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Preface

A\ iscrepancy theory grew out of a question posed by van der Corput
¥. in 1935: How uniform can an infinite sequence of numbers in
[0,1] be? To give meaning to this question, we may ask how fast
the function

D(n) = sup |[[|S,N[0,z]| —nz
0<z<1
grows with n, where S,, consists of the first n elements in the sequence. If
the sequence were uniform—whatever we really mean by this—we would
expect D(n) to grow rather slowly, if at all. Indeed, there are known
sequences for which D(n) = O(logn). Surprisingly, a theorem of Schmidt
says that this is essentially optimal: D(n) can never be in o(logn).

Schmidt’s result can be viewed as a limitation on how well a certain dis-
crete distribution, z — |S, N[0, ] |, can simulate a continuous one, x + nx.
In other words, a certain amount of discrepancy between the two distribu-
tions is unavoidable. Naturally, countless variants of this problem can be
formulated. Their collective body forms the subject matter of discrepancy
theory.

Intellectual curiosity aside, why should a computer scientist care? For an
answer, go back to the first sentence of the previous paragraph, and replace
the words “discrete” by “polynomial” and “continuous” by “exponential.”
The resulting sentence talks about efficiently computable distributions sim-
ulating intractable ones. By a wonderful coincidence this is the driving issue
behind a central complexity theory question: Is randomization necessary?
There is plenty of evidence to suggest that it is. Probabilistic algorithms
are usually shorter, simpler, faster than their deterministic counterparts.

xi
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But outside of specialized problem models' there is no proof that prob-
abilistic algorithms are computationally more powerful. For example, ran-
domization allows us to test whether a number is prime in polynomial time.
That we cannot replicate the feat deterministically now does not mean that
we won’t be able to some day. Whether random bits are truly needed or
not is one of the major open problems in complexity theory today.

To understand why discrepancy theory addresses this question head-on,
we must go back to the characteristic feature of a probabilistic algorithm:
access to a sequence of perfectly random bits. What would happen if,
instead, the algorithm were presented with merely a pseudorandom string of
bits or, to take the idea to its limit, one that is computed deterministically?
Should performance necessarily suffer? Intuitively, it would seem that if
the perfectly random sequence could be approximated well enough by one
that was only pseudorandom, the algorithm might be fooled into behaving
the same. Indeed, unless P =NP, polynomial algorithms—the only ones
practitioners care about—are not expected to be too good at telling apart
random and pseudorandom.

In particular, suppose that one could replace an exponential-size prob-
ability space (common ones are typically that large) by one of polynomial
size, without the algorithm realizing the subterfuge. Then, obviously, no
loss of efficiency could occur. Not surprisingly, simulating a complicated
(read: intractable) probabilistic distribution by a simple (read: polyno-
mial) one is grist for discrepancy theory’s mill; any student of Monte Carlo
techniques for numerical integration knows that.

Complexity theory adds a new twist, however. Discrepancy no longer has
to do with the accuracy of the output—as it does in numerical integration—
but only with the time it takes to produce it exactly. (What would be the
meaning of an approximate answer to the question: Is n prime?) This
different outlook has given rise to the Discrepancy Method.> Discrep-
ancy theory is blessed with many powerful tools and techniques developed
since the nineteenth century. The discrepancy method bridges these tools
with the new, vibrant field of complexity theory and algorithm design. It
has been the force behind major recent developments in areas as diverse
as probabilistic algorithms, derandomization, communication complexity,

I For example, secret key selection in a public-key cryptosystem, Byzantine agreement,
oracle-based convex-body volume estimation, or primality testing without the extended
Riemann hypothesis.

2The word “method” is to be understood here less as a particular proof technique
(cf. the probabilistic method) than as a spotlight on the common core of a large and
varied set of problems.
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searching, machine learning, pseudorandomness, computational geometry,
optimization, computer graphics, and mathematical finance.

The story of the discrepancy method is rich and far-reaching. This book
tells fragments of it by means of specific examples, including both upper
bounds (algorithm design) and lower bounds (complexity theory). The
discrepancy method counts as one of the great achievements of theoretical
computer science and one of its most compelling stories. But there is an
added pleasure: Much of the math in the story is of great beauty. How
can one resist such gems as the Alexander-Stolarsky formula or Roth’s
method of orthogonal functions or the Fourier transform method of Beck
and Montgomery? That, in addition, such techniques can be used to prove
lower bounds in complexity theory is nothing short of wondrous.

The fundamentals of discrepancy theory are presented in the first three
chapters. The presentation privileges techniques over results: The aim is
to introduce the main tools of the trade and use specific problems merely
as a vehicle for reaching that objective. This is not a book on discrepancy
theory. The reason we address the subject in the first place is to build a
pool of techniques for us to tap into in subsequent chapters. There, we
address a variety of topics, such as communication complexity, pseudoran-
domness, rapidly mixing Markov chains, sampling, linear programming,
circuit complexity, geometry, searching, linear selection, and matroid op-
timization. All subjects are presented as reasonably short, independent
vignettes. Three exceptions to this rule: Points on a sphere, convex hulls,
and minimum spanning trees (Chapters 2, 7, 11, respectively) require a
longer, technically more demanding treatment.

This book, like most, has a finite number of pages; a fact that did not
always strike the author as self-evident. The main casualty is a plethora of
serious omissions. Truly, what sort of book can call itself “the discrepancy
method” while overlooking such perennial users of the method as computa-
tional learning theory, approximate counting, volume estimation, one-way
functions, bin packing, computational finance, etc? Fortunately, excellent
texts on some of these topics already exist, eg, Biggs and Anthony [46], Gol-
dreich [143], Luby [204], Motwani and Raghavan [236], Sinclair [289], Traub
and Werschulz [309]. Since Aardenne-Ehrenfest’s proof [1] of van der Cor-
put’s conjecture in 1945, discrepancy theory has grown into a rich, mature
subject. For a thorough, expert treatment of the field, the reader hun-
gry for more will turn to Beck and Chen [37], Drmota and Tichy [111], or
Matousek [219]. None of these references address the discrepancy method,
however.

Derandomization figures prominently in this book. Soberer minds might
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smell a whiff of perversion. Random bits help to make algorithms sim-
ple, practical, and (virtually) infallible. Why would anyone want to de-
randomize them? There are two good reasons: One is that deterministic
low-discrepancy constructions are often better than randomized ones. The
other reason is, very simply, to understand. For all its wonders, random-
ness sometimes is the tree that hides the forest. For example, expanders,
convex hulls, and minimum spanning trees all lend themselves to simple,
elegant probabilistic treatments. The randomized approach is, in fact, so
powerful that, left to its own devices, it sheds scant light on these problems.
In particular, it barely hints at their stunningly rich and beautiful struc-
tures. Forgoing randomization forces us to “look under the hood.” T hope
the reader will find the sight impressive and the exploration rewarding.

Who Should Read this Book?

To anyone who is curious about algorithms, complexity, and their relation
to classical mathematics, this book has a story to tell. Complexity theory
is one of the genuinely modern sciences to emerge in the twentieth century.
While structural questions such as P vs. NP remain the tall mountains to
climb, the art of designing polynomial-time algorithms and analyzing them
mathematically has achieved an impressive level of maturity, resulting in a
number of truly astonishing results. In its own modest way, this book tries
to document this statement.

This book is for everyone with a taste for theoretical computer science.
Let it be said, however, that college-level knowledge of mathematics and
algorithms will make for smoother reading. Theoretical computer scientists
are said to be mathematicians in a hurry. Regardless of the stereotypes,
this book should please both camps, beginning at the senior undergradu-
ate level. Some chapters can be read quickly while others simply cannot.
(Which is which is for the reader to decide.) Ample background material
has been supplied as needed. A fine thought, T know... I remember a
textbook going to great lengths to explain that a compact surface of genus
one really is like a donut, and then moving on to quote the Riemann-Roch
theorem without a word of explanation. I tried to avoid this misordering
of priorities, but to try does not always mean to succeed.

Judging from its table of contents, this book promises all the cohesion of
a rummage sale. What could possibly justify putting under the same roof
modular forms, minimum spanning trees, Voronoi diagrams, expanders,
and linear circuits? Whether we are playing with the symmetries of the
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hyperbolic plane to draw dots on a beach ball, or designing error-prone
priority queues to find minimum spanning trees, or calling on VC-dimension
theory to compute Voronoi diagrams, or strolling down Cayley graphs to
recycle random bits, or surfing wavelets to build high-spectrum matrices,
we are always trying to achieve the same effect, albeit for different purposes:
It is either to coax a representative sample out of a complex structure or, as
in the last example, to show that this can’t be done well. The discrepancy
method encapsulates this idea and builds the tools to make it happen.

A few sections are marked with an asterisk; this indicates that they
provide the broader mathematical context within which the material is
to be understood. Reading them can be illuminating, even a lot of fun
(I hope), but it is not essential. Keep in mind, however, that much of
the added value of a book over, say, a collection of research articles often
resides in those less than indispensable passages. To make this volume as
self-contained as possible and at the same time enable different levels of
reading, copious amounts of background material have been included in
footnotes and appendices.

There is a natural temptation for any book on advanced topics to handle
complicated arguments with quick brushstrokes and let the readers figure
out, the messy details by themselves. I have resisted this temptation. My
rule has been to provide complete proofs for pretty much everything dis-
cussed in this book outside of appendices. (Of course, like any good rule,
this one has exceptions, t00.)

Notation and Terminology

All logarithms are to the base two, unless indicated otherwise. The expres-
sions f = O(g), f = 0alg), f K< g, f <a 9, 9=Qf), 9 =Qa(f), 9> f,
and g >, f all mean the same thing, ie,> f < Cg + C', for two positive
constants C,C" and all values of the variables. The subscript d indicates
that the constant C' depends on a parameter d. So, for example, one might
write O(z)¢= Oq(z?). If both f < g and g < f, we use the notation f ~ g
or f = 0(g); if f(x)/g(x) tends to 0 as x — oo, then we write f = o(g).
The expression, “for n sufficiently large,” is a handy way of saying that n
should exceed a constant large enough to satisfy the various inequalities in
which n appears.

3The reader wondering what happened to the dots should blame no one (eg, the copy
editor) but the author (ie, me) for his inability to appreciate the wisdom of unabbrevi-
ating abbreviations with extra dots. Exampli gratia, why e.g. and not eg?
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The repeated use of expressions such as “it is easy to” or “obviously”
can be exasperating. It should not. Think of them as punctuation with
meaning. For instance, to the uninitiated, hearing that Voronoi diagrams
are convex hulls in disguise, or that rational elliptic curves are modular,
are two equally intimidating statements. All four concepts have rigorously
nothing to do with one another. Each one is deep and central. Therefore,
to prove these statements must be very hard. Wrong. In this book, the
first statement might open with “It is easy to show that...,” while the
words “exceedingly difficult” might accompany the second: a useful thing
to know. The word “obviously” means that the reader should be able to
supply a proof within seconds. If he cannot, then obviously he is fully
entitled to... feel very bad about himself.
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Combinatorial Discrepancy

et (V,S) be a set system, where V = {vy,...,v,} is the ground
set and S = {S1,...,Sn}, with S; C V. (Such a combinatorial
structure is often called a hypergraph.) We wish to color the
elements of V' red and blue so that, within each S;, no color outnumbers
the other one by too much. To make this notion precise, we introduce a
function x mapping each v; € V to a “color” in {—1, 1}, and we define the
discrepancy of the set S; to be

X(S) = x(v)).

ijSi

The maximum value of |x(S;)|, over all S; € S, is called the discrepancy of
the set system (under the given coloring). When no particular coloring is
understood, the discrepancy of the set system, denoted by D, (S), refers
to its minimum discrepancy over all possible colorings.’

This type of discrepancy is called combinatorial or, more evocatively, red-
blue. By contrast with some of the discrepancies discussed in subsequent
chapters, which involve both continuous and discrete distributions, the
red-blue discrepancy compares two discrete distributions. Both types are
intimately linked, however, and techniques for red-blue discrepancy often
extend effortlessly to the continuous case.

Discrepancy has been defined in the worst-case sense, ie, in the L> norm.
This is intuitively appealing but difficult to manipulate algebraically. The
L2 norm provides a friendlier environment, so we define

Ds(8) = min /x(5)7 4+ x(5m)°

IFor technical convenience, we use absolute values for the discrepancy of set systems
but not when referring to the discrepancy of a particular subset.



2 COMBINATORIAL DISCREPANCY

over all colorings x : V — {—1,1}. This suggests an algebraic characteri-
zation of the discrepancy using matrices. Let A be the incidence matriz of
the set system (V,S); this is the matrix whose n columns are indexed by
the elements of V' and whose m rows are the characteristic vectors of the
sets S;, so that A;; is 1 if v; € S; and 0 otherwise. The discrepancy of the
set system, also denoted by Do, (A), can be expressed as the L* norm of
a column vector:

Dy(A)= min ||Az||x -
ze{—1,1}"

Similarly,

DQ(A) = xe{n_lilnl}n ||ACU||2 -

Here is an overview of this chapter:

e In §1.1 we show that, in the absence of any special assumptions on
the set system, a random coloring is nearly optimal. It ensures a
discrepancy on the order of \/nlog(2m). We give several methods
for computing such a coloring deterministically and, in the process,
introduce a general derandomization technique.

e We show in §1.2 that if the number of sets in S is small enough, eg,
O(n), then the discrepancy can be kept in O(y/n). (The bound
is proven to be optimal in §1.5.) This gives us the opportunity to
introduce the powerful entropy method of discrepancy theory.

e In §1.3 we establish the classical Beck-Fiala theorem, which says
that if no element belongs to more than a constant number of sets,
then the discrepancy can be kept constant.

e We discuss the case of range spaces in §1.4. These are well-struc-
tured set systems of central importance in discrete and computa-
tional geometry. We derive several results that form the foundation
of our treatment of geometric sampling in Chapter 4.

o In §1.5 we describe several methods for deriving lower bounds on
the discrepancy of set systems. All of them have to do with the
spectrum of AT A. The simplest one relates the discrepancy to
the smallest eigenvalue. We apply this eigenvalue bound to de-
rive a classical theorem of Roth on the discrepancy of arithmetic
progressions. This result is optimal, but in general the eigenvalue
bound is weak because it does not exploit the fact that the color-
ing z is a vector with +1 coordinates. To do that, we introduce
the notion of hereditary discrepancy and show how determinants
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can be used to prove lower bounds. We give an application to set
systems formed by points and halfplanes. Finally, we derive the
powerful trace bound, which allows us to avoid determinants and
eigenvalues altogether and prove tight lower bounds in a surpris-
ingly simple manner. We give two examples: points in lines, and
points in higher-dimensional boxes.

1.1 Greedy Methods

Given a set system (V,S), with |[V| = n and |S| = m, pick a random
coloring x, meaning that for each v;, the “color” x(v;) is chosen randomly,
uniformly, and independently, in {—1,1}. We say that S; is bad if |x(S;)| >
V/2|Si|In(2m). By Chernoff’s bound,” we immediately derive

1
Prob[S; is bad | < —;
m

therefore, with nonzero probability, no S; is bad.

Theorem 1.1 The discrepancy of a set system (V,S) does not exceed
vV 2n1n(2m), where |V| = n and |S| = m. This is achieved by a random
coloring.

Let us slightly relax the bound and say that S; is bad if

IX(Si)| > V/3|Si] In(2m).

Then, by Chernoff’s bound, the probability that no S; is bad exceeds 1 —
1/y/m. Note that if the first coloring we try fails, we should keep on

trying. The probability of being still unsuccessful after k attempts is only
O(1/mk/?).

The Method of Conditional Expectations

We now describe a general technique for derandomizing the probabilistic
coloring algorithm, ie, transforming it into one that does the same thing
without using random bits.

The idea is to assign x(v1), x(v2), etc, in that order, without ever back-
tracking. Let B = Y_." | B;, where B; is the indicator variable equal to 1

28ee Lemma A.5.



4 COMBINATORIAL DISCREPANCY

if S; is bad and 0 otherwise. We know that

EB = ;EB,» = ;Prob[si is bad | < % : (1.1)
Let £1 = 1 be such that
E[B|x(v1) =e1] <E[B|x(v1) = —e1].
We have
EB = Ey () E[B|x(v1)] > E[B|x(v1) =&1]. (1.2)
In general, let €, € {—1,1} minimize the function of z,
E[B|x(v1) =e1,...,X(vk-1) = &1, x(vx) = z].
Note that
E[B|x(v1) =e1,...,x(vk-1) = €k-1]
=E, () E[B|x(v1) =¢€1,..., x(vk—1) = -1, x(vr) ]
> E[B|x(v1) =¢1,...,x(vk) = ¢r].
It follows from (1.2) that
EB > E[B|x(v1) =e¢1,-..,x(vr) = ek ]-

At k = n, no randomness is left, so from (1.1),

% >EB > E[B|x(1) = e1,-..,x(vn) = ],

The right-hand side denotes the number of bad S;’s in the final color-

ing, which, being less than one, is therefore zero. Thus, the assignment
x(vi) =¢; (1 <i < n) guarantees that each S; satisfies

IX(Si)| < V/3ISi| In(2m).

The entire procedure can be carried out in polynomial time. Indeed