Computability and Incompleteness

Lecture notes

Jeremy Avigad

Version: January 9, 2007

Contents

1 Preliminaries

1.1 Overview 1
1.2 The set-theoretic view of mathematics 4
1.3 Cardinality 9
2 Models of computation 13
2.1 Turing machines oL 14
2.2 Some Turing computable functions 18
2.3 Primitive recursion Lo 0oL 20
2.4 Some primitive recursive functions 24
2.5 The recursive functions 31
2.6 Recursive is equivalent to Turing computable 35
2.7 Theorems on computability 41
2.8 The lambda calculus 47
3 Computability Theory 57
3.1 Generalities e 57
3.2 Computably enumerable sets 59
3.3 Reducibility and Rice’s theorem 65
3.4 The fixed-point theorem 72
3.5 Applications of the fixed-point theorem 76
4 Incompleteness 81
4.1 Historical background 81
4.2 Background in logic oo 84
4.3 Representability in @, 90
4.4 The first incompleteness theorem 100
4.5 The fixed-point lemmao 107

4.6 The first incompleteness theorem, revisited 110

4.7 The second incompleteness theorem 112

4.8 Lob’stheorem Lo 115
4.9 The undefinability of truth 117
Undecidability 119
5.1 Combinatorial problems 120
5.2 Problems in linguistics L. 121

5.3 Hilbert’s 10th problem 124

Chapter 1

Preliminaries

1.1 Overview

Three themes are developed in this course. The first is computability, and
its flip side, uncomputability or unsolvability.

The informal notion of a computation as a sequence of steps performed
according to some kind of recipe goes back to antiquity. In Euclid, one finds
algorithmic procedures for constructing various geometric objects using a
compass and straightedge. Throughout the middle ages Chinese and Arabic
mathematicians wrote treatises on arithmetic calculations and methods of
solving equations and word problems. The word “algorithm” comes from the
name “al-Khowarizmi,” a mathematician who, around the year 825, wrote
such a treatise. It was titled HiSab al-jabr w’al-mugqa-balah, “science of the
reunion and the opposition.” The phrase “al-jabr” was also used to describe
the procedure of setting broken bones, and is the source of the word algebra.

I have just alluded to computations that were intended to be carried out
by human beings. But as technology progressed there was also an interest
in mechanization. Blaise Pascal built a calculating machine in 1642, and
Gottfried Leibniz built a better one a little later in the century. In the early
19th century Charles Babbage designed two grand mechanical computers,
the Difference Engine and the Analytic Engine, and Ada Lovelace wrote
some of the earliest computer programs. Alas, the technology of the time was
incapable of machining gears fine enough to meet Babbage’s specifications.

What is lacking in all these developments is a precise definition of what
it means for a function to be computable, or for a problem to be solvable.
For most purposes, this absence did not cause any difficulties; in a sense,
computability is similar to the Supreme Court Justice Stewart’s character-

2 CHAPTER 1. PRELIMINARIES

ization of pornography, “it may be hard to define precisely, but I know it
when I see it.” Why, then, is such a definition desirable?

In 1900 the great mathematician David Hilbert addressed the interna-
tional congress of mathematicians in Paris, and presented a list of 23 prob-
lems that he hoped would be solved in the next century. The tenth problem
called for a decision procedure for Diophantine equations (a certain type
of equation involving integers) or a demonstration that no such procedure
exists. Much later in the century this problem was solved in the negative.
For this purpose, having a formal model of computability was essential:
in order to show that mo computational procedure can solve Diophantine
equations, you have to have a characterization of all possible computational
procedures. Showing that something is computable is easier: you just de-
scribe an algorithm, and assume it will be recognized as such. Showing that
something is not computable needs more conceptual groundwork.

Surprisingly, formal models of computation did not arise until the 1930’s,
and then, all of a sudden, they shot up like weeds. Turing provided a no-
tion of mechanical computability, Godel and Herbrand characterized com-
putability in terms of the recursive functions, Church presented the notion
of lambda computability, Post offered another notion of mechanical com-
putability, and so on. Today, we can add a number of models to the list,
such as computability by register machines, or programmability in any num-
ber of programming languages, like ML, C++4, or Java.

The astounding fact is that though the various descriptions of com-
putability are quite different, exactly the same functions (say, from numbers
to numbers) turn out to be computable in each model. This is one form
of evidence that the various definitions capture the intuitive notion of com-
putability. The assertion that this is the case has come to be known as the
“Church-Turing thesis.”

Incidentally, theoreticians are fond of pointing out that the theory of
computation predates the invention of the modern computer by about a
decade. In 1944, a joint venture between IBM and Harvard produced the
“Automatic sequence controlled calculator,” and the coming years saw the
development of the ENTAC, MANIAC, UNIVAC, and more. Was the theory
of computation ahead of its time, or late in coming? Your answer may
depend on your perspective.

The second theme developed in this course is the notion of incomplete-
ness, and, more generally, the notion of formal mathematical provability.

Mathematical logic has a long and colorful history, but the subject really
came of age in the nineteenth century. The first half of the century brought
the rigorization of the calculus, providing analysis with a firm mathematical

1.1. OVERVIEW 3

foundation. In 1879, in a landmark paper called Begriffsschrift (concept
writing), Frege presented a formal system of logic that included quantifiers
and relations, treated much as we treat them today. Frege’s goal was a
wholesale reduction of mathematics to logic, a topic we will come back to.

Towards the end of the century, mathematicians like Cantor and Dedekind
used new and abstract methods to reason about infinitary mathematical ob-
jects. This has come to be called the Cantor-Dedekind revolution, and the
innovations were controversial at the time. They led to a flurry of work in
foundations, aimed at finding both precise descriptions of the new methods
and philosophical justifications.

By the end of the century, it was clear that a naive use of Cantor’s “set
theoretic” methods could lead to paradoxes. (Cantor was well aware of this,
and to deal with it developed a vague distinction between various ordinary
infinite totalities, and the “absolute” infinite.) In 1902 Russell showed that
Frege’s formal system was inconsistent, i.e. it led to contradictions as well.
These problems led to what is now called the “crisis of foundations,” in-
volving rival foundational and methodological stances, and heated debates
between their proponents.

Hilbert had a longstanding interest in foundational issues. He was a
leading exponent of the new Cantor-Dedekind methods in mathematics, but,
at the same time, was sensitive to foundational worries. By the early 1920’s
he had developed a detailed program to address the foundational crisis. The
idea was to represent abstract mathematical reasoning using formal systems
of deduction; and then prove, using indubitable, “finitary” methods, that
the formal systems are consistent.

Consistency was, however, not the only issue that was important to
Hilbert. His writings from the turn of the century suggest that a system
of axioms for a mathematical structure, like the natural numbers, is inade-
quate unless it allows one to derive all true statements about the structure.
Combined with his later interest in formal systems of deduction, this sug-
gests that one should try to guarantee that, say, the formal system one is
using to reason about the natural numbers is not only consistent, but also
complete, i.e. every statement is either provable or refutable.

It was exactly these two goals that Godel shot down in 1931. His first in-
completeness theorem shows that there is no complete, consistent, effectively
axiomatized formal system for arithmetic. And his second incompleteness
theorem shows that no reasonable formal system can prove its own consis-
tency; so, the consistency of “abstract mathematics” cannot even be proved
using all of abstract mathematics, much less a safe, finitary portion.

I mentioned above that there are three themes to this course. The first

4 CHAPTER 1. PRELIMINARIES

is “computability” and the second is “incompleteness”. There is only one
word left in the title of the course: the third theme is the “and”.

On the surface, the phrase “computability and incompleteness” is no
more coherent than the phrase “French cooking and auto repair.” Perhaps
that is not entirely fair: the two topics we have discussed share a common
emphasis on philosophical and conceptual clarification, of “computation” in
the first case, and “proof” in the second. But we will see that the relationship
is much deeper than that. Computability is needed to define the notion of
an “effectively axiomatized” formal system; after proving his incompleteness
theorems in their original form, Godel needed the theory of computability
to restate them as strongly as possible. Furthermore, the methods and tools
used in exploring the two subjects overlap a good deal. For example, we
will see that the unsolvability of the halting problem can be used to prove
Godel’s first incompleteness theorem in an easy way. Finally, the formal
analysis of computability helps clarify the foundational issues that gave rise
to Hilbert’s program, including the constructive view of mathematics.

Before going on, let me emphasize that there are prerequisites for this
course. The first, and more important one, is some previous background
in mathematics. I will assume that you are comfortable with mathematical
notation and definitions; and, more crucially, I will assume that you are
capable of reading and writing mathematical proofs.

The second prerequisite is some background in formal logic: I will assume
that you are familiar with the language of first-order logic and its uses, and
that you have worked with at least one deductive system in the past.

In the philosophy department, 80-211 Arguments and Inquiry is designed
to meet both needs, but there are many other ways of acquiring the necessary
background.

1.2 The set-theoretic view of mathematics

What I am about to describe is the modern understanding of mathematical
objects, which is, oddly enough, usually called the “classical” viewpoint.
One starts with basic mathematical objects, like natural numbers, ratio-
nal numbers, real numbers, points, lines, and triangles. For our purposes, it
is best to think of these as fundamental. But nineteenth century mathemati-
cians knew that, for example, the other number systems could be defined “in
terms of” the natural numbers, prompting Kronecker’s dictum that “God
created the natural numbers, everything else is the work of Man.” In fact,
the modern understanding is that all mathematical objects, including the

1.2. THE SET-THEORETIC VIEW OF MATHEMATICS)

natural numbers, can be defined in terms of the single notion of a “set.”
That is why what I am describing here is also often called the “set-theoretic
foundation” of mathematics.

If Ais a set and z is some other mathematical object (possibly another
set), the relation “z is an element of A” is written x € A. If A and B are
sets, A is a subset of B, written A C B, if every element of A is an element
of B. A and B are equal, i.e. the same set, if A C B and B C A. Notice that
A = B is equivalent to saying that every element of A is an element of B
and vice-versa; so two sets are equal if they have exactly the same elements.

If A and B are sets, A U B denotes their union, i.e. the set of things
that are in either one, and A N B denotes their intersection, i.e. the set of
things that are in both. If A is a collection of sets, | J.A and [].A denote the
union and intersection, respectively, of all the sets in A; if Ay, A1, Ao, ... is
a sequence of sets indexed by natural numbers, then [J; 4; and (); A; denote
their union and intersection. There are other ways of building more sets.
For example, if A is any set, P(A), “the power set of A,” denotes the set of
all subsets of A. The empty set, i.e. the set with no elements, is denoted (.

N, Q, and R denote the sets of natural numbers, rationals, and real
numbers respectively. Given a set A, one can describe a subset of A by a
property; if P is such a property, the notation

{ze Al P(x)}

is read “the set of all elements of A satisfying P” or “the set of x € A such
that P(z).” For example, the set

{z € N | for some y € N, x = 2y}

is just a fancy way of describing the set of even numbers. Here are some
other examples:

1. {z € N| z is prime}
2. {n € N[for some nonzero natural numbers z,y, z, " + y" = 2"}
3. {z € P(N) | « has three elements}

One can also describe a set by listing its elements, as in {1,2}. Note that by
Fermat’s last theorem this is the same set as the one described in the second
example above, because they have the same elements; but a proof that
the different descriptions denote the same set is a major accomplishments
of contemporary mathematics. In philosophical terms, this highlights the

6 CHAPTER 1. PRELIMINARIES

difference between a description’s intension, which is the manner in which
it is presented, and its extension, which is the object that the description
denotes.

One needs to be careful in presenting the rules for forming sets. Russell’s
paradox amounts to the observation that allowing definitions of the form

{z | P(z)}

is inconsistent. For example, it allows us to define the set

S=A{z|zdua},

the set of all sets that are not elements of themselves. The paradox arises
from asking whether or not S € S. By definition, if S € S, then § & S,
a contradiction. So S ¢ S. But then, by definition, S € S. And this is
contradictory too.

This is the reason for restricting the set formation property above to
elements of a previously formed set A. Note that Russell’s paradox also
tells us that it is inconsistent to have a “set of all sets.” If A were such a
thing, then {x € A | P(x)} would be no different from {z | P(z)}.

If A and B are sets, A x B, “the cross product of A and B,” is the set
of all ordered pairs (a,b) consisting of an element a € A and an element
b € B. lIterating this gives us notions of ordered triple, quadruple, and so
on; for example, one can take (a, b, c) to abbreviate (a, (b, c)). I noted above
that on the set-theoretic point of view, everything can be construed as a set.
This is true for ordered pairs as well; I will ask you to show, for homework,
that if one defines (a,b) to be {{a}, {a,b}}, the definiendum has the right
properties; in particular, (a,b) = (¢,d) if and only ifa = cand b =d. (Itis a
further exercise to show that the definition of A x B can be put in the form
{z € C| P(z)}, where C is constructed using operations, like power-set,
described above.) This definition of ordered pairs is due to Kuratowski.

A binary relation R on A and B is just a subset of A x B. For example,
the relation “divides” on {1,2,3,4,5,6} x {1,2,3,4,5,6} is formally defined
to be the set of ordered pairs

{{1,1),(1,2),(1,3), (1,4). (1,5), {1,6), (2,2), (2,4),
(2,6), (3,3),(3,6), (4,4), (5,5), (6,6)}.

It is convenient to write R(a,b) instead of (a,b) € R. Sometimes I will resort
to binary notation, aRb, instead of R(a,b). Of course, these considerations
can be extended to ternary relations, and so on.

1.2. THE SET-THEORETIC VIEW OF MATHEMATICS 7

What about functions? If A and B are sets, I will write f : A — B to
denote that f is a function from A to B. One view is that a function is a
kind of “black box”; you put an input into the left side of the box, and an
output comes out of the right. Another way of thinking about functions is
to associate them with “rules” or “procedures” that assign an output to any
given input.

The modern conception is that a function from A to B is just a certain
type of abstract relationship, or an “arbitrary correspondence” between A
and B. More precisely, a function f from A to B is a binary relation Ry on
A and B such that

e For every a € A, there is a b € B such that R(a,b)

e For every a € A, b € B, and V' € B, if R¢(a,b) and Ry(a,b’) then
b=1

The first clause says that for every a there is some b such that Ry(a,b),
while the second clause says there is at most one such b. So, the two can be
combined by saying that for every a there is exactly one b such that Ry (a,b).

Of course, we write f(a) = b instead of Ry(a,b). (Similar considerations
hold for binary functions, ternary functions, and so on.) The important
thing to keep in mind is that in the official definition, a function is just a set
of ordered pairs. The advantage to this definition is that it provides a lot
of latitude in defining functions. Essentially, you can use any methods that
you use to define sets. According to the recipe above, you can define any
set of the form {z € C'| P(z)}, so the challenge is just to find a set C' that
is big enough and a clearly stated property P(x). For example, consider the
function f : R — R defined by

1 if z is irrational

flz) = { 0 if x is rational

(Try to draw the graph of this!) For nineteenth century mathematicians,
it was unclear whether or not the above should be counted as a legitimate
“function”. But, with our broad definition, it is clear that it should: it is
just the set

{{z,y) € R x {0,1} | z is rational and y = 0, or x is irrational and y = 1}.

In modern terms, we can say that an outcome of foundational investiga-
tions of the 1930’s is a precise definition of what it means for an “arbitrary”

8 CHAPTER 1. PRELIMINARIES

function from the natural numbers to the natural numbers to be a com-
putable function; and the awareness that some very basic, easily definable
functions are not computable.

Before going on to the next section we need some more definitions. If
f:A— B, Ais called the domain of f, and B is called the codomain or
range. It is important to note that the range of a function is not uniquely
determined. For example, if f is the function defined on the natural numbers
by f(z) = 2z, then f can be viewed in many different ways:

e f:N—>N

e f:N — {even numbers}

e f:N—=R
So writing f : A — B is a way of specifying which range we have in mind.
Definition 1.2.1 Suppose f is a function from A to B.

1. f is injective (or one-one) if whenever x and z' are in A and x # 2/,

then f(x) # f(x)

2. f is surjective (or onto) if for every y in B there is an x in A such

that f(x) =y.
3. f is bijective (or a one-to-one correspondence) if it is injective and
surjective.

I will draw the corresponding picture on the board. If f : A — B, the image
of f is said to be the set of all y € B such that for some z € A, f(x) = y.
So f is surjective if its image is the entire domain.

(For those of you who are familiar with the notion of an inverse function,
I will note that f is injective if and only if it has a left inverse, surjective
if and only if it has a right inverse, and bijective if and only if it has an
inverse.)

Definition 1.2.2 Suppose f is a function from A to B, and g is a function
from B to C. Then the composition of g and f, denoted go f, is the function
from A to C satisfying

go f(x)=g(f(x))

for every x in C.

1.3. CARDINALITY 9

Again, I will draw the corresponding picture on the board. You should think
about what the equation above says in terms of the relations Ry and R,.
It is not hard to argue from the basic axioms of set theory that for every
such f and g there is a function g o f meeting the specification. (So the
“definition” has a little “theorem” built in.)

Later in the course we will need to use the notion of a partial function.

Definition 1.2.3 A partial function f from A to B is a binary relation Ry
on A and B such that for every x in A there is at most one y in B such
that R¢(x,y).

Put differently, a partial function from A to B is a really a function from
some subset of A to B. For example, we can consider the following partial
functions:

1. f: N — N defined by

undefined otherwise

fla) = { z/2 if 2 is even

2. g: R — R defined by
x ifz>0
oo ={ ¥ .

undefined otherwise

3. h: N — N, where h is not defined for any input.

An ordinary function from A to B is sometimes called a total function, to
emphasize that it is defined everywhere. But keep in mind that if I just say
“function” then, by default, I mean a total function.

1.3 Cardinality

The abstract style of reasoning in mathematics is nicely illustrated by Can-
tor’s theory of cardinality. Later, what has come to be known as Cantor’s
“diagonal method” will also play a central role in our analysis of computabil-
ity.

The following definition suggests a sense in which two sets can be said
to have the same “size”:

Definition 1.3.1 Two sets A and B are equipollent (or equinumerous),
written A ~ B, if there is a bijection from A to B.

10 CHAPTER 1. PRELIMINARIES

This definition agrees with the usual notion of the size of a finite set (namely,
the number of elements), so it can be seen as a way of extending size com-
parisons to the infinite. The definition has a lot of pleasant properties. For
example:

Proposition 1.3.2 FEquipollence is an equivalence relation: for every A, B,

and C,
e Ax A
o if A~ B, then B~ A
o if A~ B and B~ C then A~ C

Definition 1.3.3 1. A set A is finite if it is equinumerous with the set
{1,...,n}, for some natural number n.

2. A is countably infinite if it is equinumerous with N.

3. A is countable if it is finite or countably infinite.

(An aside: one can define an ordering A < B, which holds if and only
if there is an injective map from A to B. Under the axiom of choice, this
is a linear ordering. It is true but by no means obvious that if A < B and
B < A then A =~ B; this is known as the Schroder-Bernstein theorem.)

Here are some examples.

1. The set of even numbers is countably infinite: f(z) = 2x is a bijection
from N to this set.

2. The set of prime numbers is countably infinite: let f(z) be the xth
prime number.

3. More generally, as illustrated by the previous example, if A is any
subset of the natural numbers, then A is countable. In fact, any subset
of a countable set is countable.

4. A set A is countable if and only if there is a surjective function from N
to A. Proof: suppose A is countable. If A is countably infinite, then
there is a bijective function from N to A. Otherwise, A is finite, and
there is a bijective function f from {1,...,n} to A. Extend f to a
surjective function f’ from N to A by defining

iy | flz) ifxe{l,...,n}
Fw) = { f(1) otherwise

1.3. CARDINALITY 11

Conversely, suppose f : N — A is a surjective function. If A is finite,
we’re done. Otherwise, let g(0) be f(0), and for each natural number
i, let g(i+ 1) be f(k), where k is the smallest number such that f(k)
is not in the set {g(0),g(1),...,9(7)}. Then g is a bijection from N to
A.

5. If A and B are countable then so is AU B.

6. N x N is countable. To see this, draw a table of ordered pairs, and
enumerate them by “dovetailing,” that is, weaving back and forth. In
fact, one can show that the function

1
J({z,y)) = 5@ +y)z+y+1)
is a bijection from N x N to N.

7. Q is countable. The function f from N x N to the nonnegative rational

numbers /
_Joz/y ity#0
[, y) = { 0 otherwise

is surjective, showing that the set of nonnegative rational numbers is
countable. Similarly, the set of negative rational numbers is countable,
and hence so is their union.

Theorem 1.3.4 The set of real numbers is not countable.

Proof. Let us show that in fact the real interval [0, 1] is not countable. Sup-
pose f: N — [0, 1] is any function; it suffices to construct a real number that
is not in the range of f. Note that every real number f(i) can be written as
a decimal of the form

O.Gi,oa@laiyg ce

writing 1 as 0.99999. (If f(¢) is a terminating decimal, it can also be written
as a decimal ending with 9’s. For concretness, choose the latter represen-
tation.) Now define a new number 0.byb1bs ... by making each b; different
from a; ;. Specifically, set b; to be 3 if a;; is any number other than 3, and 7
otherwise. Then the number 0.b9b1bs . .. is not in the range of f(7), because
it differs from f (i) at the ith digit. O

Similar arguments can be used to show that the set of all functions f :
N — N, and even the set of all functions f : N — {0,1} are uncountable. In
fact, both these sets have the same cardinality, namely, that of R. Cantor’s

12 CHAPTER 1. PRELIMINARIES

continuum hypothesis is that there is no infinite set whose cardinality is
strictly greater than that of N, but strictly less than that of R. We now
know (thanks to Gédel and Paul Cohen) that whether or not CH is true is
independent of the axioms of set theory.

The diagonal argument also shows that for any set A, P(A) has a car-
dinality greater than A. So given any set, you can always find one that is
bigger.

By the way, pay close attention to the methods of proof, and the manner
of presenting proofs, in these notes. For example, the conventional way of
proving “if A then B” is to suppose that A is true and show that B follows
from this assumption. You will often see proofs by contradiction: to prove
that a statement A is true, we can show that the assumption that it is false
leads to a contradiction. If you are not entirely comfortable reading and
writing such proofs, please talk to me about ways to fill that gap.

Chapter 2

Models of computation

In this chapter we will consider a number of definitions of what it means for
a function from N to N to be computable. Among the first, and most well
known, is the notion of a Turing machine. The beauty of Turing’s paper,
“On computable numbers,” is that he presents not only a formal definition,
but also an argument that the definition captures the intuitive notion. (In
the paper, Turing focuses on computable real numbers, i.e. real numbers
whose decimal expansions are computable; but he notes that it is not hard
to adapt his notions to computable functions on the natural numbers, and
so on.)

From the definition, it should be clear that any function computable by
a Turing machine is computable in the intuitive sense. Turing offers three
types of argument that the converse is true, i.e. that any function that we
would naturally regard as computable is computable by such a machine.
They are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are computable.

We will discuss Turing’s argument of type 1 in class. Most of this chapter
is devoted to filling out 2 and 3. But once we have the definitions in place,
we won’t be able to resist pausing to discuss Turing’s key result, the un-
solvability of the halting problem. The issue of unsolvability will remain a
central theme throughout this course.

13

14 CHAPTER 2. MODELS OF COMPUTATION

This is a good place to inject an important note: our goal is to try to
define the notion of computability “in principle,” i.e. without taking into ac-
count practical limitations of time and space. Of course, with the broadest
definition of computability in place, one can then go on to consider compu-
tation with bounded resources; this forms the heart of the subject known as
“computational complexity.” We may consider complexity issues briefly at
the end of this course.

2.1 Turing machines

Turing machines are defined in Chapter 9 of Epstein and Carnielli’s text-
book. I will draw a picture, and discuss the various features of the definition:

e There is a finite symbol alphabet, including a “blank” symbol.
e There are finitely many states, including a designated “start” state.

e The machine has a two-way infinite tape with discrete cells. Note that
“infinite” really means “as big as is needed for the computation”; any
halting computation will only have used a finite piece of it.

e There is a finite list of instructions. Each is either of the form “if in
state ¢ with symbol j, write symbol k£ and go to state [” or “if in state
1 with symbol j, move the tape head right and go to state [” or “if in
state ¢ with symbol j, move the tape head left and go to state [.”

To start a computation, you put the machine in the start state, with the tape
head to the right of a finite string of symbols (on an otherwise blank tape).
Then you keep following instructions, until you end up in a state/symbol
pair for which no further instruction applies.

The textbook describes Turing machines with only two symbols, 0 and
1; but one can show that with only two symbols, it is possible to simulate
machines with more. Similarly, some authors use Turing machines with
“one-way” infinite tapes; with some work, one can show how to simulate two
way tapes, or even multiple tapes or two-dimensional tapes, etc. Indeed, we
will argue that with the Turing machines we have described, it is possible
to simulate any mechanical procedure at all.

The book has a standard but clunky notation for describing Turing ma-
chine programs. We will use a more convenient type of diagram, which I will
describe in class. Roughly, circles with numbers in them represent states.
An arrow between states ¢ and [labelled (j, k) stands for the instruction

2.1. TURING MACHINES 15

“if in state 7 and scanning j, write £ and go to state [.” “Move right” and
“move left” are indicated with arrows, — and <« respectively. This is the
notation used in the program Turing’s World, which allows you to design
Turing machines and then watch them run. If you have never played with
Turing machines before, I recommend this program to you.

It is easy to design machines that never halt; for example, you can use
one state and loop indefinitely. In class, I will go over an example from
Turing’s world called “The Lone Rearranger.”

I have described the notion of a Turing machine informally. Now let me
present a precise mathematical definition. For starters, if the machine has
n states, I will assume that they are numbered 0,...,n — 1, and that 0 is
the start state; similarly, it is convenient to assume that the symbols are
numbered 0, ..., m — 1, where 0 is the “blank” character. For such a Turing
machine, it is also convenient to use m to stand for “move left” and m + 1
for “move right.”

Definition 2.1.1 A Turing machine consists of a triple (n,m,d) where
e n is a natural number (intuitively, the number of states);
e m is a natural number (intuitively, the number of symbols);

e 0 is a partial function from {0,...,n—1}x{0,...,m—1} to {0,...,m+
1} x {0,...,n — 1} (intuitively, the instructions).

Notice that we are not specifying whether a Turing machine is made of
metal or wood, or manufactured by Intel or Motorola; we also have nothing
to say about the size, shape, or processor speed. In our account, a Turing
machine is an abstract specification that can be instantiated in many different
ways, using physical machines, programs like Turing’s world, or even human
agents at a blackboard. (In discussing the mind, philosophers sometimes
make use of this distinction, and argue that a mind is an abstract object like
a Turing machine, and should therefore no