listing 18.6 shows some example Lua code, which will be used for 
illustration. Some of the basic language features include the following:

 1.  Very simple scoping. All Lua statements are in the global environment. The 
only way to restrict scoping is to assign a variable local status within a 
smaller block of code (this block being delimited by a control structure, 
within a function, etc.).

 2.  Dynamic typing. Lua does not require variable types to be declared. These 
types can be intermingled to an amazing degree. Lua only recognizes seven 
different types:

 a.  nil
 b.  boolean (nil counts as false, but the number zero and the empty string 

“ ” counts as true)
 c.  number (all numbers in Lua are considered floats)
 d.  string
 e.  table
 f.  function
 g.  thread
 h.  userdata (a type specifically designed to allow for arbitrary C pointers 

to be stored; they are essentially void* variables).
 3.  Tables. Tables are the free-form data construct in Lua. Much like a list struc-

ture in LISP, you can put any combination of types into a table, and tables 
can contain other tables. Each member of a table is essentially stored like an 
STL map, in that it has a key and a value. Simple tables (like one  declared 
table = {1,2,3}) are also called numerically indexed because all the keys 
are implied as array indices. A corresponding nonnumerically indexed table 
would could be declared as table = {name = “Bob”, number = “5551212”, 

hometown = “Somewhere”}. In this second table, you would access members by 
key name, for example, table.name == “Bob”. Tables can also contain func-
tions, which could be thought of as object-oriented “methods.”

 4.  Control structures. Lua provides a number of standard control blocks, 
 including do loops, while..do loops, repeat..until, if..then..else..

elseif blocks, and for loops. Each control structure (except for repeat..
until) must be delimited with an “end” identifier.

 5.  The stack. Lua uses a “stack” to pass values to and from C programs. Even 
though it is referred to as a stack, it really isn’t a classical stack data structure. 
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Usually, stacks are only accessed with push and pop commands. Lua stacks 
are more like an indexed set of registers that are used during the communi-
cation between programs and scripts. Anytime you call a C function from 
Lua, a new, independent stack is created for passing data back and forth. 
The default size for these stacks (as defined in lua.h as LUA_MINSTACK is 
20, usually more than enough unless you’re pushing a bunch of things to 
the stack from within the function or passing huge structures), but it can 
be grown using the function lua_checkstack(). In addition to the expected 
push and pop functions, Lua stacks have commands for inserting, remov-
ing, and replacing specific elements, as well as recognizing pseudo-indices 
(by using negative values, you can index relative to the top, and positive 
values index relative to the bottom) to make random stack access easier. 
The last chunk of code in Listing 18.6 shows a small block of C code that 
manipulates stack values for illustration.

LISTING 18.6 Simplistic Lua syntax demo.

—examples declaring different types

varNumber   = 5

varFloat    = 5.5

varFunction = function(i) return i-1 end

varNumber   = varFunction(56)

varTable    = {1,false,6,8,{12,“string”,7.99}}

v1,v2,v3    = 12,“apple”,-5.6

—examples of control structures

index = 1

do

  index = 5

  print(“Index = “..index)—should print 5

end

print(“Index = “..index)—should print 1

—===========

index = 1

while index < 5 do

    print(“Been here “..index..” times”)

end

—===========

num = 1

repeat

    print(num)

    num = num * 3
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until num > 100

—===========

function min(a,b)

    local minimum

    minimum = a

    if b < a then

        minimum = b

    end

    return minimum

end

—===========

if x == 3

    print(“X equals 3”)

elseif x < 1

    print(“X is not 1”)

else

    if x > 0

            print(“X is positive, and less than 1”) 

    else

            print(“X is negative”)

    end

end

—===========

for index 1,50,3 do

    print(“Loop value =”..index)

end

varTable = {name=“marvin”,look=“monkey”,job=“ceo”}

for key,value in varTable do

    print(key,value)

end

—examples of table usage

table = { 23,44.5,18, color=“blue”, name=“luxor” }

print(table[1])—will print 23

print(table[color])—will print blue

--------------------

//examples of stack usage, C code

//As an example, if the stack starts as 10 20 30 40 50* 

//(from bottom to top; the ‘*’ marks the top 
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lua_pushnumber(L, 10);// —> 10*

lua_pushnumber(L, 20);// —> 10 20*

lua_pushnumber(L, 30);// —> 10 20 30*

lua_pushnumber(L, 40);// —> 10 20 30 40*

lua_pushnumber(L, 50);// —> 10 20 30 40 50*

lua_pushvalue(L, 3);//  —> 10 20 30 40 50 30*

lua_pushvalue(L, -1);// —> 10 20 30 40 50 30 30*

lua_remove(L, -3);//    —> 10 20 30 40 30 30*

lua_remove(L, 6);//     —> 10 20 30 40 30*

lua_insert(L, 1);//     —> 30 10 20 30 40*

lua_insert(L, -1);//    —> 30 10 20 30 40* (no effect)

lua_replace(L, 2);//    —> 30 40 20 30*

lua_settop(L, -3);//    —> 30 40*

lua_settop(L, 6);//     —> 30 40 nil nil nil nil*

INTEGRATION

Integrating Lua scripts into your game is simple. You link your game with the Lua 
libraries, instantiate an instance of the Lua interpreter, and then either perform Lua 
commands directly, or load and parse an entire file. Listing 18.7 shows the code 
necessary to start up the interpreter.

The secondary libopen functions initialize parts of the interpreter that you 
might need (input/output, advanced string functions, and math functions, respec-
tively). The lua_settop() call clears the stack of any random values that were left 
there by the library initializations.

The last part of the whole process is to expose game-side functions and values 
to Lua, and vice versa. The code in this book will use a very simple extension to Lua, 
the LuaPlus Call Dispatcher, written by Joshua Jensen, to help with the exposing 
process. This single-header file is a nice compilation of templates that allows very 
simple registration of C++ code and data elements, whether global, members of a 
class, or even virtual members in the case of functions. The reason for using this 
is that normally any function exposed to Lua from C needs to be a static function 
of the type static int Function(lua_state* ls), and all arguments and return 
values being passed on the stack. These are called glue functions, in that they pro-
vide a middle layer between your real C++ methods and Lua scripts. The LuaPlus 
Call Dispatcher merely uses some very clever template coding to provide these glue 
functions for us, as well as handling the stack manipulation necessary to pass the 
arguments and return values. Listing 18.8 shows examples of exposing variables 
and code from C++ to Lua, and back.
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LISTING 18.7 Simple Lua interpreter startup code.

#include “luaPlusCD.h”

extern “C”

{

    #include “lua.h”

    #include “lualib.h”

}

//and this code must be in an actual function

m_luaState          = lua_open();

lua_baselibopen(m_luaState);

lua_iolibopen(m_luaState);

lua_strlibopen(m_luaState);

lua_mathlibopen(m_luaState);

lua_settop(m_luaState,0);

LISTING 18.8 Examples of exposing variables and data to and from Lua.

//from C++ to Lua

//--------------------

//variable data

int integerVariable   = 42;

char stringVariable[] = “doughnut”;

lua_pushnumber(m_luaState,integerVariable);

lua_setglobal(m_luaState,“intVar”);

lua_pushstring(m_luaState,stringVariable);

lua_setglobal(m_luaState,“strVar”);

//////////////////////////////////////

//static functions using barebones Lua

//function takes a number argument,

//and returns 3*the number and 4*number

static int MyCFunction(lua_state* L)

{

    int numArgs = lua_gettop(L);//should be one

    float arg[numArgs];

    int i;

    for(i=0;i< numArgs;i++)

        arg[i] = lua_isnumber(L,1);
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    for(i=0;i<numArgs;i++)

    {

        lua_pushnumber(L,arg1*3.0f);

        lua_pushnumber(L,arg1*4.0f);

    }

    return 2*numArgs;//number of results

}

lua_register(m_luaState,“MyCFunction”,MyCFunction);

//Lua script can then say:

// a,b = MyCFunction(25)

//with results: a==75, b==100

//...or...

// a,b,c,d = MyCFunction(4,5)

//with results: a==12,b==16,c==15,d==20

//////////////////////////////////////

//regular functor examples using LuaPlusCD

//(example taken from author’s website)

static int LS_LOG(lua_State* L)

{

    printf(“In static function\n”);

    return 0;

}

class Logger

{

public:

    int LS_LOGMEMBER(lua_State* L)

    {

        printf(“In member function. Message:%s\n”,

                                         lua_tostring(L,1));

        return 0;

    }

    virtual int LS_LOGVIRTUAL(lua_State* L)

    {

        printf(“In virtual member function\n”);

        return 0;

    }

};

lua_pushstring(L, “LOG”);

lua_pushfunctorclosure(L, LS_LOG, 0);

lua_settable(L, LUA_GLOBALSINDEX);
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Logger logger;

lua_pushstring(L, “LOGMEMBER”);

lua_pushfunctorclosure(L, logger, Logger::LS_LOGMEMBER, 0);

lua_settable(L, LUA_GLOBALSINDEX);

lua_pushstring(L, “LOGVIRTUAL”);

lua_pushfunctorclosure(L, logger, Logger::LS_LOGVIRTUAL, 0);

lua_settable(L, LUA_GLOBALSINDEX);

//and the package can also set up direct calls, which are much

//more natural to C programmers...

void LOG(const char* message)

{

    printf(“In global function: %s\n”, message);

}

class Logger

{

public:

    void LOGMEMBER(const char* message)

    {

        printf(“In member function: %s\n”, message);

    }

    virtual void LOGVIRTUAL(const char* message)

    {

        printf(“In virtual member function: %s\n”, message);

    }

};

lua_pushstring(L, “LOG”);

lua_pushdirectclosure(L, LOG, 0);

lua_settable(L, LUA_GLOBALSINDEX);

Logger logger;

lua_pushstring(L, “LOGMEMBER”);

lua_pushdirectclosure(L, logger, Logger::LOGMEMBER, 0);

lua_settable(L, LUA_GLOBALSINDEX);

lua_pushstring(L, “LOGVIRTUAL”);

lua_pushdirectclosure(L, logger, Logger::LOGVIRTUAL, 0);
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lua_settable(L, LUA_GLOBALSINDEX);

//////////////////////////////////////

//from Lua to C++

//--------------------

//variables

int intVar;

char strVar[20];

lua_getglobal(m_luaState,“intVarName”);

intVar = lua_tonumber(lua_gettop(m_luaState));

lua_getglobal(m_luaState,“strVarName”);

strVar = lua_tostring(lua_gettop(m_luaState));

//////////////////////////////////////

//functions

//Lua function looks like:

//    function multiply(x,y)

//        return x*y

//    end

//C code would require:

float x = 123.0f;

float y =  55.0f;

lua_getglobal(m_luaState,“multiply”);

lua_pushnumber(m_luaState,x);

lua_pushnumber(m_luaState,y);

float result = lua_tonumber(lua_call(m_luaState,2,1),-1);

EXAMPLE IMPLEMENTATION IN THE AISTEROIDS TEST BED

To run Lua scripts from the test bed, we need just a few additions. We will be build-
ing on the messaging-based system from Chapter 17, just like our simple scripting 
example. Essentially, we are going to expose the necessary perception data members 
to our Lua script, which will store the logic to determine the current status of the 
ship’s state machine. Listing 18.9 shows the changes to the code, and Listing 18.10 
shows some small sample Lua scripts that can be used to control the AI ship for 
this demo. Notice that the second script only uses the Evade and Approach states. It 
relies on the fact that the Evade state shoots the guns if you line up with an asteroid. 
Not really a great way to play the game, this is just to show contrast between the real 
script and this one.
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LISTING 18.9 MessAIControl changes needed to use Lua scripting.

#include “luaPlusCD.h”

extern “C”

{

#include “lualib.h”

}

//--------------------

MessAIControl::MessAIControl(Ship* ship):

AIControl(ship)

{

    g_MessagePump.AddMessageToSystem(MESSAGE_SHIP_TOTAL_STOP);

    g_MessagePump.AddMessageToSystem(MESSAGE_CHANGE_STATE);

    

    //construct the state machine and add the necessary states

    m_machine = new MessMachine(MFSM_MACH_MAINSHIP,this);

    m_machine->AddState(new MStateApproach(this));

    m_machine->AddState(new MStateAttack(this));

    m_machine->AddState(new MStateEvade(this));

    m_machine->AddState(new MStateGetPowerup(this));

    MStateIdle* idle = new MStateIdle(this);

    m_machine->AddState(idle);

    m_machine->SetDefaultState(idle);

    m_machine->Reset();

    

    m_messReceiver = new MessageReceiver;

    

    //default values

    m_safetyRadius      = SAFETYRADUIS;

    m_powerupScanDist   = POWERUP_SCAN_DIST;

    m_maxSpeed          = MAI_MAX_SPEED_TRY/Game.m_timeScale;

    m_appDist           = MAPPROACH_DIST;

    m_attDist           = MATTACK_DIST;

    m_powerupSeek       = true;

    

    m_luaState          = lua_open();

    lua_baselibopen(m_luaState);

    lua_settop(m_luaState,0);//clear the stack

    //bind const values to lua variables

    lua_pushnumber(m_luaState,MAX_SHOT_LEVEL);

    lua_setglobal(m_luaState,“gvMaxShotPower”);

    lua_pushnumber(m_luaState,MFSM_STATE_APPROACH);
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    lua_setglobal(m_luaState,“gsSTATEAPPROACH”);

    lua_pushnumber(m_luaState,MFSM_STATE_ATTACK);

    lua_setglobal(m_luaState,“gsSTATEATTACK”);

    lua_pushnumber(m_luaState,MFSM_STATE_EVADE);

    lua_setglobal(m_luaState,“gsSTATEEVADE”);

    lua_pushnumber(m_luaState,MFSM_STATE_GETPOWERUP);

    lua_setglobal(m_luaState,“gsSTATEGETPOWERUP”);

    lua_pushnumber(m_luaState,MFSM_STATE_IDLE);

    lua_setglobal(m_luaState,“gsSTATEIDLE”);

        

    //bind state change function for lua to use

    lua_pushstring(m_luaState,“ChangeState”);

    lua_pushdirectclosure(m_luaState,*this,

       &MessAIControl::SetMachineGoalState,0);

    lua_settable(m_luaState,LUA_GLOBALSINDEX);

}

//--------------------

void MessAIControl::Update(float dt)

{

    if(!m_ship)

    {

        m_machine->Reset();

        return;

    }

        

    UpdatePerceptions(dt);

        

    //update exposed lua variables

    lua_pushnumber(m_luaState,m_nearestPowerupDist);

    lua_setglobal(m_luaState,“gvDistPowerup”);

        

    lua_pushnumber(m_luaState,m_nearestAsteroidDist);

    lua_setglobal(m_luaState,“gvDistAsteroid”);

        

    lua_pushboolean(m_luaState,m_willCollide);

    lua_setglobal(m_luaState,“gvWillCollide”);

        

    lua_pushboolean(m_luaState,m_isPowerup);

    lua_setglobal(m_luaState,“gvIsPowerup”);

        

    lua_pushboolean(m_luaState,m_isAsteroid);

    lua_setglobal(m_luaState,“gvIsAsteroid”);

        

    lua_pushnumber(m_luaState,m_ship->GetShotLevel());

    lua_setglobal(m_luaState,“gvShotPower”);
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    //run lua script, which handles state transitions

    lua_dofile(m_luaState,“script1.lua”);

    m_machine->UpdateMachine(dt);

}

LISTING 18.10 Sample Lua scripts to control the ship.

—Lua script for simple asteroids state Logic

    if gvWillCollide then

        ChangeState(gsSTATEEVADE)

    elseif gvIsPowerup  and gvShotPower < gvMaxShotPower then

        ChangeState(gsSTATEGETPOWERUP)

    elseif gvIsAsteroid then

        if gvDistAsteroid < 200 then

            ChangeState(gsSTATEATTACK)

        else

            ChangeState(gsSTATEAPPROACH)

        end

    else

        ChangeState(gsSTATEIDLE)

    end

—Another asteroids Lua script

    if gvWillCollide then

       ChangeState(gsSTATEEVADE)

    else

       ChangeState(gsSTATEAPPROACH)

    end

Lua script is being used to handle the state transition logic for the state  machine. 
Because of the way the test bed is written (with the script being executed by calling 
the lua_dofile() function), you don’t even have to shut off the game to change the 
AI behavior. If you edit the script1.lua file, and then save it, in the next game tick 
the file will be loaded and executed. You can change the script in a text editor and 
see the results every time you hit save. In a real game situation, however, you would 
probably not want frequent disk access during gameplay. Lua provides for this; you 
can load a script file into a buffer, and then execute it from memory  instead of using 
the direct file access method. You could still keep fast iterative script changing by 
providing functionality from within your game to reload this buffer on command. 
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You could also just leave the random file access in for development and switch to 
the buffered system when shipping your final product.

The Lua script encapsulates all the state transition logic into a single if…
then…else block, so it might seem like this is a step back, design wise and organi-
zationally. We could do the exact same construct from within our C++ program, 
and the program would also run faster. The simple state-machine logic necessary 
to run our test bed is small enough that this method is fine, but in a game of any 
size or complexity, this would definitely not be true. But recognize that these simple 
transition definitions can now be traded back and forth, be made specific to each 
character in your game, and potentially be authored by non-programmers.

A DESCRIPTION OF A BETTER SYSTEM

In a large-scale game, you might create a simple, barebones FSM system on the 
game side, with the logic behind it being completely data-driven. The game-side 
state machine would consist of a list of states and a block of perception data (that 
is exposed to your Lua scripts). The game-side code would also include a list of 
“behaviors,” which encapsulated the code necessary to actually perform actions 
within the game world. The scripts themselves would be organized as separate Lua 
functions for each game state; each function would consist of behavior calls and the 
transition logic for just that state.

Each time the AI engine would call the Lua script, it would first update a global 
variable in Lua that stored the name of the current game state, which could then 
directly translate into the corresponding Lua function to handle that state. To add 
another state to the game, the scripters would just make a new function in Lua and 
put the new function or game-state name into a global table of function or game 
states that is exposed to the game side. When the game loads (or reloads), it would
grab this global table of game states and construct a barebones state-machine struc-
ture at run time. Listing 18.11 shows a simple C++ example, along with the Lua 
script that would be used.

LISTING 18.11 A better way of handling Lua-controlled FSM transitions.

//FSM Game code

LuaPerceptionExport();

UpdatePerceptions();

lua_pushnum(m_luaState,m_currentState);

lua_setglobal(m_luaState,“gCurrentState”);

lua_doFile(m_luaState,“transitions.lua”);
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UpdateMachine();

—————————————————

—example.lua

—game state functions

function gsStateStand()

    —start/stop behaviors based on Perception data

    —check for transitions

    —would call a “ChangeState() function, which would

    — change the C++ m_currentState variable

end

function gsStateRun()

    —do run state

end

function gsStateSit()

    —do sit state

end

—global table of functions, C code can 

—access this in order to find out the number of 

—game states in the system, and their order

funcs = {gsStateStand,gsStateRun,gsStateSit}

—executes the current state function

funcs[gCurrentState]()

A system like the one just described would have the scripters themselves de-
claring all the possible game states and, hence, would not need a programmer to 
be involved in adding or removing them. The result is that you separate your game 
content into two “camps”: perceptions and behaviors are in the code, and logic and 
configuration parameters (things like attributes or numbers that require tuning 
and balancing) are covered by scripting. The scripters can arbitrarily set up game 
states, to facilitate any logic tree they desire, and their only requirement of the pro-
grammers would be the list of available game perceptions and behaviors that are 
implemented in the game code.

PERFORMANCE OF THE AI WITH THIS SYSTEM

Our script is very small, so the performance hit of running through the script file, 
and interpreting the entire script every frame is negligible. The game runs quite 
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well with this system and is easy to tune and tweak given that you can edit the game 
logic as the game runs.

However, this system will not scale well for larger games. What if you had hun-
dreds of character states, as well as hundreds of different characters? You would 
need to execute huge files, repeatedly traversing large scripted if blocks. This is not 
a system you would want to work on. Performance would be atrocious, debug-
ging would be a nightmare, and extending the system would be hard work indeed. 
Instead, you would want to split up your system into some kind of modular orga-
nization, possibly using the setup detailed earlier under “Description of a Better 
System.”

For larger implementations of an embedded Lua system, or for games built in 
a multithreaded environment, you can also use the more advanced Lua constructs: 
threads and coroutines. Threads are separate, full Lua environments, whereas co-
routines are just re-entrant functions that can be paused and resumed at will. By 
using a system of co-routines, you could set up many different scripts to run the 
various AI entities in your game world and, with clever programming, not worry 
about any one script eating up all your CPU resources.

PROS OF SCRIPTING SYSTEMS

Scripting within an AI engine provides a means by which less technical staff can 
create and extend logic, tune systems and behaviors, and even completely change 
whole AI constructs (if the engine is set up to be fully data driven). Some of the 
things that scripting does well include rapid prototyping, increased accessibility, 
speed of tuning, user extensibility, and easy scaling. They also tend to make your 
level designers much happier since they don’t have to try to describe how some-
thing should function for the programmer to code it—they simply build and test 
the scripts themselves.

Rapid Prototyping

Any time you are forced to abstract game perceptions and behaviors to a higher 
level (as you will have to do when deciding what to expose to your Lua scripts), 
you tend to distill your game down to the most foundational concepts; to basic 
principles. These principles represent the core perceptions that must be taken 
into account by an intelligent agent in order to make quality decisions within 
your game world. These basic concepts are created in the perception system, and 
the basic behaviors are built. Then the scripters can immediately begin scripting 
logic and strings of behavior, as well as start tuning in-game settings and events. 
Having fast turnaround when developing scripts (by providing script reload-
ing in-game) accelerates the rate at which decent content can be added to the 
system.
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Increased Accessibility

By using a more focused, higher-level language, you remove the barriers from entry 
that a real programming language incurs. You allow more people to feel confident 
to try to “get under the hood,” if you will. Imagine how many more people might 
try and fix their own cars if they knew that the parts involved were simple, straight-
forward, and intuitive. By designing an easy-to-use scripting system for your game, 
you actually entice designers (and end users, if you allow it) to dig in and make 
script changes and additions.

Speed of Tuning

Scripting allows for much faster tuning of AI behavior (than is afforded by code 
changes, followed by a compile and link, followed by a game restart), as well as 
making available an open means by which more people can perform the tuning. In 
game script, interpreters also allow for parameter setting directly if you implement 
a console feature. A console is an in-game command prompt from which you can 
launch commands. The user could check or set variables, check memory, read in 
new AI files, save log information, and all manner of other activities that will dra-
matically speed up development.

Provides a Means for User Extensibility

The same system used to encode the AI and gameplay content for the production 
game can be included in the release of the product. Some companies include a full 
suite of development tools along with their games. This has especially become the 
norm in the PC FTPS genre, in which user-created mods have increased the shelf 
life of games from months or weeks to many years.

Some of the scripting languages included in these highly open games rival real 
programming languages in complexity (like QuakeC, or UnRealScript). They also 
allow the end user to control, change, and create almost any effect within the game. 
Through extensive use of built-in scripting languages, people have created flight 
sims, racing games, and platformers within FTPS game engines.

Easy Scaling

As the number of sections of your game under the control of the scripting engine 
increases, the real power of scripting becomes apparent. The overhead that script-
ing brings becomes less of a factor the more that you can leverage the data-driven 
paradigm. Each individual system within your game might have separate script 
functionality and resources. You can have one chunk of functions exposed for use 
in scripting behaviors, other game functions can be designated to script-state logic, 
or cinematic sequences. All these systems can be built on one unified scripting plat-
form, if that platform is open and flexible enough to allow it.
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CONS OF SCRIPTED SYSTEMS

Scripting does have some negative points, but these can generally be overcome 
with careful design, forethought, and the heavy processing power of today’s game 
machines and PCs. Some of the things to consider when designing your scripting 
system include speed of execution, debugging difficulty, scripting, power, and the 
number of systems needing maintenance.

Speed of Execution

Any interpreted system is going to be slower than programs that have been compiled 
into native machine code. Lua scripts can be precompiled into bytecode, which give 
it a small speed boost (and has the added effect of being unreadable, in case you 
don’t want users looking into the particulars of your scripts), but not much.

This is one reason why most scripting systems are made to be easily integrated 
with the regular compiled language used by your game, like C/C++. Then you can 
create the functions that require speed in the compiled language, while using script 
to develop the parts of the game that aren’t as performance sensitive.

Debugging Can Be Difficult

The primary beef against scripting systems has always been in the realm of debug-
ging. Two separate issues are usually the main problems.

First, scripting environments (especially custom-developed scripting lan-
guages) don’t have the level of mature debugging tools (dedicated debuggers, pro-
filers, asserts and internal error checking, syntax checking during compilation, etc.) 
that the big languages have, unless you specifically code them yourself.

Second, the people who usually write the scripts are not as technically trained 
as dedicated programmers (that was the point, right?). Even simple logic gym-
nastics (this AND that OR not this OtherThing AND these; now invert the whole 
thing) are sometimes beyond the grasp of purely creative types. So, non-technical 
staff tend to lack some “common sense” debugging techniques.

These debugging techniques include binary bug hunting, useful for scripts in 
which a bug makes the system stop dead, with no indication of what is wrong. In 
simple terms, run half the script. If there is no error, run the other half, if possible 
(if not, you would instead just run the first half, as well as a little more). Error? 
Then split that chunk in half and keep going.

Other common debugging methods include using print statements to watch script 
variables change while the game runs, or putting error checking directly into the scripts 
themselves, so that they can somewhat recover from mistakes or bad data on their own.

Usually, non-technical people learn to debug over time (just like most program-
mers do), and languages with long, flat learning curves are best for this. Languages 
that designers can get into fast, but take time to master. Lua, Python, and some of 
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the other full-featured scripting languages offer this. You can write very simple scripts 
quickly, and as you progress through the learning curve, learn advanced features of the 
language in order to accomplish more powerful actions.

Looking Scripted

For a while, games used scripting languages just like Hollywood used scripts, to 
define large chunks of game behavior that was essentially being performed in front 
of the player, in a non-interactive way.

For example, as the player enters a room, control would be taken away, the 
camera would swing dramatically in to reveal three monsters emerging from some 
portal. They would then take their places, a leader type would approach, yell some 
invective to the player, and tell all about how he was going to end the player’s life. 
Meanwhile, the room begins filling with fog, and the weird hat the player found in 
the last room starts glowing with some special purpose.

This is all very nice, at least the first couple of times you see it. But if players 
have to replay this battle many times because it is a difficult encounter, or this type 
of scenario occurs many times during a game, it starts to grate on players; they feel 
like they’re not really playing the game but, rather, are being led around by their 
nose to witness the “next great vision” that will be presented to them.

Some games do this very well, and people love it. But many more games do 
this badly, and it becomes a kind of torture to have to sit through countless lengthy 
sequences of noninteractive silliness. But looking scripted doesn’t have to include 
long cinematic sequences. It could just be that every time you talk to the drunk at 
the bar, he burps, then falls down, then says, “Leave me alone!” and then gets back 
up and reseats himself. If the player talks to the drunk three times in a row, he’s 
going to know there’s a very simple script that controls the drunk’s behavior. Even 
though it may actually be a small piece of game code, today this kind of action is 
usually branded as scripting.

The richer you make your scripted responses, the better they will look the first 
time. The next time, all the illusion will be destroyed, and your static script will be 
discovered. The way to fight this is, of course, to not do it. Granted, some games 
definitely want that exact behavior, and this is fine as long as they don’t overdo it. 
Also beware of using long static scripts in difficult parts of the game; a scripted 
reaction sequence is going to become a tedious ordeal for a player who is already 
having trouble with a particular section of your game (and thus is having to replay 
the area embedded with the script).

The Question of How Much Power

One problem with data-driven AI systems in general is the question of when to 
stop data driving. You’ve made the state transitions script-based. But in doing so, 
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you’ve noticed that with a little more extension to the system, you can offload the 
state-machine definitions to the scripters. A little more engine code, and they could 
define the vast majority of actual AI behaviors. A touch more functionality to the 
scripting language, and they could also define perceptions, including the actual 
equations for calculation, the update frequency, and so on.

The problem is this: If you make too little script functionality, you’ve added 
overhead to the game for very little payoff, but if you add too much functional-
ity, you run the risk of overwhelming the scripters with the entire job of coding a 
game, except in a scripting environment that is only half as user-friendly as a real 
programming language and that runs at three-quarters the speed.

Where to stop scripting is a serious question that needs careful attention when 
designing an engine. The answer lies in the type of game on which you are working, 
the level of functionality you need in your scripts to perform the things you need, 
and the level of organization and control you want of the content in your game.

You’re Now Maintaining Two Systems

When you elect to write a script-based AI system, you’re really choosing to provide 
another completely separate product in addition to your game. You now have two 
jobs. First, you are producing a game with a target audience that has specific needs 
and assumptions about how the game should look, feel, and play. Second, you are 
producing a light programming language, with a completely different target audi-
ence (although in some cases the scripting system will be given to the end-product 
users), who also has very specific needs and desires about how the scripting system 
should work.

When deciding to incorporate a scripting engine into your AI system, you are 
going to have to become somewhat of a people person. The difference between a 
good scripting language and a bad one lies in how easy it is for your scripters to 
use it; this initially means “How good are you at teaching your scripting language 
to others.”

Be prepared to minimally write many example scripts (and they’d better be 
decent quality because they will most likely be cut and pasted directly into the game 
with minor changes for quite a while, as the scripters learn how to use the system). 
You’ll also find yourself fielding questions regarding everything from debugging to 
simple programming methods: things like basic logic, organization methods, and 
different styles of using loops and data.

In addition, the feeling of power that scripting gives to people who were pre-
viously nonprogrammers is both contagious and can have a snowball effect. The 
more things you allow scripters to change in the game, the more things they’re 
going to want to be able to change, and therefore the more features they’re going 
to want you to add to the scripting language. You must allow for flexibility in the 
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system for future extensions. But remember the last point in the list of cons: too 
much functionality in the scripting system can be a problem as well.

EXTENSIONS TO THE SCRIPTING PARADIGM

Scripting systems, by their very nature, open up to a whirlwind of possibilities. 
Extensions to a scripted environment are many, and are only restricted by the game 
and your scripter’s needs. Some advanced features for scripting systems include 
custom languages, built-in debugging tools, a smart IDE for writing scripts, auto-
matic integration into the game, and self-modifying scripts.

COMPLETELY CUSTOM LANGUAGES

A common means of creating a scripting system for your game is to go the way of 
the classic “Lex & Yacc” route. These are tools specifically for creating compilers, but 
they can also be used to streamline the creation of custom scripting languages.

The process is fairly straightforward: First, you generate a grammar file, which 
details the lexicon for the language you’re developing, with the help of Lex. It allows 
you to set up all the rules for your language. These are actually special rules called 
context-free grammars, which is another way of saying that these grammatical rules 
can have wildcards, or nested definitions. You then run Yacc (which stands for Yet 
Another Compiler Compiler, aptly enough) on the grammar file, and it generates 
the C code necessary to parse a file using your specified grammar.

Games that use these tools tend to keep Yacc around as the in-game interpreter, 
a process that is sometimes called just-in-time (JIT) compiling, which refers to the 
fact that the script is compiled “just in time” for the game to use it. By using these 
tools, you can generate completely custom languages that still allow the flexibility 
and powerful parsing ability shown by more commonly used compilers, without 
having to code your system completely from scratch. Your scripting language can 
still use complex block structures, a variety of different operators and keywords, 
with whatever syntax works best for your game.

BUILT-IN DEBUGGING TOOLS

Of paramount importance if your system is going to be large and/or complex is 
a means for determining why things aren’t working. By putting debugging func-
tionality directly into the scripting system, or with an embedded system, giving the 
scripters immediate game-side functions to call that allow them to track down bugs 
and their causes is a great way to build a scripting system in the first place. Simple 
tools like “watch” functionality (allowing a variable’s value to be constantly vis-
ible), break statements (which would stop the game if a specific line of script code 
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is reached), and the ability to single step through a script (running the script one 
line at a time while being able to see variables and such) will accelerate debugging 
scripts just as they do regular code.

Also, visual debugging functionality that is visible in game is very useful. The 
scripters should be able to set up things within a script to write out text to the game 
screen, or icons, lines, and anything else they might need to depict what’s going on 
inside the script, as well as allow scripters to test their code. These elements could 
be ignored once a game goes to production, by simply setting flags within the script 
parser to ignore them or only compiling the functionality into debug projects and 
not released code.

A SMART IDE FOR WRITING SCRIPTS

Obvious bugs in code are sometimes the hardest to find. This is even more true 
for nonprogrammers, who might stare at the line heroHitPoints = 0 for days and 
never realize that they needed to use a double equal sign (==) instead of a single. A 
function call in all lowercase letters instead of having the correct capitalization can 
be invisible to a scripter. By providing a full integrated development environment 
(IDE, typically defined as a combination editor/compiler/debugger all within one 
user interface), or at least some kind of dedicated editor for your scripting system, 
you can provide users with on-the-fly syntax checking (by interpreting the script 
within the editor for syntactical issues). Other common editor features include key-
word finishing (you type the first few letters of a keyword, and then pressing tab 
will finish it, as well as correct the case), showing local variables and/or functions, 
and the like. These features will help to erase simple bugs before they ever enter the 
game and will make the system easier to learn and use overall.

AUTOMATIC INTEGRATION WITH THE GAME

Integration of new content with the game code can be handled a number of dif-
ferent ways. You can have your tool define meta-data to be used by the script, and 
the game engine itself when defining key in-game data structures. The game reads 
this data, as well as the scripts, and rebuilds the entire system’s sets of objects or 
properties.

Another method, if there must be some programmer work for any new addi-
tion, is to simply use the scripting system as a kind of feedback tool for the pro-
grammers, as sort of a request based system. Any time a new “widget” is requested 
(through whatever means you use; be it a special editor data file, or just the inclu-
sion of a RequestedWidget command from within a script itself), the system would 
just add it to a special list that programmers would have access to, to find out what 
the scripters require for new functionality. A useful addition is to allow the scripters 
to give a short description when requesting a new feature, so that the request is not 



394 AI Game Engine Programming

just an empty shout in the dark. The programmers would then implement the re-
quested widget, add it to the game-side code base, and the next time the scripts get 
loaded, the system could recognize that the requested widget has been completed, 
and move on.

SELF-MODIFYING SCRIPTS

Scripting systems, being data-based, open the door for a rarely-used technique in 
the realm of code-based AI: self-modifying behavior. Any given script can poten-
tially change itself, so that the next time it is interpreted it will lead to different 
behavior. You could have script that changes small parameters within itself, or that 
changes large portions of the script itself.

A script-based system could keep track of specific behaviors that work (and 
don’t work), and bias them up or down accordingly by actually writing data back 
into the script files. The system could append additional rules onto its script (or 
remove some) as the consequence of some event during a game.

Behavior like this could be thought of as a kind of learning, or it could go even 
further than learning. There is a field of AI called genetic programming that deals 
with this phenomenon. Unlike genetic algorithms, which strive to use genetically 
derived methods to tune algorithms for finding solutions to problems, genetic pro-
gramming deals with using genetic methods to actually write whole programs to 
solve problems. In effect, the system is searching for the ideal script in which to 
perform its job, instead of the ideal parameters to use within a script.

The problem with using real code in genetic programming is that most 
 genetically-created code segments are garbage, and wouldn’t even compile, much 
less run. This is akin to the fact that most real genetic mutations don’t lead to 
 successful new variations on an established species. Your program might have to 
run for a very long time indeed to genetically “grow” a program that would run at 
all, much less be an ideal solution.

However, with a more abstract, high-level scripting system, you can begin to see 
the possibilities. A suitably robust system could generate scripts, test them, and genet-
ically find superior programs that the AI could run to perform tasks. This is obviously 
a very different and ambitious path to take, but to the victor go the spoils.

OPTIMIZATIONS

The performance of any given scripting system relies both on the level of its use 
within the game and on the functionality of your language and how structured 
your overall system is. The simple configuration language implemented early in the 
chapter is barely more than a file parser and could be run with little to no impact 
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on a game (especially because it is primarily designed for setting variables and flags 
during level load time, rather than during gameplay). If you were to use it as a base 
to write a serious scripting system (which isn’t advised because it has none of even 
the simplest scripting niceties), you might have to perform considerable file-based 
gymnastics to get everything working.

Lua is a fairly lightweight language, and as such runs pretty fast for an inter-
preted system. But you still wouldn’t want to write your AI navigation system’s 
pathfinder in a Lua function. A well-written pathfinding system requires many 
tight search loops and a great deal of data being passed around. This is exactly the 
opposite of what you want to do within a scripter. Make sure that you’re not using 
your scripting system just to use it. Low-level functionality should almost always 
be written in code.

For simple scripts that are just declaring behaviors in reaction to some event, 
a scripted AI system might actually make your game AI faster than if it were trying 
to calculate all the things necessary to get the AI to procedurally perform all the 
 actions that a script might encapsulate. The scripted AI is simply being given a list 
of things to do, without recalculating anything midscript.

When dealing with large scripts, however, filled with heavy amounts of logic 
and game-side function calls, you might run into performance issues. Thread or 
co-routine-based scripting languages can help if you find that your AI scripts are 
taking too much time. These systems allow you to run your scripts over more than 
one frame, so you have to make sure that your AI solutions are reentrant, meaning 
they can be incrementally solved through a few game loops.

DESIGN CONSIDERATIONS

Scripting systems have a home in many different styles of games: in old-school 
games that relied on set patterns to portray behavior, and modern games that 
 increasingly depend on large quantities of richly designed and detailed content.

Scripting systems allow nonprogrammers to define game content in a fast, gen-
erally game-safe way, without the bottleneck of having to rely on dedicated coders 
to help. These systems also allow fast tuning and the like because they allow chang-
ing game behavior without actually changing the game code itself and requiring a 
recompile.

TYPES OF SOLUTIONS

Scripting systems work equally well in the venues of low-level solutions (where 
scripts might be used to describe behaviors, animation selections, or simply set up 
game variables with tuned settings that radically change game actions), as well as 
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high-level AI solutions (including strategic decisions involving many game elements, 
or scripted events that require many behaviors to be linked sequentially). They are a 
bit better suited toward the high-level work because they usually have an even higher 
abstracted view of the game world than the game code side of the AI system.

AGENT REACTIVITY

Scripted systems can give any level of reactivity you require, although it does depend 
on the kinds of scripts your game allows. If you can only use scripted behavioral 
responses that are somewhat limited or lengthy, your system might be seen as being 
too scripted, and as such, not very reactive. But if you use your scripting system to 
merely encode logic for a state-based AI system, then you can expect the reactivity 
of your agents to be commensurate with the update frequency of your system.

SYSTEM REALISM

Scripted systems have some of the largest ability to perform realistic, unique behav-
ior in response to a given game event among many of the various game AI method-
ologies. The problem is that the richer and more scripted the behavior is, the more 
proprietary it is. It can only be used in one limited part of the game; in some cases 
it can only be used once.

Thus, if you have a completely state-driven, reactive game, and suddenly one 
part of your game launches a massive single-shot script giving everyone realistic 
behaviors, it’s either going to seem out of place, or it’s going to make the rest of 
your game seem boring.

Thus, rich content can force even more rich content to be built into your game. 
In addition, overly scripted behavior very quickly loses its realism if the player can 
cause it to repeat, as it will make the game characters seem very robotic and un-
responsive, which is the opposite of what you were striving. Outside of the issue 
of overly scripting a game, however, scripting systems can allow increased realism 
without overly robotic behaviors simply because they allow a greater amount of 
overall behavioral content to be included in the game given the same development-
time restrictions.

Genre and platform are of almost no concern to scripting systems. Games with 
a large number of AI entities or differing game situations are ideal for scripting 
systems because the main reason for using them in the first place is that you require 
more content or tuning than can be easily handled directly (or indirectly) by the 
programmers on your project.

If you are making a game with one main character, one enemy, and three behav-
iors apiece, you could most likely write everything in code and easily tune the entire 
system from the game side. You still might want to use a configuration script system 
to set game-specific variables and properties from data, so that you can set tuning 
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values and not have to recompile the game, but this would depend on your prefer-
ence. Scripting systems do require additional memory (in overhead for the parser, 
interpreter, and data size), but usually make up for it by simplifying the code base so 
they can be implemented on even the smaller and more restrictive platforms.

Care must be taken because, unless specifically designed otherwise, scripted 
code will always run somewhat slower then compiled code, and this kind of perfor-
mance hit must be considered.

DEVELOPMENT LIMITATIONS

Development limitations are one of the most important things to consider when 
deciding on using a scripting system in your AI engine. You have to determine if 
you have the time to implement the language, the time to teach it to your scripters, 
and the extra time and effort needed to debug the scripts and the game code. You 
will save time when it comes to tuning the final product, but this may not offset the 
costs incurred by all these hurdles.

ENTERTAINMENT LIMITATIONS

Tuning difficulty settings, balancing specific behaviors, and other entertainment 
concerns are generally the reasons why a team chooses to implement a scripting 
system because these issues are either very important to the product, or the level of 
this kind of work is incredibly large. Scripting, using either a basic or a full system, 
will aid in all these endeavors.

SUMMARY

Scripting systems provide game makers with a means to get more content into their 
game without needing more programmers. Scripting systems typically use a 
simplified programming system to build AI elements, logic, and/or behaviors. 
Scripting languages can be anything from simple, representational token-based 
systems, to full-fledged programming languages themselves.

When designing your scripting system, consider the kinds of functionality that 
the language will require, how the runtime engine will interpret the scripts, the 
overall size of the scripts, and the potential users of the language.
A configuration script system is a simple, text-parsing system employing user-
defined tokens.
The simple configuration scripting code included in this chapter is broken 
down into three parts: Token, Parser, and a number of callbacks, each one 
 associated with a particular Token.
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Because of the generic nature of the simple scripting system given here, exten-
sions to the method are unlimited. However, the lack of any real features found 
in more robust scripting systems might keep you from investing any time and 
effort with such a rudimentary foundation.
Embedding Lua as a scripting language is becoming a popular shortcut to roll-
ing your own language. Lua is small, fast, easy to learn, and integrates well with 
C/C++.
Lua features include dynamic typing, garbage collection, LISP-like associative 
arrays called tables, and a random access stack structure for passing values back 
and forth between scripts and the host language.
To integrate Lua into a game environment, you compile the libraries into your 
game, include the header files, instantiate a lua_state interpreter, register any 
host language functions with the interpreter, and finally pass the interpreter 
data, direct commands, or whole files to execute. When the game is done, you 
close the interpreter.
Scripts can be compiled into bytecode, which makes them execute a bit faster, 
but also encrypts them so they cannot be read.
The test-bed implementation places all the state transition logic into a Lua 
script. Given a large-scale game, a more robust implementation would be to 
put the entire state machine into Lua, and just pass perception data and register 
behaviors with the scripting system. Each state could have its own script func-
tion for modularity and maintainability.
Lua supports threads and coroutines for use in large scripts that must be com-
pleted across game loops, in sequentially written scripts that have pauses, or in 
multithreaded game environments.
The pros of scripting involve rapid prototyping, increased accessibility, speed 
of tuning, and easy scaling.
The cons of game scripting, which can in most cases be overcome, involve speed 
of execution, debugging difficulty, becoming “scripted looking,” balancing the 
power versus ease of use of the script system, and that you now must produce 
two products (the game and the scripting language).
Extensions to base scripting systems commonly are built-in debugging tools, 
smart environments for script writing, automatic integration with game-side 
code, and self-modifying script code.
Optimizing a scripting system involves the specific game in question and the 
specific scripting system in question. Some scripting might actually  improve 
game performance because the AI character would be just “following a script,” 
instead of calculating a response. For re-entrant problems, threading or 
co-routine-based scripts might help with performance problems.
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This chapter, like Chapter 17, “Message-Based Systems,” will cover a family 
of AI techniques that are secondary to an overall game AI decision-making 
system. However, unlike messaging, which is more of a communication 

technique, location-based information systems (LBI) are helper routines that aug-
ment decision making by providing additional information to the intelligence 
engine. This extra information is brought forward in the form of a centralized bank 
of data that is tied to the game world itself in some fashion. LBI could be thought of 
as specialized perception data, which might also include embedded logic or lower-
level intelligence.

LOCATION-BASED INFORMATION SYSTEMS OVERVIEW

The discussion of LBI will be broken into three common (but not exclusive) cat-
egories in this book: influence maps, smart terrain, and terrain analysis. The first 
part of this chapter will briefly discuss each of these categories. Later, we will im-
plement some simple influence mapping techniques. The other two techniques 
are considerably more complex and much more game-specific (and hence, a full 
implementation would go beyond the scope of the method explanation), so this 
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chapter will not fully implement these techniques, but will broadly discuss imple-
mentations of smart terrain and terrain analysis, both for our test application and 
for real-world games.

INFLUENCE MAPS (IMS)

Influence mapping is slowly becoming one of the most commonly used secondary 
AI techniques in games. Its generic structure and open-ended usage make it second 
only to finite-state machines (FSMs) in ease of implementation and adaptability to 
different game AI problems.

The term influence map refers to using a simple array of data in which each ele-
ment represents information about a specific world position. IMs are usually con-
ceptually thought of as a 2D grid overlaid on the world. The resolution of this grid 
(and thus the number of elements in your influence array) depends on the mini-
mum size of game space that you need to tag with information. Where your game 
can compromise between data size and influence accuracy will also determine this 
resolution. So, if you absolutely need specific information for every square inch of 
a large game world, your IM will have a very high resolution (and take up a lot of 
memory in doing so).

Many games employ multiple IMs, to either help with memory and searching 
costs, or to provide different levels of game space resolution to the various AI sys-
tems. An example within a real-time strategy (RTS) game might have an IM with 
very low resolution (say, each element is an entire game screen) that reflects the 
amount of each resource within. The game could use this low-res IM for high-
level planning when base building as well as determining the best direction in 
which to expand the base as the game progresses. You would want to expand your 
base (and thus your main defenses) toward more resourceful areas to facilitate 
future expansion. Our example RTS game could also employ another IM, with a 
much higher resolution (each element is now approximately equal to four of the 
smallest units standing together). This one keeps track of the number of units 
that have been killed in each grid square. It is used to affect the pathfinding en-
gine so that units will not continue to take paths into areas with high mortality 
scores.

In games with worlds that are heavily 3D, a more complex data structure is 
necessary; these can be represented with layered IMs, or by building the influence 
data into the navigation mesh used for pathfinding. Another technique might be to 
only use IMs where you need them, or local IMs.

For example, a battle between forces in an RTS game might start anywhere on 
the map. You might want to have a heavily detailed IM during battles to coordinate 
forces, but not want to use the memory to have a global IM for the game world with 
the resolution necessary to provide the level of information it would require.
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Instead, you could implement a heavily detailed, but local IM. The system 
would detect a battle and set the coordinates of the local battle planning IM to be 
some distance out from the “center” of the battle. The center of the battle could be 
determined using a different, lower-resolution IM that keeps track of population 
data or fighting locations. Thus, the size of the global IM is still constrained, but 
local information can become quite detailed.

The nature of IM’s generic structure can be used to construe location-specific 
data in an infinite number of different and useful ways, limited only by your imagi-
nation and the relevance to your game in particular. In fact, this basic system can 
be (and usually is) the central repository for the other two LBI techniques to com-
municate with the rest of the game.

SMART TERRAIN

Made popular by the Sims games (in fact, the term was coined by Will Wright, the 
Sims creator), this technique places logic and behavior data for how to use various 
world features and game objects into the objects themselves.

In the Sims, characters in the game were motivated by needs that could be satis-
fied by interfacing with the various objects in the game. The Sims’s programmers 
could apply different attributes to each object, which corresponded to particular 
needs that the game characters required. Thus, a microwave oven satisfied the Food 
need, and a bed fulfilled the Sleep need. The character then navigates around the 
world, trying to gratify his or her unmet needs at any given time, doing so by listen-
ing for broadcast messages from any nearby smart object. These messages would 
communicate to the character the need categories each object satisfied, and the 
character would then be free to use any world object to satiate him- or herself. Of 
course, this is a simplified view of the workings of the Sims game, but it illustrates 
the general idea.

The technique also bundles all the interaction animations, sounds, and any 
other special data that a character would need to use the object into the object itself, 
thus making the object completely self-contained. In this way, new objects could 
be added whenever the developers wanted and would require only two things: that 
the new object contained all the data that the game requires to be a fully functional 
game object, and that the new object assuaged one or more of their basic needs so 
that the characters would actually seek out and use the new object.

TERRAIN ANALYSIS (TA)

Tracking various attributes and statistical data within an IM is only part of the 
problem. The AI system must also make use of this data. TA is a family of meth-
ods that have used IM techniques to provide AI systems with increased strategic 
 information about maps, especially randomly generated maps that haven’t had the 
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benefit of ever being touched by a level designer. Even with custom-created maps 
that have had preprocessed analysis, most games have some element of dynamic 
change within the game world, which again calls for additional, on-the-fly analysis 
of the map.

TA methods are best described as specialized pattern recognition within an IM 
data array. The system searches through the IM array, looking for motifs that can 
be exploited or that deal with strategic and tactical decision making. Even simple 
analysis done on a medium-resolution IM array can be computationally expensive 
because of the large amount of searching required for many pattern-matching al-
gorithms. To counter this, some games use TA systems employing non-brute force 
methods to determine patterns, such as neural nets or fuzzy-logic systems, that can 
algorithmically find patterns within the IM array.

HOW THESE TECHNIQUES ARE USED

IMs are increasingly common in game AI, especially RTS games (although other 
genres, like role-playing games, and action and adventure games are following suit). 
Some examples of how games use IMs include occupance data, ground control, 
pathfinding, danger signification, rough battlefield planning, simple terrain analy-
sis, and advanced terrain analysis.

OCCUPANCE DATA

Occupance data means tracking various populations within the game. An easy 
use of an IM is to keep track of the number of specific game objects within a 
certain area. You might want to keep track of all combat units, specialized re-
source locations, important quest items, or any other in-game object. Simple 
occupance data can be used to help with obstacle avoidance (overriding the 
pathfinding system with local detours around occupied terrain), give rough es-
timates of various game perceptions (army size, town density, the direction to 
the most powerups, etc.), or any other task that requires quick access to localized 
population data.

A common usage of the occupance IM is the familiar fog of war line-of-sight 
system that almost all RTS games employ. Initially, this fog covers the map com-
pletely, so that players are forced to explore the map to find resources and enemy 
towns. Exploring the terrain removes the fog and allows a player to see the physical 
details of the land, but the player must have a unit within line of sight of any given 
location to see the current activity within it. The game uses occupance within the 
map to uncover areas of the map that are visually within line of sight of any of a 
player’s units.
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GROUND CONTROL

Ground control is finding actual influence of game ground. Although the term 
influence map is used in game AI as a loosely defined data structure, the phrase his-
torically refers to techniques derived from the field of thermodynamics (in deter-
mining heat transfer) and field analysis in general (such as electromagnetic fields). 
These same equations can be used in a game setting and can quickly determine 
which player has control over which part of the game map.

The algorithm for this is simple: First, zero out the entire map. Then, assign 
each grid square a value based on its team-specific control (the magnitude repre-
sents the degree of control, the sign differentiates teams; a positive value for player 
A’s units, a negative value for player B’s units, with more complex schemes for more 
than two players). Then go over the map again, and for each map square, add up 
the values of the squares surrounding it, scale by some amount (to prevent value 
overflow), and add that to the square’s value. Repeat a few times to disperse the in-
fluence out until you achieve a stable state. Player A controls the squares that have 
positive values, and player B controls negatively valued squares. This technique will 
provide the AI engine with a way of measuring global, as well as local, control. In 
areas where no one has direct positional control, the influence numbers will have 
propagated from the nearest units that do have direct control. The IM analyzer can 
then determine large regions of contiguous control, which carve the game world 
into areas of player affect. The game could then sum all the areas to determine who 
has the most control over the map, for king of the hill scenarios.

PATHFINDING SYSTEM HELPER DATA

When provided with additional information about a specific area, the pathfinder 
can help smooth the solution through a tricky part of the map by giving a shortcut, 
or allowing the AI-controlled character to use a specific map feature such as a tele-
porter or ladder. The pathfinder data may include things like passability relative to 
terrain features (such as hills or cliffs) and to terrain type (land versus sea) or even 
which player currently controls the areas of the map you want to traverse.

Some games use a simplistic potential field-like technique for augmenting a 
path node-based system, implemented by placing designer-authored influence 
data throughout the map, or to be procedurally determined. Usually, this would be 
used to help (or force) steering of AI characters away from hazards or places the 
game developer just doesn’t want a bunch of roving monsters to congregate. A po-
tential field IM might also change and adapt to game conditions over time, giving 
characters the appearance of learning as the game progresses. An in-game example 
of this might be in a sports setting (for example, a hockey game), in which a small 
offset IM field is used in conjunction with a formation system. When the game 
starts, the offsets are all zeroed out, so the CPU team uses the standard formation 
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for positioning. But as the human player starts to play against the CPU team, the 
offset IM is used to perturb the formation of the computer players toward places 
that the human often uses for travel or for passing the puck. In this way, the human 
is forced to change his game to continue to score effectively because the computer 
team is continually fine-tuning its formations to the human’s style of play.

DANGER SIGNIFICATION

Another useful implementation of IMs is to keep track of areas where bad things 
have happened over a period of time. This data can then adjust the regular AI 
 behavior, so that the AI doesn’t continue to perform the same actions that result 
in the continuation of this harm.

An example mentioned in the RTS chapter would be the human placing an 
attacking tower in the midst of a pathfinding route that the AI uses regularly. The 
tower then proceeds to kill the single line of units that continually trickle by the 
tower. If the AI had a danger signification system in place, the units would eventu-
ally stop walking by the tower (because the AI would use the danger data to influ-
ence the pathfinding cost of traveling through that area), and better yet, would send 
out an attack group to investigate what is causing the danger in the area. Another 
example would be an AI deathmatch bot in a FTPS game remembering areas where 
the bot was ambushed or sniped, so that the bot could avoid those areas, or just 
approach them differently.

ROUGH BATTLEFIELD PLANNING

The ground control method detailed earlier can be used to quickly point out areas 
of interest in the midst of battles. By looking for regions of low-control value, you 
can easily find where armies are directly fighting for control of an area. This will 
tell you where the conflicts are, and where the front line of any given battle is. Large 
areas of near-zero values are, by definition, places where no one is in control. When 
a human player knows where the brunt of his force is, in relation to the main body 
of the other army (as well as the relative size of each army), the player can focus 
attack direction, determine chances of winning to initiate additional charges or 
retreats, send reinforcements more intelligently, and coordinate attacks on multiple 
fronts more cleanly.

SIMPLE TERRAIN ANALYSIS

Simple TA includes mathematical determinations such as cover (how much a 
given position is open to attack from any given angle), visibility (in some ways, the 
 opposite of cover, but also considers lighting concerns and line-of-sight issues), and 
height factors (many games allow greater missile weapon range from higher ground 
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and better visibility). The best areas of cover that have height advantage become 
sniping spots. Areas with low visibility might become sneaky back doors to other 
map areas. An area with high visibility might work as the target of an ambush if it 
is surrounded on some sides by high-cover terrain.

ADVANCED TERRAIN ANALYSIS

RTS games routinely require much more advanced TA methods to appear even 
remotely intelligent when playing against a human opponent.

Finding good choke points in a map, meaning places where movement or vis-
ibility are severely restricted, is a common way to use IMs. By scanning maps for 
this feature the AI can set up ambushes if a choke point exists between two or more 
major map zones, especially if it’s a perfect choke point (meaning there is no other 
way to travel between the two zones, and the other player has to travel through 
to win the game). Walls can be built inside natural choke points to minimize the 
amount of walls that need to be built to close off a map area. Walls can also be used 
to create artificial choke points to force opponents into dicey manuevers.

Another key usage of IM information is in determining the best way to build a 
town, defenses, or other structures. Towns should be built with some preplanning, 
to keep crowding under control (for pathfinding as well as for protection because 
buildings that are too close together can be splash damaged by large artillery type 
weapons en masse), to maximize future growth (by growing toward additional re-
sources and minding routes of travel from older buildings), and yet allow main-
tenance (watch so that the town doesn’t have too many flanks, and spread out the 
town’s defenses to prevent weak flanks).

The AI might want to use impassable terrain to its advantage by building the 
base of a town against it, therefore removing a line of attack. Humans build walls to 
slow down or redirect AI enemies that are pathfinding through an area (Figure 19.1 
shows a human-made kill zone constructed of a maze of walls). These same sorts 
of tricks could be employed by an AI system to trip up players who don’t micro-
manage their forces. But setting up these measures would require the AI system 
to scout for good places in which to do so, or else the behavior of the AI would 
look silly.

Determining important map areas (such as maps with severely limited 
 resources or key strategic positions) is something at which humans are extremely 
skilled. Given a snapshot of the map layout (see Figure 19.2), a good human player 
will quickly ascertain that the player has to control area “A” because it contains 
most of the powerups and is fairly defensible. AI systems are usually quite bad at 
this type of determination, but an IM tracking this type of information (powerup 
location density, cover information, and choke points) would be quick to help with 
this shortcoming.
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INFLUENCE MAPPING SKELETAL CODE AND TEST-BED IMPLEMENTATION

In this section, we will implement a few different kinds of basic IMs into the test-
bed application. The implementation will be for illustrative purposes and will not 
affect the decision-making process of the AI subsystem within the test bed. Rather, 
it will show how easy it is to gather information and centralize it within an IM, and 
will display this information visually by means of a debugging system that allows 
both the grid and the cell contents to be drawn during the game. After each imple-
mentation, a discussion will follow about how the particular method could have 
been used by the test bed to improve performance.

Three simple types of IMs will be implemented, to show different ways to use 
them. These are the following:

 1. Occupance-based IM: tracks where a given game object is in the world.
 2. Control-based IM: uses a gradient to show an area of control around each 

game object and uses the notion of player sides.
 3. Bitwise IM: splits the IM element’s value into bitwise data components.

FIGURE 19.1 Walls built in a maze configuration to hold back AI attackers.
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Each IM type inherits from the basic IM class, InfluenceMap (see Listing 19.1 for the 
header, 19.2 for the function implementations). As you can see, the first item of inter-
est in the base class is the IM array, m_map, which is an array of int (an unsigned 16-bit 
field). If you needed more or less storage within your IM array, you could change this 
to whatever you needed. You could even make a custom struct that the array would be 
composed of, but then you would have to change the class to accommodate this.

FIGURE 19.2 Example map with several strategic elements.

LISTING 19.1 InfluenceMap header information.

struct RegObj

{

    GameObj*    m_pObject;

    int         m_objSizeX;

    int         m_objSizeY;

    int         m_objType;

    Point3f     m_lastPosition;

    bool        m_stamped;

};
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typedef std::list<RegObj*> RegObjectList;

class InfluenceMap

{

public:

    //constructor/functions

    InfluenceMap(int type):m_influenceType(type)

                      {m_drawGrid = false;m_drawInfluence = false;}

    ~InfluenceMap();

    virtual void Update(float dt) {}

    virtual void Draw();

    virtual void DrawTheGrid();

    virtual void DrawTheInfluence();

    virtual void Init(int sizeX, int sizeY, int wSizeX, int wSizeY);

    virtual void Reset();

    virtual void RegisterGameObj(GameObj* object);

    virtual void RemoveGameObj(GameObj* object);

    virtual void StampInfluenceShape(int* pMap,Point3f& location,

                                     int sizeX,int sizeY, int value);

    virtual void StampInfluenceGradient(int* pMap,Point3f& location, 

                                        int initValue);

    int  SumInfluenceShape(int* pMap,Point3f& location,

                           int sizeX,int sizeY);

    int  GetInfluenceValue(int* pMap,Point3f& location);

    void SetType(int type) {m_influenceType = type;}

    void DrawGrid(bool on = true){m_drawGrid = on;}

    void DrawInfluence(bool on = true){m_drawInfluence = on;}

    int  GetSizeX(){return m_dataSizeX;}

    int  GetSizeY(){return m_dataSizeY;}

    //influence map types

    enum

    {

        IM_NONE,

        IM_OCCUPANCE,

        IM_CONTROL,

        IM_BITWISE

    };

protected:

    //data members

    int*    m_map;

    RegObjectList m_registeredObjects;
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    int     m_dataSizeX;

    int     m_dataSizeY;

    int     m_numCels;

    int     m_worldSizeX;

    int     m_worldSizeY;

    float   m_celResX;

    float   m_celResY;

    int     m_influenceType;

    bool    m_drawGrid;

    bool    m_drawInfluence;

};

The influence system works by maintaining a list of registered game objects 
within its m_registeredObjects list. Game objects are thus freed of having to worry 
about updating themselves within the IM, because the system keeps its own list, 
but must remember to remove themselves from the IM system when they die in 
general.

Two functions, StampInfluence() and StampInfluenceGradient(), are used to 
actually write values to the IM. The plain version merely writes a value to a chunk 
of the array that is passed in size and position. The gradient version writes a de-
creasing value square gradient into the array starting at a certain position. These are 
generic enough that they are in the basic class, but they can be overridden by any 
subclass you create to perform custom writes to the IM array.

GetInfluenceValue() is an accessor for the map, and SumInfluence() is a 
 generic function that merely sums the influence values at a position in a specific 
shape. Notice that all the functions dealing with the IM element map take an 
array pointer as a parameter. This is to facilitate custom IM types that may 
 require additional scratch maps to perform multiple pass actions on the overall 
IM array.

LISTING 19.2 InfluenceMap implementation of important functions.

//--------------------

InfluenceMap::~InfluenceMap()

{

    if(m_registeredObjects.size() == 0)

        return;

    RegObjectList::iterator listObj;

    for(listObj=m_registeredObjects.begin();
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        listObj!=m_registeredObjects.end();++listObj)

    {

        delete (*listObj);

    }

    m_registeredObjects.clear();

    

}

//--------------------

void InfluenceMap::Init(int sizeX, int sizeY, int wSizeX, int wSizeY)

{

    m_dataSizeX     = sizeX;

    m_dataSizeY     = sizeY;

    m_numCels       = m_dataSizeX*m_dataSizeY;

    m_map           = new int[m_numCels];

    //clear out the map

    memset(m_map,0,m_numCels*sizeof(int));

    

    m_worldSizeX    = wSizeX;

    m_worldSizeY    = wSizeY;

    m_celResX       = m_worldSizeX / m_dataSizeX;

    m_celResY       = m_worldSizeY / m_dataSizeY;

}

//--------------------

void RemoveAll(RegObj* object)

{

    delete object;

}

//--------------------

void InfluenceMap::Reset()

{

    //clear out the map

    memset(m_map,0,m_numCels*sizeof(int));

    

    //get rid off all the objects

    if(m_registeredObjects.size() == 0)

        return;

    for_each(m_registeredObjects.begin(),

             m_registeredObjects.end(),RemoveAll);

    m_registeredObjects.clear();

}
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//--------------------

void InfluenceMap::RegisterGameObj(GameObj* object)

{

    int sizeY,sizeX;

    sizeX = sizeY = 1;

    

    RegObj* temp;

    temp = new RegObj;

    temp->m_pObject      = object;

    temp->m_objSizeX     = sizeX;

    temp->m_objSizeY     = sizeY;

    temp->m_lastPosition = object->m_position;

    temp->m_stamped      = false;

    m_registeredObjects.push_back(temp);

}

//--------------------

void InfluenceMap::RemoveGameObj(GameObj* object)

{

    if(m_registeredObjects.size() == 0)

        return;

    RegObjectList::iterator listObj;

    for(listObj=m_registeredObjects.begin();

        listObj!=m_registeredObjects.end();++listObj)

    {

        RegObj* temp = *listObj;

        if((*listObj)->m_pObject == object)

        {

            m_registeredObjects.erase(listObj);

            delete temp;

            return;

        }

    }

    

}

//--------------------

void InfluenceMap::StampInfluenceShape(int* pMap,Point3f& location,int 

sizeX, int sizeY, int value)

{

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;
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    int startX = gridX - sizeX/2;

    if(startX < 0) startX += m_dataSizeX;

    int startY = gridY - sizeY/2;

    if(startY < 0) startY += m_dataSizeY;

    

    for(int y = startY;y<startY + sizeY;y++)

    {

        for(int x = startX;x<startX + sizeX;x++)

        {

           pMap[(y%m_dataSizeY)*m_dataSizeY+(x%m_dataSizeX)]+=value;

        }

    }

}

//--------------------

int InfluenceMap::GetInfluenceValue(int* pMap,Point3f& location)

{

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;

    return pMap[gridX,gridY];

}

//--------------------

int InfluenceMap::SumInfluenceShape(int* pMap,Point3f& location,

                                         int sizeX,int sizeY)

{

    int sum = 0;

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;

    int startX = gridX - sizeX/2;

    if(startX < 0) startX += m_dataSizeX;

    int startY = gridY - sizeY/2;

    if(startY < 0) startY += m_dataSizeY;

    

    for(int y = startY;y<startY + sizeY;y++)

    {

        for(int x = startX;x<startX + sizeX;x++)

        {

            sum+=pMap[(y%m_dataSizeY)*m_dataSizeY+(x%m_dataSizeX)];

        }

    }

    return sum;

}
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//--------------------

void InfluenceMap::StampInfluenceGradient(int* pMap,Point3f&

                                               location, int initValue)

{

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;

    int stopDist = fabsf(initValue)*0.75f;//*(m_dataSizeX/32);

    int halfStopDist = stopDist / 2;

    int startX = gridX - halfStopDist;

    if(startX < 0) startX += m_dataSizeX;

    int startY = gridY - halfStopDist;

    if(startY < 0) startY += m_dataSizeY;

    for(int y = startY;y<startY + stopDist;y++)

    {

        for(int x = startX;x<startX + stopDist;x++)

        {

            int value;

            int distX = fabs(x - (startX + halfStopDist));

            int distY = fabs(y - (startY + halfStopDist));

            value = initValue*( halfStopDist –

                         MAX(distX,distY))/halfStopDist;

            pMap[(y%m_dataSizeY)*m_dataSizeY + 

                      (x%m_dataSizeX)] += value;

        }

    }

}

THE OccupanceInfluenceMap

Now that you have been given the basic system, we can go forward to the specific 
implementations. Listing 19.3 and 19.4 give the header and implementation of 
the class OccupanceInfluenceMap, which is a simple IM that tracks population data 
within the IM of the different game objects.

LISTING 19.3 OccupanceInfluenceMap header.

class OccupanceInfluenceMap:public InfluenceMap

{

public:

    //constructor/functions

    OccupanceInfluenceMap():InfluenceMap(IM_OCCUPANCE){}
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    ~OccupanceInfluenceMap();

    virtual void Update(float dt);

    virtual void RegisterGameObj(GameObj* object);

    virtual void RemoveGameObj(GameObj* object);

    virtual void DrawTheInfluence();

};

As Listing 19.4 shows, the Update() function is where most of the work is 
being done. Here, too, you can see two different ways that IM data is handled. 
In the update method, you can see a call to memset that is commented out, above 
a small chunk of code that unstamps the old locations before the new locations 
are stamped. These two code blocks represent both ways of dealing with the “old” 
values in the IM map, roughly analogous to the old graphics frame buffer during 
rendering. Having the function unstamp the old locations before continuing is akin 
to a “dirty rectangles” scheme of graphics drawing, in which you only redraw the 
elements that need it, rather than the entire scene. If your game world is small and 
you have many objects to write, like our test bed, it’s much more reasonable to just 
wipe the IM array and start over (by using the direct memset call). But in the midst 
of a very large game world, with few game objects, or a game with static IM data 
(such as terrain features or specialized IM flags), you could instead use the dirty 
rectangles method, so that you don’t radically upset the buffer or are forced to re-
construct a lot of feature data. Notice also that because this class was written using 
the unstamp process, the RemoveGameObj() method for this class must unstamp the 
removed object, so no artifacts are left behind.

RegisterGameObj() also sets the size of the influence for the object. This probably 
could have been a more algorithmic process, but for converting the mostly round game 
objects into square IM shadows for the test bed, this proved to be a fine solution. In the 
DrawInfluence() function, notice that we’re drawing a grayscale polygon for each IM 
array element and that it reaches maximum value at 10 objects within the cell.

LISTING 19.4 OccupanceInfluenceMap implementation of important functions.

//--------------------

void OccupanceInfluenceMap::Update(float dt)

{

    //bail out if nobody to update

    if(m_registeredObjects.size() == 0)

        return;

    //clear out map

//    memset(m_map,0,m_numCels*sizeof(int));
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    RegObjectList::iterator listObj;

    //unstamp old locations

    for(listObj=m_registeredObjects.begin();

        listObj!=m_registeredObjects.end();++listObj)

    {

        if((*listObj)->m_pObject->m_position == 

           (*listObj)->m_lastPosition)

            continue;

        if((*listObj)->m_stamped)

            StampInfluenceShape(m_map,(*listObj)->

                                m_lastPosition,(*listObj)->

                                m_objSizeX,(*listObj)->m_objSizeY, -1);

    }

    

    //stamp new locations

    for(listObj=m_registeredObjects.begin();

        listObj!=m_registeredObjects.end();++listObj)

    {

        if((*listObj)->m_pObject->m_position == 

           (*listObj)->m_lastPosition)

            continue;

        StampInfluenceShape(m_map,(*listObj)->m_pObject->

                         m_position,(*listObj)->m_objSizeX,(*listObj)->

                         m_objSizeY, 1);

        (*listObj)->m_stamped = true;

        (*listObj)->m_lastPosition = (*listObj)->m_pObject->m_position;

    }

}

//--------------------

void OccupanceInfluenceMap::RemoveGameObj(GameObj* object)

{

    if(m_registeredObjects.size() == 0)

        return;

    

    RegObjectList::iterator listObj;

    for(listObj=m_registeredObjects.begin();

        listObj!=m_registeredObjects.end();++listObj)

    {

        RegObj* temp = *listObj;

        if((*listObj)->m_pObject == object)

        {

            if((*listObj)->m_stamped)
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                StampInfluenceShape(m_map,(*listObj)->

                                m_lastPosition,(*listObj)->

                                m_objSizeX,(*listObj)->m_objSizeY, -1);

            m_registeredObjects.erase(listObj);

            delete temp;

            return;

        }

    }

    

}

    

//--------------------

void OccupanceInfluenceMap::RegisterGameObj(GameObj* object)

{

    int sizeX,sizeY;

    if(object->m_size <4)

    {

        sizeX = m_dataSizeX/16;

        sizeY = m_dataSizeY/16;

    }

    else if(object->m_size<11)

    {

        sizeX = m_dataSizeX/10;

        sizeY = m_dataSizeY/10;

    }

    else if(object->m_size<33)

    {

        sizeX = m_dataSizeX/8;

        sizeY = m_dataSizeY/8;

    }

    else if(object->m_size <49)

    {

        sizeX = m_dataSizeX/5;

        sizeY = m_dataSizeX/5;

    }

    else if(object->m_size <65)

    {

        sizeX = m_dataSizeX/4;

        sizeY = m_dataSizeX/4;

    }

    else

    {

        sizeX = m_dataSizeX/3;

        sizeY = m_dataSizeX/3;

    }
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    //set minimum size of 1 in each direction

    sizeX = MAX(1,sizeX);

    sizeY = MAX(1,sizeY);

    

    RegObj* temp;

    temp = new RegObj;

    temp->m_pObject      = object;

    temp->m_objSizeX     = sizeX;

    temp->m_objSizeY     = sizeY;

    temp->m_lastPosition = object->m_position;

    temp->m_stamped      = false;

    m_registeredObjects.push_back(temp);

}

//--------------------

void OccupanceInfluenceMap::DrawTheInfluence()

{

    glPushMatrix();

    glDisable(GL_LIGHTING);

    glTranslatef(0,0,0);

    glEnable(GL_BLEND);

    glBlendFunc(GL_ONE, GL_ONE);

    for(int i=0;i<m_numCels;i++)

    {

        if(m_map[i])

        {

            int y = i / m_dataSizeY;

            int x = i - y*m_dataSizeY;

            float grayscale = m_map[i]/10.0f;

            glColor3f(grayscale,grayscale,grayscale);

            glBegin(GL_POLYGON);

            glVertex3f(x*m_celResX,          y*m_celResY,          0);

            glVertex3f(x*m_celResX,          y*m_celResY+m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX,y*m_celResY+m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX,y*m_celResY,          0);

            glEnd();

        }

    }

    glDisable(GL_BLEND);

    glEnable(GL_LIGHTING);

    glPopMatrix();

}

To use the system, you instantiate the map, and then initialize it with the grid 
resolution and the size of the game world you want. You then register any objects 
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you want tracked with the IM. In our test bed, all game objects are being registered 
with the IM, and another data member of the class GameObj has been added, the 
Boolean m_influence, so you can prevent particular game objects from affecting 
the influence system.

USES WITHIN THE TEST BED FOR AN OCCUPANCE IM

Figure 19.3 shows a screenshot of the test bed with this system engaged. The IM is 
being drawn for debugging purposes. Use of an occupance IM system within the 
AIsteroids test bed could help to improve the Evade state to steer the player away 
from heavily congested areas. You could even put a static occupance ring around 
the extents of the world, and the Evade state would then try and keep the ship from 

FIGURE 19.3 AIsteroids test bed with an occupance IM engaged.
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staying too near the edges of the world, which tends to get the ship killed by fast-
moving asteroids that world wrap and catch the ship off guard.

The Attack state could also check the occupance of the map and send that 
many bullets toward it, so that multiple asteroids at the same location would all be 
targeted.

THE ControlInfluenceMap

The next system we will cover tracks control of game areas. Game objects will have 
a gradient of control written to the map, the magnitude of which is determined 
by the overall size of the object (except for some special objects, which are given 
control magnitudes directly). It also assigns the ship and bullets to have positive 
influence values, and the asteroids to use negative values. All object influence val-
ues are added to the map, so the more positive an influence value an IM element 
contains, the more ships or bullets are inhabiting that element, and the converse 
holds for negative values and asteroids. Listings 19.5 and 19.6 give the header and 
implementation of the ControlInfluenceMap class.

LISTING 19.5 ControlInfluenceMap header.

class ControlInfluenceMap:public InfluenceMap

{

public:

    //constructor/functions

    ControlInfluenceMap():InfluenceMap(IM_CONTROL){}

    ~ControlInfluenceMap();

    virtual void Update(float dt);

    virtual void RegisterGameObj(GameObj* object);

    virtual void DrawTheInfluence();

    

};

Notice that within this class, there is no unstamping of influence values, we 
simply wipe the IM array clean every update. The amount of change within the 
IM array is quite large considering the gradient information being constantly 
updated. Because of this, the entire field is usually “dirty” and as such it is much 
faster to just clean out the array completely instead of trying to localize the 
changes.

The ControlInfluenceMap class uses a type for its registered objects, of which 
only OT_FRIENDLY or OT_ENEMY are counted for updates (OT_BULLET is just a special 
type of OT_FRIENDLY). It then uses this type to determine whether to write positive 
or negative control values to the map.



420 AI Game Engine Programming

In the DrawInfluence() function, we’re now drawing a colored polygon for each 
IM array element, based on the magnitude of control at each location and the sign 
of that control.

LISTING 19.6 ControlInfluenceMap implementation of important functions.

//--------------------

void ControlInfluenceMap::Update(float dt)

{

    //bail out if nobody to update

    if(m_registeredObjects.size() == 0)

        return;

    

    //clear out map

    memset(m_map,0,m_numCels*sizeof(int));

    

    //stamp obj locations

    RegObjectList::iterator listObj;

    for(listObj=m_registeredObjects.begin();

        listObj!=m_registeredObjects.end();++listObj)

    {

        //only care about “control” objects, not miscellaneous

        if((*listObj)->m_objType == OT_MISC)

            continue;

    

        if((*listObj)->m_objType == OT_FRIENDLY)

            StampInfluenceGradient(m_map,(*listObj)->

                                   m_pObject->m_position, 16);

        else if((*listObj)->m_objType == OT_BULLET)

            StampInfluenceGradient(m_map,(*listObj)->

                                   m_pObject->m_position, 8);

        else

            StampInfluenceGradient(m_map,(*listObj)->m_pObject->

                      m_position, -(((*listObj)->m_pObject->

                                         m_size)/2));

        (*listObj)->m_lastPosition = (*listObj)->m_pObject->

                                                      m_position;

    }

}

//--------------------

void ControlInfluenceMap::RegisterGameObj(GameObj* object)

{

    int sizeX,sizeY;

    sizeX = sizeY = 1;
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    RegObj* temp;

    temp = new RegObj;

    temp->m_pObject      = object;

    temp->m_objSizeX     = sizeX;

    temp->m_objSizeY     = sizeY;

    temp->m_lastPosition = object->m_position;

    temp->m_stamped      = false;

    if(object->m_type == GameObj::OBJ_SHIP || 

       object->m_type == GameObj::OBJ_SAUCER)

        temp->m_objType = OT_FRIENDLY;

    else if(object->m_type == GameObj::OBJ_BULLET)

        temp->m_objType = OT_BULLET;

    else if(object->m_type == GameObj::OBJ_ASTEROID)

        temp->m_objType = OT_ENEMY;

    else

        temp->m_objType = OT_MISC;

    m_registeredObjects.push_back(temp);

}

//--------------------

void ControlInfluenceMap::DrawTheInfluence()

{

    glPushMatrix();

    glDisable(GL_LIGHTING);

    glTranslatef(0,0,0);

    glEnable(GL_BLEND); 

    glBlendFunc(GL_ONE, GL_ONE); 

    for(int i=0;i<m_numCels;i++)

    {

        if(m_map[i])

        {

            int y = i / m_dataSizeY;

            int x = i - y*m_dataSizeY;

            float color = m_map[i]/16.0f;

            if(color > 0)

                glColor3f(0,0,color);

            else

                glColor3f(-color,0,0);

            glBegin(GL_POLYGON);

            glVertex3f(x*m_celResX,y*m_celResY,0);

            glVertex3f(x*m_celResX, y*m_celResY+m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX,

                            y*m_celResY+m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX,

                            y*m_celResY, 0);
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            glEnd();

        }

    }

    glDisable(GL_BLEND);

    glEnable(GL_LIGHTING);

    glPopMatrix();

}

USES WITHIN THE TEST BED FOR A CONTROL-BASED IM

Figure 19.4 shows a screenshot of the test bed with the control-based system engaged 
and being drawn for debugging purposes. Tracking control within the AIsteroids test 
bed allows many improvements.

The Evade state could be made much more intelligent by staying within areas 
of control, if possible (providing much more active evasion, rather than the reactive 
evading that the game currently uses), as well as providing a platform for simple 
pathfinding to be performed on the IM array to find clear lanes of travel. Evasion 
could be improved even more if the control positioning considered velocity, either 
by perturbing the shape of the control gradient in the direction of travel, or by 
computing a future position for the object and using that as the position sent to the 
stamping function. Like the occupance IM, you could put a static ring of “asteroid 
control” around the extents of the game world, so that the Evade state would try 
to avoid getting near the edges. This type of IM data would give more of a fuzzy 
effect—the ring of static control could be a smooth gradient, making the avoidance 
stronger the closer the ship was to the edge.

The GetPowerup state could increase its priority if the closest powerup is within 
the area of the ship’s control. It could also sum the total control of the asteroids and, 
when low enough, make filling up on powerups a total priority (so that when there 
are very few asteroids remaining, the ship will max out its shot power and vastly 
increase its chances of surviving the next wave).

THE BitwiseInfluenceMap

The last simple IM design we will cover shows how you can use each bit in an array 
element as a separate Boolean value. This very generic usage of an IM array allows 
you to custom tailor the information that you are tracking within your IM system. 
In our test bed application, we will be tracking two main things: object type, and 
direction of travel. The bottom 8 bits of each array element correspond to the type 
of object, and bits 9 to 12 are set if the object is moving in any of the cardinal direc-
tions. This is a somewhat arbitrary usage of the system and is just for illustration of 
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the method, not an example of something that needs to be done. Listings 19.7 and 
19.8 give the header and implementation of the BitwiseInfluenceMap class.

FIGURE 19.4 AIsteroids test bed with an occupance IM engaged.

LISTING 19.7 BitwiseInfluenceMap header.

class BitwiseInfluenceMap:public InfluenceMap

{

public:

    //constructor/functions

    BitwiseInfluenceMap():InfluenceMap(IM_BITWISE){}
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    ~BitwiseInfluenceMap();

    virtual void Update(float dt);

    virtual void RegisterGameObj(GameObj* object);

    virtual void DrawTheInfluence();

    virtual void StampInfluenceShape(int* pMap,Point3f& location,

                    int sizeX,int sizeY, int value, bool undo = false);

    int GetVelocityDirectionMask(GameObj* object);

    int  GetInfluenceType(int* pMap,Point3f& location);

    int  GetInfluenceDirection(int* pMap,Point3f& location);

 };

This class is much like the others, with the small changes necessary to handle 
bitwise array access. The stamp function use logical operators, and even though the 
current implementation doesn’t require the use of the unstamping (because the 
map is zeroed out each update), the stamp function does have the ability to undo 
stampings.

The debug draw function is a little different for this setup because it draws 
three polygons for each IM element. The bottom half of the square is the type of 
object inhabiting the square. The top left quarter is colored if the object is moving 
up or down, and the top right quarter is colored if the object is moving right or left. 
A good debugging system for a real game would use more explanatory and intuitive 
visual debugging aids than simple colors (such as small status icons or text display, 
for example), but this will be fine for a test application.

LISTING 19.8 BitwiseInfluenceMap implementation of important functions.

//--------------------

void BitwiseInfluenceMap::Update(float dt)

{

    //bail out if nobody to update

    if(m_registeredObjects.size() == 0)

        return;

    

    //clear out map

    memset(m_map,0,m_numCels*sizeof(int));

    

    //stamp new data

    RegObjectList::iterator listObj;

    for(listObj=m_registeredObjects.begin();

        listObj!=m_registeredObjects.end();++listObj)

    {

        RegObj* temp = *listObj;

        //have to update the bits, since you can 

        //change direction continuously
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        temp->m_objType = (char)temp->m_objType |

                          GetVelocityDirectionMask(temp->m_pObject);

        StampInfluenceShape(m_map,(*listObj)->m_pObject->

                      m_position,(*listObj)->m_objSizeX,(*listObj)->

                      m_objSizeY,(*listObj)->m_objType);

        (*listObj)->m_stamped = true;

        (*listObj)->m_lastPosition = (*listObj)->m_pObject->

                                                      m_position;

    }

}

//--------------------

void BitwiseInfluenceMap::RegisterGameObj(GameObj* object)

{

    int sizeX,sizeY;

    if(object->m_size <4)

    {

        sizeX = m_dataSizeX/16;

        sizeY = m_dataSizeY/16;

    }

    else if(object->m_size<11)

    {

        sizeX = m_dataSizeX/10;

        sizeY = m_dataSizeY/10;

    }

    else if(object->m_size<33)

    {

        sizeX = m_dataSizeX/8;

        sizeY = m_dataSizeY/8;

    }

    else if(object->m_size <49)

    {

        sizeX = m_dataSizeX/5;

        sizeY = m_dataSizeX/5;

    }

    else if(object->m_size <65)

    {

        sizeX = m_dataSizeX/4;

        sizeY = m_dataSizeX/4;

    }

    else

    {

        sizeX = m_dataSizeX/3;

        sizeY = m_dataSizeX/3;

    }
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    //set minimum size of 1 in each direction

    sizeX = MAX(1,sizeX);

    sizeY = MAX(1,sizeY);

    

    RegObj* temp;

    temp = new RegObj;

    temp->m_objType = object->m_type;

    temp->m_objType |= GetVelocityDirectionMask(object);

    temp->m_pObject      = object;

    temp->m_objSizeX     = sizeX;

    temp->m_objSizeY     = sizeY;

    temp->m_lastPosition = object->m_position;

    temp->m_stamped      = false;

    m_registeredObjects.push_back(temp);

}

//--------------------

int BitwiseInfluenceMap::GetVelocityDirectionMask(GameObj* object)

{

    int velDir = 0;

    if(object->m_velocity.x() > 0)

    velDir |= DIR_RIGHT;

    else if (object->m_velocity.x() < 0)

    velDir |= DIR_LEFT;

    if(object->m_velocity.y() > 0)

    velDir |= DIR_UP;

    else if (object->m_velocity.y() < 0)

    velDir |= DIR_DOWN;

    return velDir<<8;

}

//--------------------

void BitwiseInfluenceMap::DrawTheInfluence()

{

    glPushMatrix();

    glDisable(GL_LIGHTING);

    glTranslatef(0,0,0);

    glEnable(GL_BLEND);

    glBlendFunc(GL_ONE, GL_ONE);

    for(int i=0;i<m_numCels;i++)

    {

        if(m_map[i])
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        {

            int y = i / m_dataSizeY;

            int x = i - y*m_dataSizeY;

            //determine color for type

            Point3f color(0,0,0);

            for(int index = 0;index<8;index++)

            {

                int bitset = (m_map[i] & (1<<index));

                if(bitset)

                    color += colorArray[index];

            }

            glColor3f(color.x(),color.y(),color.z());

            glBegin(GL_POLYGON);

            glVertex3f(x*m_celResX,y*m_celResY,0);

            glVertex3f(x*m_celResX,y*m_celResY+m_celResY*0.5f,0);

            glVertex3f(x*m_celResX+m_celResX,y*m_celResY+

                                               m_celResY*0.5f,0);

            glVertex3f(x*m_celResX+m_celResX,y*m_celResY,0);

            glEnd();

            color = Point3f(0,0,0);

            //get colors for direction

            int direction = m_map[i]>>8;

            if(direction & DIR_LEFT)

                color = colorArray[COLOR_SILVER];//left

            if(direction & DIR_RIGHT)

                color = colorArray[COLOR_PURPLE];//right

            glColor3f(color.x(),color.y(),color.z());

            glBegin(GL_POLYGON);

            glVertex3f(x*m_celResX,y*m_celResY+m_celResY*0.5f,0);

            glVertex3f(x*m_celResX,y*m_celResY+m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX*0.5f,y*m_celResY+

                                                    m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX*0.5f,y*m_celResY+

                                               m_celResY*0.5f,0);

            glEnd();

            color = Point3f(0,0,0);

            if(direction & DIR_UP)

                color = colorArray[COLOR_OLIVE];//up

            if(direction & DIR_DOWN)

                color = colorArray[COLOR_TEAL];//down

            glColor3f(color.x(),color.y(),color.z());

            glBegin(GL_POLYGON);
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            glVertex3f(x*m_celResX+m_celResX*0.5f,y*m_celResY+

                                               m_celResY*0.5f,0);

            glVertex3f(x*m_celResX+m_celResX*0.5f,y*m_celResY+

                                                    m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX,y*m_celResY+

                                                    m_celResY,0);

            glVertex3f(x*m_celResX+m_celResX,y*m_celResY+

                                               m_celResY*0.5f,0);

            glEnd();

        }

    }

    glDisable(GL_BLEND); 

    glEnable(GL_LIGHTING);

    glPopMatrix();

}

//--------------------

void BitwiseInfluenceMap::StampInfluenceShape(int* pMap,Point3f&

                  location,int sizeX, int sizeY, int value, bool undo)

{

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;

    

    int startX = gridX - sizeX/2;

    if(startX < 0) startX += m_dataSizeX;

    int startY = gridY - sizeY/2;

    if(startY < 0) startY += m_dataSizeY;

    

    for(int y = startY;y<startY + sizeY;y++)

    {

        for(int x = startX;x<startX + sizeX;x++)

        {

            if(undo)

                pMap[(y%m_dataSizeY)*m_dataSizeY + (x%m_dataSizeX)] 

                    &= ~value;

            else

                pMap[(y%m_dataSizeY)*m_dataSizeY + (x%m_dataSizeX)] 

                    |= value;

        }

    }

}

//--------------------

int BitwiseInfluenceMap::GetInfluenceType(int* pMap,

                                               Point3f& location)
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{

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;

    return pMap[gridX,gridY] & 0x0f;

}

//--------------------

int BitwiseInfluenceMap::GetInfluenceDirection(int* pMap,

                                                    Point3f& location)

{

    int gridX = location.x()/ m_celResX;

    int gridY = location.y()/ m_celResY;

    return pMap[gridX,gridY] >> 8;

}

USES WITHIN THE TEST BED FOR A BITWISE IM

Figure 19.5 shows the bitwise system up and running in the test bed game. Even 
using the somewhat arbitrary variables that we tracked in the example, the AI ship 
would benefit. By checking the IM under approaching asteroids, the ship could use 
the general direction flags to steer his evasion in better directions. The direction of 
travel could also help him with asteroids that are soon to wrap, because his evade 
state could watch for asteroids moving away from him against the opposite edge of 
the game.

Both evading and approaching asteroids could use the general direction of 
travel logged into the IM as a way to either steer clear efficiently, or to proactively 
approach along a parallel direction, which is more like how humans play asteroids. 
Humans rarely fly directly at asteroids, knowing that they will shoot them. Rather, 
they usually approach from a safe side path of travel, and then turn and shoot. If 
other variables had been tracked within the bitwise system, any number of different 
behaviors could be gleaned from the system.

OTHER IMPLEMENTATIONS

All these example IM implementations are just a sampling of what can be accom-
plished with the basic influence paradigm. Some other examples within our test 
bed might be the following:

A danger measurement (small, slow-moving asteroids headed away from us get 
low numbers; fast, large asteroids on collision courses with the ship get the highest) 
tracked within the IM would enable the ship to evade much more effectively. This 
would be similar to the control type of map, but more specialized for  evasion.
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If the game had additional powerups, enemy ships, or environmental objects 
(such as static planetoids or black holes, for example) several more complex 
states would be needed to handle them within the AI system. An IM would 
help by further specializing the different pathfinding tasks, providing “control” 
information for objects that require more complex interactions, and being a 
platform for terrain analysis.
If the game world were much larger, or oddly shaped, the IM array would be a 
good place to do game object searches because a pathfinder could find better 
targets than the simple “Closest asteroid or powerup” system currently being 
used. The IM could be tagged with connectivity data so that object searches 

FIGURE 19.5 AIsteroids test bed with a bitwise IM engaged.
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take the wrapping borders into account, and irregularly shaped worlds would 
wrap as usual.
The IM array could keep a short duration record (10 seconds should be long 
enough) of the occupance data, and maybe the movement direction of the 
 occupance. The ship could use this information to try to keep out of highly 
traveled areas of the map, or line up next to one of these “routes,” and the next 
time the asteroid comes along, the ship could attack then. This system might 
only be turned on when there are only a few asteroids left, and only if there are 
fast-moving asteroids, so that the ship doesn’t do a lot of unnecessary move-
ment to chase down a straggler asteroid.

Adding smart terrain techniques on top of our IM system would be useful for a num-
ber of reasons. Using smart terrain within the test bed would require four things:

 1. An extension to the GameObj class (SmartObj, namely) that includes a new 
Update() function, where it would broadcast a message about the type of 
 object it is, and possibly some other information (position or distance from 
the main ship, and some kind of priority value). Each SmartObj would also 
need an Interact() function that the ship would call to properly use each 
object. Using an object would be context-sensitive, so using an asteroid might 
mean shooting or dodging it, but using a powerup would mean collecting it. 
Notice that objects do not have to move and could be static structures within 
the game world, but they still must be represented by an object at some level.

 2. A new decision system for the ship (a simple FSM would suffice) that lis-
tens to the incoming messages, and decides on a primary object for the 
ship to interact with. Based on a number of factors, the ship might also 
interact with several secondary targets (calling the Interact() function on 
six asteroids might only uncover one asteroid that causes the ship to fire; 
the other five additively thrust the ship to perform avoidance or lead the 
ship toward an alternate path), so the ship would keep a list of the objects 
that it cares about and calls each object’s Interact() method. If the interac-
tion is fairly complex, then the smart object’s Interact() call would likely 
be better off written as an FSM or a script of some sort.

 3. To be fully smart, each object would also need to include all the additional 
code and data necessary for the ship to interact with it. So, if you make a new 
powerup for the game that requires the ship to dock with it by playing a special 
animation, the object would have to include that animation data. Other spe-
cial case data would include sound effects, powerup effects, any necessary code 
to incorporate it into the IM system the game is using (if any), and so on.

 4. Game code that deals with some object interactions would need to be re-
moved. The GetPowerup() code needs to be removed from the ship class, 
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and most of the behavior code will be moved from the ship’s states and into 
the smart object’s interaction functions. This might seem a bit backward, 
but notice that when this refactoring process is finished, adding new pow-
erups, weird space anomalies, or enemies would become a process of just 
setting up the smart object, and letting it loose into the game.

PROS OF LOCATION-BASED INFORMATION SYSTEMS

LBI systems are a generic interface for games, and as such, almost any specialized 
location data requirement can be built within the system. LBIs are intuitive and 
easy to program and scale well to large and small problems. Debugging LBI systems 
is generally very simple; employing visual feedback is straightforward (as the dem-
onstration implementations show).

Generally, IM systems tend to simplify the perception search space by lowering 
the resolution of the data that the AI needs to consider when making decisions. IM 
systems also represent a kind of shared knowledge base about the world that AI char-
acters can use to act more intelligently. Thus, even though the ship hasn’t personally 
made every little calculation about the asteroids in the map, it can consult the IM for 
a wealth of info about each asteroid and make far smarter decisions in less time.

CONS OF LOCATION-BASED INFORMATION SYSTEMS

LBI systems do have trade-offs, however. IM arrays tend to be expensive to memory 
budgets, especially in games with large data requirements, large world sizes, and 
high array resolutions. You need to be smart in implementing your IM system, 
using multiple levels of resolution to limit data size and using local, relocatable 
higher resolution IMs for more detailed work instead of an all-encompassing IM.

Terrain analysis can be computationally expensive because of the many searches 
through the array that need to be performed to glean all the necessary information. 
Almost any pattern-matching algorithm is going to be costly and prone to error. 
However, this is also the only way to better emulate human analysis and perfor-
mance within complex games.

EXTENSIONS TO THE PARADIGM

The LBI systems implemented in this chapter are very rudimentary, meant to dem-
onstrate the breadth of things possible within the model. The only limits to the 
different ways that you can use these basic principles in your game are the type of 
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game you are working on, the data size you are allotted for your IM, and the CPU 
time you can spend searching the map for useful patterns that you can exploit.

Almost any genre can find a suitable use for these techniques. FTPS games 
could use them for king-of-the-hill-style matches, to track control. RTS games are 
the biggest potential users of these methods, with the possibility for many different 
areas of the game using a shared IM for a variety of tasks. Even genres like classic 
adventure games could use LBI methods; you could keep track of where the user 
is clicking with the mouse, and if he seems to be clicking everywhere, or the same 
places over and over again, he’s probably stuck or doesn’t understand some puzzle 
element and could use some contextual help.

OPTIMIZATIONS

IMs deal with a large contiguous block of memory, so writing and reading from IMs 
becomes a problem similar to using early software graphics engines. You are almost 
“blitting” influence data to the array, and reading values back out again. Thus, many 
of the optimizations that people used for early graphics also apply to IM optimiz-
ing, which is where the dirty rectangles analogy came from earlier when we were dis-
cussing the occupance IM implementation. Instead of drawing every element into 
the array every update, you draw the small areas where objects moved. Other similar 
 optimizations might include finding out the size of the data bus on the machine you’re 
developing for and ensuring that the size of the usual data element you write or read 
out of it fits within the bus, to ensure fast data transfer, as well as better cache usage.

The other optimizations talked about during the rest of the chapter, such as 
levels of IMs with increasing resolutions (level of detail IM arrays), as well as local 
IMs that use much more detail, will save you both memory and computation time 
because you only apply as many CPU resources to IM tasks as you need.

TA functionality needs to be optimized on a per-case basis because TA tasks 
differ so greatly in terms of many factors: what they are trying to accomplish, the 
scope of their search within the IM array, the kinds of patterns they are seeking to 
find, and the frequency that the given TA task must be updated.

DESIGN CONSIDERATIONS

LBI systems are usually found in the more AI-heavy games, such as RTS, death-
match FTPS, and RPGs, because they require a level of intelligence that the more 
action-oriented genres do not need from their AI opponents. LBI have an open 
architecture for location-specific information and allow proven search methods to 
be applied to this data in a central location.
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TYPES OF SOLUTIONS

LBI can be used to solve both tactical and strategic types of AI problems. Tactically, 
an IM can help guide pathfinding and dynamic obstacle avoidance. It can provide a 
character with secondary behavior cues so that he looks more engaged in the world. 
At the strategic level, TA can provide an AI system with pattern matching necessary 
to really use the terrain, and plan large-scale battles or building whole towns.

Objects within a smart terrain system are typically more tactical because they 
don’t tend to add much to the strategic intelligence of an AI character. You don’t see 
Sims characters planning very far ahead to satisfy a need. They mostly roam, seek-
ing the next object that will help them. Yes, the characters go to work to get money, 
but that’s more of a game-state mechanism rather than a plan in which a Sims 
character “thinks” about wanting something and then goes off to earn the money 
to buy it. This is because each object is an island unto itself and doesn’t know about 
any of the other objects in the world except for the thing that object has been pro-
grammed to interact with.

AGENT REACTIVITY

LBI is a secondary system, so reactivity is more a question of what primary AI tech-
nique is being used. LBI systems can help make a character much more proactive 
in its reactions, however, so that should be considered.

SYSTEM REALISM

IM-enabled games are not necessarily more realistic. In the real world, the micro-
wave certainly doesn’t broadcast that it will feed you. But with the right level of IMs 
and analysis, a game could make much more realistic, humanlike decisions. Using a 
central map of information is much more like the human approach to these kinds 
of problems, rather than knowing everything like a computer opponent and/or 
cheating. Smart terrain objects aren’t really a realistic way of modeling things, but 
they do allow a much richer environment because new objects can be added so 
readily, and they do abstract objects and environmental elements into categories, 
which is a realistic human behavior.

GENRE AND PLATFORM

The genres listed earlier—RTS, deathmatch FTPS, and RPGs—are the usual sus-
pects for IM systems and TA. Smart terrain has only found its way into a small 
number of titles so far, but it is much more general, relative to genre. Any game that 
needs a no-nonsense level of interaction between arbitrary objects and the envi-
ronment could benefit from a smart objects system—both for ease of writing the 
primary AI decision system and from an expandability point of view. The only real 
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platform concern with LBI is the memory requirements of an IM array, but with 
proper forethought and optimizations, this can be overcome.

DEVELOPMENT LIMITATIONS

Development limitations are not really a concern for LBI systems. LBI information 
actually might help debugging of a game, so that isn’t an issue. IMs are another way 
to decouple AI characters from the rest of the code (by providing a central data 
location for them to search in, instead of making gamewide code calls) and help 
the AI system become more modular. Smart terrain objects, by their nature, allow 
modular implementation, so they tend to be debuggable and scaleable.

ENTERTAINMENT LIMITATIONS

Tuning difficulty settings, balancing specific behaviors, and other entertainment 
concerns are generally independent of LBI system use, so they are not usually a 
problem.

SUMMARY

Location-based information systems can provide a variety of decision-making par-
adigms with additional flexibility in dealing with location-specific data, as well as 
decoupling the AI characters from the rest of the game by providing them with a 
central data location or encapsulating logic and data for interactions.

The three main categories of LBI systems covered were influence maps, smart 
terrain, and terrain analysis.
IMs are a generic data structure usually represented as a 2-D grid of data ele-
ments laid over the game world. The data contained within, or even the struc-
ture of the data within, is completely arbitrary to the method.
Smart terrain is a technique whereby logic and behavior data showing how to 
use various world features and game objects are stored in the objects them-
selves. This provides a modular and expandable world for the game characters 
to live in, but limits the amount of interaction that can be done with any one 
element.
Terrain analysis is a family of methods that can be performed on terrain data to 
search for usable patterns that can lead to better strategic decisions.
The demonstration implementation was done in four parts: the basic IM, and 
the three various versions: occupance, control, and bitwise IMs.
LBI methods within a game can be implemented in many other ways than were 
demonstrated in this chapter.
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The pros of LBI systems include ease of implementation and debugging,  
generic interface, and centralizing AI data.
The cons of LBI systems include large memory requirements for IM arrays, and 
possible high computation costs for heavy TA.
IM functions can sometimes be optimized along the lines of early graphics rou-
tines because you are writing and reading data from large contiguous arrays.
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Steering Behaviors20

Sometimes, the creatures you’re building in your game don’t require advanced 
intelligence. High-level decision making simply is not necessary. Instead, you 
need organic, natural-looking behaviors. You may desire behaviors that move 

characters around in realistic ways, either separately or within large groups. In 
1986, Craig Reynolds began experimenting with creating computer simulations of 
large numbers of birds or fish flocking. These flocking (or schooling, in fish terms) 
behaviors gradually grew into what he called steering behaviors. The concept, as well 
as implementation, of steering is so simple and at the same time so useful in many 
areas of game character creation that this chapter is presented to fully explore steer-
ing behaviors so that you can immediately start using them in your games.

STEERING BEHAVIOR OVERVIEW

So far in this book, we have covered systems that are mostly high-level, strategic 
decision-making architectures. Steering behaviors are different. They represent 
much lower-level decision making. Instead of representing an overall plan for 
an AI-controlled character’s actions, steering behaviors are only concerned with 
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which direction a character should steer. Where does the character want to go, at 
what speed, and along which path? In fact, characters that use steering behaviors 
exclusively are sometimes called autonomous agents, meaning that they are typi-
cally just set in motion, and don’t require additional help from the programmer or 
scripted elements in order to perform within the game world.

Think of games in which the main character has to run through large moving 
crowds of people that are milling about. These types of NPCs are generally coded as 
autonomous agents using steering behaviors to give them lifelike reactions to each 
other (and the player) with minimal effort on the programmer’s part. Notice that 
these characters don’t have total autonomy. If you walk up to a crowd and take out a 
crowbar from your backpack, the closest crowd member probably won’t come over 
and ask if you need help, or even look at you directly. But what he’ll probably do is 
turn and walk around you, essentially continuing on his way without being blocked 
by your intrusion. Movement is generally the only behavior that is modeled using 
steering, so that is the part of the AI behavior that is generally thought of as autono-
mous within this type of system. However, it can be used for other things, some of 
which will be discussed later in the chapter under “Extensions to the Paradigm.”

Reynolds called his original creatures “boids,” a play on birds. He found that 
with very simple rules, he was able to model startlingly realistic-looking, com-
plex flocking behaviors. In fact, his initial implementation involved only three 
behaviors: alignment, cohesion, and separation. See Figure 20.1 for a depiction 
of these behaviors.

Alignment

Original

Cohesion

Separation

FIGURE 20.1 Alignment, cohesion, and separation behaviors.
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Alignment represents the individual’s attempt to position itself such that it’s 
heading in essentially the same direction as the rest of the group.
Cohesion is the force keeping the group together; keeping the collection tight 
and focused.
Separation, which can be seen as somewhat the opposite of cohesion, gives the 
group members a “personal space bubble” so that they don’t crowd each other 
too much, and every individual has room to operate.

The boids took into account these simple behaviors, but they didn’t concern 
themselves with all members of the flock, only those in their immediate neighbor-
hood (in Figure 20.1, the area that looks something like a Pac-man character is the 
neighborhood description Reynolds used; notice that in each behavior the boid not 
inside the neighborhood is not taken into account). These few perceptions paid 
real dividends. Reynolds’s simulations produced some of the most realistic-looking 
group dynamics seen on a computer screen, and the level of emergent behavior from 
these few rules was very exciting to watch and tinker with. These group dynam-
ics were created from a distributed behavior model: Each member of the group is 
“doing its own thing,” without modeling the group directly.

In later work, Reynolds added some additional behaviors, namely obstacle 
avoidance and goal seeking, and created several demonstrations (small graphical 
movies, since computers back then weren’t fast enough to show complex 3D envi-
ronments in real time), which were presented at the annual conference on computer 
graphics, SIGGRAPH (which is short for Special Interest Group on GRAPHics and 
Interactive Techniques) and to the world at large. The reason for these additional 
behaviors was to directly facilitate the demos, which used static obstacles (pillars or 
rock outcroppings) and had the boids following a scripted path in order to show 
the rich movement that the simulations allowed.

As mentioned earlier, the key element of Reynolds’s model was the level of 
emergent behavior that sprang forth. Emergent behavior is something like the holy 
grail of game programming, where the combination of simple local rules lead to 
very complex global behaviors. In many cases, the emergent elements can even be 
suprising or unexpected. Each individual rule is inherently nonlinear in that it is 
an analog response to only local stimulus. This would move the group to a more 
chaotic state over time. But, negative feedback from the main controller brings 
the overall group behavior back into a more ordered state. It is this push and pull 
between chaos and order that makes the overall effect lifelike. Life itself has been 
called “order on the edge of chaos” by Christopher Langton, a biologist and com-
puter scientist who founded the field of artificial life.

Reynolds has stated that one of the significant properties of realistic lifelike 
behavior is that of unpredictability over moderate time scales. Watching a flock 
of boids move, trying to predict anything but short-term changes in the flock’s 
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behavior is impossible. Half a second from now, most of the flock members will be 
heading in the same general direction, at approximately the same speed as before. 
But where will any given member of the flock be in a minute? Prediction is all but 
impossible.

STEERING SKELETAL CODE

The code will be implemented in the following classes:

The SteeringBehavior class, which is the basic behavior definition in the system.
The SteeringBehaviorManager class, which houses and controls all the behav-
iors, and combines all the steering vectors.
The SteeringControl class, the primary controller class, contains the 
SteeringBehaviorManager as well as sets up the priority for the different behav-
iors, and handles other game-specific code not covered by the steering behav-
iors (like perceptions, and in the case of our AI testbed, shooting at asteroids).

The next sections will discuss these classes in more detail, and we will then cover 
the specific implementation of the SteeringAIControl class and each SteeringBehavior
needed for our AI test bed application.

THE SteeringBehavior CLASS

SteeringBehavior has been implemented as an almost purely virtual class, with 
only two real functions: SteerTowards and SteerAway. These are simple helper func-
tions that most steering behaviors will require, that of heading towards a particular 
calculated target using the standard formula:

calculated vector to target � current velocity vector

SteerAway is just included for completeness; you could pass in a negative steering 
vector to SteerTowards and get the same result.

Steering behaviors all have an Update() function, a Draw() call, and a Reset(),
which are just stubs in the base class.

The skeletal code header for this class can be seen in Listing 20.1. The class also 
contains some data members:

m_name. Just a text string used for debugging display purposes
m_weight. Used by the manager class when using the simple weighted combi-
nation method (which will be discussed in detail later)
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m_parent. Used by the individual state classes, to access shared data and/or 
functions
m_probablility. Used by the manager class when using the prioritized dither 
combination method (which will also be discussed in detail later)
m_disable. Used by the manager class when a particular steering behavior 
needs to be turned off for any reason
m_lastForceMagApplied. Another field used for debugging purposes. This 
stores the magnitude of the force that the behavior calculated the last time it 
was updated

There are many classicly implemented steering behaviors, some of which we’ll 
be discussing after we finish our look at the framework code. Some of the behaviors 
we’ll be discussing include: pursuit, evade, arrive, wall avoidance, and the flocking 
behaviors. More on this in the implementation section.

LISTING 20.1 SteeringBehavior header file.

class SteeringBehavior

{

 public:

 //constructor/functions

 //constructor/functions

 SteeringBehavior(AIControl* parent,char* name = NULL)

 {

  memcpy(m_name,name,strlen(name)+1); 

  m_parent = parent;

  m_disable = false; 

  m_lastForceMagApplied = 0.0f;

 }

 virtual bool Update(float dt,Point3f& totalForce) {return false;}

 virtual void Reset() {}

 virtual void Draw() {}

 virtual void SteerTowards(Point3f& target,Point3f& result)

 {

  Point3f desired = target - m_parent->m_ship->m_position;

  float targetDistance = desired.Length();

  if(targetDistance > 0)

  {

   desired = desired.Normalize() * 

                           m_parent->m_ship->m_maxSpeed;

   result = desired - m_parent->m_ship->m_velocity;

  }
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  else

   result.SetZero();

 }

 virtual void SteerAway(Point3f& target,Point3f& result)

 {

  Point3f desired = m_parent->m_ship->m_position - target;

  float targetDistance = desired.Length();

  if(targetDistance > 0)

  {

   desired = desired.Normalize() * 

    m_parent->m_ship->m_maxSpeed;

   result = desired - m_parent->m_ship->m_velocity;

  }

  else

   result.SetZero();

 }

 //data

 AIControl* m_parent;

 float  m_weight;

 float  m_probability;

 char  m_name[30];

 bool  m_disable;

 float  m_lastForceMagApplied;

};

THE SteeringBehaviorManager CLASS

This class serves as the overall behavior handler. It has a container holding all the 
behaviors, and will in turn update them and then combine each individual steering 
vector into a total steering force that the ship will consume.

Any time you set up creatures that are using steering behaviors, you will quickly 
find that the best way to design and use them is to keep individual behaviors very 
simple, and combine multiple behaviors together in order to get the full creature 
behavior that you desire. The dynamic interaction between steering behaviors is 
the key to achieving true emergent behavior. Actually combining steering forces is a 
touchy issue however—if combined poorly or randomly, the behavioral interaction 
can be meaningless or seem patternless (which in turn doesn’t look lifelike).

In the simplest combining system, you would just add all the forces together, 
and then clamp the sum to some upper bound so that your creatures wouldn’t 
suddenly accelerate to lightspeed and be gone. This almost never works out. If the 
behaviors being combined are completely complementary, meaning that they sup-
port one another and tend to layer nicely, this simple method can work.
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But most steering behavior combinations tend to be antagonistic, leading to more 
interesting dynamics as the behaviors push and pull against each other. However, using 
a simple summing combination method with this can lead behaviors to cancel each 
other out. Totally antagonistic behaviors (like running away and running towards) can 
be somewhat easily tweaked so that they work better together (by adjusting range of 
effect, or other considerations), but it becomes much more difficult to build a large 
number of behaviors in which the sum of steering effects does not cause cancelling out 
issues. So we must turn to a more structured way of combining steering forces. There 
are several ways to do this, the most popular are:

Simple Weighted. This is a slight variation on the method discussed earlier, in 
that we sum up all the individual steering forces. However, we apply a weight mul-
tiple to each force vector before we add it into the running sum. This allows you to 
determine just how much of an effect each steering behavior is allowed to have on 
the overall system. Tweaking these weights is a much easier way of tuning steering 
behaviors to work well together, but can lead the programmer down a long road 
of adjusting small numbers up and down in an effort to find a good balance.
Prioritized Sum. Another problem with the simple summation methods we’ve 
discussed include the fact that they update every steering behavior a creature 
has every time the system loops. This can be expensive on CPU time. In the Pri-
oritized Sum method, we store our behaviors in a prioritized list. As we update 
each one, we sum the result into an accumulated steering force, just like before. 
The magnitude of the incoming force is also subtracted from a maximal force
that the programmer has set. So, when we finally get to the point where the 
incoming steering force is larger then what’s left of the maximally allowed total, 
we truncate the incoming force to fit, and then stop updating our behaviors.
 What this means is that we only update, and use, the amount of force that 
we’ve allowed for. This gives a lot of power to the programmer, in that the pro-
grammer not only can control which behavior is more important to the system 
(like the weights in the weighted sum method), but also makes higher-priority 
behaviors more pure by not including lower-priority behaviors at all if the max 
steering force has been used up. It also means that you can tune the amount 
of CPU time your AI system uses, by limiting the total force allowed so that at 
most only a few behaviors will be updated at a time.
Prioritized Dither. This method was detailed by Craig Reynolds himself in one 
of his papers. Again, each behavior is stored in the manager in priority order. 
Each behavior is also assigned a probability value. When the manager goes to up-
date the behavior collection, it first rolls the dice and tests against the behavior’s 
probability value. If it passes, the behavior gets updated, and if the behavior does 
something (meaning, it sends back a steering vector), then the manager stops 
updating. Otherwise, the next behavior in the collection is tested.
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 In terms of CPU usage, prioritized dithering is very inexpensive. However, it 
is tough to tune the overall system to get what you want out of it. For behaviors 
that require very accurate results, a very high degree of probability must be as-
signed, otherwise that accuracy will be undermined by other behaviors firing 
and moving the agent in other directions. If you have more than one behavior 
that requires high accuracy, you might want to try one of the other combina-
tion methods.

Listing 20.2 shows the manager class header. The basics are here: update, reset, 

and draw. There are some secondary functions dealing with behaviors: You can add 

a behavior into the system (with AddBehavior), initialize a behavior in the system 

(with SetupBehavior), and disable a behavior that is currently in the system (with 

DisableBehavior). The rest of the class is the combination methods and an accessor 

for the final combined steering force.

LISTING 20.2 SteeringBehaviorManager header.

class SteeringBehaviorManager

{

public:

    //constructor/functions

    SteeringBehaviorManager(AIControl* parent = NULL);

    virtual void Update(float dt);

    virtual void AddBehavior(SteeringBehavior* behavior);

 virtual void DisableBehavior(int index) 

        {m_behaviors[index]->m_disable = true;}

 virtual void SetupBehavior(int behaviorIndex, 

         float weight, 

         float probability,

         bool disable = false);

    virtual void Reset();

 virtual Point3f& GetFinalSteeringVector() 

         {return m_totalSteeringForce;}

 virtual void Draw();

 virtual bool CombineForceWeighted(Point3f& steeringForce, 

                                      float weight);

 virtual bool CombineForcePrioritySum(Point3f& steeringForce,

                                       float weight);

 virtual bool CombineForcePriorityDithered(Point3f& steeringForce,

                                              float weight,

                                              float randChance);
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protected:

 std::vector<SteeringBehavior*> m_behaviors;

 std::vector<SteeringBehavior*> m_active;

 std::vector<float> m_activeForce;

 int   m_numBehaviors;

 AIControl* m_parent;

 Point3f  m_totalSteeringForce;

 float  m_maxSteeringForce;

}

The implementation of the combination methods is in Listing 20.3. 
The final part of the combination is done in the manager Update() func-
tion, shown in Listing 20.4. Notice how some methods require clamping 
after all summation is over, whereas others don’t. Also, notice the m_active
list. It stores all the behaviors that did something on any given update, so 
that you can use this info later. The draw function uses the active list to 
display the currently active behaviors on-screen.

LISTING 20.3 Implementations for the steering combination methods.

bool SteeringBehaviorManager::CombineForceWeighted(Point3f&

       steeringForce, float weight)

{

 m_totalSteeringForce += steeringForce * weight;

 return true;

}

//---------------------------------------------------------

bool SteeringBehaviorManager::CombineForcePrioritySum(Point3f& 

         steeringForce)

{

 bool retVal = false;

 float totalForce = m_totalSteeringForce.Length();

 float forceLeft  = m_maxSteeringForce - totalForce;

 if(forceLeft > 0.0f)

 {

  float newForce = steeringForce.Length();

  if(newForce < forceLeft)

   m_totalSteeringForce += steeringForce;

  else

   m_totalSteeringForce += steeringForce.Normalize()*

      forceLeft;
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  //if there’s anything left over, say so

  if((forceLeft - newForce) > 0)

   retVal = true;

 }

 return retVal;

}

//---------------------------------------------------------

bool SteeringBehaviorManager::CombineForcePriorityDithered(Point3f& 

     steeringForce, float randChance)

{

 bool retVal = true;

 if(randflt() < randChance)

 {

  if(steeringForce.Length())

  {

   m_totalSteeringForce = steeringForce;

   retVal = false;

  }

 }

 return retVal;

}

LISTING 20.4 SteeringBehaviorManager’s Update() function.

void SteeringBehaviorManager::Update(float dt)

{

 //don’t do anything if you have no states

 if(m_behaviors.size() == 0 )

  return;

 //Clear out debug logs

 m_active.clear();

 m_activeForce.clear();

 //reset the steering vector

 m_totalSteeringForce.SetZero();

 //update all the behaviors

 bool needToClamp = false;
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 for(unsigned int i =0;i<m_behaviors.size();i++)

 {

  Point3f steeringForce;

  steeringForce.SetZero();

  bool didSomething = m_behaviors[i]->Update(dt,steeringForce);

  if(didSomething)

  {

   //keep track of the behaviors that actually 

      //did something this tick 

   m_active.push_back(m_behaviors[i]);

   m_activeForce.push_back(steeringForce.Length());

   //now we want combine the behaviors into 

      //the total steering force using

   //whatever method we decide upon

   bool keepGoing = false;

   //ONLY USE ‘ONE’ COMBINATION METHOD, 

      //THEY’RE ONLY ALL HERE FOR THE DEMO CODE

   

   //This is for the “Simple weighted combination” method

//   keepGoing = CombineForceWeighted(steeringForce,

          m_behaviors[i].m_weight);

   //Now that we’ve taken all the behaviors into account

      //that we want to for each method, we

   //must “normalize” our results for the “Simple

      //Weighted Combination” method

//   needToClamp = true;

   //This is for the “Prioritized Sum” method

   keepGoing = CombineForcePrioritySum(steeringForce);

   //This is for the “Prioritized Dither” method

//   keepGoing = 

    CombineForcePriorityDithered(steeringForce, 

         m_behaviors[i].m_weight);

//   needToClamp = true;

   //if we’re done checking behaviors (for 

      //whatever reason), exit out

   if(!keepGoing)

    break;

  }

 }
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 if(needToClamp)

  CLAMPVECTORLENGTH(m_totalSteeringForce,

    0.0f,m_maxSteeringForce);

}

THE SteeringControl CLASS

The final part of the steering system (and also the beginning of the game-specific 
code) is the specific Control class, SteeringControl. This class sets up the behaviors 
to be used and contains some game specific functions. The header is shown below 
in Listing 20.5. The implementation code will be covered later when we show the 
full in-game system.

LISTING 20.5 SteeringControl header.

class SteeringControl: public AIControl

{

public:

 //constructor/functions

 SteeringControl(Ship* ship = NULL);

 void Update(float dt);

 void UpdatePerceptions(float dt);

 void Init();

 void Draw();

 void Reset();

 //perception data 

 //(public so that states can share it)

 GameObj* m_nearestAsteroid;

 float          m_safetyRadius;

    

protected:

 //data

 SteeringBehaviorManager* m_behaviorManager;

 int m_getPowerupIndex;

}

IMPLEMENTING A STEERING-CONTROLLED SHIP INTO OUR TEST BED

To get our AIsteroids program to use steering behaviors, we first need to determine 
the types of steering behaviors that we want to have exhibited by a ship during a 
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game of asteroids. Although the list of behaviors could be large (if we really wanted 
to embellish), a short list of basics should suffice:

Approach. (See Figure 20.2.) This method steers the agent directly towards an 
object. It uses the Game.GetClosestGameObj() function, so in essence we can use 
this behavior to approach any type of object. We set up the behavior with the 
types in which we’re interested. The approach behavior will find the closest 
object and head to it.

Current vector
of travel

Approach
vector

FIGURE 20.2 Depiction of the approach behavior.

Pursuit. (See Figure 20.3.) This method is actually a child class of approach. It 
does essentially the same thing, it just heads towards the future position of the 
nearest object. This is useful for intercepting moving and/or unwilling objects 
(meaning, they’re running away).

Pursuit
vector

Target’s
future

position

FIGURE 20.3 Depiction of the pursuit behavior.

Evade. (See Figure 20.4.) The opposite of pursuit, this method heads away 
from an object. It also uses the future position of the object, to even more ac-
curately slip away from the object in question.
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Arrive. (See Figure 20.5.) This method is a child of pursuit. This behavior seeks 
towards an object’s future position, but will slow down as it gets close, coming 
to a stop once it gets directly at the target.

Evade
vector

FIGURE 20.4 Depiction of the evade behavior.

FIGURE 20.5 Depiction of the arrive behavior.

AvoidWall. (See Figure 20.6.) Just as it says, this behavior tries to keep the ship 
from getting too near a “wall.” A wall, in this case, is actually a data structure of 
a number of linked points, so this behavior can actually be used to avoid real 
walls, as well as any type of general obstacle that can be defined as a series of 
linked points.

Current vector
of travel

Avoid wall
vector

Penetration 
into wall

FIGURE 20.6 Depiction of the AvoidWall behavior.
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AvoidBorder. (See Figure 20.7.) This is a simplified AvoidWall-style behavior, 
optimized to work for our specific Asteroids game world. Since we know that 
the world is square, as such we can make the avoidance much simpler and less 
expensive for the CPU by using this behavior instead.

Current vector
of travel

Border repulsion 
vector

BrakingBraking
vectorvector

Braking
vector

Border repulsion force zone

FIGURE 20.7 Depiction of the AvoidBorder behavior.

Wander. (See Figure 20.8.) Although there are many ways to get an agent to 
wander around (like giving the agent random locations to go to, or giving the 
agent random velocities), many totally random methods give jerky, unnatural 
motion. Reynolds originally implemented this method, which uses an offset 
circle as a target. The exact spot the behavior steers towards is a position that 
randomly slides back and forth around the circumference of the circle. This 
indirect randomness gives the final behavior a smooth look.

FIGURE 20.8 Depiction of the Wander behavior.

Wander target–moves 
along circular path

Wander
vector

The next seven listings (20.6 through 20.12) will take us through the imple-
mentation for each of these basic behaviors.

SteerApproach (Listing 20.6) is performed with two main functions: Update()
and FindTarget(). This class serves as a base for both the pursuit and (through in-
heritance) arrive behaviors. We’ll be using this same two-step approach (find/update) 
for the whole family.
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FindTarget uses the Game singleton’s access to the global game object list to find 
the closest object of the particular type (or types) we’re interested in. If it finds 
something, it saves it into the m_currentTarget variable and returns true.

Update calls FindTarget(), and then uses the SteerTowards() function inherited 
from SteeringBehavior. This gives a steering force that is directly towards the posi-
tion of the found object. Since we’re using the SteerTowards() call, we know that 
the force is the maximal allowed force in the direction we want to go.

LISTING 20.6 SteerApproach implementation.

bool SteerApproach::Update(float dt, Point3f& totalForce)

{

 bool adjustment = false;

 bool found = FindTarget();

 if(found)

 {

  Point3f steeringForce;

  steeringForce.SetZero();

  SteerTowards(m_currentTarget, steeringForce);

  totalForce += steeringForce;

  adjustment = true;

 }

 return adjustment;

}

//---------------------------------------------------------

bool SteerApproach::FindTarget()

{

 bool retVal = false;

 //turn and then thrust towards closest object that we care about

 SteeringControl* parent = (SteeringControl*)m_parent;

 GameObj* objToApproach =

     Game.GetClosestGameObj(parent->m_ship,m_objectsToConsider);

 if(objToApproach)

 {

  m_currentTarget = objToApproach->m_position;

  retVal = true;

 }

 return retVal;

}



Chapter 20  Steering Behaviors 453

SteerPursuit (Listing 20.7) builds upon SteerApproach. It overrides the im-
plementation of FindTarget() to get the future position of the object being ap-
proached. The base class functions in SteerApproach do the rest.

LISTING 20.7 SteerPursuit implementation.

bool SteerPursuit::FindTarget()

{

 bool retVal = false;

 //if the guy you’re pursuing is essentially 

//in your path, then just approach,

 //otherwise we’ll try and head him off using prediction

 SteeringControl* parent = (SteeringControl*)m_parent;

 GameObj* objToPursue   = 

     Game.GetClosestGameObj(parent->m_ship,m_objectsToConsider);

 if(objToPursue)

 {

  Ship*    ship = parent->m_ship;

  //if the other guy is “to my front” and 

     //we’re moving towards each other...

  float dotVelocity = DOT(ship->UnitVectorVelocity(),

         objToPursue->UnitVectorVelocity());

  Point3f deltaPos = objToPursue->m_position - ship->m_position;

  Point3f targetPos = objToPursue->m_position;

  if ((DOT(deltaPos,ship->UnitVectorVelocity()) < 0) || 

               (dotVelocity > -0.93))//magic number == about 21 degrees

  {

   Point3f shipVel = ship->m_velocity;

   shipVel = shipVel.Normalize() * ship->m_maxSpeed;

      float combinedSpeed = (shipVel + 

        objToPursue->m_velocity).Length();

   float predictionTime   = deltaPos.Length() / combinedSpeed;

   targetPos = objToPursue->m_position + 

       (objToPursue->m_velocity*predictionTime);

  }

  m_currentTarget = targetPos;

  retVal = true;

 }

 return retVal;

}
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SteerEvade (Listing 20.8) is the exact opposite of pursuit. It also overrides 
the implementation of FindTarget() to get the future position of the object being 
approached, but then uses SteerAway instead of SteerTowards.

LISTING 20.8 SteerEvade implementation.

bool SteerEvade::Update(float dt,Point3f& totalForce)

{

 bool adjustment = false;

    //move away from the nearest object that you’re interested in

    SteeringControl* parent = (SteeringControl*)m_parent;

    GameObj* objToEvade = 

      Game.GetClosestGameObj(parent->m_ship,m_objectsToEvade);

 Ship* ship = parent->m_ship;

 if(objToEvade)

 {

  //ensure minimum distance

  float minDist;

  if(m_evadedLastUpdate)

   minDist  = 40.0f;

  else

   minDist  = 20.0f;

  float speed  = ship->m_velocity.Length();

  float spdAdj = LERP(speed/ship->m_maxSpeed,0.0f,EV_SPEED_BUFFER);

  float adjSafetyRadius = minDist + spdAdj + objToEvade->m_size;

  Point3f steeringForce;

  steeringForce.SetZero();

  Point3f deltaPos = objToEvade->m_position - ship->m_position;

  //is the nearest guy too close?

  if(deltaPos.Length() < adjSafetyRadius)

  {

   float dotVelocity = DOT(ship->UnitVectorVelocity(),

      objToEvade->UnitVectorVelocity());

   //if the other guy is “to my front” and 

      //we’re moving towards each other...

   Point3f targetPos = objToEvade->m_position;
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   if ((DOT(deltaPos,ship->UnitVectorVelocity()) < 0) ||

      (dotVelocity > -0.93))//magic number == about 21 degrees

   {

    Point3f shipVel = ship->m_velocity;

    shipVel = shipVel.Normalize() * ship->m_maxSpeed;

    float combinedSpeed = (shipVel + 

          objToEvade->m_velocity).Length();

    float predictionTime  = deltaPos.Length() /

       combinedSpeed;

    targetPos = objToEvade->m_position + 

         (objToEvade->m_velocity*predictionTime);

    deltaPos  = targetPos - ship->m_position;

   }

   //opposite of pursuit

   SteerAway(targetPos, steeringForce);

   totalForce += steeringForce;

   adjustment = true;

  }

 }

 m_evadedLastUpdate = adjustment;

 return adjustment;

}

SteerArrive (Listing 20.9) builds upon SteerPursuit. It uses pursuit’s 
FindTarget() function to find the future position of its target. It has a new Update()
function, however, that gently slows the ship down the closer it gets to the target. 
As you can see, it doesn’t use the SteerTowards() call that the other approach-based 
behaviors use. This is because SteerTowards() always returns a steering force with 
max magnitude. The arrive behavior requires the force to become smaller and 
smaller as the ship gets close. However, since we’re not using SteerTowards(), we 
have to remember to subtract off the ship’s current velocity vector.

LISTING 20.9 SteerArrive implementation.

bool SteerArrive::Update(float dt, Point3f &totalForce)

{

 bool adjument = false;

 bool found = FindTarget();

 if(found)

 {

  Point3f targetDelta = m_currentTarget – 

           m_parent->m_ship->m_position;
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  float distToTarget = targetDelta.Length();

  if (distToTarget > 0)

  {

   //debugging info...shows the targeting X 

      //on the arrive target

//   m_parent->m_target->m_position = m_currentTarget;

   float speed  = m_parent->m_ship->m_maxSpeed * 

        (distToTarget/ AI_MAX_SPEED_TRY);

   speed = MIN(speed, m_parent->m_ship->m_maxSpeed);

   targetDelta.Normalize();

   targetDelta *= speed;

   totalForce  += targetDelta - m_parent->m_ship->m_velocity;

   adjument   = true;

  }

 }

 return adjument;

}

SteerAvoidWall (Listing 20.10) is actually a general case static obstacle avoidance 
behavior. It projects three sensors out from the “front” of the ship (in our case, since 
the saucer doesn’t really turn, it uses the current velocity vector to determine the 
front). If any of these three sensors are penetrating a wall, we steer so that the sensor 
is freed by giving a force equal to the amount of penetration (scaled by a small factor 
to increase the behavior’s effectiveness) in the direction of the wall normal.

Note that for large amounts of agents working with large numbers of walls, this 
can be a fairly CPU-expensive behavior. We can easily implement measures to help 
with this cost. For instance, a big savings could be had quickly by culling out walls 
that are outside of a cheap radius proximity check. The walls themselves are passed 
in by the SteeringControl class. More on that when we go over the implementation 
of SteeringControl.

LISTING 20.10 SteerAvoidWall implementation.

bool SteerAvoidWall::Update(float dt,Point3f& totalForce)

{

 bool adjustment = false;

 SteeringControl* parent = (SteeringControl*)m_parent;

 Ship*            ship = parent->m_ship;

 //set up sensors

 m_sensors.clear();
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 Point3f movingDir = ship->m_velocity;

 movingDir.Normalize();

 //we don’t need to avoid anything if we’re sitting still

 if(ISZERO(movingDir.LengthSquared()))

  return adjustment;

 //clamp this vector: make sure it has at least a 1 length, 

 //the upper bound is just a large number

 CLAMPVECTORLENGTH(movingDir,1,80.0f);

 Point3f sensorVec = movingDir;

 //base sensor length partially on ship speed

 //divide by 4 is a magic number, use smaller value 

 //if you want more speed influence

 float sensorLength = (m_avoidedLastUpdate?50.0f :20.0f) + 

                         (ship->m_velocity.Length()/4.0f);

 //straight

 m_sensors.push_back(Sensor(ship->m_position +

                               sensorVec*sensorLength,false));

 //right

 sensorVec = ROT2D(sensorVec, 45);

 m_sensors.push_back(Sensor(ship->m_position + 

                               sensorVec*(sensorLength/2.0f),false));

 //left

 sensorVec = movingDir;

 sensorVec = ROT2D(sensorVec, -45);

 m_sensors.push_back(Sensor(ship->m_position + 

                               sensorVec*(sensorLength/2.0f),false));

 //for each sensor, check for wall collision

 Point3f temp;

 Point3f intersectionPoint;

 Point3f steeringForce;

 steeringForce.SetZero();

 int closestWallIndex  = -1;

 float closestWallDist = 9999999.0f;

 for (unsigned int i=0; i<m_sensors.size(); i++)

 {

  bool collisionOccurred = false;

  //find closest collision

  for (unsigned int j=0; j<m_wall.size(); j++)

  {

   float lambda = 0.0f;
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   LINEINTERSECT(ship->m_position,m_sensors[i].m_senseVector,

                 m_wall[j].m_point1,m_wall[j].m_point2, lambda,

          temp);

   //if the intersection lambda was within the 

      //line segments, we collided

   if (lambda >= 0.0f && lambda <= 1.0f)

   {

    //returns intersection point into temp

    float distToWall = (ship->m_position –

        temp).Length();

    m_sensors[i].m_collision = true;

    if (distToWall < closestWallDist)

    {

     collisionOccurred = true;

     closestWallDist = distToWall;

     closestWallIndex  = j;

     intersectionPoint = temp;

    }

   }

  }

  //did the sensor hit a wall?

  if (collisionOccurred)

  {

   Point3f penetration = m_sensors[i].m_senseVector –

                                         intersectionPoint;

   //create a force in the direction of the wall normal, with a 

   //magnitude of the overshoot

   Point3f thisWallSegment = m_wall[closestWallIndex].m_point2–

                                            m_wall[closestWallIndex].m_point1;

   steeringForce = thisWallSegment;

   steeringForce.Normalize();

   //force vector == normal to the wall

   float tempX       = steeringForce.x();

   steeringForce.x() = -steeringForce.y();

   steeringForce.y() = tempX;

   //use collision depth to

   //determine repel force magnitude

   //--we want to maximize repel at a depth of 20

   float collisionDepth = penetration.Length()/20.0f;

   steeringForce *=  (collisionDepth*ship->m_maxSpeed);

  }

 }//do all sensors
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 if (steeringForce.Length())

 {

  totalForce += steeringForce;

  adjustment = true;

 }

 m_avoidedLastUpdate = adjustment;

 return adjustment;

}

SteerAvoidBorder (Listing 20.11) is a simple behavior that takes advantage of the 
fact that our game world is square. It simply checks to see if you’re near one of the 
borders, and gives the ship a slight braking force, as well as a force normal to the border 
they’re close to. For a more general case obstacle avoidance behavior, see AvoidWall.
But, for our square asteroids world, this simple behavior more than suffices.

LISTING 20.11 SteerAvoidBorder implementation.

bool SteerAvoidBorder::Update(float dt,Point3f& totalForce)

{

 bool adjustment = false;

    SteeringControl* parent = (SteeringControl*)m_parent;

 Ship*    ship   = parent->m_ship;

 //ensure minimum distance

 float minDist;

 if(m_avoidedLastUpdate)

  minDist  = 30.0f;

 else

  minDist  = 15.0f;

 float speed  = ship->m_velocity.Length();

 float spdAdj = LERP(speed/ship->m_maxSpeed,0.0f,40.0f);

 float adjSafetyRadius = minDist + spdAdj;

 Point3f steeringForce;

 steeringForce.SetZero();

 //if you’re near a border...

 int lowX,highX,lowY,highY;

 float borderProximityX = 0.0f;

 float borderProximityY = 0.0f;
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 if(adjSafetyRadius > ship->m_position.x())

 {

  lowX = 1;

  borderProximityX = ship->m_position.x();

 }

 else

  lowX = 0;

 if(adjSafetyRadius > Game.m_screenW-ship->m_position.x())

 {

  highX = 1;

  borderProximityX = Game.m_screenW-ship->m_position.x();

 }

 else

  highX = 0;

 if(adjSafetyRadius > ship->m_position.y())

 {

  lowY = 1;

  borderProximityY = ship->m_position.y();

 }

 else

  lowY = 0;

 if(adjSafetyRadius > Game.m_screenW-ship->m_position.y())

 {

  highY = 1;

  borderProximityY = Game.m_screenW-ship->m_position.y();

 }

 else

  highY = 0;

 if(lowX || highX || lowY || highY)

 {

  //add a repulsion force to your current movement vector

  //plus a braking force

  steeringForce = ship->UnitVectorVelocity();

  steeringForce += (Point3f(1,0,0) + -steeringForce*0.5f)*lowX;

  steeringForce += (Point3f(-1,0,0)+ -steeringForce*0.5f)*highX;

  steeringForce += (Point3f(0,1,0) + -steeringForce*0.5f)*lowY;

  steeringForce += (Point3f(0,-1,0)+ -steeringForce*0.5f)*highY;

  //add in a braking vector the closer you’re getting to a wall

  steeringForce += -ship->UnitVectorVelocity()*

                (MIN(borderProximityY,borderProximityX)/adjSafetyRadius);

  steeringForce *= ship->m_maxSpeed;

 }
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 if (steeringForce.Length())

 {

  totalForce += steeringForce;

  adjustment = true;

 }

 m_avoidedLastUpdate = adjustment;

 return adjustment;

}

SteerWander (Listing 20.12) is an implementation of Craig Reynolds’s own ver-
sion of the wander behavior. Instead of setting targets or directions directly, which 
could lead to very twitchy-looking wandering, Reynolds’s version uses an indirect 
target method. The wander behavior keeps track of a “targeting circle,” which is 
offset from the main agent. The actual target that the agent is steering towards is a 
spot that randomly slides back and forth on the targeting circle’s diameter. In this 
way, the wandering agent seems to have a somewhat chaotic movement, but the 
overall motion is quite smooth.

LISTING 20.12 SteerWander implementation.

bool SteerWander::Update(float dt, Point3f& totalForce)

{

 bool adjustment = false;

 SteeringControl* parent = (SteeringControl*)m_parent;

 Ship*    ship    = parent->m_ship;

 Point3f steeringForce;

 steeringForce.SetZero();

 float delta = 0.15f;

 //theta represents “where” we are on the circle, perturbing

 //it is what causes the guy to wander

 //range on random is (-delta to delta)

 m_thetaValue += (randflt()*2*delta) - delta;

 // Calculate the point on the circle, and head there

 m_circlePosition = ship->m_velocity;

 m_circlePosition.Normalize();            

 m_circlePosition *= m_wanderCircleDistance;

 m_circlePosition += ship->m_position;    

 Point3f circleTarget = Point3f(m_wanderCircleRadius*cos(m_thetaValue),

                              m_wanderCircleRadius*sin(m_thetaValue),0.0f);
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 Point3f target = m_circlePosition + circleTarget;

 SteerTowards(target,steeringForce);

 float distanceToObject = steeringForce.Length();

 if (distanceToObject)

 {

  totalForce += steeringForce;

  adjustment  = true;

  m_targetPosition = target;

 }

 return adjustment;

}

CODING THE CONTROL CLASS

The SteeringControl class (see Listing 20.13 for the implementation of the impor-
tant functions) is mostly just set up for the individual steering behaviors being used. 
Almost all of the logic for the saucer is contained in the behaviors themselves, leaving 
very little for the controller to do besides just getting the ball rolling initially.

The constructor for the class fills the SteeringBehaviorManager with the be-
haviors that we want to use in this implementation. You can see in the demo code 
that several other behaviors have been commented out, giving you a head start 
if you want to dive into the code and experiment with other behaviors and/or 
combinations.

There’s also a bit of code in the constructor dealing with “walls.” The AvoidWall
behavior requires that you pass in a structure containing all the walls that it needs 
to avoid during it’s lifetime when you instantiate it. That’s why we build the walls
list and include it in the parameters to AvoidWall. In this way, the definitions of 
all the static obstacles within the game are centralized. It also means that the ship 
can have more than one AvoidWall behavior, each of which has its own set of walls, 
but with different priority values or weights. This feature can be very useful for 
advanced behavioral setups, but also for getting AI CPU costs down by potentially 
having simplified wall sets that run first, and then activate more complex wall sets 
if required.

Lastly, the constructor sets up the individual steering behaviors with weights 
and probability values. It can also optionally disable behaviors that you might want 
to turn on later, when particular conditions are met. In the current demo setup, all 
the behaviors are enabled by default, but notice that the controller makes record of 
the steering behavior SteerPursuit that has been aimed at powerups. This will be 
useful later when we want to disable powerup pursuit after the ship has reached it’s 
maximum powerup level.
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The Update() method has two main parts. In the first part, the controller up-
dates its SteeringBehaviorManager class, and then gets a final steering vector which 
it passes along to the ship. This is basic steering system code. The rest of the func-
tion is game specific: it fires the ship’s gun when near an asteroid, and turns off the 
pursuit of powerups when it has achieved max powerup level.

This is the power of steering based systems. The base engine is very simple. 
Each steering behavior is very simple. The complex behavior we get out of the final 
ship is caused by the interplay of these simple chunks of code in reaction to the rest 
of the game world. In fact, the toughest part of using this technique is setting up the 
priorities and weights of the behaviors in the constructor of the controller.

LISTING 20.13 SteeringControl function implementations.

SteeringControl::SteeringControl(Ship* ship):

AIControl(ship)

{

 m_getPowerupIndex = -1;

 //make walls for avoidWall

 std::vector<WallSegment> walls;

 WallSegment temp;

 temp.Set(Point3f(30.0f,30.0f,0.0f),

       Point3f(Game.m_screenW-30.0f,30.0f,0.0f));

 walls.push_back(temp);

 temp.Set(Point3f(10.0f,Game.m_screenH-30.0f,0.0f),

       Point3f(30.0f,30.0f,0.0f));

 walls.push_back(temp);

 temp.Set(Point3f(Game.m_screenW-30.0f,30.0f,0.0f),

       Point3f(Game.m_screenW-30.0f,Game.m_screenH-30.0f,0.0f));

 walls.push_back(temp);

 temp.Set(Point3f(Game.m_screenW-30.0f,Game.m_screenH-30.0f,0.0f),

       Point3f(30.0f,Game.m_screenH-30.0f,0.0f));

 walls.push_back(temp);

    //construct the steering manager and add the necessary behaviors

    m_behaviorManager = new SteeringBehaviorManager(this);

// m_behaviorManager->AddBehavior(new SteerSeparation(this,

                                   GameObj::OBJ_ASTEROID));

 m_behaviorManager->AddBehavior(new SteerEvade(this,

                                   GameObj::OBJ_ASTEROID));

  m_behaviorManager->AddBehavior(new SteerPursuit(this,

                                 GameObj::OBJ_POWERUP));m_getPowerupIndex = 1;

 m_behaviorManager->AddBehavior(new SteerAvoidBorder(this));
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//  m_behaviorManager->AddBehavior(new SteerAvoidWall(this,walls));

//  m_behaviorManager->AddBehavior(new SteerWander(this));

  m_behaviorManager->AddBehavior(new SteerArrive(this,

                                   GameObj::OBJ_ASTEROID));

    m_behaviorManager->Reset();

 //this is where we’ll initialize all the weights 

 //and probability values for the behaviors

 m_behaviorManager->SetupBehavior(0,3.5f,1.0f);//evade asteroid

 m_behaviorManager->SetupBehavior(1,4.0f,1.0f);//pursue powerup 

 m_behaviorManager->SetupBehavior(2,20.0f,1.0f);//avoid border

 m_behaviorManager->SetupBehavior(3,1.0f,1.0f);//arrive asteroid

}

//---------------------------------------------------------

void SteeringControl::Update(float dt)

{

    if(!m_ship)

    {

        m_behaviorManager->Reset();

        return;

    }

    

    UpdatePerceptions(dt);

    m_behaviorManager->Update(dt);

 Point3f totalSteeringForce = m_behaviorManager->GetFinalSteeringVector();

 //apply forces

 m_ship->SteeringThrustAccumulate(totalSteeringForce);

 //check to see if I should shoot

 bool checkForShooting = true;

 if(m_nearestAsteroid && checkForShooting)

 {

  Point3f astDelta  = m_nearestAsteroid->m_position – 

                               m_ship->m_position;

  float astDistance = astDelta.Length();

  if(astDistance < 100.0f + m_nearestAsteroid->m_size)

  {

   Point3f futureAstPosition = m_nearestAsteroid->m_position;

   Point3f deltaPos = futureAstPosition - m_ship->m_position;

   float dist  = deltaPos.Length();

   Point3f bulletVec = deltaPos.Normalize()*BULLET_SPEED;
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   bulletVec += m_ship->m_velocity + (totalSteeringForce*dt);

   float time = dist/bulletVec.Length();

   futureAstPosition += time*m_nearestAsteroid->m_velocity;

   Point3f deltaFPos = futureAstPosition - m_ship->m_position;

   float newDir = CALCDIR(deltaFPos);

   m_ship->Shoot(newDir);

  } 

 }

 //if you have a behavior chasing powerups,

 //temporarily disable going after powerups if 

 //you’ve reached your max limit

 if(m_getPowerupIndex != -1 && m_ship->GetShotLevel() >= MAX_SHOT_LEVEL)

  m_behaviorManager->DisableBehavior(m_getPowerupIndex);

}

PERFORMANCE OF THE AI WITH THIS SYSTEM

The AI is essentially invincible with this system. I have come back after letting the 
game run and seen that the AI-controlled saucer has over 1200 extra lives, with a 
score in the tens of millions range. The steering behaviors provide the ship with 
all it needs to burrow its way to the powerups while still evading the asteroids long 
enough for the guns to dispatch anything nearby. So for the sheer performance 
of “winning the game,” the system is nearly perfect. Yet it still does things that a 
human wouldn’t do, and it could definitely use a few “stylistic” improvements:

Increased complexity of the math model. The AI system still suffers the lack of 
ability in dealing with the world coordinates wrapping. Right now, the AI’s 
primary weakness is that it loses focus when things wrap in the world, and 
considering borders while targeting and for collision avoidance would greatly 
increase the survivability of the AI ship.
 Also, the predictive math that the behaviors use is somewhat idealized and 
simple. Obviously, there is a “chicken and the egg” problem when dealing with 
future position prediction. The object I’m tracking is moving at a certain speed. 
We determine how long it would take our ship to get to the object by adding 
both agents’ speeds together, and dividing that speed into the ship’s distance to 
the target.
 We then change our target to where the object will be if it keeps on course 
for that length of time. But now the problem: Since the target has changed, 
the amount of time it will take the ship to get there has changed, and thus the 
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prediction can never really be 100 percent on. This doesn’t even take into ac-
count if the target object can potentially change its trajectory, or the ship has a 
turning radius, or obstacles are in the the ship’s path. Increasing the accuracy of 
this prediction model would help the ship shoot down asteroids better, as well 
as pursue and evade more effectively.
Bullet management for the ship. Same as in the other implementations, our ship 
would definitely benefit from being a bit more judicious with the allotment of 
in-air bullets that the ship has at any given time. Right now, the ship just points, 
and then starts firing. The firing rate on the guns is quite high, so it tends to fire 
clumps of shots toward targets. This is somewhat advantageous; when it fires 
a clump of shots into a large asteroid, the remaining shots will sometimes kill 
the pieces as the asteroid splits. But this can get the ship in trouble when it has 
fired its entire allocation of bullets and must wait for them to collide or expire 
before it can shoot again, leaving it temporarily defenseless.
Better evade behavior. Even though our evade is much better than the state-
based system (since we’re using a saucer and can thrust in any direction), we 
still have some of the classic evasion issues. When humans evade incoming 
asteroids, they use preemptive positioning before an asteroid gets too close, or 
even braking to a stop to just slow down the action a bit. A bit of simple play-
field analysis (using an influence map, or other such technique) would help 
the AI with some of these actions. By knowing which parts of the map had the 
lesser concentrations of asteroids, it could perform evasion tactics in the gen-
eral direction of “more space,” or even set itself up in low-concentration areas 
preemptively to give itself a better chance for survival.

PROS OF STEERING-BASED SYSTEMS

Steering behaviors are by definintion usually very simple algorithms. At their best, 
they are single-action systems (meaning, they only try to do one thing at a time; if 
you find that you’re coding a behavior that has multiple states, think about splitting 
it into different behaviors). Single-action systems are usually very easy to design and 
implement, since they force you to focus on just the one problem to be solved.

Steering behaviors can be quite predictable. The rules they encode are straight-
forward enough that the name of the steering behavior is usually enough to explain 
what the behavior does. Even when combining behaviors, most people intuitively 
figure what’s going to happen (at least until the number of behaviors being com-
bined becomes large).

Steering behaviors can be quite easy on the CPU budget. Not only are individ-
ual behaviors usually very efficient, but the modular way in which steering systems 
are constructed allow even more performance to be squeezed out of the system. If 
you have a particular behavior that is costly, you can just increase the maximum 
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force it can deliver, and then don’t update it as often. You’ll lose some accuracy 
with that behavior, but you will always have some tradeoff when looking for higher 
performance.

CONS OF FSM-BASED SYSTEMS

Since steering systems are almost always combinations of simple behaviors, com-
bining becomes your number-one concern. Finding the best combination method 
is typically just a matter of knowing how many behaviors you have in your design, 
but also knowing just how “blended” you need your behavior to be (versus the 
dithered method that tends to behave more like a finite-state system with fuzzy per-
ceptions). Instead, a lot of time seems to get spent on tuning the individual weights, 
priorities, and other parameters that control the overall behavioral blending.

Special care must be taken when tuning steering systems that have a lot of in-
termingled behaviors. Changing the parameters for a single behavior could upset a 
very careful balance between three others, and changing them could then snowball 
into a balance problem with even more problems.

In essence, combining steering behaviors represents a kind of “color-blending” 
artform. If you have too many colors, or too many of the same flavor, it is difficult 
to not blend them all into a sort of mud (as any kid trying to do too much with his 
giant set of Play-Doh will tell you). It’s usually best to have orthogonal behaviors, 
that operate differently enough that they don’t blend together into a final behavior 
that does nothing. However, if the behaviors are too different, they can potentially 
deadlock each other in a kind of agent-based tug-of-war. Hence, the aforemen-
tioned “artform.” As a steering system programmer, finding the sweet spot between 
the push and pull of certain behaviors with the more subtle support offered by 
others can be challenging.

Steering behaviors tend to be single-minded, short-range tactics. They typically 
operate alone (without communication to other behaviors; not in the sense that 
there’s only one behavior running at a time) and, as such, tend to have problems 
with local traps. These would be areas of the game world that can suck a steering-
controlled agent in and are difficult to get out of. In fact, steering tends to work 
much better on open terrain environments. Dead ends and other architectural 
pitfalls can be navigated, but they typically take a special-case steering behavior 
to handle (you could run analysis on your environment, and generate special re-
pulsion information tagged to game world features that a steering behavior could 
respond to, or just create special behaviors for handling dead ends specifically).

Large groups of agents all using steering behaviors can deadlock each other 
by getting mashed into a tight game area and find a trap in which their separation 
forces, the evade wall force, and whatever else they’re running all mutually op-
pose one another, causing an entire cluster of agents to lock up. If the agents were 
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using longer-range planning or were sharing information with their neighbors, 
they could do much better. In fact, in the clustering scenario, you could use what is 
known as the “follow the leader” behavior (have everybody target some offset from 
a chosen leader, as well as get out of the leader’s way) and get much less deadlock 
since only one agent is in control of the pack. In a sense, “follow the leader” is a 
group steering behavior.

Since the behavior of steering systems is largely emergent, extra testing time 
must be allotted, since you’ll need to try and get your agents into all the various 
combinations of situations they might encounter once in a consumer’s hands. This 
is a general problem with emergent systems, however, and not really a specific 
downfall of steering behaviors.

Take care when using steering behaviors that you don’t make your creatures 
robotic-looking. This can be caused by using a few, very specific or overpowering 
behaviors. Your agents will tend to look rigid and unthinking. Having more subtle 
behaviors that work well together (like the flocking set of cohesion, separation, and 
alignment) will give the overall agent behavior smooth, organic-looking movement.

Lastly, idle states can be difficult to achieve with steering systems. By definition, 
these behaviors primarily control the “steering” of the agents involved. They apply 
to movement. Hence, they tend to look best when the agent is constantly moving 
around, being directed by its behavior set. But getting a steering-controlled agent 
to stop (without specifically using a known end point, like the arrive behavior uses) 
means that you have to balance more than one behavior so that there will be “dead 
spots” in the world that the agent will be pushed to. These are areas where the 
sum of the agent’s steering forces add up to zero, and thus the character will stop 
moving. Obviously, for a reasonably complex steering-controlled agent, this can be 
difficult to achieve. Instead, what many people do is create an arrive-style behavior 
that can be set to very high priority. If you need the character to stop somewhere, 
you use this behavior to essentially override the contributions of the rest of the 
behavior set.

EXTENSIONS TO THE PARADIGM

Steering behaviors have been around for a while, and many games have put them to 
good use in many different ways. In this section, we will go over some of the com-
mon extensions to the simple system discussed in this chapter.

LAYERED STEERING

Layered steering can actually mean a few different things. The game might include 
creatures that require more than one concurrent steering target. Consider a large 
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multi-headed mythical hydra; its body movement is controlled by one steering tar-
get, and each head (and corresponding long neck) is focused on a potentially dif-
ferent target. True, the heads aren’t “steering” anywhere per se, but they are turning 
and moving the head to face a particular target.

Another approach is to use a truly hierarchical layered steering system. In the 
setup, you are still heading to a number of different high-level targets (evade, pur-
suit, etc.). But each target is determined by running a steering system of its own. 
For any given high-level behavior, the combination of a number of sub-level steer-
ing behaviors is used to form the main target the agent will use.

In the case of evade, the list of sub-level behaviors would not only include 
“Evade Asteroids” (which is essentially the type of evade we’ve discussed in this 
chapter). In a more complex game, agents could also require more specialized be-
haviors like “Evade Incoming Gunfire” (used against enemy ships, this would use 
an entirely different algorithm, since you’d have to start evading fast projectiles 
much sooner and in smarter directions), “Evade Black Hole” (which might require 
special perception data), or “Evade Red Powerups” (perhaps the agent has been 
maxing out the blue powerups, and doesn’t want to switch weapons to whatever is 
represented by the red powerups). All these sub-level evasion behaviors would be 
blended into one main evade target.

These high-level targets would then get blended again into the agents final 
steering target. In this way, you can really go into great depth with what it is for a 
given character to “evade” or “pursue,” and give each of those behaviors real per-
sonality and nuance.

However, layered steering is probably more useful when dealing with creatures 
that don’t require a great deal of high-level behaviors, since the high-level blend 
might deaden much of the subtle effects of the lower-level behaviors if there are 
too many. This is best used for simple minded, but very contextually deep crea-
tures. An example would be an enemy that’s always chasing the player down (simple 
minded; only one high-level behavior), but at the same time always chasing you 
in the right manner (contextually deep; the manner in which the enemy chases the 
player changes interactively and continuously).

LEARNING BEHAVIORS

As behaviors increase in complexity, or the direction that you want the agent to 
steer given the current environment gets more complex, it becomes increasingly 
difficult to write the code for the behavior by hand.

One way to counter this is to use learning techniques (genetic algorithms have 
been tried successfully in the past, but so have other techniques including various 
types of perceptrons, as well as neural nets) to have the agent learn the steering 
function necessary to perform the behavior.
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In the 1990s, popular topics among AI researchers were not only steering behav-
iors (after Craig Raynolds published his steering papers) but the advent of genetic 
programming. Researchers used genetic algorithms to evolve steering solutions, 
especially co-evolving pairs of behaviors (predator/prey was a highly studied set). 
A casual Google search using the phrase “steering coevolution” will get you over 
23,000 results, within fields ranging from chemistry to software design to papers 
written specifically about steering behaviors. In 1994, Reynolds himself published 
a few papers on this topic, “Competition, Coevolution, and the Game of Tag,” and 
“Evolution of Corridor Following Behavior in a Noisy World.” Both of these papers 
are great reading for programmers thinking of trying a scheme like this with steer-
ing behaviors. The papers also contained many hints to help you make your behav-
iors work well since many of the pitfalls of getting the genetic component to play 
nice with the steering paradigm have been addressed. They also provide insight into 
other ways of thinking about steering-based behavior systems, which might inspire 
you in completely new directions.

OTHER COMMON BEHAVIORS

The small number of behaviors covered in this chapter is by no means an exhaus-
tive list. Some of the other commonly used behaviors include:

Pursuit With Offset. This versatile behavior is just pursuit, except that you’re 
not pursuing a target directly, but some offset from that target. This is useful 
for setting up formations (imagine whole groups of agents with column and 
row offsets from a commander agent; whenever the commander goes some-
where, the rest of his “army” follows in marching formation). This could also 
be used to make long “follow the leader” setups by linking an entire group of 
agents to this behavior with one leader, each one using an offset behind an-
other in a daisy chain fashion (“A” is a leader. “B” is offset pursuing A, C offset 
pursues B, etc.).
Patrol. This behavior would take a number of points in the game world and 
move the agent from one to the next in order. This is another highly versatile 
behavior. The target points passed to the behavior could be parameterized to 
control all aspects of patrolling. There could be targets that control the agent’s 
locomotion type (does the agent run to this target, or walk, or swim, etc.). Tar-
gets can trigger special actions (a teleportation pad, or getting to the target 
simply makes the agent wait for one second, or just triggering a creaking door 
sound, for example). In our example code, you would use the same type of ap-
proach as AvoidWall, which is supplied with data from the SteeringControl class 
to define the walls. The controller class could instantiate all the patrol points and 
pass them to the steering behavior, or they could come from a data file, etc.
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Match Target Speed. This behavior is a lot like alignment, except that the agent 
is conforming to a particular speed instead of a direction. Many times you just 
want to shadow the speed of another agent. You can include a scale factor, or 
some offset as well (agent A will always try to go half as fast as agent B, or agent 
A will always go just a touch faster than B).
Hide. This behavior tries to steer an agent such that it moves out of the view of 
some other agent. You would need to supply the behavior with the agent (or types 
of agents) that you want to hide from. The behavior would also require specifica-
tion on the correct objects to hide behind. Can the agent hide behind any game 
wall, certain game walls, or even other types of agents? Should the character per-
form a particular function once it finds a hiding spot? Example actions might be 
ducking down, or turning on a cloaking device, or just playing a sound.
Interpose. This behavior steers the agent to be directly between two or more 
other agents. Another version might use future prediction on all the other 
agents, or other specific “lanes” between the target agents.
Orbit. Orbiting would entail circling around an agent in some fashion. The 
style of orbit could be standard elipsoidial, square, or any other looping man-
ner. Other parameters could include speed, some kind of variance level (low-
variance orbiters would always orbit the same path, high-variance agents could 
vary the path a lot, and/or randomize their speed).
Flow Field Following. This behavior responds to environmental data known 
as flow fields. Imagine if you overlaid a grid of uniformly spaced force vectors 
onto your game world. By adjusting these force vectors, you would have cre-
ated a force “field” where your agent feels a steering effect from anywhere on 
the map, by summing up the effects of each vector within some proximity. An 
appropriate flow field could be used in our demo application to mimic the 
AvoidBorder behavior if we supplied a repulsive force along the entire outside 
of the game world. But with flow fields, we could make the shape of the game 
world non-rectangular, and the effect would be just as easy to achieve.
Queueing. When trying to get many fast-moving agents to pass through a nar-
row opening, basic algorithms tend to give very unintelligent-looking behavior. 
Real crowds of people slow down, keep somewhat spaced (although they do 
tend to give up personal space depending on the urgency of the current target), 
and if necessary will even create a single-file line (or a queue) in order to get 
through the bottleneck in a semi-orderly fashion. This steering behavior will 
mirror this: slow down, stay separated, and queue up at a bottleneck.

DATA-DRIVEN STEERING BEHAVIORS

Steering behaviors tend to build upon very simple algorithms. With some clever 
parameterization and a handful of base behaviors, you can create a data-driven 
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steering system that would make for a truly rich agent creation experience. By 
designing the system to accept live updates, you could make things even better. 
Imagine a game designer sitting down with the game, and starting with nothing; 
the agent is standing still. With a single mouse click, the designer gives the agent 
a wander behavior instance. The agent begins to wander about the game world. 
The designer tunes some of the numbers, getting the wander behvior to perform in 
the wanted fashion. With another click, the agent is given an avoid behavior. The 
designer tweaks that behavior to avoid walls, and designates the walls that the agent 
should be concerned with. The designer adds a few more agents into the system, 
and assigns them all to follow the first agent’s lead. After adding general flocking 
behaviors to the whole group (alignment, cohesion, and separation), the designer 
then tunes the weight values associated with the different interacting behaviors, 
and saves the resulting parameter file out to disk. Without touching code, or even 
talking to a programmer, the designer has created the exact creature movement the 
designer wants, and the cost to the game is a tiny text file that records which behav-
iors to instantiate for each agent, and the parameters to pass each.

OPTIMIZATIONS

Steering behaviors are naturally quite CPU friendly. They are generally simple 
algorithms. They are functionally focused, so they tend to not have the code over-
head bloat associated with multi-stage or heavily orchestrated behavior. There is 
always room for optimization, however. Load balancing can always help, just as it 
does when used with other AI techniques. Another means to gaining some CPU 
power back is to adjust priorites and weights to put off expensive calculations until 
later on.

LOAD BALANCING

Steering behaviors can be load balanced in a few different ways. Agents’ updates 
can be spread across multiple frames (so that only a certain number of agents will 
run each game loop). If you are building groups of flocking agents, this might 
lead to visually innappropriate behavior, since the vast majority of the organic 
look of the system is brought about by small, incremental reactive changes that 
flow smoothly. Spreading agent updates over multiple frames tends to lead to 
slightly jerkier behavior, because the steering vectors will tend to be larger since 
the behavior is having to compensate for a larger time period that the agent has 
potentially been moving in the wrong direction. It also introduces a small amount 
of lag to the overall group’s behavior, because large direction changes or sudden 
reactions to external stimulus will also be spread across multiple frames. This 
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technique would probably be fine, however, for agents that don’t require a high 
level of reactivity, or where the amount of influences that need to be taken into 
account are lower.

Another load-balancing technique would be to use less costly combination 
methods for a certain percentage of the time, in order to partially bring down CPU 
cost without losing all the accuracy in your steering. So, if your system combines 
its behaviors with the simple weighted combination method but is using too many 
CPU cycles, the AI engine could instead use the prioritized dithering method on 
half the agents, and then every frame, switch which half of the agents you’re down-
grading. In this way, in every other frame, your agents are getting high-accuracy 
blended steering. In the other frame, those same agents are getting the most prob-
able, high-priority behavior directly. Then the cycle repeats. As long as your maxi-
mum accelleration isn’t very high, you shouldn’t loose too much information on 
the low accuracy frames, and you have effectively shaved a lot of behavior updates 
out of your AI run. Of course, this method would require a bit of testing and tuning 
(as do all optimization methods) since you could have outlaying scenarios where 
this jostling of steering could cause unnecessary jitter. But jitter can be filtered out 
of the system with straightforward, inexpensive means.

PRIORITY/WEIGHT ADJUSTMENTS

A more involved optimization step involves carefully considering the mix of steer-
ing behaviors within your agent design. Do you have a number of behaviors that are 
especially CPU-expensive, with most behaviors being relatively inexpensive? Then 
you could set up your priorities so that the least expensive behaviors are checked 
first, and then use a combination of methods that limit the number of behaviors 
that are updated on any given frame. Obviously, you can’t do this if your expensive 
behavior is also the most critical as far as accuracy of steering goes. If the evasion 
behavior in your game is expensive, but it’s the only thing keeping your agents from 
speedy death, you have to bite the bullet and find somewhere else to optimize. But 
for many systems, looking for ways to cut down on behavior update through prior-
ity exclusion and/or weighting can be a huge potential for savings.

DESIGN CONSIDERATIONS

Remember, use the best tool for the job. Take stock in the game you are creating 
the AI engine for. You should consider all the design factors discussed in Chapter 2: 
types of solutions, agent reactivity, system realism, genre, content, platform, devel-
opment limitations, and entertainment limitations. Make sure that the answer to at 
least some of those questions points to the use of steering.
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TYPES OF SOLUTIONS

Steering behavior solutions are mostly tactical in nature. Because they’re single-
entity-based, as well as typically historyless (meaning, they recalculate their steer-
ing vector without the use of much historic data or state information) they usually 
make poor strategic decisions simply because they lack the depth of knowledge 
necessary to analyze strategic kinds of information and utilize that information.

However, this is not to say that they couldn’t be adapted to some kinds of stra-
tegic decision making. If you’re working on a real-time strategy game, you could 
write your city-building AI using an abstract form of steering. You would have a 
number of “steering behaviors” (building considerations) whose job it was to ad-
just the “movement vector” (which in this case is the direction that the AI is going 
to expand its base). These targets would be combined into a final vector which 
would give the AI a general direction in which it should expand its base, generated 
by blending a number of rich, focused targeting “behaviors” into a compound end 
target that would generally be better for the AI army.

AGENT REACTIVITY

Steering systems will work for any level of agent reactivity. But steering systems are 
really in a class by themselves when you’re looking for exceedingly reactive systems. 
If the game you’re building needs to show very subtle movements as game condi-
tions change in small ways for every frame, then you should definitely experiment 
with steering. Steering provides smooth agent reactivity that ripples out from its 
source. Although steering does work well with individual unit reactivity, it is also 
uniquely suited to group dynamics, where the focus is more at the complex interac-
tions of groups of agents over time, as opposed to the frame-by-frame movements 
of any one agent.

SYSTEM REALISM

Steering systems were initially created to try and model realistic, organic behavior, a 
category of computer modeling sometimes referred to as artificial life. Nature tends 
to use simple, instinctual rules for its inhabitants, and steering behaviors capture 
this very well.

Combinations of steering behaviors can sometimes lead to odd behavior, but 
this is more of a weighting/tuning issue than a systemic problem. Yes, it can become 
harder, as you add more behaviors into the mixture to maintain truly organic and 
flowing behavior, but just remember that:

 1.  No one AI technique should have to solve every problem; maybe you need 
to break up your steering across a simple state machine, so that any given 
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steering behavior mix is more simple and the agent just switches state to a 
different mix during certain considerations.

 2.  Life itself started out with pretty simple behavior combinations, and took 
a very long time to get the bugs out of the complex behavior combinations 
that drive human beings.

GENRE

Steering behaviors find their way into any genre that requires emergent, organic 
movement from its AI controlled agents. It has typically been used for groups of 
AI agents (like crowds or herds of animals) but it works just as well for games with 
singular agents as well.

Because of its emergent element, games that are very scripted, linear affairs 
usually don’t find much use for it (unless it’s a localized effect: the crowds of zom-
bies in Capcom’s Dead Rising are using steering behaviors to move around, even 
though the game itself is very story-driven when played in its primary mode).

One sub-note: some games that look like they’re using steering behaviors ac-
tually aren’t, and it’s generally for a reason. Scrolling shooter games sometimes 
have waves of enemies that look like they’re using steering behaviors as they 
swarm around and coalesce into formations and stylized movements. But these 
are typically the result of specifically scripted behaviors. These types of shooters 
tend to rely heavily on the fact that the enemies are not responsive to the player 
(except that some of the enemies will actually aim at the player when they shoot). 
The player is supposed to learn the patterns that the enemies take (so as to best 
position the player’s ship and array of weapons), and emergent enemy reactions 
to other enemies and/or the player would definitely make recognizing a pattern 
harder to do.

CONTENT

Does your game contain a single, 30-foot robot as its enemy agent? Then maybe 
steering isn’t the way to go. However, if you’re making a game in which you’re a 
shark, and you want to model realistic schools of fish that respond to your attacks 
and the environment in a realistic manner, there’s really no other technique that 
will give you results as realistic as steering.

PLATFORM

Steering behaviors are basically platform independent because of their light-
weight computation requirements. With today’s fast CPUs, games can model large 
groups of realisticly moving creatures with moderate ease using simple steering 
behaviors.
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DEVELOPMENT LIMITATIONS

Due to the emergent nature of steering systems, care must be taken that enough time 
is allotted to the tuning and tweaking phase of agent development. As said before in 
this chapter, as the number of steering behaviors being blended together in any one 
agent increases, the level of difficulty in getting exactly what you want out (or even 
in the neighborhood) gets harder and harder. It’s simply a property of complexity 
theory: as the number of non-linear coupling rules increase within a system, the 
ability of an observer to truly predict the final outcome of that system rapidly falls 
to zero. It’s like predicting the weather: No matter what the TV weatherperson says, 
they’re really just guessing, since too many variables are interacting in too many 
non-linear processes to really make an accurate prediction.

ENTERTAINMENT LIMITATIONS

Entertainment concerns are another area to be watchful of with steering behav-
iors, or any emergent AI technique. Difficulty settings and game balancing can 
be tough when you’re not really sure what the AI is going to be doing at any 
given moment. Obviously, for agents who are only using steering to avoid ob-
stacles while getting around a game world, this is not the case. But for creatures 
who have entire decision structure that are just a conglomeration of steering be-
haviors, ensuring a particular player experience may be difficult without serious 
thought and tuning.

SUMMARY

Steering behaviors are a great way to infuse your AI creatures with realistic, organic, 
largely emergent group behaviors. They model subtle interplay between differing 
agent goals exceedingly well. They simplify certain kinds of group dynamics by 
making them emergent, meaning that you don’t really have to code them at all; 
instead they come forth naturally from the combination of simpler parts that you 
did create.

Steering behaviors were originally created by Craig Reynolds as an artificial life 
technique that attempted to model flocking behavior.
The steering system in this book comprises three main classes: SteeringBehavior,
SteeringBehaviorManager, and SteeringControl.
The demo implementation of steering behaviors used in this chapter employ a 
saucer ship with four behaviors: SteerEvade, SteerPursuit, SteerAvoidBorder,
and SteerArrive. Its performance is near optimal. It will play as long as you let 
it run.



Chapter 20  Steering Behaviors 477

Extensions to the test bed for better and/or different performance include add-
ing layered steering, employing automatically learned behaviors, using other 
common behaviors, or data driving the behaviors.
The pros of steering systems are their ease of implementation, they are some-
what predictable, and they are inexpensive to execute on the CPU.
The cons of steering systems are combinatorial complexity, their short-sightedness, 
deadlocking problems within an agent as well as with groups of agents, potentially 
large tuning-time requirements, they can look robotic if misused, and are not great 
at modeling idle states.
Layered steering systems would allow for greater contextual depth of each 
steering behavior without muddying the overall agent behavior.
Automatic learned behaviors could use a genetic algorithm approach (or some 
other learning method) to solve a particular steering system tuning/setup prob-
lem without requiring human interaction, saving programmer time.
There are many more commonly useful steering behaviors than those covered 
in this chapter. Some of them include: pursuit with offset, patrol, match target 
speed, hide, interpose, orbit, follow flow field, and queue.
Data-driving steering systems can be particularly easy and satisfying, especially 
because of the high tuning requirements of most complex steering behavior 
combinations.
Load-balancing algorithms can be applied to steering systems, but care must be 
taken not to destroy the careful, subtle balance attained by the highly reactive 
steering method.
Priority and weight adjustments can keep CPU-expensive behaviors from hog-
ging resources, but again, care must be taken not to starve behaviors that require 
lots of updating to really look visually compelling.
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Combination Systems21

For every game AI problem, there is at least one solution. But most games have 
many problems. Most of these problems can be solved with general solutions, 
the kinds of nuts-and-bolts technology that can be used over and over within 

the game code. But some of the AI problems can be so fundamentally different 
from the rest that wholly different AI systems are required to solve them. In fact, 
creating almost any game will require knowing how to mold and combine the AI 
techniques within this book into parts of a larger problem-solving machine.

In this chapter, we will implement a combination system, using various methods 
from the rest of the book to flesh out a rounded AI engine that our demo application 
will use. Because of the simplicity of AIsteroids, the AI system built in this chapter will 
be vast overkill for the realities of the game. But the real demonstration is the ease at 
which more complex architectures are created, not the specific use of the techniques.

THE DEMO

The demo will use a much larger array of AI techniques than previous chapters, 
which were usually set up to showcase a single AI method per demo. In this chapter, 
the demo will include:

 Finite state machines (FSMs)
 A hierarchical FSM

In This Chapter

 The Demo
 FSM Changes
 Steering Changes
 Performance of the AI with This System
 Extensions to the Paradigm
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 Steering behaviors
 An occupance tracking influence map
 A messaging system
 A simple script loader used for game parameter loading

A number of elements have been added to the demo. The system we’ll be discussing 
in this chapter includes the following AI elements:

 An FSM will be used to control a ship. The ship will fly around, shoot asteroids, col-
lect powerups, and engage in combat with another demo character: the saucer.
 The saucer character will use a steering behavior-based AI controller. This 
character will also shoot asteroids and collect powerups. However, the saucer is 
 almost purely defensive; it will only attack the ship character if it gets too close.
 The approach state in the FSM for the ship will be a full-fledged FSM on its 
own, thus showing how hierarchical FSMs are used. Based on the circumstances, 
the approach FSM will cause the ship to approach the saucer, or an area of high 
asteroid concentration, as well as the nearest asteroid if need be.
 Within the ship’s approach FSM, a modified ApproachState moves the saucer 
towards an area of high asteroid concentration. It uses an occupance-based 
influence map to make this determination.
 Also, the ship employs a new hunt state. This state makes better use of the 
wrapping world borders to find the best approach direction for the ship to use 
in stopping the saucer.
 The game now uses a script-loading system to set up key variables at load time. 
As in the earlier scripting chapters, the parsing system uses messaging to send 
parameter messages to any given game entity that wishes to respond to the 
script. There is also a keyboard shortcut to have the script reload during game 
play in order to increase the speed iterative tuning of the AI.
 There is now a small “planet” game object in the middle of the game world. 
This serves as an additional obstacle to both spacecrafts, but it also helps the 
saucer to evade the ship with a new steering behavior—UseCover.

We’ll now begin to break down how all of the methods that have been layered into 
the demo. First, we’ll cover the GameSession class. It requires a little work in order 
to handle all the new AI elements. In Listing 21.1, the important implementation 
changes within GameSession can be seen.

The GameSession class constructor is now instantiating two AI controllers, 
one for each of the AI characters: the ship and the saucer. This is also where the 
influence map is handled, giving any child controller access to the data analysis 
it provides.

The GameSession::Update() function no longer directly calls Update() for 
any particular AI controller. Instead, a few lines have been added so that any AI 
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controller assigned to any game object will get an Update() call. Be alert to this sim-
ple refactoring. Now, specific controller Update() methods don’t have a hardcoded 
call. To be sure, there are still other places in the code where specific AI controllers 
are referenced. But with a little organization and some structural changes, all of 
these could be eliminated.

Going through the code and eliminating as much hard coding as possible will 
go a long way towards ensuring that the AI engine being built will scale well as 
the number of AI controllers, game objects, and their level of interconnectedness 
grows. By making the Update() work in this way, we have effectively hidden more 
of the details of how each game object is operating from the GameSession code. This 
allows engine designers to create increasingly abstract systems.

A high level of abstraction is useful if a particular goal of the overall AI engine 
is to be data driven. In this case, scripts could be written that set up parameter lists 
for all the game objects. These scripts would drive generic factory methods that 
blindly create all the necessary game objects, as well as link them with all the op-
tional resources they need to perform (these would include AI controllers, sets of 
perception variables, and any other data or code resources).

The rest of the differences within the GameSession.cpp file are small changes to 
operate the message pump, influence mapping, and handle spawning of additional 
game objects like the planet. In addition, a number of additional GetObject style 
functions have been included here. These functions are used by various behaviors 
and states discussed later in the chapter.

LISTING 21.1 Important GameSession implementation differences.

//---------------------------------------------------------

GameSession::GameSession()

{

 m_screenH       = 1024;

 m_screenW       = 1024;

 m_AIOn        = false;

 m_timeScale      = 1;

 m_humanControl  = new HumanControl();

 m_mainAIControl = new FSMAIControl();

 m_enemyAIControl = new SteeringControl();

 m_oInfluenceMap = NULL;

 m_oInfluenceMap = new OccupanceInfluenceMap();

 m_oInfluenceMap->Init(4,4,INITIAL_WORLD_SIZE,INITIAL_WORLD_SIZE);

 m_oInfluenceMap->DrawGrid();

 m_oInfluenceMap->DrawInfluence();

 m_cInfluenceMap = NULL;
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// m_cInfluenceMap = new ControlInfluenceMap();

// m_cInfluenceMap->Init(32,32,INITIAL_WORLD_SIZE,INITIAL_WORLD_SIZE);

// m_cInfluenceMap->DrawGrid();

// m_cInfluenceMap->DrawInfluence();

}

//---------------------------------------------------------

void GameSession::Update(float dt)

{

 //update the messge pump

 g_MessagePump.Update(dt);

 //update the influence map

 IMUpdate(dt);

 GameObjectList::iterator list1;

 for(list1=m_activeObj.begin();list1!=m_activeObj.end();++list1)

 {

  GameObj* temp = *list1;

  //update logic and positions

  if((*list1)->m_active)

  {

   //if you have an AI controller, and

   //the AI is turned on, update

   if((*list1)->m_control && m_AIOn)

    (*list1)->m_control->Update(dt);

   //actual object update

   (*list1)->Update(dt);

   //make sure position coordinates

   //are within the game world

   Clip((*list1)->m_position);

  }

  else continue;

  //check for collisions

  if((*list1)->m_collisionFlags != GameObj::OBJ_NONE)

  {

   GameObjectList::iterator list2;

   for(list2=m_activeObj.begin();

    list2!=m_activeObj.end();++list2)

   {

    //the first obj may have already collided

    //with something, making it inactive
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    if(!(*list1)->m_active)

     continue;

    //don’t collide with yourself

    if(list1 == list2)

     continue;

    if((*list2)->m_active    &&

     ((*list1)->m_collisionFlags & (*list2)->m_type) &&

     (*list1)->IsColliding(*list2))

    {

     (*list1)->DoCollision((*list2));

    }

   }

  }

  if(list1==m_activeObj.end()) break;

 }

 //get rid of inactive objects

 GameObjectList::iterator end  = m_activeObj.end();

 GameObjectList::iterator newEnd = remove_if(m_activeObj.begin(),

              m_activeObj.end(),RemoveNotActive);

 if(newEnd != end)

  m_activeObj.erase(newEnd,end);

 //check for no main ship, respawn

 if(!m_mainShip)

 {

  m_mainShip = new Ship;

   if(m_mainShip)

   {

    PostGameObj(m_mainShip);

    m_humanControl->SetShip(m_mainShip);

    m_mainAIControl->SetShip(m_mainShip);

    m_mainShip->m_control = m_mainAIControl;

   }

 }

 //occasionally spawn a powerup

 m_powerupTimer-=dt;

 if(m_powerupTimer <0.0f)

 {

  m_powerupTimer = randflt()*6.0f + 4.0f;

  Powerup* pow = new Powerup;
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  if(pow)

  {

   pow->m_position.x()= randflt()*m_screenW;

   pow->m_position.y()= randflt()*m_screenH;

   pow->m_position.z()= 0;

   pow->m_velocity.x()= randflt()*40 - 20;

   pow->m_velocity.y()= randflt()*40 - 20;

   pow->m_velocity.z()= 0;

   PostGameObj(pow);

  }

 }

 //occasionally spawn a saucer

 if(!m_enemyShip)

 {

  m_enemyShip = new Saucer;

  if(m_enemyShip)

  {

   PostGameObj(m_enemyShip);

   m_enemyAIControl->SetShip(m_enemyShip);

   m_mainShip->m_control = m_enemyAIControl;

  }

 }

 //check for finished wave

 if(!m_numAsteroids)

 {

  m_waveNumber++;

  WaveOver();

 }

 //check for finished game, and reset

 if(!m_numLives)

  GameOver();

 m_humanControl->Update(dt);

}

FSM CHANGES

Next, we’ll discuss the changes made to the finite state machine system we origi-
nally used in Chapter 15, starting with the FSMAIControl class. Listing 21.2 shows 
the important implementation changes.

First notice that this class heavily uses the messaging system to get parameter 
data from the script file. A large number of various settings on the AI-controlled 
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ship are all set using the initialization script. This file, named test.txt, can be 
edited, saved, and then reloaded while the game is running (by pushing the “r” 
key) to allow for quick turnaround while tuning the game parameters. Also in the 
GameSession constructor, notice that instead of using the ApproachState directly, 
the ship is now using a new class, MachineApproach. This is another sub FSM that 
controls all of the different states used by the ship when it wants to approach 
either the asteroids or the saucer.

The UpdatePerceptions() function is also radically different from before. The 
m_nearestPowerup and m_nearestEnemy variables are set using a special function 
that only returns nearby game objects that the ship can “reach”. This takes into 
account the relative speeds of the two objects, and makes a calculation based on 
whether or not the system thinks the ship could catch it. This prevents the occa-
sional endless chasing that has cropped up in the demo from time to time.

Also, the Update() function handles the determinations used by the new hunt 
behavior, which is the next thing we’ll break down.

LISTING 21.2 Important FSMAIControl implementation differences.

//---------------------------------------------------------

FSMAIControl::FSMAIControl(Ship* ship):

AIControl(ship)

{

 //script parsing messages

// MessagePump::AddMessageToSystem(MESSAGE_TOKEN_PSCAN);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_PSCAN);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_MAXSPEED);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_APDIST);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_ATDIST);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_SAFERAD);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_POWSEEK);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_SHIPAGG);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_SHIPAGGCD);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_SHIPAGGCS);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_SHIPAGGPROX);

 g_MessagePump.AddMessageToSystem(MESSAGE_TOKEN_ENEMYSEEK);

 //must create the messageReceiver before you

 //register for any messages, since you have to

 //pass in the MessageID of the receiver

 m_messReceiver = new MessageReceiver;

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_PSCAN,this,

        GetMessageID(),m_powerupScanDistCallback);
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 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_MAXSPEED,this,

        GetMessageID(),m_maxSpeedCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_APDIST,this,

        GetMessageID(),m_appDistCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_ATDIST,this,

       GetMessageID(),m_attDistCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_SAFERAD,this,

       GetMessageID(),m_safeRadiusCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_POWSEEK,this,

       GetMessageID(),m_powerupSeekCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_SHIPAGG,this,

       GetMessageID(),m_shipAggCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_SHIPAGGCD,this,

       GetMessageID(),m_shipAggCDCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_SHIPAGGCS,this,

       GetMessageID(),m_shipAggCSCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_SHIPAGGPROX,this,

       GetMessageID(),m_shipAggProxCallback);

 g_MessagePump.RegisterForMessage(MESSAGE_TOKEN_ENEMYSEEK,this,

       GetMessageID(),m_enemySeekCallback);

 //construct the state machine and add the necessary states

 m_machine = new FSMMachine(FSM_MACH_MAINSHIP,FSM_STATE_NONE,this);

 MachineApproach* mApproach =

     new MachineApproach(this);

// StateApproach* approach = new StateApproach(this);

// m_machine->AddState(approach);

 m_machine->AddState(mApproach);

 m_machine->AddState(new StateAttack(this));

 m_machine->AddState(new StateEvade(this));

 m_machine->AddState(new StateGetPowerup(this));

 m_machine->AddState(new StateIdle(this));

 m_machine->SetDefaultState(mApproach);

 //setup for the script file parser

 m_tokens.push_back(new TokenShipAggCD);

 m_tokens.push_back(new TokenShipAggProx);

 m_tokens.push_back(new TokenShipAgg);

 m_tokens.push_back(new TokenShipAggCS);

 m_tokens.push_back(new TokenEnemySeek);

 m_tokens.push_back(new TokenPowerupSeek);

 m_tokens.push_back(new TokenPowerupScanDist);

 m_tokens.push_back(new TokenMaxSpeed);

 m_tokens.push_back(new TokenApproachDist);
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 m_tokens.push_back(new TokenAttackDist);

 m_tokens.push_back(new TokenSafeRadius);

 Reset();

}

//---------------------------------------------------------

void FSMAIControl::UpdatePerceptions(float dt)

{

 if(m_willCollide)

  m_safetyRadius = 2*m_safeRadius;

 else

  m_safetyRadius = m_safeRadius;

 //store closest asteroid and powerup

 m_nearestAsteroid = Game.GetClosestGameObj(m_ship,GameObj::OBJ_

   ASTEROID);

 m_nearestPowerup =

   Game.GetClosestGameObjICanReach(m_ship,GameObj::OBJ_POWERUP);

 m_nearestEnemy =

   Game.GetClosestGameObjICanReach(m_ship,GameObj::OBJ_SAUCER);

 //asteroid collision determination

 m_willCollide = false;

 if(m_nearestAsteroid)

 {

  float speed = m_ship->m_velocity.Length();

  m_nearestAsteroidDist =

    m_nearestAsteroid->m_position.Distance(m_ship->m_position);

  Point3f normDelta = m_nearestAsteroid->m_position –

            m_ship->m_position;

  normDelta.Normalize();

  float astSpeed = m_nearestAsteroid->m_velocity.Length();

  float shpSpeedAdj = DOT(m_ship->UnitVectorVelocity(),normDelta)*speed;

  float astSpeedAdj = DOT(m_nearestAsteroid->UnitVectorVelocity(),

            -normDelta)*astSpeed;

  speed = shpSpeedAdj+astSpeedAdj;

  float spdAdj = LERP(speed/m_maxSpeed,0.0f,90.0f);

  float adjSafetyRadius = m_safetyRadius+spdAdj +

            m_nearestAsteroid->m_size;

  //if you’re too close, and I’m heading somewhat towards you,

  //flag a collision

  if(m_nearestAsteroidDist <= adjSafetyRadius && speed > 0)

   m_willCollide = true;

 }
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 //enemy ship calculations

 m_huntThresholdReached = false;

 if(m_nearestEnemy && m_enemySeek)

 {

  float distToEnemy = 

    m_ship->m_position.Distance(m_nearestEnemy->m_position);

  if(!m_nearestAsteroid)//if there’s no asteroids at all

    m_huntThresholdReached = true;

  else if(distToEnemy < m_shipAggressionCloseDistance)

  {

     )//if I’m really close anyways 

    m_huntThresholdReached = true;

  }

  else if(m_nearestAsteroidDist - distToEnemy > 

     m_shipAggressionProximity)

  {

  //if the saucer is much closer then any asteroid

    m_huntThresholdReached = true;

  }

  else 

  {

   //if I just feel like attacking, roll dice between 0-99

   //ship has to roll positive “m_shipAggressionCountSetting”

   //number of times to trigger

   if(rand()*100 < m_shipAggression)

   {

    m_shipAggressionCount++;

    if(m_shipAggressionCount         >

       m_shipAggressionCountSetting)

       m_huntThresholdReached = true;

   }

   else

    m_shipAggressionCount = 0;

   }

  }

  //powerup determinations

  m_powerupNear = false;

  if(m_nearestPowerup && m_powerupSeek)

  {

   m_nearestPowerupDist = 

    m_nearestPowerup->m_position.Distance(m_ship->m_position);
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        if(m_nearestPowerupDist <= m_powerupScanDist)

        {

            m_powerupNear     = true;

        }

    }

}

Listing 21.3 shows the MachineApproach implementation. This new state is actu-
ally another FSM. It has the initialization of a state machine (by allocating new state 
members and adding each state to the machine structure), but also overrides a state
function, CheckTransitions(). This is because MachineApproach is used as a state 
within the parent FSM inside of the FSMAIController class.

In this way, MachineApproach encapsulates the ship’s goal to “approach” a po-
tential target, be it a saucer or an asteroid. Targeting powerups may still be sepa-
rate, but we could include the GetPowerup state within this FSM. However, getting a 
powerup is really more of an episodic goal, as opposed to being a part of the overall 
plan of positioning the ship in the best place to fire its gun, which is what Machine-
Approach is currently set up to do.

The reality is that there is no right answer; it all depends on how the engine 
designer wants to organize the code in relation to the overall plan for the game 
character’s behavior. Grouping like states into sub-FSMs is a great way to keep a lot 
of state transition checking out of the parent FSM (which can speed up the engine) 
as well as making the AI code more structured and understandable. But poor or 
inconsistent grouping of states can do the opposite, leading to confusing code and 
inefficient CPU usage.

LISTING 21.3 MachineApproach implementation.

MachineApproach::MachineApproach(Control* parent):

FSMMachine(FSM_MACH_SHIPAPPROACH,FSM_STATE_MAPPR,parent)

{

 //make walls for hunt

 std::vector<WallSegment> walls;

 WallSegment temp;

 const int nside=18;

 for(int i=nside;i>0;i--)

 {

  Point3f start;

  Point3f end;
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  //the planet is centered at 512,512 and is PLANET_SIZE

  start.Set(cos(float(i)*M_PI*2.0/nside)*PLANET_SIZE,

     sin(float(i)*M_PI*2.0/nside)*PLANET_SIZE);

  end.Set(cos(float(i-1)*M_PI*2.0/nside)*PLANET_SIZE,

     sin(float(i-1)*M_PI*2.0/nside)*PLANET_SIZE);

  start += Point3f(512,512,0);

  end   += Point3f(512,512,0);

  temp.Set(start,end);

  walls.push_back(temp);

 }

 StateApproach* approach = new StateApproach(m_parent);

 AddState(approach);

 AddState(new StateHunt(m_parent,walls));

 AddState(new StateGotoBusySpot(m_parent));

 SetDefaultState(approach);

}

//---------------------------------------------------------

int MachineApproach::CheckTransitions()

{

 FSMAIControl* parent = (FSMAIControl*)m_parent;

 if(parent->m_willCollide)

  return FSM_STATE_EVADE;

 if(parent->m_powerupNear           &&

    (parent->m_nearestAsteroidDist > parent->m_nearestPowerupDist) &&

    parent->m_ship->GetShotLevel() < MAX_SHOT_LEVEL)

  return FSM_STATE_GETPOWERUP;

 if(!parent->m_nearestAsteroid || 

  parent->m_nearestAsteroidDist < APPROACH_DIST)

  return FSM_STATE_IDLE;

 return FSM_STATE_MAPPR;  

}

Next is Listing 21.4, which shows the StateHunt::Update() code. This state finds 
the fastest unobstructed route to the saucer, and will correctly use the world coordi-
nate wrapping.

The unobstructed route goal is achieved by directly handing this state a list of 
all the walls within the game world, which in our case is only the planet. For larger 
game worlds, we would definitely not want to package up massive amounts of wall 
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information and locally store it within the state. Instead, some kind of game world 
manager class should be constructed that each state could query when requiring 
information. But with only the single planetary wall, we can just pass in the small 
amount of data and have the state handle it directly.

In order to find the fastest route, the hunt state uses the GameSession:
:FindWrappedPoint() function. What FindWrappedPoint() does is translate the point 
passed in to a theoretical game world that is offset from the current game world by 
the passed in parameters. This allows us to think about the game coordinate wrap-
ping in a whole new way. In reality, when a game object passes the border of the 
game world, the code clips its position to the opposite side, which is what “wrapping” 
means.

But think of it another way: the ship has instead just left one game world and 
entered an identical game world (in fact, a perfect copy) stuck side by side with 
the first. Picture the “game universe” as a large, two-dimensional grid of repeating 
duplicate game worlds. How does this help? It allows the AI to make distance and 
angle checks across border boundaries. It allows the AI to steer towards targets that 
are beyond a warp point. In essence, the ship looks through a portal that allows it 
to see what is past the border, so that it can make intelligent decisions instead of 
blindly being affected by the border wrapping effect.

LISTING 21.4 StateHunt::Update()implementation.

//---------------------------------------------------------

void StateHunt::Update(float dt)

{

 //turn and then thrust towards closest asteroid

 FSMAIControl* parent = (FSMAIControl*)m_parent;

 GameObj* enemy    = parent->m_nearestEnemy;

 Ship* ship     = parent->m_ship;

 //find closest non-obstructed position (taking game world

 //wrapping into account)

 float bestDist = FLT_MAX;

 int bestX,bestY;

 Point3f enemyPosition = enemy->m_position;

 for(int i = -1; i < 2; i++)

 {

  for(int j = -1; j < 2; j++)

  {

   Point3f wrappedPosition = enemyPosition;

   Game.FindWrappedPoint(wrappedPosition,i,j);
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   bool collision = false;

   for(int k = 0;k< m_walls.size(); k++)

   {

    //check for collisions first

    float lambda1 = 0.0f;

    float lambda2 = 0.0f;

    Point3f temp;

    LINEINTERSECT(ship->m_position,wrappedPosition,

     m_walls[k].m_point1,m_walls[k].m_point2,

     lambda1,lambda2, temp);

    //if the intersection was within the

   //line segments, we collided

    if ((lambda1 >= 0.0f && lambda1 <= 1.0f) && 

     (lambda2 >= 0.0f && lambda2 <= 1.0f))

    {

     collision = true;

     break;

    }

   }

   //don’t use this direction if you run through a wall

   if(collision)

    continue;

   //find the closest direction of travel

   float thisDist = wrappedPosition.Distance(ship->m_position);

   if (thisDist < bestDist)

   {

    bestDist = thisDist;

    bestX = i;

    bestY = j;

   }

  }

 }

 Game.FindWrappedPoint(enemyPosition,bestX,bestY);

 Point3f deltaPos = enemyPosition - ship->m_position;

 Point3f enemyVelocityNormalized = enemy->UnitVectorVelocity();

 //use braking vector if you’re going too fast

 bool needToBrake = false;

 float speed = ship->m_velocity.Length();
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 if(speed > parent->m_maxSpeed)

 {

  needToBrake = true;

  deltaPos = -ship->m_velocity;

 }

 else

 {

  float dotVelocity = DOT(ship->UnitVectorVelocity(),

          enemyVelocityNormalized);

  //if the other guy is “to my front”

 //and we’re moving towards each other...

  Point3f targetPos = enemyPosition;

  if ((DOT(deltaPos,ship->UnitVectorVelocity()) < 0) || 

   (dotVelocity > -0.93))//magic number == about 21 degrees

  {

   Point3f shipVel = ship->m_velocity;

   shipVel = shipVel.Normalize() * parent->m_maxSpeed;

   float combinedSpeed = (shipVel +

           enemy->m_velocity).Length();

   float predictionTime = deltaPos.Length() / combinedSpeed;

   targetPos = enemyPosition +

        (enemy->m_velocity*predictionTime);

   deltaPos = targetPos - ship->m_position;

   //don’t clip in the hunt behavior, since we’re more then

   //likely headed towards an offscreen coordinate

//   Game.Clip(deltaPos);

  }

 }

 //sub off our current velocity, to get direction of wanted velocity

 deltaPos -= ship->m_velocity;

 //find new direction, and head to it

 float newDir = CALCDIR(deltaPos);

 float angDelta = CLAMPDIR180(newDir - ship->m_angle);

 bool canApproachInReverse = needToBrake || ship->GetShotLevel()!=0;

 if(fabsf(angDelta) <3 || (fabst(angdelta) > 177 & canApproach 

  InReverse))

 {

  //thrust

  ship->StopTurn();
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  if(parent->m_nearestAsteroidDist >

  parent->m_nearestAsteroid->m_size + 20)

   fabsf(angDelta)<3? ship->ThrustOn() : ship->ThrustReverse();

  else

   ship->ThrustOff();

 }

 else if(fabsf(angDelta)<=90 || !canApproachInReverse)

 {

  //turn when facing forwards

   if(angDelta<0)

    ship->TurnRight();

   else if(angDelta>0)

    ship->TurnLeft();

 }

 else

 {

  //turn when facing rear

  if(angDelta>0)

   ship->TurnRight();

  else if(angDelta<0)

   ship->TurnLeft();

 }

 parent->m_target->m_position = enemy->m_position;

 parent->m_targetDir = newDir;

 parent->m_debugTxt = “Hunt”;

}

Lastly, we come to the other new state created within the FSM portion of the 
code: StateGotoBusySpot. This state targets an asteroid in a nearby portion of the 
world that has an abundance of asteroids. An AI designer might want this behav-
ior because ships heading towards high-concentration areas of asteroids will likely 
score more points faster. Imagine if the ship had limited fuel or time, and had to 
maximize its kills per unit of resources used. Other reasons to employ “busy spot 
style” behavior might include AI units in a real-time strategy game searching for 
the largest pile of gold to mine and bring back to the town, or AI-controlled ants 
that head in the direction of all their colleagues (hopefully, one of the ants is a 
more goal-directed leader, otherwise the ants might end up following each other 
in a big circle).

The actual workhorse of StateGotoBusySpot is a function within the GameSession
class, GetConcentricOccupanceGameObj(). This function is shown in Listing 21.5. It 
uses an occupance tracking influence map to search for high concentrations of 
influence objects close to some other game object.
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To utilize the function, it must be passed three values: the reference game ob-
ject that we wish to find influence objects in proximity to, the minimum number 
of clustered influence objects to be considered “high concentration,” and the max 
number of loops. This last parameter, maxLoops, is used by the function to deter-
mine how far out from the object to search within the influence map while trying 
to find an influence object. The function searches in a spiral pattern out from the 
position of the passed in object. A complete spiral around is one “loop.” So, by tak-
ing into account the resolution of each influence cell, the AI programmer can limit 
the influence search by setting maxLoops to whatever value best suits his needs.

LISTING 21.5 GameSession:: GetConcentricOccupanceGameObj()implementation.

//---------------------------------------------------------

GameObj* GameSession::GetConcentricOccupanceGameObj(GameObj* obj,

          int thresholdValue,

          int maxLoops)

{

 //go through the list, find the closest influence object

 //to the param “obj”

 float closeDist = 100000000.0f;

 GameObj* closeObj = NULL;

 Point3f objPos = obj->m_position;

 //first, find the nearby spot with the most influence objects

 int gridSizeX = m_oInfluenceMap->GetSizeX();

 int gridSizeY = m_oInfluenceMap->GetSizeY();

 int currentGridX,currentGridY;

m_oInfluenceMap->ConvertPositionToGrid(objPos,currentGridX,

currentGridY);

 //search variables

 int bestGridX, bestGridY, bestCount = -1;

 int numLoops = 0;

 bool goodEnough = false;

 do

 {

  //check spot immediately to my left

  currentGridX--;



496 AI Game Engine Programming

  int zoneCount =

   m_oInfluenceMap->GetInfluenceValue(currentGridX,currentGridY);

  if(zoneCount)

  {

   bestGridX = currentGridX;

   bestGridY = currentGridY;

   bestCount = zoneCount;

  }

  //now start the spiral around

  //go up

  for(int i = 0;i<numLoops*2+1; i++)

  {

   currentGridY++;

   int zoneCount =

 m_oInfluenceMap->GetInfluenceValue(currentGridX,currentGridY);

   if(zoneCount)

   {

    bestGridX = currentGridX;

    bestGridY = currentGridY;

    bestCount = zoneCount;

   }

  }

  //go right

  for(int i = 0;i<numLoops*2; i++)

  {

   currentGridX++;

   int zoneCount =

 m_oInfluenceMap->GetInfluenceValue(currentGridX,currentGridY);

   if(zoneCount)

   {

    bestGridX = currentGridX;

    bestGridY = currentGridY;

    bestCount = zoneCount;

   }

  }

  //go down

  for(int i = 0;i<numLoops*2; i++)

  {

   currentGridY--;

   int zoneCount =

 m_oInfluenceMap->GetInfluenceValue(currentGridX,currentGridY);

   if(zoneCount)

   {

    bestGridX = currentGridX;
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    bestGridY = currentGridY;

    bestCount = zoneCount;

   }

  }

  //go left

  for(int i = 0;i<numLoops*2; i++)

  for(int i = 0;i

  {

   currentGridX--;

   int zoneCount =

 m_oInfluenceMap->GetInfluenceValue(currentGridX,currentGridY);

   if(zoneCount)

   {

    bestGridX = currentGridX;

    bestGridY = currentGridY;

    bestCount = zoneCount;

   }

  }

  if(bestCount > thresholdValue)

   goodEnough = true;

 }while (numLoops < maxLoops || goodEnough);

 GameObjectList::iterator list1;

 for(list1=m_activeObj.begin();list1!=m_activeObj.end();++list1)

 {

  //watch out for yourself

  GameObj* gameObj = (*list1);

  if(gameObj == obj)

   continue;

  //only consider objects that are “influence” objects

  //that are in the closest busiest zone (as found above)

  if(gameObj->m_influence)

   continue;

  int gridX,gridY;

  m_oInfluenceMap->ConvertPositionToGrid(gameObj->m_position,

          gridX,gridY);

  if(gridX != bestGridX || gridY != bestGridY)

   continue;

  //our “distance apart” should take into account our size

  float combindedSize = gameObj->m_size + obj->m_size;

  float dist = gameObj->m_position.Distance(obj->m_position) –

          combindedSize;
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  if(dist < closeDist)

  {

   closeDist = dist;

   closeObj = gameObj;

  }

 }

 return closeObj;

}

STEERING CHANGES

Now, we’ll go over the major changes that were made to facilitate the implementa-
tion of a steering behavior-controlled saucer within the game demo. There were 
changes to the control class: we added a new behavior, and an overall modification 
of the saucer to make it more of a defense-based character instead of the ruthless 
killer that it was in earlier demos.

In Listing 21.6, we can see some of the key changes made in the SteeringControl
class. The constructor sets up walls, which correspond to the outline of the planet; 
the saucer then uses the wall avoidance behavior to avoid running straight into the 
planet. The AvoidWalls function provides what is called general object avoidance, or 
GOA. GOA can be a difficult problem, and a full treatise on how to handle all forms 
of GOA could take up an entire book on its own. Needless to say, there are many other 
(much better and more optimized) methods to do GOA. Some of them include:

Utilize a “contains walls” setting within each game object, and then define the 
bounding walls for a given object within its own code. This hides the inner de-
tails of the game object from the manager class, leading to greater abstraction 
and cleaner engine code. It also allows each game object to exactly define its 
shape using as many walls as necessary. Because this method isn’t optimized for 
speed, however, the more walls the behavior uses to define its shape, the slower 
its behavior updates will become.
 If all the game objects involved in avoidance are regularly shaped, or can be 
surrounded by regularly-shaped collision surfaces (usually, people use cylin-
ders that surround the game objects), a classical obstacle avoidance steering 
behavior will probably suffice. The obstacle avoidance behavior, created by 
Reynolds, uses a collision box projected out the front of the moving object. 
As this box collides with the collision cylinders of the obstacles, it deflects the 
ship. This isn’t much different from the way that AvoidWalls works (it also 
works best with non-moving obstacles, just like AvoidWalls), but it is much 
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more optimized, since it’s assuming cylinder-shaped obstacles and a collision 
box instead of the sensors that AvoidWalls uses. Another Reynolds behavior, 
unaligned collision avoidance, is more useful when the obstacles involved are 
moving.
 If the game has many static obstacles, meaning ones that never move during 
the course of the game, a technique called flow fields (mentioned briefly in the 
steering chapter under extensions) can be used. A flow field is a data structure 
that stores the amount and direction of steering force that a steering-controlled 
object would have applied to it simply by residing at any given spot on the map. 
Think of flow fields as a topographic map, with each of the obstacles being 
mountain peaks and the space between the obstacles as valleys. Flow fields 
can be auto-generated by having a program mark a map with maximum 
repelling forces directly around each obstacle, slowly lowering the force in a 
radiating pattern as it marks the map farther away from the obstacle. Multiple 
obstacles within close proximity of each other would have an additive effect on 
the overall repulsion force. In this way, characters would be auto-repelled from 
obstacles, because the ground around each obstacle is covered with the strong-
est repulsion forces. This is also very low cost from a CPU perspective as an 
avoidance technique, since it involves simple addition of the flow-field vector to 
the player velocity wherever the player is on the game map, with no repulsion 
calculations necessary during runtime. This is what’s called “offline AI data.” 
All of this information is processed before the game ever runs. The cost is the 
memory necessary to store all the flow-field data.

 LISTING 21.6 Important SteeringControl implementation differences.

//---------------------------------------------------------

SteeringControl::SteeringControl(Ship* ship):

AIControl(ship)

{

 m_getPowerupIndex = -1;

 //make walls for avoidWall

 std::vector<WallSegment> walls;

 WallSegment temp;

 const int nside=18;

 for(int i=nside;i>0;i--)

 {

  Point3f start;

  Point3f end;
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  //the planet is centered at 512,512 and is PLANET_SIZE

  start.Set( cos(float(i)*M_PI*2.0/nside)*PLANET_SIZE,

      sin(float(i)*M_PI*2.0/nside)*PLANET_SIZE);

  end.Set( cos(float(i-1)*M_PI*2.0/nside)*PLANET_SIZE,

      sin(float(i-1)*M_PI*2.0/nside)*PLANET_SIZE);

  start += Point3f(512,512,0);

  end += Point3f(512,512,0);

  temp.Set(start,end);

  walls.push_back(temp);

 }

 //construct the steering manager and add the necessary behaviors

 m_behaviorManager = new SteeringBehaviorManager(this);

 m_behaviorManager->AddBehavior(new SteerEvade(this,

         GameObj::OBJ_ASTEROID));

 m_behaviorManager->AddBehavior(new SteerAvoidWall(this,walls));

 m_behaviorManager->AddBehavior(new SteerUseCover(this,GameObj::OBJ_

  PLANET,

         GameObj::OBJ_SHIP));

 m_behaviorManager->AddBehavior(new SteerPursuit(this,

         GameObj::OBJ_POWERUP));

 m_getPowerupIndex = 3;

 m_behaviorManager->AddBehavior(new SteerAvoidBorder(this));

 m_behaviorManager->AddBehavior(new SteerArrive(this,

         GameObj::OBJ_ASTEROID));

 m_behaviorManager->Reset();

 //this is where we’ll initialize all the weights

 //and probability values for the behaviors

 m_behaviorManager->SetupBehavior(0,3.5f,1.0f);//evade asteroid

 m_behaviorManager->SetupBehavior(1,3.0f,1.0f);//avoid wall

 m_behaviorManager->SetupBehavior(2,4.0f,1.0f);//use cover

 m_behaviorManager->SetupBehavior(3,3.0f,1.0f);//pursue powerup

 m_behaviorManager->SetupBehavior(4,5.0f,1.0f);//avoid border

 m_behaviorManager->SetupBehavior(5,1.0f,1.0f);//arrive asteroid

}

Also, note the radically different weights used by the saucer with this new mix 
of behaviors. Setting the weights for a complex steering-controlled character can be 
one of the most time consuming parts of using steering behaviors. In fact, the six 
behaviors the saucer is using are almost approaching the limit of what should be at-
tempted within a straight steering-controlled character. While watching the demo 
run, it might appear that the saucer’s behaviors aren’t as purposeful or direct as in 
the straight steering demo from the steering chapter. This is because the saucer has 
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more behaviors fighting for overall control of its travel direction, and the result can 
become muddied very quickly.

The saucer now employs a new UseCover behavior, which uses the planet as an 
interposed obstacle so that the ship can’t directly attack. Notice that the UseCover
behavior takes the type of object to use as cover. This allows the behavior to be 
much more reusable. If another type of game object was ever added to game that 
the saucer could also use as cover, simply adding this flag to the AddBehavior call 
for the SteerUseCover behavior would automatically use the new object for cover 
determination. Listing 21.7 shows the Update function for the UseCover behavior. 
Notice that the object types that the saucer considers for cover as well as enemies are 
both parameterized for further control of the behavior. By simply changing these 
parameters, an AI designer could use this behavior to create a character that moves 
around the world finding umbrellas to get shade from the sun (cover is the umbrel-
las, enemy is the sun), or remoras that cling to a shark while still watching out for 
nearby danger from other fish (cover is the shark, enemies are the other fish).

LISTING 21.7 SteerUseCover::Update() function.

//---------------------------------------------------------

bool SteerUseCover::Update(float dt,Point3f& totalForce)

{

 bool adjustment = false;

 SteeringControl* parent = (SteeringControl*)m_parent;

 Ship*    ship = parent->m_ship;

 GameObj* nearestEnemy = Game.GetClosestGameObj(ship,m_enemyTypes);

GameObj* nearestCoverObject = Game.GetClosestGameObj

 (ship,m_coverTypes);

 if(nearestCoverObject && nearestEnemy)

 {

  float distanceToEnemy =

    nearestEnemy->m_position.Distance(ship->m_position);

  Point3f enemyVecToMe = ship->m_position –

    nearestEnemy->m_position;

  Point3f enemyVecToCover = nearestCoverObject->m_position –

    nearestEnemy->m_position;

  float coverOffset = 55.0f;

  float distToCoverSpot = enemyVecToCover.Length() +

    nearestCoverObject->m_size +

    coverOffset;

  enemyVecToCover.Normalize();
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  m_locationOfCover = enemyVecToCover*distToCoverSpot +

    nearestEnemy->m_position;

  float shipDistToCover =

    m_locationOfCover.Distance(ship->m_position);

  Point3f shipToCover = m_locationOfCover - ship->m_position;

  shipToCover.Normalize();

  if(shipDistToCover > 0 && distanceToEnemy < COVER_DIST)

  {

   float speed = m_parent->m_ship->m_maxSpeed *

    (shipDistToCover/ AI_MAX_SPEED_TRY);

   speed = MIN(speed, m_parent->m_ship->m_maxSpeed);

   shipToCover *= speed;

   //scale force as distance from enemy goes down,

   //will potentially double force if enemy is close

   float distScale = 2.0f - (distanceToEnemy/(COVER_DIST/2));

   shipToCover *= distScale;

   if (shipToCover.Length())

   {

    totalForce += shipToCover –

         m_parent->m_ship->m_velocity;

    adjustment = true;

   }

  }

 }

 return adjustment;

}

PERFORMANCE OF THE AI WITH THIS SYSTEM

In earlier chapters, the overall “performance” of the AI was mostly measured by how 
well the AI-controlled ship did at scoring points by shooting asteroids, as well as general 
survivability. But for this chapter, different rates of performance will be discussed.

 1.  How well does the AI engine perform in solving all the numerous chal-
lenges put to it?

Combined AI engines, by definition, should be able to handle any AI 
problem that occurs. The reason for going with a combination AI system in 
the first place is to provide the flexibility to structure AI decision making in 
many different ways, such that any AI problem definition can be handled 
in stride by the best tool for the job.
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Think of combination systems as having what a stock broker would 
call portfolio diversification. The engine isn’t married to a single AI method 
so deeply that the AI programmer has to do back flips trying to fit an un-
usual special-case feature or an odd behavior requirement into a rigid, 
single decision-making structure. Rather, since the technology present in 
the game represents several ways of breaking down problems, as well as 
different ways of delivering answers, the programmer can be assured that 
if one method doesn’t quite work for a particular issue that might come up 
late in the development schedule, another will.

If the scope of the game being developed is completely known up front, 
with all AI challenges known and accounted for, then system requirements 
can be accounted for directly, and will not require this kind of hedging of 
bets with the engine design. But within game programming, focus test-
ing and overall “fun factor” issues generally don’t lend themselves well to 
total pre-planning. After a new feature or AI behavior is created and in 
the game, actual people playing it almost always uncovers elements that 
could be tweaked or outright changed in order to make the game more 
entertaining. The AI engine should have enough wiggle room in the way it 
handles the decision structure of AI-controlled elements so that it can han-
dle strange new features late in the development cycle. Otherwise, the game 
could be stuck with either a sub-par feature or the programmer could be 
stuck with a lengthy code-reworking scenario.

However, you shouldn’t just “kitchen sink” the AI engine. Although 
the demo in this chapter is doing this by somewhat randomly including 
elements that aren’t really necessary, this is a demo, not a real game. In real 
life, each AI method included within the game engine has a number of 
costs: initial implementation time, CPU time, maintenance time, potential 
memory requirements, and even some very esoteric things (like potentially 
making the code too large to fit into the main processor’s program cache, 
for instance). Don’t include technology just to include it. Rather, have a 
specific reason why the AI method needs to be there.

 2.  Was the creation of new AI elements within the asteroids game demo eased 
by having all of these additional AI methods within reach?

The creation of new AI solutions should be vastly eased by combination 
engines. If the right amount and types of AI technology has been included 
in the AI engine by a programmer who gave careful thought to the types 
of decisions that the game would require, the people that were going to be 
involved in it’s creation, and all of the other host of factors, then actually 
implementing the game within the AI engine should technically be easy.

Of course, the length of the development cycle and/or the personnel 
available might not allow the engine programmer to have the best possible 
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technology for the requirements, so this isn’t always true. But one of the 
main reasons that an AI engine designer should pick a particular AI tech-
nique is because that technique represents the easiest way to create the code 
structure necessary to provide the AI characters with the types of intelligent 
decision making the game requires.

 3.  Finally, is the extra engine complexity costing more than it’s worth?
Employing a combination of AI techniques should only be considered if it 

will buy the project significantly more than it will cost. If it turns out that the 
resource costs of any part of a combination engine (in any category: per-
formance, memory, implementation time, or ease of creation/debugging) 
are too great, then the overall AI engine strategy needs to be adjusted. The 
only reason to bring additional technology into the AI system is if the game 
design has a specific need for it, or if using it could allow a vast improve-
ment in both present and/or future development.

If the engine is working flawlessly, but switching to a data-driven 
model in certain areas would open the door for user-created content, then 
it might be a good idea. Just make sure the schedule allows for the time 
it would require to do the work, and that there are people out there that 
would want to add content to the game. An established game with a rabid 
following and plenty of community forums, where users are constantly 
asking for level editors and the like is one thing. The decision to add user 
content features would almost be obvious. But a new game franchise, with 
a very unique game play feel, should probably engage in plenty of focus 
testing with potential buyers to find out if there would be enough interest 
to warrant the extra work.

Also, be wary of new technology being added to the AI engine sim-
ply because it’s new technology. There’s plenty of marketing hype around 
things like “physics-driven animation” and “AI learning,” but there are also 
good reasons why these things haven’t been used in games yet. The tech-
nology behind both of these examples isn’t new, and yet both are only used 
in the occasional game, and even then in mild, very controlled areas.

The reason behind both physics and learning not being ubiquitous to game 
development (as of 2008) is that both technologies require enormous quantities of 
time to develop, both in initial implementation as well as tuning and debugging. 
Yes, use of physics and learning are both ways that games could be made much 
more realistically responsive to interaction with the human player, but both are 
highly complex areas of analysis.

The physics of human physiology and the methods used to learn from out-
side stimulus couldn’t be more different. But what they do have in common is this: 
both are orders of magnitude more complicated then people think. It is precisely 
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this  “illusion of simplicity” that makes systems like these attractive and dangerous. 
Game players see something happen in a video game and think “If only they’d use 
physics, the game would look so much better during these circumstances.” Even 
professional game developers have been guilty of this. The problem is, almost 
nobody takes into account all the liberties that game programmers employ when 
creating game simulations in the first place.

Game characters sometimes perform impossible movements within the game 
purely because these movements feel right; they feel fun. Characters might move 
twice as fast as a real human, or turn around much faster than in real life. These 
are not the shortcuts taken to make up for missing animations or just bad pro-
gramming. The elements discussed here are those liberties being taken by game 
characters specifically because of what they have positively added to the control, 
feel, and/or balance of the game play. But add in some real-life physics, and things 
can go awry in a hurry. Suddenly, those moves that used to make the game play fun 
break the physics simulations because of the super-human speeds, which can lead 
to some surprisingly bad reactions by the physics system. To try and remedy these 
bad physical reactions, the animations in question are reworked to play better with 
the vagaries of the physics engine. The question now is: has the game improved? Or 
did the programmers remove something that was fun, and replace it with a piece of 
technology that isn’t fun, just better looking?

Don’t get the wrong idea, some physics-based animation can help; animation 
transitions especially seem to be a promising area in which games have begun to 
make progress. The Madden NFL team has spent many years trying to use physics 
methods to help create more realistic player movement. Interviews with EA pub-
lished in late 2008 tell of the monumental investment in animator time necessary to 
eke out even a small bit of help from physics-helped transitions. The old adage will 
always hold true: Hard work will create quality. The real winner in this case is not 
physics transitions, it is EA’s realization of the care necessary to make animation 
transitions as smooth and responsive as possible.

Learning is also a developer “black hole.” Many games have tried to include 
adaptive AI that react to the player over time. Almost every title to include even a 
modicum of learning has had strange results and plenty of community chatter con-
cerning astronomically stupid behavior out of the AI system because of the strange 
ways that the AI “learned” to behave given a particular set of circumstances.

The reality is, most people assume that the only intelligent agent in the universe 
is the person they see in the mirror. If the game doesn’t react exactly like the person 
would, it’s dumb. Even if the game makes 10,000 good decisions in a row, but subtly 
blows number 10,001, it’s stupid. Blurting out statements like “I can’t believe the 
AI hasn’t figured out what I’m doing yet,” when the player is performing a twenty-
three-step process to break down an AI learning system, is almost hilarious if it 
wasn’t so tragically inevitable. Remember, too, that this is for a game in which the 
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learning element is somewhat “working,” like a sports game that determines where 
the player likes to score from and responds with more defense in that area. Games 
with more open-ended learning, like Black & White, have thousands of Web pages 
of personal experiences recanted by people who have witnessed the AI doing 
actions of such vastly inexplicable wrongness that some of these behaviors border 
on the insane.

An argument from the other side of these features is that although the features 
seem simple, most people don’t realize all the costs associated with adding them. 
Simply saying “Let’s add physics to our game” is a huge cost outlay. Yes, the person 
making that decision might be aware that there will have to be code created to sim-
ulate the physics, that the animation system will also need to be modified so that 
the characters can employ physics reactions, that new art will need to be created 
to back up this code, but how about the second level of costs? These would include 
things not directly accounted for. The code to run the physics might be large, taking 
up lots of memory, and potentially even more CPU time since physics calculations 
are typically complex and math heavy to perform. Debugging the way that physics 
affects the game might spiral into a never ending chore, as more and more special 
cases have to be added in order for the algorithmic physics system to allow for “fun 
factor” issues that require temporary breaking of the physics rules. Does your game 
have a number of different “modes” of play, in which the user could potentially 
change the game play environment enough (levels with “low gravity,” or suspended 
normal game rules) that the physics might need to be separately tuned?

Combination systems are an invaluable, almost inevitable facet of AI program-
ming. Very few games will have so few AI requirements that only state machines 
(or any other singular technique) will suffice to solve everything. Learning which 
methods work well together, and how to blend different AI tools into an overall 
engine is one of the things every AI programmer must learn well.

Learning how to combine AI methods into large-scale AI engines helps pro-
grammers learn one of the most important things to remember about AI engine 
programming: Modularity is a good thing. Suppose a single technique is used to 
solve every AI problem within a game. Later on, a particular feature comes up that 
calls for a behavior that can’t be modeled by the current system. The base technique 
must be added to, or potentially changed. Even if the change is largely secondary, 
there is still a risk of causing changes to suddenly spring up in every area of the 
AI, since the whole system is using the same base code. With a more modular ap-
proach, this can be somewhat minimized, since the combination engine was most 
likely created with different AI classes working well together, and as such, creating 
a coding environment where feature changes only infect the smaller “module” of 
code that controls the features directly, not the entire game. Modularity also helps 
partition AI tasking amongst programmers, since it uncovers clear dividing lines in 
the code that are usually in line with features.
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Now, if two features being implemented by separate programmers only require 
state machines, both programmers should use state machines. But maybe both of 
those tasks could be taken over by one of the programmers, and another AI task 
that involved a completely different system could be given to the second. This does 
two things: It keeps the two programmers from stepping on each other’s toes as 
they implement the state-based behaviors (each programmer might have different 
ideas on how to use FSMs, or go off and extend the game’s FSM code in similar, 
slightly different ways), and it also fosters code ownership by giving more clearly 
defined job duties to each programmer. Programmer One might start to get not 
only more comfortable with state-based behavior, but develop several extensions 
to the code base that wouldn’t have occurred to the programmer if programming 
tasks were more varied. Plus, Programmer Two can potentially learn an entirely 
new AI technique and bring something wholly different to the game engine.

EXTENSIONS TO THE PARADIGM

The techniques used in the game demo were in no way exploited exhaustively. 
There are many ways in which even the simple demo could have taken advantage of 
the AI methods used. Below we will uncover some of the additional ways in which 
each technique might have been employed.

FSMS

Finite state machines are such a flexible technology that the list of things that could 
have been done is near limitless. A few of the more obvious include:

Game State. The GameSession class currently handles the main “game state” very 
loosely. The class keeps an m_state variable, and anybody that cares about the 
specific game state accesses it directly to handle the behavior for each game state. 
This is mainly the GameSession::Draw() function, the HumanControl class, and 
the main loop inside of asteroids.cpp. Instead, the whole thing could be a for-
mal FSM, run by the GameSession class or directly from the main AIsteroids 
application. Each game state would be encapsulated into its own state class, han-
dling updates, drawing, and all the other state-specific behavior directly.
Behavior. Currently the AI-controlled ships behave in a single, particular way. It 
could be said that the spacecraft are “single-minded,” in that they’ll never make 
sudden radical changes in behavior. If this was something the game design re-
quired, however, one technique used frequently with game characters is to have 
several “modes” of overall behavior for any given character, with the ability to 
switch modes as necessary. In this way, you can tune these modes in isolation 
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to each other, and not have to try and create one, overarching game entity that 
does everything. So, even for the saucer, which is currently being controlled 
by steering behaviors, we could define a number of “modes” (or states) where 
the mixture of weights for each of the individual steering behaviors could 
be radically different. In fact, individual states could include several steering 
behaviors in the mix that weren’t used at all under other circumstances. The 
saucer would still be controlled by a parent SteeringControl. But the mixture 
of behaviors would be controlled by an FSM that would change out the partic-
ular SteeringBehaviorManager being used by the parent, and thus the different 
steering behaviors and their weights.

STEERING

Even within the simple arena of AIsteroids, we could have used steering behaviors to 
a greater degree. A couple of ideas would involve:

Indigenous Life. The game world could include “indigenous life,” like the ani-
mals walking around in Age of Empires. Since we have an open, outer space 
environment, steering would have been a lovely way to add some cheap swarms 
of flocking alien “bugs” that could roam around the map, maybe eating pow-
erups and scattering from ships and asteroids. Whole ecosystems of autono-
mous creatures could be created that prey off the objects in the game world, or 
even each other. These simple to create creatures would really make the simple 
asteroids world come alive, and give a much more organic feel to the demo than 
the fairly robotic behavior of the two ships.
Weapon Types. New weapon types could be created, other than the simple 
Bullet objects currently being used. The bullets in the demo are simple physics 
objects; with have a velocity, a current direction, and a maximum life time. But 
a more complex weapon could be a type of smart missile that would seek out 
local targets using steering behaviors. These types of weapons could be used by 
anybody, even the FSM controlled ship, since the steering code would be used 
by the proposed SmartMissle class, not the ship itself.

INFLUENCE MAPPING

The game demo makes one use of influence mapping techniques, by employing 
an occupance map to make approach decisions. A few IM techniques could really 
make our demo shine:

IM Use. Instead of the generic offense and defense behaviors exhibited by our 
current ship and saucer, the demo could start to look more like a real war if the 
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behaviors used by the ship and saucer were to make heavy IM use. Both char-
acters could rely on a control-based IM to make many decisions. The different 
craft would specifically look for asteroid targets within their own area of con-
trol, making it more difficult to be caught off guard while defending themselves 
from incoming asteroids. Evasion of the opposite craft could be made more 
intelligent by keeping track of “front lines” caused by two opposite character’s 
control cancelling out and forming areas of zero control.
IM Types. New IM types could be created to give the AI characters even more 
battle intelligence. A special IM could track where each ship has made its kills, 
informing the enemy of where to lurk or set traps. If the saucer was using a 
flow-field behavior to avoid the planet (instead of the AvoidWalls behavior it’s 
using currently) then another IM could track asteroid paths and use this data 
to affect the flow field for all the asteroids, giving the saucer general obstacle 
avoidance as well as wall avoidance.

SCRIPTING

Scripting is another completely open-ended AI technique. The demo barely 
scratches the surface of possible uses for scripting. Some additional uses would be:

Story Elements. Story elements could be added to the demo. Characters could 
be created that the player would interact with (through some kind of commu-
nication interface) for trade, or story progression. What these story characters 
say, as well as do, could be controlled directly by scripted behaviors. An FSM 
could be written that would take scripts as input and set up whole state ma-
chines based on the parameters in the script. The scripts could also contain dia-
logue for the characters, in the form of conversation-pair trees that a dialogue 
system could use (the first part of a conversation pair would be some comment 
to show the human player, the second would be a list of responses the player 
could choose. Each response would have its own resulting conversation pair, 
creating a conversation tree; see Figure 21.1).
Space-bound Anomalies. Since the game is set in outer space, we could allow for a 
number of simple space-bound anomalies that might drift through space, wan-
der around, or some other simple behavior. These lightweight objects could be 
spawned by a game script that would give the number of each object, it’s range 
of starting locations, speeds, and behaviors, as well as how often to appear. Even 
non-lightweight objects could be specified by these types of scripts, creating 
what amounts to level files for the asteroids demo. At key places or times in the 
game, the script would cause an instantiation of some game object that would 
then be controlled by some generic handler. In this way, Galaga-style scripted 
waves of enemies could be created and controlled.
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MESSAGING

Another basic AI method, messaging could be used in a vast array of ways within 
the asteroids demo. A few key examples might be:

Multiplayer Coding. The great thing about messaging is that the objects involved 
generally don’t know the origin of the message. Its job is to decouple chunks of 
code. So why not completely remove all connection? Since we have the messaging 

Help Stranger!
Will you save us?

Gods be 
praised! We need 
the Three Rods 

of Good

Please
hurry back when

you can help!

Then you
will pay with

your life!

Maybe I 
would help, if I had 

some gold in 
my pocket.

This is all
we can offer

you as a reward.

Then leave
us alone foul

one!

No! All is
Lost...We

are doomed.

Geez, I didn’t
know it was
so serious.

My, you’re 
not much of a

knight, are you?

Taste my
steel, peasant!

I’ve already
got those. Here

you go.
In the Fields
of No Return!

I’ll leave
soon, I need

some supplies

Where would
I find those?

Yes

Yes

No

Tough
luck

No

I’m on
my way!

Maybe 
Later

Question
Reply

FIGURE 21.1 Example of a conversation tree.
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system within the game, we could easily set up a network layer, and start pass-
ing messages back and forth across a network, in effect creating a multiplayer 
version of the demo for people to play against each other on separate machines. 
Now, there’s a lot more to multiplayer coding then just some messaging, but this 
is where to start. If the AI entities in the game are already sending and receiving a 
steady stream of messages, then the system is that much closer to being ready to 
try and make the full jump to networkable game objects.
Callback Handler. Currently, the game has extensive polling within the 
GameSession class. It’s checking to see if the ship and saucer have been killed 
off, and respawning each if so. It creates an occasional new powerup when a 
timer expires. It checks to see if the current wave of asteroids is over and up-
dates the game state. Each of these small tasks could be handled much more 
efficiently with a callback handler and an correctly used message. When a 
ship dies, it could broadcast a death message that could be consumed by the 
GameSession class to handle respawning. The occasional powerups could be au-
tomatically done by a handler listening for a repeating message that has some 
set timer that expires every so often. When the final asteroid blows up, it could 
send a message that there weren’t anymore. Even better, each exploding aster-
oid could broadcast a message of its death, and the GameSession object would 
update the number of asteroids left. In this way, additional data could be hid-
den to the individual asteroid game objects, instead of allowing access to all the 
GameSession data members as is currently the case.

SUMMARY

Combination systems are essentially the way that most game AI engines are written. 
Few and far between are the modern games that require only a single AI method 
for all their AI requirements. Recognizing that parts of the game being developed 
would be well aided by a carefully chosen piece of AI technology, and knowing how 
to wed that technology with the current system is the name of the game as far as 
large scale, complex AI engines are concerned. In this chapter, we showed that even 
within the microcosm of the AIsteroids demo, many different AI methods can be 
employed successfully and purposefully.

 The demo used in this chapter combined a number of AI methods into one 
large demo. These included a finite state machine, a hierarchical FSM, steering 
behaviors, an occupance-tracking influence map, a messaging system, and a 
simple script loader.
 The AI elements involved in the demo included an FSM-controlled ship, a 
steering controlled saucer, a new static Planet game element, and a number of 
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new state and steering behaviors. There is also an occupance-based IM running 
that is tracking the asteroids, and a scripting system that loads a number of 
game parameters on demand.
 The GameSession class was augmented to make it more abstract in regards to AI 
controllers, as well as making allowances for the other demo codes it handles, 
like the message pump and the influence map.
 The FSM used in the demo that controls the ship employs the script loader to 
initialize a number of parameters that it passes to its individual states.
 The ship’s approach behavior has been upgraded to a full FSM on its own, with 
a new border-aware hunt behavior, as well as an IM using GotoBusySpot state, 
in addition to the old StateApproach class.
 The steering code has had changes made to it for the demo. The AvoidWalls
behavior is being used to steer around the planet (there are other ways of doing 
this; a few were discussed). The overall mix of specific behaviors and their cor-
responding weights were adjusted so that the personality of the saucer allows it 
to attack only if approached by the ship; it will not seek out the ship. In fact, it 
consciously avoids the ship using a new steering behavior—SteerUseCover.
 Combined AI engines, by definition, should be able to handle any AI problem 
that arises.
 The creation of new AI solutions should be vastly eased by combination engines.
 Employing a combination of AI techniques should only be considered if it will 
buy the project something significantly more than what it will cost.
 FSMs could have been used within the demo to control the overall game state, 
as well as provide the saucer with an easy way to switch between radically dif-
ferent behavior sets.
 Steering behaviors could have been employed to easily create indigenous life or 
new weapon types within the demo.
 Use of other types of influence maps could have radically improved the behavior 
of both AI-controlled craft.
 Scripting could control story elements and dialogue trees, as well as spawn 
game characters directly to make levels of patterned enemies.
 The message system could be used as the start of a full multiplayer system 
within the game, as well as provide the game with a way to rid itself of much 
of the polling going on within the manager game objects by using messaging 
and callbacks instead.
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Genetic Algorithms22

Sometimes, we face AI problems that defy solving, either because of computa-
tional difficulty, or simply because there isn’t enough time. These problems 
have too many possible responses, or too many incoming variables to con-

sider. It’s always possible that a solution could be found, but only after many, per-
haps hundreds or thousands, of programming iterations involving manually trying 
different avenues in a hunt for the best algorithm.

As an example, consider having to tune the performance parameters for the 
physics simulation used by each car in Gran Turismo 4. With more than five hun-
dred vehicles and dozens of tweakable settings for each intricate piece of a car’s 
handling system being simulated, this would truly be a daunting task for any com-
pany to accomplish (at least, within any reasonable time and monetary budget), 
especially if the goal was to accurately depict the real-life performance of each car.

OVERVIEW

In this chapter, we will cover a class of AI techniques called genetic algorithms (or 
GAs) that take lessons learned from evolutionary science to try and find novel solu-
tions to these kinds of problems. We will cover the basic method by discussing the 
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natural model, and then show how the model can be applied to our game prob-
lems. A basic, general-case GA class will then be detailed and implemented into the 
AIsteroids test bed for illustration.

EVOLUTION IN NATURE

GA techniques try to use the principle of evolution, normally found in natural sys-
tems, to search for solutions to algorithmic problems. The process in nature works 
roughly like this:

To survive as a species, all living creatures need to be able to reproduce. Repro-
duction is (heavily simplified) simply executing the encoded rules necessary 
to build an organism. These rules are stored in strings of DNA (made up of 
proteins) called chromosomes, which are found in every cell that makes up a 
living being.
Chromosomes are in turn made up of small, modular protein sequences called 
genes, which are various permutations of the four basic proteins: thymine, ad-
enine, cytosine, and guanine (or T, A, C, and G, respectively). Each gene holds 
information about the “settings,” or alleles, of a particular trait (or number of 
traits, as each gene is usually linked to more than one trait within a body).
In most complex organisms, when two parents reproduce, their DNA is split. 
Half the DNA of the child comes from one parent, and half from the other. 
This is called crossover or genetic recombination.
Genetic crossover results in a new mixture of genetic traits that are passed on 
to the offspring. If this new mixture of traits is good, the offspring will have a 
full life and be able to reproduce as well, again passing on at least half of his or 
her traits to future generations. If, however, the child inherits weak or even bad 
traits, the offspring may not survive long, or even be able to reproduce at all (ei-
ther because of biological reasons, such as infertility, or social reasons, in that it 
is not a desirable mate). Over many generations, the trend of organisms with a 
better mix of traits being more likely to reproduce, and creatures with bad gene 
mixes being starved out of the overall pool (and thus removing their genes), 
leads societies of creatures to evolve toward the genetically superior version of 
their species. The quality measure of any one creature’s mix of traits is called 
its fitness, and the higher the fitness value, the better that creature is at applying 
its traits to the world, both in performance and reproductively.
In human terms, a highly successful man might still lose out in the race be-
cause his all-encompassing drive to perform well in the working world might 
make him unavailable to have children and pass on his genes. Thus, both areas 
(performance and reproduction) need to be expressed for the traits to move 
forward.
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Occasionally, a flaw happens in this system (although whether this “flaw” pro-
cess might be an integral component built into the system is often debated). A 
gene within a child organism is somehow different so that it is completely new 
and cannot be traced to one of its parents. The gene is replicated incorrectly, a 
chemical imbalance occurs during fertilization, or any number of things; we do 
not know all the causes at this time. When this happens, it is called a mutation,
and the results are that the allele of the particular gene are now random, with 
random effects in the organism. In most cases, this results in negative traits. 
A bird is born with wings that are too short to fly, a tree sloth is born with a 
large brown spot on its head (and thus no other sloths will mate with it), or 
a monkey can hear very high wavelength sounds and goes insane from all the 
nighttime chatter.
But sometimes, this mutation results in the offspring having traits that make it 
better at performing within its environment, which in some way makes it more 
likely to reproduce. When this happens, this mutated gene is more likely to be 
passed on to other generations through reproduction, and on and on.
Thus, the “survival of the fittest” paradigm gradually changes the set of traits 
(called a genome) that the species contains on average toward the ideal set, 
which represents the most adapted genes for the particular creature in its 
current environment conditions.

EVOLUTION IN GAMES

So what does all this offer to our game AI? This evolutionary algorithm can be im-
plemented within the confines of our game worlds and be used to tune behaviors, 
parameters, etc. for areas of gameplay that would take far too long to iteratively 
hand tune. The process can be thought of as “evolutionary search,” in that we are 
still searching across the field of all the possible solutions to a given game problem, 
but we are going to use a method of searching that is likened to the process of 
evolution through genetic fitness.

The method is split into two unequal halves: evolving a solution, and using 
the solution. Typically, using the information gleaned from a genetic algorithm in 
the final game is a “black box” operation. This is a magic box that makes the par-
ticular problem behavior act in the best way possible (or in the best way possible 
you were able to find). The internals of how the black box works is most times not 
readily discernable to an outside observer. This isn’t always the case, but the nature 
of complex problems and the abstracted solution found by the particular genetic 
algorithm are usually convoluted enough that they prevent dissection.

Evolving the solution is thus almost all the work, and this process is usually 
performed during the production of the game. Very few games actually go out 
the door with the evolving parts of their genetic algorithms still turned on. Some 
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notable exceptions to this, where learning was one of the central tenets of the game, 
include the Creatures series, and Black & White. But the learning components of 
even these games are very closely monitored; the traits and behaviors that are being 
influenced by the learning elements are constructed in such a way that they con-
strain the learning or genetic elements, so that the learning or evolution is as tightly 
controlled as can be. The nature of these games also fosters unpredictability in the 
AI character’s actions, so that the player will allow for some degree of leeway to be 
granted for stupid or inappropriate behavior by the AI.

GAs have tended to be computationally expensive (this process can take a good 
deal of time because you are forced to run many, many generations on a large pop-
ulation of possibilities), which made using them a costly choice in the past—one 
of the reasons that the evolutionary work is mostly done offline. Increasing per-
formance of the average computer has allowed these methods to become more 
mainstream.

GAs belong to the class of stochastic search methods (others in this family in-
clude simulated annealing and threshold acceptance), which means they rely on an 
element of random chance or probability for directing the search. Hence, numer-
ous search iterations are required (because you never know if the random element 
of the search has led you astray from the best solution path), but you are much 
less likely to get stuck around a particular “solution” (some applications may have 
many genomes that provide good results, but might not be the best possible; this 
is referred to as finding local maximums rather than global maximums, and hav-
ing an element of randomness tends to “jump” the search out of the trap of local 
plateaus).

Unlike some searching systems, GAs separate their algorithm from the prob-
lem representation (the algorithm works for vastly different data structures), 
which allows them to easily find solutions in systems of mixed variable types 
(having both discrete, as well as continuous values). Although the most common 
technique for data representation is a string of bits, any data structure you want 
(including arrays, trees, etc.) can be used as long as each individual can encode 
a complete solution, and genetic operators can be constructed for your data 
structure.

One thing to consider about GAs is that they do not guarantee either perfor-
mance, or success. In fact, a GA can, and sometimes will, perform in the worst 
possible ways. Such is the price for throwing an element of randomness into your 
algorithm; there’s even a biological term for it—an “evolutionary dead-end.” Your 
GA system will almost certainly spawn evolutionary dead-ends of its own. You will 
possibly need to tweak the structure of your genes, or even the GA’s settings and 
operators if the system doesn’t deliver the kind of behaviors that you were looking 
for. Even then, you might discover that GA methods just aren’t suitable for your 
particular problem.
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BASIC GENETIC METHOD

The basic algorithm for using GAs to find a solution to an AI problem can be bro-
ken down into three steps: initialize, evaluate, and generate.

INITIALIZE A STARTING POPULATION OF INDIVIDUALS

Genetic algorithms operate on a population of potential solutions. Each member 
of the population is an encoded blueprint for how to solve the problem. These 
“beings” can be generated randomly, or seeded with promising individuals given 
some specific knowledge concerning the problem domain. The size of the initial 
population is somewhat arbitrary and mostly depends on experimentation and 
resources, how much time you have to devote to the process, and what seems 
to work.

EVALUATE EACH INDIVIDUAL’S SUCCESS WITHIN THE PROBLEM SPACE

Each individual is then subjected to evaluation, by running a special fitness func-
tion, which returns a number value (or possibly a vector) representing the overall 
performance of this individual. GAs are so expensive because of the time necessary 
to calculate fitness. If you can look at an individual genome, and algorithmically 
calculate its fitness, then this process is quite fast.

But in the world of gaming, each being in the population must be run through 
the game loop for some period to determine its fitness score. A fitness test that 
requires each individual to play the game for 5 minutes, given a population of 
100, would thus require 8.33 hours per generation, and a typical GA can take 
thousands, if not tens of thousands of generations to find any really useful solu-
tions. Making your game simulation time scaleable can obviously speed up this 
process. But a sped-up world is not the same as the real game (for example, phys-
ics checks might miss collisions because of large deltas in time between frames), 
so your GA might learn things specific to a sped-up world, and not be as effective 
in real time.

Another technique involves using a GA to equate a specific part of the game 
decision-making process and have this particular part use a more straightforward 
algorithmic or time-scalable fitness function.

GENERATE NEW INDIVIDUALS USING REPRODUCTION

Once all members of the population have had their fitness calculated, a number of 
these individuals are selected for breeding. Selection style is another important part 
of the genetic process. If you only select the very best performers, you may converge 
on a local maximum too quickly because you have excluded too many genes from 
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the pool. If you select too randomly, you may never find a good solution because 
you can cause too much random jumping. Several methods of selection will be 
covered later in this chapter.

Once all the parents have been selected, they are bred to create the next group 
of possible candidates. The next generation is spawned using three common 
methods: crossover (or sexual reproduction), mutation (or genetic variation), 
and elitism (which is taking the most fit, or elite, beings from the last generation 
and carrying them directly over into the next—which isn’t exactly breeding, it’s 
more like cloning). The specific mix of these three methods, as well as the exact 
operator with which to perform each method, is again up to experimentation and 
domain-specific knowledge. Many of these differing operators will be discussed 
in this chapter.

REPRESENTING THE PROBLEM

GAs are commonly written in the language of the thing being copied—evolution. 
We will design a way of representing our problem in a genetically compatible way 
and create iterative operators for dealing with this abstract representation.

THE GENE AND GENOME

First, determine the structure of the genes inherent in your problem. What, and 
how many specific traits are you seeking values for? Are the alleles of these traits 
binary (on/off), or are they real numbers, and if so, what are their ranges? Do any 
of these traits depend on each other?

The importance of these determinations cannot be overstressed. When you 
create a gene or genome structure for your GA problem, you are essentially defin-
ing the state space in which the GA will search, as well as formalizing the language 
in how you will receive your answer. Answers will be at the same resolution as the 
genes themselves. So, if you only encode the four cardinal directions as alleles for 
direction, your character will only move in those four directions in the solution. 
But fear not, GAs work just as well with analog allele states as they do with discrete 
values, at the cost of larger search spaces.

Herein lies the tradeoff. The larger the search space, the more likely your GA is 
going to find good, possibly surprisingly good, solutions. The larger search space 
creates two disadvantages, however: It is going to take longer to find that solution, 
and a greater chance exists that the GA might find an exploit in your logic. This 
means that you’ve set up your parameters in such a way that the GA finds a solution 
that maximizes your fitness function with behavior that doesn’t follow the spirit of 
the game, or is inhuman enough that it is unwanted.
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A (somewhat unconnected) example is the animation system used by the ani-
mators in the Lord of the Rings movies. In the massive battle scenes, which would 
have been cost prohibitive if each combatant was hand-animated, they used an AI 
system to control the warriors. The default settings of the AI system, however, were 
set up using commonsense values. When creating a massive battle between the hu-
mans and elves and the overwhelming forces of the orcs, all the AI-controlled hu-
mans and elves simply turned tail and ran into the woods when the battle started, 
because anything else was suicide. The default settings needed a bit of tweaking to 
reflect the unwavering morale and sense of duty that these soldiers felt in the book. 
GAs are notorious for finding loopholes in your calculations, and can find novel, 
yet unusable solutions to problems. Giving the GA too large of a search space to 
look within sometimes can exacerbate these kinds of issues.

One of the most common ways of encoding genes is as strings of bits. Con-
sider the game world of Pac-Man. The main character has only four choices for 
his actions: Move Up, Move Down, Move Right, and Move Left. He can do any 
one action per game loop. He knows that the path in front of him in the direction 
he’s currently moving has some “state” (defined as the containment of the path; 
does it contain regular ghosts, blue ghosts, dots to clear, or a wall). So, we could 
evolve a GA that would get Pac-Man to do the right thing when confronted with 
all the different permutations of world state that he encounters. Each gene would 
be two bits (representing the four actions he can perform). His genome would 
then be a string of genes that corresponded as proper responses to the different 
world states.

Another type of structure that is used often is an order or content-sensitive gene. 
An example of this is the classic Traveling Salesman Problem (TSP). Given a num-
ber of cities that the salesman has on his route (Figure 22.1 shows a typical setup), 
in which order should he visit them so that he goes to each city only once and also 
travels the shortest distance? The genome structure for this problem is obviously a 
list of cities. But unlike the string of actions in the earlier Pac-Man example, each 
gene would have to be unique for the genome to be valid because you can only visit 
each city once. We could technically define our Pac-Man genetic solution using a 
TSP-style structure, solving each board for optimal travel so that Pac-Man would 
clear the dots in the shortest distance. There’s a problem, though. The ghosts are 
going to be in our way at some point, and Pac-Man might have to take a path (to 
escape) that he’s already cleared. So, maybe we should leave Pac-Man with the first 
implementation type. Pac-Man isn’t really a “shortest-path” type of problem. It re-
quires dynamic reactivity to changing conditions, not an optimized route. If the 
ghosts in Pac-Man were on static paths, and in no way reacted to your presence, 
then you could use a shortest-path type of solution.

In fact, you should know that Pac-Man is really only being used in these ex-
amples because of the simplicity of the game world, as well as the almost universal 
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familiarity that people have with the game. In reality, an AI system designed to 
play Pac-Man should probably use a more standard method, rather than GAs. In 
general, GAs are good for problem arenas in which you really just can’t formulate 
a good way of determining solutions. The number of calculations that would need 
to be done to simulate the richness of the GA search method would leave a heuris-
tic system either choking on the sheer number of computations, or mired in a sea 
of tunable values that require programmer time in which to balance. We will cover 
this more in the section on disadvantages of the system, later in the chapter.

Other types of structures that have been used as genomes within the general 
GA method include arrays and trees; both can easily be handled with the system, 
and both have had standard genetic operators written for them. All these ex-
amples can use genomes with both a fixed number of genes, and with a variable 

FIGURE 22.1 The traveling salesman problem.
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number of genes. The only real requirements of any genome representation are 
that it has the ability to encode a successful set of rules for the problem and that 
genetic operators can be written to manipulate the structure without break-
ing the system, or mangling the meaning of the genome, any individual gene, 
or allele.

THE FITNESS FUNCTION

Once we have determined the format of our genes and genomes, we then have to 
figure out how we’re going to score each genome for performance within the world. 
This fitness function is very domain specific.

In Pac-Man, a fitness function might consider total score, speed of clearing 
the level, length of survival time, and the percentage of blue ghosts chomped. The 
function could take these elements into account with different bias coefficients (for 
example, so that survival is most important, then score, and then speed of level). 
The addition of “percentage of blue ghosts chomped” might be double dipping 
because you are already valuing score (you get points when you eat blue ghosts), 
as well as survival (chomping blue ghosts clears your way for easier survival). How 
you determine these coefficients would fundamentally mold the type of Pac-Man
player you are trying to evolve: to what extent does your player value the best score, 
the fastest time, and sheer survival.

Your fitness function is really the essence of what your GA is trying to optimize 
its solution for, so you must carefully consider its design. Your fitness function is 
the heuristic that you use to direct evolution within your search space. Too many 
parameters, and the behavior of your GA is going to be diluted, as well as require 
many more generations of genetic manipulation to find a good solution. But too 
few parameters, and your GA is going to discard too much “unnecessary” genetic 
material from its population in favor of only those genes that maximize its limited 
fitness model.

Once a basic fitness equation has been designed, and we run our function on 
all the members of the current population, the fitness data must then usually be 
scaled, to prevent premature convergence (PMC) and/or stagnation. PMC occurs 
when exceptional individuals are born in an early generation, in a GA with a rela-
tively small population, causing these early superbeing’s genes to quickly spread 
to a large portion of the population as they dominate selection. Stagnation occurs 
more toward the end of the process, when many individuals have similar, high 
numerical fitness. In this case, the differences between individuals are minimized 
(at least to the selection process, which will be discussed during the reproduction 
section later in this chapter), which is not what we want because there is no lon-
ger very high selection pressure. In effect, scaling the fitness values brings out the 
various (and extremely small) advantages caused by the combinations of genes 
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within the game entities. Some of the common ways of scaling the data include 
the following:

Sigma truncation. The scaled fitness value (F`) is equated F` = F – (F^ – c * 
sigma). F^ is the average fitness, sigma is the population standard deviation, 
and c is a reasonable multiplier (usually between 1 and 3). Negative results 
are set to 0. You are basically scaling everyone’s fitness using the standard de-
viation of the entire group, which means that there is more scaling when the 
group is composed of wildly different members (and hence, is usually more 
likely at the beginning of the simulation). The scaling will gradually take less 
effect as convergence gets underway and fitness scores start to become similar.
Rank scaling. Rank scaling replaces the fitness score with its position in the 
sorted order of the fitness scores. So, whoever had the lowest score now be-
comes 1, the second-lowest score becomes 2, and the highest fitness scorer is 
the size of the population. Easily eliminating the chance of premature con-
vergence, rank scaling does the opposite: It makes a GA take much longer to 
converge.
Sharing scaling. A method that tries to encourage genetic variation, this scales 
down individual fitness scores that are very similar to each other. Essentially, 
the number of genes that different genomes share is recorded. Genomes are 
then grouped by how many shared genes they have (e.g., all those with five 
shared genes are in group 5). Finally, the fitness score of each genome is scaled 
by the number of other genomes in its sharing group.

REPRODUCTION

We have a population of individuals, and they have been evaluated by the fit-
ness function. Now we must build an offspring generation, using the knowledge 
we’ve gained from this run. Two main types of reproductive cycles are common. 
The first is generational reproduction, referring to the process of using the last 
generation as a tool to create the next, either by copying directly or through ge-
netic crossover and mutation, completely replacing the original generation. The 
second is called steady-state reproduction, wherein a few new individuals that are 
created through crossover or mutation replace specific individuals each genera-
tion, but the main body of the population remains unchanged. Who is replaced 
in steady-state implementations is another question (most common is to replace 
the worst, but other schemes involve replacing randomly, replacing the most 
 similar, or replacing parents).

If we directly copy individuals from this generation to the next, this is called 
elitism, and it helps ensure that whatever selection routine we use doesn’t acci-
dentally miss the best beings in any given population. Elitism does the opposite of 
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fitness scaling: It lessens genetic diversity and speeds up convergence, so care must 
be taken in its use. With too much elitism you will find local maximum solutions 
instead of global ones. Steady-state implementations do not require additional elit-
ism because the method is defined by genetic carryover.

Other selection functions include the following:

Roulette wheel selection. The random chance of a genome being selected is pro-
portional to its fitness score. If a genome has the highest score, it also has the 
highest chance of being selected (it will have the largest slice of the roulette wheel). 
Notice that this selection doesn’t take the genome out of the pool, so a highfit-
ness individual may be selected multiple times. Notice, too, that it’s still a random 
chance. Thus, the fittest individual is not guaranteed a place in the next generation, 
and this is the reason that elitism is a common practice in GA genome selection.
Stochastic universal selection. This is a long-winded name for roulette wheel 
selection with a twist. The same roulette wheel is constructed, but now there’s no 
need to spin. Take the number of individuals to select (n), and select the owner 
of the roulette slice at 1/n increments along the wheel. So, for 10 individuals, 
select the owner of the roulette slice pointed to each 1/10th of the wheel. This 
has the advantage over regular roulette wheel selection by keeping the spread of 
the fitness values chosen low and, thus, keeping genetic diversity high.
Tournament selection. In this technique, a number of individuals are randomly 
drawn from the pool, and the highest scorer makes it to the next generation. 
Everybody goes back into the pool, and this is repeated for however many you 
need to make a new generation.

As individuals are being selected, you check each incoming pair for crossover, or 
sexual gene blending. The simulation keeps a crossover rate number, which is usu-
ally around 0.7f (your number may vary as you see fit). Generate a random number 
between 0 and 1. If the number is less than the crossover rate, you apply a crossover 
operator to the two individuals, creating two offspring. Otherwise, they become 
unaffected offspring. Which crossover operator you use depends on a number of 
things: the type of variables and structure your genomes are using, and a healthy 
dose of experimentation.

Some of the common binary variable crossover operators are the following (see 
Figure 22.2 for visual descriptions):

Single-point crossover. A position is randomly chosen somewhere along the 
length of the genome. Swapping all the genes after this position among the 
parents forms the offspring.
Multipoint crossover. Same as single point, except that two points are selected, 
and all the genes between the two points are swapped.
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Uniform crossover. What could be called “every point” crossover; this method 
performs the mutation check with every gene, and swaps it with the other 
 parent if it passes.

Common continuous value variable crossover operators are the following 
(see Figure 22.3):

Discrete crossover. Swaps the variable values between individuals.
Intermediate crossover. Determines the offspring’s variable values as being 
around and between the parents’ values. The offspring formula is offspring = 
parent1 val + Scale*(parent2 val – parent1 val), where Scale is a scaling 

FIGURE 22.2 Binary variable crossover operators.
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factor chosen randomly for each value over the interval (-d,1 + d). Normal 
intermediate crossover uses d = 0, but if you want to extend the children out-
side the area of their parents, you can use a d>0.
Line crossover. The same as intermediate crossover, but all variables use the 
same Scale scaling factor.

Order-specific operators include the following (see Figure 22.4):

Partially mapped crossover. Sometimes called PMX, this operator selects 
two positions randomly within the Parent1 genome, defining a substring. For 
each gene in the substring, it is noted which gene corresponds positionally 

FIGURE 22.3 Continuous variable crossover operators.
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(or is mapped), in Parent2. Then, build the offspring by taking each parent, 
and copy the genes into the child, but every time you reach a mapped gene, 
swap the values.
Order-based crossover. Choose several random genes from Parent1. Impose 
the same order they are found in the same genes within Parent2, by swapping 
values as needed.
Position-based crossover. This is like order-based crossover, except we im-
pose the position the randomly selected genes from Parent1 are found in to the 
Parent2 genome, and vice versa. Select some random genes in Parent1. Then, 
put these values into a new genome, in the same positions as you found them. 

FIGURE 22.4 Order-specific crossover operators.
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Then, fill the rest of the new genome with the values of Parent2, making sure 
not to use a gene that is already present in the array.

After everyone has been either copied or crossed over into the offspring popula-
tion, the last step in reproduction can occur: mutation. Again, this is simply apply-
ing an operator to the genes in each offspring genome. The rate of mutation, or the 
chance that any one gene will be mutated, can vary wildly depending on the prob-
lem; various academic papers ([Bäck 93], [MSV 93]) have reported that 1/(number 
of variables in your GA) produces good results for a wide range of test functions. A 
typical number used in bit string style-genomes is around 0.0001f, whereas the rate 
when dealing with real numbers is usually much higher, more in the range of 0.05f
to 0.2f. The specific type of mutation operator that you need to apply is related to 
the specific structure of the genomes you are using in your GA.

For order-specific genomes, common mutation operators include the following 
(see Figure 22.5):

Exchange mutation. Swap two genes within the genome.
Displacement mutation. Select two random positions within the genome, de-
fining a substring. Then, remove this substring, and reinsert it into a random 
position.
Insertion mutation. The same as displacement, except that the substring is 
only one gene. Tests have shown that for order-specific GAs, this operator 
 performs consistently better than others do. Your results may vary, however.

Otherwise, non-order-specific operators include the following (see Figure 22.6):

Binary mutation. Merely flip the bit with the genome.
Real-value mutation. Offset the value of a gene by some delta. The size of the 
delta is somewhat difficult to choose; small steps are often successful, but may 
take much longer.

IMPLEMENTING A GENETIC ALGORITHM SYSTEM INTO THE AISTEROIDS TEST BED

Straightforward Asteroids (meaning without large extensions to the core gameplay) 
has very few problems that would actually require GA techniques to solve. Most of 
the determinations can be broken into simple math, with some breakup of individ-
ual states that might influence behavior. But, for illustration, one aspect of the AI’s 
current behavior stands out as needing some help: the Evade state. For our sample 
implementation, the following will discuss a GA-designed solution to improve the 
evasion capabilities of our AI ship.



528 AI Game Engine Programming

The gene design to be used is very simple, mostly because the ship’s movement 
capabilities are so simple; at any given time, the ship can essentially only thrust or 
turn. So, a gene will be defined as a two chars, the first value meaning thrust type 
(forward, reverse, or no thrust), and the second representing an unsigned integer 
between 0 and 17 signifying the sector at which the AI wants the ship to point. A 
sector is defined as 20 degrees in our demonstration, meaning that there are 18 pos-
sible sectors. Given the range of these variables, this data could be compressed for 
size with no loss of resolution, if required.

The way that this gene’s encoded information is used is as a solution to the ques-
tion, “Given a certain game state, which direction should the ship turn to, and how 
should the ship use its thrusters?” The system will then create a means for defining the 
many possible current states of the game, such that the GA can solve a genome that 

FIGURE 22.5 Order-specific mutation operators.
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stores all the solutions for each game state. A simplified evasion-specific game state 
should consider three things (all concerning the ship, and the nearest asteroid):

 1.  How fast is the ship moving toward the asteroid? First, determine a nor-
malized delta vector, defined as the sum of the normalized vectors of the 
ship’s movement and the asteroid’s. The speed at which the two are moving 
together is calculated by multiplying the ship’s speed by the magnitude of 
this delta vector projected on its movement vector, plus the same calcula-
tion for the asteroid (see Figure 22.7). The higher this number is, the faster 
the two objects are moving together. Quantize this value into a manageable 
range, so scale it to the range 0–9, giving us 10 possible collision states.

FIGURE 22.6 Non-order-specific mutation operators.
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 2.  What direction are the ship and asteroid moving in? Again, quantize this 
value to limit the number of game states. Calculating this value will use 
the same normalized movement delta vector as the collision state. Simply 
calculate the angle that vector points in, and then scale it into 0–17 sector 
values, for 18 possible direction states.

 3. What is the separation distance? Last, the ship needs to know how far away 
the asteroid is. The game really only cares when the two objects are pretty 
close, so quantize this value down into a few base distances that the game 
cares about. The way to do this is by metering the distance between the two 
objects in the units of “asteroid radii,” referring to the asteroid the ship is 
trying to evade. Thus, if the asteroid is within one radius distance from the 
ship, its separation distance is one. Two radii is a separation distance of two, 
and so on, until four (or more) radii distance, which is used as the cap for the 
separation distance being considered, giving the game four distance states.

All told, this forms a defined theoretical set of rules, given the Collision state, 
Direction state, and Distance state of the ship and the nearest asteroid—520 given 

FIGURE 22.7 Diagram of the collision state calculation.
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distinct evasion scenarios (10 * 8 * 4). If the ship knew how to react to all of these 
520 possible game states, it would be pretty good at evading. Again, this implemen-
tation could definitely be done more simply using mathematical constructs; this 
will just demonstrate the technique.

So, this is the quest to set the GA towards solving. The genome is defined as the 
collection of rules that will most successfully solve all the necessary evasion rules, 
meaning the final genome will have 520 genes. Listing 22.1 shows the header for 
the gene and genome.

LISTING 22.1 Gene and Genome header information.

class Gene 

{

public:

    //methods

   Gene() {m_thrust = randint(0,2);m_sector = randint(0,

NUM_SECTORS-1);}

    Gene(int a, int d):m_thrust(a), m_sector(d){}

    bool operator==(const Gene &rhs) const {return (m_thrust ==

                    rhs.m_thrust) && (m_sector == rhs.m_sector);}

    bool operator!=(const Gene &rhs) const {return (m_thrust != 

                    rhs.m_thrust) || (m_sector != rhs.m_sector);}

    

    enum

    {

        THRUST_OFF,

        THRUST_FORWARD,

        THRUST_REVERSE

    };

    

    //data

    char m_thrust;

    char m_sector;

};

class Genome

{

public:

    //methods

    Genome():m_fitness(0){}

    Genome(const int num_genes):m_fitness(0)

                    {for(int i=0; i<num_genes;++i)

                        m_genes.push_back(Gene());}
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    bool operator<(const Genome& rhs){return (m_fitness <

                                              rhs.m_fitness);}

    //data

    vector<Gene> m_genes;

    float        m_fitness;

};

Both classes shown are very simplistic. Gene stores the information that will be 
genetically modified, whereas a Genome is a collection of genes, as well as a fitness 
score. In our AIsteroids example, a “plan” for surviving a collision event will be 
stored, in the form of a thrust setting and a target direction sector. When used for a 
different game (or used within the same game), this is where you would define the 
set of genetic material you have to work with, whether it is bit strings, real variables 
like in our example, or complex data structures like trees. The Genome class can be 
used generically, but the Gene class is so basic to the particular implementation that 
you really have to address its design on a per-use basis.

Next is the implemention discussion of the evolution application (EA). This is 
the rule system that the real game code can use. The parts of this application will 
be a different GameSession class (called TestSession), a different set of keyboard 
controls (called HumanTestControl), a new AIControl class, GAAIControl, and most 
important, the GAMachine class, which houses the bulk of the GA functionality.

TestSession and HumanTestControl are mostly just the “game side” support 
code for the EA, meaning that they handle the inputs, drawing code, main game 
update loop, and so forth. The only controls that the tester application includes 
are the standard speed-up and slow-down buttons (. and , respectively), the “step” 
functionality still operates, and there is a Reset button (the r key). As for the session, 
it’s basically the same application, except that it spawns a number of asteroids and 
ships, and when they collide, it just deactivates them, instead of killing them off. 
Then, at the end of a generation (when all the ships are deactivated), they are reset, 
reactivated, and start another round.

The real headquarters for the genetic algorithm code is in the GAMachine class. List-
ing 22.2 shows its header. The following code analysis is of the functional implementa-
tion, shown in Listings 22.3 to 22.11, with a brief discussion of each one in turn.

The first thing you should notice about the header is that there are more func-
tions than are necessary for the test application. There are two types of selection, 
six crossover operators, and four mutation operators. These are implemented to 
provide you with additional tools to use in your AI programs, as well as to give 
you some things to tweak within the test bed, to see its affect on the quality of the 
evolution. Remember, GAs are all about experimentation, and finding out what 
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operators to use, as well as how to tweak key values (the crossover rate, mutation 
rate, amount of elitism, etc.), is most of the difficulty in using the GA method.

LISTING 22.2 GAMachine header.

class GAMachine

{

public:

    GAMachine(GAAIControl* parent):m_parent(parent){}

    void SetupNextGeneration();

    void CreateStartPopulation();

    void Update(float dt);

    void UpdateFitness(int index);

    void Init();

    void Reset();

    void ApplyBehaviorRule(int index);

    bool WriteSolution();

    bool ReadSolution();

    

    //selection operators

    Genome& SelectRouletteWheel();

    Genome& SelectTournament();

    Genome& SelectRank();

    

    //crossover operators

    void CrossUniform(const vector<Gene> &parent1,

                      const vector<Gene> &parent2,

                      vector<Gene>&offspring1,

                      vector<Gene>&offspring2);

    void CrossSinglePoint(const vector<Gene> &parent1,

                          const vector<Gene> &parent2,

                          vector<Gene>&offspring1,

                          vector<Gene>&offspring2);

    void CrossMultiPoint(const vector<Gene> &parent1,

                         const vector<Gene> &parent2,

                         vector<Gene>&offspring1, 

                         vector<Gene>&offspring2);

    //crossover operators — order based genes

    void CrossPMX(const vector<Gene> &parent1,

                  const vector<Gene> &parent2,

                  vector<Gene>&offspring1,

                  vector<Gene>&offspring2);

    void CrossOrderBased(const vector<Gene> &parent1,

                         const vector<Gene> &parent2,
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                         vector<Gene>&offspring1, 

                         vector<Gene>&offspring2);;

    void CrossPositionBased(const vector<Gene> &parent1,

                            const vector<Gene> &parent2,

                            vector<Gene>&offspring1, 

                            vector<Gene>&offspring2);

    

    //mutation operators

    void MutateOffset(vector<Gene> &genes);

    //mutation operators — order based genes

    void MutateExchange(vector<Gene> &genes);

    void MutateDisplacement(vector<Gene> &genes);

    void MutateInsertion(vector<Gene> &genes);

    

    //elitism

    void CopyEliteInto(vector<Genome>&destination);

    

protected:

    GAAIControl*    m_parent;

    //genetic data

    vector<Genome>  m_genomes;

    int             m_rankIndexLast;

    Genome          m_bestGenome;

    int             m_generation;

    float           m_crossoverRate;

    float           m_mutationRate;

    float           m_offsetSize;

    float           m_bestFitness;

    float           m_totalFitness;

    int             m_liveCount;

};

LISTING 22.3 GAMachine::Update() implementation.

//--------------------

void GAMachine::Update(float dt)

{

    //find best out of the maximum tries, then start over

    if(m_generation > NUM_MAX_GENERATIONS)

    {

        WriteSolution();

        //reset

        CreateStartPopulation();

        Reset();

    }
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    m_liveCount = 0;

    for (int shpNum=0; shpNum<POPULATION_SIZE; ++shpNum)

    {

        if(!Game.m_ships[shpNum]->m_active)

            continue;

        m_liveCount++;

        m_parent->UpdatePerceptions(dt,shpNum);

        ApplyBehaviorRule(shpNum);

        UpdateFitness(shpNum);

    }

    

    //if the generation is over...

    if(!m_liveCount)

        SetupNextGeneration();

}

The Update() function is the main loop of the GA. This function first checks 
to see if you’ve run some maximum number of generations (thereby running an 
entire simulation), and then writes out the best genome and starts it over. If you 
want, you could write out the top-10 genomes, or the whole list. The reason for this 
is that you will most likely be running this program overnight, or at the very least 
unsupervised, to give it the time it needs to evolve fully into a working solution. 
You could even set up the system to use slightly different GA parameters, or even 
different genetic operators, for the different runs, and after an overnight session, 
you would have a few different solutions to compare and contrast.

If the simulation isn’t over, it updates each ship’s perception values (take no-
tice that the GAMachine is calling the GAAIControl::UpdatePerceptions() function; 
usually the controller updates himself, but within our GA teaching program, more 
than one ship is being controlled, so the GA machine has to update them sepa-
rately), then applies the evasion rule for that ship (given those current perceptions), 
and then scores the ship based on how well it is performing. If there are no active 
ships left, it calls SetupNextGeneration(), the evolution function.

LISTING 22.4 GAMachine::ApplyBehaviorRule() implementations.

//--------------------

void GAMachine::ApplyBehaviorRule(int index)

{

    if(index < 0 || index > POPULATION_SIZE)

        return;

    Ship* ship = (Ship*)Game.m_ships[index];
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    //not going to collide, just idle...

    if(m_parent->m_currentEvasionSituation == -1)

    {

        ship->ThrustOff();

        ship->StopTurn();

        return;

    }

    //thrust

    int thrustTp = m_genomes[index].

              m_genes[m_parent->m_currentEvasionSituation].m_thrust;

    ship->StopTurn();

    if(thrustTp == Gene::THRUST_FORWARD)

        ship->ThrustOn();

    else if(thrustTp == Gene::THRUST_REVERSE)

        ship->ThrustReverse();

    else

        ship->ThrustOff();

    //turn

    //-10 puts you in the middle of the sector

    float newDir = m_genomes[index].

                   m_genes[m_parent->m_currentEvasionSituation].

                                                    m_sector*20 -10;

    float angDelta = CLAMPDIR180(ship->m_angle - newDir);

    if(fabsf(angDelta)<=90)

    {

        if(angDelta >0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

    else

    {

        if(angDelta<0)

            ship->TurnRight();

        else

            ship->TurnLeft();

    }

}

ApplyBehaviorRule() takes the particular ship’s current Evasion state,  
m_currentEvasionSituation, and applies the correct rule coded within the ship’s 
genome by setting the thrusters, and also possibly turning the ship toward some 
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new goal direction. If the ship isn’t currently in danger of a collision, the evasion state 
gets passed in as –1. When the ship registers this, it stops turning and thrusting.

LISTING 22.5 GAMachine::UpdateFitness implementation.

//--------------------

void GAMachine::UpdateFitness(int index)

{

    Ship* ship = (Ship*)Game.m_ships[index];

    if(ship && ship->m_active)

    {

        //if I’m currently surviving a collision situation, 

             //incr fitness

        if(m_currentEvasionSituation != -1)

            m_genomes[index].m_fitness++;

        m_liveCount++;

    }

}

Fitness, for our test bed, is based on how often each ship was in an evasion situ-
ation and didn’t die. The function does this by checking some perceptions (being 
active, and that the ship currently has something to evade), and if they are true, 
it increments the ship’s fitness value. For our test bed, we aren’t using any fitness 
scaling. Scaling the fitness scores would probably be done after all the individual ge-
nomes have been run through their update and fitness calculations. A very simple 
way to introduce scaling into the test bed is to implement rank scaling. Given that 
we already sort the genome list (for elitism, keeping fitness statistics, and roulette 
wheel selection), you could just make a post-sort pass through the list, changing 
each genome’s fitness to be its position within the genome list. If you perform this 
exercise on the test bed, it should help keep the program from converging on a local 
maximum too early.

LISTING 22.6 GAMachine::SetupNextGeneration() implementation.

//--------------------

void GAMachine::SetupNextGeneration()

{

    //next Generation 

    vector<Genome> offspring;

    

    //sort the population (for scaling and elitism)

    sort(m_genomes.begin(), m_genomes.end());

    m_rankIndexLast = POPULATION_SIZE-1;
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    //statistics

    m_totalFitness = 0.0f;

    for (int i=0; i<POPULATION_SIZE; ++i)

        m_totalFitness  += m_genomes[i].m_fitness;

    m_bestFitness   = m_genomes[POPULATION_SIZE - 1].m_fitness;

    CopyEliteInto(offspring);

    

    while (offspring.size() < POPULATION_SIZE)

    {

        //selection operator

        Genome parent1 = SelectRouletteWheel();

        Genome parent2 = SelectRouletteWheel();

        

        //crossover operator

        Genome offspring1, offspring2;

        CrossSinglePoint(parent1.m_genes,

            parent2.m_genes,

            offspring1.m_genes,

            offspring2.m_genes);

        

        //mutation operator

        MutateOffset(offspring1.m_genes);

        MutateOffset(offspring2.m_genes);

        

        //add to new population

        offspring.push_back(offspring1);

        offspring.push_back(offspring2);

    }

    

    //replace old generation with new

    m_genomes = offspring;

    for(i = 0;i<POPULATION_SIZE;i++)

        m_genomes[i].m_fitness = 0.0f;

    

    ++m_generation;

    //reactivate the ships

    for (int shpNum=0; shpNum<POPULATION_SIZE; ++shpNum)

    {

        //reset test ships to startup state

        Ship* ship = (Ship*)Game.m_ships[shpNum];
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        ship->m_active = true;

        ship->m_velocity.x() = 0;

        ship->m_velocity.y() = 0;

        ship->m_velocity.z() = 0;

        ship->MakeInvincible(3.0f);

    }

    

}

The SetupNextGeneration() function is where all the real genetic work hap-
pens. It sorts the genomes, tallies the statistics for the generation, uses the elitism 
function, and then creates the rest of the next generation by using roulette wheel 
selection, the single-point crossover operator, and the offset mutation operator. It 
also resets the ships for the next generation restart.

LISTING 22.7 GAMachine::CopyEliteInto() implementations.

//--------------------

#define NUM_ELITE             4

#define NUM_COPIES_ELITE      2

void GAMachine::CopyEliteInto(vector<Genome>&destination)

{

    int numberOfElite = NUM_ELITE;

    //copy the elite over to the supplied destination

    for (int i=numberOfElite; i>0; —i)

    {

        for(int j=0;j<NUM_COPIES_ELITE;++j)

            destination.push_back(m_genomes[(POPULATION_SIZE - 1) –

                                             numberOfElite]);

    }

}

The CopyEliteInto() function copies a set number of the top members of the 
population into the next generation. These are straight copies, with no crossover or 
mutation. You might want to introduce some mutation into these elements, pos-
sibly with lower probability, or with somewhat nonintrusive mutations (possibly 
offset mutation with a very small offset). Again, these types of experiments and 
tweaks are the requirement of working with a GA system.
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LISTING 22.8 GAMachine::SelectRouletteWheel() implementations.

//--------------------

Genome& GAMachine::SelectRouletteWheel()

{

    float wedge = randflt() * m_totalFitness;

    float total = 0.0f;

    

    for (int i=0; i<POPULATION_SIZE; ++i)

    {

        total += m_genomes[i].m_fitness;

        if (total > wedge)

            return m_genomes[i];

    }

    return m_genomes[0];

}

SelectRouletteWheel() is a straightforward implementation of the roulette 
wheel algorithm. Also known as fitness proportional selection, it is built on the idea 
that the higher a genome’s fitness, the better its chances of being chosen for repro-
duction. However, because this implementation relies completely on the random 
call at the top of the function, the real results of this selection process might not 
match your expectations. Indeed, it may completely miss the best individuals al-
together, hence the reason that elitism is commonly used in conjunction with this 
type of selection. For certain problems, especially those with very small popula-
tions, stochastic universal sampling (SUS) or tournament selection are sometimes 
better for this reason.

LISTING 22.9 GAMachine::CrossUniform() implementation.

//--------------------

void GAMachine::CrossUniform( const vector<Gene> &parent1,

const vector<Gene> &parent2,

vector<Gene>&offspring1,vector<Gene>&offspring2)

{

    if ( (randflt() > m_crossoverRate) || (parent1 == parent2)) 

    {

        offspring1 = parent1;

        offspring2 = parent2;

        return;

    }
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    for (int gene=0; gene<GENOME_SIZE; ++gene)

    {

        if (randflt() < m_crossoverRate)

        {

            //switch the genes at this point

            offspring1.push_back(parent2[gene]);

            offspring2.push_back(parent1[gene]);

            

        }

        else

        {

            //just copy into offspring 

            offspring1.push_back(parent1[gene]);

            offspring2.push_back(parent2[gene]);

        }

    }

}

The implementation of uniform crossover is simple. You pick a random loca-
tion within the gene, swapping everything before that point, and straight copying 
over everything after it. The operator checks (as does all the crossover operators) to 
see if you’ve passed in identical parents, in which case it can skip the real algorithm. 
Identical parents will have identical offspring, which is the reason that too much 
convergence of your genetic material will lead toward a population with almost no 
variation (this is fine only if you’ve found the solution to the problem).

LISTING 22.10 GAMachine::MutateOffset() implementation.

//--------------------

void GAMachine::MutateOffset(vector<Gene> &genes)

{

    

    for (int gene=0; gene<genes.size(); ++gene)

    {

        //check for thrust mutation

        if (randflt() < m_mutationRate)

        {

            genes[gene].m_thrust += (randint(0,1)? 

                                    -m_offsetSize: m_offsetSize);

            //bounds check

            if(genes[gene].m_thrust > NUM_THRUST_STATES)

                genes[gene].m_thrust = 0;
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            if(genes[gene].m_thrust < 0)

                genes[gene].m_thrust = NUM_THRUST_STATES;

        }

        

        //check for angle mutation

        if (randflt() < m_mutationRate)

        {

            genes[gene].m_sector += (randint(0,1)? 

                                    -m_offsetSize: m_offsetSize);

            //bounds check

            if(genes[gene].m_sector > NUM_SECTORS)

                genes[gene].m_sector = 0;

            if(genes[gene].m_sector < 0)

                genes[gene].m_sector = NUM_SECTORS;

        }

        

    }

}

The offset mutation simply changes the real value of the variable by + or – the 
offset value. It also checks for wrapping of the value because we don’t want the 
variables to hit a hard floor or ceiling. Instead, we want them to be able to move 
that little bit that might just find a better solution. The size of the offset is usually 
a tradeoff between being large enough to actually get the solution from the local 
maximum (without going right back in), without being so large that the algorithm 
might skip over solutions. Notice too, that smaller offsets are usually better, but 
your algorithm will take longer to find a solution.

The only function of note within the new GAAIControl class is its 
UpdatePerceptions() method, which is shown in Listing 22.11.

LISTING 22.11 GAAIControl::UpdatePerceptions() implementation.

//--------------------

void GAAIControl::UpdatePerceptions(float dt,int index)

{

    Ship* ship = (Ship*)Game.m_ships[index];

    if(!ship)

        return;

    

    //determine current game evasion state

    int collisionState = -1;

    int directionState = -1;

    int distanceState  = -1;
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    //store closest asteroid

    m_nearestAsteroid = Game.GetClosestGameObj(ship,

                                       GameObj::OBJ_ASTEROID);

    

    //reset distance to a large bogus number

    m_nearestAsteroidDist = 100000.0f;

    

    if(m_nearestAsteroid)

    {

        Point3f normDelta = m_nearestAsteroid->m_position – 

                            ship->m_position;

        normDelta.Normalize();

        

        //asteroid collision determination

        float speed = ship->m_velocity.Norm();

        m_nearestAsteroidDist = m_nearestAsteroid->

                           m_position.Distance(ship->m_position);

        float astSpeed = m_nearestAsteroid->m_velocity.Norm();

        float shpSpeedAdj = DOT(ship->

UnitVectorVelocity(),normDelta)*speed;

        float astSpeedAdj = DOT(m_nearestAsteroid->

                             UnitVectorVelocity(),-normDelta)*astSpeed;

        speed = shpSpeedAdj+astSpeedAdj;

        speed = MIN(speed,m_maxSpeed);

        collisionState = (int)LERP(speed/m_maxSpeed,0.0f,9.0f);

        

        //direction determination

        directionState = GETSECTOR(normDelta);

        

        //distance determination

        distanceState  = MIN((int)(m_nearestAsteroidDist/

                                   m_nearestAsteroid->m_size),4);

    }

    if(collisionState == -1)

        m_currentEvasionSituation = -1;

    else

        m_currentEvasionSituation=

         (collisionState*10)+(directionState*18)+distanceState;

}

UpdatePerceptions() works just like it did in the previous controller classes: It 
computes the perception values that the decision-making portion of the program 
will use in making up its mind. In our case, its primary job for this demonstration 
is to compute the variable m_currentEvasionSituation, which the ship will use to 
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employ the correct evasion rule. The reasoning behind this value’s computation 
was covered earlier in this chapter.

PERFORMANCE WITHIN THE TEST BED

Even with the low level of genetic complexity being applied to our AIsteroids pro-
gram, you can begin to see improvement in overall evasion behavior with only a 
few generations (50 or so), and letting the program run for thousands of genera-
tions leads to some very unusual, although still useful, behavior. Figure 22.8 shows 

FIGURE 22.8 AIsteroids running the GA implementation.
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a screenshot of the test bed running the GA solution. There are, however, some low 
points to the method as we have currently implemented it, and the performance of 
the GA could be improved in many ways. Some of them include the following:

The system seems to converge too quickly on a few individuals; a different 
selection operator might improve on this, as would more individuals in the 
population, or slightly less elitism.
We’re trying to optimize a rule set with a substantially large number of rules. 
This means that to get a truly optimal set, we’re going to have to let the sys-
tem run for a very long time—hundreds of thousands of generations or more. 
Another way to encode the genes might be to use analog values that could be 
used as coefficients in a function that computes the best direction and thrust. 
Then, instead of trying to genetically search for the solutions to all the evasion 
states, we would only search for the necessary amount of coefficients within a 
sufficiently complex algorithm to represent our evasion calculations. A method 
like this would run somewhat close to being a simple neural net (albeit one that 
used a genetic algorithm to train), which will be discussed in the next chapter.
The test application really needs to be fully time-independent, to allow the GA 
to run through generations at much higher speed. This would include small 
things like making sure that the GameSession::m_timescale variable is incorpo-
rated into all calculations dealing with time, and including speed determina-
tions. Also, the collision detection would have to allow for collisions “within” a 
game tick. What this means is shown in Figure 22.9. What can happen is that 
the change in position that a game object might perform from one game loop 
to the next can become so large (when time is scaled very highly) that one 
game object could move straight through another, but because they were never 
touching during a collision check, one is never triggered. Solving this anomaly 
involves keeping track of the old position and actually performing a line-of-
sight check to your new position, to check the entire path of motion along the 
delta. If another object resides along that path, then the object can’t go all the 
way to its new position; the game should register a collision, and stop the object 
at the obstruction.

PROS OF GENETIC ALGORITHM-BASED SYSTEMS

Although GAs are clearly not a universal tool in game AI construction, they do have 
a number of areas in which they work particularly well, including the following:

When you have a number of parameters that interact in highly nonlinear or sur-
prising ways. The more your parameters work in tune with each other, the 
easier it is to find a more traditional method for algorithmically solving your 
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problems. If this isn’t the case, then GAs can help find the more “strange” in-
teractions between inputs.
When you have many local maximums, and are searching for the best one. An 
example might be the earlier stated case of tuning the physics parameters for 
the different cars and AI personalities in a driving game. Many different com-
binations will work, but the developers are looking for a particular feel; finding 
it will require more than just experimentation.
For solutions that involve discontinuous output. Perfectly continuous output 
would be a simple mathematical function that always maps inputs to outputs 
with a simple function call. Semicontinuous output might be a state machine, 
where there are always actions in result of any given game state, but to encap-
sulate everything, it had to be broken up into separate, individual states that 
are islands of separate behavior. Discontinuous behavior is not smooth and 

FIGURE 22.9 Highly scaled game-time problem.
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contains islands of action that are not connected to each other with any sort 
of relation.
When complementing traditional techniques. GAs can be incredibly modular, 
fitting easily into the larger AI system when the need arises. Within a game, 
you might have an isolated state whose decision-making needs make it a good 
candidate for GA methods. If you can create a means within your game frame-
work in which to allow a GA to evolve, and can come up with a suitable fitness 
function, then you’re well on your way to evolving a solution instead of being 
stuck with trial and error methods.
When actual computation of a decision might be too costly. Then, if you can find 
a suitable GA solution, you can probably save quite a bit of CPU time. GA so-
lutions can be implemented as black box functions to replace complex math-
ematical constructs that algorithmically solve game problems, thus optimizing 
the AI. This is a bit like a neural net’s ability to abstract mathematic constructs. 
You can, in essence, construct a nonlinear function, with some coefficients and 
extra parameters that become your genome. The fitness function then becomes 
the difference in output that your genetic function produces from your complex 
math function, and you can then set your GA on solving for the genome that 
minimizes that difference. Of course, you only win if the nonlinear function 
you’ve come up with is less CPU-costly than the one you’re trying to outdo.
GAs also have a number of general pros that are inherent to the method. They 
are very easy to set up, and start getting results, even if you don’t know how to 
solve the problem otherwise. During evolution, you have an entire set of can-
didates to try out in your game, which could result in many of them being used 
to create variety or personality within your game AI characters. GAs are often 
very strong optimization algorithms, meaning that you can frequently find the 
optimal solution to a given situation. Finally, GAs tend to find global solutions 
rather than getting stuck in local ones precisely because they operate in parallel.
In contrast with more traditional numerical or search-based techniques, which 
iteratively refine a single solution in hopes of coming up with an answer, GAs 
work by evaluating an entire population of candidate solutions simultaneously. 
In effect, more standard methods are asking the question “Do you know the 
time?” whereas GAs ask, “Does anybody in town know the time?”

CONS OF GENETIC ALGORITHM-BASED SYSTEMS

GAs are not a free lunch. Like any AI system, the more time you put into them, the 
better the results. Some of the shortcomings of GA systems include that they can 
be time-consuming, performance can be hit or miss, there are weak definitions of 
success and failure, there is no guaranteed optimal solution, and it is tough to tune 
and add functionality to GAs.
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Time-Consuming Evolution

Often, evolution takes many generations, even with a good genome design and the 
right operators, to see results that are “game ready,” meaning that they work well 
most of the time (a local maximum rather than a global maximum). Couple this 
with the fact that you might have to frequently change any one to all the compo-
nent parts of the system while trying to increase performance (the gene makeup, 
one or more of the genetic operators, tweaks to the mutation or crossover rates, 
etc.), and then restart evolution, and you see the importance of ensuring that you 
have a considerable amount of time set aside for this portion of the method.

Again, this can be lessened if the system for which you are evolving a solution can 
be either arbitrarily sped up, or you can calculate an estimated fitness algorithmically 
from the genome, thus reducing each generation to be the act of running this func-
tion on each individual, instead of having to play through the game loop for some 
amount of time. Usually, however, this cannot be done. For game time, the algorithm 
as set up currently is quite slow to perform adequately. We couldn’t allow the algo-
rithm to run during real gameplay, evolving as it goes, because it would be dead long 
before it evolved a good evasion technique. Because of this, we perform the evolution 
offline, before the game is released, like most applications of the technique.

Hit-or-Miss Performance

With the myriad different ways you could encode a problem genetically, the vast 
array of different operators for selection, crossover, mutation, and fitness scaling, 
the large number of secondary parameters such as population size and mutation 
rate, as well as the highly subjective creation of a suitable fitness function, GAs are 
the absolute pinnacle of tweakability. Given your particular game problem, you 
may get very good performance with a certain crossover operator, but only if you 
use elitism, low crossover, a large population size, and real values for your genes. 
But figuring out that exact mix of usage might take a long time, experimenting with 
different combinations of these factors until you discover the right set of conditions 
necessary to find the solution. The only real way to become adept at knowing how 
to use the right factors with any given GA problem is through experimentation, 
especially because of the implementation-specific nature of GA solutions.

Weak Definition of Success and Failure

Your GA doesn’t seem to be working, but you have no idea why. Is it that your 
mutation operator is scrambling things too much, so you’re never converging on a 
solution, or have you converged on an inferior local maximum, and therefore need 
additional or more invasive mutations? Once more, you are left to the mercy of ex-
perimentation or gut feeling to divine these types of issues. In fact, the reason your 
GA might not be working or, working, may be a bug in your fitness function or 
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genetic operators. Because of the nature of GA output, it’s hard to tell the difference 
between buggy code and unevolved behavior. Real care must be taken in coding GA 
functions, so that this kind of problem doesn’t come back to haunt you.

No Guaranteed Optimal Solution

GAs use stochastic techniques, and any time there’s randomness, we have no guar-
antees. There are methods for ensuring a measure of safety (meaning, that you 
don’t accidentally throw away winning solutions with bad selection operators or ill-
timed mutations) while keeping the usefulness of GA methods, but it’s all a gamble 
in the end. Another problem is that you most likely don’t know the optimal solution 
(which is why you chose a GA in the first place), so you don’t realize that if you’d 
just tweak a few things in your algorithm, you could get much better responses.

Tough to Tune, and Even Tougher to Add Functionality

Once you have a GA-developed solution to a problem, especially if that solution is 
hard won after a lengthy period of evolving and tweaking of the GA implementa-
tion, the tendency is to “leave well enough alone.” Meaning that you don’t want 
to muck with things very much, for fear of losing your hard-won system. Game 
developers rarely have the foresight to include everything into the up-front design 
of the games’ AI requirements, however.

Most often, AI tuning is performed during the final period of the game, with 
many play testers and other personnel giving feedback. With code-based systems, 
these kinds of tuning issues or even the addition of small features (called feature creep
by some, polish by others) can be accomplished relatively easily, especially if you’ve 
designed your AI system with this in mind (using a data-driven system, or some kind 
of extensible system). But with a GA-based system, these kinds of issues are much 
more difficult to approach. Basic tuning might still be capable, by slightly reevaluat-
ing how you interpret the GA solution data (as an example within in our test bed, we 
could point the ship toward a slightly different angle than originally planned).

Adding even small features, however, might involve completely starting over as 
far as the gene structure and GA evolution is concerned. This reason alone is the 
primary killer as far as games are concerned, and is the main reason why games are 
still using GAs for small parts of their games that do have locked-down designs and 
aren’t subject to last-minute changes.

EXTENSIONS TO THE PARADIGM

Genetic algorithms are actually more of a methodology then a specific algorithm. 
There are many other ways in which GAs are being used then the simple system 
discussed in this chapter. Some of the common variations on common GA systems 
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include so called “ant colony” algorithms, coevolution, self-adapting genetic algo-
rithms, and genetic programming.

ANT COLONY ALGORITHMS

Individually, ants are not very good problem solvers. If you put a solitary ant in an 
environment, it’s as good as dead. The ant will amble about in all directions, with no 
apparent plan or strategy. But this all changes when you have a large group of ants. 
If you put half a million ants into the same environment, they will centralize, build 
a colony, find food, defend themselves, and even conquer neighboring colonies.

This phenomenon is possible through what is known as collective (because it 
is brought about by a group) or even emergent (because it seems to come from no-
where) intelligence. One facet of this kind of intelligence that works well with GAs 
is the method by which ants find food. As ants walk around, they secrete a small 
amount of a special chemical, called a pheromone, onto the ground. The more 
they use a particular trail, the more pheromone is laid down. This chemical attracts 
other ants, and so the cycle continues until the ants have essentially built themselves 
a “freeway” to the nearest food source.

This all sounds remarkably like a kind of influence map, doesn’t it? Actually, 
you could build an LBI system to encode the information necessary to help imple-
ment an ant colony algorithm, but it also involves (like GA methods in general) a 
hefty dosage of randomness and genetic recombination. In effect, we’re using the 
notion of collective intelligence to help guide the genetic fitness of our GA popula-
tions. What this does for our GAs is to allow them to still start with the massive, 
random population that they do now while building toward solutions based on the 
successes of the entire population, rather than the success of an individual member 
with exceptional genes.

COEVOLUTION

Another fascinating area of GAs is the concept of cooperative and competitive evo-
lution. If the fitness function of your GA can only be maximized when two or more 
creatures work together, you are encouraging cooperation. When you allow two 
elements within your game to evolve at the same time, and increasing the fitness of 
one decreases the fitness of the other, they are competing. In both cases, evolution 
by both creatures can be sped up dramatically because of the synergistic effect of 
the process between multiple entities [Hillis 91]. This idea has also been expanded 
to involve entire populations of entities, which in some ways model whole societies 
competing with each other. Sometimes referred to as societal evolution, this kind of 
GA evolution could be used to develop real-time strategic (RTS) civilizations that 
wage war on each other in the most efficient means given the specific groups, or 
could be used to build realistic animal communities within a game’s ecosystem.
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SELF-ADAPTING GAS

The efficiency shown by our GAs depends heavily on how we use the various oper-
ators and parameters within the system. Often, it is hard to tune these systems man-
ually. Several types of GA designs have been proposed that try to evolve the inner 
parameters of the GA as well as the problem-specific genetic material [Bäck 92]. So, 
during the evolution process, the crossover or mutation rates are influenced and 
changed. These types of GAs again sometimes work very well, and sometimes not 
at all for a particular GA problem. They sometimes have a tendency to converge too 
quickly, but various methods have been constructed to deal with this.

GENETIC PROGRAMMING

In this paradigm, the genetic material encoded in the genes is composed of actual 
program code itself. You are evolving the program that the individual will run to 
solve the problem, rather than coming up with a series of magic parameters that 
optimize a fitness function. Crossover and mutation of game code sequences is par-
ticularly difficult (at least, to do it and still have a legitimate program afterwards), 
so this type of GA system is rare. But with a data-driven game AI, in which your 
data is a series of small program instructions that represent behavior, the technique 
could be used to evolve AI character scripts instead of having to create them. Or, 
you could have the designers give you a series of working scripts as your initial 
population, and evolve several offshoots of these to give your AI agents some vari-
ation and personality.

DESIGN CONSIDERATIONS

GAs are a brute force method that can find solutions in very difficult or computa-
tionally expensive areas of game AI, as well as come up with interesting solutions 
that may not have been found by a programmer. GAs are usually used offline be-
cause the evolutionary process is extremely slow in most cases. When designing 
your game, the question of whether to use GA methods should include the follow-
ing reflections: types of solutions, agent reactivity, system realism, genre, platform, 
development limitations, and entertainment limitations.

TYPES OF SOLUTIONS

Heavily strategic AI decision-making systems usually require numerous changes 
to their feature set during creation, as well as significant tuning for gameplay feel 
late in development, so they usually aren’t a good match with GA methods. Tactical 
decisions are much more modular and can usually be split off into an evolutionary 
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program more easily. Trying to evolve a diplomacy system within a large civilization-
style game would require each member of a population to play the game for quite 
a long time to reach any sort of fitness determination, and would probably require 
optimizing an entire host of parameters. But a smaller, yet still difficult problem 
like city building could use a GA to evolve the best ways to optimally fit buildings 
into an area, while maximizing defense, utility, and the like.

AGENT REACTIVITY

The application of GA-spawned solutions are mostly black box, so they are excep-
tionally fast to use and usually represent somewhat optimal solutions. Therefore, 
reactivity of your game agents is up to you, and can be tuned to whatever you 
require.

SYSTEM REALISM

GA solutions are a mixed bag when it comes to realism. They can find solutions 
that are almost too optimized sometimes. Solutions could consider the effect of 
the randomness used in finding the solution, or combine all the elements of the AI 
character so well that the game no longer plays like a human player would (for ex-
ample, in some first-person shooters/third-person shooters (FTPS) games you can 
use the blowback from your own weapons to blast yourself to places you couldn’t 
normally get to; a GA derived deathmatch bot might perceive this and blast itself 
around the map continuously, never touching the ground). This kind of behavior 
can be constrained, however, because off-color activities like this merely represent 
exploits in your fitness function.

GENRE

Almost any genre can use GA techniques for some aspect of its game: RTS games 
could solve tough problems, such as building order determination or fending off a 
particular tactic such as rushing (a common human technique involving creating 
a mass of units early in the game and attacking quickly, hoping to finish off the AI 
opponent while it is in its buildup phase); FTPS or platform games could evolve 
better ways of dealing with map features; racing games can evolve more efficient 
racers; fighting games could coevolve whole characters.

PLATFORM

This is generally not a concern for GAs because the work is mostly done offline. In 
fact, the optimization effect of a GA black box might actually improve its chances 
of being a viable consideration on CPU-limited platforms.
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DEVELOPMENT LIMITATIONS

For GAs, development matters are really the area of most concern. GAs are not 
debuggable in any real sense, so extra time must be allotted to tracking down small 
problems with the solutions. Will you also have enough time to actually evolve 
your solution, given that it might take a good amount of time to tune the GA 
(with different parameters, operators, and gene design) to get good results? Are 
the designers on your team going to require last-minute tweaks or changes that 
could endanger a proven GA solution? Do you want the evolutionary portion of 
the product to keep evolving in the field, or are you going to disable that part of the 
process and lock in a solution? Is your product set up so that testing and feedback 
of the GA results is built into the pipeline from the beginning, so that you can get 
fast turnaround on GA solutions within the game? All these types of questions will 
require that you consider the team you are working with in addition to the game 
you are working on.

ENTERTAINMENT LIMITATIONS

Game-specific concerns such as difficulty settings would probably best be handled 
by separate GAs for each level of difficulty, with a separately tuned fitness function. 
Tuning and game balance can be difficult. The real power of GAs is when your 
game design specifically calls for somewhat varied or surprising AI behavior, so that 
the anomalies that may be present within your GA solution can be accounted for 
within the game universe.

SUMMARY

Genetic algorithms are a fascinating way to solve or optimize difficult AI problems. 
They are easy to set up, but can be difficult to perfect, because of numerous settings 
and usages. GAs can find novel solutions to game situations, which is an important 
goal of today’s games.

Evolution in nature uses genes as encoded rule sets. Pairs of organisms are 
chosen, largely by their performance within the environment, to reproduce and 
pass on their genetic material to their offspring. But this new generation under-
goes genetic crossover and mutation, which can further optimize its fitness.
GAs are usually used offline because evolving solutions is time-consuming and 
requires many iterations before useful behavior begins to appear.
GAs are stochastic methods and are considered a form of brute force search.
They do not guarantee performance, or success.
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The basic algorithm can be stated as: (starting with a random initial population) 
run the population through a fitness function, then select favorable individu-
als to reproduce, apply a random mutation, and run this next generation. Keep 
doing this until the fitness of the individuals reaches some acceptable level.
The gene and genome structure represent the solution to the problem you are 
trying to solve with the GA.
The fitness function is the factor for which your GA is trying to optimize a 
solution. Its value can be used raw, or after some form of scaling to prevent or 
encourage data spread and clumping.
Reproduction by the system culls out bad genes and helps promote good genes 
through selection. It also blends good individuals together through crossovers 
to help find optimal solutions, and mutates genes to keep solutions from being 
stalled in local maximum. There are many types of selection, crossover, and 
mutation operators.
Implementing a GA into the test bed involved creating a new application that 
can be used for the evolving process, and creating the GAAIControl class, which 
handles the main algorithm.
GAs are strong with problems that have many parameters related nonlinearly, 
have many local maxima, or involve heavily discontinuous output. They are 
well suited to complementing more traditional techniques and can be consid-
ered an optimization if replacing costly computational decision making.
Evolution within GAs can be time-consuming and provide hit-or-miss per-
formance. The reasons behind success or failure are somewhat hidden, so they 
are hard to tune and debug.
Extensions to the paradigm involve ant colony algorithms, coevolution, self-
adapting GAs, and genetic programming.
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Neural Networks23

Neural networks (NNs, sometimes called artificial neural nets, with the orig-
inal neural nets being those in real brains) are an attempt by computer sci-
entists to use lessons learned from biology in our AI solutions, somewhat 

similar to our work with genetic algorithms (GAs). But whereas GAs use survival 
of the fittest techniques to evolve a solution out of the possibilities, NNs strive to 
find solutions by using a method somewhat grounded in how the brain works, 
both organizationally and functionally. Although NNs don’t do a very realistic job 
of modeling an actual brain, they do give us a very straightforward way of pattern 
matching and predicting trends in input data.

NEURAL NETS IN NATURE

Animals’ brains are essentially a large cluster of interconnected nerve cells called 
neurons. The term “large cluster” is something of an understatement when deal-
ing with some of the more intelligent creatures on the planet: human brains are 
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composed of about 100 billion neurons; elephants have about 10 times that many. 
Each neuron has a large number of connections to other neurons (humans have 
about 10,000 connections per neuron), both coming in and going out. The incom-
ing connections are called dendrites, and the outgoing connections are called axons
(see Figure 23.1).

Although considered connections, neurons don’t technically connect. Rather, 
the dendrites of one neuron come very close to the axons of other neurons (usually 
within about 0.01 micron), and the space between them is called a synaptic gap, or 
synapse. Neurons are essentially electrical (although their conductivity, overall charge, 
capacitance, and other factors are caused in some part by internal chemistry).

A simplified description of the behavior exhibited by a single neuron would 
be to liken it to the behavior of an electrical capacitor. Electricity is transmitted 
into the dendrites from nearby axons, gradually building up charge (like a capaci-
tor) within the neuron. If this charge gets too large (above a certain threshold), it 
releases (the term typically used is fires) the collected energy down its axon, in what 
is called an action potential, where it may then be transmitted to the dendrites of 
other neurons.

FIGURE 23.1 Basic diagram showing parts of a neuron.
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If a particular neuron fires often enough, this will bring about small, biological 
changes within the neuron (such as a decrease in the electrical resistance along the 
dendrites and axon, an increased sensitivity to charge at the synapses, even changes 
in the size of the nerve fibers between various points), causing the electricity neces-
sary to fire its potential to lessen. In effect, the neuron has “learned” that it usually 
requires firing with certain stimuli and will do so with less electrical resistance, 
rather than waiting for the entire charge to build up. The opposite effect can occur 
as well, where a particular neuron almost never fires and, thus, is subject to atrophy. 
Although this obviously offers a biological notion of learning through anticipation, 
it also establishes the concept of pattern recognition at a cellular level.

Another concept that occurs between neurons is that of exhibition and inhibition. 
A particular neuron could be said to be inhibitory to another if it deadens the electri-
cal charge that reaches another neuron, or exhibitory for the opposite effect. This isn’t 
the same as the synaptic changes within the cell, because it is not connection-specific. 
All connections coming into a particular neuron would be inhibited if the neuron in 
question were biased in such a way, whereas each individual synapse coming into the 
cell would have to atrophy for it to be inhibitive synaptically.

In essence, the brains of animals work by taking input, recognizing patterns 
within the input, and making decisions based on those patterns, which is precisely 
what we want to emulate with a NN in our software.

We are also trying to take advantage of the parallelism that the connectivity 
within the brain apparently gives our problem-solving ability. The human brain 
operates at roughly 100 Hz, a fraction of the speed of modern computers. But 
although computers are dealing with one instruction at a time (or possibly a few, 
given multiprocessor systems), the human brain can perform millions of instruc-
tions at once. Because of the symbolic way that our brains store knowledge and 
solve problems, we can mentally employ many levels of efficiency that allow us 
to use a tremendous amount of parallel processing. Obviously, unless you are 
using a parallel processing CPU, you will not be able to emulate actual human 
parallelism. But the hope is to employ the many parallel levels of correlation that 
can be encoded into a NN that would otherwise be difficult or impossible to find 
otherwise.

ARTIFICIAL NEURAL NETS OVERVIEW

Figure 23.2 shows the parts of an artificial neuron and a basic NN overview dia-
gram. Note that the value associated with a neuron is the sum of all the input val-
ues multiplied by their connection weights, added to the neuron’s bias value. Bias 
refers to the inhibitory or exhibitory effect the neuron has within the network. 
The “axon” on the neuron is represented by its output value, optionally filtered 
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through an activation function, which will be discussed later, in the section 
“Using a Neural Net.”

Within the overview diagram, the circles are the neurons (or nodes, as they are 
sometimes called when talking about artificial nets), and the lines between them 
represent connections between neurons.

The nodes in column one of the figure are parts of what is called the input layer.
These nodes represent entry points into the network; places where outside inputs 
come in to be classified by the NN.

The second column encompasses a hidden layer, which represents internal data 
storage for the network. These nodes are useful in that they give the network room 
to grow, but also give the network greater ability to handle larger variation in pat-
terns. The hidden layer may comprise one set of nodes, as shown, or multiple sets, 
to whatever complexity you are willing to work with. A special case is when you 

FIGURE 23.2 An artificial neuron and a basic neural network diagram.



Chapter 23  Neural Networks 559

have no hidden layer at all, with the inputs directly mapping to the outputs, which 
is then called a perceptron. These are very low-functioning NNs, but they can still 
be used to do some linear pattern recognition.

The third column is called the output layer, and it corresponds to the actual 
categories that the network is trying to impose on its inputs. This is the answers 
that your net can give to any given set of inputs that you send it.

Also notice the connections themselves in the diagram. Each connection has an 
associated value, and a direction. The value represents the weight associated to the 
link, and is biologically equal to the strength of the connection between two neu-
rons. As for direction, the NN shown in Figure 23.2 is an example of a feed-forward 
(FF) network because each layer only propagates forward into the network. Another 
type of NN, which doesn’t have this restriction, is called a recurrent network.

In recurrent NNs, information can go from input to output, and back again, 
allowing for feedback within the system. To facilitate this, recurrent networks have 
a number of state variables associated with them and are thus a bit more complex 
than feed-forward NNs. In games, AI programmers almost universally deal with 
FF systems because they are easier to understand, more straightforward to tune, and 
less expensive to run (because the feedback phase requires data to be run through 
the network multiple times). Recurrent networks are technically more capable than 
FF systems, but you can generalize FF nets so easily that many of the benefits of 
recurrent systems can be gained by running multiple FF nets instead.

One last property of NNs is the amount of connectivity they exhibit. The dia-
gram shows a fully connected NN, because each node is connected to every node 
in the next layer. If there were some nodes that weren’t following this rule, for 
whatever reason, the NN would be called sparsely connected. Although building a 
sparsely connected node isn’t much more difficult than the far more common fully 
connected version, they tend to slow down the performance of the system. A fully 
connected NN will automatically determine that a connection is unnecessary and 
adjust the weight of the connection accordingly. Thus, sparsely connected NNs are 
not commonly used.

In the business world, NNs have successfully infiltrated many different indus-
tries. One of the first large-scale successes with NNs was the United States Postal 
system, which uses a heavily trained NN for handwriting recognition when reading 
the addresses on mail. Other uses include trying to predict the weather, judging 
credit card fraud, voice recognition, diagnosis of diseases or other health problems, 
artificial vision techniques, and even filtering Internet sites against pornography or 
other graphic material.

Games have the same kinds of problems as the rest of the world, so NNs have 
been used for a number of the same sorts of issues dealing with pattern recogni-
tion or prediction. Any time you can identify a pattern within a system, it logically 
follows that you should be able to use that pattern to then help make decisions 
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within the system, determine what kinds of decisions another is making within the 
system, or use previously stored data to try and predict what’s going to happen in 
the future. All three of these are useful in the world of game AI.

At a basic level, NNs can be trained to become a black box for potentially ex-
pensive operations like animation selection (which dunk animation should the 
basketball player perform right now, given the state of the game, his skill, the sur-
rounding players, the point spread, the difficulty level of the game, etc.), which is 
roughly analogous to using a pattern to directly make a decision.

The pattern recognition gleaned from a suitable NN could be used to form the 
basis of a player modeling system, to keep the AI on top of the human player by 
being able to predict what the human will do.

Finally, although uncommon in games, a NN could be used to “store” infor-
mation, by allowing the learning element to continue to run during live gameplay, 
thus allowing the NN to potentially learn adaptive techniques. The reason this is 
uncommon is because of the unpredictable, as well as unstable, nature of the learn-
ing that NNs use. Some systems use this, but restrict the areas of learning severely 
to try to minimize the random element into the game world. Black & White would 
have suffered greatly if people’s creatures suddenly exhibited what is called cata-
strophic unlearning, and couldn’t perform any tasks at all after taking in a piece of 
knowledge that effectively unraveled the entirety of the relationships stored within 
their networks.

USING A NEURAL NET

The basic steps for implementing a NN system within your game is to set up your 
network, train it using specially prepared data that is treated as inputs, and then 
actually use it on live game inputs. The first step, designing the NN architecture for 
your game problem, requires that you consider several factors, including structure, 
learning, and training data.

STRUCTURE

Structure refers to both the type (feed forward, recurrent) and organization (how 
many nodes, how many hidden layers) of the NN to be constructed. Most people 
stick with feed-forward (FF) networks because some level of feedback can be built 
into an FF net, and they are much cheaper, performance-wise.

The number of variables you want the NN to categorize or pattern match on 
determines the number of input nodes in your NN. A NN might only have one 
input, in effect asking, “What is this, or What should I do with this?” But it might 
also have several pieces of information that it needs to make a decision. Try and 
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minimize the number of inputs to the most essential because any additional ele-
ments you add here will translate to a much larger state space through which your 
NN must search. You are pretty much asking your system to find a pattern that 
links every one of your inputs together. So with two inputs, your NN only has to 
find a “line” that connects them, but with twelve inputs, your NN must find the 
nearest “dodecahedron” that fits nicely on your data points—not such an easy task. 
Note that abstract variables that represent combinations (or calculations) based 
on simpler variables tend to be better suited to NNs. So, in our test bed, a variable 
called “danger” might be better than many inputs about the closest few asteroids’ 
positions, speeds, and so on.

There is only one basic rule about the number of nodes within the NN: the 
fewer you can get away with, the better. Again, the more nodes you include in a NN, 
the larger the search space becomes that the NN is slogging through to arrive at a 
suitable solution.

There are no real guidelines about how many hidden nodes you’ll require 
 (although one hidden layer seems to be fine for most of the problems that game AIs 
come up with). A common practice is to use a medium number of hidden nodes 
(two times the number of input nodes) and then go up or down a few and compare 
the performance until you see it tapering off. Many sources will state guidelines for 
the number of hidden nodes, or even give rules “that aren’t to be broken.” But like 
most hard-and-fast rules in life, this information is mostly useless, because these 
sources determine these rules based on the number of input and output nodes, 
and don’t take into account essential factors like the number of training cases, 
the complexity of the function being solved, or the amount of noise (variance) in 
the outputs.

The number of output nodes is equal to the number of outputs that you re-
quire from the NN. Are you building a system that tells you whether or not you can 
see the game hero? Then your NN will only need two output nodes: Yes and No. Are 
you building a character-recognition system that can recognize all the numbers? 
Then you’ll need 10 output nodes, one each for the numbers 0 to 9.

Each output doesn’t have to be binary; it can have continuous values of activa-
tion. Thus, your output neurons could be “Turn Left” and “Turn Right,” and the 
level of the neuron’s activation would tell you how much to turn. Smooth activa-
tions are achieved by using a suitable activation function. Some of the common 
activation function types include the step function, the hyperbolic tangent and lo-
gistic sigmoid functions, and the Gaussian function.

Shaping the output is not the only reason for using an activation function on 
the final value of a given neuron. Using activation functions on the hidden nodes 
is also done for an entirely different reason. One of the most powerful capabilities 
of NNs is to encapsulate a nonlinear function that maps the inputs to the outputs. 
However, it can only do this if the NN itself can represent a nonlinear function.
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Without a hidden layer, a perceptron is only capable of finding linear correla-
tions between the inputs and outputs. But adding a hidden layer to a perceptron 
isn’t enough; we must also use a nonlinear activation function on the nodes to 
give an element of nonlinearity to the network connections. Almost any nonlinear 
function will do, except polynomials. For backpropagation learning (which will be 
discussed later), the activation function must be differentiable, and it helps if the 
function is bounded, hence the choices for the common activation functions.

LEARNING MECHANISM

Once you have set up your NN, you need to determine how you want to train it. 
There are two main types of NN learning: the aptly named supervised and unsu-
pervised methods.

Supervised learning involves using training data that consists of input-output 
pairs. You feed the input into the NN, and then adjust the weights of the network 
if there is a discrepancy between the output from the NN and the expected output 
given in the training data. Training continues until a certain level of accuracy is 
achieved. The name of this method is backpropagation because the way you adjust 
the network parameters is from the back to the front.

Another form of supervised learning is called reinforcement learning. In this sys-
tem, desired outputs are not given to the algorithm, but the network is rewarded (or 
its behavior is reinforced) when it performs well. This would be an example of “posi-
tive” reinforcement. Some implementations also punish when the system performs 
poorly, which corresponds to “negative” reinforcement, but this is usually overkill.

Unsupervised learning involves having a program automate learning of the NN 
by statistically looking at the output and adjusting the weights accordingly. One 
technique for this is called perturbation learning, which is very similar to an aca-
demic AI technique called simulated annealing. In perturbation, your test program 
runs the NN, then adjusts some of the values a small amount, and runs it again. If 
the program gets better performance, it keeps going by repeating the process; oth-
erwise, it goes back to its last best settings.

Another unsupervised technique that is quite common is to use a genetic al-
gorithm to adjust the weight values of your NN. The relationship between the two 
methods really shows each technique’s strengths: the NN is determining the pat-
tern between inputs and outputs, whereas the GA is optimizing a set of numbers to 
maximize some fitness function.

CREATING TRAINING DATA

Now you have your network, and you know how to train it. If you have chosen to 
use supervised learning, your next job is to actually acquire the test data that you 
will use to train the NN. There are several ways to do this.



Chapter 23  Neural Networks 563

You could record a human performing the same kinds of tasks you are trying 
to teach your system, and then create test cases based on the human’s behavior. 
This kind of training data is great because you can also use it to build human-level 
performance into the AI (you can also use data points when the human didn’t do 
the right thing, or was subtly wrong), which will help your AI seem less robotic 
than it might if it were using finite states, or a script. But, this method is extremely 
time-consuming, and your AI’s skill is then limited to the skill of the person being 
mimicked.

Another way is to write a separate program to generate reasonable input sce-
narios and have a human say which output should arise. This is fine (although 
again, very time-consuming) for binary or discrete output values, but is futile with 
real value or numerous outputs. You could generate random input and output 
pairs, and check them for validity, storing them only if you get winners. You could 
also use some kind of expert knowledge about the problem to try to generate some 
training data points. This might be hard, considering that the reason you’re using a 
NN in the first place is because you might not have this kind of data.

The number of training cases required depends on the amount of noise in the 
targets and the complexity of the function you are trying to learn, but as a starting 
point, it’s a good idea to have at least 10 times as many training cases as input units. 
This may not be enough for highly complex functions. For classification problems, 
the number of cases in the smallest class should be at least several times the number 
of input units. Optimally, you should strive for a training suite more along the lines 
of 10N, where N is the number of inputs.

AN ASIDE ON NEURAL NETWORK ACTIVITY

The pattern recognition that NNs are capable of should really be understood in 
order to truly see why they do what they do. A good understanding of the process 
can also help in debugging or perfecting the performance of an NN that is acting 
up. The two primary (and somewhat similar) tasks that NNs are good at perform-
ing are regression and classification. Figure 23.3 displays an example of regression; 
Figure 23.4 shows a few classification cases.

Regression is defined as finding a function that fits all the data points within 
some tolerance. Say you’re going to create an NN to help your AI enemy evade bul-
lets shot by the player by sidestepping out of the way. You would input the enemy’s 
facing direction, the position of the player, and the position of the enemy. Assum-
ing that the bullets are going to head directly from the player to the enemy, the NN 
will determine a movement vector for the enemy. What is the NN really learning 
in this example? If you were to solve this problem algorithmically, you would cal-
culate the vector between the two, and then take the dot product of that vector 
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with a unit vector built from the enemy’s facing angle, giving the player the angle 
needed to turn from their current facing direction. But would it turn left or right? 
Your program needs to perform the same operation again, but with a unit vector 
perpendicular to the enemy’s facing direction. If you combine these mathematic 
operations into one large function, then you would have the exact function that 
the NN has to learn to solve this problem. The NN, in essence, is learning how to 
perform the right dot products and comparisons.

If you take this example a step further, it will give you a hint about the struc-
ture requirements of your nets. Imagine that all your NN’s outputs are merely a 
linear function of your inputs. Say there was a smooth, ramplike hill in your game. 
An enemy on this hill knows how far he has traveled along the hill, but wants to 
know his current altitude. If you coded a NN to solve this conundrum, it would 
very quickly find the solution, and it could do so with no hidden nodes. That’s 

FIGURE 23.3 Examples of regression.
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because the function it would be finding is the slope of the hill, a linear function 
of the input.

But, if your game hill was like a real hill, which had ever-changing slopes, val-
leys, plateaus, pits, and other features, then the NN would have to find a nonlinear 
equation (the equivalent of some form of complex Fourier transform, or the like) 
to approximate the “function” that the altitude is following. To do that, it would 
need plenty of hidden layers with nonlinear activation functions to store this kind 
of information.

Another benefit of visualizating your NN setup is in estimating or debug-
ging the amount of training on your NNs. In the bottom graph of Figure 23.3, 
you can see how the line follows the trend of the data well. This NN has been 
trained correctly. It does a good job of determining the spirit of the data, without 

FIGURE 23.4 A two-input and three-input NN search space, displaying classification lines.
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underfitting (the function would be too smooth, and miss key variation trends 
within the data) or overfitting (the regression function isn’t smooth at all; it takes 
into account noise in the data, and thus has somewhat surprising results). Realizing 
what is occurring within your network is the first step toward being able to build 
NNs without having to spend large amounts of time experimenting to get them to 
operate smoothly.

The other, similar task that NNs thrive on is classification. If you are given a 
pile of buttons, and asked to separate them by color, you would push them into 
piles of each color represented in the group. You would classify them. When you 
give inputs to a NN, what you’re asking it to do is categorize the inputs into the 
number of piles of output nodes.

But the NN is dealing with an entire search space instead of individual objects 
(by giving an NN two inputs, you’re not giving it two distinct numbers, you’re giv-
ing it two axes of inputs). It won’t be dividing objects into piles. Instead, the output 
nodes represent lines of separation within the state space of input possibility. Visual-
izing a classification NN in this way is very powerful and useful. Think of each input 
as a theoretical axis in a graph, and each output as a line (or plane, or hyperplane, 
depending on the dimensionality of your system) separating distinct inputs into iso-
lated categories. Figure 23.4 shows two examples, with two- and three-NN inputs.

When you think of your NN in this way, it becomes easy to see a number of 
aspects of NN behavior. Incorporating unnecessary input nodes makes it harder 
for the NN to solve the problem, by making the search space exponentially larger in 
dimensionality. Additional output nodes make for tighter categories, but also make 
the job of differentiation that much more complex. Although this is a simplified 
view of the internal workings of an NN, it helps you picture the effect.

IMPLEMENTING A NEURAL NET WITHIN

THE AISTEROIDS TEST BED

First, we must determine what it is that we want an NN to do for our test-bed ap-
plication. Although nothing in our simple game is screaming for an NN solution, 
we can definitely create a suitably difficult problem to see how well the NN handles 
solving the problem. For this chapter, we will once again attack the problem of 
asteroid avoidance. We’ll strive to teach the ship how to avoid the asteroids. To do 
this, we can first create the necessary training data by recording a human player 
performing in the game. Then, we’ll use this data to train the NN. Finally, we can 
start a fresh game, load in the trained NN data, and use it to perform the correct 
avoidance behaviors.
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In our example, we’ll be using a fairly simple NN, with one hidden layer that 
has eight neurons, four inputs, and three outputs.

The inputs we’ll be using are the following:

Two inputs, which will be the X and Y components of the vector between the 
ship and the nearest asteroid.
The speed that the two objects are moving together, which is determined by 
taking the moving velocity of each object and finding the component of veloc-
ity that lies along the direct path to the other object.
The ship’s moving direction, which gives the NN a frame of reference with 
which to make correlations between the other inputs.

The outputs that the system will provide are simply Boolean values for the 
simple ship’s controls. They will determine whether or not the ship should thrust, 
turn left, or turn right.

The NN system implementation will comprise four main parts:

A Neuron is the basic element of an NN. A neuron structure stores several data 
fields, including the weights of each incoming connection to the neuron, the 
output value, and the error gradient computed from the expected outputs dur-
ing training.
The NLayer is a set of neurons that constitute a particular layer in the network. 
At this level, various operations can be performed on the inherent neurons, 
such as propagation (feeding the inputs forward through the network), back-
propagation (calculating the error gradients at each neuron backward through 
the net), and steepest descent adjustment of the connection weights. The vari-
ous kinds of activation functions are also found at this level.
The NeuralNet class is the main interface for the network. All the functions are 
necessary to actually run and train the net are here.
NNAIControl is the Controller class we’ll be using for our networks. It provides 
a location for game-specific usage of an NN. Our controller will be set up to 
handle a few different “modes” of control, namely training of the network, ver-
sus actually using the network to perform AI tasks once it has been trained.

THE NeuralNet CLASS

To use an NN within a game, we will need to construct the actual network structure, 
train the network with a set of data, and then use the network to determine what 
to do with new data.

Listing 23.1 shows the header for the NeuralNet class.
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LISTING 23.1 NeuralNet header.

class NeuralNet

{

public:

    

    NeuralNet(int nIns,int nOuts,int nHiddenLays,int 

nNodesinHiddenLays);

    void Init();

    //access methods

    void Use(vector<float> &inputs,vector<float> &outputs);

    void Train(vector<float> &inputs,vector<float> &outputs);

    float GetError()    {return m_error;}

    void WriteWeights();

    void ReadWeights();

protected:

    //internal functions

    void AddLayer(int nNeurons,int nInputs,int type);

    void SetInputs(vector<float>& inputs);

    void FindError(vector<float>& outputs);

    void Propagate();

    void BackPropagate();

    //data

    vector<NLayer>  m_layers;

    NLayer*         m_inputLayer;

    NLayer*         m_outputLayer;

    float           m_learningRate;

    float           m_momentum;

    float           m_error;

    int             m_nInputs;

    int             m_nOutputs;

    int             m_nLayers;

    int             m_nHiddenNodesperLayer;

    int             m_actType;

    int             m_outputActType;

};
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Listing 23.2 shows the NeuralNet implementation. This listing might look 
somewhat mysterious but it’s really fairly simple when broken down into its com-
ponent parts:

The Init() function is the primary set-up function for the network. It builds 
the internal structure of the net, by iteratively calling AddLayer() to instantiate 
each layer’s neurons. The system is set up to handle simple nets with only an 
input and output layer (perceptrons) as well as general, multilayer NNs.
Propagate() takes the inputs to the net and spreads their influence forward 
through the network. BackPropagate() effectively reverses this operation by 
taking the error of the final outputs and finding the correct error gradients 
throughout the network, from the last layer backward to the first.
Train() and Use() are the two main functions for actually using the NN. Dur-
ing training, you call the Train() method with the input-output pair you want 
to train. It then propagates the inputs through the NN, finds the error from the 
expected outputs, and backpropagates that error. Use() assumes a trained net. 
It just takes the inputs and returns the network’s outputs.
FindError() determines the output error of the network from given outputs 
during training. Using the derivative of the activation function, it determines 
the error gradient for each output neuron, which will then be used to back-
propagate the necessary changes to the connection weights within the network, 
to close in on the optimal weights to perform well.

LISTING 23.2 NeuralNet implementations.

//--------------------

void NeuralNet::Init()

{

    m_inputLayer   = NULL;

    m_outputLayer  = NULL;

    m_actType      = ACT_BIPOLAR;

    m_outputActType= ACT_LOGISTIC;

    m_momentum     = 0.9f;

    m_learningRate = 0.1f;

    

    //error check

    if(m_nLayers<2)

        return;

    

    //clear out the layers, incase you’re restarting the net

    m_layers.clear();
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    //input layer

    AddLayer(m_nInputs, 1, NLT_INPUT);

    

    if(m_nLayers > 2)//multilayer network

    {

        //first hidden layer connect back to inputs

        AddLayer(m_nHiddenNodesperLayer, m_nInputs, NLT_HIDDEN);

        

        //any other hidden layers connect to other hidden outputs

        //-3 since the first layer was the inputs,

        //the second (connected to inputs) was initialized above,

        //and the last one (connect to outputs) will be initialized

        //below

        for (int i=0; i<m_nLayers-3; ++i)

            AddLayer(m_nHiddenNodesperLayer, m_nHiddenNodesperLayer,

                     NLT_HIDDEN);

        

        //the output layer also connects to hidden outputs

        AddLayer(m_nOutputs, m_nHiddenNodesperLayer, NLT_OUTPUT);

    }

    else//perceptron

    {

        //output layer connects to inputs

        AddLayer(m_nOutputs, m_nInputs, NLT_OUTPUT);

    }

    m_inputLayer = &m_layers[0];

    m_outputLayer= &m_layers[m_nLayers-1];

}

//--------------------

void NeuralNet::Propagate()

{

    for (int i=0; i<m_nLayers-1; ++i)

    {

        int type = (m_layers[i+1].m_type == NLT_OUTPUT)? 

                         m_outputActType : m_actType;

        m_layers[i].Propagate(type,m_layers[i+1]);

    }

}

//--------------------

void NeuralNet::BackPropagate()

{

    //backprop the error
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    for (int i=m_nLayers-1; i>0; —i)

        m_layers[i].BackPropagate(m_actType,m_layers[i-1]);

    

    //adjust the weights

    for (i=1; i<m_nLayers; i++)

        m_layers[i].AdjustWeights(m_layers[i-1],

                          m_learningRate,m_momentum);

}

//--------------------

void NeuralNet::Train(vector<float> &inputs,vector<float> &outputs)

{

    SetInputs(inputs);

    Propagate();

    FindError(outputs);

    BackPropagate();

}

//--------------------

void NeuralNet::Use(vector<float> &inputs,vector<float> &outputs)

{

    SetInputs(inputs);

    Propagate();

    outputs.clear();

    //return the net outputs

    for(int i =0;i< m_outputLayer->m_neurons.size();++i)

        outputs.push_back(m_outputLayer->m_neurons[i]->m_output);

}

//--------------------

void NeuralNet::SetInputs(vector<float>& inputs)

{

    int numNeurons = m_inputLayer->m_neurons.size();

    for (int i = 0; i<numNeurons; ++i)

        m_inputLayer->m_neurons[i]->m_output = inputs[i];

}

//--------------------

void NeuralNet::FindError(vector<float>& outputs)

{

    m_error = 0;

    int numNeurons = m_outputLayer->m_neurons.size();

    for (int i=0; i<numNeurons; ++i)

    {

        float outputVal = m_outputLayer->m_neurons[i]->m_output;
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        float error = outputs[i]-outputVal;

        switch(m_actType)

        {

        case ACT_TANH:

            m_outputLayer->m_neurons[i]->m_error = m_outputLayer->

                                           InvTanh(outputVal)*error;

            break;

                case ACT_BIPOLAR:

            m_outputLayer->m_neurons[i]->m_error = m_outputLayer->

                                    InvBipolarSigmoid(outputVal)*error;

            break;

        case ACT_LOGISTIC:

        default:

            m_outputLayer->m_neurons[i]->m_error = m_outputLayer->

                                          InvLogistic(outputVal)*error;

            break;

        }

        //error calculation for the entire net

        m_error += 0.5*error*error;

    }

}

THE NLayer CLASS

Because most operations on nets are on the connections from one layer to another, 
this is the real workhorse of the system. Listing 23.3 shows the header for the NLayer
class, and Listing 23.4 shows the implementation.

LISTING 23.3 NLayer header.

class NLayer

{

public:

    NLayer(int nNeurons, int nInputs, int type = NLT_INPUT);

    void Propagate(int type, NLayer& nextLayer);

    void BackPropagate(int type, NLayer& nextLayer);

    void AdjustWeights(NLayer& inputs,float lrate = 0.1f, 

                       float momentum = 0.9f);

    

    //activation functions

    float ActLogistic(float value);

    float ActStep(float value);
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    float ActTanh(float value);

    float ActBipolarSigmoid(float value);

    void  ActSoftmax(NLayer& outputs);

    //derivative functions for backprop

    float DerLogistic(float value);

    float DerTanh(float value);

    float DerBipolarSigmoid(float value);

    //data

    vector<Neuron*> m_neurons;

    int             m_type;

    float           m_threshold;

};

LISTING 23.4 Important NLayer implementations.

//--------------------

void NLayer::Propagate(int type, NLayer& nextLayer)

{

    int weightIndex;

    int numNeurons = nextLayer.m_neurons.size();

    for (int i=0; i<numNeurons; ++i)

    {

        weightIndex = 0;

        float value = 0.0f;

        int numWeights = m_neurons.size(); 

        for (int j=0; j<numWeights; ++j)

        {

            //sum the (weights * inputs), the inputs 

            //are the outputs of the prop layer

            value += nextLayer.m_neurons[i]->m_weights[j] * 

                     m_neurons[j]->m_output;

        }

        //add in the bias (always has an input of -1)

        value+=nextLayer.m_neurons[i]->m_weights[numWeights]*-1.0f;

        //store the outputs, but run activation first

        switch(type)

        {

            case ACT_STEP:

                nextLayer.m_neurons[i]->m_output = ActStep(value);

                break;
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            case ACT_TANH:

                nextLayer.m_neurons[i]->m_output = ActTanh(value);

                break;

            case ACT_LOGISTIC:

            nextLayer.m_neurons[i]->m_output = ActLogistic(value);

                break;

            case ACT_BIPOLAR:

                nextLayer.m_neurons[i]->m_output = 

                                              ActBipolarSigmoid(value);

                break;

            case ACT_LINEAR:

            default:

                nextLayer.m_neurons[i]->m_output = value;

                break;

        }

    }

    //if you wanted to run the Softmax activation function, you

    //would do it here, since it needs all the output values

    //if you pushed all the outputs into a vector, you could... 

    //uncomment the following line to use SoftMax activation

    //outputs = ActSoftmax(outputs);

    //and then put the outputs back into the correct spots

    

    return;

}

//--------------------

void NLayer::BackPropagate(int type, NLayer &nextLayer)

{

    float outputVal, error;

    int numNeurons = nextLayer.m_neurons.size();

    for (int i=0; i<numNeurons; ++i)

    {

        outputVal = nextLayer.m_neurons[i]->m_output;

        error = 0;

        for (int j=0; j<m_neurons.size(); ++j)

            error+=m_neurons[j]->m_weights[i]*m_neurons[j]->m_error;

        switch(type)

        {

            case ACT_TANH:

                nextLayer.m_neurons[i]->m_error = 

                                         DerTanh(outputVal)*error;

                break;
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            case ACT_LOGISTIC:

                nextLayer.m_neurons[i]->m_error = 

                                     DerLogistic(outputVal)*error;

                break;

            case ACT_BIPOLAR:

                nextLayer.m_neurons[i]->m_error = 

                               DerBipolarSigmoid(outputVal)*error;

                break;

            case ACT_LINEAR:

            default:

                nextLayer.m_neurons[i]->m_error = outputVal*error;

                    break;

        }

    }

}

//--------------------

void NLayer::AdjustWeights(NLayer& inputs,float lrate, 

                                float momentum)

{

    for (int i=0; i<m_neurons.size(); ++i)

    {

        int numWeights = m_neurons[i]->m_weights.size();

        for (int j=0; j<numWeights; ++j)

        {

            //bias weight always uses -1 output value

            float output = (j==numWeights-1)? -1 :

                                inputs.m_neurons[j]->m_output;

            float error  = m_neurons[i]->m_error;

            float delta  = momentum*m_neurons[i]->m_lastDelta[j] + 

                          (1-momentum)*lrate * error * output;

            m_neurons[i]->m_weights[j]   += delta;

            m_neurons[i]->m_lastDelta[j]  = delta;

        }

    }

}

The class houses the activation functions and their derivatives. Also, each 
layer has a list of its constituent neurons, as well as an m_type field (is this an 
input, hidden, or output layer?), and a threshold value (which is normally set to 
1.0f, this value represents the output value the neuron must accumulate to fire 
if using a simple step activation function, or the gain of the sigmoid function 
being used, which corresponds to the smoothness of the s shape in the output 
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graph: very small values approach a flat line, and very large values approach a 
step function shape).

Propagate() is the layer extension to the function with the same name at the net 
level. It cycles through all the neurons in the level and performs the standard 
NN formula: sum all the inputs to the neuron, multiply by the corresponding 
connection weights, and then run it through the specified activation function.
BackPropagate() is also the layer-specific continuation of this operation. It sums 
the total weight on each neuron, and then calculates the gradient by multiplying 
it with the output value, after having run the output through the derivative of the 
activation function. Several activation functions have been supplied. The stan-
dard logistic function gives values between 0 and 1. Both the tanh and bipolar
sigmoid functions give values from –1 to 1. The linear function is the equivalent 
of no activation function, meaning that the output isn’t scaled at all.
AdjustWeights() performs the steepest-descent adjustment method on the 
weights because we’ve computed a gradient of the delta we’re looking for. 
Steepest descent is a greedy algorithm, meaning that it gets stuck in local min-
ima very easily, so care must be taken with this method. Hence, we’re using mo-
mentum within our weight adjustment, which means that adjustments have 
to come more frequently to make large changes because earlier changes have a 
much larger priority associated with them. This helps guard against the steep-
est descent method getting stuck, but it does make training slower, so you will 
want to adjust the momentum value.

THE NNAIControl CLASS

The NNAIControl class will serve as the AI controller for the neural network tech-
nique. This class houses the network itself and the technique-specific usage code 
that links it to the AIsteroids game proper. As you can see in the header (Listing 
23.5; Listing 23.6 shows some of the important function implementations), this 
class stores all the usual controller information (perception data and update meth-
ods, as well as being inherited from the FSMAIControl class so that it can also deal 
with the states of the AI ship), but also contains all the data and functionality for 
training and using the NN.

LISTING 23.5 NNAIControl class header.

class NNAIControl: public FSMAIControl

{

public:

    //constructor/functions

    NNAIControl(Ship* ship = NULL);
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    ~NNAIControl();

    void Update(float dt);

    void UpdatePerceptions(float dt);

    void Init();

    void Reset();

    void GetNetOutput();

    void TrainNetAndSave();

    void ReTrainNetAndSave();

    //perception data 

    float       m_powerupScanDist;

    //network output variables

    bool        m_shouldThrust;

    bool        m_shouldTurnLeft;

    bool        m_shouldTurnRight;

private:

    int         m_numIterationsToTrain;

    int         m_numSavedTrainingSets;

    float       m_maximumAllowedError;

    //network input variables

    float       m_speedMovingTogether;

    Point3f     m_nearestAsteroidDelta;

    float       m_shipMovingDirection;

    

    //net, used for training and for actual usage in game

    NeuralNet*    m_net;

    vector<float> m_inputs;

    vector<float> m_outputs;

    int m_numInputs;

    int m_numOutputs;

    int m_numHiddenLayers;

    int m_numHiddenNodes;

    int m_netMode;

};

The constructor for this class sets itself up to do what needs to be done based 
on whether we’re instantiating the controller in training mode, retraining mode, 
or the regular “use” mode. During the training modes, the network is instantiated 
by the training functions themselves and closed down after execution. The regular 
game-use mode instantiates the network right away because the game will poten-
tially be using it to avoid obstacles.
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In regular training mode, there is no real AI running because the training 
uses real input from a human player. As you can see in the Update() function, the 
NNAIControl structure stores what will be the network input and output variables 
whenever the m_willCollide perception is true. When thousands of sets of data are 
collected, the Update() method then instantiates and trains a network using the 
data, and finally saves off the network weights so they can be reused later.

Retrain mode works by loading the saved input and output training data from 
a file and training the network, then exiting from the game. Retraining is useful 
when you want to try different network designs (such as adjusting the number 
of hidden layers or nodes, changing to different activation functions, using more 
or less training iterations, etc.). Of course, if you decide to change the number 
of inputs or outputs, you’ll need to recapture new training data using the regular 
NM_TRAIN mode.

LISTING 23.6 NNAIController function implementations.

//--------------------

NNAIControl::NNAIControl(Ship* ship):

FSMAIControl(ship)

{

    m_net     = NULL;

    Init();

    if(m_netMode == NM_USE)

    {

        m_net = new NeuralNet(m_numInputs,m_numOutputs,

                              m_numHiddenLayers,m_numHiddenNodes);

        m_net->ReadWeights();

    }

    else if (m_netMode == NM_RETRAIN)

    {

        m_numSavedTrainingSets = 1000;

        ReTrainNetAndSave();

    }

    

}

//--------------------

void NNAIControl::Update(float dt)

{

    Ship* ship = Game.m_mainShip;
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    if(!ship)

    {

        m_machine->Reset();

        return;

    }

    

    switch(m_netMode)

    {

        case NM_TRAIN:

            UpdatePerceptions(dt);

            if(m_willCollide)

            {

                //write test data to file

                FILE* pFile;

                if ((pFile =fopen(“NNtrainingdata.txt”,”a”))== NULL)

                    return;

            

                fprintf(pFile,”%f %f %f %f “,

                        m_nearestAsteroidDelta.x(), 

                        m_nearestAsteroidDelta.y(),

                        m_speedMovingTogether,

                        m_shipMovingDirection);

                fprintf(pFile,”%d %d %d “,ship->IsThrustOn(),

                  ship->IsTurningRight(),ship->IsTurningLeft());

                m_numSavedTrainingSets++;

                m_inputs.push_back(m_nearestAsteroidDelta.x());

                m_inputs.push_back(m_nearestAsteroidDelta.y());

                m_inputs.push_back(m_speedMovingTogether);

                m_inputs.push_back(m_shipMovingDirection);

                m_outputs.push_back(ship->IsThrustOn());

                m_outputs.push_back(ship->IsTurningRight());

                m_outputs.push_back(ship->IsTurningLeft());

            

                fclose(pFile);

            }

        

            if(m_numSavedTrainingSets==NUM_TRAINING_SETS_TO_AQUIRE)

            {

                TrainNetAndSave();

                Game.GameOver();

            }

            break;
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        case NM_RETRAIN:

            Game.GameOver();

            break;

        case NM_USE:

        default:

            UpdatePerceptions(dt);

            if(m_willCollide)

                GetNetOutput();

            m_machine->UpdateMachine(dt);

            break;

    }

}

//--------------------

void NNAIControl::TrainNetAndSave()

{

    m_net = new NeuralNet(m_numInputs, m_numOutputs,

                          m_numHiddenLayers, m_numHiddenNodes);

    

    vector<float> tempIns;

    vector<float> tempOuts;

    for(int i =0;i< m_numIterationsToTrain;++i)

    {

        for(int j = 0;j< m_numSavedTrainingSets; ++j)

        {

            tempIns.clear();

            tempOuts.clear();

            //get training set inputs

            for(int k = 0;k<numInputs;++k)

                tempIns.push_back(m_inputs[k+j*numInputs]);

            //get training set outputs

            for(k = 0;k<numOutputs;++k)

                tempOuts.push_back(m_outputs[k+j*numOutputs]);

            

            m_net->Train(tempIns,tempOuts);

        }

        float totalError = m_net->GetError();

        if(totalError < m_maximumAllowedError)

        {

            //save out net and exit

            m_net->WriteWeights();

            return;

        }

    }

}
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//--------------------

void NNAIControl::ReTrainNetAndSave()

{

    FILE* pFile; 

    if ((pFile = fopen(“NNtrainingdata.txt”,”r”)) == NULL)

        return;

        

    m_net = new NeuralNet(m_numInputs,m_numOutputs,

                          m_numHiddenLayers,m_numHiddenNodes);

        

    vector<float> tempIns;

    vector<float> tempOuts;

    for(int i =0;i< m_numIterationsToTrain;++i)

    {

        for(int j = 0;j< m_numSavedTrainingSets; ++j)

        {

            tempIns.clear();

            tempOuts.clear();

            //get training set inputs

            for(int k = 0;k<m_numInputs;++k)

            {

                float temp;

                fscanf(pFile,”%f “,&temp);

                tempIns.push_back(temp);

            }

            //get training set outputs

            for(k = 0;k<m_numOutputs;++k)

            {

                float temp;

                fscanf(pFile,”%f “,&temp);

                tempOuts.push_back(temp);

            }

        

            m_net->Train(tempIns,tempOuts);

        }

        float totalError = m_net->GetError();

        if(i> 100 && totalError < m_maximumAllowedError)

        {

            //save out net and exit

            m_net->WriteWeights();

            return;

        }

    }

}
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//--------------------

void NNAIControl::GetNetOutput()

{

    //clear out temp storage

    m_inputs.clear();

    m_outputs.clear();

    //set up inputs

    m_inputs.push_back(m_nearestAsteroidDelta.x());

    m_inputs.push_back(m_nearestAsteroidDelta.y());

    m_inputs.push_back(m_speedMovingTogether);

    m_inputs.push_back(m_shipMovingDirection);

    //get output values

    m_net->Use(m_inputs,m_outputs);

    m_shouldThrust    = m_outputs[0] > BOOL_THRESHOLD;

    m_shouldTurnRight = m_outputs[1] > BOOL_THRESHOLD;

    m_shouldTurnLeft  = m_outputs[2] > BOOL_THRESHOLD;

}

Use mode actually operates a finite-state machine (FSM) to run the ship. A 
slightly adjusted Evade state the Update() function from the new class, StateNNEvade,
is shown in Listing 23.7, then uses output from the controller’s NN to determine 
what to do in the case of an imminent collision. The net’s output is determined in 
the NNAIController::Update() function, which checks the collision perception and 
updates the net output if necessary. GetNetOutput() runs the values through the net 
to get the current outputs and converts those outputs back into Boolean values. You 
might be asking, why not just have the net output Booleans directly? Because using 
analog values makes it easier to determine error gradient information, which will 
help us train the network better and faster. Plus, we can then determine the amount 
of generalization we want from our net. If an output is 0.4f, you might have some 
systems where that would still be a positive output; the game could also set a second-
ary action to occur, or adjust the primary behavior to take into account the low level 
of net output given the current input data. The inverse would be that you want very 
high levels of output before you set off an action, but again; it is much easier to make 
these kinds of determinations if the values coming out of your network are analog 
instead of purely digital.

LISTING 23.7 StateNNEvade::Update() method.

//--------------------

void StateNNEvade::Update(float dt)

{

    NNAIControl* parent = (NNAIControl*)m_parent;
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    Ship* ship = parent->m_ship;

    

    if(parent->m_shouldThrust)//thrust

        ship->ThrustOn();

    else

        ship->ThrustOff();

    if(parent->m_shouldTurnRight)

        ship->TurnRight();

    else if(parent->m_shouldTurnLeft)

        ship->TurnLeft();

    else

        ship->StopTurn();

    parent->m_debugTxt = “Evade”;

}

PERFORMANCE WITHIN THE TEST BED

Although relatively slow, training the network with these parameters and setup 
is fairly successful. Most of this success is based on capturing good evasion data, 
which is the issue with most NN systems. Given the right data, you can get the net-
work to use many of the same techniques to evade collisions. In the game, the CPU 
hit of using the trained network is negligible, which is always a good thing.

Training the NN with the largest possible training data set will allow the best 
results, especially in this situation, where the net needs to learn a fairly complex 
task. However, if your training set (for whatever reason) simply can’t be very large 
and varied, you might need to watch out for overfitting of the data. An overfit 
NN is one that doesn’t generalize well because it has matched the patterns of the 
input too closely and is no longer flexible enough to accurately include errant 
data points.

One way to counter this involves what is called early stopping to keep the net-
work from overfitting the data. The technique is simply to stop training at the 
point at which you have balanced the line between generalization and error. You 
want an accurate NN, which makes the right decisions most of the time, but you 
still want it to intelligently “guess” if the input variables are a bit off kilter. Find-
ing the best point at which to stop training is another tricky problem, one that 
requires experience and experimentation to solve. Most systems monitor the error 
coming out of the network, and stop training when error starts to increase after 
a long period of decreasing. However, this is not a hard-and-fast rule: The net 
may be finding its way out of a local maxima, rather than degrading performance 
caused by overfitting.
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OPTIMIZATION

Optimizing NNs generally involves optimizing the training phase,because most 
NNs are used offline; using an already trained network to make game decisions is 
very fast. To speed up training of the algorithm, try to remove any unnecessary in-
puts (or consolidate inputs into more complex calculations) or hidden nodes. Also, 
experiment with the amount of error you are willing to live with because even a 
small decrease in maximum error allowance can allow a savings of many thousands 
of training iterations.

The other level of optimization of using NN systems lies in lessening the time 
it takes to construct a viable network design and creating highly effective, relevant 
training data. For any NN task that is nontrivial, both of these tasks are difficult and 
can take up a lot of programmer time. Optimizing this step of the process, however, 
involves having an understanding of how NNs work and knowledge about the spe-
cific task at hand.

In short, the more knowledge you have up-front about the relationships you’re 
trying to model with the net, the better you will be at picking the right net inputs 
and choosing the minimum needed outputs, and the better your training data will 
be. Some general things to think about if you’re finding the process of training your 
NN taxing:

If your network seems to be getting stuck too easily in local maxima, where the 
error becomes stable, but is still higher than you’d like it to be, then you might 
be using too few training sets, or your hidden layer might be too small (by not 
having enough neurons at the hidden level, you haven’t given your network 
enough degrees of freedom in which to search for the best solution).
If your training seems to be unstable (meaning that the error seems to jump 
all over the place, never seeming to settle down or lessen consistently), you 
might have too many hidden-layer neurons, and the network has essentially 
been given too much room to experiment within.
Overfitting, as we have mentioned before, can happen when you have too few 
training sets because even a very simple net can store a lot of information about 
a limited amount of data. Another point is that overfitting might happen when 
you have too many training iterations with the data, and you have trained too 
long. Try reducing the amount of iterations for each training set.
Underfitting could occur if you have a large amount of very noisy training sets, 
or you don’t train for enough iterations. An underfit NN is all generalization, 
with almost no accuracy. If your data is very noisy, it can exacerbate the prob-
lem by making it hard for the net to filter the noise from the real data. Finding 
a way to scale these training sets, to bring out the differences between real data 
points and noise, can help this process.
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If errors seem to be oscillating between values, you may be using too large a 
learning rate, or your momentum might be too high.
Gradient descent is a greedy algorithm and will perform poorly if the step size 
(in this case, the learning rate) is too high. Possible solutions might be to simply 
lessen the learning rate (which would help, but might also dramatically lengthen 
training times), to dynamically change the learning rate (if the network’s error 
is going down, slowly increase the learning rate; decrease the rate if the error is 
going up), or even to use a more costly method like Newton’s (which involves 
finding the second derivative of error for pinpointing the nearest minimum).

PROS OF NEURAL NET-BASED SYSTEMS

NNs are a great way to find abstract relationships between input conditions. They 
are great at storing esoteric knowledge in a very usable and optimized way. Some of 
the other benefits of the method include the following:

NNs can extract very complex mathematical function solutions. These math-
ematic functions are essentially approximated into the weights of an NN, so 
that when you use the net in the game, you essentially save yourself the CPU 
cost of having to perform the actual math. It has been mathematically proven 
that an NN with at least one hidden layer and nonlinear activation functions can 
accurately depict almost any finite dimensional vector function on a compact 
state set.
Nets have an excellent ability to derive meaning from nonlinear or imprecise 
data. They can generalize connections and relationships between data in ways 
that are unintuitive or even impossible to see for a human. A well-trained, well-
designed NN can generalize better than a human expert.
Training takes a fraction of the CPU time that trial-and-error methods take, 
once a suitable network design has been determined.
Humans “make sense” of them. The way that NNs organize data and knowledge 
appeals to people in a way that we can get understand, and so they are easier to 
debug or experiment with than with a more esoteric approach, like fuzzy-logic 
systems.

CONS OF NEURAL NET-BASED SYSTEMS

NNs are a great way to solve some problems. Many people, upon hearing about 
and/or experimenting with NNs, tend to immediately start thinking of them as 
magic duct tape that can solve any and all problems. But they are not that simple. 
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Determining how to train a NN is usually the most costly aspect of using them. The 
problem has thus been shifted. Instead of figuring out how to solve the problem 
(which may be an exponentially hard problem) we have replaced our work with 
now figuring out how to teach the NN to solve the problem (which has definitely
been shown to be an exponentially hard problem). Other points of contention are 
the following:

NNs are not magical; garbage in = garbage out. If you use arbitrary, numer-
ous, or even bogus inputs to the network, there’s a good chance that the net 
will find some correlating factors between them. This does not mean that 
you’re going to want the output of those correlations. In fact, NNs are famous
for learning the wrong thing. Most of the difficulty in finding the correct in-
puts and training data is weeding out input and training set relationships that 
you don’t want the network to learn. Usually these bad relationships are only 
found after a network has been trained and has learned the unwanted abstrac-
tion. Only then might you stumble on the realization why your network is 
behaving errantly. But the correlation might be so obtuse that it might never 
occur to you, and hence, you would be stuck with pure trial and error in get-
ting around the problem.
An NN is a mathematical black box, and thus, hard or even impossible to 
debug. Once trained, the weight data within an NN is incomprehensible. You 
can’t look at them like you can the nodes of a decision-tree structure and de-
termine what is going on within the net. The information in the network is 
distributed throughout the connections in highly parallel or multiply efficient 
means; not alphabetically, in some kind of hierarchical fashion, or even based 
on the order of training. Debugging an NN solution usually involves going 
back to the starting board to adjust the pretraining parameters or data, and 
then retraining.
All input fields must be numeric. Fuzzy values, or inputs that might be repre-
sented better by an expression, cannot be modeled within an NN. It would be 
better to use a hierarchical system in this case, with the NN being used for the 
more straightforward elements, and a different overhead structure (like a deci-
sion tree, or simple FSM) handling the strange or less-defined cases.
NNs are difficult to implement, because of the high number of factors that 
must be determined without guidelines or rules for the best way to approach it. 
These factors involve network structure, input and output choices, activation 
function, learning rate, training data issues, and so forth. Nets are also very 
sensitive to somewhat random factors like weight initialization or redundant 
inputs.
Overfitting, or noise learning, ruins generalization power and must be coun-
tered with the techniques described earlier.
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NNs can sometimes suffer from a phenomenon known as catastrophic un-
learning. This occurs when an almost fully trained network is given additional 
training data that completely undoes all previous learning. Late addition of 
NN functionality, possibly suggested because of feedback from testing or focus 
groups, should be handled with care, unless you have given yourself ample time 
to deal with problems from mucking with the network.
Lots of training data and CPU time may be required for training, especially for 
complex learning scenarios within large search spaces. If bugs come up in qual-
ity testing because of the NN portion of your game AI, retraining the network 
might become prohibitive, so be sure to consider this when deciding to go with 
an NN system.
NNs don’t scale well. NNs larger than a thousand nodes are rare and not very 
stable. Although the reasons behind this aren’t completely understood, it ap-
pears that the curse of dimensionality (as it is sometimes called) seems to cause 
the learning ability of these large nets to implode somewhat, where there is so 
much freedom of movement within the search space that the network can es-
sentially cyclically vary its weightings forever, never getting closer to a solution. 
Luckily, the types of NNs you might use within games have almost no reason 
to get this large.

EXTENSIONS TO THE PARADIGM

The FF, backpropagated-trained NN used in this chapter is far from the only type 
of NN in the world today. The number of network types is large and each is spe-
cifically designed for unique performance within a particular area. Some of these 
models do not really apply to gaming use, but it is still important to know of their 
existence, so that future exploitation can occur. Most of these come from the aca-
demic or business world, where NNs have evolved during the almost forty years 
they have been around. Some of these other types or extensions to the method are 
listed here. Note that this is not an exhaustive list by any means.

OTHER TYPES OF NNS

The NNs we’ve described in this chapter are certainly not the only kind available to 
you. Below are several other types of NNs that can be found in use.

Simple recurrent networks. These are basically a variation on regular multi-
layer NNs. In this scheme, the hidden layer of the network is also connected 
back to the input layer, with each connection having a weight of 1. The fixed 
back connections result in basically maintaining a copy of the previous values 
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of the hidden units (because the net propagates over the connections before 
the learning rule is applied). Thus, the network can maintain a sort of state, 
allowing it to perform such tasks as sequence-prediction, which are beyond the 
power of a standard multilayer networks.
Hopfield nets. Designed to mimic associative memory within the brain, these 
networks allow entire “patterns” to be stored, and then recalled, by the system. 
Also like the brain, if some of the connections between various parts of the 
system fail or are severed, the recall still has a good chance of succeeding. 
These structures use a set of completely connected neurons, each of which can 
only store a Boolean value. There are no dedicated input and output neurons 
in this system. Rather, input is applied to all the neurons, and then allowed 
to propagate until a steady state is achieved, at which point the state of all the 
neurons is considered the output of the system.
 These are useful for pattern recognition, especially with recall of these pat-
terns. If you store a number of images within a Hopfield network, and then 
input one of those images, but destroy or corrupt parts of it, the network will 
usually be able to determine which stored image you started with. One thing 
that Hopfield nets provide over normal NNs is that the number of nodes nec-
essary to store information, as well as additional information, can be calcu-
lated directly. Unlike normal NNs, in which the number of nodes is somewhat 
mystical, the nodes within a Hopfield net are simply distributed storage for the 
array of patterns, and so their number is a function of how much information 
needs to be absorbed.
Committee of machines. This is a technique in which multiple nets are trained 
on the same data, but each is initialized differently. Then, during usage, all the 
nets are run on the input data, and the collection of networks “votes” on the 
final output, by taking statistical notion of the output of all the separate net-
works. This has statistically been shown to smooth out the problems dealing 
with neural nets. It is, however, even more costly in initial time investment than 
normal nets.
Self-organizing maps (SOM). Useful for classification tasks (or clustering, as 
SOM users call it), SOMs have two network layers: an input layer, and a com-
petition layer. The sum of all the input connections to any one neuron in the 
competition layer is called a reference vector in the input space. In essence, the 
SOM consists of a number of input vectors that are represented by a set of neu-
rons in the competition layer, which are usually laid out as a two-dimensional 
grid of neurons. SOMs use a form of unsupervised learning called competition 
learning, hence the layer’s name. When a new input pattern is introduced to 
the net, the first step is to find the competition neuron whose reference vector 
is closest to the new pattern. The “winning” neuron is then singled out and 
becomes the focus of weight changes within the network. Not only does this 
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neuron’s weights change, however, but also those neurons within its neighbor-
hood (defined as all the neurons within some grid distance from the winner), 
will change in proportion to their distance from the focus neuron.
 The size of this neighborhood shrinks over time, so that when fully trained, 
the neighborhood size is zero. The effect of this method is that the organization 
of the input data becomes grouped within the net so that inputs that are the 
most similar will be located closer together. The chief usage of these kinds of 
maps is to visualize relationships and classes within large, highly dimensioned 
inputs. In games, it might be useful in player modeling, taking a number of 
dimensions of behavior into account and giving the AI system a better picture 
of the kind of player the human tends toward.

OTHER TYPES OF NN LEARNING

In addition to the methods of training NNs we discussed in this chapter, there are 
also several other commonly used ways.

Reinforcement. The backpropagation technique used in this chapter is a form 
of supervised learning which some call learning with a teacher, because you are 
providing the network with output target values. Reinforcement learning also 
involves supervision, but only evaluative help. It has thus been called learn-
ing with a critic. When the network outputs some value because of the input 
information, the supervisor simply declares if the result was a good one. This 
can be done by a human expert or can be delivered to the network as an ad-
ditional input signal broadcast from outside the network (the environment, or 
something else that the net has to interact with), which would allow the net to 
perform mostly unsupervised.
Unsupervised learning. These techniques allow the network to train itself 
completely on its own. It does not require hand-fed training input data, or tar-
get outputs. Examples of unsupervised techniques include using a genetic al-
gorithm to find the best set of NN connection weights (this technique becomes 
much like reinforcement learning, in which the GA fitness function becomes 
the critic), perturbation learning (in which the weights are iteratively and ran-
domly adjusted and tested for improvement), or competitive techniques (which 
involve a number of neurons “competing” for the right to learn by having their 
weights adjusted within the net; the winner is usually based on the inputs being 
given to the net rather than a stated output). Another branch of unsupervised 
learning involves problems for which the output cannot be known ahead of 
time. In this case, the main job of the network is to classify, cluster, find rela-
tionships, and otherwise compress the input data in specific areas. SOMs are 
an example of this.
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DESIGN CONSIDERATIONS

Neural networks are definitely not a “one size fits all” AI technique particularly in 
gaming, where their inflexibility toward debugging and extension make them hard 
to tune for gameplay concerns. Take careful note of the engine design consider-
ations from Chapter 2, “An AI Engine: The Basic Components and Design”: types 
of solutions, agent reactivity, system realism, genre, platform, development limita-
tions, and entertainment limitations.

TYPES OF SOLUTIONS

NNs are great when you have simple, modular systems that map inputs to outputs 
in surprising, nonlinear, black box ways. Because of this, they tend to be much 
more tactical in nature, rather than high-level strategic solutions. You wouldn’t 
want to train an NN to run the diplomacy campaign in your real-time strategy 
(RTS) game. That task is simply too large, too complex, and needs far too much 
tuning and tweaking. But you might use it to decide which animation you want to 
play to catch a baseball. Here we have a very atomic task, with specific inputs (the 
incoming ball, the player’s position, and his skills), as well as specific outputs (each 
of the possible catch animations). The logic for mapping these together with more 
common techniques might be fairly CPU-intensive or complicated to construct. 
A small NN will be far less CPU-intensive, and the finished network wouldn’t need 
changing unless additional catch animations are added to the game (in which case, 
traditional game logic might have to be added anyway).

AGENT REACTIVITY

NNs can actually optimize CPU-intensive calculations, so their use might actually 
contribute to faster reactivity by a game agent. Plus, they can be taught to actually 
employ more human reaction times.

SYSTEM REALISM

In many ways, NNs help make systems seem much more realistic, mostly because 
they are general pattern-matching systems, meaning that they are not special-case 
systems like FSMs or scripted entities that can react specifically to particular sce-
narios. Because of this, they might react wrongly to something, but still in a way 
that seems right, because the pattern still holds for whatever reason. People rou-
tinely run into the same problems, mostly because we’re using the same sorts of 
general case pattern matching in our own minds. So you see people running into 
glass doors from time to time, or reaching out to where they thought the wall was to 
stop their fall. Whether or not this behavior translates into the video game world is 
up to the context of the action, the type of game you’re creating, and the intended 
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audience. A comedy adventure game primarily being played by more mature peo-
ple might catch small details like this and perceive it as much more realistic and 
humorous. But a young child playing a serious, heavily action-based game might 
see such “mistakes” as “stupid AI.”

GENRE AND PLATFORM

Genre and platform are not really a limiting factor for NNs. They are truly a modu-
lar technique, useful when you have a specific need for their categorization or pre-
dictive powers.

DEVELOPMENT LIMITATIONS

The primary concern for NN usage is development limitations. NNs require both 
an upfront investment in time and energy to design and collect training data. They 
also require a significant period to actually train, as well as deal with tuning issues 
later in development. Online learning (during live gameplay) in NNs requires an 
even larger commitment in time and design. If it is hard (or even impossible) for 
testers to restage crash events in your game because the adaptive NN in your AI 
system keeps dynamically changing behavior or game events, you are going to be 
hard pressed to completely debug the game. Plus, the sheer effort of trying to test a 
gameplay system that has large areas of adaptive or evolving elements is obviously 
much greater than static content that can be tested from A to Z.

ENTERTAINMENT LIMITATIONS

The difficulty in tuning, tweaking, and adding to an NN-driven system has been 
discussed throughout the chapter. For this reason, NNs should really only be used 
on areas within the game that require the kind of “do it once and leave it,” black box 
sort of solution that NNs provide. Game developers often train an NN throughout 
the development cycle and then “freeze” it once the game ships to avoid support 
problems afterward.

SUMMARY

Neural nets are another AI technique that can help you solve difficult problems, 
especially if they are nonlinear or unintuitive in nature, and you can either come up 
with test data for training, or determine some way of using unsupervised methods 
to teach the system.

Natural brains work by clusters of brain cells called neurons transmitting elec-
trical impulses to each other over synapses crossing from axon to dendrite.
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Artificial neurons have a number of inputs (each with an assigned weight), an 
internal bias, and an output value with an optional activation function.
Neural nets are connected systems of neurons in particular formations. The 
usual structure is a number of input nodes, followed by a number of hidden 
nodes, followed by a number of output nodes. Feed-forward networks are only 
connected in one direction. Recurrent networks are completely connected, in 
both directions. Other systems also exist.
When using an NN, you must determine the NN structure, choose a learning 
type, and create training data. Then, you can implement your NN, and begin 
tuning the implementation to optimize your results.
Pros of the method include the ability to extract and compress complex math-
ematic functions, their powers of generalization, fast usage in game, and the 
fact that their operation “makes sense” to most people.
Cons of NNs involve their difficulty to implement and debug, their sensitivity 
to training, the time investment requirement to train and test them, and that 
they usually don’t scale well to larger problems.
Some extensions to NNs include recurrent networks, Hopfield nets, self-
 organizing maps, and the committee of machines usage. Other learning 
 techniques besides supervised learning involve reinforcement and unsuper-
vised learning.
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Other Techniques of Note24

This chapter will discuss a few of the remaining AI techniques that show 
promise in the game AI programming field. These techniques aren’t 
widely used at present but have found their niches and may become 

important foundations for future AI engines. Each technique will be dissected with 
an overview of the method, some general usage notes, pros and cons, and design 
considerations.

ARTIFICIAL LIFE

Science, in general, has always been a search to find what some call “governing 
principles.” That is, rules or truths so universal, so fundamental, that they cannot 
be broken down any further; rules that can be used without fail to understand 
aspects of nature and predict outcomes based on hard equations. Isaac Newton 
gave every other scientist of his time a collective warm fuzzy feeling when he 
“proved” Descartes’ clockwork universe view of things (in which God set up 
 everything like a clock; including the planets, plants, animals, and everything 
nonhuman), by providing the world with the equations necessary to boil down the 
movements of everything into neat, mathematical bundles.

We have since found entire oceans of circumstance where Newton’s theories 
break down, and scientists are once again on the prowl for governing principles. 
Now that we are able to look closely at the behaviors of living organisms (or even at 

In This Chapter

 Artificial Life
 Planning Algorithms
 Production Systems
 Decision Trees
 Fuzzy Logic
 Summary



594 AI Game Engine Programming

the behaviors of subatomic particles), we are increasingly astounded by the diver-
sity and complexity that almost every system shows. With inanimate systems, we 
can break things down by deconstructing physical systems into components that 
can be isolated and studied and extract deeper knowledge. Living systems, however, 
do not typically yield to these methods. Life’s very nature does not typically allow 
this kind of disassembly, and so we are usually at a loss.

Life scientists are also at a loss for examples of early “work.” The earliest living 
system probably doesn’t exist anymore; it was most likely replaced by more complex 
evolutions billions of years ago. An equivalent task would be for an alien race to try to 
determine how writing started on earth by studying The New York Times, and noth-
ing older. The chances of finding any governing principles is very limited. A useful 
approach to learning more might be to construct our own, ultrasimplistic “life simu-
lations” and, by doing so, find out more about how life in general operates.

Artificial life (or alife) is the field of studies that hopes to understand natu-
ral life better by attempting to recreate biological phenomena from within virtual 
computer environments, or other artificial means. It is actually the name for an 
entire collection of computer science and engineering disciplines, although they do 
share some ideas. One main tenet of the alife camp is that life is simply an emergent 
property of nature following some very simple rules over and over again. An emer-
gent property refers to a trait or behavior exhibited by a creature that reaches beyond 
the capabilities of its constituent parts.

Within games, we search for emergent behaviors and gameplay situations as 
well. This has led many to investigate or try to employ alife principles in the search 
for new ways to have fun within the confines of a game environment.

ARTIFICIAL LIFE USAGE IN GAMES

Some popular games that are considered to be in the alife family include Black & 
White and the Creatures games, which were discussed in Chapter 14, “Miscellaneous 
Genres of Note” (and by popular, I mean critically popular; neither game was wildly 
financially popular). Both of these titles had beings that used very simple rules 
that combined in interesting ways to dynamically foster behaviors that hadn’t been 
specifically programmed in by the game authors. The totem animals in Black & 
White were supposed to listen to the players’ instruction and try to make the play-
ers happy while also catering to their own needs. Creatures actually modeled whole 
systems of chemistry and genetics to try to simulate “building” an entire being, 
which the game called Norns.

ARTIFICIAL LIFE DISCIPLINES

Some of the disciplines that are considered alife include Cellular Automata, self-
organizing behavior and flocking, genetic algorithms, and robotics.
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Cellular Automata (CA)

CAs are a group of algorithms that show a stunning amount of complex behavior 
with the very simplest of rules. One of the most famous CAs, Conway’s Game of 
Life, is played using a two-dimensional (2D) collection of cells, each of which can 
be populated or empty, and each of which has eight neighbor cells. By then apply-
ing four simple rules to the cells of the playfield, a vast amount of complex behavior 
can be seen.

“The Rules” for a populated cell are:

Each cell with one or no neighbors dies, due to loneliness.
Each cell with four or more neighbors dies, because of overpopulation.
Each cell with two or three neighbors survives.

“The Rule” for an empty cell:

Each cell with three neighbors becomes populated, because of a birth.

Certain constructs in Conway’s CAs have even been shown to be able to perform 
mathematics. Others can reproduce various structures from nature with  incredible 
detail, including plant structures, seashells, and coral reefs. The freeware program 
MCell, written by Mirek Wojtowicz, can display a vast amount of CA behavior. It 
has a general graphical interface for building and watching CAs in action. Some of 
its output can be seen in Figure 24.1.

CA behavior patterns can be found at the microscopic and macroscopic levels. 
At the microscopic level, these patterns can be used to simulate the growth of mold, 
or the spread of amoebae, and at the other end of the spectrum, they can be used 
to discover trends in traffic jams, or city building.

Genetic Algorithms

Genetic algorithms are sometimes lumped into alife, although many alife research-
ers would say that is a wrong classification. GAs are a fairly abstract system, and the 
one thing GAs try to model (evolution through genetic manipulation) is almost 
nothing like the simplified version used by the algorithm as we know it. Rather, 
think of GAs as an interesting tangent that computer science has devised by draw-
ing on the idea of evolution.

Robotics

Although most of robotics deals with creating systems that can perform in places 
or ways that we cannot, it can be said that some roboticists are trying to create 
artificial beings, hence physical alife. They aren’t trying to understand nature but, 
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rather, are trying to create their own. In trying to emulate life, they end up with an 
understanding of how things are done in nature and the problems that nature is 
solving with its solutions, an example of very cyclical scientific thinking. Different 
researchers are going in opposite directions toward this end. Some are creating 
robots that are very simplistic, but can communicate with other simple robots to 
create hive-mind communities. Others develop robots that are being trained by 
humans to act like humans, including emotional response, a sense of personal 
space, and personality development.

PROS

As with any AI technique, there are reasons why its use is considered beneficial. For 
alife techniques, these include: emergent behavior and behavior reuse.

 1. Emergent behavior. Alife is one of the best ways we currently have of creat-
ing emergent situations semiconsistently. The more scripted a behavior, or 

FIGURE 24.1 An example of output from the program MCell.
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sequences of behaviors are, the less emergence you are going to see, by defi-
nition. Conversely, emergent behavior will be most likely found in open 
games (meaning they allow the players and AI characters to perform many 
types of activities) with simple actions that can be combined in many dif-
ferent ways, leading to a wealth of different final behaviors.

 2. Behavior reuse. Alife techniques force developers to build games out of build-
ing blocks, distilling down the gameplay until it can be expressed as simple 
rules that only have meaning over many iterations. In fact, most alife game 
creations are simple to code for, but take lengthy amounts of time to tune.

CONS

However, alife techniques also come with a couple of key costs: the unpredictability 
of emergent behavior, and tuning issues.

 1. Emergent behavior is unpredictable. Emergence in the game industry is 
a huge double-edged sword. Alife can create solid, compelling gameplay 
situations out of thin air. But, that creation might never come, leaving you 
high and dry, with no real game of which to speak. The emergent behavior 
might not be that entertaining, or too subtle for most audiences. Any time 
you have free-form behavior, with no set outcome in mind, you open the 
door for both the magic and the mundane.

 2. Tuning issues. What if tuning the game destroys the emergent behavior? 
Small changes to game parameters, or gameplay systems, could easily un-
ravel the very thing that is the most compelling part of your game. In fact, 
fixing a bug sometimes sets in motion a chain of events that might subtly 
change gameplay for the worse. This situation can happen to any game, 
however, and sometimes (with some work) you can find out the reason 
behind the advantageous configuration of the buggy code and incorporate 
it into a bug-free version, minimizing this problem. However, there are no 
guarantees because several different factors are working in conjunction in 
obviously nonintuitive ways.

AREAS FOR EXPLOITATION WITHIN GAMES

Game programmers could use alife techniques in a number of ways to enrich 
their games:

Further use of more sophisticated flocking techniques, for city crowds, and 
so forth.
Other types of movement can also be simulated using Conway’s Game of Life
rules. The exploratory creeping of single-cell organisms, or the spread of plant
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vines could be thus controlled algorithmically by suitable usage of Con-
way-style systems. In this way, the elements using these algorithms would 
move not in random or scripted ways, but in emergent, “life motivated” fash-
ions that could be much deeper gameplay-wise in regard to gameplay than 
simpler setups.
MMORPGs could employ alife techniques with the indigenous creatures of 
their game worlds. This could lead to the creation of actual working ecologies 
within the world, instead of random spawn points with scripted monsters. A 
dragon living in an area might be surviving by predating a local herd of deer. If 
the player comes in and kills too many deer, it would anger the dragon, who’s 
suddenly hungry because his food source has been cut off. The dragon might 
come after the player, start razing nearby towns, or have to migrate and find a 
new food source. Moving might invade another large predator’s territory.

PLANNING ALGORITHMS

Planning is defined as deciding upon a course of action before acting, specifically by 
using knowledge of a larger scope, planners chain together actions that will lead them 
toward a more long-term solution to the problem at hand. A clear-cut example of this 
in real life is a creature that, although wildly successful, does no planning at all: the 
common housefly. Given its tiny brain, it can still fly rings around the typical human 
wannabe flykiller with almost comical efficiency. But a fly cannot, and will never, 
see a closed window and tell itself “Hmm. Better go around to the open door.” This 
simple fact is the reason that more dead flies can usually be found in windowsills than 
anywhere else in the house. For flies, windows are the game-AI equivalent of badly 
connected pathfinding nodes, “If I just keep trying, I should be able to get out. . . .”

Conceptually, most planning algorithms follow a somewhat simple formula:

 1. Break the abilities of the AI into distinct operators.
 2. Design your AI character, as well as your game environment, so that it can 

be represented as being a member of a set of states.
 3. Either construct a tree that shows the transition connections between states 

(listing the operators that will cause these transitions), or have rules em-
bedded in each state that details which operators are available. The AI then 
forms plans within a local working memory by applying these transition 
operators on a copy of its current state, testing for the best action to get the 
AI to the behavior it wants.

Given the above setup, planning for a particular AI-controlled character  
involves knowing what state the character is in, what state the character wants to 
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be in, and then finding the string of operators that will get the character from its 
current state to its wanted state.

In pathfinding, the operators are movement types (physically running or walk-
ing, as well as actions like taking the train, or using a teleporter, depending on the 
game type). The states in this case would be the pathnodes within the map that 
define the pathfinding network. This network is the tree that you would then use 
with your trusty A* algorithm to plan a path.

Taken a certain way, our standard decision-making paradigms, such as finite-state 
machines (FSMs) and all the rest, can all be considered a form of preprocessed plan-
ning, a sort of optimization on the planning process. Given a robust representation 
of the game, and a wide range of low-level operators, a planning algorithm should 
be able to find the best behaviors necessary to affect the game state in any legal way. 
But because planning algorithms can be costly, we have historically used “hardcoded” 
planning (in our case, a state machine, a script, etc.) that allows us to usually do the 
right behaviors. With more complex game environments, invariably our set patterns 
of behavior have areas in which they fail, and these are where exploits are born.

CURRENT USAGE IN GAMES

Most games use some form of planning algorithm already, in the form of the A* 
search they’re using for pathfinding. The pathfinding system stores a wide scope of 
information about the game world and allows the AI-controlled creatures to make 
plans about how to travel from A to B.

Some games, especially real-time strategy (RTS) games, use the exact same sys-
tem to also perform other planning tasks. Say an AI civilization in an RTS game sees 
a certain kind of enemy unit cruise by: the laser boat. It now knows that the enemy 
can build those units, and to defend its shoreline structures against this boat, this civi-
lization will require its own laser boats, or a defensive structure called a tower of re-
flection. By having a technology tree, which describes the prerequisites necessary for 
researching any given skill or structure, the AI can effectively generate a “path” from 
where it is in the technology tree to where it needs to be to build one of the two units 
it requires. It can even determine which defense is “closer” (or cheaper, or whatever 
metric it might currently favor), and go there. Also, by noting that the enemy has a 
particular technology, the AI can update its tech-tree model for the enemy by check-
ing off all the units that are prerequisites along the path to that technology.

Planning algorithms have just begun to be seriously used within games, mostly 
because of the advanced strategic thinking of RTS games. Some earlier genres, such 
as war games, had large quantities of advanced strategies. But most war games are 
historically based, and follow a semiscripted pattern that mimics the real historic 
battle; this usually works better than trying to model Napoleon, hoping that the 
game will fight the same way he did. In this way, these history-based games were 
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actually more of an example of expert systems, sets of rules laid out by an expert 
(in this case, Napoleon) as opposed to modelled general intelligence. More on this 
later in the chapter.

Planning is finally being seen as a primary human skill, so advanced AI systems 
are increasingly turning to planning to seem more intelligent and humanlike. In 
an FTPS, for instance, endowing a bot with anticipation can make it seem much 
more lifelike. Anticipation is another form of planning. An AI bot sees a human 
player enter a room. The bot could run a planning algorithm that would try and 
conclude what the human is going to do in that room. If it’s a dead-end room, with 
a nice powerup, then a planning run might come back that the plan is to get that 
powerup, and then come back out the same door. Not only does the AI have a good 
idea that the human will come back out the door, but because the bot has the action 
plan, it can even estimate about how long it will take for the human to appear in the 
door. The AI can set a very effective ambush.

Another planning scenario might involve seeing the human with an inferior 
weapon, and chasing the human down. But, the AI is also checking the human’s 
potential “plan,” and notices that in the direction the human is headed, a much bet-
ter weapon is around the corner. If the AI is not very healthy, and was only pursuing 
because of a firepower advantage, the AI might be smarter to break off and head for 
a health powerup, knowing that it has some free time because the human is going 
to be busy getting the weapon.

This is serious AI behavior and needs to be used in gameplay situations when 
the human is expecting a serious opponent. You wouldn’t want just any first-person 
shooters/third-person shooters (FTPS) enemy in a long, story-filled game firing a 
rocket into a door just as you got there; that would seem like cheating to the player, 
and neither fair nor fun. But in a deathmatch setting, on a high level of difficulty, 
the human player almost expects this kind of behavior (because the player also uses 
it), and would be disappointed by bots that don’t use it.

The next level of this is to have the AI bot anticipate the human anticipating the 
bot. So if the bot runs into a room with no other exits, and had some notion that 
there was a human following it, it might fire a rocket toward the best ambush angle 
through the door, or simply wait in the room until the human gives up camping 
outside. This can get pretty expensive, but the concept is clear, and the benefit is 
that you have AI bots that cannot only exploit the players’ moves, but can step out 
of their own routines if they sense players exploiting them, leading to advanced, 
humanlike performance.

Typically, even for planning that wasn’t pathfinding, games have done this 
searching using A* (because most games have already implemented efficient, 
load-balanced versions of A* already). This is usually fine, especially because most 
computer games don’t have large numbers of operators or agent states. However, if 
you find your planning algorithm slowing down your game, you should look into 
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some of the more optimized planning search techniques, such as means-end analysis 
(MEA). MEA combines forward and backward searching of the decision tree, and 
tries to minimize unnecessary search specifically for planning algorithms.

Another common planning optimization is called patch recalculation, where 
a “broken” plan (one in which a step has been invalidated because of some game 
event) doesn’t invalidate the entire plan but, rather, is sent to a function that will 
come up with planning steps that will work around the broken link, thus patching
the hole in your plan. This method is only useful if the length of your entire plan is 
long enough to justify not just tossing the entire plan and starting over. But for long 
or computationally expensive plans, this method provides a way for keeping plans 
up-to-date without having to start from square one all the time.

Minimax is another planning algorithm, which considers that your opponent 
is going to be working against you every chance he can get. Although minimax has 
been mostly used in board games like Chess and the like, certain turn-based RPGs 
or civ games could (some already do) benefit from its use, by replacing the more 
scripted, repetitious combat sequences that are the norm of these games, and using 
a basic minimax to perform simple planning based on the abilities of the enemies 
and the humans. Specific battles could still be scripted, but most battles would 
not feel quite so monotonous and unchanging. The planner could also take into 
account some reinforcement learning, if you wanted to give the player a challenge 
by disallowing him (through effective defensive blocks) to get away with repeating 
similar, very effective combat maneuvers.

PROS

Planning provides a number of solid advantages. These include intelligent-looking 
behavior, data-independent solutions, and hierarchical implementation.

 1. Planning algorithms provide much more intelligent-looking behavior. Very 
few decisions in life require no forethought whatsoever. In fact, it could be 
said that anything larger than basic reflexive actions require at least some 
plan. Even scratching your nose requires a plan if you’re wearing a motor-
cycle helmet and mittens.

 2. Planning is a generic algorithm and can provide data-independent solu-
tions. So, the same pathfinding search algorithm in your RTS game can 
also help your AI research technology in the right order, set up the neces-
sary orders to sequence a large-scale attack on an enemy, and set up its 
bases in such a way that it doesn’t run out of room later in the game.

 3. Like most generic algorithms, planning can be implemented hierarchically. 
You can layer your planning system, so that each layer has a much easier 
time creating its plan, thus optimizing the overall planning costs.
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   An example of this would be a high-level planner finding the plan “build 
large army, then attack next town.” The next layer down would then make a 
lower-level plan for “build large army” and another for “attack next town.” 
The process repeats until you’ve developed plans at a low enough level that 
the resultant plan involves giving behavioral orders to the individual char-
acters involved. Each layer in the system can use just enough detail as is 
required to simplify a given particular layer of the planner but still give 
meaningful plans.

CONS

The costs associated with planners involve computation expense and can also affect 
AI reaction time.

 1. Planning can be computationally expensive, if unnecessarily long plans are 
attempted. Most games (even strategic games) rarely require their AI to 
plan too far in advance. Lengthy plans are costly to create because human 
players are so unpredictable that a long plan rarely ever pans out. Plan 
depth is a careful balance between speed and flexibility of your plan versus 
having your plans be too short range to avoid gaffs. For long or expensive 
plans, some time can be regained by using patch recalculation.

 2. Planning can make the AI seem sluggish or unreactive if plans are too 
monolithic, or take too long to adapt to new situations. Of course, this is 
within the confines of the game you are working on: large-scale civ games 
can require more planning than most, but they are also usually turn-based 
and, thus, will not be considered “sluggish.”

AREAS FOR EXPLOITATION WITHIN GAMES

Games could use planning algorithms when creating strategic AI systems that re-
quire many steps to achieve goals. The previously mentioned RTS tasks are prime 
candidates. But action games could use some simple planning as well.

 1. FTPS opponents can use anticipation to set ambushes and traps.
 2. AI drivers can plan more complex racecar movements to pass an opponent 

in a more realistic way. Instead of strategic “speed-ups” that might actually 
cheat, AI drivers could feign on key corners, and then try to pass at critical 
times by planning maneuvers based on the other cars’ positions, time left, 
and so forth.

 3. Fighting games could plan combos like human boxers do: a boxer knows 
that if he strategically drops his guard and openly allows himself to take a 
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specific punch that his opponent will then be open for a much more dam-
aging combination.

 4. A football game could plan the order in which to perform plays to confuse 
the human, or to best take advantage of the time it has left on the clock.

PRODUCTION SYSTEMS

Production systems are sometimes referred to as expert systems—you might be 
using a primitive version in your game right now. This is because production sys-
tems are essentially rule-based systems that strive to encompass expert knowledge 
within a specific area. The simplest example is that of using hardcoded conditional 
if-then branches within your AI engine to make decisions. Back in the old days of 
AI, researchers tried very hard to create general computer intelligence; they believed 
that they could solve every problem with the suitable brute force application of 
logical rules.

The trend continued until 1969 when Alan Newell and Herbert Simon released 
their theory of the General Problem Solver (GPS) [Newell 61], which gave a basic 
set of rules for supposedly solving any problem, somewhat based on how they be-
lieved the human mind to operate, a process called means-end analysis. All that 
the algorithm needed was a statement of the goal to be achieved and a set of the 
problem’s “rules.” Although GPS was very versatile with the simple puzzles and 
chess problems that were defined well enough for its limitations, it didn’t take long 
to discover that GPS definitely did not solve general problems. What it did do, 
however, was introduce the concept of using actions as operators to transform the 
current world state. Production systems are the field that grew out of GPS theory.

Ironically, production systems are used to perform the exact opposite of what 
GPS was intended for—generality. Instead, these systems are now used to store ex-
pert knowledge about a highly specific problem. The first expert system was used to 
interpret mass spectra, and since then expert systems have been diagnosing specific 
diseases and giving mortgage tax advice.

Games do this every day, with reams of code dedicated to the storage of expert 
rules necessary to play hockey, gobble power pellets, and rocket-jump. All of the 
code that traditionally detailed how to make decisions within games like this could 
be thought of as expert knowledge.

However, a full production algorithm is much more organized and is separated 
into four parts: a global database, production rules, a rule/situation matcher, and a 
conflict resolution function (for use with rule collisions). The global database repre-
sents all the current facts the system knows about its environment. The production 
rules are the actual if-then clauses that serve as operators to transform our environ-
ment. The matcher is the function for deciding which operator to use next upon 
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the database to get closer to your goal. The simplest matcher can be as simple as a 
function that searches the database and compares rule “if” clauses to the current 
world state, but specialized algorithms are significantly faster than brute force, as 
they usually are. Conflict resolution happens when multiple rules are matched to the 
database simultaneously. Most resolution schemes are very simple, even random.

One thing to note is that traditionally, production systems have only used what 
is known as forward-chaining inference (meaning that they can only perform logical 
inference in the forward direction: if I AM ON FIRE, then I SHOULD JUMP IN 
THE LAKE), but modern extensions have allowed for backward-chaining inference
to be used as well (I JUST JUMPED IN THE LAKE, therefore I MIGHT HAVE 
BEEN ON FIRE).

In practice, production systems can be used to code regular game logic, serve 
as a planning system (because they can solve order-of-operation problems in tasks 
that require more than one step), and can even be used as memory and learning 
devices (by allowing the addition and removal of data from the global database).

True rule production systems haven’t quite made their appearance in main-
stream gaming, but a forerunning academic project is making use of gaming to 
improve their production system. Soar, a project started by Alan Newell, John 
Laird, and Paul Rosenbloom (the same Newell from GPS) as a test bed for Newell’s 
theories of cognition, have been used by the academic community since 1983.

Soar provides an open-source, ANSI C, general production system for cognitive 
scientists, and anybody else who wants to use it. See Figure 24.2 for a high-level Soar
system overview. John Laird, after doing some Soar work with Defense Advanced 
Research Project Agency (DARPA) developing intelligent air combat agents, began 
experimenting with using Soar as a means for advancing AI performance within 
commercial video games. His team at the University of Michigan Artificial Intelli-
gence Lab has successfully interfaced Soar with both Decent 3, and Quake 2, and cre-
ated competent, nonscripted opponents for each game. Using a system of more than 
700 rules, the team created a quake bot that could navigate arbitrary game levels, use 
all weapons and level elements (such as bounce pads and teleporters), and give good 
players a challenge. Also, the system performed planning, and so it could anticipate 
human actions, create custom-level routes of travel to maximize the amount of pow-
erups it could collect, and perform intelligent ambushes and hunting behaviors.

PROS

Production systems are a good general algorithm. They have been heavily  
researched, are goal directed, and highly reactive.

 1. General algorithm. Again, like planning algorithms, a production system’s 
decisions are data independent, so separate areas of the game can use 
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production systems to provide disparate systems with rule-based deci-
sion making. This can be within separate databases, with different rule 
sets, or with any combination of sharing.

 2. Research. Tons of research has been done on production systems. Fast-
matching algorithms like RETE and TRETE (a stateless variation of RETE) 
have been created to dramatically speed up condition checking within a 
production system.

 3. Goal-directed. Production systems are generally goal-directed, meaning 
they pick an overall goal and find a way to make it happen. This creates a 
much greater illusion of intelligence than purely reactive behavior does.

 4. Highly reactive. These systems can be highly reactive and offer real similar-
ity to human performance (with a good set of production rules).

FIGURE 24.2 Soar architecture diagram.
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CONS

Production systems also share planning systems’ primary disadvantage.

 1. Like planners, production systems can be computationally expensive, espe-
cially with games having a large rule set or nonarbitrary match collision-
resolution. If the game has to find matches and must also perform heavy 
calculation to arbitrate matches, the cost of using the system can be high.

AREAS FOR EXPLOITATION WITHIN GAMES

A production system could feasibly be written in a highly data-driven way, so that 
new rules, perceptions, and the like could be added to the game world by simply 
adding to the game’s data files. The production system would just perform the same 
algorithm given the new set of production rules. A system like this would be highly 
extensible and infinitely reusable.

DECISION TREES

Decision trees are another way in which commonly used code structures can be 
simply reorganized for greater flexibility and more functionality. Instead of having 
pages of if-then statements, you can implement each statement as a node on a tree 
and construct the tree such that you traverse the tree instead of a bunch of nested ifs. 
 Figure 24.3 shows an example decision tree structure, representing the AI necessary 
to run a Joust opponent. The tree starts at a root node, which can also be labeled as the 
“question” node. What question is the tree answering? In this case, it is “What should 
I do now?” Note that our illustration diagram is a binary decision tree (BDT) because 
all of the answers to any given question nodes are Boolean, yes-or-no  decisions. 
Special optimization algorithms, and even methods of reorganization after insertion 
and deletion are available to binary trees (because they are essentially red-black tree 
structures) that are not available to trees with arbitrary decision type.

There are two commonly used types of decision trees: classification trees, and 
regression trees, both of which are statistical methods that allow the construction 
of decision trees through algorithmic means by way of using a set of training data. 
Both methods can be considered a sort of “poor man’s neural net,” (NN) in that 
they try to generalize inputs to outputs. The differences between using decision 
trees and NNs is important to point out:

NNs are a black-box system; their internal weights cannot be meaningfully 
 inspected and understood, whereas a fully “trained” decision tree can be very 
descriptive and easy to understand.
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Decision trees can only comprehend hard comparison limits within a 
(typically) binary outcome. Because of this, their predictive ability is some-
what limited and rigid. NNs are precisely the opposite in that they excel at 
gracefully handling very noisy data or data with gaps and strange jumps in 
behavior.
Output from decision trees are always discrete values, whereas output from an 
NN can be a continuous value if using the right activation function.
Decision trees consider a single variable at a time; this is referred to as a mono-
thetic algorithm. It may miss the case when multiple variables are weakly influ-
ential separately, but are heavily influential on behavior in combination. NNs 
are considered polythetic, in that they consider multiple variables simultane-
ously. This is one of the things that make NNs hard to work with (in that an 
NN may find polythetic relations where you didn’t expect them within test 
data, and this adversely affects its learning), but this trait is also precisely why 
they are so effective in areas that decision trees are not.

FIGURE 24.3 Decision-tree structure for Joust.
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NNs are usually much more accurate than tree methods. A statistical examina-
tion of the relative error in a traditional example data set might be ten times or 
more for tree-based methods over a backpropagated NN.

Classification trees are BDTs that work on categorical input variables, whereas 
regression trees deal with continuous input variables. BDTs do allow a combination 
of variable types, but most game AI problems that would call for this method will 
usually be one or the other. A classification task might involve trying to determine 
what “type” of player the human is behaving like in an FTPS game (hunter, sniper, 
purely defensive, berserk, etc.) and setting the AI to a specific chunk of code tuned 
to deal with that type of player. A regression task would be more along the lines of 
a prediction task, in which the same AI system might try to predict the perceived 
difficulty that the human is encountering with the game, and then adjust its AI 
behaviors if this difficulty is too hard or too easy.

PROS

Using decision trees lead to plenty of pros. These include ease of use, tons of 
research, and they typically capture the level of detail and accuracy that games 
require.

 1. Decision trees are easy to use and understand. This makes them perfect 
as a “rough pass” AI system; they can take example data and find logical 
connections where the programmers might not have seen it. It also pro-
vides this information in simple, logical rules. This readability also allows 
manual tuning, if necessary.

 2. There is plenty of research on performance and ways of improving func-
tionality. Decision trees are a huge part of the world of statistics, as well 
as its progeny, data mining. Because both of these fields are big business, 
decision trees have been dissected and reassembled by think tanks all over 
the globe. Many tried-and-true algorithms exist for designing, training, 
debugging, tuning, and optimizing decision trees.

 3. Game AI problems are usually restrictive enough that decision trees actu-
ally make more sense than NNs do. The additional modeling power of NNs 
isn’t usually necessary, and the readability of decision trees can be a huge 
boon to last-minute tweaking and improvements (both common game de-
velopment tasks, which are almost impossible with NNs). Plus, additional 
complexity with trees can sometimes be attained with hierarchical decision 
trees. Any given node within a tree could be another whole tree, as long 
that the subtree evaluates to a yes/no decision.
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CONS

When using decision-tree-based AI, consider the following method pitfalls: 

 1. BDTs tend to be brittle because they are dealing with distinct states and 
hardcoded boundaries between them. So, like large quantities of if-then
statements in general, they don’t scale forever and are difficult to maintain 
or extend once they get to a certain level of complexity.

 2. There is a danger that if the tree isn’t built to handle every possible game 
circumstance, the system will be left with what is sometimes referred to 
as “coverage holes,” where a game case “falls through” the tree. A default 
rule must be defined that doesn’t make the AI do something completely 
stupid. Doing nothing is generally just as stupid as doing the wrong 
action.

 3. The size of your trees is a direct inverse correlation between accuracy and 
size, so if you need specific outputs, go with NNs (or some other method) 
instead because it will increase the size of your tree tremendously to pro-
vide high-resolution outputs.

 4. Decision trees tend to lack the finesse that makes more emergent systems 
like NNs so desirable. But many games aren’t looking for finesse; they’re 
looking for quick ways of adding content.

 5. In non-binary trees, there is no universal consensus that the additional 
complexity of multiple children in the tree will give you anything in the 
way of benefit when you consider the extra effort it is going to take to con-
struct and use the tree. To solve specific cases within a particular game, you 
could set up exotic, non-binary structures, but for a more generic solution 
that can be used across the AI system for various tasks, the standard frame-
work is much more desirable.

AREAS FOR EXPLOITATION WITHIN GAMES

Decision trees are such a useful, intuitive way to construct small decision-making 
AI behaviors that a number of different game problems could be solved with their 
correct application. Player modelling, dynamic tree structures, and allowing non-
programmers to use decision trees are all useful within game AI engines.

A classification tree could be used to perform simple player modeling, where 
you would want the AI to have broad categories because your responses are 
going to be limited.
By data driving the trees, you could potentially insert or remove nodes from 
the tree, as well as adjusting the binary check parameters, using it as a form of 
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memory or learning. Black & White used this to record the high-level “thinking” 
that a player’s avatar did about its environment, given the avatar’s experiences 
and training, and about which actions to take at any given time. The avatar’s 
decision tree could change dramatically during the game.
Having a general BDT system in your game can give organization and structure 
to many binary decisions. By making these BDT definitions data driven, you 
allow designers to make these binary decisions in the way they see fit. You might 
have a tree that determines who wins a jump ball situation within a basket-
ball game. The same system could also be used to provide custom results from 
binary decisions like “Can I get past my defender to get to the basket?,” “Did the 
defender bite on the juke?,” or even, “Did team X beat team Y in a simulated 
game?” Thus, designers could tweak a good part of a player’s perception system, 
giving designers yet another vector with which to approach the game design.

FUZZY LOGIC

We covered fuzzy-state machines (FuSMs) in Chapter 16. However, true fuzzy logic 
is a far more advanced system, complete with its own logical proofs and methods. 
Fuzzy logic is a superset of Boolean logic that was introduced by Dr. Lotfi Zadeh of 
University of California—Berkeley in 1965 [Zadeh 65] to handle the concepts of 
partial truth: values somewhere between totally true and totally false. Zadeh origi-
nally used the concept to model the uncertainty he encountered when dealing with 
natural language.

There are very few examples of true fuzzy logic being used within non-game 
 applications, much less games. Fuzzy logic has been slow to catch on, until recently. 
The Sony PalmTop is reported to use a decision-tree based on fuzzy logic to classify 
handwritten Kanji characters. Another implementation found its way into a proto-
type Mitsubishi car in 1993, which had an in-car safety system that studied the driver’s 
normal driving habits. The car had a built-in radar system and could sense oncoming 
obstacles. The car would then try to decide whether or not the driver was responding 
to the threat, and if not, it would take over the controls to avoid a collision.

True fuzzy logic allows you to perform calculations on equations or rules using 
entirely fuzzy values, for example:

If Health is low AND WeaponStrength is lame OR Bravery is meek, then 

Camping is high

In this formula, there are four fuzzy variables: Health, WeaponStrength, Bravery,
and Camping. Camping is an output variable, the rest are inputs. There is also, 
 associated with each variable, membership functions or fuzzy subset methods that 
determine relative fuzzy values: low, lame, meek, and high. These functions are 
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specifically written to make quantitative measurements about the relative degree of 
membership in the variable’s range. So, low can range from 0.0 to 1.0, depending on 
the value of Health. In determining the truth of this statement, each membership 
function is applied to its associated variable, to determine degree of truth. These 
truth values are then also subjected to the AND and OR operators defined in the 
rule, which in fuzzy terms are defined as:

Crisp: truth (x and y) = Fuzzy: minimum (truth(x), truth(y))

Crisp: truth (x or y)  = Fuzzy: maximum (truth(x), truth(y))

Because of the ability to conclude logical truth given these fuzzy parameters, 
these kinds of rules can be used within a fuzzy-logic production system, which 
follows all the rules of regular production systems, but performs all its inference 
using fuzzy logic instead. The general inference process proceeds in three (option-
ally four) steps [Kant 97]:

 1. During fuzzification, the membership functions defined on the input vari-
ables are applied to their actual values, to determine the degree of truth for 
each rule premise.

 2. Under inference, the truth value for the premise of each rule is computed, 
and applied to the conclusion part of each rule. This results in one fuzzy 
subset to be assigned to each output variable for each rule. Usually only 
MIN or PRODUCT are used as inference rules. In MIN inferencing, the 
output membership function is clipped off at a height corresponding to 
the rule premise’s computed degree of truth (fuzzy logic AND). In product 
inferencing, the output membership function is scaled by the rule prem-
ise’s computed degree of truth.

 3. Under composition, all of the fuzzy subsets assigned to each output vari-
able are combined together to form a single fuzzy subset for each output 
variable. Again, usually MAX or SUM are used. In MAX composition, the 
combined output fuzzy subset is constructed by taking the pointwise maxi-
mum over all of the fuzzy subsets assigned to a variable by the inference 
rule (fuzzy logic OR). In SUM composition, the combined output fuzzy 
subset is constructed by taking the pointwise sum over all of the fuzzy sub-
sets assigned to the output variable by the inference rule.

 4. Finally (optional) defuzzification is used when it is helpful to convert the 
fuzzy output set to a crisp number. There are more defuzzification methods 
than you can shake a stick at (at least 30). Two of the more common tech-
niques are the centroid and maximum methods. In the centroid method, the 
crisp value of the output variable is computed by finding the variable value 
of the center of gravity of the membership function for the fuzzy value. In the 
maximum method, one of the variable values at which the fuzzy subset has 
its maximum truth value is chosen as the crisp value for the output variable.
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These kinds of systems are in use within pattern recognition, financial systems, 
and other fields involving heavy data analysis. They are usually only implemented 
within systems that require a heavy amount of realism, since almost nothing in the 
real world is black and white, perfectly aligned, and exactly positioned. In games, 
on the other hand, these kinds of conditions do occur, and so the additional com-
putation isn’t really necessary for most games.

A common misstep in understanding fuzzy logic lies in thinking that fuzzy val-
ues constitute some other way of thinking about probabilities. But this is an untrue 
line of thinking. An example that contrasts the two ways of thinking involves a set 
of objects called “Drinkable,” that is a subset of objects called “Liquids.” If you come 
across two glasses, one labeled “90 Percent Drinkable Probability” and “90 Percent 
Drinkable Fuzzy Membership,” which one do you drink? The answer is the 90 Per-
cent Drinkable Fuzzy Membership. The 90 percent corresponds with it belonging 
to the drinkable set of liquids “almost completely,” whereas the probability-based 
glass has a 1-in-10 shot of being poisonous. In fact, given the glass labeler’s defini-
tion of drinkable, the fuzzy-labeled glass might contain cheap wine, or super tart 
fruit juice, or some other drink that he didn’t consider fully “drinkable.” Probability 
deals with statistical levels of chance that something might be true. Fuzzy set mem-
bership discusses to what extent something already is true.

PROS

Fuzzy systems primary advantage is that they extend normal Boolean logic to encom-
pass more loosely-defined variables, so that arguments with these types of values can 
still be mathematically proven.

CONS

The primary disadvantage of using fuzzy systems are that they can be computa-
tionally expensive; systems that contain numerous fuzzy vectors can suffer from 
rule overload. Different methods have been created to combat this (like Combs 
method), but this remains an issue.

AREAS FOR EXPLOITATION WITHIN GAMES

Fuzzy systems do have a place within game AI engines, evidenced fully by their 
actual use in many commercial games. They handle player modelling well, and this 
player model could also be used in online games as well.

Handling game problems dealing with a large amount of unknown or partially 
known information, like player modeling, is a great job for fuzzy logic usage. With 
heavily strategic games, like RTS, civ games, or even poker, player modeling is 
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important if you are striving to really attack the problem intelligently. If your sys-
tem isn’t going to cheat by giving it omniscient access to all in-game data on the 
human player, then the AI system is going to have to rely on perception data to 
build a model of the human to react. This type of information will most likely be 
sketchy, uncovered in small pieces that might not be in sequence, and may even 
contain falsified elements (the human trying to fool the AI), so a fuzzy system 
could very well be the best way to approach this problem.
For online or multiplayer games, player modeling could actually be used by a 
game as a “helper” AI entity that could play the game for you temporarily, if 
you had to go to the restroom or answer the phone. This feature would be like 
pausing, except that you wouldn’t interrupt the game for the rest of the play-
ers. The fuzzy system would try to model the way that you play the game and 
continue to use this style while you were away.

SUMMARY

As games continue to evolve, and game-AI engines have to respond to increasingly 
esoteric and/or complex game requirements, techniques might be required that 
most programmers haven’t seen before in more run of the mill games. This chapter 
has covered a number of useful, but seldom seen AI techniques that might just help 
you as an AI programmer with a particularly tricky AI problem in need of solving.

Artificial life techniques try to use lessons learned in biology to create emergent 
behavior from simple rules.
Alife can create emergent, reusable behavior; it also suffers from unpredict-
ability and brittleness.
Alife techniques pertaining to flocking, other types of organic movement, and 
ecology building are possible future game considerations.
Planning algorithms try to use additional information about a problem to de-
cide what to do before you start, one hopes not making local mistakes.
Planning is already used in many games, in the form of pathfinding using the 
A* algorithm, or some variant.
Planning can provide AI systems with a large amount of additional intelligence, 
and are general enough to be used in different parts of the game engine. They 
can be CPU intensive and can make the AI sluggish if misused.
Uses for planning in games could be anticipation of human actions, and 
a greater degree of intentionality in AI actions leading to combinations of 
 behaviors.
Production systems are generic methods of dealing with large amounts of 
 expert knowledge about a specific subject.
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Production techniques are generic, heavily researched, goal directed, and highly 
reactive. They can be CPU intensive.
Games could benefit from not only using production systems to organize their 
rule-based logic code, but could also be served by data driving the production 
system to maximize game extensibility.
Decision trees are another way of organizing if-then structures using binary 
separation methods to optimize the structure and number of your variable 
checks.
Both classification and regression trees are similar to neural nets, but have 
many important differences including readability, types of data they work well 
with, output types, variable consideration, and accuracy.
They are easier to tune than some classifying systems, heavily researched, and 
very easy to implement. They can be brittle, don’t scale well, and only provide 
discrete outputs.
Games could use decision trees to perform simple player modeling, store mem-
ory like data, and provide a general, data-driven system for determining binary 
perception data.
Fuzzy logic is a means of extending logic to encompass partial truth values.
It allows games to use more loosely defined variables while relying on math-
ematically proven methods. Fuzzy logic can be CPU-expensive.
Player modeling, and helper AI systems are ways that games might use fuzzy-
logic systems.
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Distributed AI Design25

There are many individual goals within an AI engine no matter what type of 
game you’re developing. Designing and creating an entire AI system is not 
a small undertaking. In this chapter, we will discuss a general design para-

digm for approaching any type of large-scale AI engine design, called distributed 
AI design, that should help you break AI systems into manageable pieces. We will 
discuss the various parts to the method, and along the way, give plenty of examples. 
Finally, we will break down a classic game into different ways that it could be coded, 
given a modern-day AI engine.

BASIC OVERVIEW

In Chapter 2, “An AI Engine: The Basic Components and Design,” we explored the 
various components of an AI engine (the main pieces being the decision-making 
system, the perception system, and navigation). Now that we have covered the main 
types of coding techniques that are used in games, we can discuss more properly 
the different AI methods that work well with each section of an AI engine, as well 
as determine which pieces work well together.

The first rule of all game programming (and most will also say the first rule 
of game design) is the old standby: Keep It Simple, Stupid (KISS). The design and 
creation of an entire AI engine is not an easy task, and over-engineering can stifle 
an already overwhelming experience. A game’s AI has one major task—to provide 
interesting and challenging behavior whether as an opponent or for the player’s 
“wingmen.” The purpose of the distributed method is to simplify overall AI cre-
ation and maintenance by spreading out the AI tasks into modular, layered systems 

In This Chapter

 Basic Overview
 The Distributed Layers
 Summary
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that work with each other to create rich AI behaviors without overcomplicating any 
one area of the engine.

A REAL-LIFE EXAMPLE

To help describe the distributed design technique, we shall present a real-life (RL) 
example. Say that you are sitting at your desk. Suddenly, somebody from the next 
room calls your name. You rise, and go to where the voice came from to see who 
called you. Let’s break down what happened exactly, except that we’re going to 
 assume that you are an AI character:

 1. You are sitting and performing a behavior called DoingWork. You received an 
input, in the form of a game event (your name being called), or a changed 
perception variable (such as DistanceToNearestDisturbance, or BeingCalled,
etc.) depending on how your perception system is set up.

 2. Your decision-making system determined that the incoming perception 
was important enough to change your behavior in favor of a different, 
more applicable behavior.

 3. The new behavior you have transitioned to (or been assigned), called 
Investigate, first gives you a new target location (which is approximately 
the location of the incoming sound that called you), which was created by 
either some algorithm for guessing sound locations, or by cheating and 
telling you the location of the call.

 4. You run your pathfinding algorithm to determine how to get to the target. 
The pathfinder gives you a set of points to move to in sequence to get there.

 5. Your movement code finally has a destination, and so it figures out which 
of your movement animations to play to look the best, and fit the motion 
closest.

 6. You start moving to the nearest pathnode in the path list, but your desk 
is in the way. Your obstacle-avoidance system takes over, and moves you 
around the side of the desk. By heading toward the next pathnode, and 
using the avoidance system to navigate any dynamic objects in your way, 
you make it out the door and toward the sound.

 7. As you leave the room, it occurs to you that the door is open, and you have 
your wallet out on your desk. You stop and close the door, and then continue.

 8. Ten feet later, you see Bob and recognize that it was his voice you heard.
 9. This new input perception (that it was Bob who called) changes your state from 

Investigate to ActCynical, and so you say, “What the heck do you want?”

And on and on it goes. The point is this: The first description we used was “I 
heard my name being called, and got up to see who it was,” whereas the chain of 
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determinations and levels of intelligent behavior that you used to do all of the above 
is much more involved than that initial sentence implies. Such is the plight of our AI 
systems. Every task is actually a dozen smaller tasks strung together in concert.

THE DISTRIBUTED LAYERS

Distributed AI design is the technique of fully embracing the multi-level quality of 
behavior in the real world and applying it to organizing and implementing an AI 
engine. We do this for a number of reasons:

 1. It produces cleaner, more maintainable code that is also easier to under-
stand and extend.

 2. It spreads out the intelligence among a number of different systems, several 
of which will most likely be reusable by other elements within your game.

 3. You don’t end up with a huge AIPlayer.cpp file (or its equivalent), in which 
you store large amounts of special case code dealing with the AI characters. 
Instead, we will partition our intelligence into several layers:

Perception/Event layer. This layer filters incoming sense data for rel-
evance and various other factors.
Behavior layer. This layer describes the specifics of how to perform a 
given action.
Animation layer. The animation layer determines which animation to 
play to fit the game state.
Motion layer. This layer handles aspects like pathfinding, collisions, 
and avoidance.
Short-term decision making. This is the narrow-view intelligence for 
the AI entity, primarily concerned with just the entity.
Long-term decision making. This layer handles wide-view intelligence 
issues, like planning, or team-based considerations.
Location-based information layer. This layer includes information 
transmitted to the entity from influence maps, smart terrain, or the like.

THE REAL-LIFE EXAMPLE REVISITED

We shall step through the RL example to introduce the main layers of the system, 
to dissect the tasks our systems must perform into more manageable, layered levels 
of intelligence.

 1. The AI character’s name is called. Let’s assume this game is using an event 
system. Our AI entity thus receives a message from the game stating that 
his name is being called.
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 2. Let’s also assume the game is using a hierarchical finite-state machine 
(FSM) (with a state stack, to use as a memory) for its primary decision-
making scheme, as described in Chapter 15, “Finite-State Machines.” The 
current state the entity is in at the start of the example, DoingWork, has 
registered for the MyNameIsCalled message. Getting the message sets up a 
state transition by pushing the state machine’s current state onto the stack, 
and entering the Investigate state. This is an example of short-term in-
telligence because the interrupted behavior (DoingWork) wasn’t being per-
formed because of some personal perception, it was part of a larger (and 
within the HFSM, next level up) state, that of Afternoon.

 3. Upon entering the Investigate state, the state calculates an investigation 
target for the character, based on the incoming sound data. The logic for 
this calculation is therefore within the action itself, and is thus part of the 
behavior layer.

 4. The behavior then accesses the navigation layer by using the pathfinder to 
resolve movement toward its target.

 5. With a valid direction to travel in, the movement layer is activated and 
starts the move. The first thing it does is use the animation layer to choose 
the right movement animation.

 6. We start playing the movement animation, but immediately something 
happens: Another perception tips us to the fact that we’re going to collide 
with a dynamic object in the environment (rather than a level element like 
a solid wall, which I would avoid using the pathfinder instead), and so the 
motion layer engages the avoidance system to steer us clear of it, as well any 
other objects on your way out.

 7. When you go to leave, your wallet sends out a message that you’ve left it 
behind (through a smart object system, it is programmed to mention if 
you’re more than a certain distance from it, and the Afternoon high-level 
state is listening for it because you don’t want to lose your wallet while 
you’re out during the day), and forces you to temporarily give up your cur-
rent goal to take care of this problem first. The long-term decision system 
does some checking, and because your wallet is in your office, it will be safe 
to leave if you shut the door (computed with a simple planning algorithm). 
You shut the door using the behavior layer to set up the behavior, which in 
turn uses the animation layer to pick the right door-closing animation. You 
then return to your last state when this state is popped off the stack.

 8. The perception system visually recognizes Bob (once you get within a 
certain distance, and you’re both facing each other), and so sends out 
a message that the Investigate state is registered for “See Friend.” The 
Investigate state intercepts the message, and checks to see if Bob’s loca-
tion is close to its investigation target. If so, it figures that it was Bob who 
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called. Again, this logic is part of the behavior system, embedded in the 
Investigate state.

 9. The Investigate state then transitions to a new state, and makes a smart 
remark, by way of the familiar behavior-and-then-animation chain of lay-
ers necessary to set up the action as well as the animation to play.

Now that you can see the basic flow, let’s break down each layer by discussing 
the reasons behind separating it, the decisions that we’re going to delegate to each 
layer, the techniques that can be used to implement it, and some more examples of 
how each is used.

THE PERCEPTIONS AND EVENTS LAYER

The reason for splitting out perception calculation was primarily discussed in 
Chapter 2. Creating a central perception handler is a great way to optimize your 
AI calculations. It helps prevent game values from being recalculated in multiple 
places within a single game loop, and consolidation supports the development and 
debugging of important game values being tracked by your AI systems.

The intelligence being assigned to the perception layer is in the form of the 
 reaction times and thresholds inherent in each individual perception. All these 
kinds of determinations can be separated from the act themselves by being tucked 
all the way down at this low level. Thus, all behaviors that incorporate a given per-
ception, either for activation or transition conditions, benefits from the embedded 
“intelligence” in how the perception is updated.

Centralized perception systems work very well within message-based systems, 
so when a perception actuates, it can send out a message to a specific player, or your 
system can broadcast a more general event. The perception system encapsulates 
some additional AI computation by way of incorporating attribute data within the 
perceptions as well. So, if I swing a sword in the direction of two different charac-
ters, and one of them has very slow reflexes, he might be in for a nasty surprise, but 
the other character (who has superior reflexes) might have no problem dodging, 
parrying, or even shooting me, depending on the character. All simply because his 
perception system picked up on the incoming sword and the other did not.

THE BEHAVIOR LAYER

Within most games, each behavior is most likely considered a state that the character 
is in, with more complex actions being constructed out of a few states. As such, be-
havior layers are generally coded within whatever system of “state” or atomic actions 
you are going to use within your game. Even if you’re writing a fighting game, in 
which the characters are in one game state the entire time (the equivalent of “Fight 
to the Death”), the final behaviors that you’re going to be using with the characters 
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(in this case, each fighting move) will still likely require special game logic to be em-
bedded in them, even if it is only starting and stopping an animation.

The logic placed at this level usually involves transitions within the game’s state 
machine (or whatever technique your game is using), as well as describing the series 
of actions necessary to perform the behavior from start to finish. In Listing 25.1, 
you can see some pseudocode for a fighting game behavior, in this case a large 
punch animation sequence, showing the series of events that are required:

LISTING 25.1 Pseudocode for a fighting game behavior called BigPunch.

Begin BigPunch

    ForInit

    {

        DoSound(GRUNT_BIG)

        UseAnim(rand(NUM_BIG_PUNCHES)+ANIM_BIG_PUNCH_FIRST)

    }

    ForFrames

    {

        1      AllowCombo(off)

        2..5   TimeScale(1.6)

        6      OffenseCollisionSphere(1,on)

        7..9   SpawnParticle(FORCE_LINES)

        10     DoSound(AIR_SNAO)

        11..16 TimeScale(0.8)

        17     OffenseCollisionSphere(1,off)

        18     TimeScale(1.0)

        19..25 AllowCombo(on)

    }

End BigPunch 

Here you can see the behavior setting up things like sounds, animations, 
spawning particle effects, and turning on and off various game flags. Because this is 
a fighting game, each frame of the animation during the behavior may potentially 
have some code or an event associated with it, because the tuning and balance of 
fighting games needs to be just that precise. The behavior in Listing 25.1 includes 
several types of flags and events, like allowing other moves to interrupt (for com-
binations to occur), scaling the local time of the character (to fine-tune execution 
of animation data for dramatic effect), launching sound and particle effects, and 
toggling collision spheres (so that the attack will only “hit” the opponent during 
prescribed parts of the animation).

Notice that this example assumes that all the big punch animations have the 
same number of frames, this is somewhat important if you’re going to try and 
balance gameplay with generic behaviors, but obviously isn’t necessary if you’re 
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willing to create the code necessary to run fighting moves with any number of 
frames. Instead, the system could internally keep track of the number of frames in 
the animation, and also note the highest numbered frame the script refers to, and 
determine what percentage of the total time each frame should represent. In this 
way, frame counts would be relative, and as long as the “stages” of each animation 
were roughly the same (the first half is the windup, the third quarter is the hit, and 
the last quarter is the follow-through, or some equivalent determination), then the 
big punch moves could be whatever length the animator wanted.

In the RL example, when the code transitioned to the Investigate state, it called 
the Enter() method, where it then determined exactly what location the character 
was going to investigate, by calculating a target based on information attached to 
the original MyNameIsCalled message, namely the approximate angle and volume 
of the call. Like perceptions, the behavior layer should also be influenced by player 
attributes, to differentiate different characters when they perform the reusable be-
haviors. If you tell two very different characters to Jump(), they should check their 
attributes to determine how high, so to speak.

For many games, this layer is implemented in code, especially when they have 
a limited number of behaviors available to their AI characters. For the opposite 
case, however, this is a prime candidate for a data-driven solution. If you can use 
scripting to write the behavior code (as in the above fighting game example), or 
some other form of data-driven gameplay, this will prove to be a real boon to your 
system, as it represents a fairly major chunk of intelligence coding being directly in 
the hands of the designers. The more content they can put into this layer, the more 
virtually “calculation-free” personality and intelligence your characters will exhibit. 
Not that scripts cannot contain math, or be slower to run, but rather that script-
ing is a means of recording the common sense–style intelligence that the game 
characters’ behaviors require to seem realistic into the game through the scripting 
language.

THE ANIMATION LAYER

In the old days, art resources came at a premium. The first Super Mario Bros. game 
for the NES had only 8K of sprite art for the entire game, including background tiles 
and all character animations. As games have become more complex, the amount 
of animation data associated with any given game character has risen dramatically. 
Main characters in modern action-heavy, third-person games can sometimes have 
animation data more than a thousand times the level of Super Mario Bros. entire 
art resources all to themselves.

The process of choosing the right animation to play at any given time has 
 become a seriously non-trivial task in many games, especially in animation-heavy 
genres, like fighting and sports games. Fighting games might have dozens of unique 
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moves for each character. Sports games, which generally rely heavily on motion-
captured animations to retain the signature styles of the simulated players, might 
have a hundred or more different animations for a single action (dunks in a basket-
ball game, batter warm-ups in baseball, end-zone celebrations in football, etc.).

Not only is the total number of animations high, but also, some of these de-
terminations require expensive logic and mathematical calculations. Many of these 
might be simply randomized (with some checks to avoid possible repetition) like 
end-zone celebrations, for instance, which are simply fluff (defined as unnecessary 
for gameplay) animations that are numerous because they add entertainment value 
to the game.

But consider the determination, in the same game, for which animation to 
play when performing the behavior “Receive Pass.” The code has to take a number 
of factors into account: the thrower’s current direction of travel and speed, the 
amount and position of defensive coverage, the angle and direction of the incom-
ing football, the kind of player the receiver is, as well as his skill level (he may not 
be skilled enough to perform certain catches, or rarely catches on his left side), 
and the direction he’s going to want to travel after he gets the ball. Then, after the 
receive behavior generates a list of the available possible catches, the code has to run 
through each of these available animations to determine if one of them actually 
gets the player’s actual catching hands within a certain distance of the future ball 
position (where the ball and the player will intersect), or at least close enough that 
your IK (inverse kinematics) system will be able to take over.

In addition, there are usually special considerations, like the fact that the re-
ceiver had to jump (to reach the catch before going out of bounds because some-
one could be diving at the receiver’s feet), or that the receiver might want to catch 
the ball and then run straight out of bounds to stop the clock. Maybe the receiver 
collided with another player on the way to the ball, and now needs to recalculate 
everything in an attempt to recover from the hit. In another sport, like basketball, 
where almost every player on the court is constantly becoming an eligible receiver, 
this kind of calculation can cripple an AI system’s performance if not done cleanly, 
and with a plan in mind before implementation.

In games with extensive animation resources, or heavy calculation require-
ments (thus meaning that these calculations are almost assuredly going to require 
plenty of tuning and balancing because of their complex nature), this is one of the 
places to start with a data-driven approach. Usually, animation selection systems are 
table-driven, like in Figure 25.1, where we see part of a database-style file describing 
a selection table for finding the correct layup animation in a basketball game.

In the table shown in Figure 25.1 (which, by the way, doesn’t take into account 
other players in the way, or an entire host of other factors), we have a number 
of layup animations. Each animation has parameters which show how it fits into 
the overall decision structure description, or schema. The schema for this system 
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involves four parameters: shot type (the difficulty of the action; skill rating needs 
to be at certain levels to achieve hard or flash layups), angle of approach (the allow-
able angles of approach for the potential shooter; labeled as “a-h,” each letter is a pie 
wedge in a circle radiating out of the basket, with “a” being straight left), the speeds 
the player is allowed to be in to use the layup, and the final quadrant that the ball 
will enter the basket from relative to the player.

The final parameter, ball quad, could probably have used the same angle system 
as approach, but the final behavior that used it needed quadrant values, so the data 
was preprocessed to save time during gameplay. The second reason the design uses 
a table is to save calculation time in determining these things when the game is 
running (the first reason is also to save time, but in hours of programming for the 
designer). Technically, you could actually run through each layup and determine all 

 //Angle of
//Anim Name //Shot type Approach //Starting Speed //Ball Quad

LayupUnder2ft hard efg stand,walk right

LayupBaseLtStand norm abc stand,walk front

LayupBaseRtStand norm fgh stand,walk front

LayupCtStand norm def stand,walk front

LayupCornerLtStand norm bcd stand,walk front

LayupCornerRtStand norm efg stand,walk front

LayupUnderStand norm efg stand,walk right

LayupBaseLtJump norm abc all left

LayupBaseRtJump norm fgh all right

LayupCtJump norm def all front

LayupCornerLtJump flash bcd all left

LayupCornerRtJump flash efg all right

LayupBaseLtRun norm abc run left

LayupBaseRtRun norm gh run right

LayupCtRun norm def Run front

LayupCornerLtRun hard bcd Run left

LayupCornerRtRun hard efg Run right

LayupUnder norm abc Run back

LayupRev flash abc run back

LayupRevTrick flash gh run back

FIGURE 25.1 Basketball layup animation selection table.
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of these factors algorithmically, but it’s an expensive process, and so we’ll use a table 
instead. An algorithmic solution could generate the table, however. An “animation 
table tool” could be written to recognize schemas, and then it could be fed a large 
number of animations, which it then would crunch through to generate these tables. 
Any touch-ups or overrides could then be performed on the final file, but it would 
definitely save your designers (or you, if you end up entering the data) work.

Today, multiple animation channels are also very common. Two channels 
means that a character could be running one animation on its lower half (per-
forming movement), while another on its upper half (aiming a gun, or throwing 
a football). Three or more channels could control whatever other parts or secondary 
objects your game design calls for (remember, we’re talking about games here, 
so your main character might have three heads or four robotic arms). All of these 
additional channels would add to the complexity of your animation selection, but 
this really just translates to additional, or even nested tables if you choose to use 
that method of handling this problem.

Other implementations might include a scripted system like we described for 
the behavior layer, because in some games there are very little differences between 
animations and behaviors. The same kind of frame-by-frame control could be ex-
ercised, complete with launching of effects, events, and the like all from the anima-
tion’s Update() function.

THE MOTION LAYER

As stated in Chapter 2, navigation tasks are another huge part of any game AI en-
gine. Pathfinding (which is a form of planning, as we saw in Chapter 24, “Other 
Techniques of Note”) and its younger brother, avoidance, are very influential fac-
tors when determining a character’s behavior. Like the other layers in this system, 
they are separated because they need to be reused by other parts of the AI engine 
(specifically, any behavior that requires map movement), so it wouldn’t make much 
sense to embed this kind of logic within the behaviors themselves.

Techniques for implementing the motion layer were discussed in Chapter 2. 
Because of its links to robotics, both pathfinding and avoidance have received a 
bounty of useful material and algorithms from the academic world. Even a casual 
search on the Internet for pathfinding methods useful within games will yield thou-
sands of results.

But what other logic and functionality should we embed at this level? The answer, 
again, is to try and establish character personality and attribute level within this layer. 
By giving the basic pathfinding and avoidance systems attribute-based behavior pat-
terns, you can get subtle (and not so subtle) classes of movement out of an otherwise 
totally utilitarian system. Maybe bigger characters don’t dodge like smaller ones do; 
instead, they go around, or just pause and let the obstacle pass first. Different types of 
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characters might traverse the level differently, meaning good jumpers might take pre-
carious paths, wallclimbers might go places others might not, and smarter characters 
will know exactly which teleporter to use to get right to the player.

Another extension to this system might be additional means of obstacle avoid-
ance that are game- or character-specific. If your creature is as strong as Superman, 
is your creature really going to go around that garbage can? Or is it going to pick it 
up and throw it into outer space? Or kick the can out of its way with a mad grunt 
as the character runs at another player? It makes an AI system look stupid when a 
character that can jump twenty feet through the air following a pathnode system 
has to go around six-foot-high crates to get at a player.

All of these kinds of things can be handled within the wrappings of the motion 
layer, and the rest of the system need not be bothered with it. Our overall goal with 
distributed AI is to have any layer be able to perform its job, and not have it nega-
tively affect any of the other layers. Yes, avoidance technically detours a player from 
the path, which keeps the player from finishing their behavior of picking up the 
shiny powerup, but if it didn’t, the player would be stuck mashing their face into the 
tree in front of them, and they would never get to the powerup in the first place.

SHORT-TERM DECISION MAKING (ST)

At the ST level, decisions involve matters that usually are associated with the spe-
cific character, either because of the character’s attributes, its current perceptions, 
or its past experience. A character might be almost dead, and so has a very personal 
overriding goal to get a health powerup or run away. He might be dealing with 
the specifics of his weapon (he’s out of ammo), or possibly his morale or bravery 
 attribute is low, and is therefore grappling with the desire to run off into the woods 
to hide. We again split off this layer, to allow another branch for personality and 
attribute data to flavor reusable AI behavior.

The ST layer can be somewhat touchy to allocate behavior to: the more ST 
behavior you have, the more individual the character’s movement is going to seem. 
But if you’re trying to model a tightly regimented troop movement, and a third of 
the units have their girlfriend on their mind, things might get messy. Of course, 
your ST system could be state-based, to enforce group control during crucial peri-
ods, and allow for more varied behavior other times. In fact, given the more direct, 
situational nature of most ST decisions, they are usually created with a state-based 
system in mind.

LONG-TERM DECISION MAKING (LT)

LT decisions are likely to be outside of any one unit, because they involve many 
units, possibly even all the units in the game. At the LT level, we are usually con-
cerned with strategic types of solutions, which take planning, coordination, and 
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timing. Of course, not all games need these elements. But even a game as simple as 
single-player Gauntlet could be said to have a basic LT determination: the constant 
ticking down of a player’s health as time passes. Whatever ST goals you have deter-
mined an AI Gauntlet player has set up for himself will all be set aside if the player’s 
health gets too low, and he is forced to concentrate on trying to get more health to 
stay alive. Of course, multiplayer Gauntlet has even more LT usage, because players 
can more easily dispatch the enemies with teamwork than with completely inde-
pendent actions.

LT systems can be constructed in roughly the same fashion as the ST layer. 
State-based systems work well, because games with a good amount of strategy can 
usually be broken into wide phases of strategy. Chess has its opening, midgame, 
and endgame; RTS games generally have a buildup phase, and then several cycles of 
exploration followed by conflict. Planning is usually important to some degree in 
LT systems—almost by definition the most LT decisions need to take a wide view 
of the problem, and make bigger decisions that involve the future.

Many times, an LT system will also make use of fuzziness as well, either with 
a fuzzy-state system (which works very well in RTS games; effectively allowing a 
player controllers for the separate yet parallel goals of offense, defense, resource 
gathering, research, etc.), or with a full fuzzy logic system. An RTS opponent con-
trolled by a full fuzzy logic system would use the limited information it has col-
lected through reconnaissance from the field to try and discern which actions are a 
“best guess” at to what to do next in order to win the game. This is much closer to 
how a human plays an RTS than a build script will ever be.

LOCATION-BASED INFORMATION LAYER (LBI)

Sometimes, too many things are going on in the environment to really make it 
feasible to have each object in the world keep scanning the nearby area for things 
that it is interested in. Instead, we turn the tables. LBI systems create a more cen-
tralized, decoupled means by which data about the world can be accessed by indi-
vidual game characters. Smart terrain and objects broadcast their existence to game 
characters (and to each other) so that what looks like complex interaction with the 
environment can be simplified and optimized. Influence maps allow for a wealth 
of information to be stored, sorted, computed, and analyzed for a whole suite of 
AI systems.

LBI-layer information is a separate system that you can think of as a large 
blackboard architecture for creating AI engines. An LBI layer can help the LT 
decision-making layer with terrain analysis that can find weak points in the AI’s 
defenses or identify key areas of military interest in the map (areas that have 
high enemy foot traffic, or where many individual units have died), and discover 
valuable ambush locations in an FTPS deathmatch map. Alerting units to high 
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concentrations of nearby enemies (acting as a rough “sound” perception, per-
haps) could affect the ST layer’s decisions. Pathfinding can use influence map 
information to avoid potentially deadly portions of the map, either by design, or 
because of a human-laid trap.

One last way of using an LBI layer within your game is to embed triggers di-
rectly within your game world that are triggered by some game state, or merely by 
proximity. These triggers can set off events, messages, or entire game scripts that 
cause any number of things to occur. In this way, designers can tag specific areas of 
the world itself with “intelligence,” which can help simplify other AI systems that 
might incur unnecessary baggage if they were to try to encapsulate these types of 
event data. Placement of these triggers is almost universally done within some kind 
of a level editor, although other systems have been used, like in game placement, 
or even simple text scripting of specific locations, although this last method isn’t 
very friendly.

BROOKS SUBSUMPTION ARCHITECTURES

The distributed AI approach is somewhat close to Brooks subsumption architec-
ture, referenced in chapter one. However, where Brooks designs are primarily di-
rected toward modeling creatures with low intelligence (he hopes his robot designs 
to someday be as robust as natural insects: not that intelligent, but reliable in the 
face of sometimes an overwhelming number of adverse factors), the distributed 
method goes a few steps further upward in the chain, to bestow upon our AI sys-
tems a level of strategic planning and intelligence that goes above ant intelligence.

The subsumption goal, of being able to achieve all of your goals in the face of 
a dynamic number and type of impairments, is definitely our goal when building 
our game AI engine. We would like our systems, as well as the behavior of the AI-
controlled characters within it, to competently handle whatever the human player 
does within the game, as well recovering (within context) from the adverse affects 
that might come up during any game situation.

Also, Brooks’s notions of “reaching for insect intelligence first, and then on,” 
is very poignant in the world of game AI. Our systems don’t need to be super-
intelligent. The intelligence of a housefly may just be enough to give the average 
gamer a run for his money in the twitch gaming world of the deathmatch arena. 
Ant colony-level mentality may be all that’s required to impart an RTS AI system 
with all it needs to build up, defend itself, and occasionally conquer.

In the end, we’re not trying to win; rather, we strive to engage the player. Most 
people feel a twinge of pride, and relief, after finally smacking the fly that has been 
harassing them for a half hour, rather than feeling stupid for not being able to kill 
something with a speck for a brain. The fly engaged the player, performed surpris-
ing and mostly useful behavior, which caused the human to focus his attention and 
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energy, but in the end was not a match for the human; a nice lesson in perfect game 
AI behavior.

GAME BREAKDOWN GOALS

In this section, we will first break down a popular commercial game using the dis-
tributed method, and then giving several examples at the separate levels of how 
each AI layer could be implemented. Note, that this section is not describing how 
they should be implemented, for either efficiency or entertainment value. Rather, 
this is meant as an exercise into thinking about game AI problems from all possible 
angles, so that you can begin to truly understand the vast array of solutions that are 
available to any given game AI situation.

So, we’ll strive for the “most effective” AI, meaning that it stops the player 
the most (or the most efficently), while confining ourselves to the spirit of the 
original game by not adding any additional animations or behaviors to the classic 
setup. Otherwise, we would just say, “And then the character whips out his rocket 
launcher, and fires. . . .”

Second, we will discuss how an AI-controlled main character might be created 
for each game. In this scenario, we are not trying to change the enemy behavior in 
any way, or affect gameplay. We are trying to create an AI system that plays the game 
well, and less importantly, like a human would. The examples given in this section 
are also not an indication as to the best way in which to implement the AI player, 
but are rather a broad spectrum view as to the types of solutions that are possible 
given the inputs and outputs.

DISTRIBUTED SUPER MARIO BROS.

Super Mario Bros. is a true classic, the first ever side-scrolling platformer (techni-
cally, other earlier games like Pitfall had many of the same elements, but didn’t 
actually scroll).

It gave us the phrase “1-UP” (for a powerup that gives a player an extra life) and 
took hidden game elements to an entirely new level, by making it a cornerstone of 
the game. The game has 32 real levels, and about 20 hidden ones. The entire game 
is 32 K of code, and 8 K of graphics. Also, that 32 K of code isn’t actually all code. 
A good-size chunk of that figure is utilized by the tile information necessary to 
construct the levels. Let’s just say, when they designed this game, space was tight. 
Almost every element of the design is space-related. Mario wears a hat, to not have 
to animate his hair. He has a mustache so that we get the notion of a mouth, with-
out having to display one.

Some familiarity with the game is required to make the discussion worthwhile. 
The basic mechanics that Mario employs are jumping and running. You can steer 
his jump to a certain extent. There are a few powerups in the game: a flower that 
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makes Mario grow (he can break rocks by bumping them with his head, and can 
now touch an enemy without dying . . . instead he’ll shrink back to normal size), 
a fire flower that allows him to throw fireballs, and a star that gives him a small 
period of invulnerability. The monster types that will be used for illustration later 
include:

Regular creatures like the mushrooms (called Goombas), which can be squished 
by jumping on their head.
The various kinds of turtles (or Koopas) can be disabled with one bounce, 
and then kicked, which sends them zooming along the ground as a projectile. 
In projectile form, they harm both Mario and other enemies, and bounce off 
walls to reverse direction. Some Koopas in later levels have wings, and can fly. 
These take three bounces to kill, the first takes their wings and turns them into 
a normal Koopa.
The Hammer Brothers are special Koopas. They are taller than average, and 
always come in pairs. They try to jump to the same level of the screen as the 
player, all the while tossing dozens of harmful spinning hammers in a parabolic 
arc toward Mario.
Lakitu is the name of a special enemy Koopa that actually rides on a small 
cloud along a line at the top of the screen during certain levels. He ducks if the 
player gets near him, and tries to hover around the player. If the player speeds 
up and tries to lose him, he speeds up as well. While he’s around, he throws out 
special spiked turtles that the player can’t bounce on to kill. Lakitu is actually 
one of the smarter enemies in the game, besides the Hammer Brothers.
Bowser, the end boss of each level, is a huge Koopa that breathes out large blasts 
of fire, and jumps up and down. Occasionally, he also throws hammers like the 
brothers. Like every other creature in the game, he can be killed with a fireball 
from Fire-powered Mario, or by dropping Bowser into the lava by releasing the 
drawbridge he stands on.

AI ENEMIES IMPLEMENTATION

As released, the enemies in Super Mario Bros. use almost no AI at all. The enemies 
are essentially algorithmic (they travel in circles or patterns, or perform a set 
 behavior every so often). The most common behavior used by the enemies is that 
they simply walk in the direction they are facing. An enemy of this type, placed in 
contained areas, will walk forward until they hit a wall, and will then turn around 
and walk the other way.

There are some uncommon elements that react to Mario’s position (like the 
guy riding on the cloud, or the Hammer Brothers, and to some extent, Bowser the 
boss monster), but only to affect facing and movement. Overall, they are all but 
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oblivious to Mario. They are merely well-placed moving obstacles to the advancing 
player as the player navigates each level.

Perception and Event Layer

Mario can’t do much within the game. As for movement, he can go left or right, 
jump, and walk or run. There are also a few water-based levels where Mario uses 
the same controls (jump means “swim,” but it is just an underwater jump), and the 
only thing that was different was the gravity on Mario. If Mario jumps in air (on 
land), gravity pulls him back down pretty quickly. Underwater, Mario sluggishly 
drifts back down to the bottom, allowing right or left movement to make it seem 
like he is swimming. Real running could only be accomplished when standing on 
the floor or a platform. Mario’s status is one of four values: small, big, fired up, or 
invincible.

With this kind of limited action palette, the game’s perception system can keep 
track of pretty much everything having to do with Mario, and do so quite fre-
quently. Other perceptions that our AI might use include:

The location of the current left-side border of the screen. Since the game always 
scrolls to the right, and because you can’t scroll backward, we’ll know how far 
the human can see knowing this, as well as what the player can reach on the 
left side.
A calculation of how far away from Mario any given AI character is. By making 
this value signed, negative values mean Mario is to the character’s left, positive 
distance means to the right.
The location of any other nearby creatures. Useful if your AI agents will  
perform any cooperative behaviors with other AI controlled characters, or use 
elements from within the game world against Mario.
Also, some additional complex calculations (like the distance from the platform 
an AI agent is on to the one before it in the level; given this value, the agent can 
predict where an incoming Mario might land or the path Mario might take).

The vast amount of applicable perception data is about Mario, rather than the 
individual AI character, so it makes a lot of sense to centralize these perceptions so 
that all the creatures in the game can share the calculations.

Behavior Layer

Mario’s behaviors may be limited in Super Mario Bros., but the average enemy’s set 
of behaviors is even more so. The behaviors that any given enemy can perform are 
almost the simplest imaginable: they involve either playing an animation or per-
forming some simple movement. A few enemies can throw a projectile.



Chapter 25  Distributed AI Design 631

An adequate behavior layer for this game would probably be to create three 
behaviors: PlayAnimation (taking parameters for the animation name, as well as 
starting frame, the time scale, etc.), Move (taking parameters for the speed, and a 
left/right direction), and SpawnProjectile (parameters would include projectile to 
use, speed, and path type of projectile: arc or straight line). There are only a few, 
so there’s really no reason not to write them directly in code as a state that can be 
used within an FSM (which is probably what we’d use as our short-term decision-
making solution).

Then, you could create inherited behaviors for the specific actions that game 
enemies use, like combination animations (the man-eating plants’ only behavior is 
to first play “Rise out of pot,” followed by “Chomp several times”), specific types of 
Move behaviors (straight line, circle, bouncing, etc.), and projectile attacks (hammer, 
breath of fire, bullets, etc.). These inherited behaviors could also be coded within 
the game, or written using a simple script system (the configuration script system 
from Chapter 18, “Scripting Systems,” would work fine) to define sets of parameters 
that would be linked to a specific behavior.

Animation Layer

Super Mario Bros. doesn’t have any animation issues with its enemies that could 
be made better by modern animation selection routines. At most, they have two 
frames, which they oscillate back and forth between. Many have only one frame, 
and repeatedly mirror the sprite to give the appearance of movement. So for this 
game, the animation layer of our AI engine will be non-existent if we’re to stick true 
to the original game art. If the game were to be beefed up in that different enemy 
characters had a variety of animations to choose from for any given behavior, based 
on skill ratings or in response to player actions, then obviously the game would 
benefit from a more rigorous animation selection method using some AI technique 
like decision trees or the like.

Motion Layer

Behaviors for Super Mario Bros. creatures are pretty much just setting movements, 
so most of this layer will be sparse. We could do some limited pathfinding for 
 enemies that are able to jump from platform to platform (as well as the flying crea-
tures), so that they could hunt down Mario a bit better. Enemies are almost always 
localized (meaning tied to a particular area of a map world), so path networks 
could be local as well, not requiring connectivity throughout the level. Lakitu on his 
cloud could use a special “path” network that represented the line in the sky where 
his cloud could travel. Potential fields could be used to do the pathfinding, but the 
overall movement required from the system is digital, and potential field systems 
tend to give movement a more smooth, organic look and feel.
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The levels aren’t completely static (Mario can smash almost any brick within his 
jumping range when he’s big), so any pathfinding data that linked blocks  together 
for connectivity would need to be updated as Mario broke connected blocks, but 
only if you are using this same pathfinding information for enemies that can jump 
from block to block.

Short-Term (ST) Decision Making

Considering the limited number of behaviors and perceptions available to the en-
emies, the decisions required of individual characters are relatively simple.

Take the flowers that pop out of the flowerpots (which, in coding terms, means 
they play an animation). They can only come up if Mario isn’t standing on the pot, 
and usually follow a set time schedule. If we relax the timed interval restrictions of 
certain enemies for our theoretical game, then the game could be made almost dev-
ilishly hard by setting off these creature’s actions at the worst possible time: when 
Mario is in the wrong place, is vulnerable because of a bad jump, or has limited foot 
space to maneuver.

Because of the small action set that each AI enemy has (usually just Walk, and 
TurnAround if you collide with a wall; the most complex enemy has movement, jump-
ing, and limited projectile attack capability), it’s safe to say that we could use FSMs 
easily here. Most enemies would only have a couple of states, three or four at most.

Another method might be to use scripting to describe the simple actions that 
the enemies use. A few sample scripts (written in a pseudo C style) for this hypo-
thetical system are shown in Listing 25.2.

LISTING 25.2 Sample behavior scripts for enemies in Super Mario Bros.

//Simple Guy

Update:

    WalkForward;

End;

OnWallCollision:

    TurnAround;

End;

//--------------------

//Hammer Brothers

Update:

    If(MarioHeight > MyHeight)

        JumpUp;

    Elseif(MarioHeight<MyHeight)

        JumpDown;

    FaceMario;
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    SpawnThrownHammer;

End;

//-Advanced Script--------------------

//Simple Guy

Update:

        If(MarioIsJumping)

        {

            //returns if Mario will land to my left or right

            dir = CalcMarioLandingSpot;

            //FindBestOffset finds the best spot right next to

            //where he’ll land, so that he won’t squish me on

            //the way down

            dir = FindBestOffset(dir);

            If(dir != MyDir)

                TurnAround;

            //make sure enemies don’t pile up, spread them out 

            //so its harder to land safely

            WalkForwardNoCrowding;

      }

            else

            {

            if(!FireBallNear)

            {

                FaceMario;

               If(!NearEdge)

                    WalkForwardNoCrowding;

                Else

                    TurnAround;

            }

            else

                DodgeFireBall;

      }

End;

Since the scripts would be so simple, the script writing tool could even be 
implemented within a larger-level editing tool. The tool would allow you to 
construct the scripts, and then tag enemies placed within the maps with the 
scripts that they would use. You could allow the editor to run the game with 
your edited script, and immediately see the results of your changes. If your 
game had a console, you could even allow a designer to add or replace parts of 
an enemy behavior script from within the game.

The last script in the listing is an “advanced” version of the original, 
where we’ve tried to use more perception data to make it especially brutal 
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on poor Mario. This script tries to dodge incoming Mario jumps and harmful fire-
balls, and tries to keep the character from falling to his death by walking off ledges. It 
also tries not to clump up with other enemies, to create less space for Mario. Savage 
creatures indeed.

Long-Term (LT) Decision Making

Usually, the LT layer handles, by definition, long-term problems. But, because of 
the quick, fly-by nature of the game, an LT layer for this game would be concerned 
more with the other usage of LT systems, that of coordinating enemies toward 
a larger goal. The LT layer for Super Mario Bros. could be used to have multiple 
enemies work together to cut off all of Mario’s methods of progressing.

The LT system could monitor which powerups and hidden blocks are within 
the current scene, and allocate particular enemies to guard them, while placing 
other enemies at strategic locations, in places where Mario needs to land to navi-
gate the level. Implementation could be an FSM working either in parallel with the 
ST state machine, or as an “overseer” state machine that runs in sequence before 
the individual enemy AI state machines. In essence, the LT layer would assign tasks 
to particular enemies, and then each enemy’s ST layer would decide the best way to 
perform their task.

We’re going to assume that individual enemies are pawns of the system within 
the LT layer. Enemies will never decide to not perform their LT assigned task. The 
situation could come up in games in which you allow individual characters, be they 
soldiers in a war, or combatants in a fighting game like Double Dragon, to have 
morale or bravery statistics. If morale gets too low, or their assigned actions would 
lead to certain death, they might turn tail and run, instead of listening to the LT 
layer. But not here; in this game, everyone lives for the glory of the system, whose 
only goal is to stop Mario from getting the Princess.

Location-Based Information Layer

If we are creating an AI system for the game that learns over time, then an influence 
map could keep statistical track of the route that Mario takes through each level, 
which powerups he tries for, and the like, and this information could be used to po-
sition enemies for maximum detriment. Of course, this kind of information would 
only come after having Mario run through the level a few times.

The nice thing about a game that stored this information is that the AI system 
would then work on arbitrary maps. It would extract strategic information from 
Mario’s movements rather than from level designer–placed cues, like jump connec-
tivity points and lists of placed powerup blocks. The system would also adapt over 
time: as Mario responded to the enemies’ placements by changing his methods to 
get through, the enemies’ placements would change also.
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AI PLAYER IMPLEMENTATION

For this part of the breakdown, we’ll now assume that the enemies in the game are 
using the standard Super Mario Bros. behavior set. Now we want to make an AI-
 controlled Mario-like character that would perform all the things that a human player 
can do. A possible usage for this would be a game in which you have another player 
that is controlled by the CPU, running through the level at the same time as you, in a 
competition to see who can get the highest score, or collect the most powerups, in a 
sort of thematic race. Other uses might include cooperative or helper characters that 
would sidekick alongside of the human player, or AI-controlled “bots” in a multi-
player game of some sort. The little character will be called “Tony.”

Perception and Event Layer

The amount of input data that the character has is limited. As Tony sees enemies, the 
perception layer would add them to a list (m_nearbyEnemies, possibly), and track their 
type (for predicting their movement) and position. A list of nearby visible (and hidden 
but known) powerups would also be useful.

Behavior Layer

Tony has a few behaviors. He can walk, run, jump, and (if powered up) shoot a fireball. 
All of these behaviors can be constructed as very straightforward pieces of code except 
one: Jump. In Super Mario Bros., as far as Mario is concerned, jumping IS the game. 
Super Mario Bros. is the game that introduced the concept of controllable jumps. You 
can hold down the jump button, for a higher jump (up to a certain max), but you can 
also steer your jump (using the direction pad) to a remarkably large degree. These 
simple additions make the jump behavior for AI Tony a large undertaking.

Jump steering is accomplished by using two things: in-air momentum, and the 
height of the jump. Figure 25.2 shows a diagram of the basic gameplay mechanic 
of Tony’s steerable jump. When you push the jump button, the game takes into 
account your forward movement (initial momentum), and then starts adding to 
an accumulating value based on the direction you’re pushing (positive value for 
forward direction, negative for reverse), and your height in the jump (the higher, 
the bigger the value), which is then used to affect the arc of the jump. To create a 
workable AI Tony, he needs to be taught how to jump within this game mechanic.

This can be done like any complex game behavior, invariably there are many 
different ways. You could find a series of joystick inputs that make Tony jump in 
useful ways, and use each jump specifically as a different behavior. So, you’d have a 
LongestJumpPossible behavior, and a JumpToSingleBlockDirectlyAboveMe behavior, 
as well as many more. You might even have specific jumps coded just for certain 
areas in the game. Certainly this method would work, because there are only so 
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many constructs within the game that Tony needs to get past. You could create fifty 
different types of jumps (number chosen arbitrarily), and then create a system for 
determining which jump to use based on the delta vector between where you are 
and where you want to land. You could even train a NN or GA to determine the 
rules for when to use each type of jump.

Going further, you could also train a NN or GA to actually find the correct series 
of joystick inputs to navigate a specific jump vector. This might take a while, because 
you’re talking about many rules (fifty in our example), with each rule possibly tak-
ing ten to thirty steps (assuming three things: thirty frames per second, that a jump 
animation is a full second long, and that you can steer the jump during the entire 
animation). Of course these numbers might be reducible; you would need to experi-
ment to determine exactly how many rules and steps for each rule were necessary.

FIGURE 25.2 The mechanics of Tony’s jumping.
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Animation Layer

Like the enemies, the number of animations that Mario has doesn’t require the 
help of an animation selection system. The biggest variable in player movement is 
jumping, so different jumps could be animated for the numerous styles of jumps. 
But with the human controlling Mario, the game doesn’t know when the player’s 
going to let go of the jump button or quit steering a jump. With an AI Tony, 
however, we would know ahead of time the exact jump we are going to attempt, 
and trigger specific jump animations that will look cool for the different types of 
jumps. If Tony had twenty different jump animations (ten styles with two each) 
then a very simple animation system could compute which one to play based on 
the style of the jump, and then some random check to mix up which animation 
to play out of the two equivalent animations for each style. Other places for ani-
mation selection would include playing transition animations, so when you stop 
pushing forward suddenly, Tony would play the correct braking animation, or 
would react to repeated jumps with custom animations.

Motion Layer

Pathfinding would be necessary to give our Tony a sense of where to go, although 
the 2D nature of the game would drastically simplify the task. Paths would be mostly 
consistent of jump connectivity between platforms. We could even preprocess the 
necessary jump style to use to jump from one platform to another, and encode this 
data within the pathnodes themselves, to help optimize the game code from having 
to make these calculations during run time.

Pathfinding could even be performed in a sort of potential fields implementa-
tion, in which each platform location stored the force vector necessary to get to 
the next platform. If the platform was just a floor, connected to the next section, 
it would give a “walk” vector, otherwise it would give “jump” vectors. Sections that 
have both a walk and jump vector are near the edges of a platform, or have mul-
tiple successive places that can be reached. To find his way to a powerup block, 
or some higher-up platform, Tony would search backwards through the potential 
fields graph (from his target to his current location) to find a series of movement 
vectors that would get him there.

Obstacle avoidance could be done a number of different ways, depending on 
Tony’s goals within the level. If he didn’t mind skipping past some enemies, then 
the presence of enemies could invalidate certain paths, which would make him 
take alternate means to get through the screen. If he was a bit more bloodthirsty, 
we could note each opponent in turn, and if killable, he could plan a jump vector 
that would bounce him onto the nearest of them, and he could even try to compute 
bounces that would then daisy chain bounce him onto another enemy, giving him 
bonus points.
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If Tony was using the potential fields method, then the enemies could also emit 
negative potential fields, making Tony jump automatically whenever he got too 
close to them. Tony usually has to jump before he gets to a given creature, so the 
potential field effect would have to be offset from the actual creature’s position, 
or just large enough to affect Tony at a distance. A motion layer done this way 
wouldn’t really have to be aware of the enemies of the level, because they would 
just affect how he traversed from one platform to another. Care would have to be 
taken, though, that Tony wouldn’t automatically jump over an enemy and fall to 
his death into some pit.

Short-Term Decision Making

Short-term concerns might be things that only deal with the screen of space that 
Tony is currently on. Things like getting powerups, bouncing on enemies in a spe-
cific order so that he minimizes his danger, and making his way to the next screen 
can all be handled by the ST decision layer. A simple FSM (with a few states, like 
EliminateCreatures and GetPowerups, would probably suffice), especially if we’ve 
put a lot of intelligence within the other layers of the system.

Long-Term Decision Making

LT decisions might include time-based considerations (forcing Tony to take a pipe 
shortcut through a level, in order to finish the level before the time limit), or spe-
cifically taking a certain path to get a large cache of coins and the extra life that 
comes with them.

Tony has one area in which he needs somewhat advanced planning, that of 
determining the best way to break bricks to then get to certain well-hidden secrets. 
Consider this scenario: at a certain point in the game, Mario needs to break a brick, 
which gives him access to the one next to it as a step, and then break out three more 
that are up a level, followed by leaping across a small pit and breaking out one 
on that side, to then bump the secret block that sprouts a vine, taking him to the 
warp zone. That’s quite a bit of planning for such a simple task. Although it could 
be done (as a classic planning algorithm, where you would have the state of the 
screen, and operators like Jump, BreakBrick, and so forth that would allow you to 
test different plans to find one that would work), this would be quite computation-
ally expensive. Instead, because we don’t have arbitrarily constructed levels, we can 
precompute how to achieve certain secret spots within the level, using small scripts 
of which blocks to break in what order, either written directly into Tony’s script, or 
tagged to the areas of the map that they’re required for.

Location-Based Information Layer

There are times when Tony pushes forward, and doesn’t see any enemies. So, he 
jumps to the next platform, only to have the screen scroll, and land right next to 
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an enemy that he didn’t know was just off screen, which kills him. Now imagine 
that we implemented an influence map for all the floor space in the level, using 
occupance data that stored how many creatures, if any, had been on each patch 
of floor for some set time period. Thus, the occupance data would sort of linger,
leaving a ghostly trail of occupance behind each creature that would gradually fade 
away. Having this kind of system, Tony would check where he was going to jump to, 
and note if anybody had been walking on the platform, but had just returned to the 
right of the screen. He could even, by watching the values decay over a few frames, 
determine the direction and speed of travel of the enemy. A system like this would 
virtually stop surprise run-ins like these, except for one-shot monsters that don’t 
move until they get on screen.

Tony could definitely benefit from a smart terrain system. Powerups could tell 
him of their nearness, and even give him directions for how to get there. The different 
level elements (such as flower pipes, super jump pads, etc.) could also telegraph their 
location and use to Tony, so that he could use them “blind,” as it were, simplifying his 
usage of level elements and also making it much easier to add new elements.

SUMMARY

Distributed AI design is a way of splitting up AI tasks into chunks that not only 
allow for a separation of functionality, but also as separate platforms for adding 
personality and individuality to AI-controlled characters. It helps AI systems add 
richness of behavior while providing reuse of code.

Distributed AI design allows difficult AI problems to be broken into manage-
able chunks.
The layers within the distributed method include perception, behavior, anima-
tion, motion, short-term decisions, long-term decisions, and location-based 
information layers.
Distributed design adds to the Brooks’s subsumption architecture with the in-
clusion of advanced strategic layers, as well as cooperation layers for dealing 
with multiple AI entities into a larger picture.
The chapter fully dissected the game Super Mario Bros., both from the perspec-
tive of trying to improve the enemy and boss AI, as well as in the creation of an 
AI-controlled “Tony” character.
As you can see by their sheer number, not all of the techniques talked about 
during the classic game breakdown are simultaneously needed or even com-
patible. They demonstrate that the number of ways that we could code up the 
enemies and an AI player for Super Mario Bros. are quite diverse.
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Common AI 
Development Concerns
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In this chapter, we will discuss many of the concerns that can arise in almost any 
AI engine development. Some of these are design considerations, others are en-
tertainment related, and still others involve production issues. In general, this 

chapter hopes to provide insights into some of the issues that might flavor the im-
plementation of your AI engine, as well as the AI-controlled entities themselves.

DESIGN CONSIDERATIONS

In this section, we’ll look into a few areas of AI engine design and implementation 
that you should consider. These topics can not only shape the direction you might 
take in designing a particular game AI system, but also may affect the details of 
implemention:

Data-driven design considerations. Common snags to look out for if you’re 
trying to decouple your game data or logic from your engine.

The one-track-mind (OTM) syndrome. This disorder affects some AI pro-
grammers, who think that they should find one AI method and stick with it, 
no matter what.

Level-of-detail (LOD) AI. Useful ideas for implementing an AI engine that 
allows for this optimization technique.

Support AI. Other uses for AI on a game project that you might not have 
thought of.

In This Chapter

 Design Considerations
 Entertainment Considerations
 Production Concerns
 Summary
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General AI design thinking. Just some general ways of thinking that you 
should try when you’re going about AI engine design.

General implementation ideas. These are notions that are good to keep in 
mind during development, as well as general rules of thumb when coding 
AI systems.

CONCERNS WITH DATA-DRIVEN AI SYSTEMS

As the content level of games continues to rise, it becomes more and more of an 
imperative to get additional hands into the internals of the AI systems. Designers 
are increasingly requiring an immense amount of content from a behavior stand-
point (meaning, the amount of possible actions that the AI can perform) and are 
thus also increasing the size and complexity of the game AI logic (or when to per-
form the actions).

Actual game behaviors are much more tightly coupled to game code (they 
might possibly have to access the animation system, deal with physics, spout par-
ticle and/or sound effects, and link into any in-game communication channels like 
a messaging system), so it is much harder to get the creation of behaviors into a sys-
tem that a layperson can use. Generally, this means that data-driven design involves 
the logic side of AI development.

In a scripted AI engine, basic behaviors for the various characters are presented 
to the designers as keywords or functions that they can call from their scripts. In a 
visual system, you might have individual action nodes (that are representations of 
your game behaviors) that designers link into some sort of flow diagram.

One way to determine how to achieve the level of data-driven design within 
your system is to data drive the highest level of the system. Then monitor the usage 
of the tool, and if the designers are constantly bugging the programmers to add 
elements at the next level down, then data drive that layer, repeating this as neces-
sary. This follows the same model as the most classically data-driven system within 
modern 3D games, the renderer.

A 3D renderer is a software system that knows how to draw a number of very 
low-level, completely reusable primitives. These primitives come in layers: the low-
est would be polygons, which combine to make models, which then combine to 
form scenes.

At each level of the rendering pipeline, objects are completely constructed from 
objects of the level below it, and each level is pretty much independent of the oth-
ers. Whenever making a system data-driven, the evolution from fully hard-coded to 
fully data-based is always from the highest-level primitive to the lowest-level.

To continue the analogy, some of the earliest 3D renderers were scene defini-
tion scripts. POV-Ray, a ray-tracing engine that was first created in the 1980s, is 
a prime example of this. POV-Ray had a number of primitives (toroids, spheres, 
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heightfields, and many other shapes that can be defined using a mathematic equa-
tion). Rendering things with POV-Ray involved writing a little scene script, and 
then letting it run. Many young graphics experimenters got their first taste of mak-
ing something visually impressive come out of their computers by using POV-Ray. 
But you can’t define a model in POV-Ray, because it only renders mathematic 
constructs. A figure that looks like Crash Bandicoot would be somewhat tough to 
mathematically model.

So young experimenters had to find themselves a mesh modeler at some point. 
Mesh-based modelers use a different set of primitives (three-sided polygons called 
triangles or tris, and four-siders called quads) to define models, which could then 
be rendered using a different system, a mesh renderer, instead of mathematical 
rendering. This is where we currently are in 3D modeling. The reason that the 
polygons themselves don’t require a data-driven design is that they’re so low level, 
so primitive, that there really isn’t any need to go further.

A game AI engine can be thought of as using analogous primitives: anima-
tions, which combine into behaviors, which combine into strategies. The first 
step in data driving the system, then, is to encode a system for designing the game 
strategies. Here’s where current games mostly stop. Using (usually) either a script of 
some kind, or a table (depending on preference, really) we construct systems where 
designers can set up the game rules, the state machines, the fuzzy parameters for 
player attributes or the probability of behaviors, and the specific decisions to use 
for transitions, success or failure. But this is still all the first layer of data driving 
AI systems.

If you find that your designers are continually asking for additional behaviors, 
then the next step is to allow non-programmer authoring of behaviors. What this 
requires is coming up with a set of primitives from which all behaviors are built. 
Commonly, these primitives are thought of as translation within the world (move-
ment), some sort of physical action (animation), and game events (to send infor-
mation, or launch a sound or graphical effect). If your game uses translation data 
within the animations to move characters, then movement is also an animation.

Other games, like The Legend of Zelda and Quake, simply play a run animation, 
and then slide the model along the floor at a speed that tries to match the anima-
tion. Even if you are using the latter method, the movement speeds can be built into 
the animation that will be playing during the movement.

Thus, we can data drive the behaviors in the same way as the strategies, using 
animations and events as our primitives. You can define a state machine that moves 
from one animation to another, occasionally spawning a game event, either from a 
script or a table, just like the strategic AI layer.

If you’re finding that this still isn’t enough, and that your designers are request-
ing constant animation changes, you might have to go still further and give the 
designers the ability to build the animations themselves. While this isn’t commonly 
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done (because animation also includes art direction issues and the like), fighting 
games in particular have used this level of data-driven design. Animations are built 
out of the next primitive down, which is called a frame of animation. A frame rep-
resents a snapshot pose of the character’s body position and movement for a very 
short slice of time. Not only do fighting game designers change parameters and 
send events keyed to specific frames, but they can actually construct combination 
animations by playing a few frames of one animation, then a few frames of another, 
blending between them if necessary.

Data-driven design is not a magic bullet; it won’t universally improve any game 
or system. As you data drive lower and lower levels of your AI engine, the degree of 
organization with the creation pipeline needs to go up. Because the size of the data 
necessary to define all the possibilities goes up dramatically the lower in the system 
you are, data bloat and other issues come into play as well.

Make sure that you are not data driving areas of your game that could be done 
better with a code-based solution. If your animation system is completely data 
driven, but all the animations are using the same script except for one, then you 
are being pretty wasteful. You’re probably going to be better off, in terms of both 
performance and data size, to use a code-based approach and just code a special 
case for that one exception to the system.

The lesson is, only support the amount of data-driven design that is required 
by your game, and even then, make sure that you’re following the formula: create 
the reusable, simple primitives that allow users to build more complex objects. If 
creating those primitives becomes an issue, then go down a layer in complexity, and 
data drive that step as well.

THE ONE-TRACK-MIND SYNDROME

Another problem that affects some AI programmers is to focus on a particular 
technique and apply it by rote to every AI problem they come across, barely giving 
thought to its relevance. One of the central things to remember with AI techniques 
is that most are very context-sensitive; they only work for specific types of prob-
lems, given certain fields of input, and under particular game conditions. If your 
game is even moderately complex, there aren’t really any game AI techniques that 
will be the one and only approach you’ll need to get everything done in a clean, 
scalable, and manageable way.

One of the most common traps that AI programmers (especially new AI peo-
ple, or even senior staff from other programming areas that start poking their heads 
into AI) fall into is the “state machines are all you need” trap. For good reason, a 
large swath of people find state machines easy to understand, and enjoy the way 
that they help break down problems. These sensible programmers then promptly 
lose their minds, buy a ring, and marry FSMs until death do them part.
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FSMs can go a long way in the game industry. It’s true, you probably could
program 80 percent of games on the shelf with state machines. Especially with 
programmers who don’t mind 100-hour crunch weeks, dredging through pages 
of nearly indecipherable state machine logic stuck in huge switch statements with 
somewhat arbitrary priority systems. All because they once again forgot that state 
machines don’t scale very well, tending to get harder to maintain the more states 
added to them. FSMs are like a hammer. You can’t build a house without your 
hammer. But trying to build a house with just a hammer can be a whole lot of extra 
work indeed.

An AI engine doesn’t have to be all-encompassing. You can use an FSM for the 
basic state layout of your game (front end, introduction, gameplay, gameover), a 
FuSM for the main short-term decision layer, a simple planner to run your path-
finding and long-term decision layer, and a scripting system to data drive anima-
tion selection and run configuration scripts for the decision layers. Your perception 
system can be humming along in the background, sending out messages to all of 
these systems, and keeping the wheels turning. Sounds complex? As a whole it is, 
but it’s a complexity born of relatively simple pieces working together.

Piece by piece, what you’ve really created is a straightforward, modular, scalable 
system that can be the basis for any number of game titles. It can handle all the prob-
lems thrown at it by the game, as well as last minute game ideas and tuning crises 
that might come up because of focus testing. If something comes up that is com-
pletely unplanned, something that it can’t handle, it’s flexible enough to incorporate 
another module, without breaking the “fragile, poorly balanced house of cards” that 
many large-scale complex FSM or rule-based AI systems become over time.

LEVEL-OF-DETAIL (LOD) AI

AI systems are generally strapped for resources. Polls at the Game Developer Con-
ference over the years have seen a slow rise in CPU allocation for AI in games, from 
about 2 percent in the mid-1990s to around 10 percent currently. Certain genres, 
like turn-based games, obviously are outside this metric, but these numbers are 
considered averages.

Just like our graphics systems, one way in which to quickly tame rampant pro-
cessor usage of AI systems involve using LOD levels within your AI. The different 
LODs are dependant, just like graphics, on the player not being able to see the 
shortcuts being used. A typical LOD list might entail:

Off-screen and faraway. Characters in this category are completely nonexistent 
to the player.
Off-screen and close. These AI characters cannot be seen, but the player might 
still hear them, notice doors closing from someone passing, etc. Many games 



646 AI Game Engine Programming

don’t use this determination, in that they continue to treat the character as 
close by.
Very far-off. A character in this LOD would be visible as a pixel or two.
Far-off. Characters are now visible as solid colors, and possibly shapes, but no 
real detail yet. You can tell the difference between a monster and a humanoid, 
and tell a truck from a car.
Medium. This distance would be your true area of sight, determined more by 
the camera angles used in your game, as well as where the depth fog starts to 
clear. A good distance might be somewhere between 40 and 70 yards.
Close. Anything closer than Medium is considered close.
Interaction. This distance implies that the character is actually interacting with 
the player in some way.

There are a few ways to handle the AI as it changes between the various levels. 
One is to actually run different AI routines. This is akin to the graphics practice of 
generating lower polygon models for LOD models that will only be seen from very 
far away. If you’re scripting your AI, then you could just have different AI scripts for 
the LODs, or the functions buried within the AI engine that the scripts are running 
might perform LOD checking. A character will use full dynamic obstacle avoidance 
when the human is close by, but when the human is off screen or very far away, we 
can forget about this sometimes costly step. However, your engine must ensure that 
AI characters can recover from any sort of odd conditions that might come up by 
not using obstacle avoidance (like getting stuck inside large groups of obstacles), 
should the human player suddenly come back.

But from the character’s AI system, it would always just be calling DoAvoidance(),
and the avoidance function itself would query the LOD system to determine whether 
or not to perform real avoidance. The only real problem with this technique is also 
shared with its graphics analogy: You are usually required to write other versions of 
the script, or code, or database. In short, you multiply the amount of implementa-
tion and debugging work to create any behavior in a system using LODs, because you 
need to support the multiple routines.

Another way of handling LOD in AI systems involves varying the update fre-
quency of the AI engine’s Update() calls to specific areas. For characters within the 
human player’s immediate area, AI decisions might be updated very frequently, 
upwards of ten to thirty times per second. For off-screen elements, this might fall to 
a figure more like two to five times per second, or even less. Nonessential behaviors 
(so called window dressing, because it serves no purpose other than looking pretty) 
can be reduced to not updating at all, if need be. When setting up these schedules, 
try to load balance your update calls so that you’re not updating all of a specific 
type of unit at LOD level 3 every fifteen game loops. Rather, offset their starting 



Chapter 26  Common AI Development Concerns 647

update time, so that each individual unit still only updates every fifteen ticks, but 
only a few units of that type update each tick.

As an example, we’ll discuss an NPC character in a 3D FTPS game. The NPC 
is a scientist and is running a small AI script that has him continuously moving 
between one of three workstations, playing a different animation at each one, to 
appear that he is working. Here we have a character that is adding nothing to game 
play other than contextual movement within the world. The ways that the different 
levels of detail would affect his behavior would be:

Off-Screen

When an enemy isn’t visible, don’t run its AI at all because it it’s not influencing 
anything. You might want to continue playing the enemy’s sounds occasionally if 
it’s close to the player’s location, but not if there’s a nicely sealed lab door between 
the player and this character.

Very Far-Off

Stand still. The view distance is so far that even moving the character is unnecessary 
because it will likely only translate to a few pixels worth of movement anyway.

Far-Off

Slide the character (don’t animate, pathfind, or avoid: just slide) occasionally back 
and forth in a straight line between his equipment. You’ll still give the illusion of 
activity within the world, without all of the work. If the scientist were an acrobat 
instead, and was supposed to be performing cartwheels and huge aerial leaps, we 
couldn’t just slide him, but all this means is that we’d just have to use a different 
technique for an acrobat at this LOD.

Medium Distance and Closer

For this distance, just run his regular AI because this particular guy isn’t performing 
expensive calculations. Which brings up a good rule of thumb: try to get your de-
signers to give nonessential game characters very few advanced AI tasks. Our scien-
tist shouldn’t need to use pathfinding to get between his equipment, and shouldn’t 
be running any unnecessary perceptions.

As another example, let us consider an enemy civilization in an RTS game. 
These games are a bit different, in that the position of the player isn’t really a set 
place, and by design the human player isn’t going to be seeing the majority of AI 
units for large chunks of time because of the limited amount of world that can be 
seen at once, as well as the Fog of War. A sample breakdown for the different AI 
LODs in an RTS game might be:
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Off-Screen and Faraway

All strategic AI continues to run (at all LOD levels), but at adjusted update rates. 
Another possible optimization might be that the AI has limited updates, but when 
a major event happens (for example, the AI reaches the next major upgrade in the 
technology tree), it gets a short time to perform major tasking during which the AI 
will update at a higher rate. However, tactical decisions and actions are dramatically 
simplified. Note that being under the Fog of War is equivalent to being off screen.

Movement can be done by just sliding the units along at some set speed in the 
direction of their target, and when within some range teleported to the exact final 
destination. Or they could be left idle until the travel time is up, and then teleported 
the entire distance. Unit-to-unit collision could be simplified, or even ignored dur-
ing this LOD (although, you would have to ensure that two guys aren’t sitting on 
each other before they become visible again).

Actions, especially combat, could be determined using statistics instead of ac-
tual fighting. Other actions, like building structures or mining resources, would 
also be statistically determined (so, the game wouldn’t have to move peons back 
and forth between a gold mine and a resource center, but would instead determine 
the time it takes to get some amount of resource, and just apply a timer to a set- 
resource increment).

Off-Screen and Close

Because close likely means contact, this LOD should probably be close to full AI, 
except for the obvious visual elements. Tactical units might still play sounds, if not 
under the Fog of War. Animation selection is obviously ignored.

Very Far-Off to Close

These LODs would be roughly the same, in reference to an AI. What is “on screen” in 
an RTS game is usually much more localized than other genres, and the camera angle 
is almost always limited to a restricted, semioverhead view (Myst used a more general 
system). Because of these two facts you don’t have the degree of perspective, where 
you see characters as specks far off in the distance, like you do in other games.

Interaction

At this level, everything is on, and the AI is updating at the highest frequency level 
that it needs to make intelligent decisions.

SUPPORT AI

Sometimes, you must design elements into your AI engine that don’t have anything 
to do with the primary gameplay in the title you are developing. Other areas of the 
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game can still benefit from AI techniques. Things to consider in terms of secondary 
AI systems include:

User interface. Your game might have an intelligent inventory system, which 
stacks inventory items in such a way as to maximize space, or put crucial items 
into more accessible locations. Or, you might use mouse-based gestures (stylized 
movements that can be assigned a function; like side-to-side swipes, L shapes, 
or circles) to perform commands within the game. Both of these systems could 
be easily accomplished with a very simple offline trained neural net. Another 
big UI usage is “advisors” in a civ-style game (where you’d have a specific AI 
analysis, most likely the same one that an AI-controlled opponent would use, to 
look over the player’s game and give personalized advice as to what options the 
player has within different areas of gameplay, like research or diplomacy).
Tuning game parameters. Any time you find that an AI system has many pa-
rameters within a specific system, ask yourself these questions:

 1. Can I create a side program that can replicate this system in an atomic or 
single-purpose fashion, or at the very least run this system within my game 
over and over?

 2. Can I quantify the potential “goodness” of a set of parameters, within some 
normalized scale?

 3. Are there relations between my parameters that I haven’t been able to find 
with just trial and error tuning?

   If you answered yes to these questions, then your system is a good candi-
date to try to use an AI method to tune the system for you. GAs are particu-
larly good at tuning parameters, especially if the states of these variables 
can easily be translated to some kind of genetic representation.

   Because of the number of parameters that many games use to tune 
their gameplay settings, you might have to split up your game into special 
“states” (which may not be really any different other than the parameters 
are more related within these states, so you end up with a number of GA-
tuned sets of parameters that you use based on which state your game is 
in), or you may have to try to GA-tune small portions of your parameter 
set, and hand-tune other parts. Games have used these methods for tuning 
parameters on physics simulations, or tuning the parameters on transitions 
within a state machine running deathmatch bots.

Automated testing. As games increase in complexity, it becomes harder and harder 
to test every single possible combination of factors within the software to find po-
tential crash bugs. One way of doing this is to use something that other software 
companies have used for years—an automated testing system. By constructing 
your software up front with this system in mind, you can have parts of your game 
be bug tested by an autonomous tool, giving you more time to spend on gameplay 
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tuning instead of bug identification and replication. Basically, the key to allowing 
for automated testing is to have a control system that is very generic, open, and 
spoofable (which means that you could have another program spoof this input 
without actually needing a person to create the input). Games are generally good 
candidates, because the interface to the game is the generic controller, keyboard, 
joystick, or mouse that the player uses, and it’s usually an easy thing to generate 
this input, and feed it into the system instead of using actual input.
 There are several types of testing along this line:

 1. Limits testing is when you specifically use directed inputs that are around the 
limits of the system’s capabilities, in combinations that might lead to bugs.

 2. Random testing uses completely random input to the system.
 3. Smart testing is a system that tries to employ real game-playing techniques 

to play the game, but might possibly then switch to one of the other meth-
ods at key points.

So, a smart system would play competently in a racing game; but when it finds 
itself surrounded by other cars on a bridge, it might start sending random 
input to test the robustness of the physics in handling cars on the bridge under 
collisions and different levels of control. Testing during development allows 
for specific testing scenarios to be run on smaller portions of the code, and 
also fixes bugs before other systems are implemented that might be affected by 
bad code behavior. All of these testing systems might use different AI systems 
to be implemented. You might use anything from GAs to random input to test 
a particular section of a game, or actually use the AI-controlled opponent of a 
game to test out the system (if the AI in your game has been executed by having 
it output controller data to interface with the game), and have it specifically test 
limits or sketchy moments within the game.

GENERAL AI DESIGN THINKING

When you’re designing an AI engine, you’re standing on the edge of a large sea of 
possibility. You’re also at the near top of the development totem pole, as far as de-
pendency issues are concerned. AI requires hooks into almost every other system 
of the game to make rational decisions, and make them quickly. When dealing with 
the sometimes daunting array of functionality that an AI system will require, you 
should take into account a few ideas:

During design, brainstorm like there’s no tomorrow. Once your problem set 
has been laid out (meaning, you essentially know the scope of what the game 
is going to require from your AI engine), spend some quality time going over 
as many ways as you can think of for solving each of those problems. Don’t 
think about them, however. Not yet. Just think them up, and write them down. 
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 Brainstorming is about keeping as much electricity flowing through as many 
brain pathways as you can, for as long as you can. Coming up with outlandish 
ideas is not pointless or a waste of time because sometimes stupid ideas are just 
the seeds of really great ideas.
Follow up your brainstorming sessions by having serious talks with the rest of 
the AI staff about each idea in your list. Again, don’t throw away so-called stupid 
ideas just yet. Put things on the table, and cut them apart as a team. Dissect them, 
and find out if they’re stupid to the core or if there’s a golden egg buried in there. 
 Getting additional brains involved in a large undertaking like AI engine design can 
help uncover ideas that were hazy or perhaps completely blank in even the best 
plan, and merely talking about the issues will get your brain in a state where it will 
be working things out in much more tangible ways, rather than the “I’m pretty 
sure how to do that” mentality that sometimes leads to giant holes in a design.
If there’s time in the schedule, try quick prototyping small-scale AI problems 
in a laboratory example, like the AIsteroids test bed that was used in this book. 
Advanced techniques can be worked up in a matter of hours or days, and given 
real-world testing without having to spend weeks only to find out that it’s not 
suitable to your game. Moreover, implementation usually uncovers things 
you didn’t think of in the design chair. Don’t feel like you failed as a designer. 
There’s always going to be too many variables to see everything. Don’t try to 
predict the future. As soon as you have 80 percent of your solution, dive into 
the code, and discover the other 20 percent in a month of prototyping. Con-
trast this with spending months more in design, scratching and clawing to try 
and predict more of the “possible shortcomings and pitfalls,” finding another 
10 percent of your solution, having no code to show for it, and then still finding 
design holes when you start coding.
Finally, just be open. Don’t take other’s ideas as attacks on your own ideas. Use 
a lesson from fuzzy logic when dealing with other people, especially program-
mers. If you are right, it doesn’t mean that everyone else is wrong, and vice 
versa. You being 50 percent right, and the other guy being 50 percent right, still 
equals 100 percent right. Allow for fuzzy states of rationality in your dealings 
with others, and instead of arguing over semantics to prove that you’re right, 
you’ll instead be incorporating the factors of both ideas that are correct together
into a better solution.

ENTERTAINMENT CONSIDERATIONS

Unlike some other software industries, our programs have two goals: to perform 
their stated functionality, and to give the player an entertaining experience. These 
two goals, while not exclusive, are rarely friendly, and how you create your game is 
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almost always a careful balance between good programming and programming for 
the sake of goodness.

The all-important fun factor. Points to consider when tap dancing around the 
one thing that we are really in the business for: to make fun games.
Perceived randomness. The question of randomness, and it’s perceived inequi-
ties on gameplay.
Difficulty concerns. The level of difficulty that you create within your game 
is definitely an entertainment issue, and there are design and AI design 
considerations.
Some things that make an AI system look stupid. These are things that mostly 
look bad, but are often used in games.

THE ALL-IMPORTANT FUN FACTOR

When you ask somebody about a new game, what do you really want to know? As 
an AI programmer, you might want to know how intelligent the AI systems seem, 
or maybe you’re a jaded purist and really just want to know how the gameplay in 
this game is deviating from the norm for the genre.

But the typical Joe User wants to know one thing: Is it fun? What really makes 
a game fun? Psychology has several theories. One is that simple tasks, which com-
bine quick visual identification skills with motor reflexes, awaken old, hunter-
gatherer instincts within our brains. We are built by nature to discern movement, 
far more so than color or shape. Video games might provide these deeply seeded 
centers of the brain with the kind of stimulus that they haven’t had since we left 
the African plains and started hiding in caves in France. Another theory lies in 
classical conditioning, which states that any sufficiently repeated task that is also 
given periodic positive reinforcement will cause physiological changes within our 
brains that will make us want to do it more. Still another theory talks about the 
fact that most people derive their deepest sense of “pleasure” when engaging in a 
task that they have a high degree of skill in and are also using to just shy of their 
limitations.

A fun game is one that gives the player rewards, but not too many, because it 
also needs to be challenging. How can we model our AI systems to best aid us in 
this endeavor? We need to maintain reaction speed of the system, to provide the 
right amount of drama and reactivity. We also need to make sure that the AI isn’t 
too hard (because humans will give up easily if they feel like there’s no chance of 
victory, to try and save face; “I didn’t want to win anyways . . .”), but we must also 
strive to not be too easy, because the fun metric is for a game to be on the edge of 
your abilities. But, the “edge of your abilities” is different for every player, now isn’t 
it? This is one of the driving forces behind adaptive AI difficulty determination. The 
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system is supposed to monitor gameplay, and adjust the level of AI opponent 
difficulty based on the actions and performance of the human.

While this adaptive element is the Holy Grail of difficulty level problems, there 
are major hurdles to success with this method that have been discussed elsewhere 
in this book (most notable is purposefully poor human performance, to fool the 
adaptive system into lessening the difficulty of the game).

Malicious exploitation of adaptive systems may one day be overcome, how-
ever, then we will be able to deal with the question of difficulty level. One solu-
tion might be to model the player over time as to skill, and try to discern false 
negatives. Tuned correctly, the player should not be able to find a pattern of os-
cillating good and bad behavior that result in an overall massive advantage over 
the AI opponent. Again, the goal is for a slight advantage, to keep the player “at 
40 percent health,” meaning just on the verge of being in trouble, but still firmly 
in the game.

The other element of fun is novelty. Novelty allows us to try, and enjoy, ex-
periences that might not be fun otherwise. We’re willing to put up with the atro-
cious difficulty level of a game like Defender because it was new and unique. If 
somebody put out roughly the same game nowadays it probably wouldn’t do well, 
mostly because the novelty is gone. Now all that’s left is an unbalanced game with 
a difficult control scheme, nonexistent AI, and grainy graphics. Many people her-
alded the AI enemies in Medal of Honor as truly special, in many cases for one 
simple reason: that they would pick up grenades you threw at them, and throw 
them back. A simple addition to the AI scripts for an FTPS enemy, to be sure. But 
nobody had thought to put that element into a game before, and the novelty was 
instantly rewarded with praise.

Now, the AI exhibited by the entities in your game do not represent the total 
sum of either the difficulty level or the novelty within a game. Many other elements, 
including gameplay mechanics, control scheme, amount of powerups, time limits, 
etc., have plenty to do with this. So, there is room for all kinds of experimentation 
within the game AI world. But, if all else fails, the AI must be able to bend to the 
needs of the great fun meter. Because if it isn’t fun, then you have essentially failed, 
no matter how smart it is.

PERCEIVED RANDOMNESS

Almost all games have an element of randomness inherent in their gameplay and 
AI. The reason is called replayability, which is the degree to which users want to play 
the game again even after they have either solved it, or have played it for a decently 
long period of time and have gained a level of proficiency. Two types of games have 
so far proved to be the most replayable: games with solid gameplay and multi-
player support (like Quake, or chess), and games with solid gameplay and balanced
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randomness (like Tetris, or poker). Note that in both cases, your success also de-
pends on having a good, solid, game experience.

Balanced randomness means that an element of gameplay is random, but it 
doesn’t grossly affect the game’s outcome. Pretty much no matter what order the 
pieces fall in Tetris, if you can keep a level head and a good plan, you can survive 
very far in the game. Even in poker, where the luck really is in the draw, a good 
player can turn bad luck into a win. Unbalanced randomness is the opposite; ran-
domness can have a large sway on the outcome of the game. Unbalanced random-
ness feels random. It makes the player feel like he’s no longer in control of the game, 
and that at any second a string of dice rolls can undo any effort he might have 
achieved. A game that unknowingly uses too much unbalanced randomness in its 
primary gameplay systems or AI systems is surely doomed.

The way in which unbalanced randomness is introduced into games is decep-
tively simple: it is to use the normal random() call in your game code (which usually 
returns a random floating point number between 0.0f and 1.0f ). When you let ac-
tual randomness dictate the behavior of your AI enemies, you typically get unbal-
anced randomness. The reason that this is wrong is simple. Human beings do not 
intuitively accept statistical random chance. If you ask someone the question “I’ve 
flipped this coin thirty times, and it’s been heads every time! What do you think 
the next flip will be?” they will almost invariably say “Tails! It’s due!” even though 
there isn’t any more chance of it being tails than the last thirty. Probability is just 
about the most alien idea possible to the normal human brain; this is why the lot-
tery people make so much money. If the average person realized they were actually 
about ten times more likely to get hit by lightning six hundred times than they are 
to win a typical state-run lottery, they might just ease up on the fifty dollars they 
spend every Friday.

So how do we allow for balanced randomness in our games? The answer is 
simple. Don’t be random. Say you’re coding an AI decision function that is only to 
 respond true 70 percent of the time. If we were to use the expression “random() 0.7f,” 
we’ve statistically solved the problem. Over the lifetime of this function, it 
will return true 70 percent of the time. But in the short run, say, a single game, 
it might actually always return false. Yes, the chances are small. But statistically it 
could happen. What does this mean for our game? Unbalanced randomness is what 
it means. Instead, we need to create a series of outputs that are balanced, to assure a 
closer approximation of what we consider a random series of results.

For this same function, a more balanced way would be to have it generate a 
string of numbers at game start, the length of which is approximately equal to 
the average number of times it gets called in a game. So, let’s say that our little 
function gets called an average of twenty times per game. To create a balanced 
series of outputs, it would generate twenty Booleans, fourteen of which were 
true, and then apply a balancing function to spread out the negative and positive 
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responses somewhat evenly, pushing the final array onto a stack for quick usage. 
Then, each time you called the function, it would return the next value popped 
from the stack.

Let’s be clear: you’re still going to get some variation in statistics. It might 
be that this run through the game the little function only gets called eighteen 
times, or maybe twenty-three times (if you do go long, just generate another 
ten-number sequence, or however many you feel is appropriate). You might 
even want to add in a little variance into the initial population creation (so 
that the function will actually return a random range of 65 to 75 percent, say). 
But what this buys you is a series of “random” results, in which you don’t ever 
get too many failures in a row, and you basically ensure that the final statistics 
will always be fairly close to what you originally wanted: no reliance on “actual” 
randomness, and the result is that your players never feel cheated. Watch out so 
that you don’t make your mixture too uniform; players would figure out real 
quick if every third shot went in. So there’s still some randomness involved, it’s 
just that we’re making sure that in the short run, we won’t be hit by large runs of 
positive or negative results.

SOME THINGS THAT MAKE AN AI SYSTEM LOOK STUPID

There are some behaviors that show up again and again in games, and yet almost 
universally make the game’s AI controlled characters seem stupid. These are prime 
examples of behavior systems that we should, as AI programmers, be dilligent in 
ferreting out and eliminating. Some of the biggest cliché mistakes include standard 
machine gun enemy conventions, bad pathfinding, and non-contextual and oblivi-
ous enemies.

The standard enemy with the machine gun “rules.” The rules are: miss the first 
shot, try not to shoot first, use tracer bullets to give away your position, and use 
a large cone of aim so that you miss a lot. These are good rules if used correctly. 
But if taken too literally, or abused, the opponent will look stupid, indeed. Sure, 
an AI enemy should miss quite frequently, but don’t spray bullets like a fire 
hose. You can actually find targets that are decently close to the player, and still 
not hit him (amazing, isn’t it?), which might even make the encounter more 
exciting for the player. You know the scene in the action movie where the hero 
runs across an open area and bullets cause little puffs of dust from the ground 
in a line trailing behind him as he runs? That’s the kind of thing we should be 
shooting for. Obviously, in a first person game, we can’t use the same trailing 
bullet trick (since the player won’t see it), but we can use ricochet sparks off of 
nearby walls, railings, or other things in the environment. We can use the movie 
bullet trick with enemies shooting from the player’s front.
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Bad pathfinding. No one thing has contributed to the utterance of the phrase 
“stupid computer” than this problem. Bad pathnodes, characters without 
adequate dynamic obstacle avoidance, multiple friendly units piling up on a 
narrow bridge, a speedy unit orbiting around a spot because he hasn’t gotten 
close enough to be “there” yet, a surrounded unit twitching wildly as it tries 
to move, and a fast unit repeatedly running into the back of a slow unit are all 
comically common examples of bad navigation gaffs. Other issues under this 
heading might be RTS peons that build a building from an angle that will trap 
them once built, units finding an alternate route that takes them right past the 
enemy’s massive laser cannon array, units in formation that switch positions 
every time you click for them to move, and supersized creatures that can’t fit 
through a doorway standing on the other side staring at you as you unload 
ammunition into them, without fear (instead of just running down the hall, 
out the large front door, around the side, and then punting the player into 
outer space).
Non-contextual enemy animations and/or behaviors. We’ve all played games 
in which enemies don’t react realistically to game stimuli. Imagine a game 
scenario where you come around the corner and see an enemy in the dis-
tance; he also sees you. You duck back around the corner. The enemy, who 
knows that you’re probably waiting with your chain gun ready, will look 
very stupid if he still walks calmly around the corner. Kamikaze tactics and 
zombies aside, intelligent enemies wouldn’t do this. No, intelligent behav-
ior would mean diving out from the corner toward another piece of cover, 
and possibly throwing a grenade in the player’s direction. The game you 
are working on might go the extra mile and actually use intelligence with 
cover. But after awhile with no action, does the character then casually walk 
back out of cover and go back to his patrol? Again, not very intelligent. 
Behavior demontrating that the AI agent was unsure of your position, look-
ing around from cover to investigate, calling for a buddy to come help, or 
using his radio to ask other guards if they’ve noticed and/or heard anything 
would be better.
Oblivious enemies. Another common problem is AI agents that are follow-
ing a script and don’t take any queues from the environment while running. 
Enemies that don’t notice a pile of thirty-five dead bodies in one spot and 
think “Sniper?” or “Is there a Tower of death nearby?” but instead walk right 
over their friends to perform a patrol are just not intelligent enemies. A small 
amount of environmental consciousness can go a long way with enemies. Some 
of the stealth games make it a part of the gameplay mechanics to get the player 
to hide bodies so as to not alert other guards, but there’s definitely an all-or- 
nothing consensus on this issue in most games.
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PRODUCTION CONCERNS

There are also general concerns stemming from the actual production of the AI 
system itself. Games are being made bigger and more complex by larger teams on 
advanced hardware.

Coherent AI behavior. Much like a lead artist needs to consider the look of the 
entire game when considering the quality and feel of each artist’s contribution 
to the product, so too do separate AI programmers working on a single product 
need to think about the overall feel of the game AI.
Think about tuning ahead of time. Creating your AI systems with tuning in 
mind from the very beginning will help the process to happily chug along from 
start to finish.
Idiot-proof your AI. Assume unknown things are going to happen to your AI 
entities, and allow them ways out; you can help make your AI characters much 
smarter looking.
Consider designer used tools differently. Designers are (generally) not program-
mers, and we shouldn’t treat them as such. AI tools that will be given to design-
ers to use have issues that need to be considered before implementation and 
release.

COHERENT AI BEHAVIOR

Everyone has played a game where levels 1 to 3 were fun, well paced, and gradu-
ally ramped in difficulty. Then they got to levels 4 and 5 to find radically differ-
ent difficulty leveling, super-long levels that have only three spots of action spread 
thin through the levels, and were crippled by a frustrating gameplay mechanic that 
almost stopped you from playing the game. Most likely, this is because the game 
developer actually had multiple AI people working on the game, and these multiple 
people didn’t really talk to each other to collaborate on technique or the feel of 
gameplay. While this problem has decreased dramatically in recent years because 
of the increasing importance of AI in our games, it still rears its ugly head from 
time to time. AI tasks are split among the available talent, and away they go to their 
separate rooms, coding away.

One way to fight this is to have the designers construct the game equivalent of 
a business mission statement. For any given game, they should have a fairly clear, 
simple description of what they’re shooting for with the gameplay and AI systems 
for the game. A sports title might be “To provide a fun, fast basketball game that 
uses statistics to simulate signature moves, shooting ability, and play calling, but 
provides a quick, arcade-style movement system with over the top special moves 
and quick defensive opportunities.” A fighting game might have the mission of “To 
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create a karate simulation where the player will be able to quickly set off complex 
combinations of moves and counter moves and not have to worry about lining up 
his attacks.”

Now, if you have different people implementing the different parts of your AI, 
they’re still going to know what kind of game you want, and are going to be able to 
implement it with the designer’s vision in mind. They’re not going to have a strange 
notion as to which parts of the game you want to be a certain way, and which to 
code another.

THINKING ABOUT TUNING AHEAD OF TIME

Tuning game AI is quite possibly the most important part of the process. Take no-
tice of Blizzard’s games: Warcraft, Starcraft, and their current online foray, Worlds 
of Warcraft. Almost all of their games enter a beta-testing phase that generally ends 
up being almost as long as other companies spend on development in total. They 
routinely continue to polish games that already have achieved higher-than-current 
standards of gameplay, and will even continue to address gameplay balance issues 
after the game has been released. Why? Because they desire to put out the best prod-
uct they can, partially because they know their fanbase demands it, but partially 
because they have extreme pride in their creation. Yes, they spend a lot of money to 
do this, but they also sell millions upon millions of games because they do. Other 
companies, like Square and Nintendo, follow this same formula. Tune, tune, and 
tune some more, until there’s no more tuning to be done.

Facilitating this level of polish requires an upfront commitment to AI design 
that allows for quick turnaround of tweaking and balance issues. Data-driven AI is 
a huge step in the right direction for allowing the tuning process to be streamlined. 
Getting programmers out of the way of massive parameter tweaks, as well as other 
data-driven issues, like enemy placement within a level and specific enemy behav-
ior in response to player location or condition, will go a long way in speeding up 
the process of tuning a content-heavy game. Plus, when tuning the game is fast and 
easy, the designers are more likely to do much more of it, and as such the process 
is self-reinforcing.

Another tip is to not put magic numbers in your AI decision-making systems. 
If your enemy has a line in one of its states that reads if(m_nearestEnemy < 45),
maybe you should change that 45 to some kind of variable, and expose that vari-
able to whatever your game is using as a tuning system. Chapter 27, “Debugging,” 
details a widget system that allows you to expose any game variable to a bank of 
tuning controls, where they can be adjusted in game. This kind of system is almost 
imperative for AI systems that rely on heavy game testing and tuning to get balance 
and gameplay to feel right.
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IDIOT-PROOF YOUR AI

Always provide some measure of idiot-proofing. If you think there’s any way that 
an AI behavior can screw up, it probably will. When there is doubt, there is no 
doubt. Software systems have a smirking way of finding the one open door you’ve 
accidentally left for them. Not to mention that dropping three human players into 
your game, each with their own notion of how to exploit the system, act as nothing 
short of a high-powered catalyst to AI decomposition.

Prepare for this by providing backdoors out of behaviors. Timers for behaviors 
that have gone on too long are the easiest to code, but simple exit conditions can re-
ally help stop an AI behavior that’s making itself look stupid. Just get into the habit 
of giving your AI a way out.

Idiot-proofing extends to designer-provided data as well. A chunk of code that 
will save you tons of time in development is an ironclad “checker” that either runs 
on the data from a command line or at game load time (and can be removed from 
the project before release), and provides you with complete scanning of incoming AI 
data for inconsistencies, outright errors, overly complex or cyclical state diagrams, 
broken pathnode networks, missing elements, doubled elements, and the like.

This is throwaway code, but it’s better than the weeks you’ll spend debugging 
the pathfinder only to discover that a designer changed a file in an unexpected way, 
or that your version control corrupted a single byte in a script file that nobody has 
touched in four months, and it’s causing odd behavior in a small wall switch on 
level 8 that, miraculously, no tester will check during quality control until twelve 
minutes before you go gold.

CONSIDER DESIGNER-USED TOOLS DIFFERENTLY

AI tools that will be used by designers need a special touch. If you’re going to be 
exposing game logic to the designers, do so with some semblance of kid gloves. 
Don’t put in every bit of functionality you’d want in an editor; put in just enough 
to get the job done while remaining straightforward, and simple. Are you going to 
be building logical expressions? Consider only allowing ANDs, and not ORs, XORs, 
etc. Logic gymnastics aren’t the strong point of many programmers, much less peo-
ple who may have started out in the industry testing games. This is not to be insult-
ing to designers, they have one of the hardest jobs in the industry (“Great job on 
Game of the Year. Now get back to work on the better version for next year!”), and 
everybody thinks they’re a designer. Sort of like everybody thinks they can sing.

Another don’t includes command-line tools with lots of parameters to set (if 
possible, encapsulate this kind of thing as an Export button from within the editor, 
or at least make a batch file or six that they can run to do what you need of them). 
Provide lots of well-documented, functional examples with any tool or scripting 
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system. Finally, be open to feedback from the designers on GUI issues and func-
tionality problems or irritations.

SUMMARY

A modern-day game AI engine is a hugely complex software system, and there are 
many common things to consider when coding up one. This chapter looked at 
specific concerns dealing with design issues, entertainment issues, and production 
issues.

Some of the concerns to think about during the design phase of the AI engine 
include data-driven problems, one-track mind syndrome, level of detail AI, 
support AI, and other general AI design ideas.
Entertainment concerns include the fun factor, perceived randomness, diffi-
culty settings, and general things that make AI systems seem stupid.
Production concerns involve coherent AI feel, tuning the game, idiot-proofing 
your AI, and treating tools used by the designers differently.
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Debugging27

In this section, we’ll discuss a very important aspect of AI development: debug-
ging your game from start to finish. We will cover common debugging issues, 
and bring up some ways in which to write your code to plan ahead for bugs. 

This chapter also includes a Windows MFC implementation of a useful runtime 
debugging and tuning tool called widgets.

GENERAL DEBUGGING OF AI SYSTEMS

Because of the nature of AI engines, debugging them can be cumbersome. AI in-
variably touches a number of game systems, bridging the gap between control, 
physics, sound, gameplay mechanics, and input/output systems. Many times bugs 
that appear to be AI-based end up being deep within one of the support system’s 
code, but doesn’t come out until the AI system starts taxing a particular chunk of 
game code. As a game designer, you will often have to not only show other people 
that they need to fix something in their part of the code, but also be ready to back it 
up by having either a test case set-up that can replicate the problem, or have them 
come over to your workspace and step them through it directly. You’ll save a lot of 
time and energy this way, rather than sending off an e-mail saying “Fix your code,” 
and then waiting for it to happen.

One benefit of using the distributed AI design from Chapter 25 is that it allows 
for setting breakpoints at multiple levels, and stratifies the functionality of each 
subsystem to the point of being easier to identify where a problem might be located 
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in the code. Thus you debug specific systems, instead of having to trace through 
large combination systems or convoluted classes.

VISUAL DEBUGGING

Visual debugging means using viewable information from within the running 
game to see information about what the system is doing, in order to debug your 
programs. This can include having your AI characters display information while 
the game is running, including text about their current state, or graphical lines 
showing intent, direction of travel, and thought processing. You can also do so by 
watching influence map data change and move with the game to see problems. 
Game AI, more so than most systems, profits greatly from this kind of debugging 
information. The benefits are explored here.

A VARIETY OF INFORMATION

Visual debugging includes writing text to the game screen, as well as other visual 
aids. You might want to draw lines pointing toward the targets that each AI char-
acter is interested in, or even highlight pathfinding traces, to find bugs in your 
navigation system. A visual representation of the influence map data is especially 
useful for debugging the game (in fact, you might want to try turning off drawing 
of the regular game characters, to watch the influence data for anomalies), as is any 
abstract data organization method that can help you see a more simplified view of 
the game.

DEBUGGING AND TUNING

At each stage of your game, you should give yourself a good visual representation 
of what is going on, so that you can be sure that what is happening is expected. 
If you’re coding up a specific perception that deals with line of sight, put a visual 
system in the game, so that you can either see all the traces the AI is doing to 
determine line of sight, or have it “signal” in some way, to let you know exactly 
when line of sight starts and stops. Then get in the game and actually stare down 
the barrel of the system, making sure that it’s doing what you want, but also that 
you’re getting the feel of the system that you’re looking for. This is especially 
important with secondary characteristics, like reaction time. Put indicators in the 
game, and watch them happen a few hundred times. This kind of behavior will 
help you find strange math feedback bugs that create holes in behavior and per-
ception, but it also helps you tune systems for proper gameplay feel much more 
quickly and easily.
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TIMING INFORMATION

Frequently, it is hard to get events to happen within a debugger that only occur 
on one game loop, especially if your main game update loop is time-based (rather 
than frame-based) and you can’t set it to use a constant delta during debugging. If 
your game timer is using the system clock of the processor that you’re debugging 
in, stopping the code with a breakpoint. Then stepping through some code will 
give you a huge time delta because time continues passing when you’re debugging. 
If you set your game to use a constant delta time for debug purposes, this problem 
can be minimized. If this is not possible, you can use visual debugging information 
to put up on-screen information while the game is running at full speed to try and 
determine the problem. Note that if you write too much text, you might slow down 
the game because of that, and again have problems getting your bug to repeat.

STATE OSCILLATION

When using a state-based decision structure, you can watch for odd state switching 
by allowing your AI system to display state information visually in the game. Have 
the game display this information directly on the character, or over its head, so that 
you can easily correlate the data with the character. Other useful state information 
might include hierarchy status, statistics like the time the character has been in the 
state, and transitional information.

CONSOLE DEBUGGING

On consoles, you typically develop in a Windows or Linux environment and then 
upload the executable in some way to a test console, while running a debugger on 
the PC. Because of the remote debugging issue, many common debugging tricks 
can’t be done, and so drawing text or graphics on the console’s screen becomes a 
big source of debugging aid.

DEBUGGING SCRIPTING LANGUAGES

Unless you’ve taken the time to completely write up a debugging system for your 
scripting language (and not many game schedules allow for this), you might be left 
high and dry with only in-game tactics in which to find bugs. One trick is to give 
your scripters specific debugging commands to put into their scripts; you can then 
set up on screen text from within an AI behavior script as well.

DOUBLE-DUTY INFLUENCE MAPPING

If your game has an influence map system, you can use it as a visual debugging 
tool as well. By either adding more space per influence cell (if you have room in 
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memory), or taking over the system completely (if it’s not something the part of 
your game you’re debugging requires to run) to display additional, debug-specific 
information is a great and easy use of the technology. You could display terrain 
analysis happening on the fly, or avoidance code working on the various AI units 
in your game. Anything you can link to a specific location, that can be displayed by 
setting values in the map, can be shown visually by allowing the system to display 
the contents of the IM while the game is running.

WIDGETS

When coding specific behaviors or perception systems, you may come across in-
game values that you wish you could not only see, but also change or tune while 
the game is running. Widgets are an implementation of this concept that you can 
easily add to your Windows games, or port over to non-MFC using applications 
and use anywhere.

Basically, widgets allow you to put a “control knob” on many types of variables 
within your game. While the game is running, a small window will appear, called 
a widget bank, that stores all the widgets you’ve created. Opening the bank allows 
you to change the values of the variables you’ve linked to each widget in real time, 
while the game runs.

IMPLEMENTATION

The code is pretty simple; it includes a few basic rules to get up and running. The 
entire system was written by Max Loeb, who, incidentally, also helped with most of 
the diagrams in this book. The basic system is as follows:

WidgetBank is the highest level of the widget hierarchy. It is the “window” in 
which all the widget groups reside.
WidgetGroup is the second level of organization. Each widget must be a part 
of a group; you cannot put widgets directly into a bank. Groups can include 
subgroups.
The Widget class itself. A widget can be one of a few types: a basic button
(for launching an event function of some kind), a radio button (for choosing 
between two labeled settings), an OnOff button (a special button for toggling 
Boolean values), a Scrubber (which allows you to scroll through values of 
a continuous variable), and a Watcher (which simply displays an ingame 
variable).
The EventHandler class, which will allow us to use callback-like functionality 
within our widgets.
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The Widget class is an empty base class that has two functions in it: Update and 
Draw. It merely provides a way for the other widgets to have common parenting, so 
that the widget bank and other classes can use any and all widgets.

The WidgetBank class (Listing 27.1 shows the header) is the main window for 
the system. It is the class that takes care of the MFC functionality for the windows.

LISTING 27.1 WidgetBank header file.

/**********************************************************************

* WidgetBank: This is the window that houses all the widget windows, ie.

*               camera widgets, bone widgets, light widgets, and so on.

*

**********************************************************************/

class WidgetBank : public CWnd

{

public:

    // constructors

    WidgetBank();

    virtual ~WidgetBank();

    // member methods

    BOOL Init();

    void RedrawWidgets();

    void UpdateWidgetBankSize();

    void Update();

    

    // widget creation methods

    int GetHeight();

    Group* AddGroup( char * label );

    afx_msg UINT OnNcHitTest(CPoint point);

    afx_msg void OnSize(UINT nType, int cx, int cy);

    afx_msg BOOL OnEraseBkgnd(CDC* pDC);

    // member variables

    Group * myWidgets[MAX_NUM_WIDGETS];

        

    int     m_numWidgets;

    int     m_totalWidgetHeight;

    CRect   m_ClientSize ;

    DECLARE_DYNCREATE(WidgetBank)

    DECLARE_MESSAGE_MAP()
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private:

    int m_id;

public:

  afx_msg void OnNcDestroy();

  virtual BOOL CreateEx(DWORD dwExStyle, LPCTSTR lpszClassName, LPCTSTR

                       lpszWindowName, DWORD dwStyle,const RECT& rect,

                       CWnd* pParentWnd,UINT nID,LPVOID lpParam=NULL);

  afx_msg void OnVScroll(UINT nSBCode,UINT nPos,CScrollBar* pScrollBar);

};

A Widget Group is an organizational method for setting up your widgets to be 
displayed hierarchically. Upon startup, all the groups will be minimized. You can 
open a group by clicking on its label, which will open the bank for viewing of the in-
dividual widgets inside. By using groups, only those widgets you want to see at any 
one time have to have their groups open, which can help a lot if you’ve put widgets 
on a class that has a lot of instantiations in your game. The group class is a bit more 
involved because this is where the brunt of the widget organization functionality 
resides. Listing 27.2 shows the header; as you can see, most of the important func-
tions deal with adding the various types of widgets to the bank, drawing them, and 
updating any window movement, resizing, and so on.

LISTING 27.2 Group header file.

/********************************************************************

*   Group:      A Group represents an entry in the widget bank, and 

*               can house other groups or widgets. It contains a 

*               header which can be expanded/contracted to show/hide 

*               its child groups or child widgets, which are added with

*               subsequent calls to AddScrubber, AddOnOff, etc.

*

********************************************************************/

class Group : public CWnd {

public:

    // constructors

    Group( char * label, CWnd * pWin, int pos, int height, int width,

           const int level );

    virtual ~Group();

    // member methods

    virtual void Update();

    void OnClickHeader();
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    bool IsExpanded(){ return m_status; }

    int  GetHeight();

    int  GetClientHeight();

    int  GetPrevPos(){ return m_prevPos; }

    void SetPrevPos( int prevPos ){ m_prevPos = prevPos; }

    void SetWidgetBank( WidgetBank * wb ){ m_widgetBank = wb; }

    Group * AddGroupWidget( char * label );

    ScrubberWidget<int> * AddScrubber( char * name, int & val ); 

    ScrubberWidget<float> * AddScrubber( char * name, float & val );

    ScrubberWidget<unsigned char> * AddScrubber( char * name, unsigned

                                                 char & val );

    OnOffButton * AddOnOff( char * name, bool & a, int ID1 = 0,

                            EventHandler * h = 0 );

    void AddWatcher( char * caption, float & val );

    void AddWatcher( char * caption, int & val );

    void AddText( char * caption );

    RadioButton * AddRadio( char * groupName, char * leftName, char * 

                            rightName, int & val, int id1, int id2,

                            EventHandler * h = 0 );

    BasicButton * AddBasicButton( char * filename, int id, 

                                  EventHandler * h = NULL );

    int Draw( int y_pos );

    // MFC Overrides

    DECLARE_MESSAGE_MAP()

    afx_msg void OnNcDestroy();

    afx_msg BOOL OnEraseBkgnd(CDC* pDC);

    // member variables

private:

    Group * m_childGroups[ MAX_CHILD_GROUPS ];

    Widget * m_childWidgets[ MAX_CHILD_WIDGETS ];

    WidgetBank * m_widgetBank;    // a pointer to the parent widgetbank

    CButton m_header;

    COLORREF m_color;             // the color of this widget

    int m_top;                    // position of the top of this widget

                                  // in widget bank
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    int m_prevPos;                  // used for positioning groups when 

                                    // drawing

    bool m_status;                  // is this widget currently 

expanded?

    unsigned int m_numChildGroups;  // number of subgroups contained in 

                                    // this group

    unsigned int m_numChildWidgets; // number of child widgets in this 

                                    // group

    int m_level;                    // how many levels deep is this 

nested?

};

The EventHandler is a basic callback class, with a purely virtual function 
called UIEvent(). To use an event handler with a widget, you make a child class of 
EventHandler for the class that you need to use a callback from, instantiate a copy 
in your class, and then override the UIEvent() function to be your callback. Make 
sure you include a parent pointer back from your EventHandler child class, so the 
callback can have the access it needs. When you set up a widget button, you give 
it a button ID. When the button is pressed, it will call the UIEvent() function and 
pass in the button ID. Your overridden event function can then use the button ID 
to determine what it wants to do.

Moving right along, we come to the actual types of widgets themselves. Each 
one will be discussed in turn, and then a small sample file will be shown that then 
implements each type within a program.

BasicButton

The basicbutton is the simplest of widgets. It allows you to put a label on a button, 
and use it to set off a callback event. Listing 27.3 shows its header. As you can see, 
it’s really just a wrapper for an MFC CButton that a widget can access.

LISTING 27.3 BasicButton header file.

class BasicButton : public Widget

{

public:

    BasicButton( EventHandler * eventHandler = 0 ); 

    ~BasicButton(void);

    void Create( char * label, int id, CWnd* pWin, int pos );

    void Draw();

    EventHandler * m_eventHandler;
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    DECLARE_MESSAGE_MAP()

protected:

    virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);

private:

    CButton m_button;

};

Watcher

A Watcher is a templated widget (although right now it’s only implemented for int
and float variable types) that just shows you the value of a variable; you can’t change 
it from the widget itself. Wacthers are useful for constantly updating variables that 
wouldn’t make sense to try and edit while the game is running since the game would 
immediately blow away your changes. Listing 27.4 shows the header file.

LISTING 27.4 Watcher header file.

template <class T>

class Watcher: public Widget

{

public:

    Watcher( int & watch);

    Watcher( float & watch);

    ~Watcher(void);

    void Create( CString label, CRect r, CWnd* pWin );

    void Draw();

    void Update();

private:

    CStatic m_label;

    CStatic m_watch;

    T & m_val;

    int m_frameCount;       // frame counter

    int m_updateInterval;   // update every this many frames

};

RadioButton

Radio buttons are standard Windows controls. They allow you to choose exclu-
sively between items. The current implementation only supports two choices, 
but it could be easily extended to an arbitrary number of choices. The header is 
in Listing 27.5.
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LISTING 27.5 RadioButton header file.

class RadioButton : public Widget

{

public:

    // constructors

    RadioButton( char * groupName, char * leftName, 

        char * rightName, int & val, 

        CWnd * pWin, int yPos,

        int id1, int id2,

        EventHandler * h );

    ~RadioButton(void);

    void Draw();

protected:

    virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);

private:

    // member variables

    CButton m_GroupButton;

    CButton m_LeftButton;

    CButton m_RightButton;

    int & m_val;

    EventHandler * m_eventHandler;

};

OnOffButton

The OnOff button widget is a special kind of button that toggles a Boolean value. 
It’s drawn using the check box type of Windows control, or the standard push but-
ton, depending on which style is set. Listing 27.6 shows its header information.

LISTING 27.6 OnOffButton header file.

class OnOffButton : public Widget {

public:

    // constructors

    OnOffButton( bool & state, EventHandler * eventHandler = 0 );

    

    // member methods

    void SetStyle( int style );

    void SetCheck( bool checked );
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    int GetCheck();

    void Draw();

    CButton m_button;

    DECLARE_MESSAGE_MAP()

protected:

    virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);

private:

    // member variables

    bool & myState;

    EventHandler * m_eventHandler;

};

ScrubberWidget

A Scrubber is one of the more useful widgets. It allows you to reference a float,
int, or char type variable, the value of which is shown in the widget. However, if 
you click and hold the mouse cursor on the widget, you can drag the values left 
and right between minimum and maximum values that you set. You can also set 
the speed of the scrubbing (between slow, regular, and really slow). Listing 27.7 is 
the header.

LISTING 27.7 ScrubberWidget header file.

template <class T>

class ScrubberWidget : public Widget {

public:

    // constructors

    ScrubberWidget(T & var );

    ~ScrubberWidget();

    // member methods

    void Refresh();

    void Draw();

    void OnEditKillFocus();

    void Create( char * label, CWnd* pWin, int pos, SCRUB_SPEED speed =

                 REGULAR_SPEED );

    void SetMin( T min ){ myHoverButton->m_minValue = min; }

    void SetMax( T max ){ myHoverButton->m_maxValue = max; }

    void SetMinMax( T min, T max ){myHoverButton->SetMinMax( min, max );}
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    // Overrides

    afx_msg BOOL OnEraseBkgnd(CDC* pDC);

    // member variables

    CEdit myEdit;

    HoverButton@T: * myHoverButton;

    T &scrubVar;                // the value being changed

    

    DECLARE_MESSAGE_MAP()

    afx_msg void OnNcDestroy();

};

INTEGRATION WITHIN A PROGRAM

To use widgets in your program, follow these simple steps:

 1. Include the WidgetBank.h file in any class that you want to put widgets onto.
 2. Add a function, called AddWidgets() to the class. If the class is to be a main 

class, which will spawn groups as well as widgets, then the function should 
take a WidgetBank pointer. If the class is a “secondary” class, which will 
instead only have values that you want to use widgets upon, then the func-
tion should take a Group pointer.

 3. Override the AddWidgets() call in your class to add whatever bank, groups, 
or widgets you want, using the examples in Listing 27.8 as guidelines.

 4. Figure out how you want to update the WidgetBank; it has an Update() 
function that you should call every frame if you want completely updated 
widgets.

LISTING 27.8 Widget use guideline example.

// Our car’s EventHandler class. Note that it must

// be created with a pointer to the car so that

// we can interact with it in our UIEvent’s switch

// statement. Alternatively, we could also

// simply derive our car class directly from

// an EventHandler, and remove the need for

// a Car pointer.

class CarEventHandler : public EventHandler

{

public:

    CarEventHandler( Car * car ){ m_car = car; }

    virtual void UIEvent ( WPARAM id );
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private:

    Car * m_car;

};

void CarEventHandler::UIEvent(WPARAM id )

{

    switch (id)

    {

    case Car::IGNITION_KEY:

        m_car->StartCar();

        break;

    case Car::WIPERS_CONTROL:

        m_car->StartWipers();

        break;

    case Car::AIR_COND:

        m_car->ToggleAirCond();

        break;

    }

}

class RacingGame

{

public:

    RacingGame(){};

    void AddWidgets( WidgetBank wb );

private:

    Car     m_car;

    Track   m_track;

};

class Car

{

public:

    enum {

        IGNITION_KEY,

        WIPERS_CONTROL,

        AIR_COND

    };

    void AddWidgets( Group * g );

    void StartCar(){ m_engine.Start() }

    void StartWipers(){ m_wipersOnOff = true; }

    void ToggleAirCond( m_air ? m_air = FALSE : m_air = TRUE );
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private:

    Engine  m_engine;

    bool    m_lightsOnOff;

    bool    m_transmission;

    bool    m_air;

    bool    m_wipersOnOff;

    CarEventHandler m_eventHandler;

};

/********************************************************************

*   Name:   AddWidgets

*

*   Info:   A typical AddWidgets function for a fictitious racing 

*           game. Because the RacingGame object is high level, it

*           will be adding Groups directly to the widget bank. Actual

*           Widgets will be added to these groups by the AddWidget 

*           functions of lesser, individual components of the game.

*

*   Args:   wb - A pointer to the WidgetBank, which is the top-level

*           parent of all Widgets and Groups. Again, you don’t add 

*           widgets

*           directly to the widget bank—you only add Groups.

*

********************************************************************/

void RacingGame::AddWidgets( WidgetBank * wb )

{

    Group * g;

    // Add our first group to the widget bank. AddGroup() returns a

    // pointer to the group it created. You can either use this pointer

    // to add widgets now, or, preferably, pass it to the AddWidgets()

    // function of a lower-level contained class.

    g = wb->AddGroup(“Car Properties”);

    

    // Now that we have our group, we’ll pass it to the AddWidgets

    // function of our car class object, which is a member of a

    // RacingGame object.

    m_car.AddWidgets( g );

    // That takes care of the car’s widgets, so let’s add widgets for 

    // the race track. We’ll make another group, and reassign our 

    // group pointer to it
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    g = wb->AddGroup(“Track Properties”);

    // Again, we pass the newly assigned pointer to the AddWidget()

    // function of a lower level class, this time a RaceTrack object.

    m_track.AddWidgets( g );

}

/********************************************************************

 *  Name:   AddWidgets

 *

 *  Info:   A typical AddWidgets function for a fictitious car class

 *          to demonstrate the use of widgets. This example only

 *          covers a Car object, but remember that you have to write

 *          an AddWidgets function for any class that you want

 *          to have widgets. From here you might write AddWidgets

 *          functions for your racetrack class, your environmental

 *          class, your AI classes, etc.

 *

 *  Args:   wb - A pointer to a Group. We use a Group pointer

 *          to add the actual Widgets to our application.

 *

 *******************************************************************/

void Car::AddWidgets( Group * g )

{

    // We’ll need a pointer to a group. We’ll call it pg, for “parent

    // group”—be careful not to confuse it with the group pointer

    // that is being passed into this function.

    Group * pg;

    // Our car class contains an engine object. Let’s give it its own

    // widget group. Groups can contain other groups, which gives

    // you a lot of flexibility to organize your widgets.

    pg = AddGroup(“Engine Properties”);

    

    // Our engine class has its own AddWidgets function, so we’ll

    // pass it our new group pointer

    m_engine.AddWidgets( pg );

    // Our car class has some member variables that would

    // be fun to control while the game runs. We’ll hook up

    // some widgets to them now, using the group pointer
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    // that was passed in

    // let’s start by adding a widget to control the on/off state

    // of the car’s headlights

    g->AddOnOff( “Headlights”, m_lightsOnOff );

    // it would be nice to monitor the car’s fuel gauge—we’ll

    // add a Watcher widget.

    g->AddWatcher( “Fuel Level”, m_fuel);

    // We want to tune the car’s mass as it drives around, so

    // we’ll attach a ScrubberWidget. We’re going to catch the

    // ScrubberWidget pointer that this function returns, so that

    // we can change a setting

    ScrubberWidget * sw;

    sw = g->AddScrubber( “Mass”, m_mass );

    // We don’t want negative or absurdly huge values for the mass of

    // this car during scrubbing, so we’ll set some limits on the value 

    // using the pointer we got back from the AddScrubber function

    sw->SetMinMax( 0, 10000);

   // Car objects can have automatic or manual transmissions. We’ll use 

   // a radio button, which allows you to have a caption for the overall

   // control, as well as each actual button. 

   g->AddRadio( “Transmission:”, “Automatic”, “Manual”, m_transmission );

   // For our final widget, we’ll add a button that starts the car’s 

   // engine and other systems. Because we want to attach some 

   // functionality to this button(it won’t do anything if we don’t), we 

   // pass in an EventHandler object that we’ve written for Car Objects. 

   // We also pass in an enum name for the button. This enum value will 

   // become the id number of the widget. When the button is actually 

   // pressed by a user, its id number is passed to the EventHandler’s 

   // UIEvent function, and is used in a switch statement to call that 

   // widget’s particular code.

   g->AddBasicButton(“Start Car”, IGNITION_KEY, m_eventHandler );

   // We’ll add a few more widgets that use the same EventHandler. 

   g->AddBasicButton(“Windshield Wipers”, WIPERS_CONTROL, 

                     m_eventHandler);

   g->AddOnOff(“Air Conditioning”, m_air, AIR_COND, m_eventHandler );

    

}
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Now go forth and populate your game with widgets. You’ll quickly find that 
they’ll speed up both debugging and tuning of your game. Some ways that you 
might extend the widget system, to get even more out of them:

Wrap all your AddWidgets() functions with #ifdef DEBUG, or whatever you are 
using for conditionally compiled code in your project, and then use the prepro-
cessor to conditionally remove all of your widget stuff when you go to release 
the game.
Use a BasicButton to save or write a text file containing all your widget values. 
You could serialize all your widget values within a file, and when the game 
starts back up, it could then initialize all of your variables with the values from 
the file. In this way, you wouldn’t spend an hour tuning a value, and then have 
to write them all down on paper to adjust your initialization values in game. 
Before you release the game, however, you would have to transfer all the initial 
values out of the file (or actually use the file as a configuration script).

SUMMARY

Debugging AI systems can be quite a chore, because they interface with a majority 
of other game systems, can be filled with specific case code or data, and require 
complex setups to replicate bugs within. This chapter discussed many issues for AI 
developers to watch for when debugging game AI engines.

General AI debugging problems might appear in other people’s code, and many 
concerns can be alleviated by using the distributed AI method.
Visual debugging provides a variety of information, helps also with game tun-
ing, can provide timing information, can help watch for state oscillation, is 
especially useful for console development, is useful when debugging scripting 
languages, and can dovetail nicely into influence mapping systems already in 
use within a game.
The widgets library introduced in this chapter provide the user with a general 
platform for exposing variables to a simple user interface that allows monitor-
ing, as well as changing of a variable’s values while the game is running.
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Conclusions,
and the Future

28

We’ve covered a lot of ground in this book, and the hope is that enough 
of these techniques have stuck that you’re already brimming with 
ideas that you are going to implement, using a little skeletal code from 

the CD-ROM, as well as a serious amount of your own hard work and creativity. 
We’ve covered everything from the simple to the very complex, both in theory 
and practice, and along the way discussed an entire paradigm for approaching AI 
engine design.

During engine design, split up your AI engine tasks into a distributed, layer-
based system, using any of the applicable layers:

Perception/Event layer

Behavior layer

Animation layer

Motion layer

Short-term decision making

Long-term decision making

Location-based information layer

For each layer you intend on implementing, consider these eight areas when choos-
ing the type of decision-making techniques:

 1.  Types of solutions
 2.  Agent reactivity
 3.  System realism
 4.  Genre

In This Chapter

 What Game AI Will Be in the Future
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 5.  Content-specific requirements
 6.  Platform
 7.  Development limitations
 8.  Entertainment limitations

WHAT GAME AI WILL BE IN THE FUTURE

The push for better AI opponents will continue. Although online play allows more 
and more humans to play each other, many people still play only single-person 
games, lack the time for larger multi-player games, or simply do not go online to 
search for opponents. These people are still the majority of game players, and they 
demand increasingly complex and compelling game agents to play against.

AI has, and will continue to become increasingly important to the public 
opinion of any particular game. Game reviews spend most of their time on the 
pros and cons of the AI exhibited by the game. The last ten years were almost 
completely focused on the realm of game graphics, and we can now see the frui-
tion of that effort: huge polygon counts, texturing and lighting that is approach-
ing photographic levels, and overall movie-quality visuals are almost the norm. 
An equivalent push is now coming into play for the AI systems in games. We will 
see increasingly complex and creative AI in games, from enemies that learn the 
human player’s style and react accordingly (learning, and opponent modeling), 
AI opponents that come up with novel solutions to gameplay problems (infer-
ence, emergent behavior, or even creativity), even opponents with humanlike 
moods (emotion).

Another thing that games have suffered from in the past is lack of personal-
ity. There are very few differences between opponents. Minor differences that are 
purely from a statistical point of view (like enemy A being slightly stronger than B, 
and B being faster). The reason, of course, is that enemies of the past have been 
more hard-coded (written in a very specific and code-based way), for balancing 
concerns as well as coding time.

In stark contrast are the enemies in a game written mostly around a learn-
ing system with very basic knowledge of the game world, and who would make 
decisions based more on the game situations that they have been involved with 
over their lifetimes. Black & White uses a system somewhat like this (although the 
description is overly simplified), and almost no two totem creatures turn out the 
same, even if played by the same person. The personality of the creatures is deter-
mined by such a large number of factors that emergent behaviors and personality 
traits are inevitable. Implementing enemies using this more “experiential” method 
leads to a much more personal view of the game’s creatures, and an overall more 
satisfying outlook on the intelligence of the system.
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This is analogous to an experience of playing a pen-and-paper role-playing 
game being much more personal and intelligent than the experience of reading a 
book about the same game world. Playing the game is interactive, and thus awakens 
instinctual perceptions within ourselves that give life to the characters and elements 
that we come across, simply because we are a part of the process. We can interface 
with the world, change the world, and become a part of the world. Reading the 
book is merely taking in a story, and although it can seem compelling and to some 
lesser degree real, it will never be able to answer all the questions we have, or give 
us a look from another angle. 

There is a distancing from the material that is created by the author’s mode of 
writing, as well as his overall storytelling ability. Which is why wholly-scripted AI 
systems will not completely satisfy us. These are again limited by the scripter, and 
while adding richness to the gaming experience, will never be equal to the experi-
ence of dealing with another intelligent person.

AI will also incur the changes to gaming in general, and need to make strides 
to accommodate them. In the short run, a number of these changes might be in 
the area of human interfaces. A large number of games are beginning to incorpo-
rate voice commands from a headset or microphone. Games may one day offer 
full speech recognition, as well as translation-type abilities. Also, many games are 
becoming online, persistent world endeavors. The AI associated with enemies or 
NPCs in these games might have opportunities for long-view learning and person-
ality building, simply because the game doesn’t ever stop.

In the far-flung future of our games, we may one day have full-featured 
intelligent systems that competently play our games with us, at the difficulty level 
chosen specifically for each player, with style, creativity, personality, and a degree of 
humanity. Oh, what fun we’ll have.
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A About the CD

APPENDIX

The CD-ROM included with this book contains all the source and demon-
stration programs referenced within the book, as well as some other use-
ful materials. Also, you can refer to the main Charles River Web site (www.

charlesriver.com) for updates and additional support information.

CONTENTS

Source Code. All the source for the various topics is arranged in subdirectories 
by chapter of introduction. Each demonstration is compiled using Microsoft 
Visual C++ 6.0, as well as Visual C++ 2005. Both the “old” and “new” VC++ 
style of project files are included (the newer Visual Studio uses solutions, the 
older, used projects). The compiled binaries can be found in the specific output 
directories.

Figures. All of the figures from the book are included in this directory. They 
are named the same as they are in the chapters.

Useful Web Bookmarks. Here are a few pages of links to various Web resources, 
from general to very specific. The links are divided up into categories: ALife, 
fuzzy logic, general AI Web sites, genetic algorithms, location-based informa-
tion, neural nets, scripting, various AI links, game source code, and various 
game AI issues.

Libraries. The CD contains the newest available download of the two libraries 
used by the demonstration code: the GLUT wrapper for OpenGL, and the Lua 
language. Of course, you would want to check the Internet for newer versions, 
but the demos in this book have only been tested with these versions.

SYSTEM REQUIREMENTS

All the demonstration programs on this CD-ROM are minimally taxing on any 
modern computer. GLUT works on pretty much all versions of Windows (ME, 2000, 
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XP, Vista), so the demos should compile and run on almost any Windows machine 
available within the last nine years or so. All the code was written and compiled using 
Microsoft Windows Visual C++ 6.0 and 2005; GLUT and OpenGL was installed on 
the machines.
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A* algorithm. see also search methods, 26, 46, 
48, 599, 600

Abuse, 144
academic AI, 8–9, 25, 124–125, 604
accessibility, improving, with scripting 

systems, 388
“acting human”. see humanness
action adventure games. see adventure and 

stealth games
action potential, 556–557
activation function

in neural nets, 557, 561–562
in test game, 572–575

activation levels in fuzzy systems, 304, 
308–309, 315

ad-lib machines, 86–87
adaptive systems

diffi culty levels and, 652–653
neural nets and, 560

AddLayer ( ) function, 569
AddMessageToSystem( ) function, 340
AddWidgets ( ) function, 672, 674–675, 677
AdjustWeights ( ) function, 576
adventure and stealth games

areas that need improvement, 101–102
common AI elements in, 95–97
examples of, 99–100
overview, 93–95
planning algorithms and, 602
useful AI techniques in, 97–98

aesthetics, 7
Age of Empires, 106–107, 109, 112, 115–116
agent reactivity. see also reaction time

and AI system design, 33
fi nite-state machines and, 298
fuzzy-state machines and, 330

in genetic algorithms solutions, 552
in location-based information systems, 434
in message-based systems, 360
in neural nets, 590
in production systems, 605
in scripting systems, 396
steering behaviors and, 474

agents. see characters and character 
development; nonplayer characters 
(NPCs)

AI (Artifi cial Intelligence)
academic, 8–9, 25, 124–125, 604
defi ned, 1, 2, 8–9
engine. see AI engine
game. see game AI
helper, 119, 150, 613
hierarchical. see hierarchical systems
perceptions and, 40, 107
platform considerations for, 35–37
public opinion of, 680
tools for use by designers, 659

AI engine
attribute requirements in, 50
basic layout of, 32
combination systems for, 479, 503–506
combined systems and game development 

in, 503–504
decision making and, 9–10, 31–40, 679
design considerations for, 49–51, 641–651
distributed AI design, 615–617
inference in, 31–40
input handlers and perception in, 40–43
navigation, 43–49
primitives in, 643
realism and, 32, 33
system hooks in, 66–67



AIControl class. see Control Class
AIsteroids test game

areas that need improvement in test 
framework, 285–287

basic classes in, 53–68
confi guration script system 

implementation, 365–366
FSM implementation, 271–285
FuSM implementation, 313
genetic algorithm implementation, 527–544
location-based information system 

implementation, 406–432
message-based implementation, 344–352
message-based implementation, 

using Lua scripts, 381–385
other game modifi cations, 314
Saucer (ship) implementation, 313–314
screenshots, 67, 418, 423, 430, 544
separating game objects from game 

perceptions, 67
steering system implementation, 448–462

AIsteroids.cpp, 68
algorithms

ant colony, 550
cellular automata (CA), 595
full production, 603
game development and, 3, 14
genetic. see genetic algorithms (GAs)
gradient descent, 585
monothetic, 607
planning, 234, 598–603
polythetic, 607
production systems as general, 604–605
RETE and TRETE, 605

alife. see artifi cial life (alife)
alignment behavior, 439
alleles, 514, 518
alpha-beta search method, 207, 216–217
animation layer

in distributed AI design, 617, 621–622
in Super Mario Bros, 631, 637

animation selection, 3, 7
behavior and, 185
frames and data-driven systems for, 

621–624, 644

physics-based, 505
in sports games, 174–175

ant colony algorithms, 550
anthropomorphism, 27
anticipation, 139, 557, 600, 602
approach behavior, 449–455
Approach state, 271, 306, 315, 327
arbitration, message, 357–358
arcade platform, 36, 69, 126, 167–168
arrays

genetic algorithms and, 520–521
infl uence map, 402, 407, 409, 422, 430–431, 

432, 433
arrive behavior, 450
artifi cial intelligence. see AI (Artifi cial 

Intelligence)
Artifi cial Intelligence: A Modern Approach 

(Russell and Norvig), 2, 8
artifi cial life (alife)

disciplines, 593–598
games, 240, 256–258, 594
neural nets in, games, 257
potential game enrichment using, 597–598
pros and cons of using, 596–597

artifi cial neural nets, 557–558
ASCII based games, 69
attack script, sample of, 80–81
Attack state, 271, 306, 307, 315
attribute requirements

in AI engine design, 50
of enemies, in RPGs, 74
motion layer and, 624
in sports games, 173

audio in game design, 7
auto-retreating in real-time strategy 

games, 107
automated testing, 649–650
autonomous agents, 123, 438
Avalon Hill and war games, 243–244
avoidance. see general object avoidance (GOA); 

obstacle avoidance; simple avoidance 
navigation systems

AvoidBorder, in test game, 451
AvoidWall, in test game, 450
axons, 556
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Back, T., 527, 551
background in fi ghting games, 224
BackPropagate ( ) function, 569, 576
backpropagation in neural net learning, 562, 

567, 589
backward-chaining inference, 604
balance, game. see game balance
Baldur’s Gates, 79, 80–81, 87
bartering system, 78
basicbutton widgets, 668–669, 677
battlefi eld planning and infl uence maps, 404
behavior

animation selection and, 185
coherent, 438–439, 657–658
data-driven systems for, 643
emergent. see emergent behavior
fi nite-state machines and, 507–508
game AI and, 7, 655–657
game theory and human, 203–204
goal-seeking, 439
intelligent-looking, 601
managing, with fuzzy-state machines, 328
self-modifying, in scripting system, 394
of Ship Object, 57

behavior layer
in distributed AI design, 617, 619–621
in Super Mario Bros, 630–631, 635–636

behavior reuse, 597
behavior state space. see response set
behavioral intelligence, 3, 602
behavioral mechanics. see gameplay
believability, creating, 23–24
bias value, 557
Big Blue (chess computer), 9
binary decision trees (BDTs). see also decision 

trees, 606, 608, 609, 610
binary value crossover operators, 523–524
bit strings, 519
bitwise infl uence maps, 406
BitwiseInfl uenceMap class, 422–429
Black & White, 258, 560, 594, 610, 680
black box systems

genetic algorithm solutions as, 515, 552
neural nets as, 606

blackboard architecture model, 297

Blade Runner, 100
“boids,” 438–439
bonus lives, in test game, 65
boss enemies. see also enemies

in fi ghting games, 224–225
in FTPS games, 127
in platform games, 150
in role-playing games, 75–76, 88
in shooter games, 163–164, 165

bots. see also mods (user-made modifi cations)
deathmatch, 9, 127, 136
helper, 128
improvements needed for, 138–140
overview, 123–125
personalities of, 138

bounded optimality (BO), 24–26, 207–208, 232
brain, human

connectivity within, 556–557
as organizational model for game AI, 

10–11, 12
parallelism in, 557

brainstorming sessions, 650–651
breeding programs and genetic algorithms, 

517–518
Brooks, Rodney, 26, 27, 627–628
brute force search method, 204, 205, 207, 218

genetic algorithm solutions and, 551
Buffy the Vampire Slayer, 223, 227
build-order scripts in real-time strategy 

games, 114
buildObjective ( ) function, 244–249
bullet management, in test game, 59–60, 286, 466
bytecode, compiled, 364, 373, 389, 398

Cabal, 167
CalculateActivation ( ) function, 309
Call to Power II, 240
callback handlers, use of, 510
callbacks, 343–344, 346–347, 366
camera angles and placement, 154

in adventure and stealth games, 97
in fi ghting games, 224–225
in platform games, 150–151, 153
in racing games, 191–192
in sports games, 175–176
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Capcom, 221–222
Capture the Flag, 126
Carmack, John, 130
Carmageddon, 198
cart racing games, 192
case insensitivity in scripting, 368–369
casters in MMORPGs, 85
catastrophic unlearning, 587
cell phone platform, 36, 256
cellular automata (CA), 595
Centipede, 164
certainty, directed, 205
challenge, creating, 33
champion units, 117
chance nodes, 217
characters and character development

autonomous agents, 123, 438
bosses and, 76
cooperative, 96, 128, 150, 164
enemies. see boss enemies; enemies
fi nite-state machines and coordination of, 

291–292
fuzzy-state machines and, 328
in God games, 241–242
guard, 95, 96
level-of-detail (LOD) systems and, 645–648
message-based systems and, 336
multiple character coordination, 291
multiple intracharacter FSM interaction, 

291–292
NPCs. see nonplayer characters (NPCs)
off-screen, 647–648
planning algorithms and, 598
reactivity. see agent reactivity
support. see also nonplayer characters 

(NPCs), 150, 152
totem, 258
using distributed AI design, 616–617

chat messages, 127–128
cheating

handheld platforms use of, 37
perception of, 5, 9, 33–34
in sports games, 171

checker code, 659

CheckTransitions ( ) function, 267, 276
chess, 9, 204–206, 217–218
choke points in infl uence maps, 405
chromosomes, 514
circle strafi ng, 33
Civilization, 231

screenshots, 232, 233
civilization games, 231–234, 552
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for fi nite-state machine system, 270–271, 273
for FuSM system, in test game, 312, 316–318
in neural nets system, in test game, 567, 

576–583
for steering system, in test game, 448–462, 

498–499
ControlInfl uenceMap class, 420–422
conversation engines

in FTPS games, 139
improving, 86

Conway’s Game of Life, 595
cooperative elements

in adventure and stealth games, 96
in FTPS games, 128
in platform games, 150
in shooter games, 164

cooperative evolution, 550
costs, computation. see computation costs
counselors, 234, 330
coupled system, tightly, guards as, 96
CPU time. see also computation costs
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see also decision trees

in AI engine design, 31–40, 679
AI systems and, 9–10, 16–17
basic components and design (get from chap 2)
game tuning and, 658
genre and, 34–35
in God games, 241–242
in humans, 25
layered, 7, 27–28, 617, 625
preprocessed planning and, 599
production systems as, 603, 604–605
realism, and FSM-based, 298
robotics, 27–28
in Robotron, 306–308
short-term and long-term, 525–526
in sports games, 173–174

decision trees. see also binary decision trees 
(BDTs), 606–610

decision types. see output types for AI systems
Defender II: Stargate, 157
Defense Advanced Research Project Agency 

(DARPA), 604
defuzzifi cation, 308, 327, 611
dendrites, 556
Descartes, Rene, 593
Deus Ex, 101



Index 693

development limitations. see game development
diffi culty levels, 39, 127, 215, 652–653
diplomacy systems, 112, 120, 234
direct experience, learning by, 14
discontinuity in output, 546–547
distributed AI design

debugging and, 661
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one-track-mind syndrome and, 644–645

optimizations for, 295–297
overview, 261–262
in platform games, 152
pros and cons of, 287–289
in racing games, 197
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systems
GOA (General Object Avoidance), 498
goals

game breakdown, 628
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in real-time strategy games, 109
steering behaviors and, 508

individual units, 106–107
inertia, using to combat state oscillation, 293–295
inference

in AI engines, 31–40
forward and backward chaining, 604
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mouse, use of the, 35
movement elements, types of, 109
MStateIdle header, 352–354
Mühlenbein, H., 527
multiplayer coding, 510
multiplayer games, 126

racing, 199–200
MutateOffset( ) function, 541–542
mutation, 515, 518, 527, 551
Myst, 94

navigation. see also pathfi nding
grid-based, 43–44
mesh systems, 47–48, 400
potential fi elds, 44–45, 48
in sports games, 175
steering behaviors, 49
technology tree, 114

NBA Shootout, FSM behavior code from, 
178–185

need-based systems
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resource management in, 111
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state-based system of, 242
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NES (Nintendo Entertainment System) game 

systems, 186
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feed-forward, 559, 560–561
map-node, 46–47
path node, 47–48, 403
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artifi cial, 557–558
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black box system*, 606
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decision trees versus, 606–608
design considerations for, 590
development limitations for, 591
human perception, 585
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optimizations, 584
overview, 555–557
pros and cons of, 585–587
in strategy games, 217
structure of, 560–561
types of, 587–588
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neurons, 555–557

in neural nets, 557–559, 561, 567–572
Neverwinter Nights, 83–84
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Nintendo® Gameboy®, 36, 255
NLayer class, 567, 572–576
NNAI Control class, 567, 576–583
NNs. see neural nets (NNs)
nodes, 558, 561
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non-brute force methods. see fuzzy logic; neural 

nets (NNs)
non-killing quest types, 85–86
nonlinear functionality and neural nets, 561, 585
nonplayer characters (NPCs). see also bots; 

characters and character development
in adventure and stealth games, 96, 100
in FTPS games, 128
grammar systems for, 101–102
movement of, modeled with steering 

behaviors, 438
in racing games, 196
in role-playing games, 76–79
in sports games, 176–177

nonprogrammers and scripting systems, 369, 
391, 393, 395

Norvig, Peter (Artifi cial Intelligence: A Modern 
Approach), 2, 8

novelty in game development. see also fun 
factor, 653

NPCs. see nonplayer characters (NPCs)
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cleanup of, in test game, 63–64
message, in test game, 338–339
types of, in test game, 54, 62

obstacle avoidance. see also general object 
avoidance (GOA); pathfi nding

level-of-detail (LOD) systems and, 645–646
map node network systems and, 46–47
in map node networks, 46–48
motion layer and, 624–625, 637
player-modeling in Super Mario Bros., 637
steering behaviors and, 49, 439, 456, 500
systems for, 6, 48, 129–130
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obstacles, enemies as, 75, 149
occupance data, using infl uence map to track, 

402, 431, 494–495
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off-screen characters, 647–648
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online play, 188, 199–200, 256, 680
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OpenGL Utility Toolkit (GLUT). see GLUT
operators

actions as, 603
in planning algorithms, 598–599

opponent modeling, 9, 118
conventions to avoid, 655
in FTPS games, 137
in real-time strategy games, 110–111

opponents. see also enemies
in classic strategy games, 215
deathmatch, 127
personalities of, 119–120

optimality, bounded, 24–26, 207–208, 232
orbit behavior, 471
order queues in real-time strategy games, 107
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organization and fi nite state machines, 288, 301
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debugging and state, 663
state-based systems and, 288–289, 293

output layer in neural nets, 559, 561
output types for AI systems, 34, 49–50
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overhead racing games, 191–192

Pac-Man, 42, 519–520, 521
FSM implementation in, 263–266

parallelism in the human brain, 557
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in test game scripting system, 366–372
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party members, 78–79, 87–88
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path node network systems, 47–48, 403
pathfi nding. see also navigation; obstacle 

avoidance
bounded optimality and, 24–26
conventions to avoid, 656
in FTPS games, 129–130
infl uence maps and, 403–404, 430
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motion layer and, 624–625
planning algorithms and, 599
player-modeling in Super Mario Bros, 637
in real-time combat RPGs, 79
in real-time strategy games, 109–110
in sports games, 175
system, 395
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pattern recognition

neural nets and, 557–560, 563–564
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in adventure and stealth games, 95, 101
in early video games, 5
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in racing games, 197
in shooter games, 157, 166

PC platform, 35, 93
PDAs, 36, 256
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perception and event layer

in distributed AI design, 619
in Super Mario Bros., 630, 635

perception systems, 40–43, 96–97
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of cheating, 5, 9, 33–34
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fuzzy-state machines and, 331
in game AI, 15, 40–41
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in real-time strategy games, 105
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in FTPS games, 138
lack of, in games, 680
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in FTPS gameplay, 134–135
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user extensibility, 138
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pros and cons of, 601–603
in real-time strategy games, 599
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fi nite-state machines and, 299
fuzzy-state machines and, 331

game development and, 35, 50
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platform games
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common AI elements in, 149–151
examples of, 153–154
overview, 143–144
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useful AI techniques in, 152–153
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player-modeling

fuzzy systems and, 612–613
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in Super Mario Bros., 635–639
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polishing. see tuning
polling in perception registers, 42
polygons, 642
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powerups
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ProcessMessage( ) function, 343
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request based scripting systems, 393–394
resetting gameplay in sports games, 172, 177
resource management, 111, 120, 330
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scoring in test game, 60
Script Creation Utility for Maniac Mansion 

(SCUMM), 100
scripting and scripting systems. see also Lua 

programming language; scripts and 
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controlling functionality in, 391–392
as data-driven FSMs, 292–293
debugging, 389–390, 392–393
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overview, 363–365
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use of, in real-time strategy games, 

114–115, 117
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custom, 392
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design elements for creating, 364–365
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scrolling platform games, 143, 221
scrubber widgets, 664, 671–672
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focused, 16
infl uence map arrays and, 430–431
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Shannon, Claude, 204
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game, 271–285
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as objects, in test game, 57–59
sample Lua scripts to control, 381–387
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areas that need improvement, 168–169
common AI elements in, 163–164
examples of, 166–167
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sample code, 158–163
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shopkeepers, 77–78
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SIMS (fl ight simulators), 249–250
Sims, The, 257–258, 401
simulated annealing technique, 516
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in civilization games, 233
fl ight, 249
in sports games, 172, 174, 186
vehicular, 192
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slider controls, 79
smart terrain, 258, 401, 431, 434, 639
smart testing, 650
Soar, 604, 605
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Sony PSP, 36
spatial reasoning logic, 130
specialty racing games, 191, 192
speculation, imaginative, 14
speed

of execution in a scripting system, 389
in strategy games, 218
of tuning, 388

sports games
animation layers and, 621–624
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common AI techniques in, 172–173
examples of, 186–187
fl uid gameplay in, 171–172, 189
overview, 171–172
resetting gameplay in, 172, 177
useful AI techniques in, 177

squad combat games (SCG), 23–24, 
126, 135, 136

improvements needed for, 140
squad members, in FTPS games, 128–129
stack data structure in fi nite-state machines, 291
stacks in Lua environment, 374–375
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StampInfl uenceGradient ( ) function, 409
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state-based behaviors, 13–14, 31, 195
state-based systems

fi nite-state machines and, 81–82, 97–98, 287
FSMState class, 266–267
game AI in, 16
game design and, 37–38
in sports games, 172
tuning and, 38

state machines, 261, 300, 489
state space of game, 16, 31
StateApproach class functions, 275–278
StateAttack class functions, 278–280
StateEvade class functions, 280–282
StateGetPowerUp class functions, 282–284
StateIdle class functions, 284–285
StateNNEvade class, 582–583
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concurrent, and fuzzy-machine systems, 327
sets of , planning and, 598

states, in test game, 286, 315, 352–354
coding, in implementing a FSM-controlled, 

275–285
static skill levels, 39
statistical learning, 187
statistics, player, 185
steady-state reproduction, 522–523
stealth games. see adventure and stealth games
SteerApproach function, 451–452
SteerArrive function, 455–456
SteerAvoidBorder function, 459–461
SteerAvoidWall function, 456–459
SteerEvade function, 454–455
steering-based systems

layered, 468–469
pros and cons of, 466–468

steering behaviors, 466–468
design considerations for, 473–476
indigenous life and, 508
and obstacle avoidance, 49
overview, 435–440

prioritization and, 443–444, 472, 473
skeletal code, classes, 439–440
in test game, 498
weapons and, 508

SteeringBehavior class, 440–442
SteeringBehaviorManager class, 442–448

implementation for steering combinations 
(listing), 446–448

Update ( ) function (listing), 446–448
SteeringControl class

header (listing), 448–462
in test game, 498–499

SteerPursuit function, 453
SteerUseCover Update function, 501–502
SteerWander function, 461–462
stochastic universal selection, 523
story branching, 101–102
story elements, 509
storytelling and game AI, 681
strategic solutions

defi ned, 32
genetic algorithms and, 551
high-level, 32, 107, 395–396
for location-based information systems, 434
real-time strategy games, 120–121
in sports games, 173
steering behaviors and, 474
using messaging systems, 359

strategy games. see also real-time strategy (RTS) 
games

AI search techniques and, 204
areas that need improvement, 218
common AI elements in, 215
examples of, 217–218
overview, 204–205
turn-based, 231–233
useful AI techniques in, 216

Street Fighter 2: The World Warrior, 221–222
sub-bosses in role-playing games, 76, 88
subconscious learning, 14
substates

fuzzy, in larger FSM, 328
in hierarchical FSMs, 289

subsumption architecture, 27–28, 627–628
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sum, prioritized, to tune steering behavior, 443
SumInfl uence( ) function, 409
Super Mario Bros., 143, 621, 628–629
Super Nintendo, 221
superunits, 114–115, 117
support AI, 641, 648–650

advanced, in real-time strategy games, 110–113
survival horror game, 95
synaptic gap, 556
synchronization, loss of, using messaging, 357
system hooks in AI engine, 66–67
system realism. see realism

TA. see terrain analysis (TA)
tactical solutions

defi ned, 32
genetic algorithms and, 551–552
for location-based information systems, 434
lower level, 32
management, 106
neural nets and, 590
scripting systems, 395–396
steering behaviors and, 474
using messaging systems, 359

Tamagotchi, 257
tanks in MMORPGs, 85
target object, 59
team-level elements

micromanagement in real-time strategy 
games and, 120

in sports games, 173, 187
technology trees, 114, 234
Tekken Tag Tournament screenshot, 223
templates, 86–87, 114
tendencies of behavior, 79
terrain analysis (TA)
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defi ned, 401–402
location-based information systems and, 432
optimizations, 433
in real-time strategy games, 110, 121
simple, 404–405

terrain, smart. see smart terrain
testing. see also tuning

automated, 649–650
state-based systems and, 38

TestSession class, 532
Tetris, 255
text-based games, 69, 93
Theory of Mind (ToM), 17–18, 22–24

robotics and, 26–27
Thief, 96–97
thieves, 85
third-person shooters. see FTPS games
thread-based scripting languages, 387, 395
3-D environment in FTPS games, 130
3-D fi ghting games, 222, 225
3-D platform game, 148–149
3-D rendering and primitives, 642
3-D worlds and infl uence maps (IMs), 400
threshold acceptance, 516
thresholds and AI game design, 41
time limits

gameplay and, 74, 205
message prioritization and, 357
in occupance data, 431

time, use of programmer’s, 37, 50
timers

debugging and, 663
in test game, 64

timing in platform games, 143
tokens, scripting, 365, 366–372
Tomb Raider, 99
tools, AI, for game designers, 659
totem characters, 258
tournament selection, 523
town building, 89–90

in God games, 243
infl uence maps and, 405
in real-time strategy games, 108–109

track AI in racing games, 193–195
traffi c systems in racing games, 195, 197, 

199–200
Train ( ) function, 569
training phase for neural nets, 584, 585, 586
transitions

in fi nite-state machines, 263–265, 290
handling Lua-controlled transitions, 385–386
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traveling salesman problem (TSP), 204–205, 

519, 520
treats in RPGs, 76
trees as genomes, 520–521
TRETE algorithm, 605
troubleshooting genetic algorithms, 548–549
tuning. see also testing

artifi cial life games and, 597
debugging and, 662
FuSM-based behavior, 331
game AI, 658
game parameters, 649
genetic algorithms, 549
scripting systems and, 388, 395
state-based systems and, 38
steering behavior and, 443–444

Turing, Alan, 22, 204
Turing test, 8, 22
turn-based games, 79, 205, 231–232
Twisted Metal, 192–193
twitch-oriented action games, 33, 95, 228–229
2-D shooter games, 158

Ultima 7 screenshot, 87
uncertainty, directed, 205
underfi tting, 584
units

determining when stuck, 118–119
managing AI, 106–107, 117, 120

unpredictability in lifelike behavior, 439–440
unsupervised learning, 589
Update ( ) function

described, 57–58
in fi nite-state machines, 262
FSMAIControl Class and, 270, 273
in FuSMState Class, 309
for GameSession, 62
HumanControl class and, 66
in NNAIControl structure, 578, 582
OccupanceInfl uenceMap class, 414

on ship Object, 58
SteeringBehaviorManager, 446–448
in SteeringControl, 463–465
in test game, 67, 480–481, 485

update loops, in test game, 62–63
update regularity, 41, 646–647
UpdateMachine ( ) function, 269–270, 311–312
UpdatePerceptions ( ) function, 67, 270, 273, 

485, 543
Use ( ) function, 569
user extensibility, 35, 123, 138, 388
user interface, 101, 649
user-made modifi cations (mods), 123–124
utility functions, coding notations for, in test 

game, 54

values, resetting, in infl uence maps, 414, 419, 433
variables

coding notations for, in test game, 53–54
in neural nets, 560–561
using widgets to control, 664–672

vehicular racing games. see also racing games, 191
violence, deemphasis on, 199
visual debugging, 662
voice commands, 681
von Neumann, John, 203–204

wall construction, 405, 406
in real-time strategy games, 121
in test game, 499

wander behavior, 451, 461–462
war games, 243–244, 599–600

FTPS based, 136–137
Wargamer: Napoleon 1813, 244–248
watcher widgets, 664, 669
weapons

in FTPS games, 128, 137
steering behaviors and, 508

websites
Game Developer’s Conference (2002), 97
Lua programming language, 374
SCUMM system, 100

weights, to tune steering behavior, 443, 462, 
472, 500
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Widget Group, 666–668
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widgets

integration of, within a program, 672–677
overview, 664–672

Wimmer, H., 17
Wing, sample AI code from, 158–163
Wojtowicz, Mirek, 595
Woodcock, S., 6

working memory, 13, 598
world-wrapping, controlling, 286, 465–467, 

490–491
wrestling games, 221, 222
Wright, Will, 240–241, 257, 401

Yacc (yet another compiler compiler), 392

Zadeh, Lotfi , 610
Zanac, 165–166
zero-sum games, 204, 215
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