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Preface

I take the central task of theoretical computing science (TCS) to be the construc-
tion of mathematical models of computational phenomena. Such models provide us
with a deeper understanding of the nature of computation and representation. For
example, the early work on computability theory provided a mathematical model of
computation. Later work on the semantics of programming languages enabled a pre-
cise articulation of the underlying differences among programming languages and
led to a clearer understanding of the distinction between semantic representation and
implementation. Early work in complexity theory supplied us with abstract notions
that formally articulated informal ideas about the resources used during computa-
tion. Such mathematical modeling provides the means of exploring the properties
and limitations of languages and tools that would otherwise be unavailable.

The aim of this book is to contribute to this fundamental activity. Here we have
two interrelated goals. One is to provide a logical framework and foundation for the
process of specification and the design of specification languages. The second is to
employ this framework to introduce and study computable models. These extend the
notion of specification to the more general arena of mathematical modeling where
our aim is to build mathematical models that are constructed from specifications.

During the preparation of this book, every proper computer scientist at the Uni-
versity of Essex provided valuable feedback. Some provided quite detailed com-
ments. I will not single out any of you; you know who you are. But to all who
contributed, thank you. Referees on the various journal papers that led to the book
also provided valuable advice and criticism. But my greatest debt is to my wife,
Rosana. Over the years, she has read draft after draft and made innumerable (not
literally) suggestions for change and improvement. Without her, the size of the set
of errors that remains would be much greater than it is.
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Chapter 1
What is a Computable Model?

As a first approximation, a computable model is a mathematical model constructed
from data types using operations and relations that are computable relative to those
types. But what do we understand by the terms mathematical model and data type
and what is it to be computable relative to the latter? As a preliminary to for-
malization, in this chapter we aim to clarify how we intend to use these notions.
The rest of the book will provide mathematical substance to these more informal
considerations.

1.1 Mathematical Models

The term mathematical model is often used to mean a model of a system built from
mathematical structures and their associated notions. Such models are employed
throughout engineering, the natural sciences, and the social ones. Typical examples
range from models constructed from sets, number systems of various kinds, alge-
braic structures, especially categories, topological spaces through to probabilistic
and statistical models, etc. Very common examples employ the real and complex
number systems and, in particular, consist of differential equations such as the
following.

m
d2

dt2
f (t) = − grad (g( f (t))

d S

S
= μdt + σd X

The first is the model of a particle in a potential field and the second is the Black–
Scholes partial differential equation for a derivative price. The exact meaning of the
terms involved need not detain us; our only concern is that they illustrate how math-
ematical notions (in these cases differential equations) are used to model natural or
artificial phenomena. This very general notion of modeling partly illustrates how we
intend to use the term mathematical modeling.

However, our primary use of the term is closer to that found in logic and set
theory [5, 11, 13] where sets, relations, and functions (conceived of as sets of
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2 1 What is a Computable Model?

tuples) are the basic building blocks for the construction of mathematical models
of axiomatic systems. While this kind of modeling may be seen as a special case of
the more general notion, it is distinguished by the central role it gives to sets. For
example, in the denotational semantics [19] of programming languages, programs
are modeled as set-theoretic functions acting upon some set-theoretic representation
of the underlying abstract machine. In formal ontology, a typical representation of
time will model instants as certain sets of events [22]. And modal notions such as
necessity and possibility are unpacked in terms of sets of possible worlds [4]. Such
modeling is ubiquitous in mathematical logic and theoretical computer science. In-
deed, if one takes set theory as a foundation for mathematics, to which everything
can be reduced, then ultimately all mathematical models are set-theoretic.

In very general terms, we shall often follow the structure of these set-theoretic
models. However, we shall not build our models from sets. Instead, we shall employ
data types and computable relations and functions operating on them. And in their
fundamental guise, these are not to be interpreted as sets but taken as sui generis.
In particular, our notion of type has its origins in computer science [16] and our
notion of relation/function has its origin in computability theory [6], intensional
logic [20, 21], and specification [23].

This is the general picture of our enterprise. We now look at matters in more
detail.

1.2 Specifications, Programs, and Models

While our models will not be set-theoretic, neither will they be programming mod-
els, where the latter consists solely of programs written in some programming
language. There is a crucial distinction between mathematical models and pro-
gramming ones. For while it is true that the process of programming results in the
construction of models from programs and data types, and so fits our desiderata for
being computable, they are not, by themselves, mathematical models. In isolation, a
programming language is just that, i.e., a language. And without some mathematical
interpretation of its constructs, aside from the formal nature of its grammar, it has
no mathematical content. And neither do the programs written in it. Such content
has to be imposed upon it via a semantic account (of some kind) and it is this that
renders it amenable to mathematical analysis.

In fact, computable models are closer to specifications [23, 12] than programs.
Indeed, specifications form the building blocks of computable models, which take
the form of suites of interrelated individual relation and function specifications.
However, our models are taken to include a much broader class of phenomena than
the usual description of a software engineering system. While we are not aiming to
exclude such systems, quite the contrary, eventually we shall take matters somewhat
further and consider the construction of computable models that have more theoreti-
cal interest. In particular, many are best seen as providing a computational makeover
of some standard set-theoretic models such as the modelling of events and time.
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1.3 Data Types and Programming Languages

Natural numbers, characters, tuples of numbers, lists of numbers, finite sets of char-
acters, classes of objects, and stacks of characters are all examples of types of data.
In particular, they are the kinds of things that occur as data types in programming
languages [7]. This provides some insight into what we intend by the term data
type. More specifically, we might use programming languages themselves as the
characterization of such structures; i.e., a data type is one that occurs as a data type
in some programming language. For example, MirandaTM admits numbers, lists,
and functional operations among its data types, while object-oriented languages
such as Smalltalk employ objects and classes as their main modeling notions. Older
languages (e.g., members of the ALGOL family) focus on stacks, arrays, and, more
generally, the structures that support imperative programming. Indeed, imperative
languages such as ALGOL and C can be seen as implicitly containing some notion
of state as a basic type. This programming language perspective captures some-
thing about what we intend by the term data type. But it does not characterize
the abstract notion. It is too contingent a definition. In particular, it captures only
the data types of existing languages and says nothing about new ones that may
occur in future languages. Are we to count the sets of extensional higher-order logic
(with the natural number type) or those of standard Zermelo–Fraenkel set theory
as data types? Presumably not, but why exactly? The answer that they do not oc-
cur as types in any existing language is neither conceptually nor mathematically
informative.

We might generalize matters by not demanding that a data type occur as a type
in an existing language, but only require it to have an interpretation in one. But
what does this amount to? Presumably, that the structure has an interpretation in
such a language. For example, finite sets can be implemented in any language
that supports lists. But being a model usually means being a model of some set
of axioms. In this particular example, the axioms of finite sets need to come out
true under the interpretation that is induced by the implementation. Of course,
to check that the axioms for finite sets are sound, we shall need the axioms for
lists in place. Consequently, without some notion of what the theory of lists is,
we are back to square one; without some axiomatic theory to measure it against,
we have no mathematical characterization.1 But this changes the central question:
It is not which syntactic structures are data types but which axiomatic theories
determine them.

1 It will do no good to suggest that an implementation on a physical machine is all we need
to establish soundness. The best that this can achieve is some form of empirical verification. A
physical machine cannot provide a mathematical account, at least not unless the machine has a
precise characterization. Indeed, without the latter, we cannot even carry out any empirical testing,
since, without some independent characterization, the actual propositional content of the testing is
unclear.
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1.4 Theories of Data

We shall refer to theories that involve the axiomatization of one or more type con-
structors as theories of data types (TDT). Indeed, an informal data type comes
equipped with some basic relations and functions that operate over them; i.e., they
are not naked collections of things [7]. For example, the type of natural numbers usu-
ally comes equipped with successor, addition, and the numerical ordering relations.
Similarly, lists are constructed and manipulated by operations such as concatenation
(∗), head (h), and tail (t). Finally, any account of classes might make reference
to an inherit relation. It is the defining characteristics of these operations and their
types that are articulated in any axiomatization. So, for example, they might be given
by rules of the following form that govern the notions of type and their membership.
The first informs us that N forms a type (the type of natural numbers), while the next
two tell us that 0 is a number and that numbers are closed under addition; i.e., if n
and m are numbers, so is n + m. The second three are parallel ones for lists: If T is
a type, then List(T ) is a type, the empty list is a list, and lists are closed under the
concatenation.

N type 0 : N
a : N b : N

a + b : N
T type

List(T ) t ype
empty : List(T )

a : T l : List(T )

a ∗ l : List(T )

These form part of the rules that govern the type. However, they only provide rules
of type inference. They have meager logical content. In particular, they do not tell
us how to compute with the operators of addition and concatenation. For this we
need rules that govern the relationships between the operators. For example, the
following govern the relationship between addition and successor and among head,
tail, and concatenation.

a : N b : N

a + succ(b) = succ(a + b)
(1)

a : T l : List(T )

head(a ∗ l) ∗ tail(a ∗ l) = a ∗ l
(2)

These give more semantic content to the operators. Such principles reflect and un-
derpin how we program with numbers and lists, and indeed, what we take them to
be. More generally, a set of such principles for a type determines the data type. Of
course, for any given informal data type, there is no unique set of rules and axioms.
While (1) and (2) will almost certainly form part of any theory of numbers/lists,
we have some freedom to decide on which further axioms and rules we take to
determine the type. For example, there is no single theory of natural numbers.

Indeed, for the construction of mathematical models, we need to go beyond the
simple systems of type inference that, for type-checking purposes, are often taken
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to determine a data type. Any mathematically useful account must also include an
induction principle of the form

φ(0) ∀x : N · φ[x] → φ[succ(x)]

∀x : N · φ[x]

where φ is a proposition of the formal language in which the axioms and rules are
expressed. Without induction it is not possible to reason about numbers. Similarly,
the parallel principle for lists takes the following form.

φ[empty] ∀u : T · ∀v : List(T ) · φ[v] → φ[u ∗ v]

∀x : List(T ) · φ[x]

Clearly, such principles depend upon the class of propositions that φ ranges over.
Different classes of propositions determine different induction principles, which
leads to different axiomatic theories. So there will always be a normative aspect
to the choice of axioms and rules. Consequently, every informal data type gives rise
to many axiomatic theories, and consequently, any programming language gives rise
to many TDT.

1.5 Recursive Models

But do all axiomatic theories determine TDT? Or do such theories form a natural
subclass, and can we characterize it? One possible mathematical characterization
insists that a TDT is any axiomatic theory that has a finite model. After all, in any
implementation of an actual programming language on a physical machine, there is
a finite upper bound on the number of elements in a data type and on their individual
size. So why is this not the answer to the characterization problem; i.e., TDT are
those theories that have finite models. Unfortunately, this is not consistent with the
notion of a Turing complete programming language, where the basic data type of
numbers is unbounded. And it is the latter that gives mathematical support for the
idea of a machine-independent language.

The natural numbers not only form a very basic data type (or several), but they
come equipped with the paradigm notion of computability for relations and func-
tions. Consequently, a better mathematical characterization insists that a TDT has
a model in the natural numbers in which its types and its basic operations and rela-
tions, and in particular its notion of equality, are Turing computable. More exactly,
any basic operations must be Turing computable and any basic relation and any type
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are to be recursively enumerable.2 Put more succinctly, it must have a recursive
model. This appropriately generalizes the idea that it has a finite one.3

But what does this sanction and what does it rule out; i.e., which theories have
recursive models? Certainly, any standard axiomatic theory of the numbers with
+, ×, < as its basic function and relation symbols with their standard first-order
axiomatizations has one. And the standard theory of lists has one. And so does the
first-order theory of finite sets with membership and the basic operations of union,
difference, and intersection. Indeed, every structure that functions as a data type in
an existing programming language has one.

Conversely, it rules out the structures that intuitively cannot so function. For ex-
ample, extensional higher-logic with a natural number type [1] has no recursive
model. In particular, equality for its underlying theory of sets is not even semide-
cidable. More explicitly, on the assumptions that N , the set of natural numbers,
is a type and that we can form the type of all subsets of a given type, P(N ) is a
type. However, membership and equality for such infinite extensional sets are not
semidecidable.

So we shall use the notion of a recursive model to determine our notion of TDT.
Indeed, our recursive model constructions will employ a version of formal arith-
metic and establish that our theories are conservative extensions of it. But there are
other characteristics of our theories that support the construction of such recursive
models.

1.6 Intensional Models

In our theories, types, relations, and functions are intensional objects.4 That is, their
criterion of equality is not extensional. Consequently, two types will not be taken to
be equal simply because they share all elements. Similarly, two relations will not be
taken to be the same just because they apply to the same objects, and two functions
will not be taken to be identical when they have the same graphs. Types are not
intended to be notational variants of sets and relations and functions are not taken to
be sets of ordered pairs, triples etc. Instead, they are to be taken as primitive notions
that are determined by their axiomatic theories. They are intensional notions. This

2 We shall use computable function to mean Turing computable function. Semi-decidable rela-
tions are also called recursively enumerable ones. These have Turing computable characteristic
functions.
3 While finiteness may explain why finite sets may be taken to be data structures, and while infinite
sets given in extension may not be, it does not explain why sets given intensionally can be. For
example, consider the recursively enumerable sets given via their Gödel codes. We can compute
their union via their codes. In this way the codes act as the vehicles of the computation.
4 In respect of their intensional character, the traditional notion of property would be a close cousin
of these notions [20].
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is all consistent with the demand that our theories have recursive models where the
primary notion of function is operational and algorithmic.5

1.7 A Logical Foundation for Specification

The given set constructors of Zermelo–Fraenkel set theory (union, power set, pair-
ing, separation, etc.) will not suffice for many applications. Clearly, one cannot de-
velop set-theoretic models without the development of some set-theoretic notions,
i.e., pure Zermelo–Fraenkel set theory has to be enriched by the conservative defini-
tion of new notions expressed within the language of set theory [13]. For example,
at some point, one has to define new set constructors. Indeed, the reconstruction
of mathematics inside set theory is an activity of this very kind. And it requires a
massive build-up of mathematical infrastructure.

Similarly, a bare TDT will seldom suffice for the construction of a computable
model. The theory will need to be supplemented by the definition of new notions,
i.e., new types, relations, and functions. In a computable setting, such definitions
will take the form of specifications of new relations and functions [23, 12].

Consequently, much of the book will involve not only the development of TDT,
but also the development, construction, and mathematical investigation of specifica-
tions expressed within them. This will yield a logical foundation for specification.
Indeed, one of our aims is to unpack the logical content of specifications: What are
the rules that govern their introduction and use? How do we reason about them?
How do we treat them as mathematical objects?

1.8 Implementable Models

Many set-theoretic models have no recursive interpretation. However, it is often pos-
sible to replace the set-theoretic model with a computable counterpart. Of course,
such a replacement does not entail mathematical equivalence. But computable mod-
els have the advantage that they can be implemented in the sense that they have a
recursive interpretation. Indeed, more directly, a computable model could be coded
in a version of Prolog, i.e., one with the appropriate type structure [17]. Such in-
terpretations offer the possibility of building a prototype implementation of the
mathematical model.

In contrast, the formal and conceptual relationships between set-theoretic models
and actual implementations are often obscure and/or complicated [15]. Mostly one
can only implement an approximation or simulation of the mathematical model.
Both theoretically and practically, this is far from satisfactory. Computable models
are implementable specifications, and so there is a precise and direct connection

5 Here we assume the standard recursive model where algorithms are representable as codes of
Turing machines and their criterion of equality is the one inherited from this representation.
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between the specification and the implementation. Indeed, at least in our case stud-
ies, we suggest that the computable model is often a more faithful, in the sense of
[3, 8], reflection of practice.

1.9 The Logical Setting

Informally at least, we have now settled the nature of our theories and our models;
now we need to examine how to formally formulate them. To this end, we shall ex-
ploit some of the central disciplines of mathematical logic, namely, recursion theory
[18, 6], formal arithmetic [10], and admissible set theory [2].

First, the language of formal arithmetic provides a (albeit very impoverished)
paradigm TDT and we shall employ it as a yard-stick in the construction of our
more complex and applicable theories. There are several reasons for this. Not only
are numbers a fundamental notion of data in computer science, but formal number
theory provides a paradigm for the investigation of our theories: In it one can specify
or define functions and relations in much the same way as with more complex and
expressive theories. Indeed, much of formal number theory can be productively seen
as an exercise in formal specification for numerical relations and functions. This
will furnish us with a framework in which the various important mathematical and
metamathematical questions are presented and investigated in stark form, and so
provide us with a road map for the investigation of more elaborate theories. Much
the same is true of admissible set theory. In particular, the elementary parts of the
latter provide a detailed study of the definition of new relation and function symbols
over hereditarily finite sets.

Second, all the aforementioned theories furnish us with a precise notion of com-
putability for relations and functions. For instance, in formal arithmetic the � defin-
able wff characterize the recursively enumerable relations in that every recursively
enumerable relation is � definable and vice versa. This will guide us in formulat-
ing explicit notions of definability/computability for our theories. Indeed, we shall
generalize these notions of � definability to TDT. In this way we shall provide a
generalized notion of computability for arbitrary TDT.

However, unlike these theories, which are single type theories, we are concerned
with theories with very rich and expressive notions of type. So in the formulation
of our rather grammatically complex theories of types, we shall borrow heavily
from recent work in constructive type theory [14, 3] and, more generally, the type
theories developed in theoretical computer science. The latter, with its emphasis on
type checking, presents us with a very flexible way of formulating syntax.6 Indeed,
modern logical systems also display such grammatical flexibility, and the present
logical framework follows suit.

In the next chapter we shall develop our basic logical framework, called typed
predicate logic (TPL), within which we shall articulate our TDT. Once that is in

6 This was itself inspired by early work in combinatorial logic.
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place, we shall develop a general theory of specification based upon TPL. This will
yield a very general approach to specification that will automatically apply to all
TDT articulated within it. We shall then begin the development of a sequence of
TDT. The first concentrates on the natural numbers as a paradigm theory of data.
This is followed by the development of a typed theory of finite sets. The rest of the
book will cover topics such as higher-order specifications, specifications as data,
subtypes, polymorphic specifications, abstract types, and various examples of com-
putable models including examples from theoretical computer science, computable
real analysis, philosophical logic, and formal ontology. And every theory and model
cast within it will have a recursive interpretation.
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Chapter 2
Typed Predicate Logic

In this initial technical chapter we develop the logical framework within which to
articulate our theories of data types (TDT). It is also to form our basic language
of specification and provide the host for the construction of computable models.
It is important to note that we are not advocating a single theory of types, but a
broad framework in which a rich variety of theories can be easily and elegantly
formulated.

Generally in logic and theoretical computer science, type theories are inductively
generated from some basic types via type constructors. Our framework needs to be
sufficiently flexible to elegantly support a wide range of such constructors, including
dependent types, subtypes, and polymorphism. In addition, it must support a type
of types; i.e., it must facilitate a natural formulation of theories where objects used
to classify data become themselves items of data. However, the standard approach
to the syntax of logical languages, where the syntax is given via some context-free
grammar, does not easily support the expression of such a wide variety of notions.
Nor does the traditional approach to simple type theory, i.e., where the types are
hard-wired to the terms.

However, computer science with its emphasis on types [4, 1] and type checking,
presents us with a more flexible way of formulating a typed syntax.1 Indeed, mod-
ern logical systems also display such grammatical flexibility, e.g., the type theories
of Martin Löf [3, 2]. The present logical framework follows suit. In the next few
sections we shall present it and explore its simple properties.

2.1 Judgments and Contexts

We employ a system of natural deduction that we shall call typed predicate logic
(TPL). This will form the logical skeleton of all our theories. However, unlike
standard logical systems, where there is only one judgment form in conclusions,
we admit several. More exactly, it is a many-sorted natural deduction system with
the following four judgment forms:

1 This was itself inspired by early work in combinatorial logic.
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T type

φ prop

t : T

φ

The first asserts that T is a type, the second that φ is a proposition, the third that t
is an object term of type T , and the fourth that φ is true. We shall refer to the first
three as type-inference judgments.

These judgments are formed from a syntax of terms that are built from vari-
ables (x0, x1, x2, x3...), constant, function, and relation symbols, including equality
(=), and the logical connectives (�,∧,∨,¬,→,∀, ∃). As metavariables for strings
on these alphabets, we employ the Roman and Greek alphabets, where we reserve
x, y, z, u, v, w to range over the object-level variables of the language. While this
is the stuff of the syntax, the actual grammar is determined not by a traditional
BNF or context-free syntax, but by a type-inference system that is constituted by
the membership and formation rules for types and propositions [6, 3, 5]. The rules
for this rule-based grammar will form part of the overall proof system.2

Generally, judgments in the logic are made relative to a context � that is a finite
sequence of terms. In the logic, these take one of the following two forms:

x : T

φ

i.e., a declaration that a variable has a given type or the assumption that a proposi-
tion, φ, is true. Thus, sequents in the theory have the shape,

� 	 �

where � is one of our four judgment forms and � a context. Such sequents are the
basic carriers of meaning in the logic. They determine not only what follows from
what, but also what is grammatically legitimate. We shall call contexts that contain
only type assignments, i.e., ones of the form x : T , declaration contexts. We shall

2 This background syntax may be further refined via the following BNF grammar.

t ::= F(t1, .− ., tn)|R(t1, .− ., tn)|O(t1, .− ., tn) | t =t t

t ∨ t |t ∧ t |¬t |∀x : t · t |∃x : t.t

Similarly, the raw syntax of contexts might also be made explicit as follows.

� ::= t | t, �

However, such BNF style definitions do not play too much of a role, since they sanction way
too much nonsense. They only provide the background strings for the actual grammar, which is
rule-given, i.e., by the rules of the logic itself.
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use c, c′, d, d ′, etc., as variables for these contexts and c� for that part of the context
� that consists of just its type assignments.

2.2 Structural Rules

We begin with the structural rules, i.e., assumption, thinning, and substitution. The
first two permit the addition of new (grammatically acceptable) assumptions. The
next allows weakening under the same grammatical constraints. The final rule is
a substitution rule. Note that it respects the fact that, in contexts, the order of the
occurrence of assumptions is significant.

A1
� 	 T type

�, x : T 	 x : T
A2

� 	 φ prop

�, φ 	 φ

W1
�, � 	 � � 	 T type

�, x : T, � 	 �

W2
�, � 	 � � 	 φ prop

�, φ, � 	 �

Sub
�, y : S, � 	 � � 	 s : S

�, �[s/y] 	 �[s/y]

where in A1 and W1, x is fresh (i.e., it is not declared in �, �) and �[s/y] indicates
the substitution of the term s for the variable y. Grammatical constraints play a
significant role. For example, in A1 we are only permitted to add type assignments
involving terms that are types, whereas A2 only sanctions assumptions that are
propositions. Note that we do not have an exchange rule. This is a consequence
of the fact that, in general, contexts will be dependent, i.e., the grammatical status
of later assumptions may depend upon earlier ones. For example, the status of a
purported proposition may depend upon the types of its free variables, and so may
depend upon previous type declarations. A simple illustration of such dependence
is generated by the equality rules. We shall see this shortly. The Sub rule could be
avoided (it is partly covered by the universal elimination rule), but it will often prove
convenient for the statement of our theories.

2.3 Types

As we have previously emphasized, types, relations, and functions are the basic
building blocks of computable models. However, our treatment is not standard. They
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are to be taken as intensional and primitive notions whose content is given by the
rules of the system. This will become clear as we proceed.

The types of any particular theory will be given in terms of some basic types
and closed under a collection of type constructors. More explicitly, in their most
elementary guise, the formation rules for types will take the following shape.

O1 B type O2
� 	 T1 type, ..., � 	 Tn type

� 	 O(T1, ..., Tn) type

The first rule allows for the inclusion of basic types such as Booleans and numbers.
In addition, there will be a type rule for each type constructor O of the language. For
example, the rule for Cartesian products has the following formation rule.

� 	 T type � 	 S type

� 	 T ⊗ S type

Such a rule might be expressed in standard context-free style as follows.

t ype ::= ...| type ⊗ type

But this approach is limited in that it does not easily support dependency. Later, we
shall consider generalizations of such type formation rules as O2, rules that permit
types to depend upon propositions and other types, i.e., dependent types.3 We shall
discuss these notions in more detail when we get to them. Our rule-based account
of the grammar of types will really come into its own when we consider a type
of types and, subsequently, consider the types themselves as items of data. Here
we indicate their possibility to give the reader a sense of what is to come and that
this is a much more flexible approach to type formation than any standard context-
free style grammar. One cannot easily generalize the latter to cater for such notions
of type.

The alert reader might think that we also need rules of type equality. We shall get
to these when types are themselves taken to be objects in the theory. At this point,
suffice it to say that, whatever type equality is taken to be, it will not be extensional;
i.e., we shall not identify two types on the basis of shared membership.

3 For example, in the following the first rule generalizes Cartesian products to allow for the second
type to depend on the first one. The second introduces separation or sub-types. Here proposition
formation may depend upon type formation, and subsequently, type formation may depend upon
proposition formation.

� 	 T type �, x : T 	 S type

� 	 �x : T · S type

� 	 T type �, x : T 	 φ prop

� 	 {x : T · φ} type
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2.4 Relations and Functions

A relation is introduced by its grammatical rule, which takes the following shape.

R
� 	 t1 : T1, ..., � 	 tn : Tn

� 	 R(t1, ..., tn) prop

This informs us of its grammatical territory, its intended domain and range. Of
course, in any theory there may be many such relations, given by such rules.

This notion of relation is to be seen in contrast to the standard set-theoretic one
in which a relation is taken to be a set of ordered tuples i.e.,

R ⊆ T1⊗, ...,⊗Tn

where now T1, ..., Tn are sets. This is a fundamentally different notion of relation.
And while ours has a set-theoretic interpretation, it is not the intended one. As we
have said before, our relations are not taken to be extensional; i.e., they are not taken
to satisfy any axiom of extensionality that insists that relations that hold of the same
objects are the same relation. This is forced by the set-theoretic interpretation.

Similar remarks apply to functions. In the rule for function symbols, the resulting
type is tied to a type constructor of the language; i.e., we assume that rule O governs
the formation of the type O(T1, ..., Tn). Thus, the types themselves are introduced
via rules and the function symbols follow suit.

F
� 	 t1 : T1, ..., � 	 tn : Tn

� 	 F(t1, ..., tn) : O(T1, ..., Tn)

In line with the generalization of type formation, the rules for functions and relations
will admit parallel generalizations. But we shall explain these in context.

2.5 Equality

The formation rule for equality is a special case of the formation rule for relations.
E1 insists that equality forms a proposition when the terms flanking it have the same
type. In addition, distinguished symbols such as equality are given content by their
associated axioms and rules. E2 and E3 are the standard rules of introduction and
elimination; i.e., every element of every type is equal to itself and equal objects can
be substituted for each other in all contexts.
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E1
� 	 t : T � 	 s : T

� 	 t =T s prop
E2

� 	 t : T

� 	 t =T t

E3
� 	 t =T s � 	 �[t/x]

� 	 �[s/x]

The equality rules illustrate how dependency in contexts can occur. For instance, a
provable sequent such as

x : T, y : T, z : T, x =T y, y =T z 	 x =T z

demonstrates how the occurrences of equality in the context (as well as the conclu-
sion) are legitimate (i.e., form propositions) only where their constituent terms have
the same type. Observe that, as a suffix, the type of the equality symbol is explicitly
marked. However, where the context determines matters, we shall often drop the
subscript on the equality relation; i.e., we shall just write:

x : T, y : T, z : T, x = y, y = z 	 x = z

This principle of parsimony will be adopted generally.

2.6 Propositional Rules

We next provide the rules for the propositional connectives. The formation rules for
these connectives capture their standard closure conditions, i.e., the ones normally
given in a context-free style, while the introduction and elimination rules are their
standard introduction and elimination logical rules.

L1
� 	 φ prop � 	 ψ prop

� 	 φ ∧ ψ prop
L2

� 	 φ � 	 ψ

� 	 φ ∧ ψ

L3
� 	 φ ∧ ψ

� 	 φ
L4

� 	 φ ∧ ψ

� 	 ψ

L5
� 	 φ prop � 	 ψ prop

� 	 φ ∨ ψ prop

L6
� 	 φ ∨ ψ �, φ 	 η �, ψ 	 η

� 	 η

L7
� 	 φ � 	 ψ prop

� 	 φ ∨ ψ
L8

� 	 ψ � 	 φ prop

� 	 φ ∨ ψ
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L9 � 	 � prop L10
� 	 φ � 	 ¬φ

� 	 �

L11
� 	 φ prop � 	 �

� 	 φ

L12
� 	 φ prop � 	 ψ prop

� 	 φ → ψ prop
L13

�, φ 	 ψ

� 	 φ → ψ

L14
� 	 φ → ψ � 	 φ

� 	 ψ

L15
� 	 φ prop

� 	 ¬φ prop
L16

�, φ 	 �

� 	 ¬φ
L17

�,¬φ 	 �

� 	 φ

There are additional grammatical assumptions in some of the rules. For instance,
in the disjunction introduction rules (L7, L8), we include the assumption that the
alternate constituent of the disjunction has to be a proposition. These grammatical
side conditions, as we shall see, are to ensure that only grammatically legitimate
objects (i.e., propositions) are provable. Note that the underlying logic is classical
logic. Unless overridden by parentheses, we shall assume that negation takes prece-
dence over conjunction and disjunction, which take precedence over implication.
But most of the time we shall use brackets.

2.7 Quantifier Rules

Aside from their generalized grammatical setting, the rules for the quantifiers are
also classical. In particular, we assume the normal side conditions for the quantifier
rules; i.e., in L20, x must not be free in �, T, or η, and in L22, x must not be free in
any proposition in �.

L18
�, x : T 	 φ prop

� 	 ∃x : T · φ prop

L19
� 	 φ[t/x] � 	 t : T �, x : T 	 φ prop

� 	 ∃x : T · φ

L20
� 	 ∃x : T · φ �, x : T, φ 	 η

� 	 η
L21

�, x : T 	 φ prop

� 	 ∀x : T · φ prop

L22
�, x : T 	 φ

� 	 ∀x : T · φ L23
� 	 ∀x : T · φ � 	 t : T

� 	 φ[t/x]

We shall assume that the scope of the quantifier in ∀x : T · φ, ∃x : T · φ is the
whole of φ. It is only overridden by explicit parentheses.
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This concludes the rules of TPL. We shall often indicate matters explicitly and
write

� 	TPL �

if the sequent � 	 � is derivable using the rules of TPL.
The system may appear to be somewhat nonstandard, especially for the reader

accustomed to first-order predicate logic. Hence, we provide some example
derivations.

2.8 TPL Derivations

There is little here that is not a straightforward generalization that flows from the
additional rules that replace the standard context-free grammar of a typed logic.
However, given the slightly novel nature of TPL, we illustrate its notion of deduc-
tion with some simple examples. Of course, we shall see many more throughout the
book. However, they will be somewhat less completely and formally presented.

Example 1 We deduce

∀x : B · ∀y : B · x =B y → y =B x

By the first equality rule, E1, we have

x : B, y : B 	 x : B x : B, y : B 	 y : B

x : B, y : B 	 x =B y prop
(1)

In the following, (2) is an instance of the structural rule, A2.

x : B, y : B 	 x =B y prop

x : B, y : B, x =B y 	 x =B y
(2)

Step (3) is an instance of the second equality rule E2.

x : B 	 x : B

x : B 	 x =B x
(3)

The conclusion of (3) may be enriched to (4). This follows by a judicious use of A1

and A2.

x : B 	 x =B x

x : B, y : B, x =B y 	 x =B x
(4)
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By the third equality rule, the conclusions of (2) and (4), we may deduce the fol-
lowing

x : B, y : B, x =B y 	 x =B y x : B 	 x =B x

x : B, y : B, x =B y 	 y =B x
(5)

By the implication introduction rule L13 and the conclusion of (5), we can deduce
(6).

x : B, y : B, x =B y 	 y =B x

x : B, y : B 	 x =B y → y =B x
(6)

By L21 and the conclusion of (6), we may conclude

x : B, y : B 	 x =B y → y =B x

x : B 	 ∀y : B · x =B y → y =B x
(7)

By the conclusion of (7) and L21, we arrive at the following

x : B 	 ∀y : B · x =B y → y =B x

∀x : B · ∀y : B · x =B y → y =B x
(8)

Example 2 We deduce

∀x : B · ∃y : B · x =B y

By the first structural rule, A1, we have

B type

x : B 	 x : B
(1)

By the first equality rule, E1, we have

x : B, y : B 	 x : B x : B, y : B 	 y : B

x : B, y : B 	 x =B y prop
(2)

The conclusion (3) is an instance of the equality rule E2

x : B 	 x : B

x : B 	 x =B x
(3)

By the existential introduction rule, L19, and conclusions of (1), (2), and (3), we
may deduce the following

x : B 	 x =B x x : B 	 x : B x : B, y : B 	 x =B y prop

x : B 	 ∃y : B · x =B y
(4)
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By the conclusion of (4) and universal introduction, we obtain

x : B 	 ∃y : B · x =B y

∀x : B · ∃y : B · x =B y
(5)

We shall not see a great many examples worked out in such great detail. But these
should be enough for the reader to grasp the dynamics of deduction in the system.

Example 3 Given

φ prop and ψ prop

i.e., we can derive these in some context, we may define, in that context,

φ ↔ ψ � (φ → ψ) ∧ (ψ → φ)

These is a new defined connective that illustrates the way that new notions are
introduced via specification. But more of this later.

2.9 Type Inference

A distinctive aspect of TPL is its underlying type-inference system. As mentioned at
the outset, we have inherited our approach to typed systems from the type-checking
approach to syntax developed by computer scientists to ensure the type correctness
of programs. It is a flexible approach in which types are not attached to terms. In-
stead, terms receive their types via type declarations.

This type-inference system constitutes the real grammar of TPL. We shall refer
to it as TI. It is populated by the formation and type membership rules for the theory.
Such a grammatical framework not only supports a very elegant and syntactically
sensitive way of expressing a wide range of theories of data, but also has some
conceptual significance. Types in our theories are meant to be vehicles for carving up
the world in ways that can assist the computational model builder. As such, they play
somewhat the same role as dimensional analysis in physics, a role that is isolated in
the following subsystem.

Definition 4 The subtheory TI is that sub theory of TPL whose rules are those of
TPL but restricted to instances of the form

c1 	 �1, ..., cn 	 �n

c 	 �

where the contexts are type declarations and the conclusions (�, �i ) are type-
inference judgments, i.e., of the form
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T type

φ prop

t : T

We write

c 	TI �

if the sequent follows in TI.

A quick glance shows that only the rules O1, O2, R, F , E1, E3, A1, W1, W2, Sub,
L1, L5, L9, L12, L15, L18, and L21 furnish possible instances of such type-inference
rules.

We first establish that this system is independent of the main one; i.e., it is a
genuine subsystem.

Proposition 5 (Independence) If � 	TPL �, where � is a type-inference judgment,
then c� 	TI �.

Proof By induction on the rules with type-inference conclusions. Observation of
these demonstrates that they only require declaration contexts and type-inference
premises. For example, consider the structural rule

� 	 T type

�, x : T 	 x : T

By induction, c� 	 T type. By the rule itself, c�, x : T 	 T type. Similarly, for the
following rule, i.e., if only type-inference is used in the premises, it is only used in
the conclusion.

�, � 	 � � 	 T type

�, x : T, � 	 �

This style of argument succeeds for all cases.�

The following provides the basis for a type-checking algorithm.

Proposition 6 (Type Checking) In TI we have:

1. c 	 R(t1, ..., tn) prop iff c 	 t1 : T1 and...and c 	 tn : Tn,

2. c 	 O(T1, ..., Tn) t ype iff c 	 T1 t ype and...and c 	 Tn type,
3. c 	 F(t1, ..., tn) : O(T1, ..., Tn) iff c 	 t1 : T1 and...and c 	 tn : Tn,

4. c 	 φ ◦ ψ prop iff c 	 φ prop and c 	 ψ prop, where ◦ = ∨,∧,→,

5. c 	 ¬φ prop iff c 	 φ prop,

6. c 	 Qx : T .φ prop iff c, x : T 	 φ prop where Q = ∃ or ∀
7. c 	 t =T s prop iff c 	 t : T and c 	 s : T
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Proof The directions from right to left follow immediately from the rules. For the
other direction, we use induction on the structure of derivations. Consider part 1. If
the conclusion follows from the formation rule

R
c 	 t1 : T1, ..., c 	 tn : Tn

c 	 R(t1, ..., tn) prop

the result is immediate. If the conclusion is the result of a structural rule, the result
follows from using the structural rule itself. Consider part 4. If the conclusion fol-
lows from the introduction rules for the connective, the result is immediate. If the
conclusion is the result of a structural rule, the result follows from using the struc-
tural rule itself. For example, suppose the last step in the derivation is the following
instance of an application of W1.

c 	 T type c 	 φ ∧ ψ prop

c, x : T 	 φ ∧ ψ prop

Consider the premises. By induction, we may suppose that c 	 φ prop and c 	
ψ prop. By induction, c, x : T 	 φ prop and c, x : T 	 ψ prop.

The other rules follow exactly the same pattern of argument.�

Using the left-to-right directions, we obtain an obvious recursive algorithm for
type checking. The next result is significant for the coherence of the logic. It guar-
antees that what is provable is grammatical.

Theorem 7 (Coherence)

1. If � 	 φ, then � 	 φ prop,

2. If � 	 t : T, then � 	 T type,
3. If �, x : T, �

′ 	 �, then � 	 T type,
4. If �, φ, �

′ 	 �, then � 	 φ prop

Proof By induction on the structure of derivations. Most of the cases are routine.
We illustrate part 1 with the cases of disjunction elimination, universal introduction,
and existential quantification introduction. Consider

� 	 φ ∨ θ �, φ 	 η �, θ 	 η

� 	 η

By induction, and using type checking, we obtain

c� 	 η prop

Next, consider the existential introduction rule

� 	 φ[t/x] � 	 t : T �, x : T 	 φ prop

� 	 ∃x : T · φ
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By induction, c�, x : T 	 φ prop. By the formation rule for the existential quanti-
fier, we are finished. Finally, consider the existential elimination rule in the follow-
ing case.

� 	 ∃x : T · φ �, x : T, φ 	 η

� 	 η

By the premises �, x : T, φ 	 η. By induction and type checking, and the fact that
x is not free in η, c� 	 η prop. For part 2, we illustrate with rule F; i.e., suppose
that the last step is

� 	 t1 : T1 � 	 tn : Tn

� 	 F(t1, ..., tn) : O(T1, ..., Tn)

By induction and the assumptions, T1 t ype, T2 t ype,...,Tn type. Hence by the rule
O, O(T1, ..., Tn) t ype. For part 3, the substantial case is

W1
�, �

′ 	 � � 	 T type

�, x : T, �′ 	 �

It follows immediately that � 	 T type. The same argument works for part 4 and

W2
�, �

′ 	 δ � 	 φ prop

�, φ, �′ 	 δ

The rest of the rules can be established using similar observations.�

TPL is a generalization of a standard many-sorted logic in two ways. First, the
types may be inductively generated, and so it generalizes the simple fixed structure
of standard many-sorted logic. Second, and more importantly, the variables of the
theory range freely over the types. This has the knock-on effect that the grammatical
legitimacy of the various syntactic constructs not only depends upon the types, but
also depends dynamically on them; i.e., the expressions are only well formed rela-
tive to an assignment of types to the variables. This is a Curry (after Haskell Curry)
approach to typing [1]. And for the natural and elegant development of our quite
rich range of theories, we need all this flexibility. So the slightly complex nature of
our logical framework will eventually reap its rewards.
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Chapter 3
Data Types

In this chapter we shall study the general structure of theories of data types (TDT)
and provide some elementary examples. While the whole book will be taken up with
the introduction and study of such theories and their application to specification and
the construction of computable models, before we begin we need to clear the way a
little.

In first-order logic a theory is any consistent set of sentences of the underlying
language [8, 3]. Much the same is true of simple type theory and higher-order logic
[1]. But with TPL, matters are a little more complicated due to the way that the
formation rules for types and propositions are intermingled with the logic itself.
Types and propositions are generated from some basic types, and most often one or
more type constructors, together with their associated function and relation symbols.
In particular, the various formation rules provide part of the grammatical backlog
to proposition formation. It is their types and type constructors that determine inter-
esting TDT. This is similar to the situation in the Curry approach to types [2] and
constructive type theory [5].

But in order to more precisely introduce matters, we need some building blocks,
i.e., some actual type constructors. Here we shall not provide any analysis; our ob-
jective is to introduce some constructors in order to provide some concrete examples
and illustrate the general structure of TDT. For type inspiration, we shall call upon
some simple standard resources [7, 4, 6]. Some of the types will be used later and
some will not. Nor should the axiomatizations provided be taken as definitive. They
are here for illustrative purposes.

3.1 Booleans

The type of Booleans is found in the majority of programming languages and it is
simple. Hence, it is an appropriate type with which to start. The following rules
provide a standard, axiomatic account.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 3,
C© Springer-Verlag London Limited 2009
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Definition 8 (Booleans)

B0 Bool type B1 true : Bool B2 false : Bool

B3
b : Bool t : Bool s : Bool

cond(b, t, s) : Bool

B4
t : Bool s : Bool

cond(true, t, s) =Bool t
B5

t : Bool s : Bool

cond(false, t, s) =Bool s

The first rule informs us that Bool is a type of the theory. The other rules are the
standard ones for Booleans. The first two are the introduction rules: They tell us that
true and false are members of the type. B3 introduces the conditional expression.
The last two provide the normal equality rules that govern the conditional. In the
above, we have left all contexts implicit; in the future, this will be the norm. Where
the context disambiguates matters, we shall frequently drop the subscripts.

In isolation there is not much more one can do with this type. But once ensconced
as a type of TPL, we can define other operators as new functional operators of our
logic.

Example 9 (Logical Connectives) Given

a, b : Bool

we can define the standard Boolean connectives.

and(a, b) � cond(a, b, false)

or(a, b) � cond(a, true, b)

neg(a) � cond(a, false, true)

These are new defined operators. This heralds the way that new relations and op-
erations are introduced via specification. But more of this later. Alternatively, these
could be taken as primitive with the obvious derived rules. For example, conjunction
would be governed by the following axioms and rule.

t : Bool s : Bool

and(t, s) : Bool

and(true, true) = true
and(true, false) = false
and(false, true) = false
and(false, false) = false

Of course, such rules add nothing to the mathematical content of the theory in
that, as the above definitions demonstrate, such additions yield definitional exten-
sions. This will be a feature of our basic notion of specification.

Actually, when other types are present in a TDT, then we can generalize mat-
ters to allow for a conditional operating over arbitrary types of the theory. In the
following, T is any type of the underlying theory.
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B3
b : Bool t : T s : T

cond(b, t, s) : T

B4
t : T s : T

cond(true, t, s) = t
B5

t : T s : T

cond(false, t, s) = s

It is in this form that Bool will find its main application. We shall also frequently
adopt the convention of writing cond(a, b, c) as a → b, c.

3.2 Products

In some form or other, Cartesian products occur in most programming and specifica-
tion languages. Usually some generalization that supports tuples rather than simple
pairs is included. Equally often, these tuples are labeled or decorated, leading to
the notion of a labeled product. In this section we explore various incarnations of
products in order to put more flesh on our notion of a type constructor. We shall get
to the variations shortly, but first we deal with the standard one.

Definition 10 (Cartesian Products)

P0
A type B type

A ⊗ B type
P1

a : A b : B

(a, b) : A ⊗ B

P2
a : A ⊗ B

π1(a) : A
P3

a : A ⊗ B

π2(a) : B

P4
(a, b) : A ⊗ B

π1(a, b) = a ∧ π2(a, b) = b
P5

a : A ⊗ B

a = (π1(a), π2(a))

The first rule is the type formation rule. The next three rules are the rules for
pairing (written in the standard infix notation) and selection. P1 is the introduction
rule and introduces pairs. The next two (P2, P3) are the rules for selection (i.e., the
elimination rules for the type). There are no special relation symbols. The special
equality axioms (P4, P5) demand that the selection functions behave appropriately
on pairs and support surjective pairing. We shall often write π1(x) as x1, etc.

Within any theory containing products, we define

T1 ⊗ T2 ⊗ T3 � T1 ⊗ (T2 ⊗ T3)

T1 ⊗ T2 ⊗ T3 ⊗ T4 � T1 ⊗ (T2 ⊗ T3 ⊗ T4)

= T1 ⊗ (T2 ⊗ (T3 ⊗ T4))

...

We shall use this convention (i.e., where the tail forms the current Cartesian product)
throughout. With it, triple formation and selection can be specified as follows. Given
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a : T1, b : T2, c : T3

we define triples as follows.

(a, b, c) � (a, (b, c))

And for

a : T1 ⊗ T2 ⊗ T3

we define

π3
1 (a) � π1(a)

π3
2 (a) � π1(π2(a))

π3
3 (a) � π2(π2(a))

We shall later see these as specifications. And we shall be able to be a little more
exact in the form that such specifications take.

This constructor can be modified/generalized in several ways. The first is a mod-
ification that employs labels rather than position to select elements. The type is
defined by the following rules. Ordinary products can be viewed as a special case
where the labels are the numerals 1 and 2.

Definition 11 (Labeled Products)

LP0
A type B type

[l : A, k : B] t ype
LP1

a : A b : B

〈l : a, k : b〉 : [l : A, k : B]

LP2
a : [l : A, k : B]

πl (a) : A
LP3

a : [l : A, k : B]

πk(a) : B

LP4
〈l : a, k : b〉 : [l : A, k : B]

πl 〈l : a, k : b〉 = a ∧ πk 〈l : a, k : b〉 = b

LP5
a : [l : A, k : B]

a = 〈l : πl (a), k : πk(a)〉

Here l, k are labels or attributes that enable selection. 〈l : a, k : b〉 is a labelled
tuple and [l : A, k : B] the corresponding labelled product. This is the form that
products take in relational databases. Also, when the Z notion of a schema is taken
to be a set of bindings [9], it seems to be underpinned by this representation of
products.

A third notion, and one that illustrates the idea of a dependent type formation,
occurs when types can contain variables, and so the grammatical legitimacy of one
type may depend upon the type of a contained variable. This leads to the following
rules for generalized or dependent products.
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Definition 12 (Dependent Products)

DP0
�, x : A 	 B[x] t ype

� 	 �x : A · B type
DP1

a : A b : B[a/x]

(a, b) : �x : A · B

DP2
a : �x : A · B

π1(a) : A
DP3

a : �x : A · B

π2(a) : B[x]

DP4
(a, b) : �x : A · B

π1(a, b) = a ∧ π2(a, b) = b
DP5

a : �x : A · B

a = (π1(a), π2(a))

Again, simple products are a special case, i.e., where the variable x is not free in
B. In these rules, the sequent

�, x : A 	 B[x] t ype

indicates that the legitimacy of any instance of type B depends upon the indexing
element in type A. Two cases that will support this kind of generalization involve
the introduction of subtypes, generated by propositions, and a type of types. These
we shall study in separate chapters.

3.3 Stacks

Our next type constructor is also to be found in some form in many procedural
languages. Even where it is not present, for implementation purposes, it is often
implemented; i.e., it is often represented in terms of the other types of the language.
Although we shall not use this constructor in any application, it yields a worthy
illustrative example. In one incarnation, it is governed by the following rules.

Definition 13 (Stacks)

St0
T type

Stack(T ) t ype
St1 emptystack : Stack(T )

St2
a : Stack(T )

emptyT (a) : Bool
St3

a : T b : Stack(T )

pushT (a, b) : Stack(T )

St4
b : Stack(T )

topT (b) : T
St5

b : Stack(T )

popT (b) : Stack(T )

St6
a : T b : Stack(T )

popT (pushT (a, b)) = b
St7

a : T b : Stack(T )

topT (pushT (a, b)) = a

St8
a : T b : Stack(T )

emptyT ((pushT (a, b)) = false

St9 emptyT (emptystack) = true
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The first rule tells us that we can form the type of stacks of elements for any
given type. The second allows for an empty stack. St2 introduces a predicate that
allows one to check whether the stack is empty. St3 allows us to push an object onto
a stack, St4 to select the top element, and St5 enables us to pop the top element.
The next two relate pushing and popping: They inform us that push, pop, and top
behave as we expect them to. The last two tell us that the empty stack is empty (St9)
and that any stack with a push is not (St8).

3.4 Terms

We next examine a type whose elements are the expressions of a formal language
where, following logical terminology, we shall call such expressions terms. Typi-
cally, they are constructed over a given alphabet, but we generalize matters to allow
for an arbitrary underlying type.

Let T be any type with operators f1, f2, ..., fm , where fi has arity ai (i.e., fi takes
ai arguments from T ) and where zero place operators are taken to be constants.
We construct the type Term(T, f1, f2, ..., fm) of terms on T as follows. We shall
abbreviate the type to Term(T ).

Definition 14 (Terms)

Term0
T type

Term(T ) t ype

Term1
t1 : T, ..., tai : T

fi (t1, ..., tai ) : Term(T )

These rules spell out the form and nature of terms. The first is the type-formation
rule and the second allows terms to be constructed via operators. We shall see many
examples of this kind of type. The first example is given in the following.

3.5 Numbers

There is not one data type of numbers; there are many [3]. In this section we review
some of them and informally point out how they differ and how they are related. We
begin with a very rudimentary notion.

Definition 15 (Baby Numbers)

N0 Num type

N1 0 : Num N2
a : Num

a+ : Num
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Here a+ functions as the successor of a. N0 guarantees that Num is a type,
while N1 and N2 insist that 0 is a number and the type of numbers is closed under
successor. These are essentially the type-inference rules for numbers. Most type-
checking systems for programming languages will contain a shadow of such rules.

But they are not enough for the purposes of specification and for the construction
of computable models. We also require rules that determine the nature of successor;
i.e.,

N3
a : Num

a+ �= 0
N4

a
+ = b

+

a = b

i.e., zero is never a successor and the successor operation is injective. Any useful
account of formal arithmetic will include constants and operations that satisfy these
rules. Indeed, we cannot do much without some version of addition, determined by
the following rules.

Add1
a : Num b : Num

a + b : Num

Add2
a : Num

a + 0 = a

Add3
a : Num b : Num

a + b+ = (a + b)+

Of course, any actual implementation on a physical machine will only implement a
fraction of addition. But we are concerned with Turing complete languages and the-
ories. We need such rules to reason about specifications that are by their very nature
machine-independent. Indeed, the above equations guide any actual implementation
and provide the criteria for correctness.

But even this is not enough to do arithmetic in the sense needed for specifica-
tion and computable modeling. We need to reason about numbers and specifications
written over numbers and establish their properties. And for this we need some form
of numerical induction; i.e.,

Nind
φ[0] ∀x : N · φ[x] → φ[x+]

∀x : N · φ[x]

Notice that the exact content of Nind is only fixed when the language of the embed-
ding theory is fixed; i.e., the induction rule depends upon the class of propositions
that can function as the induction proposition φ. This may be the whole class or
some subclass. And there are many possible type theories depending upon the class
chosen and the embedding theory. We shall formulate more exact theories when we
study the numbers in more detail in a later chapter.
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3.6 Lists

The rules for lists form a component of the type theories of many programming
languages and some specification languages. Let T be any type. One version of the
lists on a type T parallels the rudimentary version of the numbers.

Definition 16 (Baby Lists)

L0
T type

List(T ) t ype

L1
T type

[]T : List(T )
L2

a : T b : List(T )

a 	T b : List(T )

These are the type rules. The first rule is the formation rule. L1 introduces the
empty list and L2 the append operation (∗) that adds an element of the underlying
type to a list of that type.

But any mathematically useful account of lists will also include operations for
manipulating lists, together with rules for their associated properties.

L3
a : T b : List(T )

a 	T b �= []T

L4
b : List(T ) b �= []T

head(b) : T
L5

b : List(T )

tail(b) : List(T )

L6
a : T b : List(T )

head(a 	T b) = a
L7

a : T b : List(T )

tail(a 	T b) = b

L3 informs us that no complex list can be equal to the empty list, and L4 and L5 in-
troduce operations that select the head and tail of a list, where L6 and L7 guarantee
their content. There are many other options here. For example, we could introduce a
Boolean function for equality rather than using the underlying equality of the type.
This was the option we selected with stacks.

These rules are also pretty rudimentary. But they do describe one standard notion
of a list constructor. But as with the numbers, we have no guarantee that only lists are
so obtained. In particular, we have no induction principle, and so we cannot reason
about them inductively. For this, we need the standard principle of list induction.

L8
φ[[]T ] ∀x : T · ∀y : List(T ) · φ[y] → φ[x 	T y]

∀x : List(T ) · φ[x]

The induction principle is given relative to the language of the embedding TDT.
More explicitly, as with numbers, it is envisaged that any such theory of lists will
only form one component of a TDT, and so the class of φ’s that may occur in
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the induction scheme will vary from theory to theory. Finally, we introduce a type
whose members are binary trees.

Example 17 (Baby Binary Trees)

Bt1
A type

Tree(A) t ype
Bt2

a : A

Node(a) : Tree(A)

Bt3
a : A b : Tree(A) c : Tree(A)

Branch(a, b, c) : Tree(A)

These are subject to exactly the same kinds of extensions and analysis. And the
baby versions of numbers, lists, and trees all form examples of terms.

3.7 A Type of Types

Programming languages provide one source for data types. Indeed, any programing
language gives rise to many TDT. But there are other sources: Our final type con-
structor emanates from logic and type theory and is a little more adventurous. It is a
type whose elements are themselves types. It is governed by the following rules.

type t ype
T type

T : type

These rules insist that every type is a type and that the type type is itself a type. This
will later play a crucial role in our treatment of polymorphism. This is different to
the previous examples in that we are now treating types (that characterize objects)
as objects. Of course, if one has a too permissive underlying notion of type, adding
such a type can cause problems. We shall get to this later. At this point, suffice it to
say that all our types will be interpretable as recursively enumerable sets.

We allude to this type here, only to provide the reader with an early indication of
the range of type constructors that we shall consider. We are not constrained by the
existing ones of programming languages. It is the notion of recursive interpretation
that determines matters.

Obviously, we could go on adding new types and type constructors. And many
more will emerge as we proceed through the book. But we have done enough to
illustrate our notion of TDT.

3.8 Theories of Data Types

A TDT will be made up from some basic types and type constructors, their associ-
ated function and relation symbols, and their governing rules. We shall display these
theories by indicating their type, relation, and function symbols, viz.
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Th(O1, ..., Ok, R1, ..., Rn, F1, ..., Fm)

Indeed, where matters are clear, we shall often suppress the relation and function
symbols and only display the basic types/type constructors to identify a theory; i.e.,

Th(O1, ..., Ok)

With the above type constructors at hand, we can now introduce our first explicit
theory of data types.

Example 18 The TDT

Th(Bool, CP, List)

has Bool as its only basic type and Cartesian products and Lists as the type con-
structors, where we include all the rules for lists given above.

Observe that with the type of Booleans present, we might add a Boolean operator
for equality:

a : A b : A

EqA(a, b) : Bool
(Eq)

with rules such as the following:

a : A b : A

EqA(a, b) = true ↔ a =A b

Indeed, as we shall see shortly, this may be specified.
If we add t ype, the above theory supports a version of polymorphic lists. In this

case, types may contain variables, and so we can generalize the Cartesian products
to allow dependent ones.

Th(Bool, type, DP, List)

We shall explain all this in more detail in the chapter on the type type. Here we are
only outlining some possibilities.

Definition 19 The TDT theory

Th(N, CP, Stack)

has N as its only basic type and Cartesian products and Stacks as the type construc-
tors.

Once again, we get a more traditional axiomatization [7] if we assume that the
type of Booleans is present and we employ a Boolean operator for equality.
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Of course, there are many permutations of the type constructors we have already
introduced. But the general idea of the structure of a TDT ought now to be clear.
We can now better grasp the following idea.

Definition 20 For a TDT, T, we shall write

� 	T �

to indicate that the judgment � is derivable in the theory T from the assumptions �,

i.e., derivable from the rules of TPL plus the axioms and rules of T.

In practice, we would need to extend the properties of TPL to each such theory;
i.e., we would need to show how the independence, type checking, and coherence
results extend. In particular, for the theory

T = Th(Bool, CP, List)

we have the following extension to the second.

Proposition 21 (Type Checking) For the above theory, we have

1. if � 	 �, where � is a type-inference judgment, then c� 	T �,
2. if c 	T O(T1, ..., Tn) t ype iff c 	T T1 t ype and...and c 	T Tn type,

where O is any of the type constructors of the theory.

Proposition 22 (Coherence) The coherence theorem holds for the theory
Th(Bool, CP, List)

We shall leave the details to the reader. There are no new issues in the proofs.
Indeed, in many cases this will be our general approach: We shall prove a theorem
once and, where straightforward, we shall leave the details to the reader.

This completes our basic introduction to theories of data types. Much of the
book will be taken up with their construction and investigation. Of course, we shall
investigate the more substantial and central ones in some detail.
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Chapter 4
Definability

Our objective is to develop, within the confines of TPL, a notion of computability
or definability that applies to any TDT. We aim to provide a notion that will service
our discussion of specification and, in particular, the role played by computability.

For the type of natural numbers, we are well stocked with equivalent notions
of computability [4, 17]. In the standard one based upon Turing machines, what
is taken to be a computable relation or function is determined by a computation
on a Turing machine. Extensionally equivalent notions employ other machine-like
notions or are based upon programming language–oriented formalisms such as the
lambda calculus [2]. We might try and apply these ideas to the current typed setting.
Indeed, much energy has been invested in developing theories of computation on
structures other than the natural numbers (e.g., [5]). In particular, efforts have been
made to obtain analogues of the Church-Turing Thesis for various algebraic struc-
tures. And although many of these generalizations [11, 12, 13, 14, 15] have resulted
in elegant theories, unfortunately, none seems quite suitable for our purposes.

Fortunately, there are ways of characterizing a notion of computability that, for
the present purposes, are more appropriate and attractive. These are the logical ap-
proaches based upon the concept of definability cast within the axiomatic setting of
formal arithmetic [7, 9]. In this setting, a certain subclass of wff of formal arithmetic,
the so-called � definable wff (no negations, implications, or universal quantifiers),
characterizes the recursively enumerable relations in that every recursively enumer-
able relation is � definable, and vice versa. Admissible set theory [3] also supplies us
with a precise notion of definability for relations and functions acting on hereditarily
finite sets. Again, the � definable wff characterize the appropriate notion.

A generalization of this idea to arbitrary structures was originally suggested
by Montague [8], and more recently taken up by Hodges. This material and
the approach of [6] will guide us in formulating explicit notions of definabil-
ity/computability for our theories. Specifically, we shall generalize these notions
of � definability to TDT. We shall then explore the notion of specification that is
circumscribed by � definability.
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4.1 Semidecidable Relations

The class of � propositions of a theory of types is restricted to propositions that
may be constructed from the basic relations and functions of the theory via the
logical connectives �,∨,∧, and ∃. We take them to be central because any program
with designated input and output types I and O implicitly describes an extensional
relation between those types. Moreover, these relations can be expressed by the
above logical connectives. More explicitly, let L be any programming language.
Then the graph of any L-program determines an extensional relation as follows.

For any x of type I and y of type O, Rp(x, y) will be true precisely when
p with input x terminates with value y.

In other words, the relation is constituted by all the input/output pairs.1 In par-
ticular, in a Turing complete language, with the natural numbers as the only data
type, such relations characterize the recursively enumerable sets of numbers (RE);
i.e., the recursively enumerable relations are precisely those characterized by the
numerical programs in a Turing complete language. Moreover, it is well known that
this relation can be characterized via the � propositions. This leads to the following
generalized notion that applies to any theory of data types.

Definition 23 Let

T = Th(O1, ..., Ok, R1, ..., Rn, F1, ..., Fm)

be any theory of data types. Suppose that

c 	T φ prop

where φ is a proposition that is built from the basic function and relation symbols
R1, ..., Rn, F1, ..., Fm but whose only connectives are �,∨,∧, ∃. Then, relative to
T, we shall say that φ is �.

In intuitive terms, via their free variables, such propositions determine what
we take to be semidecidable relations. Note that we allow all the basic rela-
tions/functions of the theory to occur in � propositions. In addition, the latter include
absurdity and basic equality assertions and are closed under conjunction, disjunc-
tion, and existential quantification.

Example 24 In the TDT

Th(Bool, CP, List)

1 In general, this is a relation and not a function since for any given input there might be many
possible outputs.
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the � propositions include all the basic constants and function symbols and all the
basic relations of Bool, CP, and List.

The inclusion of any such relations and functions must always be justified by
providing a recursive model in arithmetic in which the interpretation of the relations
and functions is � in arithmetic.

This account of � definability for arbitrary TDT will form our main account of
computability for our theories. It will inform our main notion of relational specifi-
cation and guide us in our construction of computable models.

4.2 Decidable Relations

If we take � propositions to characterize the semi decidable relations of a TDT,
then the decidable ones are characterized as those � propositions whose negations
are also �. Again, this is a standard approach to decidability in a logical setting and
leads to the following notions.

Definition 25 In a theory T, a � proposition given by

x1 : T1, ..., xn : Tn 	 φ[x1, ..., xn] prop

is decidable if there exists a � proposition φ (its internal negation) that satisfies the
following.

x1 : T1, ..., xn : Tn 	 φ[x1, ..., xn] prop

x1 : T1, ..., xn : Tn 	 φ[x1, ..., xn] ↔ ¬φ[x1, ..., xn]

Thus, a proposition is taken to be decidable if it and its (internal) negation are
semidecidable. This is a straightforward generalization of the numerical notion.

The concept of decidability is preserved by ∧ and ∨. To see this, we have only
to note that we may define

φ ∧ ψ � φ ∨ ψ φ ∨ ψ � φ ∧ ψ

i.e., the witnessing (internal negations) � propositions may be stipulated as above.
Of course, in any given theory, the class of decidable propositions is partly de-

termined by the class of basic relations that we take to be decidable. For example,
as things stand, we have not guaranteed that the equality relations of Th(Bool, CP)
are decidable. Intuitively, they should be. But formally, we have to make them so by
stipulation. In particular, where the relation of equality is taken to be decidable, we
add an internal negation of equality, an inequality relation, written �=, that is taken
to be � and that satisfies the following.

Definition 26 (Decidable Equality) Let T be any TDT. Equality is decidable in T
if there exists a relation �=T in T (the internal negation of =T ) such that
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x : T, y : T 	 x �=T y prop
∀x : T · ∀y : T · ¬(x =T y) ↔ x �=T y

A simple example is afforded by Booleans.

Example 27 (Boolean Inequality) In the case of Bool, if we add the assumption

∀x : T · ∀y : T · x = true ∨ x = f alse

then we can define

x �=T y � cond (x, cond (y, false, true), y)

Of course, in general, one could just use ¬(x =T y) itself and assert that this
case of negation is �. But conceptually, the above approach seems clearer. We can
generalize matters to arbitrary relations.

Definition 28 (Decidable Relations) Let T be any TDT. In T assume

x1 : T1, ...... , xn : Tn 	 R(x1, .., xn) prop

Then R is decidable in T if there exists a relation R in T (the internal negation of
R) such that

x1 : T1, ..., xn : Tn 	 R(x1, ..., xn) prop
∀x1 : T1 · ... · ∀xn : Tn · R(x1, ..., xn) ↔ ¬R(x1, ..., xn)

We shall often write

Dec(R)

to name the above pair of axioms.

More generally, if R is decidable as a proposition, as we shall see, we may con-
servatively add a new relation that can function as an internal negation. We shall
return to this in the next chapter.

A very special class of decidable propositions is determined by the propositional
connectives alone. Following tradition, we shall call these propositions �0. For-
mally,

Definition 29 (�0 Propositions) Let T be any theory of data types. Suppose that

c 	T φ prop

where φ is a proposition that is built from decidable atomic relations by all the
propositional connectives (�,∨,∧,¬,→). Then we shall say that φ is �0.
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The following is clear.

Proposition 30 The �0 propositions are decidable.

In the case of arithmetic, the class of propositions that is generated from the
decidable atomic relations by just the propositional connectives is often named the
�0

0 class of propositions.2 Indeed, most presentations of the arithmetic hierarchy [9]
start with this class and then layer it via the number of alternating quantifiers. In this
connection, we have the following simple normal form result.

Proposition 31 In TPL, suppose � 	 φ prop. And let φ be �. Then there is a �0

proposition η such that � 	 η prop and � 	 T1 type,..., � 	 Tn type such that

� 	 φ ↔ ∃x : T1 · ... · ∃x : Tn · η

Proof We transform matters using the following rules.

(∃x : T · ζ ) ∧ δ is transformed to ∃x : T · (ζ ∧ δ)

(∃x : T · ζ ) ∨ δ is transformed to ∃x : T · (ζ ∨ δ)

We may assume that x is not free in δ if it is, rename it in ζ . In this way we move the
existential quantifiers to their wide scope positions. The transformed propositions
are then equivalent to the originals.�

As with the � relations, we cannot just select the relations of any theory and
deem its basic relations to be decidable. They must have arithmetic representations
that are decidable. And this has to be established for each such theory.
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Chapter 5
Specification

Computable models are built inside theories of data types. And specifications form
the main building blocks. In this chapter we provide our basic account of specifica-
tion. This has its origins in the notion of a representable relation in logical number
theory [2, 3] and admissible set theory [1]. Furthermore, although its interpretation
will be quite different, in terms of the notation, our account is similar to the schema
notation pioneered by the Z specification language [4, 6]. Lastly, it has its more
recent roots in [5].

For us a specification consists of two parts:

• a declaration part,
• a predicate part.

In the declaration part the variables of the specification are declared and associ-
ated with their types. In the predicate part the properties of the intended objects and
their relationships are articulated. Symbolically, this gives the body of a specifica-
tion the following two components.

x1 : T1, ... , xn : Tn

φ[x1, ..., xn]

where x1, ... , xn are variables and T1, ..., Tn types and where the declaration pro-
vides the declaration context for the proposition. Given this, we take specifications
to have the following Z-like form.

R � [x1 : T1, ..., xn : Tn | φ[x1, ..., xn]] Schema

On our interpretation this is taken to introduce a new relation symbol R whose type
is given by the types in the declaration.

But how are specifications to be logically unpacked; i.e., how are we to un-
derstand their logical content? More exactly, what are the rules that govern their
introduction and use? The main aim of this chapter is to answer these questions.
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5.1 A Logical Perspective

We adopt the logical perspective; i.e., relation specifications involve the conservative
addition of new relation symbols. More exactly, we take Schema to introduce a new
relation symbol R whose logical content is unpacked as follows.

Definition 32 (Schema Specifications) Suppose that T is any TDT. Further sup-
pose that

x1 : T1, ....... , xn : Tn 	T φ prop R0

where φ is �. Let TR be the theory obtained from T by the addition of a new �
relation symbol (R) that is governed by the following axioms.

x1 : T1, ..., xn : Tn 	 R(x1, ... , xn) prop R1

∀x1 : T1 · ... · ∀xn : Tn · φ[x1, ..., xn] → R(x1, ..., xn) R2

∀x1 : T1 · ... · ∀xn : Tn · R(x1, ..., xn) → φ[x1, ..., xn] R3

The first axiom is the formation rule. It informs us that R forms a proposition
under the assumption of the declaration. The second is the introduction axiom, and
provides the conditions necessary for the introduction of the relation, and the third,
its rule of elimination, santions its removal.

Given R0, Schema is taken to introduce a new relation R that is governed by
R1, R2, R3. This provides a general notion of specification that is applicable to any
theory of data types. Note that in such a specification, because of the assumption
that

x1 : T1, ... , xn : Tn 	 φ prop

by coherence,

x1 : T1, ..., xn : Tn 	 Ti type

for 1 ≤ i ≤ n.
Take note that specifications are restricted to � propositions. On the face of it,

specifications are intended to delineate programs, and so the corresponding relation
between its inputs and outputs will be �. For this reason, we take our principal
notion of specification to be the specification of � relations. There are many subtle
issues here, issues that we shall address as we proceed. These will motivate the
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introduction of schema definitions where the � constraint is lifted. But we shall
reserve the term specification for the � ones.

Often we shall write these schema vertically as follows. This brings the notation
even closer to that of Z notation.

R

x1 : T1, ... , xn : Tn

φ[x1, ... , xn]

However, we are not claiming that schemata have the same meaning as in the Z
notation. For one thing, our notion of schema is not wedded to any particular theory
of data types and certainly not to standard set theory. For another, our logical account
seems different. Despite this, we shall adopt some of the Z notational conventions.
In particular, we shall often mark conjunctions with a new line. In addition, when
defining operations, we shall sometimes indicate inputs with ? and outputs with !.
Alternatively, we shall just as often simply write inputs on the first line and the
output on the second.

5.2 Some Specifications

We first revisit some old examples. The following provides the definition of the
Boolean connectives in terms of the conditional operator.

Example 33 (Conjunction)

and

x : Bool
y : Bool
z : Bool

z = cond(x, y, f alse)
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Example 34 (Disjunction)

or

x : Bool
y : Bool
z : Bool

z = cond(x, true, y)

Example 35 (Negation)

Not

x : Bool
y : Bool

y = cond(x, f alse, true)

These examples provide the formal definitions of these notions. They are specifi-
cations within the framework of TPL. Our next examples deal with products. Recall
that T1 ⊗ T2 ⊗ T3 is an abbreviation for T1 ⊗ (T2 ⊗ T3).

Example 36 (Triples)

T riples

x : Num
y : Num ⊗ Num
z : Num ⊗ Num ⊗ Num

z = (x, y)

We may extend this to arbitrary types as follows.

Example 37 (Triples) Suppose that

c 	 T1 t ype

c 	 T2 t ype

c 	 T3 t ype

Then, relative to c, we may specify triples as follows.
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T riples

c
x : T1

y : T1 ⊗ T2

z : T1 ⊗ T2 ⊗ T3

z = (x, y)

We shall often suppress the background declaration context and just write:

Suppose that T1, T2, and T3 are types in a TDT. Then we may specify ....

This will often simplify the presentation. For example, the corresponding selection
operations may be specified as follows.

Example 38 (Selection) Suppose that T1, T2, and T3 are types. Then we may specify

π3
2

x : T1 ⊗ T2 ⊗ T3

y : T2

y = π1(π2(x))

π3
3

x : T1 ⊗ T2 ⊗ T3

y : T3

y = π2(π2(x))

Here we have suppressed the context c. Our next example involves stacks. We can
specify the empty test for stacks. This returns a Boolean. In our original account we
took it to be a basic operation. But the following demonstrates that once the type
is embedded in a TDT, there is no need to do so. Here we take Stack(T ) to have
decidable equality.

Example 39 (Empty Test) Let T be a type. Then we specify

Empty

z : Stack(T ), u : Bool

z = emptystack ∧ u = true
∨
z �= emptystack ∧ u = f alse
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We may also formally specify a Boolean operator for equality. Notice that we
need propositional equality for this to work.

Example 40 (Boolean Equality) Let A be any type in a TDT.

EqualA

x : A, y : A, z : Bool

x =A y ∧ z = true
∨
x �=A y ∧ z = f alse

This provides our basic notion of specification. Its formal content should now be
clear. We shall now put some more infrastructure in place.

5.3 Operations on Schema

We shall further illustrate our specification style with some rather general strategies
of specification. The following can be seen as a means of constructing complex
specifications from simple ones. They apply to any theory of data types and provide
the core of a simple algebra of schemata.

Example 41 (Schema Product) Let R, S be relations such that

x : A, y : B 	 R(x, y) prop u : C, v : D 	 S(u, v) prop

Then we may specify the following new relation that introduces their product.

R ⊗ S

x : A, y : B, u : C, v : D

R(x, y) ∧ S(u, v)

Our next two examples also illustrate logical connectives applied at the level of
schemata. They are versions of Z’s notions of schema conjunction and disjunction.

Let R, S be relations such that

x : A, y : B 	 R(x, y) prop y : B, z : C 	 S(y, z) prop
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Then we may specify the following new relations that introduce their conjunction
and disjunction.

Example 42 (Schema Conjunction)

R ∧ S

x : A, y : B, z : C

R(x, y) ∧ S(y, z)

Example 43 (Schema Disjunction)

R ∨ S

x : A, y : B, z : C

R(x, y) ∨ S(y, z)

Given some basic relations that are taken to be decidable, we can build up more
decidable relations by conjunction and disjunction; i.e., products, conjunction and
disjunction preserve decidable relations.

The next example continues the theme of logical operations applied at the level
of schemata. It illustrates what Z calls schema hiding; i.e., information in the rela-
tion definition has been hidden via existential quantification. Clearly, this does not
preserve decidability.

Example 44 (Composition) Let R, S be any relations such that

x : A, y : B 	 R(x, y) prop and y : B, z : C 	 S(y, z) prop

Then we may specify their composition via the following schema.

R ◦ S

x : A, z : C

∃y : B · R(x, y) ∧ S(y, z)
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The next provides another example of the use of the existential to hide informa-
tion.

Example 45 (Projection) Suppose

x1 : T1, ... , xn : Tn 	 R(x1, ... , xn) prop

Then the i th projection of R is given as

Proj(R, i)

x1 : T1, ..., xi−1 : Ti−1, xi+1 : Ti+1, ..., xn : Tn

∃xi : Ti · R(x1, ..., xn)

The following pair of relation specifications are special cases. Let R be any bi-
nary relation such that

a : A b : B

R(a, b) prop

Then we may specify the domain and range of R as follows.

Example 46 (Domain)

Dom R

y : B

∃x : A · R(x, y)

Example 47 (Range)

Ran R

x : A

∃y : B · R(x, y)
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These operations on relations form part of what may be thought of as a toolkit of
strategies for building new specifications from old ones. We shall study them in a
more mathematically elegant way when we study a type of schemata.

In the last chapter we alluded to the possibility of specifying the internal inverse
of a decidable proposition; i.e., in the case where the defining proposition is de-
cidable, we may also specify its internal negation. The new relation automatically
satisfies the required conditions for being an internal negation.

Definition 48 Suppose that

R � [x1 : T1, ..., xn : Tn | φ]

where φ is decidable. Then we may specify R, as

R � [x1 : T1, ..., xn : Tn | ¬φ]

5.4 Conservative Extensions

Such introductions of new relations preserve the underlying theory of data. Tech-
nically, this means that their introduction is conservative. This is the content of the
following. The link between specifications and conservative extensions will form a
major theme of the book.

Theorem 49 Suppose that �, � do not contain R. Then

� 	TR � implies � 	T �

This follows from the following compilation lemma.

Lemma 50 (Compilation)
There is a translation * from TR to T such that

1. if � 	TR �, then �∗ 	T �∗,
2. if � 	TR �, then, where � does not contain R, �∗ = �,
3. if φ prop is � in TR , then φ∗ is � in T,

where �∗ is the translated context and �∗ is the translated judgment.

Proof Let ∗ be the translation between the two theories obtained by replacing, in the
expressions of TR, every occurrence of R(t) by φ[t]. This applies to all judgments
and their constituents. Part 1 follows by induction on the derivations in TR. All
the rules of TPL expressed in TR remain in place because they translate across
unchanged. Similarly, the translation does not affect any rule of any specific theory:
Instances of the rules of the new theory will be translated to instances of rules of the
old one. This leaves us to check the new axiom, and this is immediate. The proofs
of 2 and 3 are by inspection.�
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This completes our preliminary account of relational specification. There is much
more to be said. But much of this will have to wait for specific theories. Specifica-
tions, or rather suites of them, form the body of computable models and we shall
eventually get to some interesting examples. But first we must put another building
block in place.
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Chapter 6
Functions

In VDM [3, 2]) it is not relational specifications that take center stage but functional
ones. In this chapter we provide our account of these [4]. But we shall do so in
terms of our basic notion of relational specification. To set the scene, we recall that
functions do not constitute a new kind of entity; they are special kinds of relations.
More explicitly, a relation given by the formation rule

a : I b : O

R(a, b) prop

is a function if each input uniquely determines an output; i.e., it obeys the following
rule.

R(a, b) R(a, c)

b = c

Furthermore, in line with relations, they are not taken to satisfy any principle of
extensionality; i.e., from

∀x : I · ∀y : O · R(x, y) ↔ S(x, y)

it does not follow that R and S are identical relations.
Consequently, functions are introduced as relations that are governed by a special

operation of application. More explicitly, because they are single-valued, they can
applied to arguments in their domain to yield a unique result; i.e., functions are
single-valued, intensional, and computable (�) relations.

6.1 Totality and Functionality

Two special properties of relations will play a significant role in our account. We
shall illustrate matters with the binary case; the use of products facilitates the exten-
sion to the case of many-place relations.
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Definition 51 (Total Relations) Suppose that T is any TDT. Assume that

a : I b : O

R(a, b) prop

R will be said to be total iff

∀x : I · ∃y : O · R(x, y) Tot

i.e., its domain is the whole of the input type. We shall write this as follows.

Tot(R, I, O)

Total relations are defined on the whole of their domain. Since it will give rise to
total functions, this will be especially important in the case of relations that are also
functional.

Definition 52 (Functional Relations) Suppose that T is any TDT. Assume that

a : I b : O

R(a, b) prop

We shall say that R is functional iff

∀x : I · ∀y : O · ∀z : O · R(x, y) ∧ R(x, z) → y = z Fun

We shall write this as

Fun(R, I, O)

We shall write TF(R, I, O) to indicate that R is total and functional; i.e.,

∀x : I · ∃!y : O · R(x, y) TF

where ! indicates there is exactly one.

With these notions at hand, we can deal with the introduction of functional appli-
cation. To begin with, we treat the case where relations are both total and functional.
The case where they are just functional leads to partial application and partial func-
tions. We shall discuss this in the next chapter, where we introduce the notion of a
specification with preconditions.

6.2 Functional Application

We shall not introduce functions as a new kind of specification but rather introduce
a method that enables relations, that are proven to be functions, to be applied to
their arguments. This enables such relations to operate as functions. For this we
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only require one new function symbol. We shall be guided by the treatment of the
addition of new function symbols in [1].

Definition 53 (Apply) Suppose that T is any TDT. Let T apply be T with a new func-
tion symbol apply, governed by the following rules. For each total and functional
relation,

a : I b : O

F(a, b) prop

application satisfies the following rules.

a : I

apply(F, a) : O
F1

a : I

F(a, apply(F, a))
F2

In line with convention, we shall abbreviate apply(F, x) as F(x).

F1 tells us that application returns a value in the target type, while F2 demands
that the input, together with the output, satisfies the original relation given by F.

This is more far-reaching than the introduction of relation symbols themselves.
The addition of apply allows every total functional relation to behave as a new
function symbol with all that entails; i.e., it can be applied to arguments to form
new terms etc. And this can involve the construction of complex terms such as the
following.

F(x, G(x, y))

Finally, note that application may be extended to many-place functions using
Cartesian products; i.e.,

TF(F, I1 ⊗ ...⊗ In, O) a : I1 ⊗ ....⊗ In b : O

apply(F, a) : O

In terms of its conservative justification, apply constitutes a more complex ad-
dition. But before we look into this, we illustrate its use. Our first example is a
numerical one that we shall deal with in more detail in the next chapter.

Example 54 (Maximum)

Max

x? : N , y? : N , z! : N

x ≤ z ∧ y ≤ z
z = x ∨ z = y



56 6 Functions

Since there is only one maximum number, this is functional. Of course, to estab-
lish this formally, we need some more precise account and, in particular, we need
to work in some version of formal arithmetic. That will come later. For the present,
we note that, as a consequence, we may employ it as a function symbol that satisfies
the following instances of F1 and F2.

a : N b : N

Max(a, b) : N
a : N b : N

a ≤ Max(a, b) ∧ b ≤ Max(a, b) ∧ (Max(a, b) = a ∨ Max(a, b) = b)

In a parallel way we may introduce a minimum function; parallel remarks apply.

Example 55 (Minimum)

Min

x? : N , y? : N , z! : N

z ≤ x ∧ z ≤ y
z = x ∨ z = y

This is also functional and, as a function, it satisfies

a : N b : N

Min(a, b) : N

a : N b : N

Min(a, b) ≤ a ∧ Min(a, b) ≤ b ∧ (Min(a, b) = a ∨ Min(a, b) = b

In the future, we shall not always spell out such conditions. Enough is enough.
Our next function is more general and applies to any TDT with Booleans. We as-
sume equality is decidable. We have seen the following before, but not as a formal
specification. It is clearly functional and returns a Boolean value.
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Example 56 (Boolean Equality) Let A be any type.

EqA

x : A, y : A, z : Bool

x = y ∧ z = true
∨
x �= y ∧ z = f alse

6.3 Explicit Functions

Some specifications define functions by explicitly indicating their arguments; i.e.,
a function is explicitly defined via a term of the language [3]. Such specifications
are so frequent that we consider them as a special case. In general, they take the
following form.

Definition 57 (Explicit Functions) Given types I and O and the fact that

x : I 	 t[x] : O

we may introduce a new functional relation symbol, by explicit function definition,
as

F � [x : I, y : O | y = t[x]]

This is taken to satisfy

a : I

apply(F, a) : O
F1

a : I

apply(F, a) = t[a/x]
F2

We shall frequently write such explicit specifications using lambda notation; i.e.,

F � λx : I · t[x]

Our first example of such an explicit specification applies to any TDT. Suppose
we have two functional operations such that
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a : A

F(a) : B

b : B

G(b) : C

Then the following specified function is their composition:

Example 58 (Composition)

H

x : A, z : C

z = G(F(x))

In lambda notation we would write

H � λx : A · G(F(x))

Once again, this is obviously functional. Thus, we may introduce it as a new
function symbol H that satisfies the following rules.

a : A

H (a) : C

a : A

H (a) = G(F(a))

In the following example we assume the underlying TDT contains the stack con-
structor.

Example 59 (Second) Let A be any type in the TDT. We may then specify:

Second

x : Stack(A), y : A

y = top(top(x))

We have also seen our next example before. But now we can write it as a schema
specification.
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Example 60 (Generalized Selection) Given types T1, T2, and T3, we specify

π3
2

x : T1 ⊗ T2 ⊗ T3

y : T2

y = π1(π2(x))

More interesting and less general examples require the development of a little
more infrastructure, but this will have to wait until we study the various type con-
structors in more detail. However, the present examples should be enough to grasp
the general idea.

This completes our initial discussion of the simple case of total functions. We
conclude with the only result of the chapter. However, it is a conceptually important
one.

6.4 The Elimination of Application

In parallel to the relation case, we show that the addition of new function symbols is
conservative. Since function symbols can be iterated via composition, we can form
terms such as F(G(H (x, y), z)). Subsequently, the proof is a little trickier.

Theorem 61 (Conservative Extension for Functional Application) Let T be any
TDT. Suppose that �, � do not contain apply. Then

� 	Tapply � implies � 	T �

Hence, anything expressible in the old language, that is provable in the new the-
ory, is already provable in the old one. It is a corollary to the following compilation
lemma that demonstrates how to eliminate all instances of functional application.

Lemma 62 (Compilation) There is a translation * from Tapply to T such that

1. if � 	Tapply �, then �∗ 	T �∗,
2. if � 	T �, then, � 	T �∗iff � 	T �,
3. if φ prop is �, in Tapply then φ∗ is � in T,

where �∗ is the translated context and �∗ is the translated judgment.

Proof Suppose that F has been introduced as a new function symbol via the follow-
ing rules.

i : I

F(i) : O

i : I

R(i, F(i))
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Initially, we define * on the rules of formation to remove just one instance of F . In
our raw syntax, we employ DeMorgan’s algorithm to push all the negations through
to atomic cases. This leaves F occurring only in atomic propositions and their nega-
tions. Here we replace F , but if F does not occur, we change nothing.

α[F(t)/y]∗ = ∃v : O · R(t, v) ∧ α[v/y]

(¬α[F(t)/y])∗ = ∃v : O · R(t, v) ∧ ¬α[v/y]

The propositional connectives ∧ and ∨ and the quantifiers are then translated com-
positionally. We interpret the other judgments that involve F as follows.

� 	 �[F(t)/x]

translates to the judgment

�, x : O 	 �[x]

where if they do not involve F , they are not changed. An easy induction establishes
that for any φ

∀x : I · ∀y : O · R(x, y) → (φ[y] ↔ φ[F[x]]∗) (♣)

The base case is easy to see:

x : I, y : O 	 R(x, y) → (α[y] ↔ ∃v : O · R(x, v) ∧ α[v])

The rest is also straightforward: e.g.,

(η ∧ δ)[y] ↔ (∃v : O · R(x, v) ∧ η[v]) ∧ (∃v′ : O · R(u, v′) ∧ δ[v′])

The result now follows because R is functional; i.e., v = v′. We now turn to the
explicit proof of the various parts of the lemma. The first part contains most of the
work. For it, for the removal of our single occurrence of F , we illustrate with some
exemplary cases. For simplicity, in the following, the only occurrence of F is the one
indicated. First consider the following introduction rule for an existing function G.

a : A b : B

G(a, b) : O(A, B)

Then consider the F instance

a : A b[F(t)/y] : B

G(a, b[F(t)/y]) : O(A, B)

The premise unpacks under the translation to

a : A y : O 	 b[y] : B
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This yields the translation of the conclusion; i.e.,

y : O 	 G(a, b[y]) : O(A, B)

The rest of the type-inference rules of Tapply are equally easy to verify. For the logi-
cal rules, the existential quantifier rules are the only problematic ones. We illustrate
with the following case.

φ[s[F(t)/y]/x] s[F(t)/y] : T x : T 	 φ prop

∃x : T · φ

The translations of the premises yield the following.

y : O 	 φ[s[y]/x]

y : O 	 s[y] : T

x : T 	 φ prop

We also know by grammatical considerations that t : I . By ♣ it is sufficient to show
that

∃y : O · R(t, y) ∧ φ[s[y]]

By the assumption of functionality, ∃y : O · R(t, y) and y is unique. Hence, by
the translated premises of the rule, s[y] : T . By the quantifier introduction rule, we
are done. This leaves us to check the new rules. F1 is immediate. For F2, we must
establish

u : I 	 R(u, F(u))∗

Using ♣ and functionality, the result is also clear.

(u : I 	 R(u, F(u))∗

iff

u : I 	 ∃y : O · R(u, y)

This provides the soundness of the translation for the removal of one occurrence
of F . By iterating this procedure, we eventually remove them all. Here note that
any removal of an application via the translation reduces that number; i.e., no new
applications emerge as a result of the translation. We then only need to observe
that, where there is the only occurrence to remove, the proof of �∗ 	Tapply �∗ can
be carried out in T. Parts 2 and 3 are routine to check: Negation aside, because
of the compositional nature of the translation of the connectives and quantifiers, �
propositions translate to � propositions.�
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This completes our preliminary account of function specification. There is much
more to be said. Topics that immediately spring to mind involve recursive functions
and the treatment of higher-order functions. These will be taken up later.
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Chapter 7
Preconditions

Our notions of totality and functionality are determined by the class of types in the
theory. More specifically, they are dependent upon the domain of the relation: The
bigger the domain, the harder it is for the relation to be total and functional. If our
notion of domain could be restricted in some way, then the class of functions would
be increased. One way of achieving this is to enrich the notion of specification with
the concept of precondition [2, 3, 4]. Preconditions leave some possibilities open
and in particular do not force us to declare the result of the function on the whole
input type. This will provide us with a larger class of total functions and enable a
more sensitive approach to specification.

To illustrate the problem with the current approach, consider the following
schema specifications for the predecessor function on the natural numbers.

Example 63 (Predecessor)

Pred1

x : N , y : N

x �= 0 ∧ y+ = x

Pred2

x : N , y : N

x �= 0 → y+ = x

The first restricts the relation by restricting it to nonzero numbers. As such, it is
functional but not total. The second does not exclude nonzero numbers and so is
total. However, because zero does not uniquely determine an output, it is not func-
tional. So neither specification is both total and functional. To obtain a specification
that is, we need a more intrinsic way of incorporating the x �= 0 condition into the
body of the specification.

7.1 Specifications with Preconditions

We illustrate with binary relations. The central idea is contained in the following
generalized notion of specification in which the preconditions are made explicit.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 7,
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Definition 64 (Preconditions) Suppose that T is any TDT. Further suppose that

x : I, π [x], y : O 	T φ[x, y] prop R0

where π and ψ are �. Then the specification

R � [x : I, y : O | π [x]; φ[x, y]] (Preschema)

is taken to introduce a new relation R that is governed by the following axioms.

x : I, π (x), y : O 	 R(x, y) prop R1

∀x : I · ∀y : O · π (x) → (φ[x, y] → R(x, y)) R2

∀x : I · ∀y : O · π (x) → (R(x, y) → φ[x, y]) R3

Here π is called the precondition of the specification and we shall now refer to φ

as the postcondition. Let TR be the theory obtained from T by the addition of a new
relation symbol (R) that is governed by these axioms.

Note that every standard specification can be considered as one with precondi-
tions; i.e.,

R � [x : I, y : O | φ[x, y]]

can be represented as

R
′ � [x : I, y : O | x =I x ; φ[x, y]]

The two relations are logically equivalent, and so it makes sense to take this as a
generalization of the original. Observe that

R � [x : I, y : O | π (x) ∧ φ[x, y]]

R � [x : I, y : O | π (x) → φ[x, y]]

both satisfy conditions R1, R2, R3 of preschema. And so the addition of relations
with preconditions is conservative. So what have we gained? We shall see that pre-
conditions lead to a natural way of revising our notions of totality and functionality.
To illustrate this, we return to the task of specifying the predecessor function. Con-
sider the following version with preconditions.
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Example 65 (Predeccessor)

Pred

x : N , y : N

x �= 0; y+ = x

We claim that this is total and functional. But not in the present sense of these
terms, since they do not apply to specifications written with preconditions. Indeed,
the introduction of preconditions, requires us to revisit our notions of domain, total-
ity, and functionality. Somehow we have to take the precondition into account.

7.2 Totality and Functionality

We first defined our notion of domain so that the precondition bites. More specifi-
cally, we introduce a notion of domain that itself employs preconditions.

Definition 66 (Domain) Let R be a specification with preconditions.

R � [x : I | π (x); η[x, y]]

Then we define the domain of R as

Dom R � [x : I | π (x); ∃y : O · R(x, y)]

The domain is defined as before but now we use the precondition itself. This
notion of domain replaces the old one, which is recoverable by treating relations
without preconditions as relations with a tautology as precondition. So we can un-
ambiguously use the same abbreviation for the domain of a relation. Explicitly, the
new notion of domain satisfies the following.

∀x : I · Dom R(x) ↔ (π (x) → ∃y : O · R(x, y))

And this leads to the following parallel notion of totality.

Definition 67 (Totality) Let R be a specification with preconditions.

R � [x : I | π (x); η[x, y]]

R is total iff

∀x : I · π (x) → ∃y : O · R(x, y)
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Put differently, R is total iff

Dom R � [x : I | π (x)]

This is identical in form to the original notion of totality but with the new notion of
domain. Furthermore, with this notion of totality, any relation may be turned into a
total one.

Definition 68 (Totalization) Let

R � [x : I, y : O | ψ[x, y]]

The totalization of R is defined as follows.

̂R � [x : I, y : O | Dom R(x); R(x, y)]

This is total in the precondition sense; i.e.,

∀x : I · Dom R(x) → ∃y : O · R(x, y)

And this is in line with the traditional literature on Z schemata, which takes the
domain to be the precondition of a schema. But R and ̂R are not logically equivalent.
They are only so on the domain itself; i.e.,

∀x : I · Dom R(x) → ∀y : O · R(x, y) ↔ R
′
(x, y)

However, as we shall see later, the totalization provides an example of retraction;
i.e., R

′
is a retraction of R.

The notion of functionality undergoes a parallel transformation. Being functional
relative to such preconditions is less stringent.

Definition 69 (Functionality) Suppose that

R � [x : I, y : O | π (x); ψ[x, y]]

If the following holds, we shall say that R is functional.

∀x : I · π (x) → ∀y : O · ∀z : O · ψ[x, y] ∧ ψ[x, z] → y = z

Accordingly, it is total and functional just in case

∀x : I · π (x) → ∃!y : O · ψ[x, y]

As before, we shall use the abbreviations that make reference to the precondition
π ,
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Tot(F, I, π, O), Fun(F, I, π, O), TF(F, I, π, O)

to indicate totality, functionality, and being a total function in this revised sense.

7.3 Functional Application

Preconditions enable functionality and totality to be more easily satisfied. Conse-
quently, they give us freedom to conservatively introduce a wider class of functional
relations.

Definition 70 (Functional Application) Suppose that T is any TDT. Let Tapply
π be

T with a new function symbol apply, governed by the following rules. For each
relation

a : I π (a) b : O

F(a, b) prop

where TF(F, I, π, O), we have

a : I π (a)

apply(F, a) : O
F1

a : I π (a)

F(a, apply(F, a))
F2

The first informs us that F, with input in I that satisfies precondition π , returns
a value in O , while F2 guarantees that under π the input/output satisfy the original
relation. Again, we shall use the abbreviated form for functional application; i.e.,
F(a).

We can now see why the following is a better specification of predecessor in the
sense that every number that satisfies the precondition has a predecessor.

Example 71 (Predecessor)

Pred �
[

x : N , y : N | x > 0; x = y+
]

This gives rise to a new function symbol that satisfies

a : N a > 0

Pred(a) : N
F1

a : N a > 0

Pred(x)+ = x
F2

We shall see more examples as we proceed, but to better illustrate matters we
need more types in place. For the present, looking forward a little, the following
example preempts our discussion of finite sets. It provides a specification of map
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application. First, we define Maps as single-valued sets of pairs. In what follows
Set(T ) is the type whose members are finite sets of elements of type T .

Example 72 (Maps)

Map

z : Set(A ⊗ B)

∀x ∈ z · ∀y ∈ z · x1 = y1 → x2 = y2

We have surreptitiously sneaked in bounded set quantifiers. Maps are single-
valued sets of pairs from the product type A ⊗ B. We may then define the domain
of maps. This is analogous to domain for schema relations.

Example 73 (Map Domain)

Dom

u : Set(A ⊗ B), v : Set(A)

∀x ∈ v · ∃y ∈ u · x = y1

∧
∀y ∈ u · y1 ∈ v

Finally, using preconditions, we may specify an application operator for maps.
The following is a specification of map application with the precondition that the
argument to the map is in its domain.

Example 74 (Map Application)

Mapapp

u : Set(A ⊗ B), x : A, y : B

Dom(u)(x); (x, y) ∈ u

We shall discuss these examples in some detail in our chapter on finite sets. For
the present, we need only see map application as an example of preconditions.
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7.4 Application Elimination

Almost finally, we observe that the addition of functional application with precon-
ditions yields a conservative extension.

Suppose that �, � do not contain app. Then

� 	Tapply
π

� implies � 	T �

This is a corollary to the following compilation lemma that shows how to remove
all instances of functional application.

Lemma 75 (Compilation) There is a translation * from Tapp to T such that:

1. if � 	Tapply
π

�, then �∗ 	T �∗,
2. if � 	T �, then � 	T �∗iff � 	T �,
3. if φ prop is � in � 	Tapply

π
,then φ∗ is � in T,

where �∗ is the translated context and �∗ is the translated judgment

Proof We proceed as the case without preconditions. In our raw syntax, we employ
DeMorgan’s algorithm to push all the negations through to atomic cases. In the
atomic terms and their negations, we replace F as follows.

α[F(t)/y]∗ = π [t] → ∃v : O · R(t, v) ∧ α[v/y]

(¬α[F(t)/y])∗ = π [t] → ∃v : O · R(t, v) ∧ ¬α[v/y]

The argument then proceeds exactly as before; i.e., the preconditions make very
little difference to the argument.�

7.5 Partial Functions

We may use this treatment of functions with preconditions to provide an account of
partial application [1]. More exactly, we use the old notion of domain to furnish the
precondition.

Proposition 76 Let T be any TDT. Suppose that Fun(R, I, O), where

R � [x : I, y : O | ψ[x, y]]

Then the totalization of R,

̂R � [x : I, y : O | Dom R(x); R(x, y)]

is functional; i.e., Fun(̂R, I, Dom R, O).

This leads to the following.
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Definition 77 Suppose that T is any TDT. Let Tpappply be T with a new function
symbol apply, governed by the following rules. For each relation R such that
Fun(R, I, O), we have

a : I Dom R(a)

apply(R, a) : O
F1

a : I Dom R(a)

R(a, apply(F, a))
F2

This is a special case of the above general account where the domain of the rela-
tion forms the precondition. In this way we can add application for partial functions.
This will play a central role in many of our computable models and especially when
we come to study programming language semantics.

This completes our account of the basic machinery of the book. We have intro-
duced the logical framework (TPL), provided an account of theories of data types
(TDT), generalized the notion of definability to arbitrary TDT, and introduced our
notions of specification. We now turn to the development of some specific theories
of data types.
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Chapter 8
Natural Numbers

Almost every programming and specification language contains a natural number
type. Of course, what is associated with the language is little more than a system
of type-inference rules. Nor is there a single theory of numerical data that may
be associated with the natural numbers. There are many such. For one thing, the
theory depends on which operations are taken as primitive and which axioms are
taken to govern them. We might, for example, just select successor, addition, and
multiplication as our only primitives. Or we might decide to build in all the prim-
itive recursive functions. A second, and mathematically more significant, aspect
concerns the induction principles that are adopted and, more generally, which lan-
guage and encompassing theory of types provides the host for the expression of
the theory. Prima facie, all such choices determine different theories of numerical
data.1

Here we shall develop a fairly minimal theory. Its embedding in richer type theo-
ries will generate more expressive, though not necessarily mathematically stronger,
ones. Indeed, the theories developed here will also be used as yardstick theories to
measure the more expressive ones. More exactly, to ensure that we have a TDT, we
must establish that it has a recursive model [1, 6], and this will be given in terms of
the present theories.

Indeed, versions of the present theories have been investigated in some detail
in formal number theory [5, 2]. Consequently, they will serve as a mathematical
paradigm that will guide our investigation of more complex TDT. In addition, we
shall employ them to illustrate, in miniature, a bit more about the process, and nature
of specification.

8.1 A Theory of Numbers

We shall build upon the arithmetic theories outlined in earlier chapters. We begin
with a minimal theory that is still mathematically useful. The language has a single
type N, the type of natural numbers, a basic constant zero (0), a unary function

1 Some are conservative extensions of each other, and some are not.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 8,
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symbol successor (+), and a single binary relation symbol, i.e., the less-than order-
ing (<). It is represented as follows.

Nat = Th(N, 0,+,<)

The first group of axioms are those listed in Chapter 3. They are essentially the
rules of Peano arithmetic. The second two are the closure conditions for the type:
0 is a number, and every number has a successor. The last two insist that 0 is not
the successor of any number, and that successor is injective. The third completes
the Peano axioms; it is the standard numerical induction scheme restricted to the
propositions of Nat.

N0 N type

N1 0 : N N2
a : N

a+ : N

N3
φ[0] x : N , φ[x] 	 φ[x+]

x : N 	 φ[x]

N4
a : N

a+ �= 0
N5

a
+ =N b

+

a =N b

But these rules are not sufficient for doing arithmetic and, in particular, carrying
out the reasoning required to write and argue about specifications over the natural
numbers. Generally, some form of recursive relation or function is also required as
a basic notion. Up to a point, it matters little which one we choose. We have chosen
the ordering relation, but we could easily have started with addition. The rules for
the relation are given as follows. Again, they are the standard axioms adapted to fit
the present typed framework. N6 is the formation rule. N9 insists that no number is
the predecessor of zero, and N7, N8, N10 together demand that a number is less than
the successor of a number if and only if it is less than or equal to it.

N6
a : N b : N

a < b prop

N7
a : N

a < a+ N8
a < b

a < b+

N9
a < 0

�
N10

a < b
+

a < b ∨ a = b

Our final group governs a new pair of quantifiers: the bounded numerical ones.
These are given by the following rules, where the N11 and N14 are the formation
rules for the two quantifiers and the rest are the standard introduction and elimina-
tion rules.
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N11
x : N 	 φ prop s : N

∃x < s · φ prop

N12
φ[t/x] t < s x : N 	 φ prop

∃x < s · φ

N13
∃x < s · φ x < s, φ 	 η

η

N14
x : N 	 φ prop s : N

∀x < s · φ prop
N15

x < s 	 φ

∀x < s · φ

N16
∀x < s · φ t < s

φ[t/x]

The � propositions include the atomic ones, including those generated by the ba-
sic function symbols and relations of Nat. They are then closed under conjunction,
disjunction, existential quantification together with the bounded quantifiers; i.e.,we
take the bounded quantifiers to preserve � propositions.

Finally, we take the equality relation and the ordering relations to be decidable.
Consequently, we add internal negations for these. i.e., we add the axiom pairs
Dec(=) and Dec(<); i.e.,

N17
n : N m : N

n �= m prop
N18

n : N m : N

n �= m ↔ ¬(n = m)

N19
n : N m : N

n ≮ m prop
N20

n : N m : N

n ≮ m ↔ ¬(n < m)

And since they provide their own internal negations, bounded quantifiers preserve
decidable propositions.

Proposition 78 If �, x : N 	 φ prop is decidable, then so are the following.

�, y : N 	 ∀x < y · φ prop

�, y : N 	 ∃x < y · φ prop

Proof If φ is the internal negation of φ, then ¬∃x < y · φ is the internal negation of
∀x < y · φ. etc.�

A subtheory of some significance is that determined by restricting the induction
principle to � propositions.

Definition 79 Primitive Recursive Nat is Th(N, 0,+,<) but where the induction
scheme is restricted to � propositions.We shall refer to this theory as Nat�. 2

2 This is known to be conservative over the quantifier-free version [4].
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This completes the statement of the basic theory and its variations. It is essen-
tially pure arithmetic: Since there is only one type, the typing is redundant; i.e., the
variables always range over numbers, equality always forms a proposition, and the
type information in the quantifiers, and indeed most of the grammatical rules, is
redundant. Consequently, most of the very flexible framework of TPL is wasted.
However, although this theory will play a central metamathematical role later, the
type N will also be embedded in richer and more elaborate theories of data. This
will change the theory since the default option will extend the induction principle to
the language of the new theory.

8.2 Numerical Specification

In this section we shall begin to explore these theories and introduce some new
notions via specification. All of what follows is quite standard; what is novel is the
setting and the approach, i.e., the emphasis we shall place upon specification, and
eventually the role of TPL. Potentially, this is different to standard developments,
where explicit algorithms often form the content of proofs. Here we shall only pro-
duce the specifications. But to start with, we catalogue a few of the basic properties
of the system.

Proposition 80 ∀y : N · y = 0 ∨ ∃u : N · y = u+.

Proof This follows by numerical induction with the � induction proposition: φ[y]
y = 0 ∨ ∃u : N · y = u+.The base case is clear. Moreover, given closure for
numbers, i.e., if y = u+, then y+ = u++ : N , so is the induction step.�
Proposition 81 The strict ordering relation satisfies the following

1. ∀y : N · ∀x < y · x+ < y+

2. ∀y : N · ∀x : N · x+ < y+ → x < y
3. ∀y : N · y+ ≮ y
4. ∀z : N · ∀y < z · ∀x < y · x < z

Proof Part 1 is by induction with the proposition

φ[y] = ∀x < y · x+ < y+

The base step where y is zero is immediate by the axioms. For the induction step,
assume that x < y+. The axioms yield x < y ∨ x = y. The second conjunct
yields x+ = y+ and the axiom yields x+ < y++. For the first conjunct, induction
gives x+ < y+. The result then follows immediately from the axioms. For part 2,
let x : N . Then use induction with the proposition

φ[y] = x < y

The base case is clear: if x+ < 1, then by N10, x+ < 0 ∨ x+ = 0, which is
impossible by N9, and N4, respectively. For the induction step, assume x+ < y++.
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Use the axioms to yield x+ < y+ ∨ x+ = y+. The first alternative together with
N7 and the induction hypothesis yields the result. The second alternative yields the
result by the axioms. For part 3, use the induction proposition

φ[y] = y+ ≮ y

The base step is clear by axioms and the induction step follows from part 1. For
part 4, let x : N , y : N . We employ the induction proposition,

φ[z] = ∀y < z · ∀x < y · x < z

If z = 0, then the result is clear. Assume that x < y ∧ y < z+. By the axioms,
y < z ∨ y = z. In the latter case we are finished. In the former, induction yields the
result.�

We next introduce another basic numerical specification, the weak ordering rela-
tion.

Example 82 (Weak Numerical Ordering)

≤ � [x : N , y : N | x < y ∨ x = y]

We may now introduce the maximum and minimum relations. We have already
seen these, but now we can investigate them properly.

Example 83 (Maximum)

Max

x? : N , y? : N , z! : N

x ≤ z ∧ y ≤ z
∧
z = x ∨ z = y
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Example 84 (Minimum)

Min

x? : N , y? : N , z! : N

z ≤ x ∧ z ≤ y
∧
z = x ∨ z = y

Proposition 85 Maximum and minimum are total functions.

Proof They are clearly functional; we show totality. Since x ≤ y ∨ y ≤ x , we can
without loss of generality assume the former. We then choose z to be y.�

We now explore some properties of the weak relation. The following are some of
the most obvious ones.

Proposition 86 The weak ordering relation satisfies the following

1. ∀y : N · ∀x ≤ y · x+ ≤ y+

2. ∀x : N · x ≤ x
3. ∀x : N · ∀y : N · (x ≤ y ∧ y ≤ x) → x = y
4. ∀x : N · ∀y : N · ∀z : N · (x ≤ y ∧ y ≤ z) → x ≤ z
5. ∀x : N · ∀y : N · x ≤ y ∨ y ≤ x

Proof The first follows from the definition of the weak ordering and part 1 of the
previous proposition. Part 2 is clear by definition. For part 3, assume x : N , y : N .

We use induction with the proposition:

φ[y] = x ≤ y ∧ y ≤ x → x = y

If y = 0, then the result is clear. Assume that x ≤ y+. By the axioms,

x ≤ y ∨ x = y+

The second disjunct yields the result. If the first disjunct holds, then we have x ≤
y ∧ y+ ≤ x . If y+ = x , y+ ≤ y, which is impossible by definition and the fact that
y+ ≮ y. For part 4, let x : N , y : N . We employ the induction proposition

φ[z] = x ≤ y ∧ y ≤ z → x ≤ z

If z = 0, then the result is clear. Assume that x ≤ y ∧ y ≤ z+. By the axioms, and
the definition,

y ≤ z ∨ y = z+
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In the case y ≤ z, by induction we have x ≤ z. By the axioms, x < z+. If y = z+,
then x ≤ y ∧ y = z+; i.e. x ≤ z+. This completes the argument for transitivity. For
part 5, let x : N . We employ induction with the following proposition

φ[y] = x ≤ y ∨ y ≤ x

The base case is immediate. Assume x ≤ y ∨ y ≤ x . Assume x ≤ y. Then by the
axioms, x ≤ y+. If y ≤ x , then by part 1, y+ ≤ x+; i.e.

x+ = y+ ∨ y+ ≤ x

If the first disjunct holds, then x = y and so x ≤ y+, as required. If the second
does, by the axioms, y+ < x ∨ y+ = x , which yields y+ ≤ x .�

We have already encountered the following specifications, but we repeat them in
order to more formally establish their properties.

Example 87 (Predecessor)

Pred1

x : N , y : N

x > 0 ∧ y+ = x

Pred2

x : N , y : N

x > 0 → y+ = x

The first is a partial function but not a total one; the second is total but not func-
tional. More explicitly,

1. Pred1 is functional.
2. Pred2 is total.
3. ∀x : N · ∀y : N · x > 0 → (pred1(x, y) ↔ pred2(x, y)).

For part 1, let x > 0 and y+ = x and z+ = x . Then the result is immediate.
Similarly for part 2, if x > 0, then it follows that ∃y : N · y+ = x . And so it is total.
The others are equally straightforward.�

But these are not total and functional. However, they are relative to the precondi-
tion version of these notions.
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Example 88 (Functional Predecessor)

Pred

x : N , y : N

x > 0; y+ = x

Relative to its preconditions, this is total and functional.

Proposition 89 TF(Pred, N , x > 0, N ).

Proof Let x > 0. It is immediate that ∃!y : N · y+ = x .�
Finally, observe that we could have specified the bounded quantifiers.

Example 90 (Bounded Existential Quantifier) Suppose that

c, x : N 	 φ prop

Then we define

∃y < x · φ � [c, x : N | ∃y : N · y < x ∧ φ]

∀y < x · φ � [c, x : N | ∀y : N · y < x → φ]

These are generic definitions; i.e., they implicitly apply to all propositions.
Often, it is useful to have a slightly different induction principle that relates di-

rectly to the strict ordering relation. This is generally known as complete induction
or course of values induction. The latter derives its name from the fact that all
previous values are taken into account, i.e. not just the immediate predecessor. In
practice, this often proves more convenient.

Theorem 91 (Complete Induction) For any φ, the following rule is derivable.

x : N ,∀y < x · φ[y] 	 φ[x]

x : N 	 φ[x]

Proof Assume the premise. Let x : N . We use induction with the proposition

∀y < x · φ[y]

If x is 0, then, since 0 has no predecessors, ∀y < x · φ[y]. Suppose that ∀y <

x · φ[y]. Assume that y < x+. Then, by the axioms, y < x or y = x . If the former,
then by induction, φ[y]. If the latter, then by the main assumption, φ[y]. Hence,
∀y < x+ · φ[y].�
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8.3 Recursive Specifications

Nat supports recursive specifications. And while many other theories will follow
suit, arithmetic does so in a very simple and pure form. Indeed, the following will
guide us in formulating recursive specifications for more elaborate theories.

Definition 92 A recursive specification has the form

R � [x : N | φ[R, x]] Rec

where R occurs as a unary relation symbol in φ. This is taken to introduce a new
relation symbol R that satisfies

x : N 	 R(x) prop R1

and is governed by the following versions of R2 and R3.

x : N , φ[R, x] 	 R(x) R2

∀x : N · φ[ψ, x] → ψ[x]

∀x : N · R[x] → ψ[x]
R3

for any ψ such that

x : N 	 ψ[x] prop

where in the above φ[ψ, x] is obtained by replacing every occurrence of R(x) by
ψ[x].

Examples of such specifications are easy to come by. Indeed, we cannot make
much progress in the current version of arithmetic without them. The following is a
recursive specification of addition.

Example 93 (Addition)

Add

x : N , y : N , z : N

y = 0 → x = z
∧
y �= 0 → ∃w : N · Add(x, Pred(y), w) ∧ z = w+

Given this, we can specify multiplication.
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Example 94 (Multiplication)

Mult

x : N , y : N , z : N

y = 0 → z = 0
∧
y �= 0 → ∃w : N · Mult(x, Pred(y), w) ∧ z = Add(w, x)

Proposition 95 Add and Mult are functional.

Proof Use numerical induction. Let x : N . For addition, to show totality, we use the
induction proposition.

φ[y] � ∃z : N · Add(x, y, z)

Multiplication employs the induction hypothesis

φ[y] � ∃z : N · Mult(x, y, z)�

Where we have established functionality, we may add application. For example,
consider the relational specification of addition. Here, writing + for the functional
version of Add, we obtain the following version of the predicate.

y = 0 → x + y = x
y �= 0 → ∃w : N · Add(x, pred(y)), w) ∧ x + y = w+

If we then use the fact that Add(x, pred(y), x + pred(y)), the above reduces to the
standard recursion equations for addition.

x + 0 = x
x + y+ = (x + y)+

In this way we can obtain all the primitive recursive functions. Indeed, this can be
done in Nat�. In Nat exactly the Turing computable functions can be �-specified.
We shall look at this in more detail in a later chapter devoted to recursive functions
and their specifications. For now we examine some more specific examples.

The following are some fairly common relations that are facilitated by the pres-
ence of addition and multiplication. These will be used to illustrate later notions.
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Example 96 (Subtraction)

−

x : N , y : N , z : N

x = y + z

The next is a simple specification of the relation of one number being a divisor
of another. Some of the next few examples will play a role when we later address
issues of expressive power induced by our notion of specification [3].

Example 97 (Divides)

Divides

z : N , x : N

∃u : N · Mult(u, z) = x

The next is a specification of common divisor.

Example 98 (Common Divisor)

C D

x : N , y : N , z : N

Divides(z, x) ∧ Divides(z, y)

This should be enough to illustrate recursion and its applications. We shall see
many more as we proceed. But before we leave recursive specifications, we must
say a little about their conservative nature. Fortunately, the result for arithmetic is
well known.

The addition of recursive relations to Nat = Th(N, 0,+,<) is conservative, where
the conservative extension of such relational additions is immediately justified by
the following result [2].

Theorem 99 (Recursion in Nat) For each proposition φ, there is a proposition θ

such that
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1. φ[θ, x] 	 θ [x],
2. the following rule is derivable.

φ[ψ, x] → ψ[x]

θ [x] → ψ[x]

The result for the conservative extension for recursive schema follows immedi-
ately: Given φ, employ the guaranteed θ and then use the specification

R = [x : N | θ [x]]

8.4 Enriched Arithmetic

In the rest of the book, the natural number type will rarely occur in isolation. More
often it will be embedded in a TDT with other type constructors. For example, the
theory

Nat+ = Th(N, Bool,⊗)

consists of the basic types N and Bool and is closed under Cartesian products. Typ-
ically, we shall need to prove coherence etc.

Theorem 100 (Coherence) For the theory Nat+,

1. if � 	 φ, then � 	 φ prop,
2. if � 	 t : T , then � 	 T type,
3. if �, x : T, � 	 �, then � 	 T type,
4. if �, φ, � 	 �, then � 	 φ prop.

Proof The new cases involving the type N are all easy to check. For example, con-
sider

�, x < s 	 φ

� 	 ∀x < s · φ

and part 1. By induction, � 	 x < s prop and � 	 φ prop. It follows from
the weakening rule that �, x : N 	 φ prop. By the premise and type checking
applied to this new theory, � 	 s : N . So we are done by the formation rule for the
quantifier.�

Within this theory we may specify the rational numbers and their associated re-
lations and functions.

Definition 101 (Rationals) The rational numbers are specified as

Q � N ⊗ N
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We may then specify rational equality and an ordering relation.

=Q � [x : Q, y : Q | x1 × y2 = x2 × y1]

<Q � [x : Q, y : Q | x1 × y2 < x2 × y1]

We may also introduce rational addition in the standard way. We leave the specifi-
cation of rational subtraction to the reader.

Example 102 (Rational Addition)

+Q

f : Q, g : Q, h : Q

h1 = ( f1 × g2) + ( f2 × g1)
h2 = ( f2 × g2)

Finally, a notion that we shall employ later is the absolute value of the difference
between two rationals (normally written as |x − y|) as follows.

Example 103 (Absolute Value)

AbsoluteQ � [x : Q, y : Q, z : Q | x − y > 0 → z = x − y, z = y − x]

This is functional and so we may write |x − y|Q for the absolute value of the
difference between the inputs x and y. We shall see a more interesting example of
such an embedded theory in the next chapter.

8.5 Arithmetic Interpretation

We may now provide a more precise characterization of what we intend by the term
arithmetic interpretation . First we need a preliminary idea; i.e., we add classes to
Num in the standard way:

{x · φ}

with the following definition for membership.

z ∈ {x · φ} � φ[z] (Class)

Since such classes can be compiled away using (Class), this is a conservative exten-
sion of Num. We may then be somewhat more exact about our notion of arithmetic
interpretation.
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Definition 104 A TDT T will be said to have an Arithmetic Interpretation if there
is a sound interpretation * from T to Nat such that

1. every basic relation symbol R of T is interpreted as a � relation R∗ of Nat,
2. every type T is interpreted as a � class T ∗ of Nat,
3. every function symbol F that is functional on the types A, B of T is interpreted

as a � relation of Nat such that F∗is a function from the class A∗to B∗.

We shall use this idea to provide recursive models for our theories. We now have
our yardstick theory and some of its central tools in place. While this completes our
preliminary discussion of the natural numbers, throughout the book, we shall study
other aspects of it, including some very particular specifications. For the present,
we leave the natural numbers and turn to a central type constructor for specification,
namely finite sets.
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Chapter 9
Typed Set Theory

A set, finite or otherwise, is an extensional object whose identity is determined only
by its elements. Consequently, operations on them are not sensitive to the way they
are presented. Sets offer a level of abstraction that facilitates the specification of
programs and systems that allows implementation details to be hidden. In particular,
unlike lists, the order in which the elements is given is irrelevant. Whatever the merit
and clarity of such considerations, they have given some notion of set a central place
in most approaches to specification.

A relatively standard notion of set forms the core of the Z specification language.
This is inspired by standard set theory (e.g., [4, 5, 7]). More modest notions of set
are based upon hereditarily finite sets [1] or bounded set theory [6]. Inspired by the
latter, we shall study the type constructor for finite sets. This forms one of the central
type constructors of VDMSL [2].

More specifically, we shall follow the approach to the foundations of specifica-
tion taken in [8]. That paper develops a theory of data types based upon numbers,
finite sets, and products (CST for core specification theory). And this will form the
basis of the present approach and, indeed, the topic of the present chapter.

9.1 CST

The underlying set theory is an inductive theory of sets in the sense that the type
will be given in terms of a closure condition and an induction principle. As with
Nat, this theory will provide a rich source of examples to illustrate the specification
process and lead to our first example of a computable model (next chapter).

The minimal theory we shall study (CST) is given as follows.

CST � Th(N, CP, Set)

In words, the theory is generated from type N via Cartesian products and the type
constructor Set: Given a type T , Set(T ) generates the type of finite sets of type T .
The latter has a basic constant ∅T for the empty set of type T and the operator �T

for element insertion: given an element of type T and a set of type T, it returns a

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 9,
C© Springer-Verlag London Limited 2009
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86 9 Typed Set Theory

new set with the element added. The only basic relation is set membership (∈T ). We
shall also include set quantifiers ∃x ∈T s · φ and ∀x ∈T s · φ . Where the context
makes matters clear, we shall drop all the type subscripts.

The rules for the theory are given as follows. We assume the rules for Cartesian
products and numbers. This leaves us to deal with the rules for the new type con-
structor. The first group of rules includes its formation, introduction, and elimination
rules.

S0
T type

Set(T ) t ype

S1
T type

∅T : Set(T )
S2

a : T b : Set(T )

a �T b : Set(T )

S3
φ[∅] ∀x : T · ∀y : Set(T ) · φ[y] → φ[x �T y]

∀x : Set(T ) · φ[x]

The next two are the rules for element addition. The first insists that sets contain
no duplicates and the second that the order of occurrence of elements is irrelevant.
These give sets their extensional character.

S4
a : T b : Set(T )

a � (a � b) = a � b
S5

a : T b : T c : Set(T )

a � (b � c) = b � (a � c)

The next group provides the rules for membership. The first is the formation rule.
S9 insists that the empty set has no elements, while the rest collectively demand that
element insertion adds a single new element of the appropriate type.

S6
a : T b : Set(T )

a ∈T b prop

S7
a : T b : Set(T )

a ∈ a � b

S8
a ∈ c b : T c : Set(T )

a ∈ b � c

S9
a ∈ ∅T

�
S10

a ∈ b � c

a = b ∨ a ∈ c

The rules for the set quantifiers parallel the numerical ones. Aside for the forma-
tion rules themselves, we shall drop the subscripts.

S11
�, x : T 	 φ prop � 	 s : Set(T )

� 	 ∃x ∈T s · φ prop
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S12
φ[t/x] t ∈ s

∃x ∈ s · φ

S13
� 	 ∃x ∈ s · φ �, x ∈ s, φ 	 η

� 	 η

S14
�, x : T 	 φ prop � 	 s : Set(T )

� 	 ∀x ∈T s · φ prop

S15
�, x ∈ s 	 φ

� 	 ∀x ∈ s · φ S16
∀x ∈ s · φ t ∈ s

φ[t/x]

Equality and set membership are taken to be decidable. Again, these rules are
now standard; i.e., we add the rules Dec(=), Dec(∈); i.e.,

S17
a : Set(T ) b : Set(T )

a �= b prop
S18

a : Set(T ) b : Set(T )

a �= b ↔ ¬(a = b)

S19
a : T b : Set(T )

a /∈ b prop
S20

a : Set(T ) b : Set(T )

a /∈ b ↔ ¬(a ∈ b)

To complete the description of the theory, we introduce its class of � propositions.

Definition 105 Suppose that

c 	CST φ prop

Then φ is � if it is an atomic proposition that is generated by the basic function
symbols and relations of CST or it is obtained by closure under conjunction, dis-
junction, typed existential quantification, together with the set quantifiers.

This concludes the rules of the theory CST. The following is easy to establish:
The negations are supplied by the alternative set quantifier.

Proposition 106 The set quantifiers preserve decidability.

We again observe that the type-checking and coherence theorems remain intact.
There is little that is novel in the new cases; they parallel those for numbers and so
we leave the details as an exercise. In addition to those for TPL and products, we
have the following additional type-checking properties.

Theorem 107 (Type Checking) In CST we have

1. � 	 a ∈T b prop iff � 	 a : T and � 	 b : Set(T ),
2. � 	 a �T b : Set(T ) iff � 	 a : T and � 	 b : Set(T ),
3. � 	 Qx ∈T s · φ prop iff � 	 s : Set(T ) and �, x : T 	 φ prop.

This completes our statement of the theory. In terms of the number of rules, it is
quite a large theory. But it is well motivated and the rules are easy to grasp.
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9.2 Elementary Properties

To begin with, we document a few elementary properties. They are all well known
and some of them parallel those for the natural numbers.

Proposition 108 For each type T , we have

∀y : Set(T ) · y = ∅T ∨ ∃u : T · ∃v : Set(T ) · y =T u � v

Proof We use set induction with the following induction proposition.

φ[y] � y = ∅T ∨ ∃u : T · ∃v : Set(T ) · y = u � v

The base case where y = ∅T follows immediately. The induction step is also im-
mediate from the induction assumption: If y = u � v, where u : T and v : Set(T ),
then the result is immediate.�

Proposition 109 The following are provable. For each type A,

1. ∀y : Set(A) · ∀x : A · x � y �= ∅,
2. ∀y : Set(A) · ∀x ∈ y · x � y = y,
3. ∀z : Set(A) · ∀x ∈ z · ∃y : Set(A) · x /∈ y ∧ z = x � y.

Proof For part 1, since x ∈ x � y, from S9, it follows that x � y �= ∅. Part 2 follows
by induction with the following induction proposition.

φ[y] = ∀x ∈ y · x � y = y

The base case follows from S9: nothing is in the empty set. For the induction step,
assume that u : A, v : Set(A), and y = u�v. By S5, x �(u�v) = u�(x �v). Also,
by S7 and the assumption that x ∈ y, we have x = u or x ∈ v. If the former, we are
done by S4. If x ∈ v, then by induction, x � v = v and so u � (x � v) = u � v = y.

For part 3, we also employ induction with the induction formula set to

φ[z] = ∀x ∈ z · ∃y : Set(A) · x /∈ y ∧ z = x � y

As with the last case, the base case is immediate from S9. For the induction step,
assume u : A, v : Set(A) and z = u � v. If u ∈ v, we are finished by induction. If
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u /∈ v, let x : A and x ∈ u � v. If x = u, then, put the required y = v; if x ∈ v, then
by induction we may assume

∃w : Set(A) · x /∈ w ∧ v = x � w

We then put the required y to be u � w.�

9.3 Subsets and Extensionality

Sets are extensional. In this section we provide the definition and establish that
it is so. To express matters, we need to introduce the following notions. The first
specification introduces the notion of subset.

Example 110 (Subset) Let T be a type. It follows that

x : Set(T ), y : Set(T ) 	 ∀z ∈ x · z ∈ y prop (1)

Then we may specify

⊆T

x : Set(T ), y : Set(T )

∀z ∈ x · z ∈ y

Note that, in ⊆T , the type symbol is part of the metanotation. The specification is
generic only in the sense that it introduces a new relation symbol for each type that
satisfies (1) above. For example, N , Set(N ), Set(N ⊗ Set(N )), and indeed any type
generated from N via ⊗ and Set. But it is not object-level polymorphism. However,
we shall later introduce a more systematic form of object level polymorphism.

As before, we shall, as in the case of equality, often drop the subscript, i.e., em-
ploy a metalanguage convention to avoid it. The same applies to all the relations and
functions we shall introduce.

Proposition 111 In CST, subset is decidable.

Proof We specify the internal negation as follows.

�T

x : Set(T ), y : Set(T )

∃z ∈ x · z /∈ y
�
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We can now establish the most important property of the sets of the theory,
namely their extensional nature. We first require a definition.

Definition 112 (Extensional Equality) Let T be a type. Then

x : Set(T ), y : Set(T ) 	 x ⊆T y ∧ y ⊆T x prop

So it is legitimate to specify

≡T � [x : Set(T ), y : Set(T ) | x ⊆T y ∧ y ⊆T x]

We shall write this in infix notation as x ≡T y. Again, we have:

Proposition 113 Extensional equality is decidable

The following is the statement of extensionality: If two sets have the same ele-
ments, then they are equal.

Proposition 114 (Extensionality) Let T be a type. Then

x : Set(T ), y : Set(T ) 	 x =T y ↔ x ≡T y

Proof We have only to prove the direction from right to left. Let x : Set(T ). We
employ induction on y with the following induction proposition.

φ[y] = x ≡ y → x = y

Assume y = ∅. If x = ∅, we are finished by the equality rules. But if x �= ∅, then
x = u � v for some u, v, which is impossible by S9. This completes the base case.
So assume that y has the form u � v. We have to show that

x ≡ u � v → x = u � v

If u ∈ v, by induction, we are finished. If u /∈ v, since u ∈ x , by the last proposition
(part 3), x = u � v′ for some set v′, u /∈ v′. Since u � v and u � v′are extension-
ally equal, u /∈ v and u /∈ v′, it follows that v and v′ are extensionally equal. By
induction, v = v′. So u � v = u � v′.�

9.4 New Sets from Old

Axiomatic theories are by their nature rather minimal. In particular, the type Set(T )
consists of the sets constructed from the empty set by adding an element of T to an
existing element of Set(T ). Consequently, the only given way of constructing new
sets in the base theory is via the insertion function. In contrast, the representation of
sets in current specification languages is much richer. For example, most admit as set
constructors the standard Boolean operations on sets such as union and intersection
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and many also support the formation of subsets. Our objective is to build up some
infrastructure for the theory and at the same time illustrate the whole process of
specification in CST.

Our first rather simple operation is the opposite of our basic operation of addition.
It subtracts an element from a set.

Example 115 (Subtraction)

�T

u : Set(T ), x : T
z : Set(T )

x ∈ u → z � x = u
∧
x /∈ u → z = u

Here we adopt the convention that inputs are on the first line and outputs on the
second.

One of the most useful and elementary ways of forming a finite set is by enumer-
ating its elements.

Example 116 (Pairing) Let T be a t ype. Then we may specify

PairT

x : T, y : T
z : T

z = x � y � ∅

This is an explicit functional specification that is functional relative to the first
two arguments. We shall write PairT (x, y) as {x, y}, where we drop any reference
to the type. We shall also write {x} for SingletonT (x); i.e.,

Example 117 (Singleton)

SingletonT � [x : T, y : Set(T ) | y = x � ∅]

More generally, pairing can be generalized to allow the enumeration of any finite
number of elements {x1, x2, ..., xn} from the same type.

This is one of the basic set constructors of standard set theory. Another is simple
union. In VDM this is taken to be a basic operator.
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Example 118 (Simple Union) Let T be a t ype. Then

x : Set(T ), y : Set(T ), z : Set(T ) 	 ∀u ∈ z · u ∈ x ∨ u ∈ y prop

x : Set(T ), z : set(T ) 	 ∀u ∈ x · u ∈ z prop

y : Set(T ), z : set(T ) 	 ∀u ∈ y · u ∈ z prop

Hence, it is legitimate to specify

∪T

x : Set(T ), y : Set(T )
z : Set(T )

∀u ∈ z · u ∈ x ∨ u ∈ y
∀u ∈ x · u ∈ z
∀u ∈ y · u ∈ z

Proposition 119 Simple union is total and functional.

Proof Functionality follows from extensionality: There cannot be two z’s. For to-
tality we prove by set induction with the proposition

φ[x] = ∃z : Set(T ) · (∀u ∈ z · u ∈ x ∨ u ∈ y)∧ (∀u ∈ x · u ∈ z)∧ (∀u ∈ y · u ∈ z)

The base step and the induction step are both straightforward to verify.�

So we may legitimately view union as a new function symbol. We shall write this
in the usual way as a ∪ b. This is a new set constructor that satisfies the following.

a : Set(T ) b : Set(T )

a ∪T b : Set(T )

a : Set(T ) b : Set(T )

∀x : T · x ∈ a ∪T b ↔ x ∈ a ∨ x ∈ b

Indeed, we could take this as a new primitive operation on sets governed by these
rules. Observe that membership is still preserved in its decidable state in the sense
that the following is provable.

a : Set(T ) b : Set(T )

∀x : T · ¬(x ∈ a ∪T b) ↔ x /∈ a ∧ x /∈ b

So given that membership for the components is decidable, so is membership for
their union. This will apply to all the constructs we consider.

We proceed with our catalogue of set constructors; i.e., we immediately follow
the lead of standard set theory and generalize matters.



9.4 New Sets from Old 93

Definition 120 (Generalized Union) Let T be a type. Then we can legitimately
specify

∪T

x : Set(Set(T ))
y : Set(T )

∀z ∈ y · ∃u ∈ x · z ∈ u
∀u ∈ x · ∀z ∈ u · z ∈ y

Proposition 121 Generalized union is total and functional.

Proof Functionality follows from extensionality. For totality, we prove by set in-
duction:

φ[x] = ∀z ∈ y · ∃u ∈ x · z ∈ u ∧ ∀u ∈ x · ∀z ∈ u · z ∈ y

If x is the empty set, then we put y = x . Suppose that x has the form x ′ � y′,
where x ′ : Set(A) and y′ : Set(Set(A)). Assume inductively φ[y′]. Let w′ be the
guaranteed set. Then the required set for x is given, via simple union, as x ′ ∪w′. By
extensionality, and the predicate itself, functionality follows.�

We now come to a way of forming sets that allows the formation of sets by
forming the subset of a given set that satisfies some property i.e. sets given via
a scheme of separation. Notice that this operation is generic with respect to the
included proposition; i.e., we uniformly introduce a new function symbol for each
proposition.

Example 122 (Separation) Suppose that

�, x : T 	 ψ prop

And suppose that ψ is decidable. We then specify

Sepψ

T

�, u? : Set(T ), v! : Set(T )

∀z ∈ v · z ∈ u ∧ ψ[z]
∧
∀z ∈ u · ψ[z] → z ∈ v
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Observe that the decidability of ψ renders the predicate of the schema �. More-
over, we have

Proposition 123 Suppose that

�, x : T 	 ψ prop

Then Sepψ is functional and total.

Proof Functionality is immediate by extensionality. For totality, we need to show
that

�, u : Set(T ) 	 σ [u], where
σ [u] = ∃v : Set(T ) · (∀x ∈ v · x ∈ u ∧ ψ[x]) ∧ ∀x ∈ u · ψ[x] → x ∈ v

where u /∈ FV (ψ). We use induction with σ [u] as the induction proposition. If u
is the empty set, we take v to be u. If u has the form w � y, by induction, we may
assume ψ[y]. Let z be the guaranteed set for y. We take the required set to be

{

w � z if ψ[w]
z if ¬ψ[w]

}

It is easy to see that this set satisfies the requirement. This completes the
induction.�

As a result, we can consistently add a new set constructor, actually one for each
proposition, that we shall write in standard notation as follows.

{x ∈ u · ψ[x]}

This satisfies

�, x : T 	 ψ prop

�, u : Set(T ) 	 {x ∈ u · ψ[x]} : Set(T )

We may now employ separation in specifications. In particular, using separation, we
can introduce the intersection operation on sets as a direct function specification.

Example 124 (Intersection)

∩T

u? : Set(T ), v? : Set(T ), z! : Set(T )

z = {x ∈ u ∪ v · x ∈ u ∧ x ∈ v}
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This is clearly functional and total. Furthermore, with generalized union and
separation in place, we can introduce generalized intersection by direct function
specification. Again, we shall use the same name.

Example 125 (Generalized Intersection)

∩T

x? : Set(Set(T )), y! : Set(T )

y = {z ∈ ∪x · ∀u ∈ x · z ∈ u}

We have now covered most of the constructors of standard set theory, but one or
two are still missing. The next is a central operator of that theory. It guarantees the
existence of a set that contains all the subsets of a given set.

Example 126 (Power Set)

PowT

v : Set(T ), w : Set(Set(T ))

∅ ∈ w ∧ (∀z ∈ v · ∀u ∈ w · z � u ∈ w)
∧
∀z ∈ w · z ⊆ v

This moves us up a type level. We show that Pow is a total function. To facilitate
this, we first specify a subsidiary function. This takes a set of sets (v) and an element
(u) and outputs a set of sets (z) whose members are the elements of v with u inserted.

Proposition 127 The following is a total function.

I nT

u? : T, v? : Set(Set(T )), z! : Set(Set(T ))

∀x ∈ v · u � x ∈ z
∧
∀y ∈ z · ∃x ∈ v · y = u � x
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Proof Fix u : A. We first prove, by induction on v,

σ [v] � ∃z : Set(Set(A)) · ∀x ∈ v · u � x ∈ z

In the case where v is empty, we put z = {{u}}. So assume that v has the form y�w.
By induction,

∃z′ : Set(Set(A)) · ∀x ∈ w · u � x ∈ z′

The required set for y � w is then (u � y) � z′. Hence,

∃z : Set(Set(A)) · ∀x ∈ v · u � x ∈ z

Now, given this set, the set required for the result is given by separation as

{y ∈ z · ∃x ∈ v · y = u � x}

Functionality follows from the extensional nature of sets.�

We can now return to the proof that the power-set constructor defines a total
function.

Proposition 128 Pow is total and functional.

Proof Functionality is immediate given extensionality for sets. Totality is the non-
trivial part. We prove the result by induction, where the induction proposition is the
following.

φ[x] = ∃y : Set(Set(A)) · ∀w : Set(T ) · w ∈ y ↔ w ⊆ x

If x = ∅A, then the required set is ∅Set(A). If x = u � v, then there are two cases. If
v = ∅, then the required set is {∅, {u}}. Otherwise, let v′ be guaranteed by induction,
i.e., the power set of v. Now put the power set of u � v to be I n(u, v′) ∪ v′.�

By analogy with the type operator, we shall write this set constructor as:

Set(u)

It satisfies

∀x : Set(A) · ∀w : Set(A) · w ∈ Set(x) ↔ w ⊆ x

This completes our catalogue of simple set constructors. We now turn to some
that employ more of the structure of CST.
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9.5 Set-Theoretic Relations

Since we have already used the term relation for specifications, some confusion
may arise over the use of the term for finite set-theoretic relations, so to avoid pos-
sible ambiguity, where necessary, we shall be explicit and use the term set-theoretic
relation.

Definition 129 (Binary Relations) The type of set-theoretic binary relations on the
types A and B is defined as:

Set(A ⊗ B)

More generally, the type of n-place relations on the types A1, ..., An is defined as

Set(A1 ⊗ ...⊗ An)

The type constructor Set has a set-theoretic analogue, namely the power-set con-
structor on sets. The same is true of Cartesian products. The following provides our
specification of the product operation on sets.

Definition 130 (Cartesian Product for Sets)

Fun ⊗

x? : Set(A), y? : Set(A), z! : Set(A ⊗ B)

(∀u ∈ x · ∀v ∈ y · (u, v) ∈ z)
∧
(∀w ∈ z · ∃u ∈ x · ∃v ∈ y · w = (u, v))

To show that this is a total function, we need the following, which is a collection
principle for finite sets.

Proposition 131 (Collection) Suppose that

y : A, z : B 	 ψ[y, z] prop

Then

∀x : Set(A) · (∀y ∈ x · ∃z : B ·ψ[y, z]) → ∃w : Set(B) · ∀y ∈ x · ∃z ∈ w ·ψ[y, z]

Proof We use set induction with the hypothesis

φ[x] = (∀y ∈ x · ∃z : B · ψ[y, z]) → ∃w : Set(B) · ∀y ∈ x · ∃z ∈ w · ψ[y, z]
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If x is the empty set, then the result is immediate since the antecedent is vacuously
true. Assume x = u � v. Assume (∀y ∈ x · ∃z : B · ψ[y, z]) and φ[v] and let

w′ : Set(B) ∧ ∀y ∈ x · ∃z ∈ w′ · ψ[y, z]

be the guaranteed set for v. We also know from the premise of φ[v] that for some
z : B, ψ[u, z]. We then have the required set for x as z � w′.�
Proposition 132 ⊗ is a total function.

Proof We have to show it is total and functional. Any two sets that satisfy the pred-
icate as outputs, by extensionality, must be the same set. Hence, it is functional.
For totality, let x : Set(A), u ∈ x , y : Set(B). Then we know u : A. Moreover,
if v ∈ y, then v : B. Hence, by the axioms for Cartesian products, we have:
∀v ∈ y · (u, v) : A ⊗ B. By collection,

∃z : Set(A ⊗ B) · ∀v ∈ y · (u, v) ∈ z

Hence, ∀u ∈ x · ∃z : Set(A ⊗ B) · ∀v ∈ y · (u, v) ∈ z. By collection again,

∃z′ : Set(Set(A ⊗ B)) · ∀u ∈ x · ∃z ∈ z′ · ∀v ∈ y · (u, v) ∈ z

Hence,

∃z′ : Set(Set(A ⊗ B)) · ∀u ∈ x · ∀v ∈ y · ∃z ∈ z′ · (u, v) ∈ z

Finally, we define the required set by separation.

{z ∈ ∪z′ · ∃u ∈ x · ∃v ∈ y · z = (u, v)}�

Thus, we have set constructors corresponding to both of our type constructors.
Note that we are using the same symbol for both sets and types, i.e. Set and ⊗.
We shall now specify and explore some operations on relations that occur in the
so-called Z toolkit and provide infrastructure for specification. The following we
have seen before, but we have yet to say much about its properties.

Example 133 (Domain for Sets)

Dom

u : Set(A ⊗ B), v : Set(A)

∀x ∈ v · ∃y ∈ u · x = y1

∧
∀y ∈ u · y1 ∈ v
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Example 134 (Range for Sets)

Ran

u : Set(A ⊗ B), v : Set(B)

∀x ∈ v · ∃y ∈ u · x = y2

∧
∀y ∈ u · y2 ∈ v

Proposition 135 Dom and Ran are total and functional.

Proof Functionality is clear by extensionality. For totality, we illustrate with the
domain. We show that

∀u : Set(A ⊗ B) · ∃v : Set(A) · ∀x ∈ v · ∃y ∈ u · x = y1 ∧ ∀y ∈ u · y1 ∈ v

We use induction with the following induction proposition.

φ[u] � ∃v : Set(A) · ∀x ∈ v · ∃y ∈ u · x = y1 ∧ ∀y ∈ u · y1 ∈ v

If u is empty, the result is clear. Suppose u = x ′ � y′. Assume the result for y′

where y′′ is the guaranteed element of Set(A). The required element for u is then
x ′1 � y′′.�

We introduce the following new function symbols by direct specification. They
also form part of the Z toolkit, and are all given by direct functional specifications.

We can focus upon part of the domain or part of the range of a set-theoretic
relation by considering a subset. This is captured in the following specification.

Example 136 (Domain and Range Restriction) Let A,B, be types.
We may then specify

� � [u : Set(A ⊗ B), v : Set(A), w : Set(A ⊗ B) | w = {x ∈ u · x1 ∈ v}]
� � [u : Set(A ⊗ B), v : Set(B), w : Set(A ⊗ B) | w = {x ∈ u · x2 ∈ v}]

We then have

Proposition 137 The above specifications are total and functional.

Finally, we introduce the following notion that forms a crucial part of the VDM
toolkit. This we have also seen.

Example 138 (Maps)

Map � [z : Set(A ⊗ B) | ∀x ∈ z · ∀y ∈ z · x1 = y1 → x2 = y2]
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Using preconditions, we may specify an application operator for maps. The fol-
lowing is a specification of map application with the precondition that the argument
to the map is in its domain. The alert reader will recall that we introduced this earlier
as an example of a specification with preconditions. We are now in a position to be
more wholesome. We leave the reader to show that it is functional.

Example 139 (Map Application)

Mapapp

u : Set(A ⊗ B), v : A, w : B

Dom(u)(v); (v,w) ∈ u

This almost completes our chapter on the data type of sets. We shall later revisit
it in order to consider recursive operations on sets. But to finish this initial skirmish,
we need to consider its arithmetic interpretation.

9.6 Arithmetic Interpretation

We indicate how to model the whole of CST in Num. The reader who is prepared to
take the recursive model for granted can skip this section without losing contact with
the main conceptual development of the book. This applies to all of the recursive
models in the book.1

There are several stages.

Stage 1 We add classes to Num as previously indicated.

{x · φ}

We interpret types of CST as classes. Relative to an interpretation of the
basic functions and relations, because it provides an interpretation of types as
classes, and so an interpretation of type quantification, it implicitly provides
an interpretation of the whole TPL.

For CST, we need to be more specific and show how to interpret its types.

1 These sections require some familiarity with formal number theory.
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Stage 2 The pair operation on numbers can be defined as

(x, y) � (x + y)2 + 3x + y

2

The pairing operation () is a bijective primitive recursive function on num-
bers. Consequently, there are Num� representable functions π1, π2 that sup-
port this bijective pairing. The type constructor for Cartesian products is then
represented via classes.

A ⊗ B � {z · ∃x · ∃y · x : A ∧ y : B ∧ z = (x, y)}

Stage 3 We interpret sets as numbers by defining membership and inclusion on
numbers. There are many ways of achieving this, but we follow [3]. We first
state a few results of formal arithmetic from [3].

Lemma 140 For each x, y, there are unique u ≤ y, v ≤ 1, w ≤ 2x such that

y = u × 2x+1 + v × 2x + w

We may then specify set membership.

Example 141 (Set Membership)

∈

x : N , y : N

∃u ≤ y · ∃w < 2x · y = u × 2x+1 + 2x + w

This provides our representation of membership between numbers. Note that
under this, zero represents the empty set. The following provides the existence of
the insertion operation; more generally, the union operation. Again, a proof can be
found in [3].

Proposition 142

∀x · ∀y · ∃!z · ∀u · u ∈ z ↔ u = x ∨ u ∈ y

Hence, in arithmetic we may conservatively add a new functional operator � that,
together with ∈, satisfies our rules for sets. Finally, we use the recursion operator on
numbers to define the type of sets as a recursive predicate on numbers.



102 9 Typed Set Theory

Example 143 (Set)

Set

y : N

y = 0
∨

∃x : N · ∃z : N · Set(z) ∧ y = x � z

All the rules of CST are sound under this interpretation. Hence, we have

Theorem 144 CST has a recursive model.
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Chapter 10
Systems Modeling

We now have enough formal machinery to tackle the specification of a system with
several interrelated parts. The main function of the present case study is to provide
a mathematically simple example of a computable model. The kind of structure
that will emerge from this case study consists of a suite of interconnected specifi-
cations [2, 1]. However, the model will not constitute a very exciting example of a
computable model. It is typical of the kind of system that emerges from software
systems. There is very little of real foundational or mathematical interest. That is
not the main forté of software systems. Indeed, we shall have to wait some time to
see more sophisticated examples, i.e., ones that possess more theoretical interest.

However, although a toy system, it will be sufficient to illustrate a range of issues
about the nature of the specification process and of computable model construction.
For example, it will point to the need for more infrastructure for specifications: how
to build complex ones from simple ones. In addition, we shall demonstrate how
the theory enables us to formally address questions such as the consistency and
completeness of the model.

10.1 The Requirements

We begin with a rather simple description that provides the top-level requirements
of a system and will be employed as a guide to the construction of the formal model.
Although this is a well-worn example, it is sufficient to illustrate some general points
about computable modeling.

1. A library comprises a stock of copies of books and a community of registered
readers.

2. There may be several copies of the same book.
3. At any time a certain number of copies are issued to registered readers; the

remainder are shelved.
4. The system must record which copies are issued to which readers.
5. Copies can be borrowed and returned by registered readers.
6. New copies can be added to the stock, i.e., catalogued.
7. New readers can be registered.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 10,
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Observe that in these requirements we have italicized various items. The repre-
sentation of these will form the backbone of the model. However, among them there
is a distinction to be drawn. There are two different kinds of italicized items: types
and operations. The former are the types of information held about the system’s
state. The following pieces of information are present.

Shelved Issued Copies
Registered Books Reader

Operations act upon the system and may change its state. In the present study we
have the following operations.

Borrow Return Register Catalogue

We may now begin the process of model building. We shall work in the theory CST
extended with some atomic types. Corresponding to the above distinction are two
stages to the process. The first involves constructing a model of the state, and the
second involves modeling the operations.

10.2 The State

First observe that some of the data items are given structure in the requirements
definition and some are not. For example, although in reality books have a title, an
author, a publication date, etc., since nothing in the requirements definition requires
or refers to this information, we abstract away from it and call the type of such items
Book. This can be treated as an atomic type since it has no structure. There may be
several copies with the same title, author etc., (RD2); the type Copy is the type of
actual books. Finally, the type Reader represents the type of all possible readers
of the library system. Such atomic data types are given no further structure in the
requirements definition.1

With these singled out, we can proceed to develop a model of the database, the
underlying state of the system. This must be a model of all possible configurations
of the system: It must capture the general structure of the state not its content at any
given time. A little reflection on the requirements definition suggests that there are
several components of the state. These can be informally described as follows:

1. the type of copies currently Shelved (RD3,5),
2. the type Issued records the information about which copies are issued to which

readers (RD4),
3. the type of readers currently Registered (RD1),
4. the type of the Stock (RD6).

1 All the atomic types could be modeled as numbers, but for pedagogical reasons , we take them
as new atomic types.
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At any point, the current state of the system must record which copies are cur-
rently shelved, i.e., the current set of copies. This will vary as the database is up-
dated. Consequently, this component of the state is modeled as follows:

Shelved � Set(Copy)

Next consider the registered readers. At any point, some readers will be registered
and some will not. Since we need to model the general structure of the state, and not
its content at a particular time, this component takes a similar shape to the first.

Reg � Set(Reader )

The stock component must link copies and authors, so it consists of set-theoretic
relations.

Stock � Set(Copy ⊗ Book )

This brings us to the final component, namely that linking readers and the copies on
loan.

Issued � Set(Copy ⊗ Reader )

We now have all four type components in place. We now need to reflect on any
global constraints that need to be imposed upon the database of the system. To
achieve this, we can distinguish between two different components of the whole
database: that containing the information about the actual stock and that containing
the information about the readers and the copies they have on loan. We deal with
the stock information first. We ought to insist that no copy can be both issued and
shelved (implicit in RD3). Moreover, a copy should only be issued to registered
readers (RD3, RD1) and every copy should either be issued or on the shelves (RD3).
This leads to the following specification of this part of the state, where we use names
for the variables.

Definition 145 (Library Items)

Libraryi tems

shelved : Shelved
issued : Issued
stock : Stock

Map(stock )
Map(issued )
Dom(issued ) ∩ shelved = �
Dom(issued) ∪ shelved = Dom(stock )
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The stock component must link each copy to its author, title, etc., and no copy is
to be associated with more than one book. Hence, the stock has to be a map. Simi-
larly, no copy should be issued to more than one reader and so the issued component
has to be a map.

For the component of the state that records which readers have which copies
on loan, we should note that items should not be loaned to readers who are not
registered. This leads to the following specification.

Definition 146 (Library Reader)

Libraryreader

reg : Reg
issued : Issued

Map(issued )
Ran(issued ) ⊆ reg

The full state might be introduced as the conjunction of these two.

Definition 147 (State)

Library � Libraryitems ∪ Libraryreader

which yields, after some logical simplification, the following schema.

Library

shelved : Shelved
issued : Issued
stock : Stock
reg : Reg

Map(stock )
Map(issued )
Dom(issued ) ∩ shelved = �
Dom(issued ) ∪ shelved = Dom(stock )
Map(issued )
Ran(issued ) ⊆ reg
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10.3 Operations

First consider the operation of Registering a new reader. This simply adds a new
reader to the state. This operation only changes the Reg component; no other com-
ponent is affected, and so we only need to refer to it.

Definition 148 (Register)

Register

reg? : Reg
reg! : Reg
r? : Reader

reg! = r? � reg?

The operations of returning and borrowing copies can be represented as follows.
Here both the shelved and issued components come into play.

Borrow

shelved ! : Shelved
shelved? : Shelved
issued? : Issued
issued ! : Issued
r? : Reader
c? : Copy

Map(issued?)
Map(issued !)
shelved ! = c? � shelved?
issued ! = (c?, r?) � issued?

Finally, the operation Catalogue affects the shelved and stock components.
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Definition 149 (Catalogue)

Catalogue

shelved ! : Shelved
shelved? : Shelved
stock? : Stock
stock ! : Stock
b? : Book
c? : Copy

shelved ! = c? � shelved?
stock ! = (c?, b?) � stock?

A great deal is unsatisfactory about this specification. Nevertheless, its simplicity
is a virtue in that we can employ it to illustrate a range of important general issues
about system specification.

10.4 A Mathematical Model

Insofar as it is built inside an axiomatic system, this a mathematical model. Indeed,
there are several properties of the present model that need to be established. Of
course, the proofs are simple, but that is beside the point. Without the mathematical
setting, we could not even sensibly articulate these properties.

One constraint on the model demands that the state is not vacuous. To put matters
more precisely, are there x ∈ Shelved, y ∈ Reg, w ∈ I ssued, z ∈ Stock such that
all the constraints are satisfied? In this case the answer is clear since we can choose
all to be the empty set of the appropriate type. However, in general, things might
not be so self-evident. Such a consistency check must form a part of any system
specification.

We must also check that the operations preserve the constraints imposed upon
the global state. Consider the borrow operation. At the moment there is no guarantee
that it does; there is no demand that the reader should be registered. We can remedy
this as follows. Now notice that we have included the registration component of the
state.
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Definition 150 (Borrow)

Borrow

shelved ! : Shelved
shelved? : Shelved
issued? : Issued
issued ! : Issued
reg? : Reg
reg! : Reg
r? : Reader
c? : Copy

r? ∈ Reg?;
shelved ! = c? � shelved?
issued ! = (c?, r?) � issued?
reg! = reg?

This is a very clumsy operation and cries out for some more infrastructure, which
we shall return to later.

We might also wish to check whether our operations are total and functional.
Suppose that having specified an operation, we want to check that all possible con-
figurations of the state are covered, i.e., that the operation is total. First consider
again the following reformulation of the original register operation.

Example 151 (Register)

Register

reg? : Reg
reg! : Reg
r? : Reader

reg! = r? � reg?

This is total. But there are two possible scenarios that are blurred in it. In one the
incoming reader is already registered, and in the other she is not. Even though no
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harm is done by the crude form, i.e. the state constraints are preserved, it is still un-
acceptable since we would not wish to perform an update when the reader is already
registered. We can get over this by specifying the two situations separately. The first
specification below covers the case where the reader is not already registered and
the second where she is. In the first we update the registered component, while in
the second we leave it as it is.

Definition 152 (Register+)

Register+

reg? : Reg
reg! : Reg
r? : Reader

r? /∈ reg?
reg! = r? � reg?

Definition 153 (Register−)

Register−

reg? : Reg
reg! : Reg
r? : Reader

r? ∈ reg?
reg! = reg?

However, neither of these operations is total, whereas the original was. We could
define a more sophisticated version of the original that covered both cases, but,
having got this far, it would be convenient to combine them in some way. For this
we may use schema union (they have the same type), which provides the union of
the two pieces of information.

Fullregister � Register+ ∪ Register−
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This results in the schema.

Fullregister

reg? : Reg
reg! : Reg
r? : Reader

r? /∈ reg? ∧ reg! = r? � reg?
∨

r? ∈ reg? ∧ reg! = reg?

We shall examine an algebra of schemata later. For the present, we note that this is
a step in the direction of modularity: New specifications can be built from old ones.

Although a very trivial model both mathematically, and in terms of its size as
a software specification, and while technically every specification is a computable
model, this is the first example that consists of a suite of interrelated specifications.
There are many other design and mathematical issues thrown up by this example,
but we shall deal with them later.
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Chapter 11
A Type of Types

Current specification languages support some form of generic/polymorphic
specification. For example, VDM supports a form of generic function specification
for explicitly defined functions. In particular, it allows type variables to occur in
function definitions. And Z has its notion of generic schema. In this chapter we
consider how our theories might be enriched with some such notions.

In our present treatment of types, we must rely on the metanotation of type terms
to indicate genericity in type definitions. For example, where

x1 : T1, ..., xn : Tn 	 T type

then the following is a specification of subset.

⊆T

x1 : T1, ..., xn : Tn

x : Set(T ), y : Set(T )

∀z ∈ x · z ∈ y

This provides a form of generic specification where the above specifies a whole fam-
ily of subset relations that is parameterized by T . However, T is not an objectlevel
type variable, so officially we need to spell out the fact that

x1 : T1, ..., xn : Tn 	 T type

and include x1 : T1, ..., xn : Tn as part of the declaration context of the schema.
This is necessary because there are no objectlevel variables that range over types.
And this is so because there is no type of types. Consequently, we cannot bind
or quantify over them. This is a substantial limitation on the expressive power of
our theories. In this chapter we remedy this. Our aim is a treatment that is more
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mathematically honest and uniform, a treatment where type declarations are on a par
with others and one that brings us to the the brink of a uniform form of polymorphic
specification [5].

11.1 The Type type

We add a type of types to our theories. This enables types to become first class
objects in the sense that we can quantify over them and reason about their properties
in the object language.

Definition 154 Let T be any TDT. A universe of types for T is a type (called type)
governed by the following rules.

U1 type t ype U2
T type

T : type
U3

T : type
T type

U4
A : type B : type

A �=type B prop
U5

A : type B : type
¬(A =type B) ↔ A �=type B

According to the first three rules, the elements of type are exactly the types of
the hosting theory T plus type itself. The last two rules govern equality for types
and insist that it is decidable; i.e., via U4 and U5, we have added type inequality
( �=type), where type inequality is taken to generate a � proposition. This is justified
as follows. As objects, types are intensional; i.e., they are not to be identified in
terms of their sets of elements. More precisely, equality for types is a primitive
notion that is not taken to be identical with extensional membership; i.e., being the
same type is not identified with having the same elements. So we are free to take the
equality of the type to be decidable.

A second aspect of the type type, one that is made possible by the intensional
nature of types, concerns its reflexive nature; i.e., type is a member of itself. Such
inclusions usually result in inconsistency and lead to a layering of types; i.e., a first
layer of types and then a second layer where the universe of the first layer lives,
and so on. But we are not forced to layer our types in the sense of a predicative
theory; we may treat types in an impredicative way. This often leads to inconsistency
[1, 6, 7, 2]. However, since types are intensional objects, the impredicativity is that
inherent in standard computability theory.1 Indeed, there is a recursive model of the
theory where the types are modeled as the codes of recursively enumerable sets and
type is their recursive enumeration (cf. [3]). We shall return to this later.

An alternative approach to a type of types is to allow the rules of type formation to
generate an inductive type. For example, we might adopt the inductive type whose
elements are the types of Th(N,DP,Set). This type would be determined by the
following rules.

1 In the arithmetic interpretation they will be modeled as codes of recursively enumerable sets and
the universe will be the code of their enumeration.
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N : type

x : type, y : type 	 x ⊗ y : type

x : type 	 Set(x) : type

φ[N] ∀x : type · ∀y : type · φ[x] ∧ φ[y] → φ[x ⊗ y] ∀y : type · φ[Set(x)]

∀x : type · φ[x]

However, if the type type is taken not to be in this inductive listing of types, a
layering of the types would result, i.e., a second layer where the type of the first layer
lives etc. We shall not explore this option further. We merely indicate its possibility
for further possible exploration. Indeed, we shall return to the topic of induction and
recursion later in the book.

11.2 Dependent Types

In any theory with the type type, type terms may contain variables. For example,
the following is now a valid sequent.

u : type, v : type, x : u, y : v 	 (x, y) : u ⊗ v

Indeed, we devised TPL to allow room for this possibility. Because of this de-
pendency, we have already seen that we may introduce a standard generalization
of Cartesian products (i.e., dependent Cartesian products, DP), that exploits it.
This type constructor is determined by the following rules that generalize those for
simple products. In them, x /∈ FV (T ). Simple products are a special case where
x /∈ FV (S).

D0
x : T 	 S type

�x : T · S type

D1
x : T 	 S type a : T b : S[a/x]

(a, b) : �x : T · S

D2
p : �x : T · S

π1(p) : T
D3

p : �x : T · S

π2(p) : S[π1(p)]

D4
p : �x : T · S

p = (π1(p), π2(p))]

The notion of one type being dependent on another may be illustrated by the
following example derivation.
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Example 155 (Type Dependency) The following is valid.

u : type, v : type 	 u ⊗ v : type

Given this, by D0, we have

u : type 	 �v : type · u ⊗ v : type

And finally, again by D0, we have

�u : type · �v : type · u ⊗ v : type

The following provides an example of how a context can contain dependencies
that enable later type assignments to depend for their legitimacy on earlier ones.

Example 156 (Dependency in Contexts)

u : type, x : u, y : u 	 x =u y prop

The type type supports such dependency and so we shall include them as part of
any theory that contains the type type.

The type-checking proposition continues to hold. As does the coherence theorem.
But now we have the following modification.

Theorem 157 c 	 �x : T · S type iff c, x : T 	 S type.

This completes the statement of the theory; for any theory

Th(O1, ..., Ok)

the universe extension will take the shape

Th(O1, ..., Ok, type, DP)

We shall now demonstrate the utility of such extensions.

11.3 Dependent Specifications

While specifications in such theories still take the following general form:

R � [x1 : A1, ..., xn : An | φ] , Spec

they may also display a form of dependency in the declaration. The following ex-
ample illustrates this; the second and third declarations depend for their legitimacy
on the first.
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Example 158 (Dependent Relations)

⊆

u : type, x : Set(u), y : Set(u)

∀z ∈ x · z ∈ y

Because of this, we can no longer use simple products to reduce general specifi-
cations to unary ones. To rewrite them as unary schemata, we must employ depen-
dent products. More explicitly, a specification of the form Spec is now rewritten as
a unary schema, as follows.

R �
[

x : �x1 : A1 · ... · �xn−1 : An−1 · An | φ[x1, ..., xn]
]

For example, subset would now take the following shape.

Example 159 (Subset)

⊆

x : �u : type · Set(u) ⊗ Set(u)

∀z ∈ x2 · z ∈ x3

Hence, for theoretical purposes, specifications can still be taken to have the pre-
vious simple form; i.e.,

R � [x : T | φ] Spec

11.4 Polymorphic Specifications

We motivated the inclusion of a universe of types by reference to the need to be
wholesome and honest about the treatment of generic specifications; i.e., the si-
multaneous specifications of whole families of relations. We may now more for-
mally indicate how this is to be achieved. We illustrate with the simplest case. By
definition,

R � [u : type, x : T [u] | φ[u, x]]

introduces a relation that satisfies the following.
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A : type a : T [A]

R(A, a) ↔ φ[A, a]

This provides a form of explicit polymorphism for specifications. We illustrate mat-
ters with a sequence of examples where, to begin with, we employ some theory-
neutral ones.

We may specify the polymorphic equality relation via the following schema.

Example 160 (Polymorphic Equality)

I denti t y

u : type, x : u, y : u

x =u y

The following provides a polymorphic version of relational composition.

Example 161 (Composition) Let R, S be any given relations such that

u : type, v : type, x : u, y : v 	 R(u, v, x, y) prop

v : type, w : type, y : v, z : w 	 S(v,w, y, z) prop

Then we may specify their composition via the following schema.

Comp

u : type, w : type, x : u, z : w

∃v : type · ∃y : v · R(u, v, x, y) ∧ S(v,w, y, z)

We can make matters a little more palatable by introducing type variables
X, Y, U, V, W to range over elements of type. This is achieved by the following
conventions.

∃X · φ[X ] � ∃u : type · φ[u/X ]

[x : T [X ] | φ[X ]] � [u : type, x : T [u] | φ[u/X ]]

We shall often, though not always, employ this form. For example, using it, compo-
sition takes the following, more succinct form.
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Example 162 (Composition) Let R, S be any given relations such that

u : type, v : type, x : u, y : v 	 R(u, v, x, y) prop

v : type, w : type, y : v, z : w 	 S(v,w, y, z) prop

Then we may specify their composition via the following schema.

CompX,Z

x : X, z : Z

∃Y · ∃y : Y · R(X, Y, x, y) ∧ S(Y, Z , y, z)

Our next example yields polymorphic versions of the domain and range of a
given relation. Let R be any binary relation such that

u : type, v : type, x : u, y : v 	 R(u, v, x, y) prop

Then we may specify the domain and range of R as follows.

Example 163 (Polymorphic Domain)

Dom RU

x : U

∃V · ∃y : V · R(U, V, x, y)

Example 164 (Polymorphic Range)

Ran RV

y : V

∃U · ∃x : U · R(U, V, x, y)

These are now more wholesome versions of our original generic style of spec-
ification. Types are now part of the theory and the looseness of the metatheoretic
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style has been justified. For example, unpacked so that the full type information is
displayed, the first takes the following shape.

Dom R

u : type
x : u

∃v : type · ∃y : v · R(u, v, x, y)

This completes our general examples, i.e., those that are not theory-dependent. We
now turn to some that require some host theory.

11.5 Polymorphic Set Theory

We motivated the inclusion of polymorphism by reference to the need to make our
typed set theory more wholesome in its genericity. We can now make good on
this promise. We have seen a good number of set-theoretic specifications that are
informally generic. Here we revisit some of them with our type of types to hand.
Polymorphic CST is given as the following theory.

PCST�Th(N, DP, Set, type)

Here we may define explicit versions of all the set-theoretic operators. We begin
with the one with which we began this chapter.

Example 165 (Polymorphic Subset)

⊆

u : type, x : Set(u), y : Set(u)

∀z ∈ x · z ∈ y

Using our conventions, this can be written more succinctly as follows.
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Example 166 (Polymorphic Subset)

⊆U

x : Set(U ), y : Set(U )

∀z ∈ x · z ∈ y

In this form, it is not a million miles away from the original, except that U is now
an object-level variable ranging over type.

The following example also has some theoretical significance. It introduces a
notion of extensional equivalence for sets.

Example 167 (Extensional Equivalence)

≡U � [x : Set(U ), y : Set(U ) | x ⊆U y ∧ y ⊆U x]

Our next few examples illustrate the specification of new polymorphic set con-
structors.

Example 168 (Polymorphic Pairing)

PairU � [x? : U, y? : U, z! : Set(U ) | z = x �U y �U ∅U ]

Similarly, we may introduce a polymorphic version of generalized union. This is
identical to the original, but it is more mathematically complete.

Example 169 (Generalized Union)

∪U

x : Set(Set(U )), y : Set(U )

∀z ∈ y · ∃w ∈ x · z ∈ w

∧
∀w ∈ x · ∀z ∈ w · z ∈ y

Like its original, this generic version is also functional. But it is functional in
both of its arguments. More exactly, we have

∀u : type · ∀x : Set(Set(u)) · ∃!y : Set(u) · ∪u(x, y)

Similarly, we can specify a polymorphic version of power set.
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Example 170 (PowerSet)

PowU

v : Set(U ), w : Set(Set(U ))

∅ ∈ w ∧ (∀z ∈ v · ∀u ∈ w · z � u ∈ w)
∧
∀z ∈ w · z ⊆ v

This generic version is also functional in both of its arguments. More exactly, we
have the following.

∀u : type · TF(Powu, Set(u), Set(Set(u)))

Finally, we specify a polymorphic version of separation. This is slightly different
in that it still employs a metavariable over propositions.

Example 171 (Polymorphic Separation) Suppose that

c, u : type, x : u 	 ψ prop

We then specify

Sepψ

c, u :t ype,x : Set(u), y : Set(u)

∀z ∈ y · z ∈ x ∧ ψ[z]
∧
∀z ∈ x · ψ[z] → z ∈ y

All these are syntactically close to the originals. But they are now to be inter-
preted as object-level specifications where each is a single specification, not a whole
family that is located in the metalanguage.

11.6 Specifications and Types

The conservative extension result for relations generalizes directly to the present
framework. But we have to do a little work in the case of functional application. Let
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T = Th(O1, ..., Ok, type, DP)

Theorem 172 (Conservative Extension) Suppose that �, � do not contain app.
Then

� 	Tapp � implies � 	T �

As before, this is a corollary to the following compilation lemma that demon-
strates how to remove all instances of functional application.

Lemma 173 (Compilation) There is a translation * from Tapp to T such that:

1. if � 	Tapp �, then �∗ 	T �∗,
2. if � 	Tapp �, then, where � does not contain R, � 	T �∗ ↔ �,
3. if φ prop is � in Tapp, then φ∗ is � in T,

where �∗ is the translated context and �∗ is the translated judgment.

Proof We proceed as in the original proof. Suppose that F has been introduced as a
new function symbol via the following rules.

i : I

F(i) : O

i : I

R(i, F(i))

We define * on the rules of formation to remove just one instance of F . But there
is a new complication that arises from the fact that type terms can contain function
symbols. Suppose that

i : type
F(i) : type

The are two different cases: one where the type term starts with a variable binder
(e.g., �) and one where it does not. While the latter is a special case of the former,
for pedagogical reasons we treat both cases. For the latter, we translate as follows.
We illustrate matters with the binary case.

∀z : O(A, B[F(i)/v]) · φ[z]
=⇒

∃v : type · F(i, v) ∧ ∀z : O(A, B[v]) · φ[z]

∃z : O(A, B[F(i)/v]) · φ[z]
=⇒

∃v : type · F(i, v) ∧ ∃z : O(A, B[v]) · φ[z]

Where a variable binder is involved, we have to allow that the argument to the func-
tion may contain the corresponding bound variable.
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∀z : �x : A · B[x, F(i[x])] · φ[z] ⇒
∀x : A · ∃v : type · F(i[x], v) ∧ ∀y : B[x, v] · φ[(x, y)]

∃z : �x : A · B[x, F(i[x])] · φ[z] ⇒
∃x : A · ∃v : type · F(i[x], v) ∧ ∃y : B[x, v] · φ[(x, y)]

In both cases the rules are routine to verify.�

11.7 Arithmetic Interpretation

Finally, we show how any such theory is to be interpreted in Nat. We shall assume
some knowledge of formal number theory and, in particular, Gödel numbering. But
we shall supply references to the literature. The reader who is prepared to take
the recursive model for granted can skip this section without losing contact with
the main conceptual and technical development of the book. Once more, we split
matters into several steps.

Stage 1: Types as arithmetic classes

The types of the base theory are represented as � classes, i.e., the theory without
the type type. For example, we know how to do this for the base theory that includes
numbers and is closed under products and sets.

Stage 2: Gödel numbering

Given a representation of the types of any base theory as � classes, we take
matters one stage further and Gödel code the propositions (wff) and the � classes.
In what follows �φ[x1, ..., xn]� will denote the code of the propositions φ[x1, ..., xn]
and �{x · φ[x, x1, ..., xn]}� will denote the code of the class {x · φ[x, x1, ..., xn]}.
There are endless ways of achieving this, but we only require one with the standard
properties of providing an isomorphism between the codes and the classes.

Stage 3: Class membership

We represent class membership in such codes as a � relation of Nat [4, 8]. Our
major tool is the following.

Theorem 174 (Nat�) Let n > 0 be given. There is a �-definable relation
Satn(x, x1, ..., xn) such that for each � wff φ of Nat with exactly the free variables
x1, ..., xn (n > 0).

Satn(�φ� , x1, .., xn) ↔ φ[x1, .., xn]

where �φ� is the code of φ.
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We then define membership on the codes of � classes as follows.

x ∈ y � Satn+1(�φ� , x, x1, ..., xn)

where y = �{x · φ[x, x1, ..., xn]}�.

Stage 4: The type type

To complete the interpretation of the theory, we have to interpret the type type:
The type type is interpreted as the code of the recursively enumerable class of all
the codes of recursively enumerable classes with membership in type interpreted as
∈. Hence,

Theorem 175 If Th(O1, ..., Ok) is a conservative extension of Nat, then so is
Th(O1, ..., Ok, t ype, DP).

This gives us justification to include a type type in any such theory. And most of
the time we shall do so. Here not only have we provided a relative consistency proof
for any such theory, but we have also shown that any such theory has a recursive
model.
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Chapter 12
Schemata

We have now introduced theories of data types generated by type constructors such
as numbers, Cartesian products, and finite sets. In addition, we considered the poly-
morphic impact of a universal type. In the process we introduced our notion of
specification and explored its use as a means of constructing simple computable
models. However, all the theories introduced so far are limited in that they do not
support any form of higher-order specification, i.e., contexts where specifications
themselves may be declared in specifications and their properties and relations ar-
ticulated in the predicate part of a specification. To put matters differently, presently,
schemata [3], [6] are not objects of the theory; they do not have types. But this seems
necessary for our framework to provide a general foundation for specification, and
certainly for the construction of more theoretically oriented computable models.
In particular, any set-theoretic modeling that employs higher-order functions will
require more sophisticated notions than those explicitly available in CST.

In this chapter we consider the addition of a type constructor whose members
are the schemata themselves. In terms of its type structure, this will move us closer
to the expressive power of Russell’s simple type theory [2], where our schemata
replace the properties of the latter. But it will differ from this theory in that our
schemata are restricted to � ones, whereas the properties of simple type theory are
not. Indeed, generally our theories are closer to the intensional theories of Feferman
[1] and [4], [5]. Moreover, our theory still has a recursive model.

12.1 A Theory of Relations

Our proposed theory of schemata is a theory of relations; i.e., the notation

R � [x1 : T1, ..., xn : Tn | φ] (Schema)

introduces a new relation symbol into the language. But now, rather than taking it
as a definition, we axiomatically characterize such relations and their types by the
following rules. In what follows, φ is �.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 12,
C© Springer-Verlag London Limited 2009
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Sc0
T type

S(T ) t ype

Sc1
x : T 	 φ prop

[x : T | φ] : S(T )

Sc2
s : S(T ) t : T

s(t) prop

Sc3
x : T 	 φ prop t : T φ[t/x]

[x : T | φ] (t)

Sc4
x : T 	 φ prop t : T [x : T | φ] (t)

φ[t/x]

Sc5
x : T 	 φ prop

[x : T | φ] =S(T ) [y : T | φ[y/x]]

Here S is the new type constructor; i.e., S(T ) is the type of schema of type T .
To distinguish them from the schema specifications themselves, we shall call these
objects schema relations (or just schemata). Sc0 is the formation rule: S(T ) is a type
if T is. Sc1 informs us that (where φ is �) a schema relation [x : T | φ] has type
S(T ). The variable x in the declaration is bound and, by S5, we may rename bound
variables. Sc2 enables the use of schemata to form � propositions via application;
i.e., the application of schema relations to their arguments yields � propositions. Sc3

and Sc4 together inform us that, under application, schemata behave as expected,
i.e., as given by the original axiomatic conditions for the introduction of schema
specifications.

In addition, as with types, we take schemata to be intensional notions that have
decidable equality, where, as usual, �= names the inequality relation.

Sc6
s : S(T ) s

′
: S(T )

s �=S(T ) s ′ prop
Sc7

s : S(T ) s
′

: S(T )

¬(s =S(T ) s ′ ) ↔ s �=S(T ) s ′

So, along with types, relations may function as data items.
Next observe that, in any theory containing the type constructor S, the schema

[x : T | φ]

is now an object of that theory; i.e., it has a type.

[x : T | φ] : S(T )

It is in this sense that schemata obtain their status as objects of the theory. Conse-
quently,
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R � [x : T | φ[x]]

may be taken as a standard definition; i.e., it can be understood as naming the
schema [x : T | φ[x]] as R. The rules R1−R3 are now consequences of the axioms
for S3 and S4. In contrast, in pure TPL the schema specification

R � [x : T | φ[x]]

is a piece of metanotation that heralds the introduction of a new relation symbol that
satisfies R1−R3.

Although the actual theory only posits unary schemata, within this theory, using
products, we can easily represent the more complex ones; i.e., as before, we rewrite
the schema

[x1 : A1, ..., xn : An | φ]

as

[

x : �x1 : A1 · ... · �xn−1 : An−1 · An | φ[x1, ..., xn]
]

The following example is the empty schema of type T .

Example 176 (Empty Schema)

E �
[

x : T | �
]

This can now be taken as a definition of a new object of the theory named Empty.
The new object is a scheme relation whose type is given as follows.

E : S(T )

Given the presence of the type type, the following specification introduces a
universal schemata for each type, i.e., it holds for each element of the given type.

Example 177 (Universal Schemata)

Univ � [u : type, x : u | x =u x]

Finally, notice that the following schema specification involves quantification
over a collection that includes the schema s itself.

s � [x : N | ∃z : S(N ) · ψ[x, z]]



130 12 Schemata

On the face of it, this is an impredicative specification, but such impredicativity is
only significant when it is combined with extensionality; i.e., an object introduced
by quantification over an extensional collection that includes the object under def-
inition. And this we do not have; our relations and types are not extensional. Once
more, the impredicativity here is similar to that found in the recursively enumerable
sets and their codes; i.e., there is a recursive enumeration of the codes of such sets.

12.2 A Minimal Theory

Our minimal theory of schemata is obtained from the theory

Th(N, CP, type)

by the addition of schemata as objects; i.e., we start with the theory that is generated
from the natural numbers and the type of types by dependent products, and add
schema formation.

SC = Th(N, DP, type, S)

All the properties of Th(N, CP, type) remain intact. In particular, the coherence
theorem still holds and there are obvious extensions to the type-checking result. We
leave the reader to extend the induction to the new cases. Of particular importance
is part 2. This informs us that every schema can be split into a declaration part and
a predicate part.

Proposition 178 (Type Checking)

1. � 	 s(t) prop iff � 	 t : T and � 	 s : S(T ), for some T,

2. � 	 f : S(T ) iff there exists f + and f − such that � 	 f + t ype and �, x :
f + 	 f −(x) prop and f = [x : f + | f −(x)]

3. � 	 S(T ) t ype iff � 	 T type

Proof By induction on the derivations. Consider part 1. Apart from an application
of the structural rules, the only way a conclusion of the form f : S(T ) is possible
is via an application of Sc1. The result is then immediate. For the structural rules,
consider the following instance.

�, � 	 f : S(T ) � 	 T type

�, x : T, � 	 f : S(T )

By the induction hypothesis,

�, � 	 f + t ype �, �, x : f + 	 f −(x) prop

Now use the structural rule itself to obtain
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�, � 	 f + t ype � 	 T type

�, x : T, � 	 f + t ype

�, �, x : f + 	 f −(x) prop � 	 T type

�, x : T, �, x : f + 	 f −(x) prop

as required. Moreover, all the other structural rules follow suit. �
The use of schemata enables a more compact and wholesome expression of the

theoretical properties of schemata. We begin with a very standard idea, the obvious
notion of subschemata.

Definition 179 (Subschema) Let f : S(T ) and g : S(T ). Then we define

f ⊆ g � ∀x : T · f (x) → g(x)

This leads to the following notion of equivalence.

Definition 180 (Schema Equivalence) Let f : S(T ) and g : S(T ). Then we define

f ≡ g � f ⊆ g ∧ g ⊆ f

This is an equivalence relation. But it is not identical with equality: Our relations
are intensional and we do have the following rule of extensionality.

f : S(T ) g : S(T ) f ≡ g

f =S(T ) g

It is in this precise sense that schemata are not extensional objects.
Next observe that our definitions of totality and functionality can be recast in a

more abstract way as properties of actual objects in the theory.

Definition 181 Suppose that

R : S(I ⊗ O)

We shall say that R is total if

∀x : I · ∃y : O · R(x, y)

and functional if

∀x : I · ∀y : O · ∀z : O · R(x, y) ∧ R(x, z) → y = z

Finally, we say that R is a function if it is both total and functional.

The next definition introduces the standard notions of reflexive, symmetric, and
transitive relations.

Definition 182 Suppose that

R : S(T ⊗ T )
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We shall say that R is reflexive if

∀x : T · R(x, x)

and symmetric if

∀x : T · ∀y : T · R(x, y) → R(y, x)

We say that R is transitive if

∀x : T · ∀y : T · ∀z : T · R(x, y) ∧ R(y, z) → R(x, z)

If it is all three, we call R an equivalence relation.

These observations are only possible given the fact that schemata are now objects
of the theory, i.e., have a type and are subject to quantification.

12.3 Operations on Schemata

We now illustrate the process of specification in SC by introducing a range of ex-
amples, most of which we have seen as specifications, but now all are carried out in
the object theory.

Our first two examples yield schema union and intersection. These form some of
the basic set-like operations on schemata.

Example 183 (Schema Union)

∪U

f ? : S(U ), g? : S(U ), h! : S(U )

h = [x : U | f x ∨ gx]

Within SC, this specification, viewed as schema object, now has the following
type.

∪U : S(�u : type · S(u) ⊗ S(u) ⊗ S(u))
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Moreover, it satisfies the following rules.

U : type a : S(U ) b : S(U )

a ∪ b : S(T )

U : type a : S(U ) b : S(U )

∀x : S(U ) · (a ∪ b)(x) ↔ a(x) ∨ b(a)

We will not always be so explicit. The following is a special case of simple union
and one that will shortly prove useful.

Example 184 (Element Addition)

�U

x : U, y : S(U ), z : S(U )

z = {x} ∪ y

Our next example is the dual of union; i.e., schema intersection.

Example 185 (Schema Intersection)

∩U

f ? : S(U ), g? : S(U ), h! : S(U )

h = [x : T | f x ∧ gx]

This specification, viewed as schema object, has the following type.

∩U : S(�u : type · S(u) ⊗ S(u) ⊗ S(u))

We can now mimic some of the material from our original case study. For exam-
ple, we may specify our two original register operations as schemata.
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Definition 186 (Register)

Register+

reg? : S(Copy)
reg! : S(Copy)
r? : Reader

r? /∈ reg?
reg! = r? ∗ reg?

Register−

reg? : S(Copy)
reg! : S(Copy)
r? : Reader

r? ∈ reg?
reg! = reg?

We may then use schema union to join them and so generate a total operation.

Register∗ � Register+ ∪ Register−

Our next operator is also part of the basic operations of set theory. It is the stan-
dard generalization of simple union.

Example 187 (Generalized Union)

∪U

f ? : S(S(U )), g! : S(U )

g = [x : T | ∃z : S(U ) · f (z) ∧ z(x)]

This has the following type

∪U : S(�u : type · S(S(u)) ⊗ S(u))

and satisfies the following rules.

U : type s : S(S(U ))

∪s : S(U )

U : type s : S(S(U )) (∪s)(a)

∃x : S(U ) · s(x) ∧ x(a)

U : type s : S(S(U )) ∃x : S(U ) · s(x) ∧ x(a)

(∪s)(a)

These operations point toward some form of calculus or algebra of schema that
enables the specification of more complex ones from simple ones. Thus far the
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operations mimic the set-theoretic operations. But we can go further. Indeed, Z
contains many operations that operate on (its notion of) schema. While our no-
tion is semantically quite different, it is syntactically quite similar. And so we can
develop versions of these operations. Specifically, we explore how many of the op-
erations of the Z schema calculus may be articulated in the present theory of schema
relations.

In our initial chapter on specification, we defined the domain and range of given
relations. We can now provide these in the object theory as abstract operations on
schemata.

Example 188 (Domain)

Dom

u : type, v : type
f ? : S(u ⊗ v)
g! : S(u)

g = [x : u | ∃y : v · f (x, y)]

It is easy to see that Dom and Ran have the following types:

S(�u : type · �v : type · S(u ⊗ v) ⊗ S(u))
S(�u : type · �v : type · S(u ⊗ v) ⊗ S(v))

where Ran is specified as follows.

Example 189 (Range)

Ran

u : type, v : type
f ? : S(u ⊗ v)
g! : S(v)

g = [y : v | ∃x : u · f (x, y)]

A generalized version of these, where existential quantification can occur any-
where in a complex product, is given as follows.
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Example 190 (Hiding)

Hidei

f ? : S(U1 ⊗ ...⊗Un)
g! : S(U1 ⊗ ...⊗Ui−1 ⊗Ui+1 ⊗ ...⊗Un)

g = [x : U1 ⊗ ...⊗Ui−1 ⊗Ui+1 ⊗ ...⊗Un | ∃xi : Ui · f (x1, ..., xn)]

Its type is given as follows.

Hidei : S(�(u : typen · S(u1 ⊗ ...⊗ un) ⊗ S(u1 ⊗ ...⊗ ui−1 ⊗ ui+1 ⊗ ...⊗ un)))

The next specification introduces the abstract polymorphic version of relational
composition, and the following one introduces relational inverse.

Example 191 (Polymorphic Composition)

◦

u : type, v : type, w : type
f ? : S(u ⊗ v), g? : S(v ⊗ w), h! : S(u ⊗ w)

h = [x : u ⊗ w | ∃y : v · f (x1, y) ∧ g(y, x2)]

This results in the addition of a relation that has the following type.

S(�u : type ⊗ type ⊗ type · S(u1 ⊗ u2) ⊗ S(u2 ⊗ u3) ⊗ S(u1 ⊗ u3))

Example 192 (Relational Inverse)

I nverse

u : type, v : type
z : S(u ⊗ v), w : S(v ⊗ u)

w = [x : v,w : u | z(w, x)]
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We can restrict the domain and range of schema relations. These operations, and
many of the above and below, form part of the Z-toolkit.

Example 193 (Domain Restriction)

�

u : type, v : type
y : S(u), z : S(u ⊗ v), w : S(u ⊗ v)

w = [x : u, w : v | z(x, w) ∧ y(x)]

Example 194 (Range Restriction)

�

u : type, v : type
y : S(v), z : S(u ⊗ v), w : S(u ⊗ v)

w = [x : u, w : v | z(x, w) ∧ y(w)]

Respectively, these have the following types.

S(�u : type · �v : type · S(u) ⊗ S(u ⊗ v) ⊗ S(u ⊗ v))

S(�u : type · �v : type · S(v) ⊗ S(u ⊗ v) ⊗ S(u ⊗ v))

The next provides the specification of schema product—with the following type.

S(�u : type · �v : type · S(u) ⊗ S(v) ⊗ S(u ⊗ v))

Example 195 (Schema Product)

⊗

u : type, v : type
f ? : S(u), g? : S(v), h! : S(u ⊗ v)

h = [x : u ⊗ v | f (x1) ∧ g(x2)]
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Next, consider the following version of product. This parallels the natural
product of relational database theory where equality is enforced on the common
domain.

Example 196 (Natural Product)

⊗

u : type, v : type,w : type
f ? : S(u ⊗ v), g? : S(v ⊗ w), h! : S(u ⊗ v ⊗ w)

h = [x : u ⊗ v ⊗ w | f (x1, x2) ∧ g(x2, x3)]

These examples illustrate how schemata are used as data items that themselves
have types. They also establish the expressive power of the notion of schemata in
being able to express much of the schema calculus of Z in a mathematically whole-
some way.

And almost finally, a rather pleasant application of polymorphic schemata
yields a representation or specification of the combinators of combinatorial logic
in their polymorphic guise. The following are the two basic combinators of that
system.

Example 197 (The Combinator K)

K

u : type, v : type
x : u, f : S(v ⊗ u)

f = [y : v,w : u | w = x]

This has the following type. It is functional and returns a function.

K : S(�u : type · �v : type · u ⊗ S(v ⊗ u))

The last is a relational version of the S combinator of combinatorial logic. It is also
functional.
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Example 198 (The Combinator S)

SRel

u : type, v : type, w : type
f : S(u ⊗ S (v ⊗ w))
g : S(u ⊗ v)
h : S(u ⊗ w)

h
=

[x : u, z : w | ∃y : v · ∃y′ : S (v ⊗ w) · f (x, y′) ∧ g(x, y) ∧ w(y, z)]

This has the type

�u : type · �v : type · �w : type · S(u ⊗ S (v ⊗ w)) ⊗ S(u ⊗ v) ⊗ S(u ⊗ w)

To conclude, we revisit our separation example for sets. We may now, for the
version restricted to schemata, include the propositional part as a schema.

Example 199 (Separation) We specify

Sep

u : type, f : S[u], x? : Set(u), y! : Set(u)

∀z ∈ y · z ∈ x ∧ f (z)
∧

∀z ∈ x · f (z) → z ∈ y

12.4 Arithmetic Interpretation

We now complete our simple treatment of schemata by laying out their recursive in-
terpretation, i.e., provide the recursive interpretation of SC in Nat. We shall assume
that the theory

Th(N, DP, type)
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has been interpreted as in the last chapter. Here we concentrate on the interpretation
of schemata and their types.

Stage 1: Schemata as classes

The schemata are interpreted as classes. More explicitly, the schema [x : T | φ]
is interpreted as the class

{x · x : T ∧ φ}

Stage 2: Gödel numbering

Given a representation of the schemata of any base theory as � classes, we Gödel
code the propositions and the � classes. Again, there are endless ways of achieving
this, but we only require one with the standard properties of providing an isomor-
phism between the codes and the classes.

Stage 3: Schemata predication

As with the type type, we represent class membership as a � relation, i.e., as
Satn(x, x1, .., xn) where for each � proposition φ of Nat with exactly the free vari-
ables x1, ..., xn (n > 0).

Satn(�φ� , x1, ..., xn) ↔ φ[x1, .., xn]

where �φ� is the code of φ.

We then represent schema predication as follows.

[x : T | φ[x, x1, ..., xn]] (x) � Satn+1(�φ� , x, x1, ..., xn)

Stage 4: Schemata types

To complete the interpretation of the theory, we have to interpret the schema
types: S(T ) is interpreted as (the code of) the recursively enumerable class of all the
codes of classes of the form [x : T | φ[x, x1, ..., xn]].

Theorem 200 Th(N, DP, type, S) is a conservative extension of Nat.
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Chapter 13
Separation Types

Some specification languages admit subtypes and some do not. For example, VDM
[2], [1] allows invariant definitions in type declarations; they act somewhat like a
propositional restriction on types. But, strictly speaking, they are not types. Rather,
they are part of the specification, not the type. Z [6], [8] allows separation on sets,
which include types, but the result is a set and not a type. Moreover, while schema
are treated as types in Z, the role of predicates seems minimal. One major specifi-
cation framework that does explicitly allow genuine subtypes is PVS [5]; it allows
subtypes formed by abstraction on a proposition. This is similar to the role of sepa-
ration in set theory [4]. Our approach is closer to that of the latter; i.e., via a scheme
of separation, we add subtypes to our theories. It is also similar to the treatment of
subtypes in constructive type theory [7], but ours is a restricted version in that we
only admit � types.

The addition of subtypes greatly enhances the expressive power of our notion of
specification. For instance, by extending the notion of type, we are able to repre-
sent the domain and range of relations as types. This has several knock-on effects.
Initially, it will facilitate a very simple treatment of specifications with precondi-
tions; in its turn, this will yield an elegant treatment of partial functions as total
ones.

13.1 Theories with Separation

Let

Th(O1, ..., Ok)

be any TDT. In this section we shall work in the corresponding theories

Th(O1, ..., Ok, Sep, DP)

where Sep(T ) is the class of subtypes of the type T and DP is the type of dependent
products. We have already dealt with the rules for the latter and we shall shortly

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 13,
C© Springer-Verlag London Limited 2009
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indicate how subtypes generate the context for these. But first we need to put in
place the rules for separation types. In what follows, φ is �.

Sep0
x : T 	 φ prop

{x : T | φ} t ype

Sep1
x : T 	 φ prop a : T φ[a/x]

a : {x : T | φ}

Sep2
a : {x : T | φ}

a : T

Sep3
a : {x : T | φ}

φ[a/x]

Sep0 is the formation rule for subtypes, Sep1 is the introduction rule, and Sep2 and
Sep3 are the elimination rules. In all these rules, x /∈ FV (T ). A few observations are
in order. First, notice that type formation now depends upon proposition formation
(Sep0). The following illustrates this.

x : T 	 x =T x prop

{x : T · x =T x} t ype

In its wake, type membership now depends upon the truth of propositions (Sep1).

x : T 	 x =T x prop a : T a =T a

a : {x : T · x =T x}

Indeed, type terms can contain free variables (Sep0). The following is an instance.

x : T, y : T 	 x =T y prop

y : T 	 {x : T · x =T y} t ype

Hence, types can depend upon other terms, and this supports and facilitates depen-
dent Cartesian products.

This concludes the description of Th(O1, ..., Ok, Sep, DP). The type-checking
result is preserved; i.e., if Th(O1, ..., Ok) satisfies it, so does the theory
Th(O1, ..., Ok, Sep, DP) . But we must add a new clause.

Proposition 201 (Type Checking) In Th(O1,...,Ok, Sep, DP) we have:

�, x : T 	 φ prop iff � 	 {x : T | φ} t ype

However, we no longer have the independence of the logic and the type system:
via Sep1, type membership may now depend upon the truth of propositions. But, as
we shall see, the addition of separation is conservative.
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13.2 Subtypes in Specification

We shall first illustrate the use of separation in the specification process with some
simple observations. More interesting examples will be introduced later.

Example 202 (Dom and Ran) In Th(O1, ..., Ok, Sep, DP), specify

R � [x : I, y : O | ψ]

We may then define the domain and range of R as types as follows.

Dom R � {x : I | ∃y : O · ψ}
Ran R � {y : O | ∃x : I · ψ}

where now the definiens are types.

Example 203 (Even and Odd) In the theory Th(N, DP, Set, Sep), the even and odd
numbers can be defined as types as follows.

Even � {x : N · ∃y : N · x = 2 ∗ y}
Odd � {x : N · ∃y : N · x = 2 ∗ y + 1}

Example 204 (Maps) In the theory Th(N, DP, Set, Sep), the type of maps, a sub-
type of the type of set-theoretic relations, is defined as

A →m B � {z : Set(A ⊗ B) · ∀x ∈ z · ∀y ∈ z · x1 = y1 → x2 = y2}

Similarly, the type of injective maps may be defined as a subtype of the type of
maps.

A �m B � {z : A →m B · ∀x ∈ z · ∀y ∈ z · x2 = y2 → x1 = y1}

Finally, some more concrete examples. Here we demonstrate how the use
of separation can provide a more mathematically attractive account of schema
inclusion.

Example 205 (States) In the theory Th(N, DP, Set, Sep), consider the following
specification of the state of a system that has two components: one is a set of items
and the other is a set-theoretic relation. The constraint or invariant insists that the
domain of the relation and the set of items do not intersect.

StateB,L � {x : Set(B) ⊗ (B →m L) · x1 ∩ Dom(x2) = �B}

Our concrete instantiation is a library database StateB,L , where B represents the
class of library books or items and L the library users. Under this interpretation,
x : Set(B) represents the books currently on the shelves and y : B →m L provides
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information about which readers have specific books. The insistence for books not
to be both on the shelves and on loan is imposed by the disjointedness requirement.
We can then use it in the following operation, which updates the state. It represents
the operation of loaning a new item to a specified reader.

Example 206 (Loan Operation)

LoanB,L

z : StateB,L , z′ : StateB,L

u : B, v : L

z′1 = z1

z′2 = {x : B, y : L · (x = u ∧ y = v) ∨ ∃w : z2 · (x, y) = w}

13.3 Preconditions and Functions

Using the subtype constructor we may obtain the effect of preconditions in standard
specifications; i.e., with subtypes we can get by with the simple notion of specifica-
tion. To demonstrate this, suppose that

x : {x : I · π [x]}, y : O 	 φ[x, y] prop

where π and ψ are �. Then consider the following standard specification using
subtypes, but with no preconditions.

R � [x : {x : I · π [x]}, y : O | φ[x, y]]

This specification is equivalent to the specification

R � [x : I, y : O | π [x]; φ[x, y]]

in that the axioms governing the two are logically equivalent. This provides the
full impact of preconditions in the standard style of specification. Moreover, with
separation types present, our original notions of totality and functionality unwind to
yield the precondition versions. In particular, we can specify relations that are func-
tions under the assumption of the precondition. Our first example is a specification
of map application.
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Example 207 (Map Application)

MappU V

z? : U →m V
u? : {x : U · x ∈ Dom(z)}
w! : V

(u, w) ∈ z

Proposition 208 The above specification defines a total function.

Proof Here, u ∈ Dom(z) guarantees totality and z : U →m V guarantees
functionality.�

The impact upon the specification of partial functions is inherited from our treat-
ment of pre-conditions. So where R is single-valued, i.e.,

x : I, y : O, z : O, R(x, y), R(x, z) 	 y = z

but not total, we can turn into one that is by the specification

̂R � [x : {x : A · (Dom R)(x)}, y : B | R(x, y)]

This is now single-valued and total, in the original sense of those terms.
In the rest of this section we work in the theory Th(N, Sep, Set, DP). Our first

example is similar to the collection principles of standard set theory. To facilitate
matters, recall the following principle of collection.

Proposition 209 Suppose that

y : A, z : B 	 ψ[y, z] prop

Then

∀x : Set(A) · (∀y ∈ x · ∃z : B ·ψ[y, z]) → ∃w : Set(B) · ∀y ∈ x · ∃z ∈ w ·ψ[y, z]

With this at hand, we can justify the totality of the following specification.

Example 210 (Collection) Suppose that

y : A, z : B 	 ψ[y, z] prop
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We specify a Collect operator as follows.

Collect

x? : Set({y : A · ∃z : B · ψ[y, z]}), w! : Set(B)

∀y ∈ x · ∃z ∈ w · ψ[y, z]

This is not a function, but it can be made so as follows. The following is a speci-
fication of a strong collection operator.

Example 211 (Strong Collection) Suppose that

y : A, z : B 	 ψ[y, z] prop

We may then specify

Strongcollect

x? : Set({y : A · ∃z : B · ψ[y, z]}), w! : Set(B)

∀u ∈ x · ∃v ∈ w · ψ[u, v] ∧ ∀z ∈ w · ∃y ∈ x · ψ[y, z]

We can now strengthen the last result.

Corollary 212 Strong collection is total and functional.

Proof Given the last result, we know it is total. Moreover, given the last result and
the guaranteed set w that satisfies the consequent, we put

w′ = {z ∈ w · ∃y ∈ x · ψ[y, z]}

The guaranteed set is now unique and so the specification is functional.�
These provide examples where subtypes do not only occur in simple precondition

positions and enable the articulation of a richer class of specifications.

13.4 Polymorphism and Subtypes

We now consider the impact of polymorphism on subtypes. The inclusion of the
type type allows us to treat types, including subtypes, as objects.

Let

Th(O1, ..., Ok)
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be any TDT. Then consider the corresponding theories with separation and type.

Th(O1, ..., Ok, Sep, DP, type)

In the presence of the type type, types, including subtypes, become first-class ob-
jects. Since types may contain bound variables (via separation terms), we allow for
them to be renamed.

Sep4
x : T 	 φ prop

{x : T | φ} =type {y : T | φ[y/x]}

In the polymorphic theories we obtain more abstract versions of our various in-
stances of subtypes. The following version of maps illustrates this.

Example 213 (Polymorphic Maps) In the theory

Th(N, DP, Set, Sep, type)

we define the type of polymorphic maps as

{u : type, v : type, z : Set(u ⊗ v)·∀x ∈ z · ∀y ∈ z · x1 = y1 → x2 = y2 }

This is an abbreviation for the type

{z : �u : type · �v : type · Set(u ⊗ v)· ∀x ∈ z3 · ∀y ∈ z3 · x1 = y1 → x2 = y2 }

13.5 The Elimination of Subtypes

Despite this greater expressive power, the addition of subtypes is conservative. This
agrees with one’s basic intuition that subtypes are a luxury rather than a necessity
and that, in some sense, anything we can do with them we can do without them.
This is the substance of the following translation that compiles away the subtypes.
We shall illustrate matters with the following theories that contain all the major
components. However, one should take note that the introduction of additional type
constructors places one under an obligation to extend the translation.

T1 = Th[N, DP, type, S, Sep]

T2 = Th[N, DP, type, S]

For each t , a proposition, term, and type of T1, we associate, by a simultaneous
recursion, an expression t∗of T2. We shall deal with specifications separately.

We first deal with all the types. A type A translates to A∗, which is a pair con-
sisting of a type A+and a schema A−. This removes the predicate information from
the types and places it in the predicate of the schema; i.e.,
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A∗ � (A+, A−)

where

(�x : A · B)+ � �x : A+ · B+

(�x : A · B)− � [x : �x : A+ · B+ | A−(x0) ∧ B(x0)−(x1)]

{x : A · φ}+ � A+

{x : A · φ}− � [x : A+ | A−(x) ∧ φ[x]∗]

S(A)+ � S(A+ )

S(A)− � [x : S(A+ ) | x = x]

type+ � �u : type · S[u]

type− � [x : �u : type · S[u] | x = x]

N+ � N

N− � [x : N | x = x]

With this in place, we may translate all the terms. Except for the schemata, the rest
are straightforward.

0∗ � 0

Succ(a)∗ � Succ(a∗)

(a, b)∗ � (a∗, b∗)

πi (a)∗ � πi (a
∗)

f (a)∗ = f ∗(a∗)

[x : A | φ]∗ � [x : A+ | A−(x) ∧ φ∗[x]]

This leaves the translation of the propositions. In what follows R∗ translates the
atomic R (set membership, etc.).

(t =T s)∗ � (t∗ =T+ s∗) ∧ T−(t∗)

R(t1, ..., tn)∗ � R∗(t∗1 , ..., t∗n )

(¬φ)∗ � ¬φ∗

(φ ∧ ψ)∗ � φ∗ ∧ ψ∗

(φ ∨ ψ)∗ � φ∗ ∨ ψ∗

(φ → ψ)∗ � φ∗ → ψ∗

(∃x : T · φ)∗ � ∃x : T+ · T−(x) ∧ φ∗

(∀x : T · φ)∗ � ∀x : T+ · T−(x) → φ∗
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The only interesting cases are equality and the quantifiers. Here we need to explicitly
include the propositional information that resides in the types. This completes the
translation. The following is by induction on the rules.

Lemma 214 (Substitution) For each judgment � and term t of T1, we have

�[x/t]∗ = �∗[t∗/x]

Lemma 215 The above translation satisfies the following.

1. If � 	T1 T type, then �∗ 	T2 T+ t ype and �∗ 	T2 T− : S(T+).
2. If � 	T1 φ prop, then �∗ 	T2 φ∗ prop and, if φ is �, so is φ∗.
3. If � 	T1 t : T , then �∗ 	T2 t∗ : T+and �∗ 	T2 T−(t∗).
4. If � 	T1 φ, then �∗ 	T2 φ∗.
5. If � 	T2 T type, then � 	T2 t : T iff � 	T2 t∗ : T+.

6. If � 	T2 φ prop, then � 	T2 φ iff � 	T2 φ∗.
Proof We prove all parts by simultaneous induction in the derivations in T1. Parts 1
and 2 are routine to check. Part 3 requires some work. For separation types, consider
the introduction rule. The translation of the rule follows the arrow.

a : A φ[a/x]

a : {x : A · φ} ⇒ a∗ : A+ A−(x) φ[a/x]∗

a∗ : {x : A+ · A−(x) ∧ φ[a/x]∗}
The result is then immediate by definition of the translation. The elimination rule
is similar. Next consider the rules for the universe of types. The introduction and
elimination rules are parallel. To illustrate matters, we document the first.

A type

A : type
⇒ A+ t ype A− : S(A+)

(A+, A−) : �u : type · S[u]

For schema types, we proceed as follows. All the rules are covered.

x :A	φ prop
[x :A | φ]:S(A) ⇒ x : A+, A− : S(A+) 	 φ∗ prop

[x : A+ | A−(x) ∧ φ∗] : S(A+)
⇒

x : A+ 	 (A−(x) ∧ φ∗) prop

[x : A+ | A−(x) ∧ φ∗] : S(A+)

f :S(A) a:A
f (a) prop ⇒ f ∗ : S(A) a∗ : A

f ∗(a∗) prop

[x :A | φ](a)
φ[a] ⇒ [x : A+ | A−(x) ∧ φ∗](a∗)

φ∗[a∗/x]

[x :A | φ](a)
a:A ⇒ [x : A+ | A−(x) ∧ φ∗](a∗)

a∗ : A+

[x :A | φ](a)
a:A ⇒ [x : A+ | A−(x) ∧ φ∗](a∗)

A−(a∗)

a:A φ[a]
[x :A | φ](a) ⇒ a∗ : A+ A−(a∗) φ∗[a∗/x]

[x : A+ | A−(x) ∧ φ∗](a∗)
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The rules for dependent product types are routine to check. For example,

a : A b : B[a/x]

(a, b) : �x : A · B
⇒

a∗ : A+ A−(a∗) b∗ : B+ B−(a∗, b∗)
(a∗, b∗) : A+ ⊗B+

a : A b : B[a/x]

(a, b) : �x : A · B
⇒

a∗ : A+ A−(a∗) b∗ : B+ B−(a∗, b∗)
(�x : A · B)−(a∗, b∗)

Apart from the quantifier rules, part 4 is relatively straightforward. We illustrate
with existential quantification. The introduction rule translates to

x : A+, A−(x) 	 φ[x]∗ t∗ : A+ ∧ A−(t∗)
∃x : A+ · A−(x) ∧ φ[x]∗

which follows. Part 5 is by induction on the rules. By part 3, we need only consider
the right-to-left implication. For example,

z : �x : A+ · B+

z0 : A+
z : �x : A+ · B+

z1 : B+[z0]

By induction, and the introduction rule for dependent types, we obtain the required.

z0 : A z1 : B[z0]

z : �x : A · B

Part 6 is almost immediate where the quantifier case is clear from part 5.�

Theorem 216 T1 is a conservative extension of T2.

We have said nothing about the impact of the translation upon specifications.
Here the complication concerns the occurrence of subtypes in the declaration and,
in particular, its impact upon totality and functionality; i.e., presumably, schemata
that are total and functional should remain so. Here is where pre-conditions play a
role. We translate

R � [x : I, y : O | φ]

as follows.

R∗ � [x : I, y : O | I−(x); O−(x, y) ∧ φ]

This transforms total functions into total functions.
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Thus, subtypes may be eliminated. Indeed, given the last result, and that of the
last chapter to the effect that T2 is a conservative extension of Nat, we have

Theorem 217 T1 is a conservative extension of Nat.
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Chapter 14
Recursive Schemata

Recursion is one of the more important mechanisms of abstraction in computer
science. Indeed, almost every high-level programming language has some form of
recursion built in. In older programming languages such as those of the Algol family,
it manifests itself in the form of recursive procedures. This is sometimes comple-
mented by the inclusion of built-in inductive/recursive types of various forms; e.g.,
most languages have natural numbers and lists as basic. In addition, some, and in
particular functional ones such as MirandaTM and Haskell, have user-defined recur-
sive types.

Recursion is also found its way into specification languages. For example, in
VDM [3], [1] it is used in the specification of explicitly defined recursive functions.
It is also present in the VDM definition of recursive types. In Z a simple general
form of recursive types, which includes lists and trees, and their associated structural
induction schemes, is built into the core of the language [4], [6].

In an earlier chapter we exhibited examples of recursive schema specifications
involving numbers. These examples clearly illustrate how the use of recursion of-
ten facilitates the expression of more elegant and seemingly natural specifications.
Indeed, in the case of numbers, it is rather difficult to do without them. In this chap-
ter we move away from these simple instances and consider recursive schemata in
general. For illustrative purposes, we shall work in the theory

SC = Th(N, DP, type, S)

and its extensions. This contains almost all the apparatus we require for the articu-
lation of the general case.

14.1 Closure and Induction

Given our goal of ensuring that our theories have a recursive model, we shall be
guided by the forms of recursion supported in arithmetic [5], [2]. Consequently,
recursive schema specifications take the form of a closure condition and a corre-
sponding induction principle where these principles parallel those of arithmetic.
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Definition 218 In the theory SC, assume that

x : T, f : S(T ) 	 φ[ f, x] prop R0

where, when f occurs in φ, it occurs as a predicate. Then a recursive schema spec-
ification has the following form:

R � [x : T | φ[R, x]] Rec

where φ[R, x] is obtained by replacing every occurrence of f by R. This is taken to
introduce a new relation symbol that satisfies the following versions of R1, R2, and
R3.

x : T 	 R(x) prop R1

∀x : T · φ[R, x] → R(x) R2

x : T 	 θ [x] prop ∀x : T · φ[θ, x] → θ [x]

∀x : T · R(x) → θ [x]
R3

As with the simple case, R2 is still a closure condition, but R3 is now an induction
principle. We may specialize the latter where θ is restricted to � propositions. In this
case it can be stated in terms of schemata as follows.

h : S(T ) ∀x : T · φ[h, x] → h(x)

∀x : T · R(x) → h(x)
(R

�

3)

Initially at least, we shall take an inclusive view of these theories whereby recur-
sive schema are added to the stock of schema. More exactly,

Definition 219 Let SCR be the theory given as

SCR � Th(N, DP, type, S, Rec)

i.e., SC with recursive schema satisfying R1, R2, and R3 added. Let SCR� be theory
with recursive schema satisfying R1, R2, and R�

3 added; i.e., induction is restricted
to � propositions. More generally, for any theory T extending SC, TR will be the
theory that results from the addition of recursive schemata to T.

To summarize, in TR for any � proposition φ that satisfies R0, there exists a �
relation R that satisfies R1, R2 and R3. Observe that we take the new relations that
arise from recursive schemata to be �. They are thus taken to form part of their
corresponding schema type, i.e., where

R � [x : T | φ[R, x]]

R is taken to be � and R : S(T ).
We now provide a few examples to illustrate the general idea. We begin with a

common use of recursion.
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Example 220 (Transitive Closure)

T r

u : type, v : S(u ⊗ u), w : S(u ⊗ u)

w = [x : u, y : u | v(x, y) ∨ ∃z : u · v(x, z) ∧ T r (u, z, y)]

The following is straightforward to establish.

Proposition 221 For any type T and and relation r : S(T ⊗ T ), we obtain the
following closure rules.

a : T b : T r (a, b)

T r (a, b)

a : T b : T c : T r (a, b) T r (b, c)

T r (a, c)

and the following � induction principle. Where

x : T, y : T 	 φ[x, y] prop

we have

∀x : T · ∀y : T · r (x, y) → φ[x, y] ∀x : T · ∀y : T · r (x, y) ∧ φ[y, z] → φ[x, z]

∀x : T · ∀y : T · φ[x, y] → T r (x, y)

Our next example is a little more sophisticated. It is a generalized recursion op-
erator taken from Gödel’s functionals of finite type. The recursion is driven by the
natural numbers but delivers schemata of higher types.

Example 222 (Recursion Operator)

R

u : type, x : u, f : S(N ⊗ u ⊗ u), y : N,z : u

y = 0 ∧ z = x
∨

y �= 0 ∧ ∃w : u · R(u, x, f, pred(y), w) ∧ f (pred(y), w, z)
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This is already quite a complex recursive operator. But it is easy to see what it
does via the following rewriting of its closure conditions. For a given type T , we
obtain, suppressing some of the background information, a relation that satisfies the
following closure rules.

a : T

R(a, 0, a)

a : T f (n, b, c) R(a, n, b)

R(a, n+, c)

It is more familiar in its functional guise. Indeed, we shall return to it later when
we discuss recursive functions.

The last example involves types. It generates a predicate that, given a type, char-
acterizes all of its Cartesian products that may be constructed from it, i.e., all possi-
ble iterations of ⊗.

Example 223 (Products)

Prod

u : type, v : type

v = u
∨

∃z : type · Prod[z] ∧ v = u ⊗ z

For any given a : U, the predicate applies to all the types

a, a ⊗ a, a ⊗ (a ⊗ a), ...

14.2 Simultaneous Recursion

Simultaneous recursive specifications can be found in the specification of program-
ming language syntax and in the specification of many common recursive function
definitions. In this section we demonstrate how to represent them. To motivate mat-
ters, we specify a very common form of example found in the computer science
literature [1]. The following provides a simple example that defines the syntax of a
simple artificial programming language.
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Example 224 (A Simple Programming Language)

B ::= true | f alse | E < E | if B then B else B

E ::= 0 | I de | E+

C ::= I de := E | if B then C else C | C ;C | while B do C

Booleans are generated from true and false by the less-than relation (<) be-
tween expressions and a conditional. The expression language contains zero, and
identifiers and is closed under successor operation. The language of commands is
generated by simple assignment statements, conditionals, sequencing, and a while
loop. The whole grammar presents an example of a simultaneous recursion given
by the following simultaneous recursive specifications. Note that we are using some
general type of terms from which to build our syntactic objects.

In all three cases, the above grammar generates the predicate of the schema. We
begin with the Boolean expressions. The four alternates of the grammar correspond
to the four disjunctions in the predicate.

B

u : T erm

u = true ∨ u = f alse
∨
∃x : T erm · ∃y : T erm · E(x) ∧ E(y) ∧ u = x<y
∨
∃x : T erm · ∃y : T erm · ∃z : T erm · B(x) ∧ B(y) ∧ B(z)∧
u = if x then y else z

This reflects the structure of the grammar and so makes reference to the expression
language, which is also specified as a schema specification, i.e., the general class of
expressions is given by the following schema specification.

E

u : T erm

u = 0 ∨ u = I de ∨ ∃x : T erm · E(x) ∧ u = x+
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Finally, we provide the schema for the programs of the language, i.e., the syntac-
tic class of commands.

C

u : T erm

∃x : T erm · ∃y : T erm · I de(x) ∧ E(y) ∧ u = x := y
∨
∃x : T erm · ∃y : T erm · ∃z : T erm · B(x) ∧ C(y) ∧ C(z)

∧u = if x then y else z
∨
∃x : T erm · ∃y : T erm · C(x) ∧ C(y) ∧ u = x ; y
∨
∃x : T erm · ∃y : T erm · B(x) ∧ C(y) ∧ u = while x do y

We shall demonstrate that such recursions can be represented in terms of our
general pattern of recursive schemata. We shall illustrate with the binary case with
the following simple instance. More complex cases follow much the same pattern.

Where A and B are nonempty types, the specification

R � [x : A | φ[R, S, x]] (SimRec)

S � [y : B | ψ[R, S, y]]

is taken to introduce two relations R and S that satisfy the following formation,
closure and induction principles.

x : A 	 R(x) prop y : B 	 S(y) prop

∀x : A · φ[R, S, x] → R(x) ∀y : B · ψ[R, S, y] → S(y)

x : A 	 α[x] prop
y : B 	 β[y] prop ∀x : A · φ[α, β, x] → α[x]
∀y : B · ψ[α, β, y] → β[y]

∀x : A · R(x) → h(x)

x : A 	 α[x] prop
y : B 	 β[y] prop ∀x : A · φ[α, β, x] → α[x]
∀y : B · ψ[α, β, y] → β[y]

∀y : B · S(y) → k(y)
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We now demonstrate that this simultaneous recursion can be represented using
our simple form.

Proposition 225 Simultaneous recursion can be expressed as a simple recursion.

Proof Consider the following recursive specification.

K � [z : A ⊗ B ⊗ Bool | ι[K , z]]

where

ι[K , z] � Cond(z3, φ[R, S, z0], ψ[R, S, z1])

and

R = [x : A | ∃y : B · K (x, y, 0)]

S = [y : B | ∃x : A · K (x, y, 1)]

We establish that this satisfies the closure and induction principles. For closure,
assume that x : A and φ[R, S, x]. Given that B is nonempty, we have that, for
some b : B, K (x, b, true). Hence, R(x). The other closure condition is similar. For
induction, assume that

∀x : A · φ[α, β, x] → α[x] ∀y : B · ψ[α, β, y] → β[y] (1)

The induction scheme for K takes the following general form.

∀w : A ⊗ B ⊗ Bool · ι[H, z] → H (z)

∀w : A ⊗ B ⊗ Bool · K (w) → H (w)

Consider the instance where

H (x, y, z) = Cond(z, α[x], β[y])

Then

α[x] ↔ ∃y : B · H (x, y, 0)]

β[y] ↔ ∃x : A · H (x, y, 1)]

and the induction for K unpacks as

∀w : A ⊗ B ⊗ N · Cond(w3, φ[α, β,w0], ψ[α, β,w1])

∀w : A ⊗ B ⊗ Bool · K (w) → H (w)
(2)

Since (1) provides the premise of (2), we can conclude

∀w : A ⊗ B ⊗ Bool · K (w) → H (w) (3)
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which yields

∀x : A · R(x) → α[x] and ∀y : B · S(y) → β[y] (4)

Which completes the proof.�

14.3 Arithmetic Interpretation

Our overall objective is to ensure that all our theories have a recursive model. In the
case of recursive schemata, we set things up to ensure this; i.e., we based our notion
of recursive schemata upon the recursions supported in arithmetic. But we still have
to check matters. Actually, we have a little more.

Theorem 226 SCR is a conservative extension of Nat and SCR� is a conservative
extension of Nat�.

Proof Given the interpretation of SC in Nat, we have only to check that the recur-
sive schemata translate to recursive schemata in arithmetic. Given this translation,
we put

η[R, x] � x : T ∧ φ[R, x]

Using the recursive schemata of arithmetic, we obtain the following rules.

η[R, x] 	 R(x)
x : T 	 α[x] prop η[α, x] 	 α[x]

R[x] 	 h(x)

which yield

∀x : T · φ[R, x] → R(x)
x : T 	 α[x] prop ∀x : T · φ[R, x] → α[x]

∀x : T · R[x] → α[x]

�
So recursive schemata are sanctioned by recursive relations in arithmetic. More-

over, we are justified in including them in the � fragment since recursive schemata
of arithmetic are �.

14.4 Sets and Schemata

Our objective is to demonstrate that, within a rich enough base theory, the addition
of recursive relations is conservative. There are less expressive theories that will
work, but the following involves little coding. We shall work in the following theory,
which is obtained by the addition of finite sets to our minimal theory of schemata.
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SCSet = Th(N, DP, Set, type, S)

Our aim is to show that the addition of recursive schemata to SCSet is
conservative.

To facilitate the investigation, we need to introduce some properties of schemata.
We begin with the definitions of monotonicity and compactness properties for
schemata.

Definition 227 (Monotone and Compact)

Mon ( f ) � ∀h : S(S(T )) · ∀ f : S(T ) · ∀g : S(T ) · f ⊆ g → h( f ) ⊆ h(g)

Com( f ) � ∀h : S(S(T )) · ∀ f : S(S(T )) · h(∪ f ) ⊆ ∪h( f )

Using products, the generalization to two-place operators over T, S is straight-
forward; i.e., they are monotone and compact with respect to T ⊗ S. We first show
that all our schemata satisfy these constraints.

Lemma 228 Monotone and compact schema are closed under conjunction, disjunc-
tion, existential quantification, and the bounded quantifiers.

Proof We treat monotonicity first. Assume that f, f ′, g, g′ : S(T ) and that f ⊆ g
and f ′ ⊆ g′. Then it is clear that the following hold.

[x : T | f (x) ∧ g(x)] ⊆ [x : T | f ′(x) ∧ g′(x)]

[x : T | f (x) ∨ g(x)] ⊆ [x : T | f ′(x) ∨ g′(x)]

For the existential quantifier, assume f, g, : S(T ⊗ S) and f ⊆ g, i.e.,

x : T , y : S 	 f (x, y) ⊆ g(x, y)

Then, it is again quite clear that

[x : T |∃y : S · f (x, y)] ⊆ [x : T | ∃y : S · g(x, y)]

For compactness, assume that f, g : S(S(T )). Assume (∪ f ∧∪g)(x). By definition,
we have

∃v : S(T ) · f (v, x) ∧ ∃w : S(T ) · g(w, x)

By monotonicity, f (v ∪ w, x) ∧ g(v ∪ w, x). It follows that

∃v : S(T ) · f (v, x) ∧ g(v, x)

For compactness, assume that h(∪ f ∩∪g)(x). Then, by montonicity of h, h(∪ f )(x)
and h(∪g)(x). By compactness for the two conjuncts, we have, for some n, m,
h( fn)(x) and h(gm)(x). By choosing the maximum of these, k say, we have
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(h( f ∪ g)k)(x), as required. A parallel argument yields the disjunction case.
Finally, consider the compactness case for the existential quantifier. Suppose that
f : S(S(T ⊗ S)). Assume that (∃y : S · ∪ f )(x). By definition,

∃w : S(T ⊗ S) · ∃y : S · f (w, x, y)

Hence,

∃y : S · ∃w : S(T ⊗ S) · f (w, x, y)

as required. �

Corollary 229 Every (nonrecursive) schemata in SCSet is monotone and compact.

With this achieved, we can proceed to the main result of the section.

Theorem 230 SCSetR is a conservative extension of SCSet.

Proof We define

R = ∪Rn

where

Rn

x : T

∃ f : N ⇒map S(T ) · ∀x ∈ dom( f ) · x < n
∧∀x < n · x ∈ dom( f )

∧ f (0) = �
∧∀k < n · f (k+) = [x : T | φ[ f (k), x]]

∧
f (n)(x)

First claim that R satisfies induction (R3). We illustrate with the weaker induction
principle.

x : T 	 φ[h, x] → h(x)

x : T 	 R[x] → h(x)

Assume the premise, x : T and R[x]. By definition, for some n : N and
f : Set(N ⊗ Set(T )) , where Map( f ), we have

φ[ f (n), x]
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Now for each k ≤ n,

f (k) ⊆ h

Why? Because f0 = � ⊆ h and if f (i) ⊆ h, then, by monotonicity (for the first
inclusion below) and the assumption (for the second inclusion), we have

[x : T | φ[ f (i), x]] ⊆ [x : T | φ[h, x]] ⊆ [x : T | h(x)]

It follows that

f (i+)(x) = [x : T | φ[ f (i), x]](x) ⊆ [x : T | h(x)](x) ⊆ h(x)

R3 follows. For R2, suppose that φ[R, t]. Hence, it follows by compactness that

∃n : N · ∃ f : Set(N , Set(T )) · f (0) = � ∧
∀k < n · ∀y ∈ f (k+) · φ[ f (k), y] ∧ t ∈ f (n)

Hence, by definition, R[t].�
So the addition of recursive schemata is conservative. Finally, we can justify

our original notation for schemata, i.e., that the introduction of a new relation
symbol is taken to be equivalent to the defining proposition; i.e., the follow-
ing shows that both directions of the original biconditional characterization still
hold.

Theorem 231 For each recursive specification

R � [x : T | φ[R, x]]

we have

∀x : T · R(x) ↔ φ[R, x]

Proof By closure we have only to demonstrate the following.

∀x : T · R(x) → φ[R, x]

Let

h = [z : S(T ), x : T | φ[z, x]]

By closure and the specification of h, we have

h[R, x] → R(x)
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By the monotonicity of schemata applied to h, we obtain the following.

h([x : T | φ[R, x]] , x) → h[R, x]

Hence, by definition of h,

φ([x : T | h[R, x]] , x) → [x : T | h[R, x]] (x)

By induction,

x : T, R(x) → [x : T | h[R, x]] (x)

By definition,

x : T, R(x) → φ[R, x]

as required.�
This completes our first chapter on recursion. There are two more to come. In

them we shall look at two special cases: recursive types and recursive functions.
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Chapter 15
Inductive Types

Most programming and specification languages have built-in recursive types.
Usually, some version of the natural numbers is taken as basic and the language is
enriched by a form of user-defined recursive types. In this chapter we consider such
type specifications. More exactly, we consider a version of such types that are more
accurately described as inductive. These are presented in three parts:

• a formation rule,
• closure principles,
• an induction principle.

The formation rule dictates how the type is constructed from given types, while
the closure conditions determine what is in the type. Finally, the induction principle
supports reasoning about the type and, in particular, guarantees that the type is the
smallest one that satisfies the closure conditions. We have already seen several ex-
amples of such types. For instance, the natural numbers are characterized by such
principles. In this case the formation rule is the simple assertion that N is a type,
but in general it will be more complex and involve other types as parameters. For
instance, lists, finite sets, and trees employ parameter types. Slightly different exam-
ples emanate from the definition of languages where several different grammatical
categories are simultaneously defined. Other instances involve the specification of
a category of subtypes of a given theory of types. For example, one might wish to
pick out the type of finite schemata from the type of all schemata over a given type.

15.1 The General Form

Our general form of inductive type emanates from our general scheme for recursive
specifications. Let

Th(O1, ..., Ok)

be any TDT. In this section we shall work in the corresponding theory
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168 15 Inductive Types

Th(O1, ..., Ok, I)

The new type constructor I[T, φ], where T is the base type from which all the
elements are selected and φ is the generating condition, is governed by the following
rules, where φ is �.

x : T 	 φ[T, x] prop

I[T, φ] t ype
I1

a : T φ[I[T, φ], a]

a : I[T, φ]
I2

x : T 	 θ [x] prop ∀x : T · φ[θ, x] → θ [x]

∀x : I[T, φ] · θ [x]
I3

I1 is the formation rule, I2 is the closure condition, and I3 is the induction princi-
ple. In these rules φ[I[T, φ], a] is obtained by replacing every occurrence of T by
I[T, φ]. Note that where T occurs in a proposition, it occurs in a subterm of the
form ∃x : T · σ . Consequently, φ[θ, x] is obtained from φ[T, x] by replacing every
occurrence of ∃x : T · σ by ∃x : T · θ [x]∧ σ [x]. As before, we may restrict matters
by restricting I3 to � propositions, i.e., where θ is �. We first illustrate matters with
some concrete examples.

15.2 Some Inductive Types

Our first few examples are familiar ones. We begin with the most common kind of
inductive structure, the paradigm case.

Example 232 (Numbers) Recall that the type Num was determined by the following
rules.

N0 Num type

N1 0 : Num N2
a : Num

a+ : Num

Given this, we can form an inductive type I[Num, φ], where

φ[T, y] � y = 0 ∨ ∃x : T · y = x+

This yields the standard induction principle of Nat. Substituting in the principle
gives
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x : T 	 θ [x] prop
∀x : Num · (x = 0 ∨ (∃z : Num · θ [z] ∧ x = z+)) → θ [x]

∀x : I[T, φ] · θ [x]

which simplifies to

x : T 	 θ [x] prop θ [0] ∀z : Num · θ [z] → θ [z+]

∀x : I[T, φ] · θ [x]

The strength of induction satisfied depends upon the induction assumed in the
general inductive type. The same is true of the following example.

Example 233 (Lists) The type Baby Lists is given by the following rules.

List0
T type

List(T ) t ype

List1
T type

[]T : List(T )
List2

a : T b : Bl(T )

a 	T b : List(T )

Given this, we can form an inductive type I[List, φ], where

φ[T, y] � y = [] ∨ ∃u : T · ∃x : List[T ] · y = u 	 x

Once again we have constructed an inductive type from one that is built from the
bare material of the type. Again, the standard induction principle is derivable.

θ [[]T ] ∀x : T · ∀y : List(T ) · θ [y] → θ [x 	T y]

∀x : List(T ) · θ [x]

Specification languages such as Z have a very simple form of inductive type built
in. Indeed, lists are a special case of such. These are often referred to as structural
inductive types since they are generated by some functional operators. Essentially,
these are trees [1], [2]. Since it is simple to define and contains the essence of such
types, we shall illustrate with the type of binary trees.

Example 234 (Binary Trees) Given the type of baby binary trees that satisfy the
following closure conditions

Bt1
A type

T ree(A) t ype
Bt2

a : A

Node(a) : T ree(A)

Bt3
a : A b : T ree(A) c : T ree(A)

Branch(a, b, c) : T ree(A)

we can form an inductive type that satisfies
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∀z : A · φ[Node(z)]
∀z : A · ∀x : T ree(A) · ∀y : T ree(A) · (φ[x] ∧ φ[y]) → φ[Branch(z, x, y)]

∀x : T ree(A) · φ[x]

by putting φ[A, y]equal to

∃u : A · y = Node(u) ∨ ∃v : T ree(A) · ∃w : T ree(A) · y = Branch(z, x, y)

This technique can be replayed with arbitrary terms to yield the general case of
structural types.

The next example is slightly different. We present the theory CST as an inductive
type. Here we assume that we are working in the following theory:

Th(N, DP, Set, type, S)

i.e., all the type constructors of CST are included. In that case, the following is the
recursive definition of the types of CST.

Example 235 (CST Types) We may form an inductive type that satisfies the follow-
ing closure conditions

Nat : CST
T : CST

Set(T ) : CST
T : CST S : CST

T ⊗ S : CST

by putting

φ[T, u] �

⎛

⎜

⎜

⎜

⎜

⎝

u = N
∨

∃v : type · ∃w : type · CST(v) ∧ CST(w) ∧ u = v ⊗ w

∨
∃v : type · CST(v) ∧ u = Set(v)

⎞

⎟

⎟

⎟

⎟

⎠

This yields an inductive type that characterizes the types of CST.

It also provides the corresponding induction principle that facilities reasoning
about the types of CST.

φ[Nat]
∀z : CST · φ[z]→φ[Set(z)] ∀x : CST · ∀y : CST · φ[x] ∧ φ[y]→φ[x ⊗ y]

∀z : CST · φ[z]

15.3 Conservative Extensions

We next demonstrate that such types can be obtained from recursive relations by
using separation.
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Theorem 236 Recursive types can be represented in

Th(N, DP, type, S, Rec, Sep)

Proof Given the schema

R � [x : T | φ[R, x]] Rec

use separation to form the recursive type I � {x : T · R(x)}.
Recall that the schema R provides a relation determined by the following

rules.

x : T 	 R(x) prop R1

∀x : T · φ[R, x] → R(x) R2

x : T 	 θ [x] prop ∀x : T · φ[θ, x] → θ [x]

∀x : T · R(x) → θ [x]
R3

Then we obtain the principles, for I .�
Since

Th(N, DP, type, S, Rec, Sep)

is a conservative extension of

Th(N, DP, type, S, Rec)

we have that the addition of inductive types yields a conservative extension of the
latter.

15.4 Finite Schemata

Finally, we carry out a case study that further illustrates the usefulness of recur-
sive specifications and recursive types. We show how the notion of a finite set,
and much of its associated machinery, can be specified using inductive types and
recursion.

We begin with the main specification; i.e., the following yields a recursive defi-
nition of the relation of being a finite collection of objects.
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Example 237 (Finite Schemata)

FT

y : S(T )

y = ET

∨
∃x : T · ∃z : S(T ) · FT (z) ∧ y = x � z

where

ET = [x : T | x �= x]

is the empty schema of type T .

We then use

φ[T, y] � FT (y)

to introduce the corresponding inductive type Set(T ). This satisfies the following
principles of closure.

T type

ET : Set(T )

s : Set(T ) a : T

a � s : Set(T )

The principle of induction reflects this: Any schema closed under element insertion
and containing the empty schema is a property of every finite set.

φ[ET ] ∀y : T · ∀x : Set(T ) · φ[x] → φ[y � x]

∀x : Set(T ) · φ[x]

Finite schemata resemble finite sets. Indeed, the following specification of mem-
bership strengthens this impression.

∈ � [x : T, y : Set(T ) | y(x)]

In our account of finite sets, the set quantifiers form an essential ingredient. But
these may also be defined using recursion. We introduce existential and universal
quantification over finite schemata as follows.
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Example 238 (Existential Set Quantifier)

E QS

y : Set(T ), f : S(T )

∃x : T · ∃z : Set(T ) · y = x � z ∧ ( f (x) ∨ E QS(z, f ))

E QS(y, f ) holds if y = x � z, and either f holds of x or it (recursively) holds
of z. The parallel specification of the universal quantifier is given as follows.

Example 239 (Universal Set Quantifier)

U QS

y : Set(T ), f : S(T )

∃x : T · ∃z : Set(T ) · y = x � z ∧ f (x) ∧U QS(z, f )

The universal quantifier holds if the schemata is empty or it can be expressed as
y = x � z and f holds of x and it (recursively) holds of z.

To be somewhat more conventional (and neater), we shall write the set quantifiers
as follows.

E QS(y, f ) as ∃x ∈ y · f (x)

U QS(y, f ) as ∀x ∈ y · f (x)

Proposition 240 (Set Quantifiers) The set quantifiers satisfy the restricted intro-
duction and elimination rules for the bounded set quantifiers.

Proof We illustrate with the existential quantifier. We must show that

s : Set(T ) f : S(T ) s(t) f (t)

∃x ∈ s · f (x)

f : S(T ) ∃x ∈ s · f x : T, s(x) 	 φ

φ

We begin with the elimination rule. Assume the premises. We use induction of the
inductive definition of Set . If s is empty, we are done since s(x) is false. Assume
that
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s = a � b

where b : Set(T ) and a : T . By assumption, s(a) or ∃x ∈ b · f . If the former, then
since x : T, s(x) 	 φ, we are done. Assume that ∃x ∈ b · f . We know that x :
T, b(x) 	 φ. By induction, φ. In either case we have the result. For the introduction
rule, assume the premises. Again, we use induction. s cannot be empty, so we may
assume that

s = a � b

where b : Set(T ) and a : T . We have t = a or t ∈ b. If t = a then we are finished
by the specification of the existential quantifier, and if t ∈ b, we are finished by the
induction hypothesis.�

The only thing that prevents finite schemata from behaving as finite sets is its
inherited notion of equality, i.e., the one it inherits from schemata in general. The
following introduces an extensional equality relation on finite schemata, again by
recursion on their structure.

Example 241 (Extensional Equality)

E QST

y : Set(T ), z : Set(T )

∀x ∈ y · z(x)
∀x ∈ z · y(x)

So that equality for finite schemata is given in terms of their membership; i.e., they
are the same when they apply to the same objects. We shall write this in standard
infix notation; i.e.,

E QST (a, b) � a =T b

These notions satisfy the following. The proof is straightforward.

1. E QST is an equivalence relation.
2. ∀y : Set(T ) · ∀z : Set(T ) · y = z → ∀x : T · x � y = x � z

We can thus mimic all the set operations that we delivered earlier. In particular,
we have
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Example 242 (Simple Union)

Union

u : Set(T ), v : Set(T ), w : Set(T )

(v = ∅ ∧ w = u)
∨
∃x : T · ∃y : Set(T ) · v = x � y∧
∃z : Set(T ) ·Union(u, y, z) ∧ w = x � z

Our final example uses numbers and sets.

Example 243 (Size of a Set)

||

u : Set(T ), z : N

u = ∅ ∧ z = 0
∨
∃x : Set(T ) · ∃y : T · y /∈ x ∧ u = y � x ∧ z = |x |
∨
∃x : Set(T ) · ∃y : T · y ∈ x ∧ u = y � x ∧ z = |x | + 1

There are many other forms of such recursive types that have been introduced to
handle reasoning about programs. Many of these schemes have recursive interpre-
tations, but not all.
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Chapter 16
Recursive Functions

In many applications recursive functions are the natural tool of specification. For
example, in computability theory [1], [3] and formal number theory [2], they
are fundamental. Indeed, without much loss of elegance, transparency, and proof-
theoretic ease, it is hard to see how it could be recast in relational form.

Since recursive functions are a special form of recursive relations, we ought to be
able to justify their addition as a special case of the addition of recursive relations.
We can, but matters are a little involved. Establishing that a recursive relation is
single-valued and/or total is somewhat more complex in the recursive case. And
generally, we need to use induction. We shall study various styles of recursive
definition. Our first examples deal with standard recursive and iterative styles of
recursion that are derived from computability theory, including primitive recursion,
and a general form of iteration. We shall then move on to consider more general
examples.

16.1 General Form

Our general form of recursive function specification is derived from the following
simple observation that provides a sufficient condition for functionality; i.e., if the
defining predicate of the schema preserves functionality, the whole schema is func-
tional.

Lemma 244 (Functionality) Given

F � [x : I, y : I | φ[F, x, y]]

and

ι[x, y] � (∀z : I · F(x, z) → y = z)

and

∀x : I · ∀y : I · φ[ι, x, y] → ι[x, y]

then F is functional.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 16,
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Proof We use the induction scheme for F with the following proposition.

ι[x, y] � ∀z : I · F(x, z) → y = z

The premise of the induction schema is satisfied by assumption, and so we have

∀x : I · ∀y : I · F[x, y] → ι[x, y]

This yields ∀x : I · ∀y : I · R[x, y] ∧ R[x, z] → y = z.�
Now consider the following apparently single-valued relation F .

∀x : I · (Dom F)(x) → (F(x) = t[F(s), x]) (1)

where F(s) occurs somewhere in t . We say “apparently”, since although it is defined
by explicit function definition, it involves a recursion, and this must be justified. (1)
can be easily generalized to allow for many-place function symbols, and to cater
for several occurrences of F . But for expositional purposes, we concentrate on this
simple case where we assume that F occurs as a function symbol; i.e., it occurs
somewhere in the form F(s), where x : I, v : I 	 t[F(s)/v, x] : I.

In order to show that the addition of such functions is conservative, we need
to indicate how they are to be eliminated in favor of recursive relations. To begin
with, observe that using our translational means (∗) for the removal of functional
application, (1) unpacks to the following relational form.

∀x : I · (Dom F)(x) → ∃y : I · F(x, y) ∧ ∃z : I · F(s, z) ∧ y = t[z, x] (2)

This unwraps to the following recursive relation specification.

F � [x : I, y : I | ∃v : I · F(s, v) ∧ y = t[v, x]] (3)

Now we have to check that such a specification generates a function.

Proposition 245 The relation F given as

F � [x : I, y : I | ∃v : I · F(s, v) ∧ y = t[v, x]]

satisfies the conditions of the functionality lemma.

Proof We have to show that

∀x : I · ∀y : I · (∃v : I · ι(s, v) ∧ y = t[v, x]) → ι(x, y)

So assume that x : I, y : I, v : I , and ι(s, v)∧ y = t[v, x]. Further assume that z : I
and F(x, z).Then we know that for some u : I , we have F(s, u) ∧ y = t[u, x]. But
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by assumption, ι(s, v) and so u = v. But then we have y = t[v, x] = y = t[u, x]
and so ι(x, y).�

Consequently, we have

∀x : I · ∀y : I · Dom(F)(x) → (F(x) = y ↔ ∃v : I · F(s) = v ∧ (y = t[v, x])

i.e.,

∀x : I · Dom F(x) → F(x) = t(F(s), x)

We shall abbreviate Dom F(x) → F(x) = t(F, x) as

F(x) � t(F, x)

so that (1) takes the form

∀x : I · F(x) � t(F, x)

Effectively, � denotes partial equality (i.e., where the right-hand side is defined, so
is the left and equal to it).

We can generalize this setting as follows. Suppose that

G : S(S(I ⊗ I ), S(I ⊗ I ))

Further suppose that G is functional; i.e.,

Fun(G, S(I ⊗ I ), S(I ⊗ I ))

(but not necessarily total) and it preserves functions; i.e.,

∀ f : S(I ⊗ I ) · Fun( f, I, I ) → Fun(G( f ), I, I )

Then we have

∀x : I · F(x) � G(F)(x) (4)

where

t(F, x) = G(F)(x)

F is the least solution of (1) in the sense of the guaranteed induction scheme; i.e., it
is an instance of a fixed-point operator that is the least, in the sense of the induction
principle, function that satisfies (1).

In the next few sections we shall illustrate the use of these ideas in a variety of
different cases. We shall work within extensions of the theory SCR.
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To begin with, we employ a somewhat forgotten formulation of recursion. Mc-
Carthy introduced a way of defining recursive functions that may be taken to apply
to any type.

Example 246 (Conditional Expressions) We work within any extension of the theory
SCR. The following provides a specification of a partial recursive function over a
type T .

F(x) ≈ b1(x) → t1[x, F], b2(x) → t2[x, F], ..., bn(x) → tn[x, F]

Here we put

t[x, F]
.= b1(x) → t1[x, F], b2(x) → t2[x, F], ..., bn(x) → tn[x, F]

This is a version of McCarthy’s conditional expressions.

16.2 Numerical Recursion

We first apply the general result to the standard theory of recursive functions over
the natural numbers. This yields the Church computable functions. Our first example
allows the specification of multiplication from addition.

Example 247 (Multiplication) We put

t[x, y, F] � y = 0 → x, x + F(x, y − 1)

We need to check that this generates a recursive function that satisfies

F(x, y) = y = 0 → x, x + F(x, y − 1)

We can rewrite the recursion in standard form as a pair of recursion equations as
follows.

F(x, 0) = x

F(x, y+) = x + F(x, y)

This can be generalized to yield the schema of primitive recursion.

Example 248 (Primitive Recursion) Suppose that h : S(N n+2 ⊗ N ) and g : S(N n ⊗
N ) are total functions from N n+2 to N and N n to N , respectively. Then consider the
term

t[x1, ..., xn, y, F] � y = 0 → g(x1, ..., xn), h(x1, ..., xn, y, F(x1, ..., xn, y − 1))

This generates the standard representation of primitive recursion, viz.
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F(x1, ..., xn, 0) = g(x1, ..., xn)

F(x1, ..., xn, y + 1) = h(x1, ..., xn, y, F(x1, ..., xn, y))

We can go further and bring partial functions into play by the use of the classical
minimization operator of recursive function theory.

Example 249 (Minimization) Given a binary numerical total function f : S(N⊗N ),
the minimization operator returns a unary function g that, given an input x , returns
the smallest number y for which f (x, y) = 0. We put

t(x, n, F) = f (x, n) �= 0 → F(x, n+), n

The function is normally defined as

g(x) = F(x, 0)

where F(x, n) = f (x, n) �= 0 → F(x, n+), n

These two, together with the appropriate basic functions, generate all the Turing
computable functions. We can also move up the type levels. Recall the following
example.

Example 250 (Functionals of Finite Type)

R

u : type, x : u, f : S(N ⊗ (u ⊗ u)), y : N,z : u

y = 0 ∧ z = x
∨

y �= 0 ∧ ∃w : u · R(u, x, f, pred(y), w) ∧ f (pred(y), w)

On the assumption that f is functional, it is provable by induction that R is
functional and satisfies

R(u, x, f, 0) = x

R(u, x, f, y+) = f (y, R(u, x, f, y))

This yields the standard notion of Gödel’s functionals of finite type.

16.3 Recursive Functions and Inductive Types

Inductive types give rise to a notion of recursive function that follows the structure
of the type. In order to illustrate matters, we employ the following type of binary
trees.



182 16 Recursive Functions

A type

T ree(A) t ype

a : A

Node(a) : T ree(A)

a : A b : T ree(A) c : T ree(A)

Branch(a, b, c) : T ree(A)

∀z : A · φ[Node(z)]
∀z : A · ∀x : T ree(A) · ∀y : T ree(A) · (φ[x] ∧ φ[y]) → φ[Branch(z, x, y)]

∀x : T ree(A) · φ[x]

Proposition 251 The following principles of recursion can be derived via the in-
duction rule.

z : A 	 g(z) : C
z : A, x : T ree(A), y : T ree(A), u : C, v : C 	 F(z, x, y, u, v) : C

x : T ree(A) 	 rec(x, g, F) : C

z : A 	 g(z) : C
z : A, x : T ree(A), y : T ree(A), u : C, v : C 	 F(z, x, y, u, v) : C

z : A 	 rec(Node(z), g, F) = g(z)

z : A 	 g(z) : C
z : A, x : T ree(A), y : T ree(A), u : C, v : C 	 F(z, x, y, u, v) : C
z : A, x : T ree(A), y : T ree(A)

rec(Node(z, x, y), g, F) = F(z, x, y, rec(x, g, F), rec(y, g, F))

Proof We have to justify the existence of rec as a function. For this we have to show
that the recursive relation given as

R

x : I, z : C

∃y : A · x = Node(y) ∧ z = g(y)
∨

∃x1 : I · ∃x2 : I · ∃y : A · w = node(y, x1, x2)∧
∃u : C · ∃v : C · R(x1, u) ∧ R(x2, v)∧

F(y, x1, x2, u, v, x, z)

is functional. We use the induction scheme for R with the following proposition.

φ[x, u] � ∀v : C · R(x, v) → u = v

The proof is then routine.�
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A further simple example is afforded by the following, more interesting, notion.

Example 252 (Higher Types) We specify

F

x : N , z : type

x = 0 ∧ z = N
∨

∃y : N · ∃u : type · x = y+ ∧ R(y, u) ∧ z = S(u)

This is functional, and leads to a recursive function that satisfies

F(0) = N

F(n+) = S(F(n))

There are many other obvious examples, but we shall return to this topic at several
places in the rest of the book and, in particular, in our treatment of programming lan-
guage semantics.Cutland, N. Computability: An Introduction to Recursive Function
Theory. Cambridge. 1990.
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Chapter 17
Schema Definitions

Schema specifications are intended to articulate the required relationship between
the input and output of a program. But are there conditions that we might wish to
impose upon a program that they cannot express? More generally, are there aspects
of computable modeling that such specifications cannot accommodate? In this chap-
ter we shall explore this issue. On the face of it there are several different reasons
why we might wish to go beyond schema specifications.

For one thing, it is often more convenient and natural to employ, at least ini-
tially, a definition that is not �. For example, the simplest definition of the greatest
common divisor of two numbers demands that the GCD is greater than all common
divisors. And, the naive formulation of this is not �. However, such a characteri-
zation is the obvious one, and the one that requires the least knowledge of number
theory. Indeed, in general, with the expressive power of the full language available,
such non-� definitions are often less syntactically complex. So one argument for
their employment is that they enable more obvious definitions that demand less
knowledge of the underlying theory.

A second reason stems from the fact that certain properties that we wish to im-
pose upon a specification go beyond the simple relationship between input and out-
put. Instead, they are properties of the relation as a whole, properties of the actual
schema as an object. And these properties may not be � properties. Indeed, we
have already encountered some obvious examples of this; e.g., the demand that a
relation be a total function falls into this category. Properties of schemata such as
monotonicity and compactness provide other examples. In other words, we shall
need to express properties of specifications that are not �, and the natural way of
packaging such type and predicate information is via the following idea.

17.1 Schema Definitions

To incorporate these considerations, we extend our schema notation to allow for the
expression of a more general class of definitions. We immediately include precon-
ditions and permit definitions of the form

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 17,
C© Springer-Verlag London Limited 2009
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R � [x : I, y : O | π [x]; φ[x, y]]

where π, φ may not be � propositions. To distinguish matters, we shall call these
more general definitions schema definitions rather than schema specifications. The
latter are a special case.

Definition 253 (Schema Definitions) Suppose that T is any TDT. Further suppose
that

x : I, π [x], y : O 	T φ[x, y] prop R0

Then the schema definition

R � [x : I, y : O | π (x); φ[x, y]] (Preschema)

is taken to introduce a new relation (R), not necessarily �, that is governed by the
following axioms.

x : I, π (x), y : O 	 R(x, y) prop R1

∀x : I · ∀y : O · π (x) → (φ[x, y] → R(x, y)) R2

∀x : I · ∀y : O · π (x) → (R(x, y) → φ[x, y]) R3

Let TR be the theory obtained from T by the addition of a new relation symbol (R)
that is governed by these axioms.

The new relation is not � unless both π and φ are. However, the addition of such
relations is still conservative, and the proof is identical.

Theorem 254 Suppose that �, � do not contain R. Then

� 	TR � implies � 	T �

Our definitions of totality and functionality extend to definitions without
change. Moreover, for those relations F that are functional, we can conserva-
tively add application, i.e., app(F, a). Indeed, the whole development proceeds as
before.

We now provide some simple examples of schema definitions. These are in-
stances where, arguably, the obvious definition is not �. The first is the one already
alluded to; it is the standard definition of the greatest common divisor.
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Example 255 (GCD)

GC D

x : N , y : N , z : N

C D(x, y, z)
∧

∀u : N · C D(x, y, u) → u ≤ z

This seems like the natural way of writing the GCD of two numbers. It simply
states that z is a common divisor of x and y and that any other CD is less than or
equal to z. However, it is not �.

Our next example is along similar lines, but it is a little more complicated. It
involves the concept of a Hamming number.

Example 256 (Hamming Numbers)

Ham(n)

n : N

∀x : N · (Prime(x) ∧ Divides(x, n)) → x = 2 ∨ x = 3 ∨ x = 5

In number theory, these numbers are called 5-smooth because they can be charac-
terized as having only 2, 3, or 5 as prime factors. They are a specific case of what are
called k smooth numbers, those sets of numbers that have no prime factors greater
than k. Again, this is a schema definition that is not a specification.

Our next few examples are taken from finite set theory.

Example 257 (Subset)

⊆T

x : Set(T ), y : Set(T )

∀z : T · z ∈ x → z ∈ y
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This is the standard definition and the only one that could be expressed without
the use of the bounded set quantifiers. And it is not �. The next is a simple definition
of generalized union. The reader who recalls the original will see immediately that
the following is standard, more succinct, and more elegant.

Example 258 (Generalized Union)

∪T

u : Set(Set(T )), w : Set(T )

∀x : T · x ∈ w ↔ ∃v ∈ u · x ∈ v

The last is even more convincing in terms of its relative simplicity. Indeed, it is
the normal definition of power set; i.e., a set is in the power set of another iff it is a
subset of it. You will recall that the original was an inductive definition that followed
the inductive structure of the underlying set.

Example 259 (Power Set)

Pow

x : Set(T ), y : Set(Set(T ))

∀z : Set(T ) · z ∈ y ↔ z ⊆ x

A number of other examples may be marshalled to demonstrate the need for
non-� specifications [4]. Some are subtly different in nature to those presented here.
However, they all succume to the analysis we shall offer. Some of the replacements
suggested here can be found in [2], [3]. In these papers, one can also find some
further discussion of the issues.

While these definitions are not �, they have the merit of requiring little knowl-
edge of the underlying theories of numbers/sets. But how exactly are they related
to schema specifications? This brings the second topic of this chapter into play:
Eventually, we shall show that these can all be refined, in the following sense, to
schema specifications.

17.2 Refinement

In the formal paradigm for program development, programs are obtained from spec-
ifications via refinement, in the sense of [7], [6]. Via a sequence of refinement
steps, a specification is massaged into a program. However, this process does not
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necessarily begin with schema specifications: It may begin with schema definitions;
i.e., arbitrary propositions are permitted in definitions and the refinement process
moves them closer and closer to actual implementations [5].

Fortunately, we are not concerned with the whole gambit of the process from
definition to program, but only with the move from schema definitions to schema
specifications. That is, we are interested in how refinement can be employed to
bridge the gap between schema definitions and specifications. Theoretically, this is
a crucial step.

We begin with the general notion of refinement. According to the following, a
relation S, viewed as an operation, is a refinement of another R if

(i) when R is applicable, so is S,

(ii) when R is applicable but S is applied, the result is consistent with R being
applied.

Definition 260 Let R and S be two schema definitions with preconditions

R � [x : I, y : O | π [x]; φ[x, y]]

S �
[

x : I, y : O | π ′
[x]; φ

′
[x, y]

]

Then we shall say that S is a weak refinement of R iff

∀x : I · π [x] → π
′
[x] (1)

∀x : I · ∀y : O · φ ′
[x, y] → φ[x, y] (2)

We shall say that S is a strong refinement of R, written as R �s S, iff it is a weak
refinement and

∀x : I · ∀y : O · φ[x, y] → φ
′
[x, y] (3)

Refinement encapsulates the standard ideas of weakening the precondition and
strengthening the postcondition; i.e., where applicable, the postcondition of the new
relation implies the postcondition of the old. We may extend the definition to def-
initions without preconditions by taking the precondition to be a tautology; i.e.,
x =I x .

Lemma 261 Refinement and strong refinement are reflexive and transitive.

Refinement also supplies us with a notion of schema equivalence; i.e., equivalent
relations refine each other.

Definition 262 Let R and S be two schema definitions where

R � [x : I, y : O | π [x]; φ[x, y]]

S �
[

x : I, y : O | π ′[x]; φ′[x, y]
]

We shall say that R and S are equivalent, written R ≡ S, iff R � S and S � R.
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This goes beyond strong refinement in that it demands that both the precondi-
tions and postconditions are logically equivalent. The following tells us that schema
equivalence can function as a notion of equality for schemata.

Proposition 263 Let R and S be two schema definitions where

R � [x : I, y : O | π [x]; φ[x, y]]

S �
[

x : I, y : O | π ′
[x]; φ

′
[x, y]

]

Then

ψ[S] prop R ≡ S ψ[R]

ψ[S]

is derivable.

Proof Assume that R ≡ S and φ[R]. Then, by equivalence, we know that the pre-
conditions of R and S are logically equivalent as are their postconditions. It follows,
by induction on the structure of φ, that R and S are interchangeable. �

This notion of equivalence will play a role shortly; i.e., many of our schema
definitions are equivalent to their original schema specifications. We first observe
that there are some general aspects that relate the notions of totality and functionality
to refinement.

Proposition 264 Assume that

R � [x : I, y : O | π [x]; φ[x, y]]

S �
[

x : I, y : O | π ′
[x]; φ

′
[x, y]

]

Then we have the following.

1. If ∀x : I · π [x] ↔ π
′
[x], then if R � S and S is total, then so is R.

2. If ∀x : I · π [x] ↔ π
′
[x], then if R � S and R is functional, then so is S.

Proof They are both immediate from the definitions. �
Where there are no explicit preconditions, there is an alternative way of defining

refinement: We employ the domain of the relations as the precondition.

Definition 265

R � [x : I, y : O | φ[x, y]]

S �
[

x : I, y : O | φ ′
[x, y]

]

Then we may take S to be a domain refinement of R iff ̂R �̂S
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This unpacks to the following.

∀x : I · Dom R(x) → DomS(x)[x]

∀x : I · Dom R(x) → ∀y : O · φ ′
[x, y] → φ[x, y]

And this agrees with the definition of refinement for schemata given in [6].

17.3 Implementable Definitions

We can now use refinement to connect our notions of schema definition and schema
specification. The basic idea is clear: Starting with a schema definition, via re-
finement, we need to end up with a schema specification. This is captured in the
following.

Definition 266 We shall say that a schema definition

R � [x : I, y : O | π [x]; φ[x, y]]

is implementable iff it can be strongly refined to a schema specification.

Implementable relations, restricted to their pre-conditions, are logically equiv-
alent to schema specifications. We demonstrate that the examples, marshalled to
indicate the need for schema definitions, are all, in the above sense, implementable.

Example 267 (Greatest Common Divisor)

GC D

x : N , y : N , z : N

∀u < Min(x, y) · C D(u, x, y) → u ≤ z

The relation C D(u, x, y) is �. So the implication C D(u, x, y) → u ≤ z can be
replaced by ¬C D(u, x, y) ∨ u ≤ z. Hence, the definition is equivalent to a � one.
The observation that makes this work is that any common divisor must be smaller
than the minimum of x, y. Thus, the two predicates are equivalent in arithmetic. But
one needs to know a little bit about number theory (or maybe just about numbers) to
make this observation. On the other hand, presumably, one has to know this much
in order to implement it correctly.
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Example 268 (Hamming)

Ham(n)

n : N

∀k < 6 · (Prime(k) ∧ Divides(k, n)) → k = 2, 3, 5

This is a specification of the Hamming numbers. The obvious numerical knowl-
edge enables one to reduce the definition to a specification.

We have already seen that each of the set-theoretic examples is implementable.
However, to draw out some issues, consider again the original specification of
power set.

Example 269 (Power Set)

Pow

x? : Set(T ), y! : Set(Set(T ))

∀x ∈ v · u � x ∈ z
∧
∀y ∈ z · ∃x ∈ v · y = u � x

This does indeed demand some knowledge of the theory of sets, specifically, that
it is an inductive theory generated by adding an element to an existing set. But it
is certainly not the standard definition. It only works because the set theory is an
inductive theory.

Although most of these examples can be quite straightforwardly rewritten as �
specifications, the rewriting does require some knowledge of the underlying base
theory, e.g., some knowledge of number theory or set theory.

17.4 The Limits of Refinement

Of course, not all schema definitions are implementable. Although it could be more
precisely coded, it should be clear that if the following were implementable, we
would be able to effectively solve the halting problem [1].
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Example 270 (Halting Problem)

Halt

i? : N
o! : Bool

Ti (i) ↓ ∧ o = 0
∨

¬( Ti (i) ↓ ) ∧ o = 1

where Ti (i) ↓ says the Turing machine with code i halts on input i .

Let Halt be implementable via S. Since the precondition of Halt is true, we can-
not weaken it. Hence, being �, we may use S to enumerate the pairs i : N , o : Bool
that satisfy the postconditions of S/Halt. For any pair, eventually it will appear,
and so we have a decision procedure, i.e., a solution to the halting problem. And so
the assumption that Halt is implementable must be false.

17.5 Properties of Schemata

Some properties of schemata do not determine the input/output of a program; they
articulate properties of the relation determined by the input/output pairing. The
following are the familiar definitions of functionality and totality cast as schema
definitions.

Definition 271 (Functionality)

FunXY

�
[ f : S(X ⊗ Y ) | ∀x : X · ∀y : Y · ∀z : Y · f (x, y) ∧ f (x, z) → y = z]

T otXY � [ f : S(X ⊗ Y ) | ∀x : X · ∃y : Y · f (x, y)]

T FXY � [ f : S(X ⊗ Y ) | ∀x : X · ∃!y : Y · f (x, y)]

These properties are now more elegantly expressed. They may well enter into
schema definitions in that we may wish to impose the constraint that a particular
relation preserve them; i.e., although they are not �, they do seem to be something
we may wish to employ in the process of specification. However, they need to be
appropriately placed in the process. To illustrate matters, consider the following
definition of functional composition.
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Definition 272 (Functional Composition)
◦Fun

f : S(X ⊗ Y ), g : S(Y ⊗ Z ), h : S(X ⊗ Z )

Fun( f ) ∧ Fun(g);
h = [x : X, z : Z | z = g( f (x))]

This may be refined by dropping the functional condition that insists on func-
tionality, i.e., by the standard specification of composition for schemata. How-
ever, where the precondition bites, the two postconditions are equivalent. So the
schematic version strongly refines the functional one. We shall see another example
of this later.

Of course, not all schema definitions are for the purposes of program specifi-
cation. Some are there to state properties of schema that are to be used for math-
ematical purposes. The following are some examples of properties or relations on
schemata that are clearly not intended to form part of any program specification.
They are the schema definition versions of schema inclusion, monotonicity, and
compactness. Their role is mathematical.

Definition 273 (Monotonicity and Compactness)

⊆X � [ f, g : S(X ) | ∀x : X · f (x) → g(x)]

MonX � [h : S(S((X )) | ∀ f : S(X ) · ∀g : S(X ) · f ⊆ g → h( f ) ⊆ h(g)]

Com X � [h : S(S(X )) | ∀ f : S(S(X )) · h(∪ f ) ⊆ ∪h( f )]

While schema definitions are a mathematical luxury rather than a necessity,
they do clarify, and facilitate, the use and role of noncomputable properties in
specification.
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Chapter 18
Computable Ontology

So far, our only explicitly declared example of a computable model involved the
specification of a simple software system. This kind of structure consists of lit-
tle more than a suite of interconnected specifications. While an example of what
we mean by a computable model, it is not a very theoretically exciting one. The
specifications are mathematically rather parochial. And although such systems may
employ some variation on our notion of schema definition, they rarely have much
theoretical interest. Our objective in this chapter is to take us a little beyond such
systems. More exactly, we shall provide a more theoretically demanding and inter-
esting example of a computable model.

In particular, thus far we have not examined any models that are not normally
subject to computable modeling. Many of these employ some portion of set theory.
And, on the face of it, many are not obviously capable of being given a computa-
tional makeover. For example, a standard approach to the mathematical represen-
tation of time and events employs an underlying set-theoretic foundation in which
instants are modeled as infinite sets of overlapping events. While there are many
other examples where set theory underlies the mathematics, and we shall provide
a few more as we proceed through the book, this one is relatively easy to repro-
duce. In this chapter we shall study this application not just for its own sake, but
as an illustration of the construction of more theoretically thrilling instances of the
computable modeling process.

18.1 Implementable Models

In particular, by extending the idea of implementation to include schema definitions
that can be refined to schema specifications, we induce a corresponding generaliza-
tion of the notion of a computable model, a generalization that includes collections
of scheme definitions, each of which is implementable

In this extended guise, an implementable model is to consist of the following:

• a collection of schema definitions and specifications;
• a collection of refinements and their associated proofs that link each schema def-

inition with its corresponding implementing specification.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 18,
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This structure will be found in all of our examples. So, even at the level of the
model description, there is some mathematical work to be done; i.e., proofs of re-
finement have to be provided.

18.2 A Type of Events

We shall illustrate this structure in the following simple case study in computable
ontology in which we develop a computable model of events and time. We begin
with the data type of events. Although there are many possible ways of introducing
events, the following is quite elegant [1], [3], [2]. Our goal here is to explore some
of the consequences of a computational makeover of this standard theory of events
and time.

To begin with, we introduce a basic type of events, E. This is given with two
basic relations:

• ≺ an ordering of temporal precedence on events: e1 ≺ e2 asserts that e1 happens
before e2;

• © a relation of temporal overlap: e1 © e2 asserts that e1 overlaps e2.

The data type of events is then determined by the following rules.

Definition 274 (Events)

V1 E t ype V2
e1 : E e2 : E
e1 ≺ e2 prop

V3
e1 : E e2 : E
e1 © e2 prop

V4
e1 ≺ e2

¬(e2 ≺ e1)

V5
e1 ≺ e2 e2 ≺ e3

e1 ≺ e3
V6

e1 © e2

e2 © e1

V7 e1 © e1 V8
e1 ≺ e2

¬(e1 © e2)

V9
e1 ≺ e2 e2 © e3 e3 ≺ e4

e1 ≺ e4

These postulates are the obvious ones for any notion of event with temporal op-
erators for precedence and overlap. The rules (V1) guarantee that E is a type and
(V2, V3) that temporal precedence and overlap form propositions over events. V4

demands that precedence is not symmetric, while V5 insists that it is transitive. On
the other hand, V6 insists that overlap is symmetric, V7 that it is reflexive, and V8
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that precedence precludes overlap. The last relates the two relations: Precedence is
still transitive when it is interrupted by an overlap.

Both relations are taken to be decidable in the resulting theory. So we also have
the following rules.

V10
e1 : E e2 : E
e1 ⊀ e2 prop

V11
e1 : E e2 : E

e1 ⊀ e2 ↔ ¬(e1 ≺ e2)

V12
e1 : E e2 : E
e1 � e2 prop

V13
e1 : E e2 : E

e1 � e2 ↔ ¬(e1 © e2)

The type of events E is thus given by rules V1-V13. This gives us a minimal theory
of events.1

Definition 275 (Theory of Events) This is the theory whose basic type is E and
that is closed under products and schema formation, i.e., the theory

Th(E, ⊗ , S)

This is our basic framework and it will be enough to illustrate some of the issues
involving refinement in model construction. But first we must check that there is an
arithmetic interpretation.

18.3 Arithmetic Interpretation

There are standard arithmetic models of this structure. For example, events may be
modeled as ordered pairs of numbers

[n, m]

where n ≤ m. The ordering and overlap relations on events may then be defined as

[n, m] ≺ [n′, m ′] � m < n′

[n, m] © [n′, m ′] � (n ≤ n′ ≤ m) ∨ (n′ ≤ n ≤ m ′)

It is straightforward to check the rules.

1 It can be extended with axioms such as the following.

e1 : E e2 : E e3 : E
e1 ≺ e2 ∨ e1 © e2 ∨ e2 ≺ e1

But this is more controversial. It is argued in that it is not always possible to delineate events
precisely enough to guarantee its truth. In any case, whatever decision is taken over this, it is not
relevant to the present reconstruction.
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18.4 Instants

The second notion of our ontology (instants) is not primitive but is defined. It is here
where our treatment differs from the set-theoretic one. In the traditional approach,
instants are introduced as maximally overlapping sets of events. We aim to mimic
this construction. We do so using the data type of events and schemata. We introduce
instants as properties of events that are maximally overlapping.

Definition 276 (Instants)

I nstant

i : S(E)

∀x : E · ∀y : E · i(x) ∧ i(y) → x © y
∧

∀x : E · i(x) → ∃y : E · ¬i(y) ∧ ¬(x © y)

This is a schema definition; instants are not � properties of events. We shall
return to its implementation later. For the moment, we push the theory forward and
introduce a temporal ordering on instants. The following is the schema definition of
the ordering.

Definition 277 (Ordering)

<

i : S(E)
j : S(E)

I nstant(i) ∧ I nstant( j);
∃x : E · ∃y : E · i(x) ∧ i(y) ∧ x ≺ y

Instants are introduced as preconditions. According to the above, one instant
precedes another if there exist two event members of the corresponding instants
that precede each other; i.e., the instant ordering is defined in terms of the event
ordering. Note that this is an ordering on instants and their specification is not �.
Consequently, this is not a � specification.

It is then easy enough to show simple properties such as the transitivity of this
relation.
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18.5 Implementation

The only notions that are not � are the definitions of instant and instant ordering.
However, we can implement I O by dropping the precondition requirement in the
specification of instants.

Example 278 (Ordering)

<

i : S(E)
j : S(E)

∃x : E · ∃y : E · i(x) ∧ i(y) ∧ x ≺ y

(I I O)

This new relation is � and is a refinement of the original, and so the latter is
implementable.

All this is a sketch of a computational theory of events and time. It has a very
different flavor to the early theories of intervals and time that found their way into
the literature on artificial intelligence. These theories were based upon standard data
structures but with no axiomatization. [2] provides a rich source for formal theories
of periods, events, and points. Indeed, a topic of some interest might be to develop
a more complete formal ontology. For example, we might add a type of Individuals
I and a type of propositions P

Th(I, P, E, ⊗ , S)

where presumably I is a basic type and P is taken to be closed under the logical
connectives and quantifiers. But we shall pursue this on another occasion.

This case study illustrates how noncomputational properties of data items, in
collaboration with refinement, can play a role in computational modeling. There is
much more to say on this topic, and especially with regard to the applications of
these issues to computational real analysis and programming language semantics.
And we shall get to them later.
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Chapter 19
Classes

Classes form a natural accompaniment of schema definitions.1 They extend the
separation constructor to arbitrary propositions. In particular, they support the defi-
nition of a class of functions. This will facilitate the direct specification of operations
on functions. And, even though in the end we will shall have to furnish an imple-
mentation, classes will greatly increase the range and application of our notion of
computable model.

Of course, classes cannot be taken as types since the latter are required to have an
interpretation as recursively enumerable sets. Consequently, classes must be added
as a new layer of objects. Moreover, we shall require classes to combine with the
other classes to form new ones. This has some impact upon the underlying frame-
work of the theory. However, although there is a substantial increase in expressive
power, the addition of classes is conservative. So we gain expressive power but
maintain our recursive models.

19.1 Classes and Judgments

To facilitate the expression of these ideas, we must add a new judgment to the effect
that something is a class, i.e.,

C class

The new judgment is governed by the following rules.

C1
T type

T class
C2

T1 class, ..., Tn class

Oi (T1, ..., Tn) class

1 This use of the term class follows the standard terminology for naming notions that stand on top
of other notions of classification [2], [1]. It is not to be confused with the classes of object-oriented
programming languages.
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where Oi is any type operator of the background theory Th(O1, ..., Ok). C1 guar-
antees that any type is a class and C2 insists that classes are closed under the type
constructors of the given background theory. Of course, such a judgment would
be vacuous without the presence of a constructor that generates classes in the first
place. Here we employ separation for arbitrary propositions. This is governed by the
normal rules for separation, the ones we introduced for separation types, but now
the propositions are not restricted to � ones. For convenience, we keep the same
names as before.

Sep0
x : T 	 φ prop

{x : T | φ} class

Sep1
x : T 	 φ prop a : T φ[a/x]

a : {x : T | φ}

Sep2
a : {x : T | φ}

a : T

Sep3
a : {x : T | φ}

φ[a/x]

In addition, we have to extend our other rules to allow for classes. To begin with,
we need to generalize the structural rules. They are identical to the type rules, which
are now special cases.

A1
� 	 C class

�, x : C 	 x : C

W1
�, � 	 � � 	 C class

�, x : T, � 	 �

W2
�, � 	 � � 	 φ prop

�, φ, � 	 �

Many of the other rules also need to be extended. The relevant ones are the
following.

E1
� 	 t : C � 	 s : C

� 	 t =C s prop
E2

� 	 t : C

� 	 t =C t

E3
� 	 t =C s � 	 �[t/x]

� 	 �[s/x]

L18
�, x : C 	 φ prop

� 	 ∃x : C · φ prop
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L19
� 	 φ[t/x] � 	 t : C �, x : C 	 φ prop

� 	 ∃x : C · φ

L20
� 	 ∃x : C · φ �, x : C, φ 	 η

� 	 η
L21

�, x : C 	 φ prop

� 	 ∀x : C · φ prop

L22
�, x : C 	 φ

� 	 ∀x : C · φ L23
� 	 ∀x : C · φ � 	 t : C

� 	 φ[t/x]

Given the background theory Th(O1, ..., Ok), we shall call the resulting class
theory

Thclass(O1, ..., Ok)

Our first and most important example of class formation is determined by the
functions of the theory. This class is given as follows.

Example 279 (Function Class) In the theory

Thclass(N, DP, S, type)

let C and D be classes. We define the class of functions from C to D as follows.

C � D � { f : S(C ⊗ D) | ∀x : C · ∃!y : D · f (x, y)}

We shall study this example in some detail in the next chapter. And in a later one,
the following class of computable real numbers will take center stage.

Example 280 (Computable Reals)

R � { f : N � Q · ∃z : N · ∀y � z · ∀x � z · | f (x) − f (y)| ≤ 1/z}

But, for the present, we put a little more formal flesh on our notion of class. We
shall assume that all the formal notions such as inclusion are extended to classes in
the exactly analogous way. We assume that we are working in the theory

Thclass(O1, ..., Ok)

Definition 281 For classes C, D, we define

C ⊆ D � ∀x : C · ∃y : D · x = y

We also need to examine the impact of classes on our notion of refinement.
We shall ignore preconditions since these can be expressed using separation types,
which are special cases of classes.
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Definition 282 Let R and S be two schema definitions, where in the following
C, D, E are classes.

R � [x : C, y : E | φ[x, y]]

S �
[

x : D, y : E | φ ′
[x, y]

]

S is a weak refinement of R, written as R � S, iff

C ⊆ D (1)

∀x : C · ∀y : E · φ ′
[x, y] → φ[x, y] (2)

This subsumes our notion of refinement since the class can now contain the pre-
condition.

19.2 Class Elimination

Classes are meant to be a luxury rather than a necessity. However complex the
resulting treatment, we must be able to get by without them. Of course, this is a
matter of taste and judgment: We would not want to get by with just numbers.
Nevertheless, technically it is essential that we have a recursive model. And this
is indirectly guaranteed by the following result. We show that any such theory is a
conservative extension of the base theory.

In the following we abbreviate

ThC = Thclass(O1, ..., Ok)

Th = Th(O1, ..., Ok)

Lemma 283 For each judgment of Thclass, there are judgments of Th such that

1. if � 	ThC C class, then �∗ 	Th C+ class and �∗ 	Th C−(x) prop,
2. if � 	ThC φ prop, then �∗ 	Th φ∗ prop and, if φ is �, so is φ∗,
3. if � 	ThC t : C, then �∗ 	Th t∗ : C+and �∗ 	Th C−(t∗),
4. if � 	ThC φ, then �∗ 	Th φ∗,
5. if � 	Th T type, then � 	Th t : T i f f � 	Th t∗ : T+,
6. if � 	Th φ prop, then � 	Th φ∗i f f � 	Th φ.

Proof We proceed as with the removal of separation types. The transformation re-
moves classes by removing the predicate information and places it in the predicate
of the schema definition. In particular, the classes are transformed in the same way
as separation types; i.e.,
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C∗ � (C+, C−) where

{x : C · φ}+ � C+

{x : C · φ}− (x) � C−(x) ∧ φ∗[x]

And, for the propositions, we need to say how quantification over classes is re-
moved, and this also follows the pattern of separation types.

(∃x : C · φ)∗ � ∃x : C+ · C−(x) ∧ φ∗

(∀x : C · φ)∗ � ∀x : C+ · C−(x) → φ∗

This removes all references to classes.�
Classes are a fiction, but a useful one. In particular, as we shall see, they play a

central role in our accounts of computable analysis and the definition of program-
ming languages.
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Chapter 20
Classes of Functions

In certain applications it is natural to work with the subclass of relations that are
functions, especially where the standard development of the theory employs func-
tions. Real analysis and functional programming are obvious examples. In this
chapter we consider a constructor that supports this, i.e., the class of functions from
one type to another. However, this constructor is not a type constructor but a class
generator. Consequently, it cannot enter into schema specifications; we may only
employ it in schema definitions. And it cannot be a member of type.

Fortunately, we have a technique for massaging such schema definitions into
specifications. More exactly, specifications involving the corresponding schema
type will emerge via class elimination and refinement. In particular, operations
over functions will be refined to operations acting over the whole of the containing
schema type.

We shall develop several computable models to illustrate this technique. One will
involve the specification of the computable real numbers and some of its associated
operations, specifically, real addition and multiplication. This will yield a class of
computable real numbers and initiate a version of computable analysis. In another
application we shall examine the semantics of programming languages. More ex-
actly, we shall treat the specification of a programming language as the construction
of a computable model.

These two applications will occupy the next two chapters. In this one we concen-
trate on putting the class constructor in place.

20.1 Function Application

Throughout this chapter we shall work in the theories

Th(N, DP, S, type)

ThC = Thclass(N, DP, S, type)

i.e., the where the base theory is generated by numbers, dependent products,
schemata, and a type of types. Within this framework we define the class of
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functions from one class to a second. Once in place, we shall explore the addition
of application as a built-in operator. Recall the following definition from the last
chapter.

Definition 284 (Function Class) Let C and D be classes in ThC. We define the
class of total functions from C to D as follows.

C � D � {F : S(C ⊗ D) | ∀x : C · ∃!y : D · F(x, y)}

In itself, this constructor is not that useful. It only becomes so when we add
application. Consequently, we enrich the theory ThC by the addition of application
that is taken to satisfy the following rules.

App1
F : C � D a : C

apply(F, a) : D
App2

F : C � D a : C

F(a, apply( f, a))

The first is the standard application rule and the second insists that, together, the
input and the result of the application satisfy the function when understood as a
relation. We shall call this theory ThCapply.

Proposition 285 In ThCapply the following holds.

F : A � B a : A b : B F(a, b)

b =B apply(F, a)

Proof We know there is only one such b : B such that F(a, b); and by App2, we
know that it is apply(F, a).�

More importantly, we know that adding application for functions is conservative.

Theorem 286 ThCapply is a conservative extension of ThC.

Proof We appeal to our original conservative extension result for the removal of
application. We have to take care of the presence of the type type and of the fact that
schemata are variable binders i.e., the cases where application occurs in class/type
terms and in schemata, but the same technique and argument work as in the theory
without the classes.�

Moreover, given the conservative nature of class addition, we have

Corollary 287 The Theory ThCapply is a conservative extension of Th.

From now on we shall drop the decoration and assume that ThC has application
built in. The following will prove useful.

Lemma 288 Let

R � [x : C, y : T | φ]

be any schema definition in ThCapply where φ is �. Then R is implementable.
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Proof By definition of refinement for schema definitions involving classes (i.e., by
weakening the contained precondition), we have that

[x : {x : C+ · C−(x)}, y : T | φ[x, y]]

is refined by

[x : C+, y : T | φ[x, y]]

This is a schema. It implements R.�

20.2 Specifications and Function Classes

We shall now provide a sequence of simple examples to illustrate the use of such
function classes. The early ones are familiar from our treatment of schemata. As we
proceed, we shall indicate their implementations.

Our first is a new definition of functional composition using classes. It is more
elegant than the one that employs preconditions.

Definition 289 (Functional Composition)

◦Fun

u : type, v : type, w : type
f : u � v, g : v � w, h : u � w

h = [x : u, z : w | z = g( f (x))]

If this is to form part of a computable model, we need to indicate how to imple-
ment it. But that is easy enough: We replace the classes by their underlying base
types and remove application.

Example 290 (Relational Composition)

◦Rel

u : type, v : type, w : type
f : S(u ⊗ v), g : S(v ⊗ w), h : S(u ⊗ w)

h = [x : u, z : w | ∃y : v · f (x, y) ∧ g(y, z)]
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We demonstrate that this is an implementation of functional composition. We first
remove the function classes. Notice we have not included the fact that the output is
functional, since this is derivable. We have to check that when the inputs are func-
tions, the predicate of ◦Rel is equivalent to that of ◦Fun′ . Assume T F( f, u, w) and
T F(g, v, w) and there is an h such that T F(h, u, w), which is their composition.
The following holds.

∀x : u · ∀z : w · ((∃y : v · f (x, y) ∧ g(y, z)) ↔ z = apply(g, apply( f, x))

This is immediate from the uniqueness properties of functions. The result now fol-
lows from the definition of refinement.�

Such examples involve only one level of function class construction. We now
consider cases that illustrate the use of higher-order function classes. The following
are some of the central combinators of combinatorial logic, which we have already
seen in relational form.

Example 291 (The Combinator S)

SFun

u : type, v : type, w : type
f : u � (v � w)
g : u � v

h : u � w

h = [x : u, y : w | y = f x(gx)]

This is implemented by the following schema specification: To get to it, we first
remove the function spaces. We then refine to the following specification, by remov-
ing application.

Example 292 (An Implementation of S)

SRel

u : type, v : type, w : type
f : S(u ⊗ S (v ⊗ w))
g : S(u ⊗ v)
h : S(u ⊗ w)

h
=

[x : u, z : w | ∃y : v · ∃w : S (v ⊗ w) · f (x, w) ∧ g(x, y) ∧ w(y, z)]
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Our last two examples are the standard Currying operation and its inverse, to-
gether with their refinements.

Example 293 (Currying)

Curr y

u : type, v : type, w : type
f : (u ⊗ v) � w

g : u � (v � w)

g = [x : u, h : (v � w) | h = [y : v, z : w | z = f (x, y)]]

This may be implemented as the following schema specification.

Example 294 (An Implementation of Currying)

Curr yspec

u : type, v : type, w : type
f : S((u ⊗ v) ⊗ w)
g : S(u ⊗ S (v ⊗ w))

g = [x : u, h : S (v ⊗ w) | h = [y : v, z : w | f (x, y, z)]]

The inverse operation and its specification are given as follows.

Example 295 (UnCurrying)

UnCurry

u : type, v : type, w : type
f : u � (v � w)
g : (u ⊗ v) � w

g = [x : u ⊗ v, z : w | z = f (x1, x2)]

This is refined by the following, where the function spaces are replaced with the
corresponding schema types.
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Example 296 (Implementation)

UnCurryspec

u : type, v : type, w : type
g : S(u ⊗ S (v ⊗ w))
f : S((u ⊗ v) ⊗ w)

f = [x : u ⊗ v, z : w | ∃h : S (v ⊗ w) · g(x1, h) ∧ h(x2, z)]

These examples clearly illustrate the implementation relationship between func-
tional definitions and their relational refinements. They demonstrate how oper-
ations that are restricted to functions can be extended to operations that oper-
ate over the whole of their containing schema type. But we do not lose any-
thing in the process since the operations preserve functions; i.e., functions in,
functions out.

20.3 Partial Functions

We now bring partial functions into the picture. This will prove necessary for our
treatment of programming language semantics. Specifically, the following class of
functions will prove essential to the latter.

Definition 297 Let C and D be classes in ThC. We define the class of partial func-
tions from C to D as follows.

C � D � {F : S(C ⊗ D) | ∀x : C · ∀y : D · ∀z : D · F(x, y) ∧ F(x, z) → y = z}

Application is now taken to satisfy the following rules.

App1
F : C � D Dom(F)(a)

apply(F, a) : D
App2

F : C � D Dom(F)(a)

F(a, apply( f, a))

Of course, this is a special case where the precondition is taken to be the domain
of the relation. This extension is also conservative, and the same argument works.
The following illustrates the application of this notion.
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Example 298 (Generalized Composition)

◦Fun

f : B ⊗ C � D
g : A � B
h : A � C
w : A � D

w

=
[z : A ⊗ D · ∃x : B · ∃y : C · g(z0, x) ∧ h(z0, y) ∧ f (x, y, z1)]

The result w is clearly functional. The schema definition may be implemented
by removing the function spaces in favor of the corresponding schema types, i.e.

◦

f : S(B ⊗ C, D)
g : S(A ⊗ B)
h : S(A ⊗ C)
w : S(A ⊗ D)

w

=
[z : A ⊗ D · ∃x : B · ∃y : C · g(z0, x) ∧ h(z0, y) ∧ f (x, y, z1)]

20.4 Polymorphism

Polymorphism in its most famous guise is to be found in the second-order lambda
calculus. And this has two sources: theoretical computer science and mathematical
logic. Within the former, Reynolds [2] introduced it to formalize the kind of uni-
form polymorphism implicit in much programming practice. It was independently
introduced by Girard (see [1]) to provide a consistency proof for classical analysis.
While few programming languages support the full impredicative polymorphism
of the Second Order Calculus, some form of polymorphism is supported by most
current programming languages. We explore its role in specification.
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Our present treatment of function types is limited in that they cannot represent
any form of dependency. The alert reader will have noticed that, while we have
generic functional schema, where the type is supplied as part of the declaration, we
have not discussed its class. For this we require a more standard representation of
polymorphic functions. Consider the following schema definition.

Example 299 (Functional Composition)

◦Fun

u : type, v : type, w : type
f : u ⇒ v, g : v ⇒ w, h : u ⇒ w

h = [x : u, z : w | z = g( f (x))]

This is clearly functional. But how do we assign a class to it? The class of h
depends upon the class of the inputs, so that the class of the definition cannot be
expressed in the form

type ⇒ (type ⇒ (type ⇒ ...

To express it, we need to incorporate dependency into the class itself. This motivates
the following class constructor.

Definition 300 (Polymorphic Function Class) Assume that in ThC

C class and x : c 	 D[x] Class

We define the class of dependent functions from C to D as follows.

�x : C · D � {F : S(�x : C · D) | ∀x : C · ∃!y : D[x] · F(x, y)}

As before, we enrich the theory ThC by the addition of application that is taken
to satisfy the following rules.

App1
F : �x : C · D a : C

apply(F, a) : D[a/x]
App2

F : �x : C · D a : C

F(a, apply( f, a))

These are the dependent versions of the rules. The proof of the following is the same
as the simple functional case.

Theorem 301 The addition of application yields a conservative extension of ThC.

We may now return to our example: Functional composition has the following
class structure.
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Example 302 (Composition)

◦ : �u : type · �v : type · �w : type · ((u ⇒ v) ⊗ (v ⇒ w)) ⇒ (u ⇒ w)

Consequently, we can now assign a class to such generic schemata. And it can
be implemented as follows.

Example 303 (◦ Implemented)

◦Fun

u : type, v : type, w : type
f : S(u ⊗ v), g : S(v ⊗ w), h : S(u ⊗ w)

h = [x : u, z : w | ∃y : v · g(x, y) ∧ g(y, z)]

This completes our brief introduction to function classes. We have considered
a class of functions and two variations that allow for partiality and polymorphism.
We now turn to the application of these notions. We begin with the case of simple
functions.
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Chapter 21
Computable Analysis

This chapter is devoted to the construction of a computable model that involves the
use of function types. Specifically, we carry out a small case study in the representa-
tion of the computable real numbers and their associated operations [2, 1]. This is a
reasonable test bed for our theories. For one thing, the notions of function and func-
tion space are central to the constructions. More explicitly, any representation of the
real numbers takes them to be infinite sequences of some sort. In our case we shall
employ a version of Cauchy sequences. But a further step is often taken where these
sequences are given a set-theoretic makeover; i.e., Cauchy sequences are interpreted
as set-theoretic functions. But we shall not take this step. Instead, we shall employ
the notion of function of the present theories, i.e., single-valued schema relations.
The actual development of the theory will look much like its classical set-theoretic
analogue, but its underlying mathematical foundations will be different.

Once our basic notion of real number is in place, we shall enrich the theory with
notions of real equality, addition, and multiplication, and thus initiate a version of
computational real analysis. But we shall not go much further. Our objective is only
to demonstrate how the computable model is constructed and implemented.

21.1 Cauchy Sequences

As we indicated, we shall base the representation on Cauchy sequences. We shall
work in the theory developed in the last chapter.

Thclass(N, DP, S, type)

In this theory, the class of Cauchy real numbers is defined as follows.

Definition 304 (Cauchy Reals)

R � { f : N � Q · ∃z : N · ∀y � z · ∀x � z · | f (x) − f (y)| ≤ 1/z}

The real numbers are functions from numbers to rationals, where for large
enough natural numbers, the absolute difference between them is as small as
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required. This is the classical definition of the real numbers (or one of them) in
terms of Cauchy sequences. Of course, this is not a type but a class. However, the
real numbers as data items are treated as the intensions of Cauchy sequences and as
schemata are computable objects. We shall first provide some simple examples and
then look at the development of the elementary theory.

Definition 305 (Identity and Zero)

1R(x) � λx : R · x

0R(x) � λx : R · 0Q

Here we use the lambda notation for explicitly specified functions. To facilitate
some of our later definitions, we define the following.

Definition 306 (Canonical Bound) Let f : R. Define the canonical bound of f as
follows.

B f � [z : N | (z > f (1) + 2) ∧ ∀u > f (1) + 2 · u ≥ z]

B f applies to only one number and we shall use B f to refer to it; i.e., we
conservatively add a constant (constant function with value B f applied to any
number) with value B f .

With these notions in play, we can move on to a standard definition of equality
for the real numbers i.e., two reals are the same if, for large enough inputs, the
difference between them is as small as needed.

Definition 307 (Real Equality)

=R

f : R,g : R

∃x : N · | f (x) − g(x)| ≤Q 2/x

The following shows that real equality is an equivalence relation. The proofs are
standard and the present context changes little about them.

Proposition 308 The following properties of real equality are provable

1. ∀ f : R · f =R f .
2. ∀ f : R · ∀g : R · f =R g → g =R f .
3. ∀ f : R · ∀g : R · ∀h : R · f =R g ∧ g =R h → f =R h.

Proof We illustrate with property 3. Assume that

∃x : N · | f (x) − g(x)| ≤Q 2/x

∃y : N · |g(y) − h(y)| ≤Q 2/y
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Then let z be the maximum of the guaranteed x and y and their respective conver-
gence numbers. Observe that

| f (z) − h(z)| ≤ Q | f (z) − g(z) + g(z) − h(z)|
≤ | f (z) − g(z)| + |g(z) − h(z)|
≤ 2/z + 2/z ≤Q 4/z.

Hence, f = h. �

21.2 Operations on the Real Numbers

We now turn to the standard operations of addition and multiplication for the Cauchy
real numbers. We take them in turn. Again, the definitions are fairly standard.

Definition 309 (Addition)

+R

f : R, g : R, h : R

h = [(x, y) : N ⊗ Q | y = f (2x) +Q g(2x)]

We need to establish that this definition preserves real numbers. We shall do
this in conjunction with the properties of multiplication. The latter is specified as
follows.

Definition 310 (Multiplication)

×R

f : R, g : R, h : R

h
=

x : N , y : Q

y =Q f (2x × max(B f , Bg)) ×Q g(2x × max(B f , Bg))
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These specifications preserve the real numbers, and they are functional. This is
the content of the following.

Proposition 311 (Functionality) Addition and multiplication are total functions on
R; i.e.,

+ : R⊗R � R

× : R⊗R � R

Proof We illustrate with +. The totality and functionality are clear. This leaves us
to show that addition preserves the Cauchy condition. Suppose

∀y � z′ · ∀x � z′ · | f (x) − g(y)| ≤ 1/z′

and

∀y � z′′ · ∀x � z′′ · | f (x) − g(y)| ≤ 1/z′′

Let z be the maximum of z′, z′′ and suppose y � z and x � z. Then we have

|( f + g)(x) − ( f + g)(y)| = | f (2x) + g(2x) − f (2y) + g(2y)|
≤ | f (2x) − f (2y)| + |g(2x) − g(2y)|
≤ 1/z + 1/z = 2/z �

The proofs of the following are also standard.

1. ∀ f : R · ∀g : R · ∀h : R · ( f + g) + h =R f + (g + h).
2. ∀ f : R · ∀g : R · f + g =R g + f.
3. ∀ f : R · ( f + 0) =R f.
4. ∀ f : R · ∃!g : R · ( f + g) =R 0.

5. ∀ f : R · ∀g : R · f × g =R g × f.
6. ∀ f : R · ∀g : R · ∀h : R · ( f × g) × h =R f × (g × h).
7. ∀ f : R · ∀g : R · ∀h : R · ( f + g) × h =R ( f × h) + (g × h).
8. 1 �=R 0 ∧ ∀g : R · 1 × g =R g.

9. ∀ f : R · ∃!g : ( f × g) =R 1.

This concludes our very brief introduction to our version of the computable real
numbers. It should be clear that it takes on much the same structure as ordinary
analysis based upon Cauchy sequences. But we have the following additional
checks to carry out.

21.3 Implementation

Since not all the information in these definitions is computable, computation can-
not proceed on their basis. We cannot compute with objects if the computation
needs the information that they are real numbers. However, our definitions are all
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implementable. Although the general technique for the following was outlined in
the last chapter, it will be instructive to carry out the analysis on these examples.

Proposition 312 Equality, addition, and multiplication on the real numbers are all
implementable.

Proof The schema specifications are obtained by replacing the type of real numbers
by the corresponding schema type. For equality, we simply replace matters as
follows.

=S(N⊗Q)

f : S(N ⊗ Q), g : S(N ⊗ Q)

∃x : N · ∃y : Q · ∃y : Q · f (x, y) ∧ g(x, z) ∧ |x − y| ≤Q 2/x

This is an implementation of the original. The following implements addition.

+R

f : S(N ⊗ Q), g : S(N ⊗ Q), h : S(N ⊗ Q)

h = [(x, y) : N ⊗ Q·
∃z1 : Q · ∃z2 : Q · f (2x, z1) ∧ g(2x, z2) ∧ y = z1 +Q z2]

And the following implements multiplication.

×R

f : S(N ⊗ Q), g : S(N ⊗ Q), h : S(N ⊗ Q)

h = {(x, y) : N ⊗ Q · ∃z1 : Q · ∃z2 : Q·

f (2x × max(b f , bg), z1)
∧

g(2x × max(bU , bV ), z2)
∧

y = z1 ×Q z2}

This completes the proof.�
This model of computable real numbers is a more conceptually interesting exam-

ple of a computable model than those generally provided by software specification.
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It employs separation, refinement, and function spaces. Of course, we could spend
an almost endless amount of time developing this approach to analysis, but we have
probably done enough to indicate its nature and how it functions as a computable
model. Our objective is not to provide an in-depth analysis of any such model but
rather to indicate the range of the notion. We now turn to another example of a
computable makeover of a set-theoretic model.
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Chapter 22
Programming Language Specification

There are various semantic accounts of programming languages. Two that are taken
to be different, but complementary, are the operational [3, 7, 8] and denotational
approaches [9, 1, 2, 12, 10]. One characterization of the former is that it provides an
interpretation in terms of some abstract machine. In apparent contrast, a denotational
semantics provides the semantic account in terms of some more traditional mathe-
matical objects such as sets or categories. However, the distinction between these
two semantic forms is not hard and fast [11]. An operational semantics, given in
terms of an abstract machine, may still be mathematical in the sense that the machine
is given via some semantic or axiomatic account. And most denotational definitions,
indeed all if the notion of machine is taken liberally enough, involve the specifi-
cation of an underlying abstract machine.1 It is just that it is expressed in terms of
sets or whatever else the basic mathematical building blocks of the semantics are
taken to be. Indeed, any legitimate semantic account of a programming language
must, in some way, make reference to some model of its intended underlying
abstract machine. Moreover, a semantics might be denotational while being fully
abstract [5].

As a further example of computable modeling we develop an approach to
semantics that is best described by the title of this chapter; i.e., we construct
computable models that are specifications of programming languages.

22.1 The Abstract Machine

To begin with, we develop a simple abstract machine that will provide the mathe-
matical building blocks of the semantics. We shall work in the theory

ThC(N, DP, type, S)

1 Perhaps the use of extensional and infinite sets in some denotational approaches marks the deeper
difference.
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We shall also admit some basic types. In particular, our formal notion of state builds
upon a type of identifiers (Ide) that we include as a basic type. States are then taken
to be mappings from Ide to values, which here, for simplicity of exposition, are
taken to be numbers.

Example 313 (State)

State

z : Set(Ide ⊗ N )

Map(z)

Presumably, an identifier is associated with just one value, hence the use of maps.
Using separation, we may consider these as types, and this will help us to express
our account of the abstract machine in a slightly more elegant way. Indeed, given the
conservative nature of separation, classes, and application, we shall use them freely.

Upon this notion of state we can specify operations that make up the abstract
machine. The first is the operation that retrieves the value associated with a given
identifier; i.e., given that states are maps, we may employ map application.

Example 314 (Retrieve)

Retrieve

u : State, x! : Ide, y? : N

x ∈ Dom(u); u(x) = y

This is a partial function in the following sense. The proof is clear.

Lemma 315 Retrieve : (State ⊗ Ide) � N .

Our second abstract machine operation is the standard update operation on states.
This takes a pair consisting of an identifier and a value and generates a state-to-state
transformation.
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Example 316 (Update)

Update

x : Ide, u : N, h : State � State

h = {w : State, w′ : State · w′ =
{y : Ide, v : N·

(y /∈ dom(w) ∧ v = u)
∨

(y ∈ dom(w) ∧ v = w(y))
}

}

It has the following functionality.

Lemma 317 Update : I d ⊗ N � (State � State), i = 1, 2.

Proof The first part of its functionality is easy to see. So is the second. It is
functional because it is explicitly defined.�

Actually, it is total in its second argument; i.e.,

z : I d ⊗ N 	 U pdate(z) : (State � State)

The next operation is a version of conditional that operates on state transforma-
tions.

Example 318 (Conditional)

CondFun

f : State � Bool
g : State � State
h : State � State
w : State � State

w = Cond ◦ ( f, g, h)

This has the following class structure; this is self-evident from the definitions.

Lemma 319 (Conditional)

CondFun : ((State � Bool) ⊗ (State � State)2) � (State � State)
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It is also clear that if the input state transformations are total functions, then so is
the output state transformation. However, this is not true of the following iterative
operation. This may return a partial function even when the input is total.

Example 320 (While)

While

f : State � Bool, g : State � State
h : State � State

h = Cond ◦ ( f, While( f, g) ◦ g, id)

Lemma 321 (While)

While : ((State � Bool) ⊗ (State � State)) � (State � State)

Proof We employ the induction principle provided by the recursive definition of
While. For the induction to work, we have to show that the predicate preserves
functionality; i.e., we have to show that if

F : ((State � Bool) ⊗ (State � State)) � (State � State)

f : State � Bool

g : (State � State)

then

Cond ◦ ( f, F( f, g) ◦ g, id) : State � State

But given the assumptions, this is clear. �
This completes the definition of our underlying abstract machine. Of course, it

is simplistic in that it takes no account of types, procedures, and declarations, etc.,
but our aim is only to introduce the general idea of a specification semantics for
programming languages.

22.2 A Programming Language and Its Specification

We shall illustrate matters with the semantics for a rather simple imperative pro-
gramming language [1]. It has three syntactic categories: Boolean expressions (B),
expressions (E), and commands (C). We shall describe these as structural types,
where these types are given by the following BNF grammar. We have already seen
how to view this as a simultaneous schema recursive specification.
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B ::= true | f alse | E < E | if B then B else B

E ::= 0 | I de | E+

C ::= I de := E | if B then C else C | C ;C | While B do C

Booleans are generated from true and false by the less-than relation (<) between
expressions and the conditional. The expression language contains zero and identi-
fiers and is closed under successor operation. The language of commands is gener-
ated by simple assignment statements, conditionals, sequencing, and a while loop.

We require the following semantic functions for the various syntactic types.

B : B � (State � Bool)

E : E � (State � N)

C : C � (State � State)

These semantic functions are then given recursively as follows. Their existence as
functions in the theory is guaranteed by the existence of such recursive functions
on these recursive types. We deal with the three functions in turn. The Boolean
function is straightforward.

B[true] = λs : State · true

B[ f alse] = λs : State · false

B[e1 < e2] = λs : State · E[e1]s < E[e2]s

B[if b then b1 else b2] = Cond ◦ (B[b], C[b1], C[b2])

And the expression semantic function is equally predictable. In particular, the
variables obtain their values from the state. The rest is as expected.

E[x] = λs : State · Retrieve(s, x)

E[0] = λs : State · 0

E[e+] = λs : State · (E[e]s)+

The meat of the definition is the semantic function for commands, but we have done
all the hard work in defining the abstract machine.

C[x := e] = λs : State · Update(x, E[e]s)

C[if b then c1 else c2] = Cond◦(B[b], C[c1], C[c2])

C[c1; c2] = C[c2] ◦ C[c1]

C[while b do c] = While(B[b], C[c])

The assignment command is interpreted using the update function, the clause for the
conditional uses the conditional, sequencing is interpreted as relational composition,
and the while loop is unpacked in terms of the While transformation on the state.



228 22 Programming Language Specification

Now observe the following. This is a consequence of the properties of the
abstract machine.

Theorem 322 For each expression, Boolean expression, and command, t , E[t],
B[t], and C[t] are partial functions.

Proof We use structural induction over the types of the grammar. We have to show
by induction that each stage preserves the functionality. For example, one part of
the induction will involve showing that

( f : State � State ∧ g : State � State) → f ◦ g : State � State

And we have already done the hard work in the analysis of the abstract machine.
And this applies to all cases. �

22.3 Implementation

The semantics has been given in terms of partial functions. To implement matters,
we need to generalize to the underlying relational representations. We take each of
our abstract machine operations in turn.

For the conditional, the corresponding schema specification is given as follows.

Example 323 (Relational Conditional)

CondRel

f : S(State ⊗ Bool), g : S(State ⊗ State),
h : S(State ⊗ State), w : S(State ⊗ State)

w

=
[

(s, s ′) : State ⊗ State |
( f (s, true) ∧ g(s, s ′)) ∨ ( f (s, false) ∧ h(s, s ′))

]

Lemma 324 CondRel is an implementation of CondFun.

Our next specification is the iterative operation on the state. This is implemented
as follows.
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Example 325 (Implementation of While)

W hileRel

f : S(State ⊗ Bool), g : S(State ⊗ State)
h : S(State ⊗ State)

h =

⎡

⎢

⎢

⎢

⎢

⎣

u : State, v : State |
( f (u, true) ∧ ∃z : S(State ⊗ State) · ∃y : State · g(u, y)·

While( f, g, z) ∧ z(u, v)
∨

( f (u, false) ∧ v = u)

⎤

⎥

⎥

⎥

⎥

⎦

Proposition 326 WhileRel implements While

This completes our rather brief account of language specification. The above
should provide enough of the flavor for the reader to see how one might extend
matters to more complex language features. The above is merely a taster; but it is
enough to provide the flavour of the modeling.

References

1. Gordon, J.C. The Denotational Semantics of Programming Languages. Springer-Verlag,
New York, 1970.

2. Gunter, C. Semantics of Programming Languages: Structures and Techniques. MIT Press,
Cambridge, MA, 1992.

3. Landin, P. The mechanical evaluation of expressions. The Comp. J. 6(4):308–320, 1964.
4. Milne, R. and Strachey, C. A Theory of Programming Language Semantics, Halsted Press,

New York, 1977.
5. Mulmuley, K. Full Abstraction and Semantic Equivalence. MIT Press, Cambridge, MA, 1986.
6. Pierce, B.C. Types and Programming Languages. MIT Press, Cambridge, MA, 2002.
7. Plotkin, G.D. G. Tech. Rep. DAIMI FN-19, Computer Science Department, Aarhus

University, Aarhus, Denmark. Reprinted with corrections in J. Log. Algebr. Program. 60–61:
17-139, 2004.

8. Plotkin, G.D. The Origins of structural operational semantics. J. Log. Algebra. Program.
60–61:3–15, 2004.

9. Stoy, J.E. Denotational Semantics: The Scott Strachey Approach to Programming Language
Theory. MIT Press, Cambridge, MA, 1977.

10. Tennent, R.D. Denotational semantics. In: Handbook of Logic in Computer Science, vol. 3,
pp. 169–322. Oxford University Press, Oxford, 1994.

11. Turner, R. Understanding programming languages. Minds and Machines. 17(2) 2: 203–216 .
2007.

12. Winskel, G. Formal Semantics of Programming Languages. MIT Press, Cambridge, MA,
1993.



Chapter 23
Abstract Types

Computer science is centrally concerned with the invention and application of
mechanisms for abstraction and information hiding. Examples include interfaces,
modules, libraries, classes and abstract data types. Such mechanisms are essential
for specification and design. They enable a level of design and specification where
the accessibility and visibility of implementation details are limited. In addition,
they facilitate the reuse and redesign of software components.

In this chapter we bring together several type constructors and illustrate their use
in the representation of abstract data types. The latter provide a powerful tool of
abstraction in computational modeling [2, 6, 3]. As we shall see, in various ways
they hide information and thus enable a variety of possible implementations.

In our approach, which has its origins in the treatment of [4] and [5], we shall
demonstrate how the dependent product type constructor, in conjunction with the
type of types and the polymorphic class constructor, provides an analogue of
the standard treatment of abstract types, cast within the following theory and its
conservative extensions.

ThC(N, DP, type, S).

Within this setting are several layers of abstraction; we shall gradually pick our way
through them.

23.1 Axiomatic Specifications

Consider again the specification of the real numbers and their associated operations
and relations. In particular, you will recall that the class of real numbers was
defined as

R � { f : N � Q · ∃z : N · ∀y � z · ∀x � z · | f (x) − f (y)| ≤ 1/z}

where real addition is specified as follows.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 23,
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+R

f : R, g : R, h : R

h = [(x, y) : N ⊗ Q | y = f (2x) +Q g(2x)]

A similar specification determined multiplication.

×R

f : R, g : R, h : R

h
=

[(x, y) : N ⊗ Q |
y =Q f (2x × max(B f , Bg)) ×Q g(2x × max(B f , Bg))]

The real numbers are given a concrete representation in terms of functions
operating on the natural numbers and returning rational ones. The operations
of addition and multiplication for the real numbers are defined in terms of the
corresponding operations on the rationals. And any implementation will employ the
implementations of these operations.

But this is not an abstract characterization of the real numbers. It is a con-
crete representation in terms of existing notions. For an abstract account we
need to get away from such concrete representations. The following pair of
specifications do so: They introduce different levels of abstract type for the real
numbers.
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Example 327 (Abstract Reals I)

Reals

R : N � Q
+ : R⊗R � R

× : R⊗R � R

∀ f : R · ∀g : R · ∀h : R · ( f + g) + h =R f + (g + h)
∀ f : R · ∀g : R · f + g =R g + f
∀ f : R · ( f + 0) =R f
∀ f : R · ∀g : R · ∀h : R · ( f + g) + h =R f + (g + h)
∀ f : R · ∀g : R · f + g =R g + f
∀ f : R · ( f + 0) =R f
∀ f : R · ∀g : R · f × g =R g × f
∀ f : R · ∀g : R · ∀h : R · ( f × g) × h =R f × (g × h)
∀ f : R · ∀g : R · ∀h : R · ( f + g) × h =R ( f × h) + (g × h
1 �=R 0 ∧ ∀g : R · 1 × g =R g
∀ f : R · ∃!g : ( f × g) =R 1

Example 328 (Abstract Reals II)

Reals

u : type
+ : u ⊗ u � u
× : u ⊗ u � u

∀ f : u · ∀g : u · ∀h : u · ( f + g) + h =u f + (g + h)
∀ f : u · ∀g : u · f + g =u g + f
∀ f : u · ( f + 0) =u f
∀ f : u · ∀g : u · ∀h : u · ( f + g) + h =u f + (g + h)
∀ f : u · ∀g : u · f + g =u g + f
∀ f : u · ( f + 0) =u f
∀ f : u · ∀g : u · f × g =u g × f
∀ f : u · ∀g : u · ∀h : u · ( f × g) × h =u f × (g × h)
∀ f : u · ∀g : u · ∀h : u · ( f + g) × h =u ( f × h) + (g × h)
1 �=u 0 ∧ ∀g : u · 1 × g =u g
∀ f : u · ∃!g : ( f × g) =u 1
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The first does not tell us how to implement the operations. It is an axiomatic
definition of these operations where the scheme definition has two declarations
(+ and ×) of functional operations, but the actual operations are not given ex-
plicitly but circumscribed by the axiomatic conditions that express the standard
properties.1. We know that the actual given representation satisfies the requirement
of this schema. The second example take matters a stage further by abstracting on
the actual class of real numbers.

This is about as far as we can go with this example. To illustrate the full
expressive power of data abstraction, we need to consider a type constructor rather
than a single type.

23.2 Polymorphism and Data Abstraction

We shall employ the stack type constructor. If you recall, the type constructor for
stacks was given as follows, where, for pedagogical reasons, we have simplified
matters. The abstract type abstracts away by using type variables and, at the same
time, packages the whole axiomatic bundle together in the form of schema. But first
recall the rules for stacks.

T type

Stack(T ) t ype

a : T b : Stack(T )

pushT (a, b) : Stack(T )

b : Stack(T )

topT (b) : T

b : Stack(T )

popT (b) : Stack(T )

a : T b : Stack(T )

popT (pushT (a, b)) = b

a : T b : Stack(T )

topT (pushT (a, b)) = a

The schema describes the classes and the equations they are to satisfy, e.g.,

pop(push(element, stack)) = stack

top(push(element, stack)) = element

1 Here we are not claiming that the following is all we need for mathematical purposes; we are
only illustrating the different levels of abstraction.



23.2 Polymorphism and Data Abstraction 235

This leads to the following abstract notion of stack. The idea is that the formation
rules for stacks are captured by the functionality of the operations in the new
schema. The remainder of the rules are reflected in its predicate.

Example 329 (Stacks)

Stacks
stack : type � type
push : �u : type· (u ⊗ stack(u)) � stack(u)
top : �u : type· stack(u) � u
pop : �u : type· stack(u) � stack(u)

∀u : type · ∀x : u · ∀y : Stack(u) · top(u)(push(u)(x, y)) = x
∀u : type · ∀x : u · ∀y : Stack(u) · pop(u)(push(u)(x, y)) = y

Here v is the actual stack and u is the type of its elements.

Note that the predicate can be unpacked without universal quantification. For
example,

[u : type, x : u, y : stack(u), z : u | top(u)(push(u)(x, y))]

=
[u : type, x : u, y : stack(u), z : u | z = x]

This provides a description of the notion of stack at a very abstract level. The only
information supplied is the relationships between the classes and operations. It does
not specify the operations.

But specifications previously given provide the basis for an implementation of
this schema definition; i.e., in any such implementation we need to replace the
function spaces by schema types

stack : S(type ⊗ type)
push : S(�u : type · S(u ⊗ stack(u)) ⊗ stack(u))
top : S(�u : type · S(stack(u) ⊗ u))
pop : S(�u : type · S(stack(u) ⊗ stack(u))

and then we remove the applications from the predicates.
We could muster many more examples, but we should have sufficiently whetted

the reader’s appetite for a more detailed investigation of both the present topic and
the topic of the whole book.
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Chapter 24
Conclusion

We have covered a fair amount of ground. We have provided a basic logical
framework (typed predicate logic) within which we have articulated a rich variety
of theories of data types. The latter have been constructed from a wide range of
types and type constructors. In particular, we introduced types and type constructors
for the natural numbers, finite sets, schemata, a type of types, subtypes, dependent
products, and abstract types. Moreover, each of these theories was shown to have an
arithmetic interpretation, i.e., a recursive model. We have simultaneously developed
a general theory of specification/computable models. Our notion of specification
applies to any TDT. Our case studies of computable models included examples
from theoretical computer science, computable real analysis, philosophical logic,
and formal ontology. Moreover, all of the theories and the models constructed
have recursive interpretations. Furthermore, we extended the basic notions of
specification to include those that were not computable and used the notion of
refinement to justify them.

Despite this coverage, there are some major omissions. To begin with, some of
the topics covered deserve more attention. In particular, the chapter on programming
language specification could easily have taken a good portion of the book. Many
of the central issues of semantics were left untouched. Much the same could be
said for all the case studies of computable models; each could have been extended
considerably.

In addition, several important topics were not even mentioned. Some more
investigation of the connection between the present approach to specification
and that of constructive type theory would have been pleasant. This would seem
appropriate given the nearness of our formal setting to that of constructive type
theory. A chapter on the topic was planned. Unfortunately, one chapter turned out
to be insufficient to do justice to the material. We had also planned a chapter on the
development of a TDT aimed at object-oriented specification. But again, time and
space prevented a detailed development of the theory. Some of this material will be
presented elsewhere.
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