

Pairwise Independence

and Derandomization

Pairwise Independence
and Derandomization

Michael Luby

Digital Fountain
Fremont, CA, USA

Avi Wigderson

Institute for Advanced Study
Princeton, NJ, USA

avi@ias.edu

Boston – Delft

Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

A Cataloging-in-Publication record is available from the Library of Congress

The preferred citation for this publication is M. Luby and A. Wigderson, Pairwise

Independence and Derandomization, Foundation and Trends R© in Theoretical Com-
puter Science, vol 1, no 4, pp 237–301, 2005

Printed on acid-free paper

ISBN: 1-933019-76-X
c© 2006 M. Luby and A. Wigderson

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Foundations and Trends R© in
Theoretical Computer Science

Volume 1 Issue 4, 2005

Editorial Board

Editor-in-Chief:
Madhu Sudan
Department of CS and EE
MIT, Stata Center, Room G640
32 Vassar Street, Cambridge
Massachusetts 02139,
USA
madhu@mit.edu

Editors
Bernard Chazelle (Princeton)
Oded Goldreich (Weizmann Inst.)
Shafi Goldwasser (MIT and Weizmann Inst.)
Jon Kleinberg (Cornell University)
László Lovász (Microsoft Research)
Christos Papadimitriou (UC. Berkeley)
Prabhakar Raghavan (Verity Inc.)
Peter Shor (MIT)
Madhu Sudan (MIT)
Éva Tardos (Cornell University)
Avi Wigderson (IAS)

Editorial Scope

Foundations and Trends R© in Theoretical Computer Science
will publish survey and tutorial articles in the following topics:

• Algorithmic game theory

• Computational algebra

• Computational aspects of
combinatorics and graph theory

• Computational aspects of
communication

• Computational biology

• Computational complexity

• Computational geometry

• Computational learning

• Computational Models and
Complexity

• Computational Number Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of algorithms

• Distributed computing

• Information retrieval

• Operations Research

• Parallel algorithms

• Quantum Computation

• Randomness in Computation

Information for Librarians
Foundations and Trends R© in Theoretical Computer Science, 2005, Volume 1,
4 issues. ISSN paper version 1551-305X. ISSN online version 1551-3068. Also
available as a combined paper and online subscription.

Foundations and TrendsR© in
Theoretical Computer Science

Vol. 1, No 4 (2005) 237–301
c© 2006 M. Luby and A. Wigderson
DOI: 10.1561/0400000009

Pairwise Independence and Derandomization

Michael Luby1 and Avi Wigderson2

1 Digital Fountain, Fremont, CA, USA
2 Institute for Advanced Study, Princeton, NJ, USA, avi@ias.edu

Abstract

This article gives several applications of the following paradigm, which
has proven extremely powerful in algorithm design and computational
complexity. First, design a probabilistic algorithm for a given problem.
Then, show that the correctness analysis of the algorithm remains valid
even when the random strings used by the algorithm do not come
from the uniform distribution, but rather from a small sample space,
appropriately chosen. In some cases this can be proven directly (giving
“unconditional derandomization”), and in others it uses computational
assumptions, like the existence of 1-way functions (giving “conditional
derandomization”).

The article is based on a series of lectures given by the authors in
1995, where the notes were scribed by the attending students. (The
detailed list of scribes and other contributors can be found in the
Acknowledgements section at the end of the manuscript.) The cur-
rent version is essentially the same, with a few minor changes. We note
that this publication takes place a decade after the lectures were given.
Much has happened in the area of pseudorandomness and derandom-
ization since, and perhaps a somewhat different viewpoint, different
material, and different style would be chosen were these lectures given
today. Still, the material presented is self contained, and is a prime

manifestation of the “derandomization” paradigm. The material does
lack references to newer work though. We recommend the reader inter-
ested in randomness, derandomization and their interplay with compu-
tational complexity to consult the following books and surveys, as well
as their extensive bibliography: [31, 14, 36, 37, 21, 42].

Contents

1 Pairwise Independence 1

1.1 Pairwise independence: Definition 2
1.2 Small families of hash functions 3
1.3 Derandomization applications 4
1.4 Dictionaries 5

2 Limited Independence Probability Spaces 9

2.1 Modulo prime space 9
2.2 Linear polynomial space 10
2.3 Mapping between {0,1}n and GF[2n] 11
2.4 Inner product space 11

3 Pairwise Independence and Complexity Classes 13

3.1 RP and BPP 13
3.2 Complexity of unique solutions 15
3.3 BPP ⊆

∑
2 16

3.4 AM = IP 18

4 Recycling Randomness 21

4.1 Deterministic amplification 21

ix

4.2 The Chor-Goldreich generator 23
4.3 The Nisan generator 24
4.4 The Impagliazzo-Zuckerman generator 26
4.5 The expander mixing Lemma 29
4.6 The Karp-Pippenger-Sisper generator 32
4.7 The Ajtai-Komlós-Szemerédi generator 32

5 Pseudo-Random Generators 35

5.1 One-way functions 35
5.2 Hidden Bit Theorem 38
5.3 Pseudo-random generators 44

6 Deterministic Counting 47

6.1 #P and approximate counting 47
6.2 DNF counting 50
6.3 GF[2] polynomial counting 51
6.4 Bounded depth circuit counting 55

Acknowledgements 63

References 65

1

Pairwise Independence

In this chapter, and indeed in much of the rest of this article, we will
be considering randomized algorithms, and their performance when
their input is not “purely” random. To set the stage, let us consider
an algorithm A that on input x wishes to evaluate some function f at
x. A randomized algorithm for this task may use an input a sequence
of random variables Z1, . . . ,Zn where the Zi’s take their value from
some finite set T . Informally, A would be considered good for com-
puting f , if it is very likely to output f(x), when the Zi’s are drawn
independently and uniformly from the set T . But what happens, when
the random variables are not chosen uniformly, and especially, inde-
pendently. Depending on the level of independence, the support of the
joint distribution on Z1, . . . ,Zn could be much smaller than the support
of the independent uniform distribution. In turn this allows for efficient
calculation of the probability of various events (or to compute the most
likely output of A on input x). In this section, we introduce definitions
that study distributions that are not fully independent, and show some
algorithmic uses.

1

2 Pairwise Independence

1.1 Pairwise independence: Definition

Consider a set of N random variables indexed by a set U , i.e., {Zx :
x ∈ U} with |U | = N , that take on values from a set T , (i.e., Zx ∈ T).
Let D : TU → [0,1] denote their joint distribution function, i.e., for α =
{αx ∈ T |x ∈ U} let Pr[∀x ∈ U,Zx = αx] = D(α).

For finite t = |T |, a uniform distribution (i.e., D(α) = 1/tn) assigns
Pr[Zx = αx] = 1/t, for all x ∈ U , αx ∈ T . If this distribution satisfies,
for all x 6= y ∈ U and for all α,β ∈ T ,

Pr[Zx = α,Zy = β] = Pr[Zx = α] · Pr[Zy = β] = 1/t2,

then we refer to this distribution as pairwise independent.
Pairwise independence is not the same as complete independence.

For example, consider following set of three pairwise-independent
binary variables (U = {1,2,3},T = {0,1}, t = 2), where each row gives
an assignment to the three variables and the associated probability.
(The leftmost column gives an index s ∈ {0,1}2 for each row.)

s Z1 Z2 Z3 D(·)
00 0 0 0 1

4

01 0 1 1 1
4

10 1 0 1 1
4

11 1 1 0 1
4

The above distribution has its support on only four elements of TU ,
whereas the uniform distribution has support on all eight elements.
(The support of a distribution D() is the set of elements α ∈ TU for
which D(α) > 0.) Shortly, we will see that the support of pairwise
independent distrubtions can get much smaller than the support of the
uniform distribution, as N = |U | → ∞.

The notion of pairwise independence emerged first in the context of
“hash functions”. To describe this context, notice that each row s above
can be thought of as a function hs : U → T , where hs(x) = Zx. Let S
be the set of indices s for these functions. So, in this case, S = {0,1}2.
For all x 6= y ∈ U , for all α,β ∈ T , we have

Pr
s∈

RS
[hs(x) = α ∧ hs(y) = β] = 1/4 = 1/t2

1.2. Small families of hash functions 3

(where the notation s ∈R S denotes that s is chosen uniformly at ran-
dom from the set S). (Notice in particular that Prs∈

RS
[hs(x) = hs(y)] =

1/2 = 1/t.) Any set of functions satisfying this condition is a 2-universal
family of hash functions. Definitions and explicit constructions of 2-
universal hash functions were first given by Carter-Wegman [40]. The
original applications described in Carter-Wegman [40] were straight-
forward, similar to those described in the later section on dictionaries
based on hashing. As these notes indicate, subsequently 2-universal
hashing has been applied in surprising ways to a rich variety of
problems.

1.2 Small families of hash functions

In the last section we saw how to construct N = 3 pairwise indepen-
dent random variables with a smaller support than needed for 3 fully
independent random variables. (Of course, we couldn’t have picked a
smaller choice of N to demonstrate this difference!) But to get a true
sense of the difference, it is useful to let N →∞. In this section we
will show how to construct N = 2n random variables, indexed by the
set U = {0,1}n taking on values in the set T which is also chosen to be
{0,1}n.

One simple way to construct a family of hash functions mapping
{0,1}n→ {0,1}n is to let S = {0,1}n × {0,1}n, and then for all s =
(a,b) ∈ S, for all x ∈ {0,1}n define hs(x) = ax + b, where the arithmetic
operations are with respect to the finite field GF[2n]. Thus, each hs

maps {0,1}n→ {0,1}n and S is the index set of the hash functions.
For each s = (a,b) ∈ S, we can write:(

hs(x)
hs(y)

)
=
(

x 1
y 1

)(
a

b

)
When x 6= y, the matrix is non-singular, so that for any x,y ∈ {0,1}n,
the pair (hs(x),hs(y)) takes on all 22n possible values (as s varies
over all S). Thus if s is chosen uniformly at random from S, then
(hs(x),hs(y)) is also uniformly distributed. This property of hash func-
tions is called 2-universal.

4 Pairwise Independence

We can view S as the set of points in a sample space on the
set of random variables {Zx : x ∈ {0,1}n} where Zx(s) = hs(x) for all
s ∈ S. With respect to the uniform distribution on S, these random
variables are pairwise independent, i.e., for all x 6= y ∈ {0,1}n, for all
α,β ∈ {0,1}n

Pr
s∈

RS
[Zx(s) = α ∧ Zy(s) = β]

= Pr
s∈

RS
[Zx(s) = α] · Pr

s∈
RS

[Zy(s) = β] = 1/22n.

To obtain a hash function that maps to k < n bits, we can still use S as
the function index family: The value of the hash function indexed by s

on input x is obtained by computing hs(x) and using the first k bits.
The imporant properties of these hash functions are:

• Pairwise independence.
• Succinctness – each function can be described as a 2n-bit

string. Therefore, randomly picking a function index requires
only 2n random bits.

• The function hs(x) can easily be computed (in
LOGSPACE, for instance) given the function index s

and the input x.

In the sequel, unless otherwise specified we are referring to this set
of pairwise independent hash functions and S denotes the set of indices
for the hash family.

1.3 Derandomization applications

Consider, for example, the MAXCUT problem: given a graph G =
(V,E), find a two-coloring of the vertices χ : V → {0,1} so as to maxi-
mize c(χ) = |{(x,y) ∈ E : χ(x) 6= χ(y)}|. We describe a solution to this
problem that is guaranteed to produce a cut where at least half the
edges cross the cut.

If the vertices are colored randomly (0 or 1 with probability 1/2) by
choosing χ uniformly from the set of all possible 2|V | colorings, then:

E[c(χ)] =
∑

(x,y)∈E

Pr[χ(x) 6= χ(y)] =
|E|
2

1.4. Dictionaries 5

Thus, there must always be a cut of size at least |E|
2 . Let S be the

index set for the hash family mapping V → {0,1}. Since the summation
above only requires the coloring of vertices to be pairwise-independent,
it follows that E[c(hs)] = |E|

2 when s ∈R S. Since |S| = |V |2, we can
deterministically try hs for all s ∈ S in polynomial time (even in the
parallel complexity class NC), and for at least one s ∈ S,hs defines a
partition of the nodes where at least |E|

2 edges cross the partition.
This derandomization approach was developed and discussed in

general terms in the series of papers Chor-Goldreich [10], Luby [28],
Alon-Babai-Itai [5]. There, the approach was applied to derandomize
algorithms such as witness sampling, a fast parallel algorithm for find-
ing a maximal independent set, and other graph algorithms.

1.4 Dictionaries

One application that uses hashing is in building “dictionaries”. A dic-
tionary is a data structure that represents a subset N of size |N | = n

from some universe of possible words U so as to be able support queries
of the form “x ∈ N?”, for x ∈ U . (This is a natural abstraction of the
classical notion of a “dictionary” for, say, English where U may be
thought of as all sequences of upto 20 English letters, while N is the
subset which are actually words in English.) Deterministic schemes
based on balanced tree data structures build such data structures in
time O(n logn) and subsequent look-ups in time O(logn) each.

Random hashing can speed this up considerably. The simple use
of hashing would be as follows. Let T = {1, . . . , t} be a set of suffi-
ciently large cardinality, and let h be some “hash” function mapping
U → T . We will store the elements of N in an array D[1, . . . , t], with
elements being indexed by elements of T . Our intent would be to set
D[h(x)] = x for every x ∈ N . Of course this would not be possible if
we had “collisions”, i.e., if h(x) = h(y) for x 6= y ∈ N . Assuming h is
collision-free on N , easy to describe, that h(x) can be computed in
“constant” time, and assuming further that D[1, . . . , t] is initialized
properly when we start, insertions and lookups take constant time.
It turns out that by picking the hash function h randomly from a small
set (as described in Section 1.2) can now be used to remove most of

6 Pairwise Independence

these assumptions. In particular if we choose s ∈R S, and use h = hs

then the expected number of colliding pairs C may be bounded from
above as follows:

E[C] =
∑

x 6=y∈N

Pr
s∈RS

[hs(x) = hs(y)] =
(

n

2

)
· 1

t

For instance, if t = n2, then E[C] ≤ 1
2 (and so the probability that

h is 1-to-1 is ≥ 1
2). (If t = n, then E[C] ≤ n

2 .) Thus this yields a sim-
ple hashing scheme in which insertions and look-ups cost a unit time,
though the size of the data structure representing N is of size O(n2)
(assuming that the table D of size n2 is initialized properly). Below we
see how to improve upon the space complexity.

The following two-level hashing scheme, due to Fredman-Komlós-
Szemerédi [12], also takes time O(n) to construct the dictionary and
constant time for each look-up, but the advantage is that it uses only
O(n) cells in total. Let T = {1, . . . ,n}.

(1) Pick s ∈R S and map N into T . For each i ∈ T , let Ni be
the subset of N mapped to i by hs, and let ni = |Ni|. Let
C =

∑
i∈T

(
ni
2

)
be the number of colliding pairs. If C > n then

start over at step (1), else go on to step (2).
(2) For each i ∈ T , if ni ≥ 1 then we allocate a table Ti of n2

i

cells, and let Si denote the index set for the pairwise inde-
pendent hash family (as in Section 1.2) mapping U → Ti.
Pick si ∈R Si, and use hsi to map Ni to Ti. If hsi maps Ni 1
to-1 into Ti then this is a good choice for si, else rechoose si

independently and try again until hsi does describe a 1-to-1
mapping.

Because E[C] ≤ n/2 in step (1), Pr[C ≤ n] ≥ 1/2, and thus the
expected number of times step (1) is repeated is at most 2. Similarly, in
step (2), for each i ∈ T , the expected number of times till the mapping
of Ni into Ti is 1-to-1 is at most 2. Thus, the overall expected time to
construct the dictionary is O(n). The total number of cells used to store
N is D =

∑
i∈T n2

i . Noting that D − 2C = |N | = n, and that C ≤ n, it

1.4. Dictionaries 7

follows that at most 3n cells are used to store N . Note that we need
to also store s and all si for all i ∈ {1, . . . ,n}, but this takes at most
2(n + 1) additional cells, since the description of each hash function
takes two cells.

Each find operation takes constant time.

2

Limited Independence Probability Spaces

We describe constructions of probability spaces that induce limited
independence on a sequence of random variables. These are extensions
of constructions described in Section 1.2.

2.1 Modulo prime space

Let p be a prime number. The sample space is the set of all pairs
S = {(a,b) : a,b ∈ Zp}, where Zp = {0, . . . ,p − 1}. The distribution on
the sample points is uniform, i.e., (a,b) ∈R S. Let ζ be an indeterminate
and consider the polynomial

pa,b(ζ) = (aζ + b) mod p,

where (a,b) ∈ S. For all i ∈ Zp, define random variable

Xi(a,b) = pa,b(i).

For brevity, we sometimes use Xi in place of Xi(a,b).

Claim 2.1. X0, . . . ,Xp−1 are uniformly distributed in Zp and pairwise
independent.

9

10 Limited Independence Probability Spaces

Proof. For any pair i, j ∈ Zp, i 6= j, and for any pair of values α,β ∈ Zp,
there is a unique solution a,b ∈ Zp to the pair of equations:

• pa,b(i) = α.
• pa,b(j) = β.

Thus, PrA,B[Xi(A,B) = α ∧ Xj(A,B) = β] = 1/p2.

Recall the definition in Section 1.1 of pairwise independence. The
following is a generalization of this definition.

Definition 2.2. (k-wise independence) Let X1, . . . ,Xm be a seq-
uence of random variables with values in a set N . We say the random
variables are k-wise independent if, for all 1 ≤ i1 < · · · < ik ≤m and for
all α1, . . . ,αk ∈ N ,

Pr[Xi1 = α1 ∧ ·· · ∧ Xik = αk] = Pr[Xi1 = α1] · · ·Pr[Xik = αk].

Exercise 2.3. Let p be a prime number and let m ≤ p. Generalize the
Modulo Prime Space to a probability space where X0, . . . ,Xm−1 ∈R Zp

are k-wise independent, where the size of the probability space is pk.

The Modulo Prime Space can be generalized as follows. The follow-
ing construction is a more detailed description of the one presented in
Section 1.2.

2.2 Linear polynomial space

Let F be any finite field and consider the polynomial

pa,b(ζ) = aζ + b

over F , where a,b ∈ F (we identify the integers {0, . . . , |F| − 1} with
the elements of F). The sample space is S = {(a,b) : a,b ∈ F} and the
distribution on S is (a,b) ∈R S. For all i ∈ F , define random variable

Xi(a,b) = pa,b(i),

2.3. Mapping between {0,1}n and GF[2n] 11

where i on the left side of the equality is treated as an index and on
the right side of the equality it is the corresponding element of F .

The random variables X0, . . . ,X|F|−1 are uniformly distributed in F
and pairwise independent. A field with nice properties is GF[2n], the
Galois field with 2n elements.

2.3 Mapping between {0,1}n and GF[2n]

There is a natural mapping between {0,1}n and polynomials in one
variable ζ of degree n − 1 over GF[2]. Namely, if a ∈ {0,1}n and
〈a0, . . . ,an−1〉 are the bits of a then the corresponding polynomial is

a(ζ) =
n−1∑
i=0

aiζ
i.

These polynomials are the field elements of GF[2n]. Let a ∈ {0,1}n
and b ∈ {0,1}n and let a(ζ) and b(ζ) be the corresponding poly-
nomials. Computing a + b over GF[2n] consists of computing a ⊕ b,
where ⊕ is vector addition over GF[2]. Equivalently, computing a + b

over GF[2n] consists of computing a(ζ) + b(ζ) over GF[2], i.e., for all
i ∈ {0, . . . ,n − 1}, the ith coefficient of a(ζ) + b(ζ) is ai ⊕ bi. Comput-
ing a · b over GF[2n] consists of computing a(ζ) · b(ζ) mod r(ζ), where
a(ζ) · b(ζ) is polynomial multiplication over GF[2] that results in a
polynomial of degree 2n − 2, and r(ζ) is a fixed irreducible polynomial
of degree n. The zero element of GF[2n] is the identically zero polyno-
mial with coefficients ai = 0 for all i ∈ {0, . . . ,n − 1}, and the identity
element is the polynomial with coefficients a0 = 1 and ai = 0 for all
i ∈ {1, . . . ,n − 1}.

In the Modulo Prime Space, X0, . . . ,Xp−1 are pairwise independent
and the size of the space is p2. We describe a way to construct a pairwise
independent probability space for {0,1}-valued random variables that
has size linear in the number of random variables.

2.4 Inner product space

Let ` be a positive integer. The sample space is S = {0,1}` and the
distribution on sample points is a ∈R S. For all i ∈ {0,1}` \ {0`}, define

12 Limited Independence Probability Spaces

random variable

Xi(a) = a � i =

 i∑
j=1

aj · ij

 mod 2.

(We use � to denote multiplication of matrices over GF[2], where we
are using the convention that a vector to the left of � is considered a
row vector and a vector to the right of � is viewed as a column vector.)

Claim 2.4. X1, . . . ,X2`−1 are uniformly distributed and pairwise
independent.

Exercise 2.5. Prove the pairwise independence property for the
Inner Product Space.

Exercise 2.6. Let p be a positive integer and let X1, . . . ,Xn ∈R Zp be
a sequence of four-wise independent random variables. Define random
variable

Y = min{(Xi − Xj) mod p : 1 ≤ i < j ≤ n}.

Prove there is a constant c > 0 such that for any α ≤ 1

Pr[Y ≤ αp/n2] ≥ cα.

Hint 2.7. Let N be the set of n(n − 1)/2 unordered pairs {(i, j) : 1 ≤
i < j ≤ n}. For fixed α, consider the sequence of {0,1}-valued random
variables {Ze : e ∈ N}, where if e = (i, j) then Ze = 1 if |Xi − Xj | ≤
αp/n2 and Ze = 0 otherwise. Using the first two terms of the inclusion-
exclusion formula, show that for any α,

Pr[∃e ∈ N : Ze = 1] ≥
∑
e∈N

Pr[Ze = 1] −
∑

e,e′∈N,e6=e′

Pr[Ze = 1 ∧ Ze′ = 1].

3

Pairwise Independence and Complexity Classes

The modern theory of computational complexity revolves around the
notions of proofs, randomness and interaction. This leads to a rich
collection of complexity classes (P, NP, ΣP

i , ΠP
i , RP, BPP, AM, IP

etc.). The formal definitions of the classes often suggests some obvious
relationships between them such as C1 ⊆ C2 for some pairs of classes
C1 and C2, while leaving most other such relationships open. However,
many non-obvious relationships turn out to hold between these classes,
and many such are shown using the technique of pairwise independence.
In this chapter we describe several such relationships.

This chapter, while technically self-contained, assumes the reader
has some background in computational complexity (mostly for the
motivation behind the classes). A reader is encouraged to read some
classical texts in computational complexity [34, 37] before carrying on
with this chapter.

3.1 RP and BPP

Recall that a language L ∈NP if there is a polynomial time TM M

(where TM denotes a Turing machine) with the following properties.

13

14 Pairwise Independence and Complexity Classes

M has two inputs x and y, where x is the string for which membership
in L is trying to be decided, and y is a potential witness for membership
of x in L. If x ∈ {0,1}n then y ∈ {0,1}r, where r is polynomial in n.
The output of M(x,y) is a single bit. The running time of M(x,y) is
polynomial in ||x||. For x ∈ {0,1}n, let Wx = {y ∈ {0,1}r : M(x,y) =
1}. The machine has the property that for all x ∈ {0,1}n,

x ∈ L ⇒ |Wx| > 0,

x 6∈ L ⇒ |Wx| = 0.

RP is the class of languages L where membership can be checked with
one-sided error by a randomized, polynomial-time TM. Keeping the
same notation as above, L ∈RP if there is TM M with the following
properties. There is a constant cyes > 0 associated with M . For x ∈
{0,1}n, let Wx = {y ∈ {0,1}r : M(x,y) = 1}. For any A ⊆ {0,1}r, let
µ(A) = |A|/2r be the fraction of r-bit strings which are in A. M has
the property that for all x ∈ {0,1}n,

x ∈ L ⇒ µ(Wx) ≥ cyes,

x 6∈ L ⇒ µ(Wx) = 0.

The way we can decide membership of x ∈ {0,1}n is to choose y ∈R

{0,1}r and decide x ∈ L if M(x,y) = 1, i.e., if y ∈Wx, and decide x 6∈ L
if M(x,y) = 0, i.e., if y 6∈Wx. Notice that the decision is always correct
if x 6∈ L, but the decision is only correct with probability cyes if x ∈ L.
On the other hand, when x ∈ L, if y ∈Wx then y is a witness to the
fact that x really is in L, i.e., we can have full confidence in our deci-
sion. The standard way to boost confidence in the decision is to choose
y1, . . . ,yk ∈R {0,1}r and decide x ∈ L if, for any i ∈ {1, . . . ,k},yi ∈Wx.
Then, the probability of making an incorrect decision when x ∈ L is
reduced to (1 − cyes)k.

BPP is the class of languages L where membership can be checked
with two-sided error by a randomized, polynomial-time TM. Keeping
the same notation as above, L ∈ BPP if there are constants cyes and
cno with cyes > cno, such that for all x ∈ {0,1}n,

x ∈ L ⇒ µ(Wx) ≥ cyes,

x 6∈ L ⇒ µ(Wx) ≤ cno.

3.2. Complexity of unique solutions 15

We can decide membership in L exactly the same as for RP, but then
there is a chance of making an incorrect decision both in the case when
x ∈ L and when x 6∈ L. The way to boost confidence in the decision is
similar to that for RP: choose y1, . . . ,yk ∈R {0,1}r and decide x ∈ L if
yi ∈Wx for more than k(cno + cyes)/2 of the i ∈ {1, . . . ,k}, and decide
x 6∈ L otherwise.

3.2 Complexity of unique solutions

NP-hard problems often have many possible solutions. Would it make
it easier if we were assured of a unique solution? Specifically, we say
an algorithm A ∈RP unique-solves an NP language L if, for all x,
the output of A is guaranteed to be “no” with high probability if
|Wx| = 0 and the output of A is guaranteed to be “yes” with high
probability if |Wx| = 1. Notice there is no requirement on the output
of A if |Wx| is neither 0 nor 1, i.e., A can output anything in this
case. Because of this, A cannot be used directly to decide membership
in L. Valiant-Vazirani [39] nevertheless show that A can be used indi-
rectly to efficiently decide membership in L. More specifically, Valiant-
Vazirani [39] show that if there is an A ∈RP that unique-solves some
NP-complete language L then RP = NP. The idea behind Valiant-
Vazirani [39] follows.

Consider the following language CIRCUIT SAT: Given a circuit
C with an r-bit input, is there a y ∈ {0,1}r such that C(y) = 1? A
slightly more general NP-complete problem, Π, is the following: Given
a circuit C with an r-bit input, a function h mapping {0,1}r to some
set of values T , and a value α ∈ T , is there an input y to C such that
C(y) = 1 and h(y) = α?

Theorem 3.1. If there is an algorithm A ∈RP which unique-solves
Π then RP = NP.

Proof. We design an algorithm B ∈RP that decides membership in
CIRCUIT SAT based on A. On input a circuit C with an r-bit input,
B works as follows:

• Choose k ∈R {1, . . . , r}.

16 Pairwise Independence and Complexity Classes

• Choose s ∈R S, where S is the index set of the pairwise inde-
pendent hash family (as in Section 1.2) that maps U = {0,1}r
to T = {0,1}k+1.
• Choose α ∈R {0,1}k+1.
• Call A(C,hs,α). Give the same answer as A.

Note that ||s|| = O(r), and so this reduction can be performed in ran-
dom polynomial time. If C is not satisfiable, then clearly B will respond
“no”. If C is satisfiable, then for some k ∈ {1, . . . , r}, 2k−1 ≤ N ≤ 2k,
where N is the number of satisfying assignments (witnesses) to C. With
probability 1/r we guessed this k correctly.

Assume we have the correct k. Previously, we saw that for a table T ,
with |T | = aN , the expected number of colliding pairs E[C] ≤ N/(2a).
In our case, 2 ≤ a ≤ 4, Thus, E[C] ≤ N/4. Hence, with probability at
least 1/2, at most N/2 elements are paired and so at least N/2 table
entries are singletons. Assume this is the case. Since |T | ≤ 4N , Pr[there
is a unique element that maps to α] ≥ 1/8.

Overall, the probability that we pick (hs,α) so that (C,hs,α) has
a unique witness is at least 1/(16r). This can be boosted in the usual
way. We thus have an RP algorithm for an NP-complete problem,
implying RP = NP.

3.3 BPP ⊆
∑

2∑
2 corresponds to languages L which can be written in the form:

x ∈ L⇐⇒ ∃z,∀w,qL(x,z,w) = 1

where qL is a polynomial time predicate, and ||z|| and ||w|| are poly-
nomial in ||x||.

The following proofs are due to Sipser [36]. Consider the follow-
ing class BPP′, which is a very strong form BPP: For all L ∈ BPP′

when x ∈ L then |Wx| > 2r−1 and when x 6∈ L then |Wx| ≤ 2(r−1)/2. We
can determine if x ∈ L for L ∈ BPP′ as follows. Pick a s ∈R S where
our hash family maps {0,1}r → {0,1}r−1. For the case of x 6∈ L, the
table T which hs maps to has |T | ≥ |Wx|2. We know from our previ-
ous analysis that in such a situation, Pr[hs is 1-to-1] ≥ 1

2 . When x ∈ L,
Pr[hs is 1-to-1] = 0 (since the table is too small). Thus, we have a way

3.3. BPP ⊆
∑

2 17

of distinguishing the two situations. We can decide if x 6∈ L by the
following,

x 6∈ L ⇐⇒ ∃s ∈ S,∀y,y′ ∈Wx such that y 6= y′,

hs(y) 6= hs(y′)

This is a
∑

2 form of the complement of L (note that membership in
Wx takes only polynomial time to check). Therefore, BPP′ ⊆

∑
2 and

BPP′ ⊆ Π2. We now present the result of Sipser [36].

Theorem 3.2. BPP ⊆
∑

2.

Proof. Consider the following version BPP′′ of BPP: For all L ∈
BPP′′, when x ∈ L then |Wx| > 1

r2r and when x 6∈ L then |Wx| ≤ 1
2r2 2r.

Using the usual amplification method, a language L ∈ BPP can be eas-
ily reduced to a language L′ ∈ BPP′′, and thus BPP′′ is equivalent to
BPP.

We now show how to determine if x ∈ L, where L ∈ BPP′′. We
use a table of size t = 1

r2 2r. Pick s1,s2 . . . ,sr ∈R S where our pairwise
independent hash family maps {0,1}r →

[
1
r2 2r

]
). Since we can’t get a

1-to-1 mapping for one particular table, we consider for every witness
in Wx whether there is at least one mapping which isolates the witness.
We notice h isolates y ∈Wx iff for all y′ ∈Wx such that y′ 6= y, we have
h(y) 6= h(y′).

Define an event A: for all y ∈Wx, there is an i ∈ {1, . . . , r} such that
for all y′ ∈Wx such that y′ 6= y,hsi(y) 6= hsi(y

′). We show that

x ∈ L ⇒ Pr[A] = 0.

x 6∈ L ⇒ Pr[A] > 0.

Each hsi can isolate at most t elements. Hence, if x ∈ L, the number
of witnesses that can be isolated is ≤ tr = 1

r2r < |Wx|, and thus there
must be some witnesses in Wx that are not isolated by any of the r

hash functions, and thus Pr[A] = 0.
What if x 6∈ L?

• Fix i,y,y′.Pr[hsi(y) = hsi(y
′)] = 1

t .
• Fix i,y.Pr[∃y′ ∈Wx,y′ 6= y,hsi(y) = hsi(y

′)] ≤ |Wx|
` ≤ 1

2 .

18 Pairwise Independence and Complexity Classes

• Fix y.Pr[∀i,∃y′ ∈Wx,y′ 6= y,hsi(y) = hsi(y
′)] ≤ 1

2r .
• Pr[A] = 1 − Pr[∃y ∈Wx,∀i ∈ {1, . . . , r},∃y′ ∈Wx,y′ 6= y,

hsi(y) = hsi(y
′)] ≥ 1 − |Wx|

2r ≥ 1 − 1
2r2 .

• Thus, Pr[A] > 0.

Membership in language L can thus be summarized as:

x 6∈ L ⇐⇒ ∃hs1 , . . . ,hsr ,∀y ∈Wx,∃i ∈ {1, . . . , r},
∀y′ ∈Wx,y′ 6= y,hsi(y) 6= hsi(y

′)

We’ve shown BPP = BPP′′ ⊆
∑

4. Notice that the third quantifier
∃i ∈ {1, . . . , r} is of polynomial size. It is possible to eliminate this quan-
tifier, and then the surrounding pair of “for all” quantifiers collapse
together, giving BPP ⊆

∑
2.

3.4 AM = IP

Goldwasser-Sipser [17] show that AM = IP, that is, public coins are as
powerful as private coins in interactive protocols. To illustrate this we
look at the graph non-isomorphism problem: GNI = {(G0,G1): graphs
G0 and G1 are not isomorphic}. To show that GNI ∈ IP, we must
exhibit a prover P and verifier V such that, for some pair of constants
cyes and cno with cyes > cno:

(1) For all (G0,G1) ∈ GNI,P causes V to accept with probability
at least cyes.

(2) For all (G0,G1) 6∈ GNI, every prover causes V to accept with
probability at most cno.

The coins of V are kept private from the prover.
Let G0 and G1 both be graphs on m nodes. The IP protocol pro-

ceeds as follows. V picks a random permutation of m nodes σ ∈R Sm

and a random graph index b ∈R {0,1} and sends σ(Gb) to P , where
σ(Gb) is the graph indexed by b with the nodes in the order specified
by σ. P then computes a bit c ∈ {0,1}, which is supposed to be the
index of the graph sent by V , and sends c to V . V accepts iff b = c.

3.4. AM = IP 19

If (G0,G1) ∈ GNI, i.e., the graphs are not isomorphic, then P can tell
which graph is sent by V and thus can compute c correctly, so that
Pr[V accepts] = 1 = cyes. If the two graphs are isomorphic then, since
the verifier sends a random permutation of the graph, the distribution
on graphs received by the prover is the same whether b = 0 or b = 1,
and since b is chosen randomly the prover can answer correctly with
probability 1/2, and thus Pr[V accepts] = 1/2 = cno.

Clearly, this protocol does not work if the coins used by the verifier
to choose b and σ are public.

Now we look at an AM protocol for the same problem. Define U

to be the set of all m vertex graphs. Define W ⊆ U to be the set of
all graphs that V could have sent in the previous protocol, so W =
{σ(Gb) : σ ∈ Sm, b ∈ {0,1}}. Now,

G0 ∼ G1⇒ |W | = m!,

G0 6∼ G1⇒ |W | = 2(m!).

(This isn’t always true, but something with a similar effect can be
arranged), so the prover has to try to convince the verifier that the set
W is big. This is done by mapping the elements of W into a table T

of size 4(m!) and looking at the probability that a random entry in T

is filled. The AM protocol proceeds as follows. V randomly chooses
s ∈R S and α ∈R {1, . . . ,T}, and send hs and α to P . P computes
σ ∈ Sm and c ∈ {0,1} and sends to V the graph σ(Gc). V accepts iff
hs(σ(Gc)) = α. Note that unlike in the IP protocol described above,
all the random bits used by V , i.e., hs and α, are sent to P and are
thus public. We want to show that if G0 is not isomorphic to G1, then
there is a fairly decent chance that the prover P will be able to find a
graph in W (equivalently, a permutation σ ∈ Sm and b ∈ {0,1}) which
is mapped to α by the hash function h. The following calculations
apply to mapping a subset W ⊆ U of size N into a table T of size 2N

(we are interested in N = 2(m!)). Below we show that given an index
α ∈ {1, . . . ,2N}, Pr[at least one element in the size N set is mapped
to α] ≥ 3/8 = cyes. Define Ei to be the event that element i is mapped
to the given α. Then by inclusion-exclusion and using the fact that

20 Pairwise Independence and Complexity Classes

the hash family is 2-universal, the above probability is:

Pr[E1 ∪ . . . ∪ EN] ≥
N∑

i=1

Pr[Ei] −
∑
i<j

Pr[Ei ∩ Ej]

=
N

2N
−
(

N

2

)
1

4N2
≥ 3

8

Thus, if x ∈ L then Pr[V accepts] ≥ 3/8. If x 6∈ L, then the subset W is
1/4 the size of the table, so Pr[V accepts] ≤ 1/4 = cno. The gap between
these probabilities can be boosted in the usual way.

4

Recycling Randomness

A randomized algorithm computing some function errs with some pos-
itive probability. This error probability can be driven down to zero
by simple repetition. For example consider an algorithm A making
one sided error when computing a Boolean function f i.e., if f(x) = 0,
A(x) is always 0; but if f(x) = 1, then A(x) = 0 with probability at
most 1/2. If we run A several, say k, times on independent random
sequences, and output 1 if any one of these trials output 1, then we get
an algorithm that errs with probability at most 2−k. Such a process,
that drives down the error of a randomized algorithm is referred to as
“amplification”. The naive amplification described above reduces the
error from 1/2 to 2−k but in the process needed a factor of k more ran-
dom bits than the original algorithm. The main quest of this chapter
is to do better. We consider the amplification of a randomized algo-
rithm without expending too much more randomness than the original
algorithm.

4.1 Deterministic amplification

Let L be a RP language. A randomized TM can decide membership of
x ∈ {0,1}n in L by choosing y ∈R {0,1}r and then checking if y ∈Wx.

21

22 Recycling Randomness

As mentioned before, we can reduce the error probability of misclassi-
fication by choosing y1, . . . ,yk ∈R {0,1}r, counting the number of these
strings that fall in Wx and basing the decision on the value of this
number. If the yi’s are chosen independently, we need kr random bits
to achieve an error probability of 2−O(k). We’d like to use fewer random
bits and still achieve a reduced error probability.

In this application, a pseudo-random generator is a deterministic
TM,G, that takes a random seed s and produces “pseudo-random”
bits G(s) = y1, . . . ,yk, where each string is of length r. The algorithm
is simply to test all k of these strings and to conclude that x ∈ L if
for any i ∈ {1, . . . ,k}yi ∈Wx and x 6∈ L otherwise. Notice there is mis-
classification only when x ∈ L and {y1, . . . ,yk} ⊆W x. We’ll give several
constructions.

Generator Random bits Error
Chor-Goldreich O(r) O(1/k)
Impagliazzo-Zuckerman O(r + k2) 2−O(k)

Nisan O(r lg k) 2−O(k)

AKS r + O(k) 2−O(k)

For the Chor-Goldreich generator we show the result for L ∈ BPP.
For all the other generators, we show the result for L ∈RP. For these
results, we assume cyes ≥ 1/2. Thus, the probability of a misclassifica-
tion when x ∈ L is < 1/2. All of these proofs can be extended to show
an analogous result for L ∈ BPP using exactly the same generator.

The results of the following exercise are due to Adleman [1] and
Bennett-Gill [7]. These results show there is a polynomial size sample
space that can be used to classify all x ∈ {0,1}n as either being in L
or not, where L ∈RP or L ∈ BPP. The crucial property lacking from
these results is that the sample space is not efficiently constructible.
This property is the main point of the deterministic amplification con-
structions given in the following sections that reduce the number of
random bits needed to find a witness with high probability.

Definition 4.1. (P/poly) We say that L ∈ P/poly if there is a poly-
nomial time TM M(x,y) such that when ||x|| = n then ||y|| = r, where
r is polynomial in n, with the following property: For each positive

4.2. The Chor-Goldreich generator 23

integer n, there is an “advice string” y ∈ {0,1}r with the property that,
for all x ∈ {0,1}n,

x ∈ L ⇒M(x,y) = 1,

x 6∈ L ⇒M(x,y) = 0.

We use the term “advice string” because, given the value of the
advice string y ∈ {0,1}r, it is easy to decide membership in L for all
x ∈ {0,1}n. Note that if it is possible to compute the value of the advice
string y ∈ {0,1}r in nO(1) time, then L ∈ P . However, in general it may
not be possible to compute the advice string in nO(1) time. One way
of thinking about a language LP/poly is that membership in L can
be decided in nO(1) time with the aid of a polynomial amount of extra
advice for each input length.

Exercise 4.2. Prove that RP ⊆ P/poly and BPP ⊆ P/poly.

4.2 The Chor-Goldreich generator

We first describe the generator due to Chor-Goldreich [10]. We show
how this generator works for L ∈ BPP. We assume that cyes ≥ 3/4 and
that cno ≤ 1/4. Let S be the index set for the pairwise independent
hash family mapping {0,1}r → {0,1}r, and let s ∈R S. We let G(s) =
hs(1), . . . ,hs(k); i.e., yi = hs(i). Then the yi’s are uniformly distributed
and pairwise independent. The algorithm concludes that x ∈ L if at
least k/2 of the strings y1, . . . ,yk are in Wx and x 6∈ L otherwise.

Theorem 4.3. The probability of misclassifying x ∈ {0,1}n with
respect to membership in L is at most 4/k.

Proof. Define

Zi =

{
1 if yi ∈Wx

0 otherwise

The Zi’s are also identically distributed and pairwise independent with
mean µ = µ(Wx) and variance σ2 = µ(1 − µ) ≤ 1/4. Since the variance

24 Recycling Randomness

of
∑k

i=1 Zi is kσ2, it follows (using the Chebyshev inequality) that

Pr

[∣∣∣∣∣
k∑

i=1

Zi − µk

∣∣∣∣∣ > k

4

]
≤ 16kσ2

k2
≤ 4

k
.

4.3 The Nisan generator

We now describe the generator of Nisan [31]. Let ` = logk. Let S be
the index set for the pairwise independent hash family {hs} map-
ping {0,1}r → {0,1}r, and let s1, . . . ,s` ∈R S. For every y ∈ {0,1}r let
G0(y) = y and define inductively for i ≥ 1,

Gi+1(s1, . . . ,si+1,y) = 〈Gi(s1, . . . ,si,y),Gi(s1, . . . ,si,hsi+1(y))〉,

where 〈a,b〉 denotes the concatenation of strings a and b. For exam-
ple, G2(s1,s2,y) = 〈y,hs1(y),hs2(y),hs1(hs2(y))〉. A more obvious way
to visualize this generator is with a complete binary tree as shown in
the following figure. A hash function is assigned to each level of this
tree. The root of the tree is assigned the seed value y, and for any node
w on level i ≥ 1 is assigned value vw, where

vw =

{
vparent(w) if w is the left child of parent(w)

hsl−i+1
(vparent(w)) otherwise

Notice G`(s1, . . . ,s`,y) is simply the concatenation of the strings on
level ` of this tree.

Before proving this generator works we need the following technical
lemma, which is also of independent interest.

4.3. The Nisan generator 25

Hash Mixing Lemma: Let ε = 2−r/3 for some fixed parameter r.
Then for all A,B ⊆ {0,1}r, and for all but an ε fraction of s ∈ S,∣∣∣∣ Pr

y∈R{0,1}r
[y ∈ A,hs(y) ∈ B] − Pr

y,z∈R{0,1}r
[y ∈ A,z ∈ B]

∣∣∣∣ ≤ ε

Proof. We want to bound the number of s ∈ S such that∣∣∣∣ Pr
y∈R{0,1}r

[y ∈ A,hs(y) ∈ B] − µ(A)µ(B)
∣∣∣∣ ≥ ε

This is exactly the number of s ∈ S such that∣∣∣∣ Pr
y∈RA

[hs(y) ∈ B] − µ(B)
∣∣∣∣ ≥ ε/µ(A)

Define the indicator random variable

Zhs
y =

{
1 if hs(y) ∈ B

0 otherwise

A hash function hs is “bad” if∣∣∣∣∣∣
∑
y∈A

Zhs
y − |A|µ(B)

∣∣∣∣∣∣ ≥ ε|A|
µ(A)

= ε2r

By Chebyshev, and pairwise independence of our hash family,

Pr
s∈RS

∣∣∣∣∣∣
∑
y∈A

Zhs
y − |A|µ(B)

∣∣∣∣∣∣ ≥ ε2r

 ≤ µ(B)|A|
ε222r

< ε

Theorem 4.4. If x ∈ L then Pr[G`(s1, . . . ,s`,y) ⊆W x] ≤ µ(W x)2
`
+

(` + 2)ε where ε = 2−r/3.

Proof. The ε` in the error term handles the hash functions that are
“bad” for the Hash Mixing Lemma. Assume, for the moment, that hs

for all s ∈ S satisfy the Hash Mixing Lemma. We show that

Pr
y∈R{0,1}r

[G(s1, . . . ,s`,y) ⊆W x] ≤ µ(W x)2
`
+ 2ε

Inductively assume it is true for ` − 1.

26 Recycling Randomness

Let A = B = {y : G(s1, . . . ,s`−1,y) ⊆W x}. These are the “bad” y,
i.e., those y for which we decide that x 6∈ L when in fact x ∈ L. Now
using the Hash Mixing Lemma.

Pr[G(s1, . . . ,s`,y) ⊆W x] ≤ Pr[G(s1, . . . ,s`−1,y) ⊆W x]2 + ε

≤ (µ(W x)2
`−1

+ 2ε)2 + ε

≤ µ(W x)2
`
+ 2ε,

where the first inequality holds by the Hash Mixing Lemma, and the
second inequality holds by the induction hypothesis.

Each si, i ∈ {1, . . . , `}, had an ε chance of being bad for the Hash
Mixing Lemma, and so

Pr
y∈R{0,1}r

[G(s1, . . . ,s`,x) ⊆W x] ≤ µ(W x)2
`
+ `ε + 2ε.

4.4 The Impagliazzo-Zuckerman generator

Let ` and k be integer parameters. (A good setting is to make k ≈
` ≈
√

r). The generator described in Impagliazzo-Zuckerman [22] pro-
duces k + 1 potential witnesses, each of length r, from only 3r + k`

random bits. Let S be the index set for the pairwise independent hash
family {hs} mapping {0,1}r → {0,1}r−`. The generator is defined by a
function G : {0,1}2r × {0,1}r × {{0,1}`}k → {{0,1}r}k+1:

G(s,Y1,Z1, . . . ,Zk) 7→ (Y1,Y2, . . . ,Yk+1)

where s ∈R S,Y1 ∈R {0,1}r, and Zi ∈R {0,1}`, for 1 ≤ i ≤ k. The Yi’s
are defined by:

Yi+1 = 〈hs(Yi),Zi〉, i = 1, . . . ,k

Theorem 4.5. If x ∈ L then,

Pr[G(s,Y1,Z1, . . . ,Zk) ⊆W x] ≤ µ(W x)k+1 + 21−`/2

4.4. The Impagliazzo-Zuckerman generator 27

Several definitions and lemmas are needed to prove the theorem. Let
P and Q be two probability distributions on a set A. The L1-distance
|| · ||1 and the L2-distance || · ||2 between P and Q are defined as

||P − Q||1 =
∑
i∈A

|Pi − Qi|

and

||P − Q||2 =

(∑
i∈A

(Pi − Qi)2
) 1

2

.

If Π denotes the uniform distribution on a set A then a distribution
P on the set A is called ε-uniform or ε-quasi-random if ||P − Π||1 ≤ ε.

The collision probability c(P) of a probability distribution on a set
A is defined as

c(P) = Pr
i,j∈P A

[i = j] =
∑
i∈A

P 2
i

The next lemma states a simple condition for when a probability dis-
tribution is ε-uniform.

Lemma 4.6. If c(P) ≤ (1 + ε2)/|A| then P is ε-uniform on A.

Proof. By the Cauchy-Schwartz inequality, if v ∈Rn then ||v||1 ≤√
n||v||2. Applying this to P − Π yields

||P − Π||21 ≤ |A|
∑
i∈A

(Πi − Pi)2 = |A|

(∑
i∈A

Π2
i − 2

∑
i∈A

ΠiPi +
∑
i∈A

P 2
i

)
.

Since Π is the uniform distribution
∑

i∈A ΠiPi = 1/|A| and
∑

i∈A Π2
i =

1/|A|. By assumption
∑

i∈A P 2
i = c(P) ≤ (1 + ε2)/|A|.

Lemma 4.7. Let S be the index set of the pairwise independent hash
family {hs} that maps U to T . Let P be the distribution 〈s,hs(x)〉,
where s ∈R S and x ∈R W ⊆ U and let A = S × T . Then,

c(P) =
1 + |T |

|W |

|A|
.

28 Recycling Randomness

Proof. Let s,s′ ∈R S and x,x′ ∈R W . Then,

c(P) = Pr[〈s,hs(x)〉 = 〈s′,hs′(x′)〉]
= Pr[s = s′]Pr[hs(x) = hs′(x′)|s = s′]

= Pr[s = s′]Pr[hs(x) = hs(x′)]

= Pr[s = s′](Pr[x = x′] + Pr[hs(x) = hs′(x′)|x 6= x′])

=
1
S

(
1
|W |

+
1
|T |

)
=

1
|S||T |

(
1 +

|T |
|W |

)
The following lemma is from Impagliazzo-Levin-Luby [21].

Leftover-Hash-Lemma: Let S be the index set of the pairwise inde-
pendent hash family {hs} that maps U to T . For s ∈R S and x ∈R W ⊆
U , the distribution 〈s,hs(x)〉 is ε-uniform, where ε =

√
|T |/|W |.

Proof. Apply Lemma 4.7 and Lemma 4.6 in sequence.

Proof of Theorem: The proof is by induction on k for a fixed value
of `. Let errork = Pr[G(s,Y1,Z1, . . . ,Zk) ⊆W x] be the error probability
with respect to k. It is clear that error0 ≤ µ(W x). For k ≥ 1,

errork = Pr[Y1 ∈W x]Pr[G(s,Y1,Z2, . . . ,Zk) ⊆W x|Y1 ∈W x]

= µ(W x)Pr[G(s,Y2,Z2, . . . ,Zk) ⊆W x|Y1 ∈W x],

where Y2 = 〈hs(Y1),Z1〉. Let ε = 1/
√

2`µ(W x). Then, it follows that

Pr[G(s,Y2,Z2, . . . ,Zk) ⊆W x|Y1 ∈W x]

≤ Pr[G(s, Ŷ2,Z2, . . . ,Zk) ⊆W x] + ε,

where Ŷ2 ∈R {0,1}r. This is because the distribution 〈s,hs(Y1)〉 is
ε-uniform by the Leftover-Hash-Lemma, where s ∈R S and Y1 ∈R W x,
and thus

||〈s,〈hs(Y1),Z1〉,Z2, . . . ,Zk〉,〈s, Ŷ2,Z2, . . . ,Zk〉||1 ≤ ε,

4.5. The expander mixing Lemma 29

and this implies that the behavior of G on these two distributions can
differ by at most ε.
The induction hypothesis implies that

Pr[G(s, Ŷ2,Z2, . . . ,Zk) ⊆W x] ≤ µ(W x)k + 21−`/2.

This implies

errork ≤ µ(W x)
(

µ(W x)k + 21−`/2 + 1/

√
2`µ(W x)

)
≤ µ(W x)k+1 + 21−`/2,

where the last inequality uses µ(W x) ≤ 1/2 and
√

µ(W x) ≤ 1.

4.5 The expander mixing Lemma

This section will use expander graphs (see [20] for a survey), a com-
binatorial object of extreme importance in many areas of theoretical
computer science and mathematics, and particularly in derandomiza-
tion.

Let G = (U,E) be a d-regular undirected graph with n nodes (|U | =
n). The adjacency matrix of G is a symmetric n × n-matrix M with

M(i, j) =
{

0 (i, j) 6∈ E

1 (i, j) ∈ E
.

Every such matrix has an orthonormal basis of eigenvectors. Let these
eigenvectors for M be the vectors r0, . . . ,rn−1 ∈Rn with the cor-
responding eigenvalues λ0, . . . ,λn−1 ∈R. Define δi,j = 1 if i = j and
δi,j = 0 if i 6= j. We let · denote multiplication of matrices over the
reals. Whenever a vector is involved in a multiplication, we use the
convention that it is a row vector if it is to the left of · and a column
vector if it is to the right of ·. Thus, if a and b are equal length vectors
then a · b denotes the inner product of a and b over the reals. We have
for all 0 ≤ i, j ≤ n − 1:

ri · rj = δi,j

M · ri = λiri

30 Recycling Randomness

Every row of M consists of d ones and n − d zeros. Hence the vector
of ones in all components (denoted 1̄ ∈Rn) is an eigenvector of M

corresponding to the eigenvalue d. Furthermore all eigenvalues are real-
valued and no larger than d. Without loss of generality, we assume
r0 = 1̄/

√
n and λ0 = d. Let

λ = max
1≤i≤n−1

|λi|

denote the second largest eigenvalue, that is the maximum factor by
which a vector orthogonal to r0 is stretched when multiplied by M .

Multiplication of a vector z ∈Rn with M can easily be expressed
using the eigenvectors and eigenvalues: Setting γi = z · ri we have

z =
∑

0≤i≤n−1

γiri

and M · z =
∑

0≤i≤n−1

λiγiri.

For two sets A,B ⊂ U denote the set of (directed) edges from A to
B in G by E(A,B) = {(v,w) ∈ A × B : (v,w) ∈ E}. Fixing A and an
integer b, and picking a subset B of U , of size b uniformly at random,
the expected size of E(A,B) is d|A|b

n . The following lemma states that
for any sets A,B the size of E(A,B) is close to its expectation, where
“close” depends on the value of λ. While similar statements were known
before, this convenient form appears first in [6]

Expander Mixing Lemma: For all A,B ⊆ U it holds that∣∣∣∣|E(A,B)| − d|A||B|
n

∣∣∣∣ ≤ λ
√
|A||B| ≤ λn.

Proof. Let XA ∈Rn denote the indicator vector of A, i.e. a “one” is at
the position corresponding to a vertex v ∈ A and a “zero” for v /∈ A.
XB is the corresponding vector for B. Set

αi = XA · ri

βi = XB · ri

4.5. The expander mixing Lemma 31

Then α0 = |A|/
√

n and β0 = |B|/
√

n, and we have

|E(A,B)| =
∑

i∈A,j∈B

M(i, j)

= XA ·M · XB

=

 ∑
0≤i≤n−1

αiri

 ·
 ∑

0≤j≤n−1

λjβjrj


=

∑
0≤i≤n−1

λiαiβi

=
d|A||B|

n
+

∑
1≤i≤n−1

λiαiβi

=⇒
∣∣∣∣|E(A,B)| − d|A||B|

n

∣∣∣∣ ≤ λ
∑

0≤i≤n−1

|αiβi|

≤ λ‖α‖2 ‖β‖2
= λ‖XA‖2 ‖XB‖2

= λ
√
|A||B|

Another way to state the Expander Mixing Lemma is that for all A,

B ⊆ U , ∣∣∣∣Pr
x,s

[x ∈ A,es(x) ∈ B] − Pr
x,y

[x ∈ A,y ∈ B]
∣∣∣∣ ≤ λ

d
,

where in the first random experiment x is a uniformly chosen node,
s ∈R {1, . . . ,d}, and es(x) is the neighbor of x indexed by s, whereas in
the second experiment x and y are two independently and uniformly
chosen nodes. Note the resemblance with the Hash Mixing Lemma,
where es(x) is substituted by hs(x).

There are explicit constructions of symmetric matrices with a small
second largest eigenvalue λ, corresponding to graphs with good expan-
sion properties. For all integers n′ and d′ there is an explicit construc-
tion of an n node d-regular graph G with n′ ≤ n ≤ 2n′, d′ ≤ d ≤ 2d′

and λ ≤ d9/10. (For example, see either Lubotzky-Phillips-Sarnak [27]
or Margulis [29], and the survey [20].) For every node x ∈ U and integer

32 Recycling Randomness

s ∈ {1, . . . ,d} the s-th neighbor es of x in G can be computed in log-
arithmic space. (To simplify the presentation we assume in the sequel
that we can construct expanders for all values of n and d.)

4.6 The Karp-Pippenger-Sisper generator

The Karp-Pippenger-Sipser [25] generator uses the explicit construc-
tion of expanders: The set {0,1}r is identified with the nodes of a 2r

node k-regular expander with λ ≤ k9/10. The seed to the generator G

is a string z ∈R {0,1}r, and G(z) produces y1, . . . ,yk, which are the k

neighbors of z in the expander graph. Thus, this scheme uses exactly r

random bits.

Theorem 4.8. If x ∈ L then

Pr[{y1, . . . ,yk} ⊆W x] ≤ 2k−1/10.

Proof. Let A ⊆ {0,1}r be the set of nodes z with the property that all
neighbors of z are in W x. Thus

Pr[{y1, . . . ,yk} ⊆W x] = |A|/2r.

From E(A,Wx) = ∅ and the Expander Mixing Lemma it follows
that

k|A||Wx|
2r

≤ λ2r

=⇒ |A|
2r
≤ λ2r

k|Wx|
≤ 2k−1/10 (since |Wx| ≥ 2r−1)

4.7 The Ajtai-Komlós-Szemerédi generator

Ajtai-Komlós-Szemerédi [3] show how to simulate a randomized
log-space computation using O

(
(logn)2

log logn

)
random bits by a deter-

ministic log-space computation. Cohen-Wigderson [11] and Nisan-
Zuckerman [33] observe that the AKS generator can also be used for
amplification: Let n = 2r and identify the set {0,1}r with the nodes

4.7. The Ajtai-Komlós-Szemerédi generator 33

of a d-regular n-node expander graph G. Set d to some constant value
so that λ ≤ d/4 can be achieved. Choose the nodes y1, . . . ,yk as the
nodes visited on a random walk of length k starting at a random node
z ∈R {0,1}r. The random walk is determined by the starting point z

and integers ij ∈ {1, . . . ,d} for j ∈ {1, . . . ,k} describing which edge to
use in j-th step of the walk. Thus, y1 is the i1-th neighbor of z and,
for j ≥ 2, yj is the ij-th neighbor of yj−1. The number of random bits
used is r + k logd = r + O(k).

Theorem 4.9. If x ∈ L then

Pr[{y1, . . . ,yk} ⊆W x] = 2−Θ(k).

Proof. To bound the error probability we describe the probability
distribution after subsequent steps of the random walk by an
n-dimensional vector. Let p0 be the vector describing the initial dis-
tribution, i.e., the distribution of z, which is p0(v) = 1/n for all
v ∈ {0,1}r. Let M be the adjacency matrix of G and set M̂ = M/d.
Thus, the distribution after the first step, i.e., the distribution of y1,
is p1 = M · p0. We are interested in the probability that all nodes
y1, . . . ,yk are contained in W x. The probability of y1 ∈W x is obtained
by cancelling out the components of p1 corresponding to nodes in Wx

and summing up the other components. Let PW x
be the diagonal matrix

with ones in the positions corresponding to elements of W x and zeros
elsewhere. Then

Pr[y1 ∈W x] = ‖PW x
· M̂ · p0‖1

Continuing this process yields

Pr[y1 ∈W x ∧ ·· · ∧ yk ∈W x] = ‖
(
PW x

· M̂
)k
· p0‖1. (4.1)

For any vector z =
∑

0≤i≤n−1 γiri we have

‖PW x
· M̂ · z‖2 ≤ ‖PW x

· M̂ · γ0r0‖2
+ ‖PW x

· M̂ ·
∑

1≤i≤n−1

γiri‖2

34 Recycling Randomness

Using M̂ · r0 = r0 and replacing PW x
by I, we continue the inequalities

as follows:

≤ ‖PW x
· γ0r0‖2 + ‖M̂ ·

∑
1≤i≤n−1

γiri‖2

≤
√

µ(W x)‖γ0r0‖2 + ‖
∑

1≤i≤n−1

λi

d
γiri‖2

≤
√

µ(W x)‖γ0r0‖2 +
λ

d
‖
∑

1≤i≤n−1

γiri‖2

≤
(√

µ(W x) +
λ

d

)
‖z‖2

(The last inequality is based on the fact that both γ0r0 and∑
1≤i≤n−1 γiri are both projections of z.) Applying this inequality to (1)

and using Cauchy-Schwarz we are able to bound the error probability:

Pr[y1 ∈W x ∧ ·· · ∧ yk ∈W x] ≤
√

n‖
(
PW x

· M̂
)k
· P0‖2

≤
√

n

(√
µ(W x) +

λ

d

)k

‖P0‖2

≤
√

n(
√

1/2 + 1/4)k/
√

n

= 2−Θ(k).

5

Pseudo-Random Generators

In this chapter we introduce one-way functions and pseudo-random gen-
erators, and show how to construct a pseudo-random generator from a
one-way function. The reason for interest in these cryptographic func-
tions and for the reduction from a one-way function to a pseudo-random
generator is that there are a lot of natural examples of functions that
seem to be one-way, while pseudo-random generators are extremely
useful in the design of cryptographic protocols and in derandomization
of algorithms.

5.1 One-way functions

Intuitively, a one-way function is a function that is easy to compute but
hard for any time-bounded adversary to invert on a random input. To
gauge the success of an adversary in breaking a cryptographic function,
we use the following measure.

Definition 5.1. (time/success ratio) The time/success ratio of an
adversary for breaking a cryptographic function is T (n)/δ(n), where
T (n) is the run time of the adversary and δ(n) is the success probability

35

36 Pseudo-Random Generators

of the adversary with respect to inputs parameterized by n. The defini-
tion of the success probability depends on the cryptographic function.

Definition 5.2. (one-way function) Let f(x) be a function com-
putable in time polynomial in ‖x‖. The success probability (inverting
probability) of adversary A for f is

δ(n) = Pr
x∈R{0,1}n

[f(A(f(x))) = f(x)].

Then, f is a S(n)-secure one-way function if every A has time/success
ratio at least S(n).

Definition 5.3. (one-way permutation) Exactly the same as the
definition of a one-way function, except that ‖f(x)‖ = ‖x‖ and f as a
function of x ∈ {0,1}n is a permutation.

5.1.1 Examples of conjectured one-way functions

Here are some natural examples that may eventually be proven to be
one-way functions. Plenty of others can be found in the literature. In
the following, p and q are primes of length n.

Factoring problem: Define f(p,q) = pq . It is possible to compute pq
given p and q in nO(1) time. However, there is no known polynomial-
time function that on input pq can produce p and q on average for
randomly chosen pairs of primes 〈p,q〉

Discrete log problem: Let g be a generator of Z∗p , i.e., for all y ∈ Z∗p ,
there is a unique x ∈ Zp−1 such that gx = y mod p. Given p,g and
x ∈ Zp−1, define f(p,g,x) = 〈p,g,gx mod p〉. It is possible to compute
gx mod p given p,g and x in nO(1) time. The discrete log function is a
permutation as a function of x, i.e., the unique inverse of f(p,g,x) is
〈p,g,x〉. The values of p and g are not necessarily chosen randomly. The
prime p is selected to have special properties which seem in practice
to make the discrete log function hard to invert. An example of such a

5.1. One-way functions 37

property is that p is selected so that p − 1 has some fairly large prime
divisors. For a large class of primes p and generators g there is no known
polynomial-time function that on input p,g and gx mod p can produce
x on average for x ∈R Zp−1.

Root extraction problem: Given p,q,e ∈ Zp−1 and y ∈ Zp, define
f(p,q,e,y) = 〈pq ,e,ye mod pq〉. It is possible to compute ye mod pq
given pq, e and y in nO(1) time. To make the inversion problem hard,
it is important that the factorization of the modulus is not part of
the output, because given the factorization an inverse can be found
in nO(1) time. The value of the exponent e is not necessarily chosen
randomly. For example, if e = 2 then the problem is to extract square
roots, and this still seems to be a hard problem on average. There is
no known polynomial-time function that on input pq, e and ye mod pq
can produce an y′ ∈ Zp such that y′e = ye mod pq when p and q are
randomly chosen according to a distribution for which factoring is hard
and y ∈R Zp. There is a strong connection between this problem when
e = 2 and the factoring problem.

Subset sum problem: Let a ∈ {0,1}n and b ∈ {0,1}n×n. Given a and
b, define f(a,b) = 〈

∑n
i=1 ai · bi, b〉, where ai ∈ {0,1} and bi is an n-bit

integer in this expression and where the sum is over the integers. It is
possible to compute

∑n
i=1 ai · bi given a and b in nO(1) time. However,

there is no known polynomial-time function that on input
∑n

i=1 ai · bi

and b can produce a′ ∈ {0,1}n such that
∑n

i=1 a′i · bi =
∑n

i=1 ai · bi on
average when a ∈R {0,1}n and b ∈R {0,1}n×n.

Exercise 5.4. Let A ∈R {0,1}n and let B ∈R {0,1}n×(n+1). Prove
that the probability

f(A,B) =

〈
n∑

i=1

Ai · Bi,B

〉
has a unique inverse is lower bounded by a constant strictly greater than
zero independent of n. Note that in contrast to the previous definition
where ‖Bi‖ = n, here ‖Bi‖ = n + 1.

38 Pseudo-Random Generators

5.2 Hidden Bit Theorem

The main result of these sections is the construction of a pseudo-random
generator from any one-way permutation. In this section, we present
the main technical content of this reduction, the Hidden Bit Theorem,
which is due to Goldreich-Levin [15].

There are several technical parts in the reduction from any one-way
permutation f to a pseudo-random generator g. Intuitively, the Hidden
Bit Theorem is the part that transforms the one-wayness of f into a
bit b such that: (1) b is completely determined by information that
is available to any adversary; (2) nevertheless b looks random to any
appropriately time-restricted adversary. It is from this bit b that the
generator g eventually derives its pseudo-randomness. The guarantee
from the reduction is that any successful adversary for distinguishing
the output of g from a truly random string can be converted into an
adversary for predicting b, which in turn can be converted into an
adversary for inverting f .

The definition of a computationally hidden but statistically mean-
ingful bit and the realization of its importance as a basic building block
for cryptographic constructions is from Blum-Micali [8].

The construction of a hidden bit using the inner product bit, the
Hidden Bit Theorem and the Hidden Bit Technical Theorem are all
from Goldreich-Levin [15]. The simpler proof given here of Hidden Bit
Technical Theorem is due to C. Rackoff, R. Venkatesan and L. Levin,
inspired by Alexi-Chor-Goldreich-Schnorr [4].

Definition 5.5. (inner product bit is hidden) Let f(x) be a poly-
nomial-time computable function. Let x ∈ {0,1}n and z ∈ {0,1}n.
Then, the inner product bit of f(x) is x � z. The success probabil-
ity (prediction probability) of adversary A for the inner product bit of
f is

δ(n) = Pr
x,z∈R{0,1}n

[A(f(x),z) = x � z] − Pr
x,z∈R{0,1}n

[A(f(x),z) 6= x � z].

Then, the inner product bit of f is a S(n)-secure if every A has
time/success ratio at least S(n).

5.2. Hidden Bit Theorem 39

Hidden Bit Theorem: If f is a one-way function then the inner
product bit of f is hidden. In particular, there is a TM M such that if
A is an adversary with time/success ratio S(n) for predicting the inner
product bit then MA is an adversary with time/success ratio S(n)c for
inverting f for some constant c > 0. (MA denotes M making calls to
the adversary A.)

Proof. Suppose there is an adversary A for the inner product bit of f

with success probability δ(n) and run time T (n). We describe a TM
M such that MA is an adversary for f as a one-way function.

For x ∈ {0,1}n define

δA
x = Pr

z∈R{0,1}n
[A(f(x),z) = x � z] − Pr[A(f(x),z) 6= (x � z)].

Let X ∈R {0,1}n. Because, for any x ∈ {0,1}n, |δA
x | ≤ 1 and because

EX [δA
X] = δ(n), it follows that PrX [δA

X ≥ δ(n)/2] ≥ δ(n)/2. The TM M

we describe below has the property that if δA
x ≥ δ(n)/2 then MA on

input f(x) succeeds in producing an x′ such that f(x′) = f(x) with
probability at least 1/2. From this it follows that the inverting proba-
bility of MA for f is at least δ(n)/4.

Suppose the input to MA is f(x), where δA
x ≥ δ(n)/2. Let S be

the TM described below in the Hidden Bit Technical Theorem (sub-
section 5.2.1) and let B(z) = A(f(x),z). The first step of MA is to
run SB with input δ = δ(n)/2. When S makes an oracle query to B

with input z, M runs A on input 〈f(x),z〉 and returns the answer
B(z) = A(f(x),z) to S. Because δA

z ≥ δ(n)/2, by the Hidden Bit Tech-
nical Theorem, x is in the list L produced by SB with probability
at least 1/2. The final step of MA to do the following for all x′ ∈ L:
Compute f(x′) and if f(x′) = f(x) then output x′.

The success probability of MA for inverting f(X) is at least δ(n)/4.
From the Hidden Bit Technical Theorem, it is not hard to see that the
running time of MA is dominated by the running time of S making
queries to A to produce the list L, which is O(n3T (n)/δ(n)4), where
T (n) is the running time of A. Thus, the time/success ratio of MA is
O(n3T (n)/δ(n)5).

40 Pseudo-Random Generators

5.2.1 Generalized inner product space

For the proof of the Hidden Bit Technical Theorem we use the following
generalization of the Inner Product Space (Section 2.4).

Generalized Inner Product Space: Let l = [log(m + 1)]. The sam-
ple space is S = {0,1}n×l and the distribution on sample points is
v ∈R S. For all j ∈ {0,1}l, define random variable

Tj(v) = v � j.

It can be verified that T1(v), . . . ,Tm(v) are uniformly distributed on
{0,1}n and pairwise independent.

Hidden Bit Technical Theorem: Let B(z) be a TM which runs in
time polynomial in n, and for each x ∈ {0,1}n define

δB
x = Pr

z∈R{0,1}n
[B(z) = x � z] − Pr

z∈R{0,1}n
[B(z) 6= x � z].

There is a TM S such that for any B,SB on input δ > 0 produces a list
L ⊆ {0,1}n with the following property: For all x ∈ {0,1}n, if δB

x ≥ δ

then x ∈ L with probability at least 1/2, where this probability is with
respect to the random bits used by TM SB. The running time of SB

is O(n3T/δ4), where T is the running time of B.

Proof. For the proof, we find it convenient to consider bits as being
{1,−1}-valued instead of {0,1}-valued. For b ∈ {0,1}, we let b̄ = (−1)b ∈
{1,−1}.

Fix x ∈ {0,1}n such that δB
x ≥ δ. We can write

δB
x = Ez∈R{0,1}n

[
B(z) · x � z

]
.

For all i = 1, . . . ,n, let ei ∈ {0,1}n be the ith unit vector, i.e.
〈0i−1,1,0n−i〉, and let

µi = δB
x · xi.

It follows that

Ez∈R{0,1}n

[
B(z) · x � (ei ⊕ z)

]
= µi.

5.2. Hidden Bit Theorem 41

This is because � distributive over ⊕ implies that

x � (ei ⊕ z) = x � ei · x � z

and because x � ei = xi, and thus

B(z) · x � (ei ⊕ z) = B(z) · x � z · xi.

Setting z′ = ei ⊕ z it is easy to see that z′∈R{0,1}n when z ∈R

{0,1}n and z = ei ⊕ z′. Thus,

Ez′∈R{0,1}n

[
B(ei ⊕ z′) · x � z′

]
= µi.

The idea is to compute, simultaneously for all i ∈ {1, . . . ,n}, a good
approximation Yi of µi. We say that Yi is a good approximation if
|Yi − µi| < δ. Define

bit(Yi) =

{
0 if Yi ≥ 0

1 if Yi < 0

Because |µi| ≥ δ, if Yi is a good approximation then bit(Yi) = xi.
Let m = [2n/δ2] and let T1, . . . ,Tm ∈R {0,1}n be pairwise independent
random variables. Let

Yi = 1/m ·
m∑

j=1

B(ei ⊕ Tj) · x � Tj .

Then, using the pairwise independence of the random variables and the
fact that, for all j,

E
[(

B (ei ⊕ Tj) · x � Tj − µi

)2
]
≤ 1,

it follows that

E[(Yi − µi)2] ≤ 1/m.

From Chebychev’s inequality it then follows that

Pr[|Yi − µi| ≥ δ] ≤ E[(Yi − µi)2]/δ2 ≤ 1/(mδ2) ≤ 1/(2n).

From this it follows that

Pr[∃i ∈ {1, . . . ,n}; |Yi − µi| ≥ δ] ≤ 1/2,

42 Pseudo-Random Generators

and so

Pr[∀i ∈ {1, . . . ,n}; |Yi − µi| < δ] ≥ 1/2, (5.1)

The only remaining difficulty is how to compute Yi given T1, . . . ,Tm.
Everything is relatively easy to compute, except for the values of x � Tj

for all j ∈ {1, . . . ,m}. If T1, . . . ,Tm are chosen in the obvious way, i.e.,
each is chosen independently of all the others, then we need to be able
to compute x � Tj correctly for all j ∈ {1, . . . ,m} and there is probably
no feasible way to do this. (Recall that we don’t know the value of x.)
Instead, the approach is to take advantage of the fact that the analysis
only requires T1, . . . ,Tm to be pairwise independent.

Let ` = [log(m + 1)] and let v ∈ {0,1}n×`. Let T1(v), . . . ,Tm(v) be
as described in the Generalized Inner Product Space (Section 5.2.1),
i.e., for all v ∈ {0,1}n×` and for all j ∈ {0,1}` − 0`,Tj(v) = v � j. As
we describe, this particular construction allows feasible enumeration of
all possible values of x � Tj(v) for all j ∈ {1, . . . ,m} without knowing
x. Because of the properties stated above,

x � Tj(v) = x � (v � j) = (x � v) � j.

Thus, it is easy to compute, for all j ∈ {1, . . . ,m}, the value of x � Tj(v)
given x � v. From this we can compute, for all i ∈ {1, . . . ,n},

Yi(v) = 1/m ·
m∑

j=1

B(ei ⊕ Tj(v)) · (x � v) � j.

The key point is that there are only 2` = O(m) possible settings for
x � v, and we try them all. For any x and v there is some β ∈ {0,1}`
such that β = x � v. Let

Yi(β,v) = 1/m ·
m∑

j=1

B(ei ⊕ Tj(v)) · β � j,

i.e., Yi(β,v) is the value obtained when β is substituted for x � v in
the computation of Yi(v). Consider choosing v ∈R {0,1}n×`. Since from
equation (2) above, the probability that Yi(x � v,v) is a good approx-
imation for all i ∈ {1, . . . ,n} is at least one-half, it follows that with
probability at least one-half there is at least one β ∈ {0,1}` such that

5.2. Hidden Bit Theorem 43

Yi(β,v) is simultaneously a good approximation for all i ∈ {1, . . . ,n}.
For this value of β and for such a v, 〈bit(Y1(β,v)), . . . , bit(Yn(β,v))〉 is
equal to x.

Adversary SB on input δ > 0:

m← [2n/δ2],
`← [log(m + 1)].
L← ∅.
Choose v ∈R {0,1}n×`.

For all β ∈ {0,1}` do:
For all j = 1, . . . ,m do:

Compute Tj(v) = v � j.

For all i = 1, . . . ,n do:
Compute Yi(β,v) = 1/m ·

∑m
j=1 B(ei ⊕ Tj(v)) · β � j.

L← L ∪ {〈bit(Y1(β,v)), . . . ,bit(Yn(β,v))〉}.

From the above analysis, it follows that x ∈ L with probability at
least 1/2, where this probability is over the random choice of v.

As long as the running time T for computing B is large compared
to n (which it is in our use of the Hidden Bit Technical Theorem to
prove the Hidden Bit Theorem), the running time of SB is O(n3T/δ4).

The following exercise shows that the inner product bit is special,
i.e., it is certainly not the case that any bit of the input to f is hidden
if f is a one-way function.

Exercise 5.6. Describe a one-way permutation f(x) where the first
bit of x is not hidden given f(x). Let f(x) be any polynomial-time
computable function. Show that if xi can be predicted with proba-
bility greater than 1 − 1/(2n) given 〈f(x), i〉 when x ∈R {0,1}n and
i ∈R {1, . . . ,n} then f is not a one-way function.

The converse of the Hidden Bit Theorem is not true, i.e., there is a
function f where the inner product bit is hidden but f is not a one-way
function. This is the point of the following exercise.

44 Pseudo-Random Generators

Exercise 5.7. Describe a polynomial-time computable function f(x)
which is certainly not a one-way function but for which the inner prod-
uct bit is provably 2n-secure.

5.3 Pseudo-random generators

Blum-Micali [8] introduce the concept of a pseudo-random generator
that is useful for cryptographic (and other) applications, and gave it the
significance it has today by providing the first provable construction of
a pseudo-random generator based on the conjectured difficulty of a well-
known and well-studied computational problem. In particular, both the
definition of pseudo-random generator based on the next bit test and
the construction of a pseudo-random generator based on the difficulty
of the discrete log problem can be found in Blum-Micali [8].

Yao [41] introduces the definition (below) of a pseudo-random gener-
ator, and shows an equivalence between this definition and the next bit
test introduced in Blum-Micali [8]. The standard definition of a pseudo-
random generator of Yao is based on the concept of computational
indistinguishability introduced previously in Goldwasser-Micali [16].

Definition 5.8. (pseudo-random generator) Let g(x) be a poly-
nomial-time computable function where `(n) = ‖g(x)‖,n = ‖x‖, and
`(n) > n. The stretching parameter of g(x) is `(n) − n. The success
probability (distinguishing probability) of adversary A for g is

δ(n) = Pr
x∈R{0,1}n

[A(g(x)) = 1] − Pr
z∈R{0,1}`(n)

[A(z) = 1].

Then, g is a S(n)-secure pseudo-random generator if every A has
time/success ratio at least S(n).

The following exercise shows that an immediate application of the
Hidden Bit Theorem is the construction of a pseudo-random generator
from a one-way permutation.

Exercise 5.9. From the Hidden Bit Theorem, show that if f(x) is a
one-way permutation then g(x,z) = 〈f(x),z,x � z〉 is a pseudo-random

5.3. Pseudo-random generators 45

generator that stretches by 1 bit. The reduction should describe a
TM M with the property that if A is an adversary for distinguishing
g with time/success ratio S(n) then MA is an adversary for inverting
f with time/success ratio S(n)c for some constant c > 0.

The simple construction of a pseudo-random generator given in the
previous exercise was one of the motivating forces behind the work of
Goldreich-Levin [15]. The reduction from an arbitrary one-way function
to a pseudo-random generator can be found in H̊astad-Impagliazzo-
Levin-Luby [19].

We can construct a pseudo-random generator that stretches by an
arbitrary polynomial amount based on any one-way permutation. Let
f(x) be a one-way permutation. Define g(x,z) where ‖z‖ = ‖x‖ = n, as

g(x,z) = 〈z,x � z,f(x) � z,f (2)(x) � z, . . . ,f (`(n)−n−1)(x) � z〉,

where f (i) is the function f composed with itself i times.

Theorem 5.10. If f is a one-way permutation then g is a pseudo-
random generator. In particular, there is a TM M with the property
that if A is an adversary for distinguishing g with time/success ratio
S(n) then MA is an adversary for inverting f with time/success ratio
S(n)c for some constant c > 0.

This theorem is a combination of a theorem due to Goldreich-
Goldwasser-Micali [14] and the Hidden Bit Theorem (see Section 5.2)
of Goldreich-Levin [15].

Exercise 5.11. Prove the above theorem.

6

Deterministic Counting

In this chapter we consider the complexity of several “approximate
counting” problems. Informally this is the class of prolems derived from
NP languages, where the goal now is to count the number of witnesses
that prove membership of a given input in the language.

6.1 #P and approximate counting

Recall that a language L ∈NP if there is an associated TM M such
that, for all x ∈ {0,1}n, x ∈ L iff |Wx| ≥ 1, where Wx = |{y ∈ {0,1}r :
M(x,y) = 1}|. A function f ∈#P if there is an NP language L with
an associated TM M such that, for all x ∈ {0,1}n, f(x) = |Wx|. In
words, f(x) is the number of witnesses that show x ∈ L. In particular,
note that f(x) = 0 iff x /∈ L, and thus it is clear that a polynomial time
algorithm for computing f immediately implies P = NP. The defini-
tion of the complexity class #P, and the realization of its importance,
are due to Valiant [38]. Examples of f ∈#P are the following:

• If x is the description of a graph then f(x) is the number of
perfect matchings in the graph, else f(x) = 0.

• If x is the description of a graph then f(x) is the number of
Hamiltonian tours in the graph, else f(x) = 0.

47

48 Deterministic Counting

• If x is the description of a DNF boolean formula then f(x)
is the number of truth assignments that satisfy the formula,
else f(x) = 0.

• If x is the description of a CNF boolean formula then f(x)
is the number of truth assignments that satisfy the formula,
else f(x) = 0.

As there is a notion of completeness for NP, there is an anal-
ogous notion of completeness for #P. Intuitively, if a function f is
#P-complete and if there is a polynomial time algorithm for comput-
ing f then there is a polynomial time algorithm for computing every
g ∈#P.

As shown in Valiant [38], all four examples described above are
#P-complete functions. Most often it is the case that if the language
L is NP-complete then it takes little effort to show that the associated
counting problem f is #P-complete, and this is the case for second
and fourth examples. The first and third examples are more interest-
ing because the associated NP-language can be decided in polyno-
mial time. The proof that the third example is #P-complete is rather
straightforward from the #P-completeness of the fourth example. How-
ever, the #P-completeness of the first example is not at all straight-
forward.

It turns out that many important counting problems are
#P-complete, and unless P = NP there is no hope of finding polyno-
mial time algorithms for these problems. On the other hand, in practice
it is often useful to provide a good approximation of the number of solu-
tions. As before, let µ(Wx) = |Wx|/2r be the fraction of witnesses for
x among all possible witnesses. There are two potential definitions of
what a good estimate means:

(1) Y is an ε-good absolute approximation of µ(Wx) if

µ(Wx) − ε ≤ Y ≤ µ(Wx) + ε.

(2) Y is an ε-good relative approximation of µ(Wx) if

µ(Wx)(1 − ε) ≤ Y ≤ µ(Wx)(1 + ε).

6.1. #P and approximate counting 49

An estimate Y is more useful and meaningful if it is an ε-good
relative approximation, especially in the typical case when µ(Wx) is
small.

In recent years, a body of work has been devoted to finding fast algo-
rithms to approximate #P-complete functions. Let f be a #P function.
Following Karp-Luby [23], we say a randomized algorithm A provides
a fully polynomial randomized approximation scheme (abbreviated to
fpras) for f if, for every pair of positive input parameters (ε,δ) and for
every input x ∈ {0,1}n,

(1) A(x,ε,δ) is an ε-good relative approximation of f(x) with
probability at least 1 − δ. The probability is with respect to
the source of randomness used by A.

(2) The run time A(x,ε,δ) is bounded by a polynomial in ‖x‖,
1/ε and log(1/δ).

Let us say that A is a weak fpras if requirement (1) in the above defini-
tion is changed to say that A(x) is an ε-good absolute approximation
instead of an ε-good relative approximation. Based on the standard
sampling algorithm described below, it is easy to see there is a weak
fpras for every f ∈#P. On the other hand, a fpras for the CNF count-
ing problem immediately implies RP = NP.

In the following sections, we develop a fpras for the DNF counting
problem and for a related problem. The following simple and standard
sampling algorithm at a very high level provides the general outline for
the algorithms for both problems. Suppose we have a finite (but large)
universe U of known size |U |, and our goal is to estimate the size of
some set G ⊂ U of unknown size. A trial of the algorithm for estimating
|G| consists of the following two steps:

(1) Choose s ∈R U .
(2) See if s ∈ G.

Let b be an easily computable upper bound on |U |/|G|. The algo-
rithm performs N = 4b ln(2/δ)/ε2 independent trials, and the output Y

is the fraction of these N trials where an element of G is chosen, multi-
plied by |U |. A standard analysis using an inequality due to Bernstein

50 Deterministic Counting

Renyi [35] shows that for ε < 1,

Pr[|G|(1 − ε) ≤ Y ≤ |G|(1 + ε)] ≥ 1 − δ. (6.1)

(See for example Karp-Luby-Madras [24] for a proof.)
The key points about the sampling algorithm are the following:

(a) The universe U should be defined in such a way that |U | is
easy to compute.

(b) Steps (1) and (2) of the trial can be performed efficiently.
(c) |G| is known a priori to be a significant fraction of |U |, i.e.

the upper bound b on their ratio is polynomially bounded,
and computable in polynomial time.

6.2 DNF counting

Let y = 〈y1, . . . ,yr〉 be a collection of r-boolean variables and let F be
a boolean formula in disjunctive normal form (DNF formula); i.e, F =
c1 ∨ c2 ∨ ·· · ∨ cm, where ci = zi1 ∧ ·· · ∧ zi`i

, for some set of literals

{zi1 , . . . ,zi`i
} ⊆ {y1, . . . ,yr, ȳ1, . . . , ȳr}.

For a truth assignment a ∈ {0,1}r to y, let M(F,a) = 1 if a satisfies F ,
and let M(F,a) = 0 otherwise. Let f(F) = |{a ∈ {0,1}r : M(F,a) = 1}|.
It is clear that f ∈#P, and, as mentioned before, f is #P-complete.
We describe below a fpras algorithm for f due to Karp-Luby [23], Karp-
Luby-Madras [24].

A naive approach to approximate f(F) is the following. Let the sam-
ple space be the set {0,1}r of all possible truth assignments. Choose
several random truth assignments, and estimate f(F) by the frac-
tion of these truth assignments that satisfy F . The problem with this
approach is that if F is satisfied by an exponentially small percentage of
truth assignments then this approach requires an exponential number
of samples.

Instead, we design the following sample space. Let Ci be the set of
truth assignments that satisfy clause ci. Let

U = {(i,a) : i ∈ {1, . . . ,m} ∧ a ∈ Ci}

6.3. GF[2] polynomial counting 51

and let G ⊆ U be defined by

G = {(i,a) ∈ U : there is no j < i such that (j,a) ∈ U}.

Notice that |U | =
∑

i∈{1,...,m} |Ci|, and |Ci| = 2r−`i , and thus |U | is easy
to compute. Note also that |G| = f(F), because for each truth assign-
ment a that satisfies F there is a unique smallest index i such that
a ∈ Ci. Furthermore,

|U |
|G|
≤
∑

i∈{1,...,m} |Ci|
maxi∈{1,...,m} |Ci|

≤m.

Therefore, from Equation 6.1 of the previous section, we can approxi-
mate f(F) with N = 4m

ε2
log(1

δ) trials. In each trial we will

1. Choose index i ∈ {1, . . . ,m} with probability |Ci|/|U |. This
requires time O(logm) time (with some preprocessing, we
leave as an easy exercise what preprocessing to do to achieve
this time bound.)

2. Choose a ∈R Ci. This step takes O(r) time.
3. See if (i,a) ∈ G. This can be done in the obvious way in time
O(rm).

4. The value produced by the trial is |U | if (i,a) ∈ G, and 0
otherwise.

The overall estimate is the average of the values produced by the N

trials. By Equation 6.1 this is guaranteed to be an ε-good relative esti-
mate of f(F) with probability at least 1 − δ. The overall running time
is O(rm2

ε2
log(1

δ)).

6.3 GF[2] polynomial counting

Let y = 〈y1, . . . ,yr〉 be a collection of r variables over GF[2] and let
F be a polynomial over GF[2] with respect to the variables y i.e.,
F = t1 ⊕ t2 ⊕ ·· · ⊕ tm, where term ti = yi1 � ·· · � yi`i

for some subset
{yi1 , . . . ,yi`i

} of y. For an assignment a ∈ {0,1}r to y, let M(F,a) = 1
if a is a zero of F , i.e., a satisfies an even number of the m terms of F ,

52 Deterministic Counting

and M(F,a) = 0 otherwise. Let f(F) = |{a ∈ {0,1}r: M(F,a) = 1}|. It
is #P-complete to compute f . The following fpras for approximating
f is due to Karpinski-Luby [26].

We design two different fpras algorithms A0 and A1;A0 is used in
the case when F does not contain the constant term 1 and A1 is used in
the case when F contains the term 1. Note that the term 1 corresponds
to the product of the empty set of variables, and is satisfied by all
assignments to y. The analyses of the two algorithms are very similar.
The running time of A0 is O(rm2 ln(1/δ)/ε2) and the running time of
A1 is O(rm3 ln(1/δ)/ε2).

We first describe algorithm A0. Let U be the set {0,1}r of all assign-
ments to y, and let Heven be the set of all assignments that satisfy an
even number of terms. A trial of the algorithm consists of choosing an
assignment a ∈R {0,1}r and testing if a ∈ Heven. The outcome of a trial
is |U | = 2r if a ∈ Heven and the outcome is 0 otherwise. The output of
the algorithm is the average of the outcomes of all the trials.

The most time consuming part of the trial is to test if a ∈ Heven,
and this takes time O(rm). The corollary at the end of this section
shows that |U |/|Heven| ≤m + 1, and thus N = 4(m + 1)ln(2/δ)/ε2 tri-
als suffice. Thus, the total running time of A0 is O(rm2 ln(2/δ)/ε2).

We now describe algorithm A1. The outline of the algorithm is bor-
rowed from the DNF approximation algorithm described in the previous
section. We provide a self-contained description of the algorithm. Let
F be the input polynomial with the constant term 1 discarded. Thus,
the problem is to approximate the number of assignments that satisfy
an odd number of terms of F . For all i = 1, . . . ,m, let Ti be the set of
assignments that make term ti evaluate to 1. Analogous to the DNF
algorithm, let

U = {(i,a): i ∈ {1, . . . ,m} ∧ a ∈ Ti}

and let G ⊆ U be defined by

G = {(i,a) ∈ U : there is no j < i such that (j,a) ∈ U}.

Let Godd ⊆ G be defined by

Godd = {(i,a) ∈ G: |{j ∈ {1, . . . ,m}: j ∈ Ti}| mod2 = 1},

6.3. GF[2] polynomial counting 53

i.e., (i,a) is in Godd if it is in G and if a makes an odd number of terms
evaluate to 1. The key point is that |Godd| is the quantity we want to
approximate. One trial of the algorithm consists of choosing (i,a) ∈R U

and then testing if (i,a) ∈ Godd: if yes then the value produced by the
trial is |U |, else the value is 0.

We now verify that the efficiency criteria (a), (b) and (c) described
at teh end of Section 6.1 are satisfied. The computation of |U | and
the method for choosing (i,a) ∈R U is analogous to the method for the
DNF approximation algorithm described in the previous section. The
most time consuming part of the trial is to test if (i,a) ∈ Godd, and this
takes O(rm) time.

The final portion of the analysis is to show that |U |/|Godd| is
not too large. As described in the previous section, |U |/|G| ≤m.
The theorem given below shows that |G|/|Godd| ≤m. It follows that
|U |/|Godd| ≤m2, and thus from Equation 6.1 it follows that N =
4m3 ln(2/δ)/ε2 trials suffice. Thus, the total running time of A1 is
O(rm3 ln(2/δ)/ε2).

Theorem 6.1. Let F be a multivariate polynomial over GF[2] with
no duplicate terms and m terms in total. Let H be the set of assign-
ments to the variables that satisfy at least one term, and let Hodd be
the set of assignments that satisfy an odd number of terms. Then,

|H|/|Hodd| ≤m.

Proof. The basic idea of the proof is to define a function h : H → Hodd

in such a way that the mapping is at most m-to-1, i.e. for each a ∈
Hodd, |h−1(a)| ≤m. From this the theorem follows.

The mapping h is defined as follows. For each a ∈ H, choose any
term ti that is satisfied by a such that there is no term tj which is
satisfied and which contains all the variables in ti. It is always possible
to choose such a term because F does not contain two identical terms.
Without loss of generality, let this be term t1 and let S = {y1, . . . ,yk}
be the variables in t1 (all of these variables are equal to 1 in a). For
any S′ ⊆ S, let a(S′) be the assignment obtained from a by changing
the values of all variables in S − S′ from 1 to 0.

54 Deterministic Counting

Claim 6.2. There is at least one S′ ⊆ S such that a(S′) satisfies an
odd number of terms of F .

Proof of Claim: For each S′ ⊆ S, let p(S′) be the parity of the number
of terms that are satisfied by assignment a(S′) and let q(S′) be the
parity of the number of terms ti such that ti ∩ S = S′. By the way
term t1 is chosen, t1 is the only term ti that satisfies ti ∩ S = S, and
thus q(S) = 1. We can view p(·) and q(·) as column vectors of length 2k

with entries from GF[2], where the first entry corresponds to S′ = ∅ and
the last entry corresponds to S′ = S. Then it can be verified that there
is a 2k × 2k lower triangular matrix R over GF[2] with main diagonal 1
such that R � q(·) = p(·). In particular, row S′ in R has a 1 in column
S′′ if and only if S′′ ⊆ S′. (See Figure 6.1.)

Because R is invertible over GF[2] and because q(·) 6≡ 0, it follows
that for at least one S′ ⊆ S,p(S′) = 1. For this S′,a(S′) satisfies an odd
number of terms. This complete the proof of the claim.

We now complete the proof of the theorem. To define h(a), we
arbitrarily choose any S′ such that a(S′) satisfies an odd number of
terms and let h(a) = a(S′). Finally, we argue that for each b ∈ Hodd

there are at most m distinct assignments a ∈ H such that h(a) = b.
This is because each such a is either equal to b, or is obtained by

∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
∅ 1 0 0 0 0 0 0 0
{1} 1 1 0 0 0 0 0 0
{2} 1 0 1 0 0 0 0 0
{3} 1 0 0 1 0 0 0 0
{1,2} 1 1 1 0 1 0 0 0
{1,3} 1 1 0 1 0 1 0 0
{2,3} 1 0 1 1 0 0 1 0
{1,2,3} 1 1 1 1 1 1 1 1

Fig. 6.1 The matrix R for k = 3

6.4. Bounded depth circuit counting 55

taking one of the terms not satisfied by b (there are at most m − 1,
since b must satisfy an odd number and thus at least one term) and
setting the values of all variables in this term to 1.

Note that the theorem holds even in the case when F contains the
constant term 1. This fact is used in the proof of the following corollary.

Corollary 6.3. Let F be a multivariate polynomial over GF[2] with
no duplicate terms, no occurence of the constant term 1 and m terms
in total. Let U be the set of all assignments to the variables, and let
Heven be the set of assignments that satisfy an even number of terms.
Then, |U |/|Heven| ≤m + 1.

Proof. Let F̄ = F ⊕ 1. Then, H̄odd = Heven. Because F does not con-
tain the term 1, F̄ contains m + 1 terms in total, no duplicate terms,
and every assignment satisfies the constant 1 term, and thus H̄ = U .
By the above theorem, |U |/|Heven| = |H̄|/|H̄odd| ≤m + 1.

The bound given in the theorem is optimal. To see this, let m be a
power of two and let F =

∏
i=1,...,logm(1 ⊕ yi)

∏
j=logm,...,r yj . When F

is viewed as a polynomial over GF[2] and expanded out the number
of terms is m. When viewed over GF[2], F = 1 has a unique solu-
tion, whereas when viewed as a DNF formula, F has m satisfying
assignments.

The bound given in the above corollary is also optimal. To see this,
consider F = 1 ⊕

∏
i=1,...,r(1 ⊕ yi). When F is viewed as a polynomial

over GF[2] and expanded out the 1 term is cancelled and the total
number of terms is m = 2r − 1. When viewed over GF[2], F = 0 has a
unique solution, and thus |U |/|Heven| = 2r = m + 1.

6.4 Bounded depth circuit counting

Recall that in Sections 4.1–4.7 we introduced ways to reduce the
amount of randomness when amplifying the probability of correctly
deciding membership of x with respect to an RP or BPP language
L. However, the number of random bits needed was still at least the

56 Deterministic Counting

number to choose a single potential witness at random, i.e., at least
r bits. In this section, we show how to deterministically decide mem-
bership for a BPP language L where the NP TM M associated with
L is restricted to be expressible as a constant depth unbounded fan-
in circuit. While this restriction on M may seem to be severe at first
glance (and it is), such a machine M is nevertheless powerful enough
to express a rich class of #P-complete problems. For example, for the
DNF counting problem described in Section 6.2, the associated TMM

can be expressed as a depth 2 unbounded fan-in circuit.

Definition 6.4. (Cd
n) Let Cd

n be the set of all circuits with n boolean
input variables z = 〈z1, . . . ,zn〉 of depth d. A circuit C ∈ Cd

n consists of
∧-gates and ∨-gates, where each gate is allowed unbounded fan-in. C

consists of d levels of gates, where all gates at a given level are the same
type. All the gates at level 1 have as inputs any mixture of variables
and their negations. For all i ∈ {2, . . . ,d}, all gates at level i receive
their inputs from the gates at level i − 1. There is a single gate at level
d, and either its value or the negation of its value is considered to be
the output C(z) ∈ {0,1} of C.

For x ∈ {0,1}n,x � x = ⊕i∈{1,...,n}xi is the parity of the number of
ones in x.

Definition 6.5. (predicting the parity of its inputs) For any cir-
cuit C ∈ Cd

n, let pC be the prediction probability of C for the parity of
its input, i.e.,

pC = Pr
z∈R{0,1}n

[C(z) = z � z] − 1/2.

Let TC be the total number of gates in C. The time/success ratio
of C for predicting the parity of its inputs is SC = TC/pC .

The following lower bound theorem is a culmination of a num-
ber of papers, i.e., Furst-Saxe-Sipser [13], Ajtai [2], Yao[42], Cai[9],
H̊astad[18].

Parity Theorem: There is a constant κ > 0 such that for any C ∈ Cd
n,

the time/success ratio SC of C satisfies SC ≥ 2nκ/d
.

6.4. Bounded depth circuit counting 57

Let L ∈ BPP and let M be the TM associated with L with associ-
ated constants cyes and cno. Suppose that the computation of M(x,y)
for a fixed value of x ∈ {0,1}n as a function of y ∈ {0,1}r can be
expressed as a circuit C ∈ Cd

r . Let g : {0,1}`→ {0,1}r be a function.

Definition 6.6. (distinguishing probability of C for g) For a cir-
cuit C ∈ Cd

r , we let δC be the distinguishing probability of C for g (anal-
ogous to the definition of a pseudo-random generator in Section 5.3),
i.e.,

δC = | Pr
s∈R{0,1}`

[C(g(s)) = 1] − Pr
y∈R{0,1}r

[C(y) = 1]|.

Let TC be the total number of gates in C. The time/success ratio
of C for distinguishing g is SC = TC/δC .

The key to the constructions of Nisan[30], Nisan-Wigderson [32] is
to design g in such a way that the following properties hold:

• The length ` of the input to g is much shorter than the length
r of its output.
• The time to compute g(s) ∈ {0,1}r given s ∈ {0,1}` is poly-

nomial in r.
• The distinguishing probability δC of C for g satisfies

δC < (cyes − cno)/2.

Given these properties, to decide membership of x ∈ L is easy: Simply
run C(g(s)) for all s ∈ {0,1}`, and then decide x ∈ L iff the fraction of
these inputs on which C produces the value 1 is at least (cyes + cno)/2.
It is not hard to verify that membership of x in L is always decided
correctly. The run time for this procedure is 2` times the time for
computing g on inputs of length ` (in the construction below, this
takes time that is almost linear in the length r of the output of g) plus
the time for computing C on inputs of length r.

Note that we can view g as generating a distribution on the r-bit
input to C consisting of only 2` sample points that appears pseudo-
random to C. If it were possible to set ` = c log(r) for some constant

58 Deterministic Counting

c > 0 then membership of x in L could be decided in polynomial time. If
this value of ` were achievable for C ∈ Cr

r (namely, no depth restriction)
then this would imply that BPP = P. (Contrast this with the results
of Exercise 4.2.)

We now describe the generator g of Nisan [30], Nisan-
Wigderson [32]. Set

` = log(r)c(d+1),

where c > 0 is a parameter that can be thought of as constant. Let
t1, . . . , tr ⊂ {1, . . . , `} be sets that satisfy the following two properties:

(1) For all i ∈ {1, . . . , r}, |ti| =
√

`.
(2) For all i, j ∈ {1, . . . , r}, i 6= j, |ti ∩ tj | ≤ log(r).

We leave as Exercise 6.9 the efficient construction of the sets
t1, . . . , tr with these two properties. For all s ∈ {0,1}`, for each i ∈
{1, . . . , r}, define function bi(s) = ⊕j∈tisj , i.e., bi(s) is the parity of the
number of ones in the bits of s indexed by ti. Finally, let

g(s) = 〈b1(s), . . . , br(s)〉.

The following theorem is due to Nisan [31], Nisan-Wigderson [32].

Theorem 6.7. Let q(r) = 2log(r)cκ/2
/r3. For all C ∈ Cd

r , the time/
success ratio SC of C for distinguishing g satisfies SC ≥ q(r).

Proof. Suppose that C ∈ Cd
r has size TC and distinguishing probability

δC that satisfies TC/δC < q(r). We show this implies there is a circuit
C ′ ∈ Cd+1√

`
such that the size TC′ of C ′ is at most r2 + TC and such that

the prediction probability pC′ of C ′ for the parity of its inputs is at
least δC/r. From this it follows that the time/success ratio

TC′/pC′ ≤ r3 · TC/δC < 2(
√

`)
κ

d+1
,

and by the Parity Theorem, such a circuit C ′ with
√

` inputs of depth
d + 1 cannot exist. Thus, it must be the case that SC ≥ q(r).

The circuit C ′ will be derived from C and g based on the properties
of the generator g. We first use a hybrid argument first used by Yao [41]

6.4. Bounded depth circuit counting 59

that has become standard. Let s ∈R {0,1}` and y ∈R {0,1}r. Consider
the following sequence of r + 1 distributions on r-bit strings:

0th distribution: 〈b1(s), . . . , br(s)〉.
ith distribution: 〈y1, . . . ,yi, bi+1(s), . . . , br(s)〉.
rth distribution: 〈y1, . . . ,yr〉.

Let Ri ∈ {0,1}r be the random variable distributed according to the
ith distribution, and let pi = PrRi [C(Ri) = 1]. Note that R0 = g(s) and
Rr = y, and thus

δC = |Pr
R0

[C(R0) = 1] − Pr
Rr

[C(Rr) = 1]| = |p0 − pr|.

Assume without loss of generality that p0 − pr is positive. It follows
from the triangle inequality that there is some i ∈ {1, . . . , r} such that

δi = pi−1 − pi ≥ δC/r.

Fix such an i. Note that Ri−1 and Ri both depend only on s and on
y1, . . . ,yi, and that the only difference between Ri−1 and Ri is that the
ith bit of Ri−1 is bi(s) and the ith bit of Ri is yi.

Without loss of generality, let ti = {1, . . . ,
√

`}, i.e., bi(s) depends on
the first

√
` bits of s. Let s′ = 〈s1, . . . ,s√`〉. By an averaging argument,

there is a setting of values for y1, . . . ,yi and s√`+1, . . . ,s` such that the
distinguishing probability of C for Ri−1 and Ri remains at least δi

conditional on these fixed values for y1, . . . ,yi and s√`+1, . . . ,s`. Note
that in the conditional distributions both Ri−1 and Ri both depend
only on s′.

Let F ′(s′,a) be the function of s′ which can be thought of as com-
puting C where the first i − 1 inputs bits are set to the values for
y1, . . . ,yi−1 fixed above, the ith input is set to a ∈ {0,1}, and the remain-
ing r − i input bits are computed as b′i+1(s

′), . . . , b′r(s
′), where b′j(s

′) is
the value of bj(s′,s√`+1, . . . ,s`) when s√`+1, . . . ,s` are fixed as described
above. The above analysis shows that

δi ≤ Pr
s′∈R{0,1}

√
`

[F ′(s′,s′ � s′) = 1] − Pr
s′∈R{0,1}

√
`

[F ′(s′,yi) = 1].

There are two cases to consider, i.e., when yi = 1 or yi = 0. We assume
that yi = 1, as the case when yi = 0 is similar. We leave it as an

60 Deterministic Counting

exercise to prove that in this case the prediction probability pF ′ of
F ′(s′,1) for the parity of its inputs is at least δi ≥ δC/r. The intuition
is that F ′(s′,a) is more biased towards producing a 1 when a = s′ � s′

then when a = 1, and thus if F ′(s′,1) produces a 1 it is more likely that
s′ � s′ = 1 then 0, whereas if F ′(s′,1) = 0 then it is more likely that
s′ � s′ = 0 then 1.

We now show that F ′(s′,yi) can be computed by a small circuit
C ′(s′) of depth d + 1. Note that since for all j ∈ {i + 1, . . . , r}, |tj ∩
ti| ≤ log(r), it follows that b′j(s

′) depends on at most log(r) bits of s′.
Furthermore, any function of κ-bits can be expressed as either a DNF
or CNF circuit with at most 2k gates at the first level. Suppose without
loss of generality that the first level of gates of C are ∧-gates. Then, we
can express b′j(s

′) as a DNF circuit Cj with at most r ∨-gates at the first
level and a single ∧-gate at the second level. We can then merge Cj into
the circuit C by feeding all the values of the ∨-gates of Cj directly into
the ∧-gates at the first level of C that the jth input of C originally fed
into. In the end, we get a circuit C ′(s′) with

√
` inputs which computes

F ′(s′,yi), where the depth of C ′ is d + 1 and the number of gates TC′

in C ′ is at most TC + r(r − i) ≤ TC + r2.

Corollary 6.8. Let L be a language in BPP. Suppose for all x ∈
{0,1}n the associated TM M(x,y) as a function of y ∈ {0,1}r can be
expressed as a circuit C ∈ Cd

r for some fixed positive integer d, where
the number of gates TC in C is at most rc for some fixed positive
value c. Then, membership of x in L can be decided by a deterministic
computation in time 2log(r)O(1)

.

Note that the above corollary applies to derandomize at least
partially the randomized approximation algorithm for DNF counting
described in Section 6.2. However, the Parity Theorem does not help at
all directly in derandomizing the randomized approximation algorithm
for GF[2] Polynomial Counting described in Section 6.3, because such
a polynomial can easily compute the parity of the number of ones in
its input.

6.4. Bounded depth circuit counting 61

Exercise 6.9. Describe an algorithm that on input positive integers
r,` and s with s ≤ `, produces r sets t1, . . . , tr ⊂ {1, . . . , `} such that

• For all i ∈ {1, . . . , r}, |ti| = s.
• For all i, j ∈ {1, . . . , r}, j 6= i.

|tj ∩ ti| ≤ log
(

rs(1 + s
`)

s

`

)
.

The run time of the algorithm should be polynomial in r and `. Note
that when s =

√
` and ` ≥ 8 then |tj ∩ ti| ≤ log(r).

Exercise 6.10. Finish the proof of the above theorem by showing
how the distinguishing probability can be converted into prediction
probability.

Acknowledgements

Avi Wigderson was invited as a Visiting McKay Professor to UC Berke-
ley for the month of February, 1995. Michael Luby was invited as a
Visiting Professor to École Normale Supérieure in Paris for the month
of June, 1995. Based on the series of lectures given during these two
respective visits, Michael Luby compiled these notes into their current
form.

We would like to thank the following people for their help in
producing these notes. Preliminary drafts of notes were prepared by
Sanjoy Dasgupta, Sean Hallgren, Elizabeth Sweedyk, and Eric Vigoda
from UC Berkeley, by Johannes Blömer and Ralph Werchner from the
International Computer Science Institute, and by Avy Sharell from
Orsey. Eric Vigoda from UC Berkeley and Dana Randall from the
Institute for Advanced Studies visited École Normale Supérieure dur-
ing parts of the month of June, 1995, supported by a grant from the
International Branch of the NSF. As part of their activities, Eric helped
substantially in compiling these notes during this time, and Dana proof-
read the entire set of notes, made many good suggestions and found a
number of glaring mistakes.

63

References

Abbreviations

• STOC: Proceedings of the ACM Symposium on Theory of Computing

• FOCS: Proceedings of the IEEE Foundations of Computer Science

[1] L. Adleman, “Two theorems on random polynomial time,” FOCS, pp. 75–83,
1978.

[2] M. Ajtai, “
∑1

1-Formulae on finite structures,” Annals of Pure and Applied
Logic, vol. 24, pp. 1–48, 1983.

[3] M. Ajtai, J. Komlos, and E. Szemeredi, “Deterministic simulation in
LOGSPACE,” STOC, p. 132, 1987.

[4] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr, “RSA/Rabin functions: Cer-
tain parts are as hard as the whole,” SIAM J. on Computing, vol. 17, no. 2,
pp. 194–209, April 1988.

[5] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized parallel algo-
rithm for the maximal independent set problem,” Journal of Algorithms, vol. 7,
pp. 567–583, 1986.

[6] N. Alon and F. R. K. Chung, “Explicit construction of linear sized tolerant
networks,” Discrete Math, vol. 72, pp. 15–19, 1989.

[7] C. Bennett and J. Gill, “Relative to a random oracle A, PA 6= NPA 6= co −
NPA with probability one,” Siam J. on Computing, vol. 10, pp. 96–113, 1981.

[8] M. Blum and S. Micali, “How to generate cryptographically strong sequences
of pseudo-random bits,” SIAM J. on Computing, vol. 13, pp. 850–864, A pre-
liminary version appears in FOCS, 1982, pp. 112–117, 1984.

65

66 References

[9] J. Cai, “With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy,” J. of Computer and System Sci., vol. 38, pp. 68–85,
A preliminary version appears in STOC, 1986, pp. 21–29, 1989.

[10] B. Chor and O. Goldreich, “On the power of two-point sampling,” Journal of
Complexity, vol. 5, pp. 96–106, 1989.

[11] A. Cohen and A. Wigderson, “Dispersers, deterministic amplification, and weak
random sources,” FOCS, pp. 14–19, 1989.

[12] M. Fredman, J. Komlos, and E. Szemeredi, “Storing a sparse table in O(1)
worst case access time,” Journal of the ACM, vol. 31, pp. 538–544, 1984.

[13] M. Furst, J. Saxe, and M. Sipser, “Parity, circuits and the polynomial time
hierarchy,” FOCS, pp. 260–270, 1981.

[14] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random func-
tions,” J. of ACM, vol. 33, no. 4, pp. 792–807, A preliminary version appears
in FOCS, 1984., 1986.

[15] O. Goldreich and L. Levin, “A hard-core predicate for any one-way function,”
STOC, pp. 25–32, 1989.

[16] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. of Computer and
System Sci., vol. 28, pp. 270–299, A preliminary version appears in STOC,
1982, pp. 365–377., 1984.

[17] S. Goldwasser and M. Sipser, “Private coins vs public coins in interactive proof
systems,” STOC, pp. 59–68, 1986.

[18] J. H̊astad, Computational limitations for small depth circuits. Ph.D. thesis,
1986. MIT press.

[19] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudo-random gener-
ator from any one-way function,” SIAM Journal on Computing, vol. 28, no. 4,
pp. 1364–1396, 1999.

[20] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applica-
tions,” Bulletin of the AMS, to appear.

[21] R. Impagliazzo, L. Levin, and M. Luby, “A pseudo-random generator from any
one-way function,” STOC, pp. 12–24, 1989.

[22] R. Impagliazzo and D. Zuckerman, “How to recycle random bits,” FOCS,
pp. 248–253, 1990.

[23] R. Karp and M. Luby, “Monte-carlo algorithms for the planar multiterminal
network reliability problem,” J. of Complexity, vol. 1, pp. 45–64, 1985.

[24] R. Karp, M. Luby, and N. Madras, “Monte-carlo approximation algorithms for
enumeration problems,” J. of Algorithms, vol. 10, no. 3, pp. 429–448, 1989.

[25] R. Karp, N. Pippenger, and M. Sipser, “Expanders, randomness, or time
versus space,” First Annual Conference on Structure in Complexity Theory,
pp. 325–329, 1986.

[26] M. Karpinski and M. Luby, “Approximating the number of solutions to a GF[2]
formula,” Journal of Algorithms, vol. 14, no. 2, pp. 280–287, March 1993.

[27] A. Lubotzky, R. Phillips, and P. Sarnak, “Explicit expanders and the ramanu-
jan conjectures,” STOC, pp. 240–246, (See also: A. Lubotzky, R. Phillips,
P. Sarnak. “Ramanujan graphs,” Combinatorica, vol. 8, 1988, pp. 261–277).,
1986.

References 67

[28] M. Luby, “A simple parallel algorithm for the maximal independent set prob-
lem,” SIAM J. on Computing, vol. 15, no. 4, pp. 1036–1053, November 1986.

[29] G. Margulis, “Explicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and superconcentrators,” Prob-
lemy Peredachi Informatsii, vol. 24, pp. 51–60, (in Russian). (English transla-
tion in Problems of Information Transmission, vol. 24, 1988, pp. 39–46)., 1988.

[30] N. Nisan, “Pseudorandom bits for constant depth circuits,” Combinatorica,
vol. 1, pp. 63–70, 1991.

[31] N. Nisan, “RL⊆SC,” STOC, pp. 619–623, 1992.
[32] N. Nisan and A. Wigderson, “Hardness vs. randomness,” J. of Comp. Sci. and

Sys., vol. 49, no. 2, pp. 149–167, 1994.
[33] N. Nisan and D. Zuckerman, “More deterministic simulation in logspace,”

STOC, pp. 235–244, 1993.
[34] C. H. Papadimitriou, Computational complexity. 1993. Addison Wesley.
[35] A. Renyi, Probability theory. 1970. North-Holland, Amsterdam.
[36] M. Sipser, “A complexity theoretic approach to randomness,” STOC,

pp. 330–335, 1983.
[37] M. Sipser, Introduction to the theory of computation. PWS Publishing, 1997.
[38] L. Valiant, “The complexity of computing the permanent,” Theoretical Com-

puter Science, no. 8, pp. 189–201, 1979.
[39] L. Valiant and V. Vazirani, “NP is as easy as detecting unique solutions,”

Theoretical Computer Science, vol. 47, pp. 85–93, 1986.
[40] M. Wegman and J. Carter, “New hash functions and their use in authentication

and set equality,” Journal of Computer and System Sciences, vol. 22, no. 3,
pp. 265–279, 1981.

[41] A. Yao, “Theory and applications of trapdoor functions,” FOCS, pp. 80–91,
1982.

[42] A. Yao, “Separating the polynomial-time hierarchy by oracles,” FOCS,
pp. 1–10, 1985.

