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iPREFACEComplexity Theory is a thriving and growing subjet. Its laim to a entralposition in omputer siene omes from the fat that algorithms permeate everyappliation of omputers. For instane, the term NP-ompleteness is by now inthe voabulary of the general omputer siene ommunity. Complexity Theoryhas evolved onsiderably within the last deade. Yet there are few books thatsystematially present the broad sweep of the subjet to a prospetive student froma `modern' point of view, that is, the subjet as a pratitioner sees it. The fewavailable treatments are embedded in volumes that tended to treat it as a sub�eldof related and older subjets suh as formal language theory, automata theory,omputability and reursive funtion theory. There are good historial reasons forthis, for our legay lies in these subjets. Today, suh an approah would not dojustie to the subjet { we might say that Complexity Theory has ome-of-age. Soone goal of this book is to present the subjet fully on its own merits.Complexity Theory an be pratied at several levels, so to speak. At one ex-treme we have analysis of algorithms and onrete omplexity. Complexity Theoryat this low level is highly model-dependent. At the other end, we enounter ax-iomati omplexity, reursive funtion theory and beyond. At this very high level,the situation beomes quite abstrat (whih is also one of its beauties); the maintools here enter around diagonalization and the results often onern somewhatpathologial properties of omplexity lasses. So what we mean by ComplexityTheory in this book might be termed medium level. Here diagonalization remainsan e�etive tool but powerful ombinatorial arguments are also available. To dis-tinguish the subjet matter of this book from these losely related areas, I havetried to emphasize what I pereive to be our entral theme: Complexity Theory isultimately about the relationships among omplexity lasses. Of ourse, there arereasonable alternative themes from whih to hoose. For instane, one an onstrueComplexity Theory to be the theory of various models of omputation { indeed, thisseems to be the older point of view. But note that our hosen view-point is moreabstrat than this: models of omputation de�ne omplexity lasses, not vie-versa.How Complexity Theory arrives at suh an abstrat theme may be of interest:hopefully suh evidene is sattered throughout the entire book. But for a prati-tioner in the �eld, perhaps the most ogent argument is that most of the major openproblems in the subjet an be posed in the form: \Is J inluded in K?" where Jand K are omplexity lasses. This ertainly inludes the P versus NP , the DLOGversus NLOG and the LBA questions. Other questions whih prima faie are notabout omplexity lasses (e.g. spae versus time, determinism versus nondetermin-ism) an be translated into the above form. Even investigations about individual



iilanguages (e.g. omplete languages) an be viewed as attempts to answer questionsabout omplexity lasses or to plae the language into a well-known omplexity lass(e.g., is graph isomorphism in P?). Of ourse, these by no means exhaust all thework in Complexity Theory but their entrality annot be denied.As for the student of omplexity, some basi questions are more immediate: fora phenomenon as omplex as omplexity (no tautology intended) it is no surprisethat the theory ontains many assumptions, not all of whih an be rigorously oreven onviningly justi�ed. We an only o�er heuristi arguments and evidene.This is the burden of hapter one whih presents the methodologial assumptions ofComplexity Theory. It omes from my attempt to distill what pratitioners in this�eld had been (subonsiously or otherwise) ultivating in the past twenty years ormore. By making them expliit (though by no means to our total satisfation), itis hoped that they will speedup the entry of novitiates into the �eld. Indeed, thisis out of self-interest: a �eld thrives with fresh ideas from eah new generation ofpratitioners. Another possible result of expliating the underlying assumptions isrenewed ritiisms of them, leading to alternative foundations: again, this is mosthealthy for the �eld and ertainly welome. In any ase, one these assumptions areaepted, we hope the student will disover a powerful and beautiful theory thato�ers muh insight into the phenomenon of omplexity. This is enough to justifythe present theory (though not to exlude others).There are several notable features of this book:(a) We have avoided traditional entry-points to Complexity Theory, suh as au-tomata theory, reursive funtion theory or formal language theory. Indeed,none of these topis are treated exept where they illuminate our immediateonern.(b) The notion of omputational modes is introdued early to emphasize its en-trality in the modern view of Complexity Theory. For instane, it allowsus to formulate a polynomial analogue of Churh's thesis. Many of us arebrought up on the sequential-deterministi mode of omputation, alled herethe fundamental mode. Other omputational modes inlude nondeterministi,probabilisti, parallel, and alternating, to name the main ones. These modestend to be viewed with suspiion by non-pratitioners (this is understandablesine most atual omputers operate in the fundamental mode). However, itis important to wean students from the fundamental mode as early as possi-ble, for several reasons: Not only are the other modes theoretially important,the tehnologial promise of eonomial and vast quantities of hardware havestirred onsiderable pratial interest in parallel and other modes of ompu-tation. The student will also ome to appreiate the fat that omputational



iiimodes suh as represented in proof systems or grammars in formal languagetheory are valid onepts of omputation. On the other hand, these alterna-tive omputational modes have distint omplexity properties whih is in fatwhat makes the subjet so rih.() Traditionally, the omputational resoures of time and spae have been em-phasized (other resoures are more or less uriosities). The reent disoveryof the importane and generality of the omputational resoure of reversalsis stressed from the beginning of the book. Of ourse, the number of resultswe urrently have on reversals is meager ompared to the number of papersdevoted time and spae; indeed through the writing of this book I am on-vined that this imbalane should be remedied. (Pauity of results of othersorts are also evident: in the hapters on reduibilities, diagonalization andrelative lasses, we see no results for modes other than the fundamental andnondeterministi modes. It is very likely that the �lling of these gaps willrequire new tehniques). It is my strong belief that the new triumvirate oftime-spae-reversal gives us a more omplete piture of omputational om-plexity. We also treat simultaneous resoure bounds, suh as simultaneoustime-spae. Again this approah gives us a more rounded view of omplexity.It is also a topi of inreasing importane.(d) I believe an important ontribution of this book is the theory of valuationsand hoie mahines. Besides its unifying and simplifying appeal, it addressesmany foundational questions raised by the newer notions of omputation suhas interative proofs. Researhers were able to simply ignore some of thesequestions in the past beause they foused on \nie" situations suh as poly-nomial time. But one the proper foundation is introdued, new issues arise ontheir own right. For instane, the use of interval algebra exposes new subtletiesin the onepts of error. We hope that this inquiry is only the beginning.(e) In attempting to give a oherent treatment of the subjet, it is neessaryto unify the widely varying notations and de�nitions found in the literature.Thus, many results on spae omplexity are proved using a version of Turingmahine di�erent from that used in time omplexity. Yet a ommon mahinemodel must be used if we want to study simultaneous time-spae omplex-ity. We hoose the o�-line multitape Turing mahines. Another ase whereuniformity is badly needed is something so basi as the de�nition of \timeomplexity": to say that a nondeterministi mahine aepts within t steps,some de�nitions require all paths to halt within this time bound; others aresatis�ed if some aepting path halt within this bound. We distinguish them



iv as running time and aepting time, respetively. Generalizing this distin-tion to other measures, we hene speak of running omplexity versus aeptingomplexity. How omparable are these results? By and large, we would preferto stik to aepting omplexity beause it seems more fundamental and a�ordsimpler proofs. This we manage to do for most of the �rst half of the book.Unfortunately (or fortunately?), the orpus of known results seems rih enoughto defeat any arti�ial attempt to impose uniformity in this respet. This ismost evident in probabilisti omputations where running omplexity seemsto be the more fruitful onept. A �nal example is the disparate notationsfor reduibilities. From the diverse possibilities, a unifying hoie appears tobe �t where t indiates the type of redution (many-one, Turing-reduibility,et) and  indiates the omplexity onsiderations (polynomial time, log-spae,et). Or again, for a omplexity lass K, we prefer to say that a language is\K-omplete under �-reduibility" rather than \�-omplete for K": here thehoie is driven by the wide urreny of the term \NP-omplete language".We are aware of the dark side of the grand uni�ation impulse, whih anrapidly lead to unwieldy notations: it is hoped that a reasonable ompromisehas been made within the sope of this book.(f) In seleting results (many appearing in book-form for the �rst time) for inlu-sion in this book, I have tried to avoid those results that are essentially aboutpartiular mahine models. This is onsistent with our book's theme. Themain exeption is hapter two where it is neessary to dispose of well-knowntehnial results onerning the Turing model of omputation.Finally, this book is seen as a self-ontained and omplete (though learly non-exhaustive) introdution to the subjet. It is written so as to be usable as a textbookfor an advaned undergraduate ourse or an introdutory graduate ourse. Thedidati intent should be evident in the early hapters of this book: for instane, wemay o�er ompeting de�nitions (running omplexity versus aeptane omplexity,one-way orale mahines versus two-way orale mahines) even when we eventuallyonly need one of them. By exposing students to suh de�nitional underurrents, wehope they will appreiate better the hoies (whih most experts make without afuss) that are atually made. The later part of the book, espeially volume two, isintended more as a referene and the treatment is neessarily more ondensed.A quik synopsis of this two-volume book is as follows: There are twenty hap-ters, with ten in eah volume. Chapter 1 attempts to unover the foundationsand presuppositions of the enterprise alled Complexity Theory. Chapter 2 estab-lishes the basi mahinery for disussing Complexity Theory; we try to on�ne mostmodel-dependent results to this hapter. Chapter 3 on the lass NP is really the



vintrodution to the heart this book: a large portion of the remainder of the bookis either an elaboration of motifs begun here, or an be traed bak to attempts toanswer questions raised here. Chapters 4 to 6, is a study of the tools that mightbe termed `lassial' if this is appropriate for suh a young �eld as ours: reduibili-ties, omplete languages, diagonalization and translation tehniques for separatingomplexity lasses. Chapters 7 and 8 onsider two important omputational modes:probabilism and alternation. Although these two modes are seldom viewed as loselyrelated, we hoose the unusual approah of introduing them in a ommon mahinemodel. One advantage is that some results known for one mode an be strength-ened to their ombination; also, ontrasts between the two modes beome aented.Chapter 9 is about the polynomial-time hierarhy and its ognates. Chapter 10introdues iruit omplexity: super�ially, this is an unlikely topi sine iruitsdesribe �nite funtions. Traditionally, the interest here omes from the hope thatombinatorial tehniques may yield non-linear lower bounds for iruit omplex-ity whih in turn translates into non-trivial lower bounds for mahine omplexity.This hope has (as yet) not borne out but iruit omplexity has yielded other un-expeted insights into our main subjet. Two other topis whih we would haveliked in volume 1 to round up what we regard as the ore topis of the �eld arerelativized lasses and parallel omputation. Unfortunately we must defer them tovolume 2. The rest of volume 2 overs topis that are somewhat esoteri as well assome diretions that are atively being pursued: randomness, strutural approahesto omplexity, alternative models of omputation (storage modi�ation mahines,auxilliary Turing mahines, et), alternative omplexity theories (suh as Kolgo-morov omplexity, optimization problems, Levin's average omplexity), speializedapproahes to omplexity (suh as mathematial logi), and omplexity of somelasses of languages that have inherent interest (suh ontext-free languages, theoryof real addition, et).Ideally, Complexity Theory should be taught in a two ourse sequene; this isprobably a luxury that many Computer Siene urriulum annot support. For aone ourse sequene, I suggest seletions from the �rst 7 hapters and perhaps someadvaned topis; preferably suh a ourse should ome after a more traditional ourseon the theory of automata and omputability.The reader is kindly requested to inform the author of any errors of ommissionas well as of omission. Sine muh of our material is organized in this manner for the�rst time, there will be inevitable rough spots; we ask for the readers' indulgene.All suggestions and omments are welome.I have variously taught from this material sine 1981 at the Courant Institutein New York University, and most reently, at the University of British Columbia.
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Chapter 0

Introduction to Computability

We may compare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions q1, q2, ..., qR which will be called m-configurations. The
machine is supplied with a tape, (the analogue of paper) running through it, and divided into sections
(called squares) each capable of bearing a symbol. At any moment there is just one square, say
the r-th, bearing the symbol S(r) which is in the machine. We may call this square the scanned
square. The symbol on the scanned square may be called the scanned symbol. The scanned
symbol is the only one of which the machine is, so to speak, directly aware. However, by altering
its m-configuration the machine can effectively remember some of the symbols which it has seen
(scanned) previously. The possible behaviour of the machine at any moment is determined by the
m-configuration qn and the scanned symbol S(r). This pair qn, S(r) will be called the configuration:
thus the configuration determines the possible behaviour of the machine. In some of the configurations
in which the scanned square is blank (i.e. bears no symbol) the machine writes down a new symbol
on the scanned square: in other configurations it erases the scanned symbol. The machine may also
change the square which is being scanned, but only by shifting it one place to right or left. In addition
to any of these operations the m-configuration may be changed. Some of the symbols written down
232 will form the sequence of figures which is the decimal of the real number which is being computed.
The others are just rough notes to assist the memory. It will only be these rough notes which will
be liable to erasure.

—Alan Turing (1936)

April 13, 2009

Concepts of computation are prerequisite to Complexity Theory. This chapter provides the necessary prerequi-
site, by way of studying a language hierarchy,

REG ⊆ CFL ⊆ REC ⊆ RE .

These are, respectively, the class of regular (REG), context free (CFL), recursive (REC ) and recursively enu-
merable (RE ) languages. Basic themes such as nondeterminism, halting computation, Turing machines, diag-
onalization, universal machines, reducibility, hierarchies, etc, are central to Complexity Theory, but they make
their first appearance here.

This chapter has three parts: 1) First we introduces the regular languages, finite automata and state
diagrams. and regular expressions are treated here. (2) Next we treat context free languages and associated
computing devices (grammars and pushdown automata). (3) Finally, we provide the rudiments of computability
theory, via Turing machines.

An appendix of basic mathematical concepts that are used throughout the book is provided. The material
of this chapter is standard, and students who already have similar background should feel free to proceed to the
next chapter.

1



2 CHAPTER 0. INTRODUCTION TO COMPUTABILITY

0.1 Regular Languages

The regular languages are arguably the simplest nontrivial class of languages. We define them using finite
automata, which also provide a first introduction to the concepts of computation.

0.1.1 State Diagrams and Deterministic Finite Automata

Finite automata can be intuitively understood through a graphical representation called state diagrams. These
are labeled graphs, illustrated Figure 1. The state diagram Mp in Figure 1(a) has two “states” represented by
the two nodes labeled q0 and q1. The directed edges are called transitions, and they are labeled with either 0
or 1 (these are the input symbols). The input to Mp is any sequence w = b1b2 · · · bn over the input symbols.
The automaton starts in state q0 and ready to read the first symbol b1. The start state q0 is always indicated
by an arrow from nowhere that points to it. In general, at any moment Mp is in some state (the current state),
ready to read another input symbol bi (i = 1, . . . , n). On reading bi, it follows the transition leaving the current
state that is labeled by bi. This leads to the next state of Mp.

q0 q1

0

1

0

1

q0 q1

0

1

1

0

(b) M2

q0

0

q2

1

0

q1

1

1

0

(c) M3

(a) Mp

Figure 1: State Diagrams of Parity, Mod-2 and Mod-3 counters

What is Mp doing? We can say it is tracking the parity (which is even or odd) of the number of 1’s it
has seen so far. This is one of the simplest finite automaton that does something tangible on a binary input.
Another variation is the finite automata M2: viewing the input string w as a binary number, we say that M2

is keeping track of the modulo 2 value of the binary number it has seen so far. E.g., w = 110 represents the
number 6 leads to state q0. The binary number is assumed to be scanned from the most significant bit (msb)
towards the least significant bit (lsb). This automaton generalizes to a whole family of automata which tracks
the modulo m value of binary numbers. The case m = 3 is shown in Figure 1(b). The reader should be able to
verify its correctness, and to device other modulo counters.

State diagrams are equivalent to finite automata, which we now formalize. A deterministic finite au-
tomata (dfa) is a 5-tuple

M = (Q,Σ, δ, q0, F )

where

• Q and Σ are finite sets, called the state set and the input alphabet (respectively).

• q0 ∈ Q is the start state.

• F ⊆ Q are the final states.

• δ : Q× Σ→ Q is the transition function.

We want to associate a language with each dfa. But first we need a useful definition. Given δ, define the
extended transition function

δ∗ : Q× Σ∗ → Q



0.1. REGULAR LANGUAGES 3

which has the intuitive meaning: δ ∗ (q, w) is the state that is arrived at if we start from state q and proceed to
read w. More precisely,

δ∗(q, w) =

{
q if w = ǫ,
δ∗(δ(q, a), w′) if w = aw′, a ∈ Σ, w′ ∈ Σ∗.

If q is the start state, it may be omitted: we write δ∗(w) for δ∗(q0, w). Finally, the language accepted by M
is defined to be the set

L(M) = {w ∈ Σ∗ : δ∗(w) ∈ F}.
If w ∈ L(M), we also say that M accepts w. A language is regular if it is accepted by some dfa. The class of
regular languages is denoted REG .

For the dfa M2 in Figure 1(a), Q = {q0, q1}, Σ = {0, 1}, and q0 the start state. What is F? Assuming
we want to accept the odd binary numbers, we let F = {q1}. In general, each final state of F is indicated by
circling such node twice (See Figure 1).

REMARKS. Finite automata and regular languages were widely investigated from the 1950’s, and consid-
ered a well-understood subject. This subject has seen modern revivals because of interest in protocol checking,
complex embedded systems, etc. Indeed, most protocols or embedded systems can be viewed as a finite au-
tomata. The number of states in such automata can be very large and automated tools to design and verify
their properties are necessary. When we study regular expressions below, we will see how these ideas turn up
in many basic software tools.

Exercises

Exercise 0.1.1.1: What is the language accepted by the dfa M3 in Figure 1?

Exercise 0.1.1.2: Construct dfa’s to accept the following languages:
(i) {w ∈ {0, 1}∗ : w has 0101 as substring}.
(ii) {w ∈ {0, 1}∗ : w has neither 00 nor 11 as substring}.

�

SOLUTION
See Figure 2 for the dfa.

Figure 2: DFA looking for 0101 as substring

Explanation: State qi (i = 0, . . . , 3 says that the string that has been scanned so far has a maximum length
suffix of length i that is equal to a prefix of 0101. E.g., state q2 says that the string scanned so far contains a
suffix of the form 01 (which is a prefix of 0101). An easy to commit error is to jump from q3 to q0 when you
see a 0.

(ii) See Figure 3 for the dfa.

�

Exercise 0.1.1.3:
(i) Construct a state dfa to accept binary numbers that are divisible by 7. NOTE: we do not regard the
empty string as representing a binary number, so you must not accept the empty string.
(ii) Show that no nfa for part (i) can have fewer than 8 states.
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Figure 3: DFA avoiding 00 and 11 as substring

�

SOLUTION

Figure 4: Dfa counting mod 7

(i) Such a dfa is shown in Figure 4. Note that the state labeled i (for i = 0, 1, . . . , 6) indicates the binary
string read so far is equal to i mod 7. It is easy to verify that each of the transitions is correct. For instance,
from state 1, if we see 0, then we go to state 2. This is because if the current string w has a binary value of
7m + 1, then the new string w0 has value 14m + 2 which is congruent to 2 mod 7.

(ii) You clearly cannot have less than 7 states. But you need one extra state to serve as the start state,
distinguished from the state 0.

�

Exercise 0.1.1.4: Redo the previous exercise but for dyadic numbers. NOTE: a dyadic number lookes like
a binary number w = bnbn−1 · · · b1b0 ∈ {0, 1}∗, but its value is defined slightly differently as (w)2 =∑n

i=0(bi + 1)2i. E.g. (010)2 = 1 · 22 + 2 · 21 + 1 · 20 = 9. Unlike binary numbers, distinct strings have
distinct values as dyadic numbers.

Exercise 0.1.1.5: Construct a dfa that accepts decimal numbers that are divisible by 7.

Exercise 0.1.1.6: The previous exercises assume that we read the string representation of a number beginning
from the most significant bit (msb) or digit. We could also read them starting from the least significant
bit (lsb). Construct a dfa for accepting binary numbers that are divisible by 7, but reading from the lsb.
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End Exercises

0.1.2 Nondeterministic Finite Automata

There are many possible variations in dfa’s. In some applications, we may not be interested in final states but
are only interested in their repetitive non-stopping behavior. Examples of this kind of finite automata may be
seen in GUI designs such as computer windowing interfaces. Sometimes we are interested in output actions
associated with states, or with transitions. They are called Moore and Mealy machines, respectively. We may
also allow the input string to be read in two directions, forwards and backwards, as often as the dfa wishes. This
2-way reading abilty does not increase the power of dfa’s when viewed as acceptors. We may allow two or more
simultaneous input strings. Perhaps the most important variation is the introduction of “nondeterminism”.
Nondeterminism is the property of machines that may have more than one next course of action.

Formally, a nondeterministic finite automata (nfa) is a 5-tuple M = (Q,Σ, δ, q0, F} as in a dfa. The
only change is that δ is now a multivalued function in the sense that δ(q, a) is now a set of possible next states.
Hence,

δ : Q× Σǫ → 2Q

where Σǫ is Σ ∪ {ǫ}. The curious appearance of ǫ in this definition will be explained next.
The intuitive idea of nondeterminism is that the finite automata has choices in making its transitions.

There are two kinds of choices: (I) From any state q, it MAY read the next input symbol (say a) and go to any
state in δ(q, a). This behavior is similar to what we have seen before in dfa’s. (II) From state q, it can choose
NOT to read the next symbol, and go to any state in δ(q, ǫ). This is called an ǫ-transition.

We again define the extension δ∗ of the function δ,

δ∗ : 2Q × Σ∗ → 2Q

such that the set δ∗(P,w) is, intuitively, the set of all states that we can reach by reading w ∈ Σ∗, starting from
any state of P ⊆ Q. Again, let δ∗(w) = δ∗({q0}, w). Then the language accepted by an nfa M is defined as

L(M) = {w ∈ Σ∗ : δ∗(w) ∩ F 6= ∅}.

Thus, the nfa accepts an input w if it can reach some final state by starting from q0, after reading all the symbols
of w.

To define δ∗(P,w), two preliminary steps will be helpful. First we extend δ to

δ1 : 2Q × Σ→ 2Q

where δ1(P, a) =
⋃

p∈P δ(p, a). Next, write q
ǫ→ q′ if there is a finite sequence of ǫ-transitions from q to q′. Then

δ∗(P,w) =

{
{q ∈ Q : (∃p ∈ P )[p

ǫ→ q]} if w = ǫ,
δ∗(δ1(δ

∗(P,w′), a), ǫ) if w = w′a where a ∈ Σ, w′ ∈ Σ∗.

It is clear that a dfa is a special case of an nfa. We say two nfa’s are equivalent if they accept the same
language. The next result shows that every nfa is equivalent to a dfa.

Theorem 1 (Rabin-Scott). The language accepted by an nfa is regular.

Proof. Given an nfa M = (Q,Σ, δ, q0, F ), we construct an equivalent dfa M = (Q,Σ, δ, q0, F ). The idea is
simple: M must simulate all possible transitions of M simultaneously. This means for all w ∈ Σ∗, we want the
extension of δ to compute the set

δ
∗
(w) = { all the states in Q that can be reached from q0 by M after reading w}. (1)

With such a goal, it is natural to define the state set Q = 2Q, the start state q0 = δ∗(q0, ǫ) and the set of final
states to be F = {P ⊆ Q : P ∩ F 6= ∅}. Now it is easy to see that L(M) = L(M).

Thus it remains to define the transition function so that (1) is satisfied. For P ⊆ Q and a ∈ Σ, we define

δ(P, a) =
⋃

q∈P

δ∗(q, a).
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Note that δ(∅, a) = ∅. This completes our description of the dfa M . We leave it to the reader to formally verify
that L(M) = L(M). Q.E.D.

REMARKS:
1. In this proof, M has exponentially more states that M . In the exercises, we show that this is sometimes
inevitable. In this sense, nfa’s are said to be “exponentially more succinct” than dfa’s.
2. We can extend the concept of a dfa by defining it to be a nfa in which |δ(q, a)| ≤ 1 for all q, a. Such a dfa
can sometimes be “stuck” with no next state. Equivalently, we allow the function δ of a dfa to be partial. The
advantage of this is that when we draw state diagrams, we can avoid drawing lots of extra transitions (however
it saves us only one state at most). The idea of “getting stuck” must be distinguished from the idea of staying
in the same state. For instance, one could introduce the convention for state diagrams where, if there is no
explicit rule for a transition from state q on input a, then the implicit rule is δ(q, a) = q. We avoid with this
convention because it conflicts with the idea of stuck states.

Exercises

Exercise 0.1.2.7: Consider the following transformation: suppose M is a nfa with start state q0 and final
states F = {qf}. We transform it to M ′ by making F = {q0}, and adding the transition δ(ǫ, qf ) = q0.
This is illustrated in Figure 5 where we just indicate the states q0, qf but none of the other states or
transitions. Prove or disprove: L(M ′) = L(M)∗.

qfq0

M
M ′

qfq0

ǫ

Figure 5: M to M ′ transformation.

�

SOLUTION ANSWER: Disprove: let M have just two states {q0, qf} and transitions such that L(M) =
0∗1. Then L(M ′) will contain the strings 1n, which is not in L(M)∗.

M ′

qfq0

0

1

qfq0

0

1

ǫ

M

Figure 6: Counter example, L(M) = 0∗1.

�
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Exercise 0.1.2.8: For n ≥ 2, let Σn = {a1, . . . , an} be an alphabet with n letters and Ln = {w ∈ Σ∗
n :

#ai
(w) = 0 for some i = 1, . . . , n}.

(a) Show an nfa that accepts Ln with n + 1 states.
(b) Show a dfa that accepts Ln with 2n states.
(c) Show that every dfa that accepts Ln has at least 2n states.

Exercise 0.1.2.9: Recall that our nfa can “get stuck” (equivalently, δ(q, a) = ∅). Show that you need n + 2
states if the nfa is not allowed to get stuck in part (a) of the previous question.

Exercise 0.1.2.10: If A is regular, show that its reverse AR = {wR : w ∈ A} is regular.

Exercise 0.1.2.11: (Ó’Dúnlaing, Theoretical Computer Science, 25(1983)171–192) For k ≥ 1, let ({0, 1}∗, Lk)
be the language consisting of binary strings of period k: say a word w has period k if |w| ≥ k and for all
i = 1, 2, . . . , |w| − k − 1, w[i] = w[i + k + 1].
(i) Show that the complement of Lk can be accepted by a ‘small’ nondeterministic finite automaton, say
with 2k + 2 states.
(ii) Prove that Lk cannot be accepted by any nondeterministic finite automaton with less than 2k states.

Exercise 0.1.2.12: A letter homomorphism is a function h : Σ → Γ∗ where Σ,Γ are alphabets. We can
extend h to the function

h : Σ∗ → Γ∗

in the natural way, so that h(vw) = h(v)h(w) for all v, w ∈ Σ∗. In particular, h(ǫ) = ǫ. If A ⊆ Σ∗, then
define h[A] = {h(w) : w ∈ A} ⊆ Γ∗. Show the following.
(i) If A ⊆ Σ∗ is regular, so is h[A].
(ii) If B ⊆ Γ∗ is regular, so is that h−1[B] = {w ∈ Σ∗ : h(w) ∈ B}. HINT: start from a dfa M for B and
construct one that, when it reads an input symbol a, tries to simulate M on h(a).

Exercise 0.1.2.13: Show that the power of dfa’s is not increased if we allow the dfa to read its input in both
directions (it should be allowed to detect the ends of input strings, say by installing two special marker
symbols ‘$’ and ‘#’).

End Exercises

0.1.3 Closure Properties

We may think of a language A as a set, and thus talk about “regular sets” instead of “regular languages”. Viewed
as sets, we obtain the usual set-theoretic operations such as complement1, union, intersection, set difference and
symmetric difference:

co-A, A ∪B, A ∩B, A \B, A⊕B.

One comment about complement: this is only well-defined when A is implicitly viewed as the subset of some
set U , in which case co-A = U \ A. But what is U? There is a natural candidate for U , namely U = Σ∗

A

where ΣA comprises the symbols that appear in some word of A. But sometimes, we wish to view a language
A as a subset of Σ∗ where Σ is a proper superset of ΣA. In this case co-A = Σ∗ \ A. In view of this inherent
ambiguity, we will formally define a language as a pair (A,Σ) where A ⊆ Σ∗ for some alphabet Σ. When we
union two languages, we should also form the union of their underlying alphabet. Similar remarks apply to
the other operations. Having said this, we continue to abuse notation, and write languages as sets because the
underlying alphabet is usually irrelevant.

We introduce two other operations on languages:

• Concatenation: A ·B = {u · v : u ∈ A, v ∈ B}.

• Kleene Star: A∗ = {w1w2 · · ·wn : wi ∈ A,n ≥ 0}
1The complement of a set A is also denoted A, but when A is a language, we prefer to write co-A.
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It follows from the definition of Kleene Star that ǫ ∈ A∗ (choose n = 0) for any A. As usual, we may imply
the concatenation operator by juxtaposition: A · B can be simply written as AB, It is easy to show simple
properties such as (A∗)∗ = A∗ and (AB)C = A(BC).

Theorem 2. Regular languagues are closed under union, intersection, complementation, concatenation and
Kleene-star. In particular, if A,B ⊆ Σ∗ are regular languages then so are

A ∪B, A ∩B, co-A, AB, A∗.

Proof. (a) Let us show that C = A ∪B is regular. Assume that A and B are accepted by the nfa’s MA and
MB that are in the following “nice form”: Mi = (Qi,Σ, δi, q0i, Fi) where i = A,B. Also, q0i 6= qfi. It is easy to
put any nfa into this “nice form”.

We construct MC = (QC ,Σ, δC , q0C , FC) to accept C = A ∪B. Let QC = QA ∪QB ∪ {q0C}, where q0C is a
new symbol. Let FC = FA∪FB , and define δC has all the transitions of δA and δB as well as the new transition

δC(q0C , ǫ) = {q0A, q0B}.

It is easy to see that L(MC) = A ∪B.
(b) To show that C = co-A is regular, assume MA is a dfa that accepts A. We construct a nice nfa MC to

accept C: start state is a new q0C , final state set is FC = {qfC} where QC = QA ∪ {q0C , qfC}. The transitions
are those of MA together with δC(q0C , ǫ) = {q0A} and for each q ∈ QA \ FC (i.e., non-final state q of MA),

δC(q, ǫ) = {qfC}.

This ensures that we accept the complement of A.
(c) Remaining cases. It follows that the intersection of two regular languages is regular: this follows from

the set-theoretic identity, A ∩B = A ∪B. Similar constructions will show AB and A∗. Q.E.D.

The Rabin-Scott theorem shows that nfa’s and dfa’s are equivalent. Notice how this equivalence is exploited
in the preceding proof: when we want to show the “power” of regular languages, it is easier to construct nfa’s
than dfa’s. E..g., in part (a), the automaton MC is an nfa; also, the automata MA,MB can be assumed to be
in “nice form” only because we assume nfa’s. Conversely, to show the “limited power” of regular languages, we
prefer to begin with dfa’s rather than nfa’s. E.g., the automaton MA in part (b) is a dfa.

0.1.4 Regular Expressions

The three operations of union, concatenation and Kleene star constitute the regular operations on languages.
It turns out that they are intimately related to regular languages. To show this, we introduce “regular expres-
sions” as another way to specify regular languages. A regular expression is an algebraic expression in which the
operators denote the regular operators. Here is a simple example of a regular expression

1 · (0 + 1)∗ · 0. (2)

We will see that this expression denotes the language {1 · w : w ∈ 0, 1∗}.
We now formally define regular expressions. A regular expression is a syntactical object (i.e., a sequence of

symbols). We must first to reserve some special symbols,

(, ), ǫ, ∅, +, ·, ∗

which are assumed not to be in any alphabet. Each of these symbols should be viewed as the “underscored
version” of a corresponding common symbol; this connection will be exploited. If Σ is an alphabet, let Σ denote
the union of Σ with the set of special symbols. Then a regular expression over an alphabet Σ is a string
R ∈ Σ∗ of the form:

• (BASIS) R is a or ǫ or ∅, where a ∈ Σ.

• (INDUCTION) R is (R1·R2) or (R1+R2) or (R1
∗ ), where R1, R2 are regular expressions.

NOTE: The operator · is omitted by convention (so that 1w0 really stands for 1·w·0. Also, if parenthesis are
omitted, we use the operator precedence: ∗ ≻ · ≻ +. E.g., 10+1∗ is a short hand for the regular expression
(1·0)+(1∗).

The language L(R) denoted by a regular expression R is defined as follows:
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• (BASIS) L(a) = {a}, L(ǫ) = {ǫ} and L(∅) = ∅, where a ∈ Σ.

• (INDUCTION)
Concatenation: L(R1·R2) = L(R1) · L(R2),
Union: L((R1+R2)) = L(R1) ∪ L(R2) and
Kleene-star: L((R1

∗ )) = L(R1)
∗.

Thus the definition of L(R) depends on the regular operations on languages. Also, there is a close parallel
between syntax and semantics: · denotes “·”, + denotes “∪” and ∗ denotes “∗”. Because of this close parallel,
we may abuse notation by writing · instead of ·, + instead of + and ∗ instead of ∗ in regular expressions. But
the reader must cooperate and “see” the proper symbols (e.g., ∗ instead of ∗) where they are expected. This
abuse is seen in our example (2) above. In the literature, the union symbol ∪ is used instead of + in regular
expressions. We prefer + as this make regular expressions look like arithmetic expressions, and thus obeying
the expected precedence rules of arithmetic operators.

¶1. Generalized Nondeterministic Finite Automata. Since regular languages are closed under the
regular operations, we immediately obtain:

Lemma 3. Regular expressions denote only regular languages.

Based this lemma, we introduce a generalization of nfa’s. A generalized nfa (gnfa) is a 4-tuple M =
(Q,Σ, δ, q0, F ) with the same meaning as in a nfa, except that δ is now a finite set of transition rules of the form

(q, E → q′) (3)

with q, q′ ∈ Q and E is any regular expression over Σ. If w′ ∈ Σ∗, we say q
w′

→M q′ (or simply, q
w′

→ q′)
if w′ ∈ L(E) and δ has a rule of the form (3). A word w is accepted by M iff w can be expressed as
w = w1w2 · · ·wk and there are states q0, q1, . . . , qk such that

q0
w1→ q1

w2→ q2
w3→ · · · qk−1

wk→ qk

and qk ∈ F . The language L(M) is the set of words accepted by M .
A gnfa M = (Q,Σ, δ, q0, F ) is trivial if F = {qf}, Q = {q0, qf}, q0 6= qf and δ has only one rule, namely

(q0, E → qf ). Denote this gnfa by M(E).

Lemma 4. Every gnfa is equivalent to a trivial gnfa.

Proof. Suppose M is a gnfa. We first transform M into a “nice form”:
(N1) First, we may assume q0 6 F ; otherwise, we simply introduce a new final state q′0 and replace every rule of
the form (q, E → q0) by the new rule (q, E → q′0). We also add the rule (q, ǫ → q′0). Clearly, the new gnfa is
equivalent to the old.
(N2) Next, we may assume F = {qf}; otherwise, we introduce a new state qf and introduce the transition
(q, ǫ→ qf ) for each q ∈ F .
(N3) Finally, we may assume that for every q, q′ ∈ Q, there is at most one rule of the form (q, E → q′); otherwise,
we simply replace all such rules for a given q, q′ by a single new rule (q, E∗ → q′). The regular expression E∗ is
simply the union of all the regular expressions in the replaced rules.

Let M be a nice gnfa with |Q| ≥ 2. If |Q| = 2, then M is trivial and we are done. If |Q| > 2, we prove
that M is equivalent to a nice gnfa N with |Q| − 1 states. The result then follows by induction. Take any state
q ∈ Q \ {q0, qf}. We eliminate q by replacing every triple of rules of the form

(q1, E1 → q), (q, E0 → q), (q, E2 → q2)

by the rule (q1, E1(E
∗
0 )E2 → q2. If no such E0 exist, then simply treat E0 ad ǫ in this specification. We can

eliminate q from the new gnfa N , which is clearly equivalent to M . In case (N3) becomes violated in N , we can
make it nice again. Q.E.D.

The preceding two lemmas immediately yield our main result about regular expressions:

Theorem 5. The regular expressions denotes all and only regular languages.

Proof. (⇒) The fact that regular expression denotes only regular languages is Lemma 3 above.
(⇐) We must show that every dfa M gives rise to a regular expression E such that L(M) = L(E). But since

a dfa is also a gnfa, the previous lemma shows that M is equivalent to a trivial gnfa M(E) for some regular
expression E. Hence L(M) = L(E). Q.E.D.
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¶2. Uses of Regular Expressions. The fact that we can describe regular sets syntactically, in a linear
sequence of symbols, is useful in many applications. Unix utilities such as awk, grep, sed exploit this fact. Text
editors use regular expressions in their search facility. Many programming language use regular expressions in
various ways. For instance, Perl has regular expressions built into many of its operators.

Exercises

Exercise 0.1.4.14: Write regular expressions for the following sets:
(i) {w ∈ {0, 1}∗ : w has 0101 as substring}.
(ii) {w ∈ {0, 1}∗ : w has neither 00 nor 11 as substring}.

Exercise 0.1.4.15: Construct nfa’s to accept the languages of the following regular expressions:
(i) (01)∗(10)∗ + 00∗.
(ii) ((01 + 001)∗0∗)∗.
Be sure to parse these regular expressions correctly as parentheses are omitted.

End Exercises

0.1.5 Pumping Lemma

We consider a natural question: are there langauges that are not regular? How do we show that any particular
languages that are not regular? Consider the languages

L1 = {w ∈ {0, 1}∗ : #1(w) = #0(w)}, L2 = {w ∈ {0, 1}∗ : #01(w) = #10(w)}.
The function #v(w) counts the number of occurences of a substring v in w (the occurences of v could

overlap). For instance #010(101010) = 2. We might argue that L1 is non-regular since any dfa has only finitely
many states. This informal argument may be persuasive, but is actually no proof. Indeed, we might argue in
the same way about L2, but this turns out to be false (see Exercises). So we need formal tools for showing
non-regularity. The most important tool for this is the pumping lemma.

Theorem 6 (Pumping Lemma for Regular Sets). If L is a regular language, then there exists a p > 0 (called
the pumping number) such that for all words in w ∈ L with length at least p, we can write w = xyz such that
(i) For all i ≥ 0, xyiz ∈ L.
(ii) |y| > 0
(iii) |xy| ≤ p

Proof. Let p to be the number of states in a dfa M that accepts L. Suppose w ∈ L and n = |w| ≥ p. Let wi

denote the prefix of w of length i, i ≥ 0. Consider the sequence

q0, q1, . . . , qn

of states where qi = δ∗(wi). Thus w0 = ǫ and q0 is the start state of M .
Since there are more than p states in this sequence, some state must be repeated in this sequence. Choose

0 ≤ i < j ≤ p such that qi = qj . Then we may write w = xyz where x = wi and xy = wj . It is now easy to
verify that (i), (ii) and (iii) holds.

Q.E.D.

Let us apply this lemma to the following tally language of squares

Lsq = {1n2

: n ∈ N}.

If Lsq is regular, let p be its pumping number. Consider the string w = 1p2 ∈ Lsq. The pumping lemma implies

that w = xyz such that |y| = q ≤ p and xy2z = 1p2+q ∈ Lsq. But p2 + q ≤ p(p + 1) < (p + 1)2 and so |xy2z| is
not a square. This contradiction shows the non-regularity of Lsq.

Let Lpal =
{
w : w = wR, w ∈ {0, 1}∗

}
be the set of palindromes. We show that Lpal is not regular. If it

were regular with pumping number p, then consider w = 0p10p. Then w = xyz where y ∈ {0}∗. Then wy2z ∈ L
but wy2z is not a palindrome, contradiction.

Exercises
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Exercise 0.1.5.16: Verify the claims about L1 and L2 in the beginning of this subsection: L1 is non-regular
but L2 is regular.

Exercise 0.1.5.17: Prove or disprove that each of the following languages is regular:
(i) {0n10m10m+n : n,m ≥ 1}.
(ii) {ww′ ∈ {0, 1}∗ : w′ is obtained from w by interchanging 0 and 1}.
(iii) {0n : n is prime}.

End Exercises

0.1.6 Myhill-Nerode Theorem

A theorem of J. Myhill and A. Nerode gives us another method of proving non-regularity. For any language
L ⊆ Σ∗, we define the L-equivalence relationship on Σ∗ as follows: two strings x, y ∈ Σ∗ are L-equivalent,
written x ≡L y, if

(∀z ∈ Σ∗)[xz ∈ L iff yz ∈ L]

In particular, x ≡L y implies that both x and y belong to L or both do not belong to L. This relationship is
seen to be an equivalence relation and for any x ∈ Σ∗, we let [x]L denote its equivalence class modulo ≡L. The
number of equivalence classes of L is called its index. We are particularly interested in the case of finite index.

Theorem 7 (Myhill-Nerode). A language L is regular if and only if L has finite index.

Proof. One direction is quite obvious: if L is regular, then it has finite index. Indeed, let M be a dfa accepting
L. Then the two strings u, v that lead to the same state of M must be equivalent. Since M has finitely many
states, the index of L is finite.

Suppose L ⊆ Σ∗ has finite index. We construct a dfa M = (Q,Σ, δ, q0, F ) for L. Let Q = {[w]L : w ∈ Σ∗}
be the set of L-equivalence classes. The start state q0 ∈ Q is the equivalence class of ǫ. The set F of final states
comprise those q = [w]L where w ∈ L. Finally, the transition function is given by δ([w], a) = [wa]. It is a simple
inductive exercise to show that w ∈ L iff δ∗(w) ∈ F . Q.E.D.

Unlike the pumping lemma, this theorem provides a true characterization of regular sets. Let us see an
application. If L = {0n1n : n ≥ 0}, then clearly [0i]L 6= [0j ]L for all i 6= j. This proves that L does not have
finite index. By Myhill-Nerode, L is non-regular.

Exercises

Exercise 0.1.6.18: Unlike the Myhill-Nerode theorem, the pumping lemma is not a characterization of regular
languages.
(i) Construct a non-regular language that satisfies pumping lemma.
(ii) (Open ended) Can the pumping lemma be strengthened into a true characterization of regular lan-
guages?

End Exercises

0.2 Context Free Languages

We introduce context free languages (CFL) that extends regular languages. We describe two new computational
devices for specifying such languages: context free grammar (CFG) and pushdown automata (PDA). It turns
out that the pumping lemma can be extended to context free languages as well.

0.2.1 Context Free Grammars

We have seen automatas (dfa, nfa) and expressions (regular) that can describe languages. We now introduce
“formal grammars” as another device for describing languages. The notion of grammars is motivated by natural
languages. Consider the structure of simple English sentences. The following are “grammatical rules”:
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<Sentence> --> <Noun Phrase> <Verb Phrase>

<Noun Phrase> --> <Article> <Noun> | <Noun>

<Verb Phrase> --> <Verb> | <Verb> <Noun Phrase>

<Article> --> a | the

<Noun> --> boy | girl | ball | dog | ...

<Verb> --> caught | saw | took | ...

Note the use of “|” as alternatives. Thus we can “generate” sentences such as

Girl took the ball

The boy saw a girl

Dog caught ball

A ball saw the boy

...

The proof that the sentence Girl took the ball can be generated by the simple grammar amounts to giving
a parse tree:

<Sentence>

/ \

/ \

<Noun Phrase> <Verb Phrase>

| / \

| / \

<Noun> <Verb> <Noun Phrase>

| | / \

| | / \

Girl took <Article> <Noun>

| |

| |

the ball

The grammatical rules or productions has a left-hand side and a right-hand side. Each side is a string of
variables (indicated by <...>) and terminals (such as boy, girl, etc). Using the rules, we generate sentences
which are defined to be strings with only terminals.

We formalize this. Let V,Σ be disjoint alphabets. A context free grammar (CFG) is a 4-tuple

G = (V,Σ, S,R)

where V is the set of variables, Σ the set of terminals, S ∈ V is the start symbol, and R is a finite set of
rules. A rule (or production) has the form A → w where A ∈ V and w ∈ (V ∪ Σ)∗. For u, v, w ∈ (V ∪ Σ)∗,
define the produce relation as the binary relation on words

u⇒G v

(or simply, u⇒ v) if u = u′Au′′, v = v′wv′′ and A→ w is a rule in G. Thus A is replaced by w in this produce
relation. The derivation relation ⇒∗

G (or simply ⇒∗) is the reflexive, transitive closure of ⇒. So u ⇒∗ v iff
there is a sequence

u0 ⇒ u1 ⇒ · · · ⇒ um (m ≥ 0) (4)

such that u = u0 and um = v. If m = 0 then u = v. We call (4) a derivation of um from u0. The language
generated by G is

L(G) = {w ∈ Σ∗ : S ⇒∗
G w}

A language is context free if it is generated by some CFG.
The derivation (4) is called a leftmost derivation if the variable being replaced at each step is the leftmost

variable. The order of replacing these variables is somewhat artificial in a derivation. One way to remove this
artificial ordering is to consider the parse tree of a derivation. This is defined in the natural was to be an
oriented rooted tree in which the internal nodes are variables and the leaves are terminals. The root has the
start symbol S and the children of an internal node A are labeled by the symbols on the righthand side of some
rule A→ w. An example is the parse tree of the sentence “Girl took the ball” above.



0.2. CONTEXT FREE LANGUAGES 13

¶3. Example: Binary Palindromes. A palindrome is a string w that is the same when read backwards,
w = wR. Some memorable palindromes include “a man, a plan, Panama”, “able was I ere I saw Elba”
(attributed to Napolean). Spaces, capitalization and punctuation marks are ignored in these examples. For any
alphabet Σ, the set of palindromes over Σ is context free. To see this explicitly for Σ = {0, 1}, consider the
grammar G = ({S} , {0, 1} , S,R) where R is the set of rules

S → 0S0 | 1S1 | ǫ. (5)

Note that (5) is just a short hand for the set of three rules

S → 0S0, S → 1S1, S → ǫ

This grammar generates the set of binary palindromes of even length. To generate all binary palindromes, add
two more rules:

S → 0 | 1.

¶4. Example: Arithmetic Expressions. Many programming languages have a sublanguage for simple
arithmetic expressions, that is essentially the following:

<E> --> <id> | <num> | (<E>) | - <E> | <E> <op> <E>

<id> --> a | b | c | ... x | y | z

<num> --> <dig> | <dig><num>

<dig> --> 0 | 1 | ... | 8 | 9

<op> --> + | - | * | /

Exercises

Exercise 0.2.1.19: Extend the simplistic English grammar in the introduction to generate more complex
sentences.
(i) Allow nouns that are either singular or plural. So you will need new variables such as <NP Singular>,
<NP Plural>, etc.
(ii) Introduce simple tenses (past, present, future).

End Exercises

0.2.2 Generalized and Restricted Grammars

Context free grammars can be generalized. In general, a grammar is a 4-tuple G = (V,Σ, S,R) whose meaning
is the same as for a CFG, except that the rules in the set R has the more general form

u→ v, uv ∈ (V ∪ Σ)∗. (6)

In other words, our rules no longer has the restriction of context free grammars which specify that u must be a
variable. Again, we define the language L(G) ⊆ Σ∗ generated by G. We will see that such grammars can be
regarded as a completely general computing device (namely, equivalent to Turing machines).

¶5. Context Sensitive Languages. A general strategy in formal langauge theory is to investigate language
classes that are generated by grammars with syntactic restrictions on their rules. Context free grammars is just
one case. For example, a grammar whose rules (6) are restricted so that |u| ≤ |v| is called a context sensitive
grammar. These grammars generate the class CSL of context sensitive languages. It is immediate from
the definitions that

CFL ⊆ CSL.

We will have more to say about the complexity of this class in Chapter 2. Sometimes, to emphasize that a
grammar is not restricted in any way, we call it a general grammar.
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¶6. Normal Forms. We are also interested in restrictions on CFG’s. There are two common restrictions.
(i) A grammar G is in Chomsky Normal Form if every rule has the form

A→ BC, A→ a

where A,B,C are variables, B,C is not the start symbol, and a ∈ Σ. In addition, we allow the special rule of
the form S → ǫ.
(ii) We say G is in Greibach Normal Form if every rule has the form

A→ aB1B2 · · ·Bm, (m ≥ 0)

where a ∈ Σ and Bis are variables.
These restricted forms are called “normal forms” is because it can be shown that they do not reduce the

expressive power of CFG’s. We only prove this result for Chomsky Normal Form, defering the corresponding
result for Greibach Normal Form to the Exercises.

Theorem 8. Every context-free language is generated by a CFG in Chomsky Normal Form.

Proof. Starting from a CFG G, we transform G into Chomsky Normal Form in five steps:
First ensure that S does not appear on the right hand side of any rule. To do this, replace all occurences of

S on the RHS of any rule by a new variable S′. Also, add the rule S → S′.
Second, remove each rule of the form A→ ǫ and introduce, for any rule B → w where A occurs in w, a new

rule B → w[A/ǫ] (w[A/ǫ] denotes the result of replacing each occurence of A in w by ǫ). If ǫ ∈ L(G), we also
add the special rule S → ǫ.

Third, we replace every rule of the form A → u1, . . . , uk (k ≥ 3) by the new rules: A → u1A1, Ak−2 →
uk−1uk, and k − 3 rules of the form

Ai → ui+1Ai+1, (i = 1, . . . , k − 3),

where A1, . . . , Ak−2 are new variables. The degree of a rule is the length of its RHS. At this point, any remaining
rules have degrees 1 or 2.

Fourth, we fix rules of degree 2. For each rule of the form A → bC, where b ∈ T and C ∈ V , we replace it
by A → BC and B → b (B is a new variable). We have a similar treatment for rules of the form A → Cb or
A→ bc.

Fifth and finally, we fix rules of degree 1. If we have a derivation of the form A⇒∗ B and A 6= B and B → a
or B → CD. Then introduce the rule A→ a or A→ CD (respectively). Moreover remove all rules of the form
A→ B. This completes the description of a Chomsky Normal form. We leave is as an routine exercise to show
that this grammar generates the original language. Q.E.D.

This is useful if we want to show that something cannot be context-free: we only have to attack grammars
in this special form. As exercise, try convert the CFG example above to Chomsky Normal Form.

Exercises

Exercise 0.2.2.20: Convert the binary palindrome grammar above into Chomsky Normal Form.

Exercise 0.2.2.21: Prove that every CFL can be generated by grammar in Greibach normal form.

Exercise 0.2.2.22: Prove that the following language {anbncn : n ≥ 0} is context sensitive.

Exercise 0.2.2.23: Describe a language L that can be generated by a grammar, but does not appear to be
context sensitive. It is sufficient to give plausible arguments for the latter.

Exercise 0.2.2.24: Let L ⊆ {1}∗. Such a language is called a “sla language” (sla stands for “single letter
alphabet”) or tally language.
(i) Show a tally language that is not context free.
(ii) Show that any tally language L that is context free must be regular. HINT: assume G is a Chomsky
Normal Form grammar for L. Try to construct an nfa to accept L.

End Exercises
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0.2.3 Pumping Lemma for Context Free Languages

As for regular languages, we are interested to know if there are non-context free languages. Which of the
following languages are CFL?

Lpal = {wRw : w ∈ 0, 1∗}, Ldup = {ww : w ∈ 0, 1∗}.

We have already shown that Lpal is CFG. What about Ldup whose definition closely resembles Lpal? It is not
context free, but how can we prove this? The standard technique for this purpose is a new pumping lemma
which generalizes the pumping lemma for regular languages.

¶7. The uvxyz-Decomposition. The idea of the pumping lemma for CFL is based on the following setup.
Suppose T is a derivation tree for a word w ∈ L. Let π = (A0, A1, . . . , An, a) be any path in T starting from
the root A0 = S (the start symbol). Here, the Ai’s are variables along the path, and a is the terminal at the
end of the path. Suppose Ai = Aj for some 0 ≤ i < j ≤ n. Then w can be decomposed as w = uvxyz where

• x is the word generated by the subtree rooted at Aj

• v (resp., y) is the word generated by the “left offshoots” (resp., “right offshoots”) of the subpath (Ai, . . . , Aj).
More precisely, suppose Ak has two children, and AL

k , AR
k denotes its left and right child. If i ≤ k < j and

Ak+1 = AR
k , then the subtree rooted at AL

k is called the left-offshoot of the subpath (Ai, . . . , Aj). There
is a corresponding definition for right offshoots.

• u (resp., z) is the word generated by the left (resp., right) offshoots of the subpath (A0, . . . , Ai).

The expression “w = uvxyz” is called the uvxyz-decomposition of w (“uvxyz” is pronounced“eu-vitz”). This
is illustrated by Figure 7(a). Now we can modify the tree T in two ways: (a) We may delete the subpath
(Ai, . . . , Aj−1) and all the associated subtrees to the left or right, and produce a derivation tree for uxz, or (b)
We may duplicate the subpath (Ai, . . . , Aj−1) and all the associated subtrees to the left or right, and produce
a derivation tree for uv2xy2z. This shows that uxz, uv2xy2z ∈ L. In fact, we can repeat (b) as many times as
we like to show that uvixyiz ∈ L for i ≥ 3. We are now ready to prove the pumping lemma.

Theorem 9 (Pumping Lemma). If L is a CFL then there exists p > 0 (the pumping length) such that for all
w ∈ L, |w| ≥ p implies that w = uvxyz such that
(i) |vy| > 0.
(ii) uvixyiz ∈ L for all i ≥ 0.
(iii) |vxy| ≤ p.

Proof. Assume L is generated by a grammar G in Chomsky Normal Form. Choose p = 2m where m is the
number of variables in G. If |w| ≥ p, then the height h of derivation tree T (w) of w must satisfy h ≥ m + 1
(this is because T (w) is a binary tree, and the last variable in any path that generates a leaf has degree 1). But
in any path (A0, A1, . . . , Ah−1, a) of length h ≥ m + 1, there are at least m + 1 variables (only the last node
can be a terminal). Hence some variable is repeated, say Ai = Aj where 0 ≤ i < j ≤ h − 1. The w has a
uvxyz-decomposition. Property (i) comes from the fact that the subpath (Ai, . . . , Aj) must either have a left
offshoot or a right offshoot. Property (ii) is a general property of uvxyz-decompositions. To ensure property
(iii), we can look for the subpath (Ai, . . . , Aj) in (Ah−m−1, Ah−m+1, . . . , Ah−1). This means i ≥ h−m− 1 or,
the height of the subtree rooted at Ai is at most m. So the word vxy generated by this subtree has length at
most p = 2m. Q.E.D.

There are other formulations of this lemma, but the underlying scenario is the same uvxyz-decomposition.
Hence, if this version of the pumping lemma is inadequate for a situation, one can argue directly from the
underlying uvxyz-decomposition.

Exercises

Exercise 0.2.3.25: Prove or disprove that the following are context free:
(i) L1 = {w ∈ {a, b, c}∗ : #a(w) = #b(w) or #b(w) = #c(w) or #a(w) = #c(w)}.
(ii) L2 = {w ∈ {a, b, c}∗ : #a(w) 6= #b(w) or #b(w) 6= #c(w) or #a(w) 6= #c(w)}.
(iii) L3 = {w ∈ {a, b, c}∗ : #a(w) = #b(w) and #b(w) = #c(w) and #a(w) = #c(w)}.
NOTE: #a(w) counts the number of occurences of a in w.



16 CHAPTER 0. INTRODUCTION TO COMPUTABILITY

y

v y z

u

x

z

v x y

Ai

Ai

u z

Ai

Aj

u

v x

Figure 7: The uvxyz decomposition of w and two transformations of the parse tree.

Exercise 0.2.3.26: Let A,B ⊆ Σ∗. The right quotient of A by B is defined to be

A/B := {w ∈ Σ∗ : (∃u ∈ B)[wu ∈ A]}.

(i) Show that if A is context free and B is regular, then A/B is context free.
(ii) Use part (i) to show that the language {0p1n : p is prime, n > p} is not context free.

End Exercises

0.2.4 Pushdown Automata

A pushdown automata (pda) is like an nfa except it has a linear storage structure called a pushdown store
which we also call2 a stack for brevity. The pda can read only the topmost symbol of the stack. Depending on
the transition rules, may replace the topmost symbol by a new symbol or ǫ (the latter means the topmost symbol
is popped); it may also place a new symbol on top of current topmost symbol (this “pushes” a new symbol).
This is illustrated in Figure 8. For example, it is quite easy to design a pda to accept L1 = {0n1n : n ≥ 0}.

Formally, a pushdown automata (pda) is a 6-tuple

M = (Q,Σ,Γ, δ, q0, F )

2A “stack” is sometimes reserved for a generalization of pushdown store in which the automata could go below the topmost
symbol for the purposes of reading (but not changing) the store contents. Since we will not discuss such “stack automata”, our
current terminology should not be a source of confusion.
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Top of stack
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Figure 8: Illustration of a push down automata

where Σ,Γ are input and stack alphabets, q0 ∈ Q is the start state, F ⊆ Q the final states, and δ the
transition function

δ : Q× Σǫ × Γǫ → 2Q×Γǫ

The relation

(q′, b′) ∈ δ(q, a, b) (7)

represents a transition rule. Similar to grammars, we prefer to write such a rule using the arrow notation:

(q, a, b→ q′, b′).

This rule says that if the current state is q, a is the current input symbol and b the top of stack, then we can
next go to state q′ and replace b by b′. Thus δ gives rise to a finite set of such rules, and conversely from any
such set there is a unique δ. We will use whichever viewpoint is convenient. What makes the notion of a pda
transition slightly confusing is that a, b, b′ can independently be ǫ.

Our goal, as usual, is to define the language L(M) accepted by M . Towards this end, it is useful to formalize
the concept of a configuration of a pda: this is a triple of the form

C = (q, w, v) ∈ Q× Σ∗ × Γ∗.

Intuitively, q is the current state, w is a suffix of the input word (with w[1] the current input symbol) and v the
stack contents (with v[1] the top of stack). If C ′ = (q′, w′, v′) is another configuration, then the binary relation

C ⊢M C ′

(or, simply, C ⊢ C ′) holds if C can reach C ′ by applying a single transition rule of M . More precisely, (7) is a
transition rule of M and

w = aw′, a ∈ Σǫ

v = bu, b ∈ Γǫ

v′ = b′u.

Let ⊢∗ denote the reflexive transitive closure of ⊢. Thus C ⊢∗ C ′ iff there exists a finite sequence of the form

C0 ⊢ C1 ⊢ · · · ⊢ Cm, m ≥ 0 (8)

where C0 = C and Cm = C ′. We then say C derives C ′ in m steps. We define L(M) to comprise all w ∈ Σ∗

such that

(q0, w, ǫ) ⊢∗ (q, ǫ, v)

for some q ∈ F and v ∈ Γ∗. We say M accepts w. An alternative definition of acceptance is to insist that v = ǫ,
in which case we say M accepts by empty store and denote the corresponding language by Lǫ(M).
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¶8. Nondeterminism and Example. A pda in inherently nondeterministic in this definition. The nonde-
terminism in the above relation C = (q, w, v) ⊢ (q′, w′, v′) = C ′ arises in three ways:

• There may be several choices of (q′, b′) from the set δ(q, a, b).

• If w 6= ǫ then we have a choice of a = w[1] or a = ǫ.

• If v 6= ǫ then we have a choice of b = v[1] or b = ǫ.

To illustrate this nondeterminism, consider a pda to accept the language Lpal = {w ∈ {0, 1}∗ : w = wR} of
binary palindromes. We make a simple observation: if w ∈ Lpal then w = uav for some u, v ∈ {0, 1}∗ and
a ∈ {0, 1, ǫ} and u = vR. The idea is to operate in two phases: in the first phase, we just push u into the stack.
In the second phase, we verify that the rest of the input (namely v) is equal to to the stack contents (namely
uR). But how do we know when we have reached the middle of the input, namely, the position of a? We use
nondeterminism! More precisely, our pda will have 4 states: start state q0, phase 1 state q1, phase 2 state q2,
and accept state qf . This pda is represented in the following state diagram:

q1

q2
qf

(ǫ, ǫ→ $)

(ǫ, $→ ǫ)

(0, ǫ→ 0)

(0, 0→ ǫ)

(1, ǫ→ 1)

(1, 1→ ǫ)

(ǫ, ǫ→ ǫ)

(0, ǫ→ ǫ)

(1, ǫ→ ǫ)

q0

Figure 9: PDA to accept binary palindromes.

While nondeterminism in finite automata turns out to be inessential, the nondeterminism of pda’s can be
shown to be essential. We can define (Exercise) the notion of deterministic pda (dpda) and deterministic
context free langauges (the latter is slightly technical). The palindrome language Lpal is shown not to be
deterministic. The source of nondeterminism in Lpal comes from the fact that a pda cannot detect the middle

of palindromes. Hence, to make palindroms deterministic, we can define the language L#
pal that comprise all

palindromes of the form
uR#u, u ∈ {0, 1}∗.

This is the language3 of “marked (even) palindromes”.

¶9. Extensions of pda’s. We can generalize the transition function δ slightly, by allowing transition rules
of the form

(q, a, u→ q′, v) (9)

where q, q′ ∈ Q, a ∈ Σǫ, u, v ∈ Γ∗. This generalizes the original pda because we now allow |u| and |v| to be ≥ 2.
It is an easy exercise to show that this does enlarge the class of languages accepted by pda’s. In state diagrams,
the rule (9) appears as a label (a, u→ v) of the edge from q to q′.

Another possible extension is this: we often would like to recognize the end of the input string. Towards
this end, we can introduce a special kind of end-rule for pdas:

(q, $, a→ q′, b) (10)

where $ is a new symbol not in Σ. This rule is applicable precisely when the input is completely depleted. A
pda with this special kind of rules is called an end pda. In general, an end pda is equivalent to some regular
pda. When pda’s are restricted to be deterministic, this is no longer true. See Exercises.

In the same way, a pda may also like to detect when its stack is empty. The standard way to achieve this is
to provide only one transition rule for the start state q0, namely

(q0, ǫ, ǫ→ q1, $)

3If we want a deterministic language to embed all binary palindromes, we could define {uRcu : u ∈ {0, 1}∗, c ∈ {ǫ, 0, 1}}, where
0, 1 are markers corresponding to 0 and 1.
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where $ is a special symbol that marks the bottom of the stack and q1 some new state.

Exercises

Exercise 0.2.4.27: Show that we can allow pda’s with the more general rule of the form (9).

Exercise 0.2.4.28: We say that a pda M is (properly) nondeterministic if it has two distinct transition
rules (q, a, b→ r, c) and (q′, a′, b→ r′, c′) such that the following conditions hold:

(A) q = q′,

(B) a = a′ or a = ǫ or a′ = ǫ,

(C) b = b′ or b = ǫ or b′ = ǫ.

If M is not properly nondeterministic, then is is called a strongly deterministic pda (strong dpda).
Call a language strongly deterministic context free if it is accepted by some strong dpda.
(i) Show that L1 = {0n1n : n ≥ 0} is strongly deterministic context free.
(ii) Show that L2 = {0n1m : m = n or m = 0} is not strongly deterministic context free.

Exercise 0.2.4.29: The previous exercise shows a language L2 that is not strongly deterministic. Intuitively,
the reason a strong dpda cannot recognize L2 is because the dpda cannot detect the end of its input.
To remedy this, recall the notion of end pda which has special “end-rules” to detect the end of inputs.
An end pda is defined to be properly nondeterministic as before, with the end-rules treated like any
other rules in this definition). Finally, a deterministic pda (dpda) to be a end pda that is not properly
nondeterministic. A language is deterministic context free if it is accepted by some dpda.
(i) Show that the language L2 in the previous exercise is deterministic context free.
(ii) Show that the palindromes Lpal is not deterministic context free.

SOLUTION: (ii): let w ∈ Lpal. If a dpda M accepts Lpal, then when M reaches
the end of input w, the special end-rule will be enabled, and M will enter a final state.
INCOMPLETE...

End Exercises

0.2.5 Pushdown Automata Characterization

The main result in this section is that pda and CFG are equivalent. We split the proof into two parts.

Theorem 10. Every context free language is accepted by a pda.

Proof. Assume G = (V,Σ, S,R) is a grammar in Chomsky Normal Form. We will construct an equivalent
pda M = (Q,Σ,Γ, δ, q0, F ). Let w be generated by G using the following leftmost derivation:

S ⇒ u1 ⇒ u2 ⇒ · · · ⇒ um = w.

We can express ui = wiAivi where wi is a prefix of w and Ai a variable. Our pda will simulate this derivation
in m steps. In the ith step, M will have finished read wi and its stack contains Aivi (with Ai at the top of
stack). It remains to show how to proceed to the i + 1st step.

M has only three states Q = {q0, q1, qf} and each simulation step above is performed while in state q1.
There are two kinds of productions with Ai on the left-hand side, and M will have corresponding transition
rules:
(a) Ai → a. In this case, the pda has the transition rule (q1, a, Ai → q1, ǫ).
(b) Ai → BC. In this case, the pda has the transition rule (q1, ǫ, Ai → q1, BC).

It is clear that this achieves our step by step simulation. To start off the induction, we have the transition

(q0, ǫ, ǫ→ S$)
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where S is the start symbol of the grammar and $ is a special symbol to indicate the bottom of stack. To
terminate the simulation, we have the rule

(q1, ǫ, $→ qf , ǫ)

This is the only way to enter the final state qf .

This completes the description of M , and we omit the routine demonstration that w ∈ L(G) iff w ∈ L(M).
Q.E.D.

Corollary 11. REG is a proper subset of CFL

Proof. Since a pda is a generalization of a nfa, we conclude that REG ⊆ CFL. This inclusion is strict since
palindromes are non-regular languages that belongs to CFL. Q.E.D.

The reverse direction is only slightly harder.

Lemma 12. Every language accepted by a pda is context free.

Proof. Given a pda M = (Q,Σ,Γ, δ, q0, F ), we will construct a grammar G = (V,Σ, S,R). We may assume
that M accepts by empty stack, namely if it ever enters a state of F , then its stack is empty. In fact, we can
assume F = {qf}. Another simplification will be useful: each transition of M will either push a symbol or pop
a symbol from the stack. That is, each rule (q, a, b→ q′, b′) satisfies either b = ǫ and b′ 6= ǫ, or b 6= ǫ and b′ = ǫ.

Let p, q ∈ Q. Define the language Lpq to comprise all words w ∈ Σ∗ such that (p,w, ǫ) ⊢∗ (q, ǫ, ǫ). Our
grammar G will have variable Apq to generate precisely the language Lpq. To do this, consider a computation
path starting from configuration Cp = (p,w, ǫ) and terminating in Cq = (q, ǫ, ǫ). There are two cases.
(A) There is configuration Cr = (r, w′, ǫ) such that Cp ⊢+ Cr ⊢+ Cq. In this case, w = w′′w′ where w′′ ∈ Lpr

and w′ ∈ Lrq. Our grammar has the rule

Apq → AprArq

for every p, q, r. Hence, inductively we could generate w′′ and w′. But what is the induction hypothesis? We
do induction on |w|, and assume that for all p, q ∈ Q and all u ∈ Lpq, if |u| < |w| then u can be generated by
our grammer.
(B) There is no such configuration Cr. We know that first and last step of this path be a push action and a
pop action, respectively. If the state after the push action (resp., before the pop action) is r (resp., s), then let
the corresponding transition rules be

(p, a, ǫ→ r, b), (s, a′, b→ q, ǫ).

But our grammar has, for every such pair of transitions, a rule of the form

Apq → aArsa
′.

Thus w = aw′a′ for some w′ ∈ Σ∗. Moreover, w′ ∈ Lrs. Again, by induction |w|, we know that w′ can be
generated from Ars, and hence we are done. Q.E.D.

The reason this characterization is useful is that pda’s and CFG’s present completely different viewpoints of
a given language. To see this, consider the following fact: CFL is closed under reversal. This is trivial to show,
using CFG. The exercise asks you to show this result using pda’s.

Exercises

Exercise 0.2.5.30: Let M be a pda. Construct another pda N that accept L(M)R, the reverse of L(M).

Exercise 0.2.5.31: In the same spirit as the previous exercise, describe a language A that is easily seen to be
accepted a pda, but whose generation by a grammar is considerably harder.

End Exercises
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Notes on Context Free Languages

A basic reference for formal language theory and its connection to automata theory is Hopcroft and Ullman
[5]. The notion of context free grammars and pda’s were introduced by Chomsky (1956) and Oettinger (1961),
respectively. Context free grammars is closely related to the Backus Normal Form or Backus-Naur Form
formulation, described by John Bakus and Peter Naur in the late 1950’s. The dynamic programming algorithm
for recognizing context free grammars (Exercise) is from T. Kasami (1965).

In the 1950s, the study of formal languages led to considerable optimism in the ability of machines to
understand natural languages. Chomsky’s theory of transformational grammar was thought to explain deep
semantic structures. In particular, machine translation (MT) was thought imminent. This turns out to be
misplaced optimism. As an undergraduate, my professor (the late M.L. Dertouzos) said this:

‘‘When I was a graduate student, my professor told

us that MT will be possible in a few years’’

He gave anecdotal examples of what machines produced. The sentence “The spirit is willing but the

flesh is weak” when translated into Russian, and back to English again, produced “The vodka is strong

but the meat is rotten”. The sentence “Out of sight, out of mind” produces “Blind idiot”. Modern
update on these examples may be tried using the many translation services available on the web. AltaVista’s
Babel Fish Translation (ca. 2006) for the above two sentences to Russian and back to English yields produces
“Spirit is willingly ready but flesh it is weak” and “From the sighting, from the reason”. An-
other company (Free Translation Online) produces “The spirit wishes, but the flesh is weak” and “Outside
of a field of vision, from opinion”. Considerable progress has been made today, especially in specialized
domains. For instance, in the European Community (EC), official documents can be automatically translated
quite accurately to all the official languages of the EC. If formal languages turned out inadequate for natural
languages, they turn out to have great impact in the design and analysis of modern computer languages.

Exercises

Exercise 0.2.5.32: The Notes described classic MT translations of examples such “The spirit is willing

but the flesh is weak”. Try to outdo (you know what we mean) these machine translations, but you
have the advantage of choosing your own sentences to translate. [This exercise is to prove that the machine
translation is too hard to leave to machines alone.]

Exercise 0.2.5.33: Prove or disprove: {anb2nan : n ≥ 0} is in CFL.

Exercise 0.2.5.34: (i) Construct an efficient algorithm that, on input 〈G,w〉 where G = (V, T, S,R) is a
grammar in Chomsky Normal Form and w a string, decide whether w ∈ L(G).
HINT: Use dynamic programming. For 1 ≤ i ≤ j ≤ n, let wij denote the substring ai · · · aj where
w = a1, . . . , an. Define Vij = {A ∈ V : A⇒∗ wij}. How do you compute Vij if you know the sets Vik, Vkj

for all k = i, . . . , j?
(ii) What is the worst-case complexity of your algorithm, as a function T (m,n) of input sizes m = |G|
and n = |w|? There is an interesting issue here: since G and w are arbitrary, we need to encode them
in some fixed alphabet Σ0. The symbols of G must first be encoded in Σ∗

0. Hence, |w| and |G| must
be suitably interpreted. Use the following convention: assume Σ0 contains the special symbols A, a, 0, 1
(among others), and each symbol of V is encoded as a string of the form A(0 + 1)∗, and each symbol of T
and w is encoded as a string of the form a(0+1)∗. The definition of |G| can be taken to be the number of
symbols in writing down all the rules of G plus |V ∪T |. Each symbol in x has length equal to its encoding
as a string in L(a(0 + 1)∗)! Similarly, you need specify your encoding G over the fixed alphabet Σ0 and
tell us how to determine its length |G|.

End Exercises

0.3 Computability

This section introduces two classes of languages, REC and RE . They capture the concept of “computability”
in two different senses (“strong” and “weak” computability). This material goes back to foundational studies in
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the 1930’s when mathematicians began to formalize the concept of computability. Various models were studied
but they all turned out to be equivalent in the sense that what is computable in one model is also computable
in another, and vice-versa. This observation is called the Church Thesis. The model introduced by Turing
[11] is chosen for emphasis in this book for a variety of reasons. Among the many reasons for this choice, we
simply note its intuitive simplicity and resemblance to modern computers.

0.3.1 Simple Turing Machines

We introduce a type of automata called Simple Turing Machines (STM). This is essentially4 the original
model introduced by Turing. The model can be elaborated in many ways. For instance, we will later introduce
a version that is better suited for complexity considerations.

· · ·· · · 1 0 1⊔ 1 01

q

Finite Automata inside!

Figure 10: A STM is a finite automaton with a tape

Informally, a STM is a finite automaton that is given an infinite tape which it can read an write on. This is
illustrated in Figure 10. The tape is divided into tape cells, where each cell can hold a symbol. The STM has amay call it a toilet
reading head that, at any moment, is scanning a cell. Initially the input string in placed on this tape, with the
reading head scanning the first symbol of the input. So far, the concept of a tape has not been explicit for a
finite automaton because we only read the input from left to right at each step. In fact, we did not even allow
the automaton to re-read the input. In order for the writing on a tape to be used, we must allow the automaton
to move its reading head left as well as right. Therefore, the notion of a transition for a STM is slightly more
elaborate, as it must specify not only state transition, but also writing of symbols and head movement (one step
to the left or right, or stationary). So a transtion is a 5-tuple, (q, b, q′, b′,D) which says that if the current state
is q and we read the symbol b on the tape, then we move to state q′, replace b by b′ and move in the direction
indicated by D.

Formally, a simple Turing machine (STM) is a 6-tuple M = (Q,Σ, δ, q0, qa,⊔) where Q is a finite set of
states, Σ is an alphabet, q0 ∈ Q is the start state, qa ∈ Q the accept state, ⊔ ∈ Σ is the blank symbol and

δ ⊆ Q× Σ×Q× Σ× {−1, 0,+1}

is the transition table. The STM has a tape with infinitely many tape cells indexed by the integers. The
ith cell (i ∈ Z) can store any symbol in Σ; thus the tape contents can be viewed as a function T : Z → Σ.
The Turing machine M has a current state q ∈ Q as usual, and its tape head is positioned at some tape
cell whose symbol is being scanned. Its current (head) position is i if it is positioned at the ith cell. Each
5-tuple (q, a, q′, a′,D) ∈ δ is called an instruction. We write this 5-tuple in the style of transition rules,

(q, a→ q′, a′,D). (11)

This instruction is executable if the current state is q and head is scanning symbol a. The pair (q, a) is the
precondition of the instruction. Similarly, (q′, a′,D) is called the postcondition of the instruction. There
may be several executable instructions (thus, M can be nondeterministic). We say M is deterministic in case
no two instructions share the same precondition. To execute instruction (11), we enter state q′, change symbol
a to a′ and move to position i + D where i is the current head position. Thus D indicates the direction of head
movement.

4Turing noted the possibility of nondeterministic versions of his model, but chose to focus on the deterministic case. He called
the nondeterministic and deterministic machines (respectively) choice- or c-machines and automatic or a-machines. What we
call states are configurations in Turing terminology.
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¶10. Example of an STM via State Diagrams. Again, we can represent a STM using state diagrams.
This is again a directed graph whose vertex set is Q and edges are labeled by one or more instructions. The
instruction (11) will show up as the label (a→ a′,D) for the edge (q, q′). Consider the STM of Figure 11 that

is intended to recognize the language5 of “marked duplicate words”, L#
dup := {w#w : w ∈ {0, 1}∗}.

q0

NOTE: b = 0 or 1.

q⊔

q0#

qX

q1#

(0→ X, +1)

(1→ X, +1)

(b→ b, +1)

(b→ b, +1)

(b→ b,−1)

(X → X, +1)(#→ #, +1)

(X → X, +1)

(⊔ → ⊔, 0)

qa

(#→ #, +1)

(#→ #,−1)

(#→ #, +1)

(X → X, +1)

(X → X, +1)

q11

q#

q00

(0→ X,−1)

(1→ X,−1)

(X → X,−1)

Figure 11: STM for marked duplicates, L#
dup = {w#w : w ∈ {0, 1}∗}.

The idea of the STM in Figure 11 is to “cross out” the bits (b = 0, 1) that has been processed, replacing
them by an X. Assume the original input has the form u#v (uv ∈ {0, 1}∗). At the beginning of the ith stage,
the following conditions hold:

• We are in state q0.

• The tape contents is Xiu′#Xiv′ where u′, v′ are suffixes of u, v that remain to be crossed out.

• The tape head is scanning the first symbol of the substring u′#.

• There is a string w such that wu′ = u and wv′ = v.

Now consider the operations of the STM in stage i: If u′ = ǫ, then we enter state q⊔ and it is easy that we
finally enter the accept state iff v′ = ǫ. This acceptance is correct. If u′ = 0u′′ then we enter state q0# which
finally moves us past the last X while in state q00. If the next symbol is not 0, we get stuck. Otherwise, we see
0, turn it into an X and move the tape head back back to state q0. Thus the hypothesis for stage i + 1 holds.
If u′ = 1u′′ then we have a symmetrical situation. In any case, we either enter stage i + 1, or accept or reject
(get stuck).

This proof shows that, at the end of stage i, we accept iff u′ = v′ = ǫ. This acceptance is clearly correct.
Otherwise, we get stuck (also correct) or enter stage i + 1.

(⊔ → ⊔, +1)
q0

q−2 qX(⊔ → ⊔,−1)(#→ #, +1)

(b→ b, +1)

q−2

(c→ c,−1)(b→ b,−1)

Figure 12: Additional transitions for marked duplicates STM

Hence this STM accepts Ldup, assuming the input has the form u′#u (stage 0). But it would also accept
#Xn. To fix this, we want to first check that the input string has the form u′#u. This can be done by adding

5We could also consider the “unmarked” version Ldup := {ww : w ∈ {0, 1}∗}.
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the additional states and transitions shown in Figure 12. If we now make q−2 the start state (a violation of our
convention of using q0 as start state), it is then clear that our STM will accept the language Ldup.

¶11. Computation. We now formalize the computation process. Let the tape content be T : Z → Σ. In
computer science, we like to think of T as an infinite array, and hence write “T [i]” instead of T (i), to suggest of
array indexing. At the start of the computation, T [i] = ⊔ everywhere except for finitely many i’s. This remains
true in the subsequent computation. The complete information about the Turing machine at any particular
instant is captured by its “configuration” (also known as instantaneous description (ID). This configuration is
basically a triple (q, h, T ) where q is the current state and h ∈ Z is the current head position. But we propose
to use a more compact representation: a configuration is defined to be an element of

Σ∗ ×Q× Σ∗.

Consider the configuration C = vqw, where vw ∈ Σ∗ and q ∈ Q. Intuitively, the machine is in configuration
C means it is in state q, the non-blank portion of the tape is vw, and the tape head is scanning the symbol w[1]
(the left most symbol of w). In case w is the empty string, w[1] is interpreted6 as the blank symbol ⊔.

Conversely, if the machine M is in state q, with head position h ∈ Z and tape contents T as above, we can
define the corresponding configuration as follows. Choose the smallest range [j..k] ⊆ Z such that (a) T [i] = ⊔
for all i outside the range [j..k], and (b) j ≤ h ≤ k + 1. This uniquely define the range [j..k]. Let u ∈ Σ∗

represent the contents of tape cells in the range [j..k], i.e., u = T [j..k]. We divide u into two substrings v, w
where u = vw and |v| = h− j. So the current configuration is vqw.

If C,C ′ are configurations, we say C directly derives C ′, written C ⊢M C ′, if the configuration C can be
transformed to the configuration C ′ by executing an instruction of M . Suppose the instruction being executed
is (11), and C = vqw and C ′ = v′q′w′. Let us describe v′ and w′ according to the three possibilities for direction
D:
CASE D = 0: Then v′ = v. If w 6= ǫ, then w′ is the same as w except that w′[1] = a′. Suppose w = ǫ. Then

w′ = a′ if a′ 6= ⊔, and otherwise w′ = ǫ.

CASE D = +1: Then v′ = va′. If w = ǫ, then w′ = ǫ. Otherwise, w′ = w1 where w = aw1.

CASE D = −1: We have v′ = ǫ if v = ǫ, and otherwise, v′ = v1 where v = v1b. It is slightly more involved
to define w′ for all the cases, but assuming that v = v1b and w = aw1 and a, b, a′ are nonblanks, then
w′ = ba′w1. We leave the remaining cases as an exercise.

We say C derives C ′, denoted
C ⊢∗M C ′,

if there is a finite sequence (C0, C1, . . . , Ck) such that for each i = 1, . . . , k, Ci−1 directly derives Ci, and C = C0

and Ck = C ′. We also write C0 ⊢M C1 ⊢M C2 ⊢M · · · ⊢M Ck in this case. Alternatively, we say the binary
relation ⊢∗M is the reflexivity transitive closure of ⊢M . We drop the subscript “M”, and simply write ⊢ or ⊢∗,
when M is understood.

The initial configuration, denoted C0(w), on input w is simply q0w. Note that C0(w) does not depend
on M . An accepting configuration is one with the accept state qa. We say M accepts w if C0(w) ⊢∗ C for
some accepting C. L(M) is the set of words accepted by M .

¶12. Halting Computations. We refine our definitions of non-acceptance of a word. There are two distinct
behaviors we want to capture. If C ⊢ C ′, we call C ′ a successor of C. We call configuration C terminal
if it has no successors. We may assume that an accepting configuration is terminal. A terminal but non-
accepting configuration has no executable instruction; it is said to be stuck. Let π be a finite or ω-sequence of
configurations of the form

π : C1 ⊢ C2 ⊢ C3 ⊢ · · · .
We call π a computation path if (a) C1 is an initial configuration, and (b) if the sequence is maximal (i.e., if
the sequence is finite, then the last configuration must be terminal.)

We define the computation tree of M on input w as follows: this tree is rooted at C0(w) such that if C
is a node in the tree and C ⊢ C ′ then C ′ is a child of C in the tree. Denote the tree by TM (w). The set of
maximal paths in this tree is thus the set of computation paths of M on w. This tree has bounded branching

6This general convention will be useful: for a finite string w, we let w[i] denote the ith symbol of w when i ∈ [1..|w|]. If i < 1
or i > |w|, then let w[i] = ⊔.
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degree (this degree is at most the number of instructions in M). By Koenig’s lemma, if the tree is infinite, then
there exists an infinite path.

We say that M halts on w iff TM (w) is finite. With our definitions of M accepting w, and M halting on w,
we are led to four possibilities:

M halts on w M does not halt on w

M accepts w ACCEPT ACCEPT
M does not accept w REJECT LOOP

We introduce special terminology for the two forms of non-acceptance: (a) If M does not accept w, and halts
on w, we say M rejects w. (b) If M does not accept w, and does not halt on w, we say M loops on w.

The intuition is this: rejection is a strong form of non-acceptance. Looping is a weak form of non-acceptance
(the machine could not really make up its mind to accept or to reject, so it goes on forever).

A useful notation is “M(w)” which indicates the result of running M on input w. There are three distinct
ways of using this:

1. We write

M(w) ↓, M(w) ↑ (12)

to indicate that M halts on w and M loops on w (respectively).

2. Next, when viewed as an acceptor,

M(w) = ACCEPT,REJECTorLOOP. (13)

Thus M(w) is a 3-valued function.

3. Viewing M as a transducer, M(w) represents the output of M on input w. When the output is undefined,
we will write “M(w) =↑”. Note the distinction we make between this and the looping notation in (12).

A halting STM M is one that halts on every input; equivalently, for every input w, M either accepts
or rejects w. Note that M may accept w without halting; this can only happen if M is nondeterministic. A
corollary of the next theorem is that that we could make halting synonymous with accepting:

Theorem 13. For every STM M , there exists a STM M ′ such that M ′ is deterministic and L(M) = L(M ′).
Moreover, if M is halting, so is M ′.

Proof. We only sketch a proof: on any input w, M ′ will attempt to simulate every computation path of M
starting on w. It uses a breadth first search of the computation tree TM (w). At any stage of the simulation,
the tape of M ′ will hold a string of the form

#C1#C2# · · ·#Ci−1$Ci# · · ·#Cm (14)

where the Cj ’s are configurations of M , separated by the special symbols # and $. There is only one copy
$, and if this precedes Ci, it signifies that Ci is currently being “expanded”. The configurations C1, . . . , Ci−1

are all at some level ℓ of the computation tree, while Ci, . . . , Cm are at level ℓ − 1. To expand Ci, we simply
replace it by all of its successors. If there is more than one successor, the number of configurations in (14) will
increase; if Ci is terminal and nonaccepting, then the number of configurations decrease by one. If Ci is terminal
and accepting, we are accept and halt. To perform this expansion, M ′ may have to move all the Ci+1, . . . , Cm

to the right (or left, in case this expansion is really a contraction). After expanding Ci, we will expand next
Ci+1 (indicated by moving the marker $ next to Ci+1). If Ci is the last configuration, we next expand the first
configuration C1. The simulation halts and rejects when there are no more configurations left to be expanded.
Thus, if M is halting, so is M ′. This concludes our sketch. Q.E.D.

As noted above, a corollary of this theorem implies that we could make Turing machines accept iff they halt:
by the above theorem, we may assume M is deterministic. We then modify M so that whenever it is stuck, it
will enter a looping state. Thus M(w) ↓ iff M(w) = ACCEPT .

Another way to interpret this result is to say that the concept of non-determinism in STM is not essential as
far as as the definitions of RE and REC were concerned. This is similar to the Rabin-Scott theorem for finite
automata.
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¶13. Uses of Turing machines. A STM can be used in one of three capacities: as an acceptor of a language
L(M), as a transducer to compute a partial function tM : Σ∗ → Σ∗, and as a generator of a language G(M).
We have already seen how a STM is used as an acceptor. For the other cases, we need corresponding conventions.

• To view M as a generator of language over Σ⊔ = Σ \ {⊔}, we must re-interpret the accept state qa to
signal an output. To generate infinitely many outputs, we must enter qa infinitely often. Thus we no
longer use the convention that accepting configurations are terminal configurations. The machine begins
its computation on a blank tape. In the course of computation, the tape will contain a finite number of
non-blank non-empty words, separated from each other by one or more blanks. Whenever M enters qa,
we declare that the non-blank word that is being scanned on the tape is “generated”. For instance, if
w = T [i..j] is a non-blank word where T [i− 1] = T [j + 1] = ⊔, and the head position h lies in the range
[i..j] when we enter qa, we declare that w is being output at that instant. If the symbol being scanned
is a blank, then the empty word ǫ is output. The set of all generated words is denoted by G(M) ⊆ Σ⊔.
Note that the words in G(M) may be generated more than once.

• To view a STM M as a transducer, we need to define the partial function tM : Σ∗
⊔ → Σ∗

⊔. We can use the
same input convention as for acceptors: this means that the initial configuration is C0(w) = q0w where
w is the input. What about output convention? We may define tM (w) to be the non-blank word tM (w)
that is being scanned when the machine enters the accept state qa. In case the scanned symbol is ⊔,
define tM (w) = ǫ. This is just the same output convention as for generators, except that we view qa as a
terminal state (as in the case of acceptors). When M is nondeterministic, different paths can give different
outputs. We may declare tM (w) to be undefined when two or more distinct outputs are produced, or when
no output is produced. However, we allow multiple outputs of the same string. This flexibility is actually
important in known applications.

Exercises

Exercise 0.3.1.35: Verify that the STM in Figure 11 accepts L#
dup.

Exercise 0.3.1.36: Show that if L is accepted by a STM, then it is accepted by a STM in which every non-
terminal configuration C has exactly two successors C1, C2. We write C ⊢ (C1, C2) in this case. This
means that we can regard our computation tree TM (w) as a full binary tree.

Exercise 0.3.1.37: Construct a STM to accept inputs of the form x#y#z where x, y, z ∈ {0, 1}∗ and 〈x〉+〈y〉 =
〈z〉. Here x is the binary notation for the number 〈x〉 ∈ N.

Exercise 0.3.1.38: Define a very simple Turing machine (vSTM) be a simple Turing machine in which
each instruction either modifies the scanned symbol or moves the head to the left or right, but not both.
In other words, if the scanned symbol is modified, then the head is stationary, and if the head moves, then
the scanned symbol is unmodified.
(i) Model a vSTM as a set of instructions where the instructions are 4-tuples.
(ii) Show that for every STM M , there is a corresponding vSTM N with twice the number of states, and
which takes twice as many steps to accomplish the same computation as M .

End Exercises

0.3.2 Recursively Enumerable Languages

A language is said to be recursively enumerable (r.e.) if it is accepted by some STM. The class of all
r.e. languages is denoted RE . A language is recursive if it is accepted by some halting STM. The class of all
recursive languages is denoted REC .

Suppose M accepts L. We also say that M recognizes or semi-decides L. If M happens to be halting,
we say M decides L. It is common to refer to r.e. languages and recursive languages as r.e. sets or recursive
sets. This arose from the context where these definitions were applied to subsets of N (see discussions below).

It is clear from our definitions that
REC ⊆ RE .

A more interesting result is the following.
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Corollary 14. The recursive languages are closed under complement: REC = co-REC .

Proof. It is a simple fact that for any class K, we have K = co-K iff K ⊆ co-K. Hence we only have to show
that if L is recursive, then co-L is recursive. Applying Theorem 13, let M be a halting deterministic STM that
decides L. We construct M that acts like M , except that M accepts iff M rejects. Q.E.D.

Theorem 15. The recursive languages are those r.e. languages whose complements are also r.e.. Thus, REC =
RE ∩ co-RE .

Proof. One direction is easy: if L ∈ REC then the previous lemma shows that co-L ∈ REC and hence
L ∈ co-REC and hence L ∈ REC ∩ co-REC ⊆ RE ∩ co-RE .

Conversely, let L ∈ RE ∩ co-RE . Then there are deterministic STM’s M and M ′ such that L = L(M) and
co-L = L(M ′). We construct a STM M ′′ that, on input w, simulates M on w and M ′ on w. The trick (called
dovetailing) is that we must not naively simulation either M or M ′ to completion, since we cannot be sure if
either will halt. But we know that for every input w, at least one of M or M ′ will halt: if w ∈ L then M will
halt, and if w 6∈ L then M ′ will halt. Hence we simulate one step of M and one step of M ′ alternately. As soon
as either M or M ′ halts, we can accept or reject in the appropriate manner: we accept iff either M accepts or
M ′ rejects. Q.E.D.

Let us prove one more result, to relate the context free languages to our new classes.

Lemma 16. The class CFL of context free languages is a proper subset of REC.

Proof. (i) We first show the easy part, that REC contains a non-context free language. This is the language

L#
dup of marked duplicate words. This can be seen by a simple application of the pumping lemma for context

free languages. However, the halting STM in Figure 11 described in our introduction to STM shows that
L#
dup ∈ REC .

(ii) Now we show that CFL ⊆ REC . Let be P a pda. It suffices to construct a halting STM M such that
L(M) = L(P ). On any input w, M first converts the tape contents into q0w where q0 is the start state of P .
The STM M is simulating P step by step, where the general tape contents of M has the form vqw′ where v
is the current stack contents of P (the top of stack is v[1]), q is the current state of P , and w′ is a suffix of w
(with P is currently reading w′[1]). Each nondeterministic step of P is easily simulated by M (which is also
nondeterministic). The simulation halts as soon as w′ = ǫ. We accept if q is a final state of P , or if there is a
single ǫ-transition of P into a final state. This concludes our construction of M . By construction, M is halting.

It is clear that if M accepts w, then P accepts. The converse is unclear: if M rejects, we know that that the
input string has been depleted (w′ = ǫ). But conceivably P could continue to compute using only ǫ-transitions
and finally accept. We argue that this is impossible when P has the special form described in the proof of
Theorem 10. In that proof, we constructed a pda whose ǫ-transitions always increase the size of its stack. The
sole exception is the final ǫ-transition into the accept state qf , but this occurs only the bottom of stack symbol
$ is read. With such a P , once the input is depleted, the only way to accept is to apply this special transition
once. Since M checks for such a transition, it can safely reject when no such transition is found. Q.E.D.

Although nondeterminism was not essential in our definition of RE and REC , it was useful in preceding
proof since it allows our constructed M to mirror the nondeterminism of a pda.

Exercises

Exercise 0.3.2.39: Show that L is r.e. if and only if L is generated by a general grammar.

End Exercises

0.3.3 Computability Dictionary

There are at least four independent sets of terminology in the area of computability. The following table places
these terminology alongside each other for comparison. Three of them comes from viewing the computing device
as generators, acceptors or transducers; a fourth set of terminology comes from the study of recursion as the
main mechanism in computing.
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MODEL PARTIAL COMPUTABILITY TOTAL COMPUTABILITY

1. Generator recursively enumerable set recursive set
2. Acceptor semi-decidable or recognizable set decidable set
3. Transducer (partial or semi-) computable function total computable function
4. Recursion partial recursive function (total) recursive function

Using a loose interpretation7 of Church’s Thesis, these four view points are also equivalent. Hence reader
should feel comfortable switching among these terminology as convenient. The object of study in computability
is “computational problems”. The obvious form of computational problems is the functional form. For instance,
the problems of multiplication or square-root correspond to the functions g(x, y) = xy and f(x) =

√
x, respec-

tively. To capture the essence of computability, and to avoid considerations of precision in the representation
of real numbers, computability theory is usually formulated as the study number theoretic functions, i.e.,
f : Nn → N for some n ≥ 1. By suitable encodings, we can even assume n = 1. So the square root function
must be re-formulated as f(x) = ⌊√x⌋. Such are the functions mentioned in the last row of the table.

We can further restrict our number theoretic functions so that range has only two values (Yes/No, 0/1,
accept/reject). These are called8 decision problems. Such a function f : N → {0, 1} can be identified
with the set {n ∈ N : f(n) = 1}. Thus the characterization of computable functions is transformed into the
characterization of the “decidable subsets” of N. For any alphabet Σ, there are bijections between N and Σ∗

and hence this is equivalent to studying decidable languages, which is our main viewpoint. The sets mentioned
in rows 1 and 2 can be interpreted as subsets of N or languages. Note that our “official definition” of these
concepts uses the terminology for generators, even though we mainly treat acceptors.

The first aim of computability theory is to characterize the “solvable” problems. When problems are
functions, we characterize the “computable” functions. (Thus, “solvable” and “computable” relatively in-
terchangeable). It was quickly realized that computability can be refined into “partial computable” and “total
computable”. This accounts for the two columns (under “partial computability” and “total computability”).
Likewise “decidable” can be refined into “semi-decidable” or “total decidable”. (Here “semi-” and “partial” is
another pair of words that are usually interchangeable). The presence of a qualifiers (partial, semi-, total, etc)
immediately places concept in the correct column; when the qualifier is omitted, convention must tell us which
column is meant.

¶14. What about other models of computation? The introduction noted that there are other models of
computability. So why did we choose Turing’s model? One answer is that Turing’s model is remarkably flexible:
when we study complexity theory later, we will see how it is easily modified to model various phenomenon in
complexity. Furthermore, Turing’s Thesis says that anything that is algorithmically computable is computable
by an algorithm is computable by Turing machines. This is called a thesis (not a theorem) because the concept of
“algorithmically computable” is informal. But given any reasonable interpretation, we will find that the thesis
holds up. The converse of this thesis is clear: whatever an “algorithmically computable” means, the method
used by a STM to accept a language or to compute a function qualifies as algorithmic. This justifies equating
the classes RE and REC with the concepts of semi-decidable and total decidable sets.

Exercises

Exercise 0.3.3.40: Consider the set

P = {n ∈ N : the binary expansion of π = 3.14159 . . . has n consecutive 0’s}.

The current state of mathematics does not tell us whether P = N. Suppose P 6= N, and interpreting P as
a set of binary numbers. Discuss whether the language P decidable or semi-decidable.

Exercise 0.3.3.41: Hilbert’s 17th Problem asks: given an integer multivariate polynomial P (x1, . . . , xn), does
it have an integer root? An integer root of P is (a1, . . . , an) ∈ Zn such that P (a1, . . . , an) = 0. Show that
this problem is semi-decidable. NOTE: Matiyasevic shows in 1970 that this problem is not decidable.

End Exercises

7Church’s thesis concerns the equivalence of different computational models. Here we are saying that the notion “computable
sets” and “computable functions” are also equivalent.

8This is the German word “Entscheidungsproblem” in Turing’s original paper [11].
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0.3.4 Diagonalization

We now ask: are there uncomputable functions? In terms of decision problems, are there non-r.e. languages?
The answer is yes, but for a very fundamental reason that has almost nothing to do with computation. It has
more to do with counting and size.

If X is a set, |X| denotes its cardinality which is intuitively the number of its elements. This is clear for
finite sets, as |X| ∈ N. If X is infinite, we can simply say |X| =∞. But we will want to refine this classification
for infinite sets. The accepted way to do this is via a theory of cardinals, so that the function | · | assigns a
cardinal number |X| to each set X. Without launching into a development of this theory, we can prove some
basic facts via an axiomatic approach. Whatever we mean by “cardinal numbers”, we want the following axioms
to hold. Let X and Y be sets.

(A0) The cardinal numbers are totally ordered.

(A1) |X| ≤ |Y | iff there is an injection f : X → Y .

From these two principles, we can conclude that if there is a bijection h : X → Y then |X| = |Y |. We also say
X and Y are equivalent in this case. Conversely, if |X| ≤ |Y | and |Y | ≤ |X|, we want to conclude that X
and Y are equivalent. This converse is not so obvious, and is the subject of the celebrated Bernstein-Schröder
theorem below.

If X is a finite set, we may identify |X| with the usual natural number n ∈ N that counts the number of
elements in X. The theory of cardinality becomes rather more interesting when we treat infinite sets.

The simplest approach to the Bernstein-Schröder theorem uses a fixed-point approach. This approach is
used, for instance, in fixed-point semantics of of programming languages. The fixed-point principle is this:

Lemma 17. Suppose µ : 2X → 2X is monotone in the sense that A ⊆ B ⊆ X implies µ(A) ⊆ µ(B). Then
there exists a set A∗ ⊆ X such that µ(A∗) = A∗, called a fixed point of µ.

Proof. Call a set A ⊆ X is “small” if A ⊆ µ(A); it is small compared to its image µ(A). Note that if A is
small, then µ(A) is also small because of monotonicity: µ(A) ⊆ µ(µ(A)). Define A∗ to be the union of all small
sets. To show that A∗ is a fixed point, we first show one direction:

A∗ ⊆ µ(A∗). (15)

This says A∗ is small. If a ∈ A∗ then a ∈ A for some A ⊆ A∗ that satisfies A ⊆ µ(A). This shows that a ∈ µ(A).
But µ(A) ⊆ µ(A∗), by monotonicity. Thus a ∈ µ(A∗). The other direction is now easy: we know that µ(A∗) is
small since A∗ is small. But this means µ(A∗) ⊆ A∗ as A∗ is the union of all small sets. Q.E.D.

A trivial example of a monotone map is µ(A) = A for all A. So every set is a fixed point. Our construction
yields A∗ = X. The reader may be curious about the analogous definition of “big” for sets B ⊆ X that satisfy
µ(B) ⊆ B. An exercise asks you to show a fixed point B∗ for µ using big sets.

Theorem 18 (Bernstein-Schöder). If f : X → Y and g : Y → X are injections, then there exists a bijection
h : X → Y .

Proof. First define the function µ : 2X → 2X via

µ(A) = X \ g(Y \ f(A)).

Figure 13 illustrates this map. This function is monotone because if A ⊆ B ⊆ X, then

f(A) ⊆ f(B)

Y \ f(A) ⊇ Y \ f(B)

g(Y \ f(A)) ⊇ g(Y \ f(B))

X \ g(Y \ f(A)) ⊆ X \ g(Y \ f(B))

The last inclusion amounts to µ(A) ⊆ µ(B). By the previous lemma, µ has a fixed point A∗. Then A∗ =
µ(A∗) = X \ g(Y \ f(A∗)). Writing B∗ := g(Y \ f(A∗)), it follows that (A∗, B∗) is a partition of X. We now
specify the bijection function h : X → Y as follows: h restricted to A∗ is f , and h restricted to B∗ is g−1. To
see that h is a bijection, it suffices note that (h(A∗), h(B∗)) = (f(A∗), Y \ f(A∗)) and hence forms a partition
of Y as well. Q.E.D.
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X
Y

f(A)

A

g

f

g

µ(A)

µ(A)

Figure 13: Injections f : X → Y and g : Y → X.

¶15. Countable and Uncountable. Let the cardinal number of N be denoted ℵ0 (ℵ is the first Hebrew
letter aleph). A set X is said to be countable if there is an injection f : X → N. Equivalently, |X| ∈ N or
|X| = ℵ0. If |X| = ℵ0, we will say X is countably infinite, or equivalently, denumerable. Countability gives us
just one extra number (namely ℵ0) to count with – we can now make one distinction among the infinite sizes.
So let us try it out!

It is easy to construct bijections between N and the sets Z: For instance, if we list the elements of Z as
(0,−1, 1,−2, 2,−3, 3, . . .), then we see that this listing can be matched to the listing (0, 1, 2, 3, . . .) of N. Formally,
the bijection is given by

f(n) =

{
n/2 if n is even,
−(n + 1)/2 if n is odd.

(16)

Hence |Z| = ℵ0. This simple example illustrates a curious phenomenon that is characteristic of infinite sets: the
property of having a bijection with a proper subset.

Let us prove two more such results. For any set X, recall that 2X is the set of all subsets of X. Write 2
X

for the set of all finite subsets of X. Thus 2X = 2
X

iff X is a finite set.

Lemma 19. The following sets are denumerable:
(a) The set Nn where n ≥ 2.
(b) The set Σ∗ of words over any alphabet Σ,

(c) The set 2
N

of all finite subsets of N.

Proof. (a) The well-known pairing function (i, j) 7→ P2(i, j) =
(
1+i+j

2

)
+ j maps N2 bijectively into N. By

induction, if Pn−1(i1, . . . , in−1) is a bijection, then Pn(i1, . . . , in) = P2(Pn−1(i1, . . . , in−1), in) is a bijection from
Nn → N.
(b) We list all the words of Σ∗ in non-decreasing order of their lengths. This gives a bijection between Σ∗ and
N.
(c) Let N(k) denote all subsets of {0, 1, . . . , k}. We simply list all the elements of N(0), then N(1) \ N(0),
N(2) \ N(1), etc. Q.E.D.

We can embed Q in Z2 by associating x ∈ Q with the unique (p, q) where x = p/q and q ≥ 1 and (p, q) = 1.
Thus Q is denumerable. At this point, the reader begins to wonder if there are other infinite cardinal numbers
besides ℵ0. The next theorem gives the answer.

Theorem 20 (Cantor). For any set X, |X| <
∣∣2X

∣∣.

Proof. Clearly |X| ≤
∣∣2X

∣∣. Suppose, by way of contradiction, f : X → 2X is a bijection. Let D = {x ∈ X :
x 6∈ f(x)}. Hence there is y ∈ X such that f(y) = D. We ask the question: is y ∈ D? If y ∈ D, then y ∈ f(y)
and so by definition of D, y 6∈ D. Conversely, if y 6∈ D, then y 6∈ f(y) and so by definition of D, y ∈ D. Since
both possibilities lead to contradiction, we have achieved a contradiction. Q.E.D.

This shows that in lemma 19(b), the restriction to finite subsets of N is essential. It is a fact that
∣∣2X

∣∣ = 2|X|.
Hence, 2N has a cardinality 2ℵ0 which this theorem shows is different from ℵ0. The famous Continuum
Hypothesis says that there is no cardinal number α lying strictly between ℵ0 and 2ℵ0 . Put another way,
if ℵ1 denotes the smallest cardinal number larger than ℵ0, the hypothesis asserts that ℵ1 = 2ℵ0 . Note that
ℵ1 is well-defined because cardinal numbers are well ordered (so ℵ1 is just the smallest number in the set
{α : α > ℵ0}).
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Here is another uncountable number: let S(X) denote the set of all permutations of X.

Theorem 21. |N| < |S(N)| ≤
∣∣2N
∣∣.

Proof. The inequality |S(N)| ≤
∣∣2N
∣∣ is left as an exercise.

To show the first strict inequality, suppose S(N) is countable. So let (A0, A1, A2, . . .) be the list of all
permutations of N. We write Ai = (ai0, ai1, ai2, . . .).

We need a sophisticated way to diagonalize. The idea is this: in stage 0, we choose c0 to be a01. In stage i,
we consider the entries

ai0, ai1, . . . , aii, ai, i + 1.

We pick an element ci from this set that is different from aii and different from any of the previous i−1 choices.
Clearly ci can be picked. Moreover, if there are several possible choices, we pick the element that is minimum.

We claim that C = (c0, c1, . . .) is a permutation of N that is different from each Ai. That C 6= Ai is clear,
because aii is different from ci.

Why is C is a permutation? We claim that every i ∈ N appears in C. Clearly, i must appear infinitely often
in every column. In particular, by the time that i first appears in column 1, if it had not been picked, it would
be picked. Q.E.D.

Cantor’s theorem uses a diagonalization argument. Why is this so-called? Imagine a semi-infinite matrix
indexed by X on the rows and 2X on the column. D is constructed by looking at the diagonal of the matrix.
Diagonalization turns out to be a very important technique in the theory of computability.

Cantor’s theorem shows the existence of uncountable sets. But which of the familiar sets we know are
uncountable? Let us now show the set R of real numbers is uncountable. It suffices to prove that the reals in
the interval [0, 1] is uncountable. Use the fact that such numbers has an infinite binary expansion of the form
0.b1b2b3 · · · . If [0, 1] were denumerable, we can arrange them in an infinite list (x1, x2, x3, . . .). Consider the
number r with expansion 0.d1d2d3 · · · where dn is chosen to be different from the nth bit of xn. Note that this
expansion is different from any in the list. We want to conclude that r is not in our list, which would be a
contradiction. Unfortunately, this conclusion is unwarranted because the binary notation is non-unique. The
binary strings 0.b1 · · · bn10ω and 0.b1 · · · bn01ω represent the same number. One way to avoid this problem is
to use an m-ary notation for any m ≥ 4. The m-ary expansion uses digits in {0, 1, . . . ,m − 1}. Two distinct
expansions denote the same number iff they have the form: 0.b1b2 · · · bn−1bn3ω and 0.b1b2 · · · bn−1b

′
n0ω where

b′n = 1 + bn. In our construction of the number r, we simply make sure that dn is chosen different from 0 and
m− 1.

The next theorem uses two propositions.

¶16. PROPOSITION A: The class of all languages L is uncountable.

¶17. PROPOSITION B: The family of all Turing machines M is denumerable.
To see PROPOSITION A, let L0 be the set of languages over {0, 1}. It suffices to show this set uncountable.

But clearly L0 is equivalent to 2N, which is uncountable by Cantor’s theorem. We will return to the proof of
PROPOSITION B in the next subsection.

Theorem 22. There is a language that is not in RE ∪ co-RE.

Proof. By PROPOSTION B, there are only denumerably many languages in RE and hence in RE ∪ co-RE .
By PROPOSTION A, there are uncountably many languages. The theorem follows. Q.E.D.

This theorem shows that there are languages outside of RE ∪co-RE , based on purely cardinality arguments.
This is not exciting news, as it gives no indication as to which languages are not in RE ∪ co-RE . What is
more interesting is to show that certain explicitly describable languages have this property. We will obtain such
results below. This is somewhat harder to do, but it is like the cardinality argument in one respect: lurking
being these proofs is still a diagonalization argument (perhaps only indirectly).

Exercises

Exercise 0.3.4.42: Let µ : 2X → 2X be a monotone map.
(i) Prove that if B∗ is the intersection of all big sets, then B∗ is a fixed point of µ.
(ii) Show that if C is any fixed point of µ, then B∗ ⊆ C ⊆ A∗.
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SOLUTION: (ii) Trivial: such a C is both big and small.

Exercise 0.3.4.43: The identity map µ is monotone. Construct other examples of monotone µ such that
A∗ 6= B∗.

End Exercises

0.3.5 Gödel Numbering

The previous theorem depends on an unproved PROPOSITION B. We deferred the proof until now in order to
give a fuller treatment of several closely related topics.

¶18. k-adic Notation. The binary notation

B : {0, 1}∗ → N (17)

for numbers is well-known. Thus, B(101) = 5. This notation is highly non-unique since each number has an
infinite number of notations. E.g., every string denoted by the regular expression 0∗11 is a notation of the
number 3. For some applications, it is convenient to have a bijection D : {0, 1}∗ → N. The dyadic notation
has this property. It is rather similar to binary numbers: the string w = bnbn−1 · · · b1b0 (bi ∈ {0, 1}), viewed as
a dyadic number, represents the number D(w) given by

D(w) =

n∑

i=0

(bi + 1)2i.

It is easy to verify that this defines a bijection D : {0, 1}∗ → N. The dyadic notation for the initial natural
numbers are

ǫ, 0, 1, 00, 01, 10, 11, 000, 001, . . . . (18)

This dyadic ordering of binary strings is also called the lexicographic ordering of {0, 1}∗. For obvious reasons,
instead9 of the alphabet {0, 1}, some authors use {1, 2} for dyadic notation.

Just as binary notation generalizes to k-ary notations, the dyadic notation generalizes to k-adic notation.
For any natural number k ≥ 2, let Σ be an alphabet of size k. Once we choose a bijection D : Σ→ {1, . . . , k},
we naturally extend this bijection to D : Σ∗ → N where D(b0b1 · · · bn) =

∑n
i=0 D(bi)k

i. Using these bijections,
we can interpret any word function t : Σ∗ → Σ∗ as a number theoretic function.

¶19. Numbers versus Strings. All the concepts of standard computability theory can be developed using
strings, or equivalently10 using the set of natural numbers. Hence, it is convenient to move effortlessly between
finite strings and natural numbers, depending on which setting is more convenient. We indicate such bijections
between Σ∗ and N by writing

Σ∗ ≃ N. (19)

If w ∈ Σ∗ and n ∈ N, we shall write w ≃ n under this bijection. We usually do not exploit any particular
properties of this bijection, except that we may assume that ǫ ≃ 0.

The lexicographic ordering of Σ∗ is defined as in (18) using this bijection. Using (19), we can now interpret
any string function f : Σ∗ → Γ∗ as a number-theoretic function f : N→ N.

¶20. Encoding Tuples. The bijection (19) can be extended to tuples. Thus, any n-tuple (w1, . . . , wn) ∈
(Σ∗)n can be encoded by the string w1#w2# · · ·#wn, provided we use a symbol # that is not in Σ. To avoid
explicitly specifying #, we will write 〈w1, . . . , wn〉 for w1#w2# · · ·#wn. Extending the bijection (19), we then
have bijections of the form

Nn ≃ N.

These bijections are the (generalized) pairing functions, which are denoted by Pn in the proof of Lemma 19.
We can introduce their partial inverses, called “projection functions” πn

i which extract the components wi from
〈w1, . . . , wn〉.

9We prefer the digits {0, 1} over {1, 2} to avoid unfamiliar looking strings such as “1211222”.
10When we discuss complexity, these two approaches are no longer equivalent. In this case, the string approach is more natural.
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¶21. Enumeration and Denumeration. An enumeration of a set X is a surjective function f : N→ X.
We typically indicate f by the ω-sequence (f(0), f(1), f(2), . . .). Note that repetitions are allowed in this
sequence. If f were a bijection, we call f a denumeration of X. Recall that we already defined a set to be
denumerable if it is countable and infinite. Thus we see that a set X is denumerable iff it has a denumeration.
If f is an enumeration of a language X ⊆ Σ∗, we say that f is effective if f is total recursive. This requires us
to view f as a word function f : {0, 1}∗ → Σ∗, with N ≃ {0, 1}∗. For example, the lexicographic listing in (18)
is a denumeration of X = {0, 1}∗. This denumeration is total recursive. In fact, it is trivially so because the
word function f here is just the identity function.

¶22. Two Universal Assumptions. PROPOSITION B amounts to saying that there is an enumeration of
the setM of all Turing machines. This idea goes back to Gödel in his celebrated Incompleteness Theorem. Such
enumerations (when effective) have profound implications later. Unfortunately, PROPOSITION B cannot be
true without further restrictions: if the set of allowed alphabets is uncountable, thenM is trivially uncountable.
As a solution, we now make two assumptions that are used throughout this book. Let Σ∞ and Q∞ be two
disjoint denumerable sets with the following properties:

Convention (α). We fix Σ∞ to be any countably infinite set of markings that are called symbols.
Σ∞ is the universal set of symbols, assumed to contain every symbol (such as 0, 1, a, b, $,#, etc) that
we will ever use in defining machines or languages. It contains a distinguished symbol ⊔ called the
blank symbol. No alphabet of a language contains this blank symbol.

Convention (β). We fix Q∞ to be any countably infinite set of markings that are called states. We
assume Q∞ is disjoint from Σ∞. It is called the universal set of states, assumed to contain every
state that we will ever use in defining machines. It contains three distinguished states q0, qa and qr

called the start state, the accept state, and the reject state, respectively. The explicit use of reject
states, however, can be avoided until chapter 7.

It is now easy to show PROPOSITION B: for each n ∈ N, let Mn comprise all STM’s with at most n
instructions and which uses only the first n symbols of Σ∞ and the first n states in Q∞. Since Mn is finite
for each n, we simply list all the elements of Mn for n = 0, 1, 2, . . .. This shows that the family M of Turing
machines is denumerable.

Henceforth in our treatment of computing devices (Turing machines, grammars, etc), we use these two
universal11 assumptions. Besides validating PROPOSITION B, a practical advantage is that we save verbiage
in discussing Turing machines or any automata. A STM M is no longer described as “a 6-tuple”, but is simply
defined by a finite set δM (of instructions) where

δM ⊆ Q∞ × Σ∞ × {−1, 0,+1} ×Q∞ × Σ∞.

We need not explicitly specify the state set Q = QM and alphabet Σ = ΣM of M . Instead, these can be deduced
from δM . For instance, ΣM is12 the set of non-blank symbols that occur in either the 2nd or 4th components of
an instruction in δM . Similarly, the start q0 and accept qa states need not be specified as they are universally
chosen.

¶23. Enumeration of Turing Machines. PROPOSITION B shows that there exists an enumeration

(M0,M1,M2 . . .). (20)

of all STM’s. However, we need the enumeration to be effective. This is not difficult, but in view of its
importance, we describe it in some detail. Our enumeration satisfies the following two properties:
(P1) For any i ∈ N, we would also like to easily “decode” the instructions of the ith Turing machine in this
enumeration. Why would is this useful? It would allow us to efficiently simulate the ith machine Mi for any i.
(P2) It might seem desirable to make (20) a denumeration. It turns out that for many arguments, we want each
M ∈M to appear infinitely often in our enumeration. Hence we prefer to avoid denumeration in a very strong
sense.

For reference, we call (P1) the efficient encoding property, and (P2) the recurrence property, of our
enumeration.

11The assumptions are also “universal” in a sense related to the concept of “universal Turing machines”, to be shown shortly.
The existence of such machines depends on these two assumptions.

12In case this definition Σ yields an empty set, we simply declare Σ = {0}. This is because an alphabet cannot be empty (by
definition).
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¶24. Notation Systems for STMs. The function B in (17) is called a (binary) “notation” for natural
numbers N. In general, for any set S and any alphabet Σ, we call

ν : Σ∗ → S (21)

a notation system for S if ν is a partial function that is surjective. If ν(x) = s ∈ S, we call x a notation for
s. Relative to ν, we call a x ∈ Σ∗ ill-formed if ν(x) is undefined, and well-formed if ν(x) is defined. Also we
say two strings x, y ∈ Σ∗ are equivalent if they are both ill-formed, or both well-formed and ν(x) = ν(y).

Fix alphabet Σ. Let M|Σ be the set of STM’s whose input alphabet is Σ. We want to define a notation
system for M|Σ. Fix the alphabet

Σ := Σ ∪ {0, 1, Q, L, R, S, #,@}, (22)

where we have assumed that the special symbols 0, 1, Q, L,R, S,#,@ are disjoint from Σ. Let ι : Q∞∪Σ∞ → Σ
∗

such that ι maps Q∞ bijectively to the set Q{0, 1}∗. Intuitively, the states of Q∞ will have the notations
Q,Q0, Q1, Q00, Q01, Q10, Q11, Q000, . . .. Also, for directions D ∈ {−1,+1, 0}, let ι(−1) = L, ι(+1) = R and
ι(0) = S. Also, ι(a) = a for all a ∈ Σ. If I = (q, a, q′, a′,D) is an instruction for a STM, let

ι(I) = ι(q)#ι(a)#ι(q′)#ι(a′)#ι(D).

If J = I1I2 · · · Im is a sequence of instructions, let ι(J) = ι(I1)@ι(I2)@ · · ·@ι(Im). If the transition table of
a STM M ∈ M|Σ is {I1, . . . , Im}, then we call ι(I1I2 · · · Im) a notation for M . Since we can reorder the
instructions in m! many ways, there are that many notations for M .

We now define a notation system for STM’s:

γ : Σ
∗ →M|Σ

where γ(x) = M iff x is a notation for M . The function γ is surjective since every STM has a notation. It is also
a partial function since γ(x) is undefined in case x is not the notation of a sequence of instructions. However,
we shall let γ(x) denote a special STM that rejects all its inputs. Without loss of generality this is M0.

We can also interpret the notation system as a function γ : N → M|Σ, under the isomorphism N ≃ Σ
∗
.

Then, γ defines the enumeration (20) using the convention

(M0,M1,M2, . . .) = (γ(0), γ(1), γ(2), . . .).

By our convention, if n is ill-formed then γ(n) denotes the special machine M0. Thus M0 is repeated infinitely
often in this enumeration.

Property (P1) is satisfied: given a notation x for a machine, we can easily decode the instructions in x. In
particular, it is easy to detect well-formed strings:

Lemma 23. The set of well-formed strings for γ is a regular language over Σ.

We are almost done except for property (P2). There are many ways to achieve this, but an easy way is to
declare that strings of the form x = y@@z is equivalent to y. In short, we ignore the part of the string x after
the first appearance of the sequence ‘@@’. Thus, for any M ∈M|Σ, there are infinitely many notations for M .

To decide if x, y are equivalent, we have to determine if (after discarding any suffixes of the form @@Σ
∗
) the

set of instructions in x and y are the same. This is easily done by sorting the instructions. Thus:

Lemma 24. There is a STM that to decides whether two input strings x and y are equivalent notations.

A notation system forM|Σ that satisfies properties (P1) and (P2) will be called a Gödel numbering. We
call i ∈ N a Gödel number of M ∈ M if γ(i) = M ; by extension, we may also call i a Gödel number of the
language L(M).

In general, for any notation system ν : N→ S, we can define a total injective function

ν : S → N

where ν(s) = min{n ∈ N : ν(n) = s}. Note that ν is a partial inverse of ν. We may call ν an encoding
function for S.

In particular, for every STM M ∈M|Σ, we have its encoding γ(M) as a natural number.

Exercises
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Exercise 0.3.5.44: Prove Lemma 23 and Lemma 24.

Exercise 0.3.5.45: LetM0 denote the set of all deterministic STM’s. Construct a Gödel pair (α0, γ0) forM0.

End Exercises

0.3.6 Universal Machines

We introduce a variant of Turing machines called universal Turing machines (UTM’s). A UTM is similar
to a simple Turing machine U but it has two tapes. One tape behaves exactly like the tape of a STM, and is
called the work tape. The other tape is called the index tape. The index tape is a read only tape (writing
not allowed). There are corresponding work head and index head that scans a cell on the respective tape.
Intuitively, i is the number of a STM. The transition table δU of U is a finite set

δU ⊆ Q∞ × Σ2
∞ ×Q∞ × Σ∞ × {−1, 0, 1}2.

A typical instruction of δU is
(q, a, b→ q′, b′,D0,D1)

with precondition that the machine is in state q, scanning a on the index tape, and scanning b on the work tape.
Upon executing the instruction, the new state is q′, b is changed to b′, while the work head and index head move
in directions D0,D1 (respectively). Thus δU defines implicitly an index alphabet Σ0 and a tape alphabet
Σ1. The inputs of the UTM are the pairs (i, x) ∈ Σ∗

0 × Σ∗
1. On any input, the UTM begins in state q0 and

executing (nondeterministically) instructions. We say that it accepts its input if some executing sequence leads
to the accept state qa. As usual, L(U) = {(i, x) : U accepts (i, x)}. Note that L(U) is no longer a language, but
a binary relation. Let |Σ0| = k ≥ 1 and identify Σ∗

0 with N via the k-adic notation. Hence we have

L(U) ⊆ N× Σ∗
1.

Define the language class K(U) := {Li(U) : i ∈ N} where Li(U) := {w ∈ Σ∗
1 : (i, w) ∈ L(U)}, We say U

accepts the class K(U) of languages. Practically all the definitions for STM’s transfer naturally to UTM’s.
Thus it is clear what we mean by a “deterministic UTM”, or the notation “U(i, w) ↑”, etc.

It is important to note that K(U) is a collection of languages over some fixed alphabet Σ1 ⊆ Σ∞. We write
“K|Σ” for denote the restriction of the class K to languages over Σ. Thus, K(U) = K(U)|Σ1. We come to the
key definition: let Σ be a non-empty alphabet. A universal Turing machine U is universal for a class K if it
accepts K.

Theorem 25 (Existence of Universal Turing Machines). Let Σ ⊆ Σ∞ be any alphabet. There exists a universal
Turing machine U (2) that accepts RE|Σ. Furthermore, the following properties hold:

• U (2) is deterministic.

• If M ∈M|Σ and M is a notation for M , then U (2)(M,w) = M(w) for all w ∈ Σ∗.

Proof. Suppose (i, w) is an input to U (2). Without loss of generality, interpret i as a Gödel number of some
STM Mi ∈ M0, and we want to simulate Mi(w). We must decode i into its instructions, but in case i is
ill-formed, it is just nonsense. So we need to detect this separately. But this is easy, since set of ill-formed Gödel
numbers is regular. When U (2) detects an ill-formed i, it simply rejects. So assume otherwise. To simulate
Mi(w), deterministically. it stores a list of configuration C1, . . . , Cm of f−1(i) on its work tape. This follows the
proof of theorem 13, except that to expand a configuration C, it must use the index tape to look up the next
executable instructions. This completes our description of U (2). It is clear that Mi accepts w iff U (2) accepts
(i, w), and also U (2)(i, w) = Mi(w). Q.E.D.

It might appear that by considering RE |Σ instead of RE , we are restricting the generality of our results.
But this is not true. Indeed, RE |Σ essentially has the full power of RE . An Exercise below will illustrate this
remark.

Exercises
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Exercise 0.3.6.46: Suppose we want a single UTM to accept all of RE , not just RE |Σ. This requires a suitable
encoding for all of RE inside a fixed alphabet such as {0, 1}. Give the necessary formation and definitions,
so that Theorem 25 can be restated with RE instead of RE |Σ.

End Exercises

0.3.7 Partial Recursive Functions

We make connection to the standard setting for recursive function theory. This shifts our focus from languages
to subsets of N, and from word functions to number theoretic functions. Instead of “languages” (subsets of Σ∗),
we speak of “sets” (i.e., subsets of N).

In this section, we fix U (2) to be the deterministic universal Turing machine guaranteed by Theorem 25, for
some fixed Σ. In fact, we may assume Σ = {0, 1}, and start to identify RE |Σ with RE , andM|Σ with M.

For any STM M ∈M, we write

U
(2)
i ≃M, (23)

if i is the Gödel number of M . Using a k-adic bijection, a language L ⊆ Σ∗ can be equated with A ⊆ N, denoted
L ≃ A.

We define a r.e. set (resp., recursive set) to be A ⊆ N such that A ≃ L for some r.e. (resp., recursive)
language L ⊆ Σ∗. We may reinterprete RE to be the class of all r.e. sets. Similarly, REC is interpreted as the
class of all recursive sets. Thus,

REC ⊆ RE ⊆ 2N. (24)

Define
Wi := {x ∈ N : U (2)(i, x) ↓}.

Clearly, each Wi is r.e.. The converse is also true.

Theorem 26. A set A ⊆ N is r.e. iff A = Wi for some i ∈ N. Alternatively,

{Wi : i ∈ N} ≃ RE .

Proof. One direction is trivial, since the Wi’s are r.e.. In the other direction, we assume A is r.e. and show
that A = Wi for some i. Since A is r.e., let A be accepted by some STM M . It is easy to construct STM
M ′ which, on input w, will halt and accept iff M accepts w; otherwise M ′(w) ↑. Then L(M ′) = L(M). But

M ′ ≃ U
(2)
i for some i. Then Wi = L(M ′) by the construction of M ′. This shows Wi = A. Q.E.D.

To compute number theoretic functions, we view U (2) as a transducer that computes a partial function

Φ : N2 → N

as follows: on input (i, w), we declare the output of U (2) to be the non-blank word v that is scanned by its work
head when U (2) halts; if U (2)(i, w) ↑ then Φ(i, w) is undefined. We may assume that the tape alphabet is also
{0, 1,⊔} and v is interpreted as a dyadic number; if the work head is scanning the blank symbol then v = ǫ.
Let φi(w) = Φ(i, w) so that U (2) can be viewed as computing the set

Φ := {φi : i ∈ N} (25)

of number theoretic functions.
We come to a key definition: a function f is said to be partial recursive iff f belongs to the set Φ. If f

is a total function and also partial recursive, we call it a total recursive function. This definition implicitly
relies on a functional analogue of theorem 25 on Universal Turing machines.

¶25. Dovetailing. Let us define
Ei := {φi(w) : w ∈ N, φi(w) ↓}.

We have another characterization of r.e. sets using Ei. The proof requires a technique13 called dovetailing.
Suppose we want to simulate a denumerable number of computation paths,

π0, π1, π2, . . .

13Dovetailing is a technique in carpentry for joining together the ends of two wooden beams without using nails.
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Then we can define a single computation path π that “dovetails” these together: if πi(j) is the jth configuration
of πi, then

Phase 1 : π(0) = π0(0);

Phase 2 : π(1) = π0(1), π(2) = π1(0);

Phase 3 : π(3) = π0(2), π(4) = π1(1), π(5) = π2(0);

Phase 4 : π(6) = π0(3), . . .

If πi is a finite path, we treat it as an infinite computation by repeating the last configuration. In actual
applications (see next), we can usually stop the dovetailed computation π when some condition is detected.

Theorem 27. A set B ⊆ N is r.e. iff B = Ei for some i ∈ N.

Proof. Suppose B is r.e.. To show B = Ei, let B be accepted by some STM M . Construct the STM M ′

that on input w, will simulate M(w). If M(w) ↓ then M ′ outputs w (to achieve this, M ′ would have to save

a copy of w at the start of the computation). It follows that if M ′ ≃ U
(2)
i then φi(w) = w iff w ∈ L(M) = B.

Thus Ei = B.

Conversely, we show that each Ei is r.e.. We may assume that the i is the code for a deterministic STM. We
construct M to accept Ei as follows: on input w, we simulate U (2)(i, j) for j = 0, 1, 2, . . ., using the dovetailing
process above. Whenever U (2)(i, j) halts, we examine the output Φ(i, j). If this output is equal to w, we accept.
Otherwise, we continue the dovetailing. Clearly, if w ∈ Ei, then w = Φ(i, j) for some j and M will accept at
some point in this simulation. Q.E.D.

If A is a non-empty r.e. set, the preceding characterization A = Ei can be strengthened so that φi is total
(Exercise). We have a corresponding characterization of recursive sets.

Theorem 28. A set A ⊆ N is infinite and recursive iff A = Ei for some i such that φi is increasing and total.

Proof. Let φi be increasing and total. Clearly, Ei is infinite. To show that Ei is recursive, we give a decision
procedure for Ei: on input n ∈ N, we compute φi(j) for j = 0, 1, 2, . . .. We do not need to dovetail these
computations since φi is total. If φi(j) = n for some j, then we accept. Otherwise, we reject when φi(j) > n is
reached for some j. Clearly, we accept iff n ∈ Ei.

Conversely, suppose A is recursive. We construct an increasing and total recursive function f as follows: on
input n, we check each j (j = 0, 1, 2, . . .) to see if j ∈ A. If j is the nth time that we discover a word of A, we
output j. It is clear that f(n) is increasing and total. Q.E.D.

Thus, Wi and Ei are the proper domain and proper range of the partial recursive φi : N→ N. Restricting the
nominal domain N and nominal range N of φi to Wi and Ei, respectively, we obtain a total surjective function,

φi : Wi → Ei.

It may be helpful to see the symbols W,E as mnemonic for “West” and “East”, respectively. In case φi is total,
E also suggests an “Enumeration”, since Ei = {φi(0), φi(1), φi(2), . . .}. In fact, for every non-empty Ei, there
is a total recursive function fi whose range is Ei (see Exercise).

Here is another application of dovetailing:

Theorem 29. A set A ⊆ N is infinite r.e. if and only if there is a recursive denumeration d : N→ A.

Proof. If d exists, it is clear that A is infinite and r.e.. Conversely, assume A is infinite and r.e.. Then A = Ei

for some i. Thus x ∈ A iff φi(j) = x for some j ∈ N. We describe a recursive function d : N→ A. On input j,
we compute d(j) as follows: dovetail over the following infinite sequence of computation paths,

φi(0), φi(1), φi(2), . . . .

Some of these computations halt, and produce outputs. We keep track of distinct outputs: say w0 is the first
output, and in general wn (n ≥ 1) is the nth distinct output. Define d(j) = wj . We check that d is recursive
and a denumeration of A. Q.E.D.
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¶26. Encoding Relations as Languages. Recall that we use 〈w1, . . . , wk〉 = w1#w2# · · ·#wk (wi ∈
{0, 1}∗) to encode an element of Nk. So any relation R ⊆ Nk can be equated with language LR over {0, 1,#},
with as associated bijection

R ≃ LR.

We say the relation R is partial recursive or total recursive if LR is partial recursive or total recursive
(respectively).

We give another characterization of r.e. sets using a recursive relation T :

Theorem 30. There exists a recursive T ⊆ N3 such that a set A ⊆ N is r.e. iff there exist i ∈ N such that

A = {x ∈ N : (∃t ∈ N)[(i, x, t) ∈ T}.
Proof. One direction is easy: a set of the form {x ∈ N : (∃t ∈ N)[(i, x, t) ∈ T}. is clearly r.e. because T is

recursive. Conversely, we define T to comprise the triples (i, x, t) such that Ui(x) accepts in ≤ t steps. Clearly
T is recursive. Moreover, every recursive set A has the form indicated. Q.E.D.

Exercises

Exercise 0.3.7.47: Students often forget the difference between computable denumeration and a non-computable
one. Let A ∈ RE be an infinite set. Construct a denumeration f : A→ N which is not recursive.

Exercise 0.3.7.48: Show that for every non-empty Ei, there is a total recursive function φj such that φj(N) =
Ei.

SOLUTION: Consider the STM M that, on input x, simulates the each of the
following computations

φi(0), φi(1), φi(2), . . . , φi(x)

for x steps. It outputs the φi(y) where y is the largest argument among 0, 1, . . . , x such
that φi(y) halts. It is easy to see that M is total recursive, and its output range is
exactly Ei.

Exercise 0.3.7.49: Prove that if A is r.e. but not recursive, then it contains an infinite subset that is recursive.
HINT: recall the construction that if B ⊆ A is recursive, then B = Ei for some total increasing function
φi.

Exercise 0.3.7.50: (i) Show that L is r.e. iff L is generated by some deterministic STM.
(ii) Show that L is recursive iff L is generated by some deterministic STM in lexicographic order.

End Exercises

0.3.8 Decision Problems

If L is any language, the computational problem of designing an algorithm to accept L is called the decision
problem for L. We introduce several decision problems related to STMs. Among them we will find non-
r.e. languages that are considered more natural and explicit, unlike the ones obtained by cardinality arguments.
These problems will exploit the existence of universal machines.

¶27. Three Decision Problems. Let U (2) be the UTM in theorem 25, with Σ = {0, 1}. Recall that for any
strings x, y, we have the notation 〈x, y〉 for x#y, where # is a fixed symbol not in x, y. Define the languages

WORD = {〈i, w〉 : i, w ∈ {0, 1}∗, (i, w) ∈ L(U (2))}, (26)

HALT = {〈i, w〉 : i, w ∈ {0, 1}∗ : U (2)(i, w) ↓}, (27)

DIAG = {w ∈ {0, 1}∗ : U (2)(w,w) ↓}. (28)

The decision problems for WORD,HALT,DIAG are called (respectively) the word problem, the halting
problem, the diagonal problem for U (2). We have ordered these three problems so that each is seen to be a
simpler version of the previous.
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Theorem 31. WORD,HALT,DIAG ∈ RE.

Proof. First we show WORD ∈ RE . This amounts to constructing a STM M2 that emulates U (2). On input
〈i, w〉, M2 simulates the actions of U (2) on input (i, w) in a step-by-step manner. M will accept iff U (2) accepts.
Thus L(M2) = WORD. Similarly, DIAG and HALT can be shown to be in RE be simple variations of this
simulation. Q.E.D.

Theorem 32. WORD,HALT,DIAG 6∈ REC.

Proof. Suppose WORD is decided by a deterministic halting STM M . We construct another halting STM
M ′ such that M ′ does the opposite of M :

M ′ on input i:
1. Simulate M on 〈i, i〉.
2. Accept iff M reject.

Note that M ′ is halting since M is halting. Since M ′ can clearly be constructed from M , we conclude that

M ′ ≃ U
(2)
j for some j. Now consider what happens when M ′ is given the input j. (a) If M ′ accepts j, it

is because M rejects 〈j, j〉. By definition of M , this means U (2)(j, j) rejects. But this means M ′ rejects j,
contradiction. (b) If M ′ rejects j, it must be because M accepts 〈j, j〉. By definition of M , this means U (2)(j, j)
accepts. But this means M ′ accepts j, contradiction. Q.E.D.

Corollary 33. co-WORD, co-HALT, co-DIAG are not r.e..

Proof. Use the fact that REC = RE ∩ co-RE . If co-WORD ∈ RE , then WORD would be recursive,
contradicting the previous theorem. The other two cases are similar. Q.E.D.

0.3.9 Reducibility

In the last subsection, we show certain decision problems to be non-recursive, using a diagonalization argument.
If we want to show some given language A is non-recursive, we could try to use a diagonalization argument (it
is the only technique we know so far). Instead, this section shows an alternative method, by “reducing” some
set B to A. If B is known to be non-recursive, then we conclude that A is non-recursive. This approach can be
more convenient if B is properly chosen.

¶28. Many-one Reducibility. If A,B ⊆ N, and t : N → N, we say that A is many-one reducible to B
via t, denoted

A ≤m B (via t),

if, for all i ∈ N, i ∈ A iff t(i) ∈ B. If the function t is total recursive, we also say that A is many-one
recursively reducible to B. For short, we say m-reducible for “many-one reducible”. Clearly, we have:

Lemma 34. If A ≤m B and B ≤m C then A ≤m C.

Since ≤m is a reflexive relation, it follows that ≤m induces an equivalence relation on the set of all languages.
The equivalence classes are called m-degrees. The m-degrees are partially ordered in the obvious way:

Lemma 35.
(a) If A is r.e., then A ≤m WORD.
(b) WORD,HALT,DIAG are all m-equivalent.

Proof. (a) Assume A = Wi for some i. Then w ∈ A iff 〈i, w〉 ⊆WORD. Since t : w 7→ 〈i, w〉 is total recursive,
this proves A ≤m WORD (via t).

(b) To see that WORD ≤m HALT, consider the machine Mi,w that on input x will ignore x and run U
(2)
i

on w. If U
(2)
i accepts then Mi,w ↓, else Mi,w ↑. The total recursive map t(〈i, w〉) = γ(Mi,w) (encoding of Mi,w)

shows that 〈i, w〉 ∈WORD iff t(〈i, w〉) ∈ HALT. It is similarly easy to show that

HALT ≤m DIAG ≤m WORD.

Q.E.D.

This result says that Halt,WORD and DIAG are all “complete” for the class RE .
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Lemma 36. Let A be recursively m-reducible to B.
(a) If B is recursive, so is A.
(b) If B is r.e., so is A.
(c) If B is co-r.e., so is A.

Proof. Each part is shown the same way. Let us just show (c). Let A ≤m B via a total computable t.
Suppose B is co-r.e.. Let M accept co-B. We can now accept co-A as follows: on input x, we compute t(x),
and run M on t(x). We accept iff M accepts. This proves that co-A ∈ RE , as desired. Q.E.D.

The lemma says that if A ≤m B, then any “upper bound” on B is also an upper bound for B. By choosing
A appropriately, the lemma is the basis for showing that a set B is non-recursive, non-r.e. or non-co-r.e.. This
is illustrated in proof of the next theorem.

¶29. Rice’s Theorem. Suppose K is the class of finite subsets of N. Let L(K) ⊆ N denote the set of all
Gödel numbers of STM’s that accept a finite subset. We shall show that L(K) is non-recursive. In fact, this
conclusion holds for almost any reasonable choice for K. This is the content of Rice’s Theorem.

As another example, we could let K = {HALT}, or K = {ǫ}. However, K cannot be chosen to be ǫ, since
this implies L(K) = ǫ, which is certainly a recursive set.

To formalize Rice’s theorem, let K be any class of r.e. sets. Relative to U (2), we define the set

L(K) := {i ∈ N : Wi ∈ K}.

Theorem 37 (Rice). If K 6= ∅ is a proper subset of RE, then L(K) is not recursive.

Proof. We m-reduce the problem DIAG to L(K). Pick any A ∈ K (since K is non-empty) and pick any
B 6∈ K (since K is a proper subset of r.e. sets). First we assume that B = ǫ. Assume MA and MB accept A
and B respectively. For any i, construct the STM Mi as follows: on input w,

Mi(w) =

{
MA(w) if i ∈Wi

↑ else.

Note that Mi is well-defined: first we check if i ∈ Wi. If this does not halt, then Mi does not halt. If it halts,
we then simulate an acceptor of A on input w. What does Mi compute?

If i ∈Wi then Mi accepts A.
If i 6∈Wi then Mi accepts B = ǫ.

It is clear from our construction of Mi, there is a total recursive function t(i) that gives the Gödel number γ(Mi)
of Mi. Thus:

If i ∈Wi then L(Mi) = A ∈ K and so t(i) ∈ L(K).
If i 6∈Wi then L(Mi) = B 6∈ K and so t(i) 6∈ L(K).

Thus DIAG is recursively m-reducible to L(K) via t. Since we know that DIAG is not recursive, L(K) is not
recursive by the previous lemma.

We had assume ǫ 6∈ K. Suppose ǫ ∈ K. Then let A = ǫ and let B be any set not in K. We can similarly
construct Mi such that L(Mi) ∈ K iff i ∈Wi. Again, we conclude L(K) is non-recursive. Q.E.D.

If K ⊆ RE , then the decision problem of L(K) is known as a problem of deciding “property K”: the ith
STM has the property iff i ∈ L(K). The property is trivial if K = ∅ or K = RE . Thus the Rice Theorem
concerns non-trivial properties of RE .

¶30. Effective Machine Construction. The preceding proof illustrates an important style of argument in
computability. Although it is ultimately a reduction argument, we are interested in the specific way in which
we derive at the total recursive function t(i).

(I) First, we describe a general STM construction i 7→Mi.

(II) Then we assert that there is a total recursive function t such that t(i) is the Gödel number of Mi: γ(t(i)) =
Mi.

Assertion (II) relies on the ability of the student to “program” Turing machines. Sometimes, it is quoted as
a consequence of Church’s Thesis. In any case, we are trying to avoid an explicit construction of the Gödel
number t(i). Details of an explicit construction would tedious. Here is an alternatively view of this procedure,
commonly seen in recursive function theory:
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(I’) First define a computable multi-parameter functions g(i, w) whose value is computed by Mi(w).

(II’) Then invoke a technical theorem called the S-m-n theorem or parameter theorem to infer the total
recursive function t(i) that gives the Gödel number of Mi. Note that the argument w is omitted in t(i).

For reference, such a 2-step procedure that leads to the total recursive t(i) is called an effective machine
construction. Let us see this procedure at work again in the next result.

¶31. Rice-Shapiro Theorem. A natural question arises from Rice’s theorem. Suppose L(K) is not recursive.
Could L(K) be r.e.? The answer depends on K:
(i) Let K0 be the set of all r.e. sets such that A ∈ K0 iff ǫ ∈ A. Then L(K0) is r.e..
(ii) Let K1 = {A1} where A1 is any r.e. set. Then L(K1) is not r.e..

The following theorem characterizes the situations when L(K) is r.e..

Theorem 38. Let K ⊆ RE. If L(K) is r.e. then for any r.e. set A, the following statements are equivalent:
(a) A ∈ K.
(b) There exists a finite subset B ⊆ A such that B ∈ K

Proof. If (a) and (b) are not equivalent, we will prove that L(K) is not r.e., by reducing co-DIAG to L(K).
Let MA be a STM that accepts A. We need to consider two possibilities.

(A) Suppose (a) holds but not (b). Then A ∈ K but for all finite B ⊆ A, B 6∈ K. Consider how we might
answer the query: is i ∈ co-DIAG? Now i ∈ co-DIAG is equivalent to φi(i) does not in t steps for all t ≥ 0.
Consider the following STM Mi: on input t, we run Ui(i) for t steps. If Ui halt in t steps, we loop. Otherwise,
we simulate MA on input t, accepting iff MA accepts.

Note that if Ui(i) ↑, then Mi will accept A (so L(Mi) ∈ K); if Ui(i) ↓, then Mi accepts a finite subset of A
(so L(Mi) 6∈ K). Hence if s(i) is the Gödel number of Mi, we have that s(i) ∈ L(K) iff i ∈ co-DIAG. Since the
function i 7→ s(i) is clearly total computable from our description of Mi, this shows that co-Halt ≤m L(K) (via
s).

(B) Suppose (b) holds but not (a). Then A 6∈ K but there is some finite B ⊆ A such that B ∈ K. Again, to
decide if i ∈ co-DIAG, we construct the following STM Ni: on input t, we first check if t ∈ B. If so, we accept.
Otherwise, we simulate Ui on i. If Ui(i) ↓, we simulate MA on t, accepting iff MA accepts.

Note that if Ui(i) ↑, then Ni accepts B; if Ui(i) ↓, then Ni accepts A. Again, this construction reduces
co-DIAG to L(K). Q.E.D.

This theorem tells us that if L(K) if r.e., then K can be reduced to a “core” K∗ of finite sets. That is,

K∗ ⊆ 2
N

such that for any r.e. A, we have A ∈ K iff A is the extension of some B ∈ K∗.

Exercises

Exercise 0.3.9.51: Verify the claims about the r.e. nature of L(K) for the examples (i) K = K0 and (ii)
K = K1 described above.

SOLUTION: (i): Easy.
(ii): We reduce a non-r.e. co-HALT to L(K0). Assume N accepts L0. For any i ∈ N,
construct Mi such that on input x: runs Ui(i) for x steps. If Ui does not accept, we
simulate N on x. If Ui accepts, we “simulates some language that is guaranteed to be
different from L0”.
If t(i) is the Gödel number of Mi, we see that i 6∈ HALT iff φi(i) ↑ iff t(i) ∈ L(K0).

Exercise 0.3.9.52: Students often assume that if A is r.e., then any enumeration α : N → A is recursive. To
dispel this idea, prove the following: if A is infinite and r.e., then there exists a non-recursive denumeration

f : N→ A.

REMARK: If A is non-recursive, there is a simple argument. So it may be enough to assume A is recursive.

HINT: Let α : N→ A. be a recursive denumeration of A. Now split A into A0 ⊎A1, and define f : N→ A
such that f(i) ∈ A0 iff i ∈ HALT.



42 CHAPTER 0. INTRODUCTION TO COMPUTABILITY

SOLUTION: If A is non-r.e. then f(i) can simply be i + 1st largest number in A. It
is easy to see that f(i) is not r.e., as observed in the REMARK.
Define α0(i) = α(2i) and α1(i) = α(2i + 1). Thus αj : N → Aj (for j = 0, 1) is a
denumeration. We know that there exists denumerations

h : NHALT, h : Nco-HALT.

Finally define

f(i) =

{
α0(h

−1(i)) if i ∈ HALT

α1(h
−1

(i)) else.

Then f is a recursive denumeration of A. It remains to show that if f is recursive, then
HALT is recursive. This is because i ∈ HALT iff f(i) ∈ A0. To check if f(i) ∈ A0, we
simply dovetail the computations

{α0(j), α1(j) : j ∈ N}

until we see f(i) being output. Then we know whether f(i) ∈ A0 or not.

Exercise 0.3.9.53: Sharpen the Rice-Shapiro theorem into a characterization of those K such that L(K) is
r.e..

SOLUTION: Should the core K0 be r.e. or recursive? Say K0 is r.e.. Then to decide
if i ∈ L(K), we search for a finite θ ∈ K0 and θ ⊆Wi.

Exercise 0.3.9.54: Here is a formulation of the S −m− n Theorem: Let S : N2 → N be a partial computable
function. Then there is a total computable function t : N→ N such that S(m,n) = φt(m)(n). Recall that
φi is the ith partial recursive function in (25).

SOLUTION: Let M be a STM that computes S in the sense that M(〈i, j〉) = S(i, j).
Construct the TM Ni such that on input x, Ni calls M(〈i, x〉). Let t(i) be the Gödel
number of Ni. Thus, for all i, j, we have S(i, j) = φt(i)(j).

End Exercises

0.3.10 Second Recursion Theorem

In this and the next subsections, we prove two recursion theorems. We begin with the easier, Second Recursion
Theorem. This is also known as the (plain) Recursion Theorem.

Theorem 39 (Recursion Theorem). For any total recursive function h, there exists e ∈ N such that We = Wh(e).
We call e a fixed point of h.

Proof. The proof is a simple application of the effective machine construction procedure. For any i, we
construct the following STM Mi: on input x, first compute φi(i). If φi(i) ↓, we compute h(φi(i)) and then
finally accept iff x ∈Wh(φi(i)).

Note that i 7→ Mi is an effective construction. Let t(i) be the Gödel number of Mi. Hence the function
i 7→ t(i) is total recursive. We may assume Mi is deterministic.

What does Mi compute? Then for all i, x ∈ N, we have

Mi(x) ↓⇐⇒ x ∈Wh(φi(i)).

In this equivalence, it is understood that if φi(i) ↓ then both sides are false, i.e., Mi(x) ↑ and x 6∈ Wh(φi(i)) for
all x. Thus

x ∈Wt(i) ⇐⇒ x ∈Wh(φi(i))
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Since t(·) = φd(·) for some d, this is equivalent to

x ∈Wφd(i) ⇐⇒ x ∈Wh(φi(i)).

Choose i = d, we get that for all x ∈ N,

x ∈Wφd(d) ⇐⇒ x ∈Wh(φd(d)).

The theorem follows by setting e = φd(d). Q.E.D.

Many diagonalization arguments can be succinctly reduced to an application of this theorem. We illustrate
this with another proof of the Rice Theorem (theorem 37). Let K ⊆ RE be a non-trivial property of r.e. sets,
so there is some a ∈ L(K) and b 6∈ L(K). Let

h(x) :=

{
a if x 6∈ L(K)
b if x ∈ L(K)

Observe that
x ∈ L(K)⇐⇒ h(x) 6∈ L(K). (29)

By way of contradiction, assume L(K) is recursive. Then the function h(x) is total recursive. If e is the fixed
point value of h, it follows that We = Wh(e). This means e ∈ L(K) iff h(e) ∈ L(K), contradicting (29). Hence
L(K) is not recursive.

Exercises

Exercise 0.3.10.55: Prove the following functional form of the Second Recursion Theorem: for all total re-
cursive h, there is an e such that φe = φh(e).

Exercise 0.3.10.56: Which of the following follows from the (functional form of) the Second Recursion The-
orem?
(i) There is a number e such that φe(x) = xe.
(ii) There is a number e such that φe(x) = φ2e(x).
(iii) There is a number e such that We = {e}.

SOLUTION: (i) and (iii): see Cutland, pages 202-3. (ii) is not possible.
OTHERS: If h is total recursive, there are arbitrarily large e such that φe = φh(e).

End Exercises

0.3.11 First Recursion Theorem

The First Recursion Theorem is deeper than the second, involving some interesting concepts. Its applicability
is arguably narrower.

¶32. Recursive operators. A total function of the form

Ψ : RE → RE

is called an operator. A number theoretic function h : N → N is said to be extensional if for all i, j ∈ N, if
Wi = Wj then Wh(i) = Wh(j). We call Ψ a recursive operator in case there is an extensional total recursive
h : N→ N such that for all i ∈ N, Ψ(Wi) = Wh(i). We say Ψ is based on h.

Example: The concept of an extensional total recursive h might appear hard to realize in practice,
but it need not be. Consider the operator Ψ where Ψ(A) = {x + 1 : x ∈ A} for all A ∈ RE . To show that Ψ is
recursive, we construct a total recursive h that, on any input i yields the Gödel number of the following STM
Mi: on input x, loop if x = 1. Otherwise, run Ui on x − 1, and halts iff Ui halts. It is easy to see that h is
extensional because Wh(i) depends only on Wi, and not on the choice of the Gödel number i.
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¶33. Finiteness and Continuity. Let Ψ : RE → RE be an operator. Recall that 2
N

is the set of finite

subsets of N. In the following, we will use θ, θi, etc, to denote elements of 2
N
. We say Ψ is continuous if for

all A ∈ RE and x ∈ N

x ∈ Ψ(A)⇔ (∃θ ⊆ A)[x ∈ Ψ(θ)]. (30)

This definition uses our tacit convention that θ denotes a finite set.
We also say Φ is monotone if for all A,B ∈ RE , if A ⊆ B then Ψ(A) ⊆ Ψ(B).

Theorem 40. A recursive operator is both continuous and monotone.

Proof. Let Ψ be a recursive operator based on h.
(a) Ψ is continuous. This follows from an application of the Rice-Shapiro theorem. Let K = Kx := {A ∈ RE :
x ∈ Ψ(A)}. Since RE = {Wi : i ∈ N}, and Ψ(Wi) = Wh(i), we conclude that

L(K) = {i ∈ N : x ∈Wh(i)}.

It is easy to see that L(K) is r.e.. Then by Rice-Shapiro, for all r.e. set A,

x ∈ A ⇐⇒ A ∈ K
⇐⇒ (∃θ ⊆ A)[θ ∈ K]
⇐⇒ (∃θ ⊆ A)[x ∈ Ψ(θ)],

i.e., Ψ is continuous.
(b) Ψ is monotone. This follows easily from continuity: let A ⊆ B be r.e. sets. Then

x ∈ A ⇐⇒ (∃θ ⊆ A)[x ∈ Ψ(θ)],
=⇒ (∃θ ⊆ B)[x ∈ Ψ(θ)],
⇐⇒ x ∈ Ψ(B).

Q.E.D.

We are ready to show the following result of Kleene.

Theorem 41 (First Recursion Theorem). If Ψ be any monotone operator. Then there is the least fixed-point
A∗ of Ψ, i.e.,
(a) Ψ(A∗) = A∗.
(b) If Ψ(B) = B for any r.e. B, then A∗ ⊆ B.
(c) If Ψ is recursive, then A∗ is r.e..

Proof. (a) We define the following sequence of r.e. sets:

A0 = ∅, A1 = Ψ(A0), A2 = Ψ(A1), . . . , Ai+1 = Ψ(Ai), . . . .

It is easy to see that A0 ⊆ A1, and hence by monotonicity, AiΨ(Ai−1) ⊆ Ψ(Ai) = Ai+1) for all i ≥ 1. Let
A∗ = ∪i≥0Ai. We verify that Ψ(A∗) = A∗ because Ψ(∪i≥0Ai) = ∪i≥1Ai = A∗.

(b) A∗ is the least fixed point because if Ψ(B) = B, then we have A0 ⊆ B. But for any i ≥ 0, if Ai ⊆ B
then Ai+1 = Ψ(Ai) ⊆ Ψ(B) = B. Thus A∗ ⊆ B.

(c) Now assume Ψ is recursive. So there is an extensional total recursive h such that Ψ(Wi) = Wh(i). We
want to verify that A∗ is r.e.. If e(0) is any Gödel number of A0, then e(i) is an Gödel number of Ai if we define
e(i) := h(e(i− 1)) for all i ≥ 1. Then x ∈ A∗ iff (∃i ∈ N)[x ∈We(i)]. This last predicate is r.e.. Q.E.D.

This powerful theorem allows us to describe recursive sets A by using an equation of the form A = Ψ(A)
where Ψ is any recursive operator. It has important applications in the theory of programming semantics.

¶34. Effective continuity. Lemma 19(b) proves that there is a bijection from N to 2
N
. Let

i 7→ ĩ (31)

denote this bijection. Further, it is easy to show that this bijection is recursive (just elaborate on the proof of
Lemma 19(b)). An operator Ψ : RE → RE is effectively continuous if there exists a r.e. relation R ⊆ N2

such that for all r.e. A and x ∈ N,

x ∈ Ψ(A)⇔ (∃i ∈ N)[̃i ⊆ A ∧ (i, x) ∈ R]. (32)
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It is easy to see that if Ψ is effectively continuous, then it is continuous: this is because for all i, x ∈ N, we have

(i, x) ∈ R⇔ x ∈ Ψ(̃i).

Theorem 42 (Myhill-Shepherdson). An operator Ψ : RE → RE is recursive iff it is effectively continuous.

Proof. (⇒) Suppose Ψ is recursive based on h. We only have to slightly modify the proof in previous theorem.
We had shown that

x ∈ Ψ(A)⇔ (∃i ∈ N)[̃i ⊆ A ∧ x ∈ Ψ(̃i)]. (33)

The predicate P (i) ≡“̃i ⊆ A” is r.e. since A is r.e.. Let t(i) be the Gödel number of the STM that accepts

precisely the set ĩ. Clearly, i 7→ t(i) is total computable. The predicate “x ∈ Ψ(̃i)” is thus equivalent to
“x ∈ Wh(t(i))” which is seen to be an r.e. predicate R(i, x). Hence the predicate in the right-hand side of (33)
is r.e., being of the form (∃ ∈ N)[P (i) ∧R(i, x)]. Thus Ψ is effectively continuous based on R.

(⇐) Conversely, suppose Ψ is effectively continuous based on the r.e. predicate R(i, x). We need an exten-
sional total recursive h. But h(i) is simply the Gödel number of the STM that, on any input x, checks

(∃i ∈ N)[̃i ⊆ A ∧R(i, x)].

This predicate is r.e., and x ∈Wh(i) iff x ∈ Ψ(A). In particular, this function h is extensional because it depends
only on A, and not on any Gödel number j such that A = Wj . Q.E.D.

Exercises

Exercise 0.3.11.57: Prove or disprove that the following are recursive operators.
(i) Ψ(A) = {a2 : a ∈ A}
(ii) Ψ(A) = {a ∈ A : 2a 6∈ A}

Exercise 0.3.11.58: Re-develop this subsection, but for partial recursive functions instead of for r.e. sets. If
particular, if RE := {φi : i ∈ N} is the set of partial recursive functions, an operator Ψ is a total function

Ψ : RE→ RE.

It is recursive if there is a total recursive h such that Ψ(φi) = φh(i), where h is extensional in the sense
that this definition does not depend on the choice of i.
(i) Prove the analogue of the First Recursion Theorem.
(ii) Prove the analogue of the Myhill-Shepherdson theorem.

End Exercises

0.3.12 Beyond Partial Computability

We know by counting arguments that there is a language that is not in RE ∪ co-RE . But it is considerably
more interesting to show that certain explicitly described sets have this property. Consider

TOT := {i ∈ N : φi is total}
Thus TOT is the set of Gödel numbers of total recursive functions. Since the UTM U (Theorem 25) defining
the φi’s in (25) is deterministic, if follows that i ∈ TOT is equivalent to Ui being a halting machine.

Theorem 43. TOT is neither r.e. nor co-r.e..

Proof. (a) TOT is not r.e.: it is sufficient to show that co-HALT is recursively m-reducible to TOT. Let
i ∈ N. Consider the following machine Mi: on any input x, it runs φi(i) for x steps. If φi(i) does not halt
within x steps, we accept. Otherwise, we loop.

Clearly, φi(i) ↑ iff Mi is total. It is clear that there is a total function t(i) that gives us the Gödel number
for Mi. This proves that i ∈ co-HALT iff t(i) ∈ TOT.

(b) TOT is not co-r.e.: it is sufficient to show that HALT is recursively m-reducible to TOT. For any i ∈ N,
we construct the following machine Ni: on input x, Ni runs φi(i). If φi(i) halts, we halt. Otherwise, we loop.
If t′(i) is the Gödel number of Ni, then i ∈ HALT iff φ(i) ↓ iff t′(i) ∈ TOT. Since t′(i) is total computable, we
are done. Q.E.D.

This theorem could also be obtained as a simple application of the Rice-Shapiro theorem (see a previous
Exercise),
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¶35. Turing reducibility. In order to classify problems such as TOT, we introduce a hierarchy of languages.
First, we need the concept of an Oracle Turing Machines (OTM) or query machine. An OTM is physically
like a UTM, but its extra tape is called a oracle tape instead of an index tape. This change in name signals a
new use for this tape: while index tapes are read-only, the oracle tape is write-only. The way we ensure write-
only is that the oracle head can only move to the right. There are also three special states, query, Y ES,NO
states. When the machine enters the query state, the non-blank word u that is currently scanned by the oracle
head is submitted to some “oracle set” A. If u ∈ A, then the OTM is next placed in the Y ES state, else in the
NO state. The computation continues from the Y ES or NO state. The oracle A is an arbitrary language that
is independently specified. Let Q be an OTM and any A be any language. Let L(QA) be the language accepted
by Q using oracle A. The OTM Q is deterministic if its transition table is deterministic; Q is halting if for
all A, QA halts on every input.

We say T-reducible as short for “Turing reducible”. We say A is partially T-reducible to B, denoted

A ≤RE
T B, if A is accepted by some OTM Q with oracle B. If, in addition, Q is halting, we say A is total

Turing reducible to B, and write A ≤REC
T B.

¶36. Arithmetic Hierarchy. If K is any class, write ΣK to be the class of all languages that are partially
T-reducible to some language in K. Also, let ΠK = co-ΣK . The arithmetic hierarchy is the following set of
indexed classes:

{Σn,Πn,∆n : n ∈ N}
defined as follows:
Basis: Σ0 := RE , Πn := co-RE , and ∆0 := REC .
Induction: Σn+1 = ΣΣn , Πn+1 = co-Σn+1, and ∆n+1 = Σn+1 ∩Πn+1. The languages in Σn ∪Πn are said to be
in the n-th level of the arithmetic hierarchy.

Lemma 44. TOT ∈ Π2.

Proof. Equivalently, we must show co-TOT ∈ Σ2. This follows from showing an OTM Q such that

co-TOT ≤RE
T HALT. Now, i ∈ co-TOT iff there is some y such that 〈i, i, y〉 ∈ T where T is the recursive

language in Theorem 30. Consider the machine Mi that on input x, will ignore x but check if any of the inputs

〈i, i, 0〉, 〈i, i, 1〉, . . .

are in T . It any of them is in T , Mi accepts, otherwise rejects. Clearly, Mi either halts or it always loops. If
t(i) is the Gödel number of Mi, we see that i ∈ co-TOT iff t(i) ∈ HALT. Q.E.D.

0.3.13 Cardinal and Ordinal Numbers

This optional subsection provides some additional information about the theory of cardinality.
How do we compare the “sizes” of sets X and Y ? When X and Y are finite sets, we can list all the elements

of X and Y in some “listing order” (x0, x1, . . .) and (y0, y1, . . .) and to match them up x0 ↔ y0, x1 ↔ y1, etc.
The list that runs out of elements first has smaller size; if both list runs out of elements simultaneously, we say
that they have the same “size”. This “matching principle” is clearly valid in the finite case, as the outcome is
independent of the listing order we choose. For infinite sets, this matching principle calls for refinement. For
instance, the listing orders that show |N| = |Z| (see (16)) must be carefully chosen or it may not work.

The concept of listing order generalizes to the concept of ordinal numbers. To get a matching principle
that is independent of listing order, we need the concept of cardinal numbers. Informally, the relationship
between these two concepts is seen in English where the “cardinal numbers” zero, one, two, etc., are used
to count, while the “ordinal numbers” zeroth, first, second, etc., are used to order or rank. The theory of
cardinals will be built on ordinal theory.

Define an ordinal to be a well-ordered set α such that for every x ∈ α, the set s(x) = {y ∈ α : y < x} also
belongs to α. Thus α is a set of sets. The set s(x) is called an initial segment of α. Any two ordinal numbers
α, β can be compared. This follows from general considerations about well-ordered sets. Two partially ordered
sets (A,≤), (A′,≤′) are similar if exists a bijection h : A → A′ that is order preserving (i.e., a ≤ b implies
h(a) ≤′ h(b). If A,A′ are well ordered, then we write A ≺ A′ if A is similar to an initial segment of A′. This is
clearly a transitive relation. For well ordered sets A and A′, exactly one of the following holds:

A ∼ A′, A ≺ A′, A′ ≺ A.
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See for example [3, p. 73]. This is the total ordering we use for ordinal numbers.
To view the natural numbers n ∈ N as ordinals, we must interpret them as sets using the following device:

if n = 0, then n is the empty set; otherwise n is the set {0, 1, . . . , n− 1}. Thus

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, . . . .

Now we may verify that the set N is itself an ordinal number! This ordinal number is denoted ω. This is the first
infinite ordinal. Given any ordinal α, we can define its successor α+, which is the ordinal α∪{α}, For instance,
ω+ = N∪ {N}. Moreover, the operations of addition, multiplication and exponentiation can be defined. But be
prepared for surprises: the ordinals 1 + ω and ω + 1 may be represented as

1 + ω = {0′, 0, 1, 2, 3, . . .}, ω + 1 = {0, 1, 2, 3, . . . , ω}.

This yields the unintuitive result, 1 + ω = ω < ω + 1. Similarly, 2ω = {0′, 0, 1′, 1, 2′, 2, 3′, . . .} and ω2 =
{0′, 1′, 2′, . . . , 0, 1, 2′, . . .}, and we have 2ω = ω < ω2.

Since distinct ordinal numbers can have the same cardinality (i.e., equivalent), we define a cardinal number
to be smallest ordinal number among its equivalence class. Thus ω is a cardinal number and is in fact what
we denoted by ℵ0 before. But ω + 1 and 2ω are not cardinal numbers as they are equivalent to ω. Cardinal
comparison is induced from ordinal comparison. Again, cardinal arithmetic can be defined.

NOTES

¶37. Finite Automata. Finite automata were first introduced in the 1950s by G.H. Mealy and E.F. Moore.
Most elementary books on the theory of computation have a treatment of finite automata and regular languages.
Three references are Lewis and Papadimitriou [6] and Sipser [10]. The Rabin-Scott theorem appeared in [8].
and the Myhill-Nerode theorem is from [7]. An easy introduction to set theory is Halmos [3]. Although finite
automata has been a relatively dormant subject since the 1960s, it is interesting to note that developments in
program verification and program synthesis has breathed new life to this topic. Although many real systems
can be modeled as finite state machines, such systems are so complex that it would be impossible to synthesize
or understand them without semantically meaningful higher concepts. Instead of the “flat view” of an nfa,
we would like to decompose a nfa into a more hierarchical structure based on concepts such as a product
Q = Q1 ×Q2 or a disjoint union Q = Q1 ⊎Q2, etc. Various devices such as finite memory can be introduced in
nfa descriptions (e.g., the last state visited in a group of states). See Harel’s state charts [4] for one proposal.

¶38. Computability Theory. A basic reference for computability is Davis [2]. The standard work on
recursive function theory is Rogers [9]; see Cutland [1] for an accessible elementary introduction. There are
many approaches to computability. Mathematicians may prefer to work with number theoretic functions and
recursion schemas. The language-theoretic approach and the use of automata is more common in Computer
Science. The former approach is elegant because it deals with only one set, N, while languages involve Σ∗ for
each alphabet Σ. But elegance comes with a cost as many natural sets (e.g., palindromes) are easier to describe
as languages than as subsets of N. One is forced to introduce artificial encodings in N such as pairing functions.
With strings, pairing is trivially achieved by adding a single separator symbol. The “programming approach”
is familiar in computer science. Certain results such as the S-m-n theorem of recursive function theory simply
becomes programming facts in the automata approach (we exploit this in our approach).

The proofs that WORD,DIAG,HALT are not recursive is basically a diagonal argument. This is also the
method by which one proves Gödel’s famous incompleteness theorem: that there exists a true statement of num-
ber theory that cannot be proven. What is needed, and this is Gödel’s remarkable achievement, is a way to encode
provability and statements of number theory within number theory itself. Provability is akin to computability.
Diagonal arguments appear at the foundation of set theory as paradoxes (contradictions). These paradoxes
typically has some self-referential element. For instance: In a certain village, there are many barbers.

But there is one barber who shaves any barber who does not shave himself. Who shaves this barber?

Pondering the two possibilities, one is led to the conclusion that this barber does not exist. In the set theoretic
paradoxes, we can similarly define sets that do not exist. This led to efforts to axiomatize set theory, basically to
carefully prescribed circumstances under which new sets can be legitimately formed. Happily, all the operations
we make in these notes are admissible (power set is admissible for instance).

Exercises
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Exercise 0.3.13.59: Based on the examples in the notes on cardinal and ordinal numbers, give a definition of
the operations of + and ×. Deduce various properties of your definition. Confirm the properties noted in
the examples (ω = 2ω, ω < ω2, etc).

End Exercises

§A. Basic Mathematical Vocabulary

This is a handy collection of common notations and mathematical concepts that are used throughout the
book.

Equality. The equality symbol “=” is overworked in many ways; the following two conventions will offload
some burden. (1) We use ‘:=’ to indicate a definitional equality. For example, we indicate the definition of a
set S by writing ‘S := . . .’ where ‘. . . ’ describes a set formation (see Sets below). (2) In programs, we use ← as
the programming assignment symbol: x← 2 indicates as assignment of the value 2 to a programming variable
x. However, we continue to use “=” as the equality predicate (and not “==” as in C-like languages).

Numbers. We consider the following number hierarchy:

N ⊆ Z ⊆ Q ⊆ R ⊆ C

where N is the set of natural numbers 0, 1, 2, . . ., Z is the set of integers 0,±1,±2, . . ., Q is the set of rational
numbers, R is the set of real numbers, and C = R + iR is the set of complex numbers. Here, i =

√
−1. The

absolute value of complex numbers x = a+ ib ∈ C. is the real number |x| :=
√

a2 + b2. The set of extended reals
refers to R ∪ {∞}. For any n ≥ 1, we also define Zn := {0, 1, . . . , n− 1}. This is a finite ring under modulo n
arithmetic. In case n is prime, then Zn becomes a field. We sometimes write B for Z2, which is the Boolean
field with 2 elements.

Sets. We write X ⊆ X ′ for set inclusion, and S ⊂ S′ for proper set inclusion. The cardinality (or size)
of S is denoted |S|. Note that the | · · · | notation in several other ways (length of a word, absolute value of
complex numbers, etc) but the context should make clear which function is intended. If X is a well-defined
set, we can introduce a new set by writing {x ∈ X : P (x)} where P (x) is a predicate on X. For instance,
{x : x ∈ N, x is even} denotes the set of even natural numbers. The size |X| of X is the number of its elements.
The empty set is denoted ∅ and thus |∅| = 0. If X =

⋃
i∈I Xi and the Xi’s are pairwise disjoint, we indicate

this fact by writing X =
⊎

i ∈ IXi, and call {Xi : i ∈ I} a partition of X. The set of all subsets of a set
X is the power set of X, denoted 2X . We have

∣∣2X
∣∣ = 2|X|. A subset of X of size k is called a k-set.

The set of all k-sets of X is denoted
(
X
k

)
. This recalls the binomial function

(
n
k

)
= n!

k!(n−k)! . In fact, we have∣∣∣
(
X
k

)∣∣∣ =
(
|X|
k

)
. The Cartesian product of X and Y is X × Y = {(x, y) : x ∈ X, y ∈ Y }. This can be generalized

to an n-fold Cartesian product, X1 × X2 × · · ·Xn or
∏n

i=1 Xi (this notation exploits the associativity of
Cartesian product). In case X1 = X2 = · · · = Xn, we write Xn for

∏n

i=1 X. A member of an n-fold Cartesian
product is sometimes written 〈a1, . . . , an〉 instead of (a1, . . . , an).

Relations. An n-ary relation R is a subset of a Cartesian product
∏n

i=1 Xi where Si are sets. We say the
relationship R(a1, . . . , an) holds in case (a1, . . . , an) ∈ R, else it fails. If n = 1, R is also called a predicate on
S1. For a binary relation R, we may use an infix notation, and write write a1Ra2 instead of R(a1, a2). A binary
relation R ⊆ S2 is reflexive if aRa for all a ∈ S; symmetric if aRb imples bRa; and transitive if aRb and
bRc implies aRc. A partial order on S is a binary relation R ⊆ S2 that is reflexive, symmetric and transitive.
We usually write a ≤ b for aRb in case R is a partial order. If, in addition, we have either a ≤ b or b ≤ a for
all a, b ∈ S, then R is called a total order. A total order A well order on S is a partial ordering ≤ such that
every subset A ⊆ S has a least element a ∈ A (i.e., for all b ∈ A, a ≤ b). Note that a well order is a total order.
The converse is false: Z is a total order but not a well order since {−1,−2,−3, . . .} ⊆ Z has no least element.
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Functions. Let D,R be sets, and ↑ a special symbol not in these set. By a partial function f with nominal
domain D and nominal range R we mean a rule that associates each element x of D with an element f(x) ∈
R ∪ {↑}. We write f : D → R to indicate this relationship. So D and R are assumed to be part of the
specification of f . If f(x) =↑ we say that f is undefined at x; otherwise, we say f is defined at x and write
f(x) =↓. REMARK: In some books, the notation “f(x) ↑” is used in place of “f(x) =↑”; but in this book, the
“f(x) ↑” notation is used to indicate that a Turing machine f loops on input x. Similarly “f(x) ↓” indicates
that the Turing machine halts on input x.

The proper domain and proper range of f are defined (respectively) as domain(f) := {x ∈ D : f(x) ↓} and
range(f) := {f(x) : x ∈ domain(f)}. If domain(f) is the nominal domain, we say f is total. Except for number
theoretic functions and complexity functions, functions are usually assumed to be total.

Composition of partial functions is denoted f ◦g where (f ◦g)(x) := f(g(x)) and f(↑) =↑. A total function f
is an injection (or one-one) if x 6= y implies f(x) 6= f(y); it is a surjection (or onto) if {f(x) : x ∈ D} = R;
it is a bijection (or one-one onto) if it is both an injection and a bijection.

The floor function takes any real number x to the largest integer ⌊x⌋ no larger than x. The ceiling function
takes any real number x to the smallest integer ⌈x⌉ no smaller than x. So ⌊0.5⌋ = 0 = ⌈−0.9⌉ and ⌊x⌋ ≤ x ≤ ⌈x⌉.
The logarithm function logb a, for our purposes, is defined for real numbers b > 1 and a > 0. The base b is
considered fixed. We use the shorthand lg x := log2 x and lnx := loge x. for two common bases, b = 2 and
b = e = 2.718 . . ..

Graphs. There are many varieties of graphs, but two varieties are important for us. A directed graph or
digraph is a pair G = (V,E) where V is any set and E ⊆ V 2. A undirected graph or bigraph (“bi” for
bidirectional) is a pair G = (V,E) where V is any set and E ⊆

(
V
2

)
. For both kinds of graphs, the elements of

V and E are called vertices and edges, respectively. Definitions apply to both kinds of graphs when we fail to
distinguish between them. We denote an edge by (u, v) where (u, v) ∈ E (if digraph) or {u, v} ∈ E (if bigraph).
A path is a sequence p = (v1, v2, . . . , vk) where (vi, vi+1) are edges for i = 1, . . . , k − 1. We call p a path from
v1 to vk. If v1 = vk, then p is called a cycle. A graph with no cycles is acyclic.

A tree T = (V,E) is an acyclic digraph with a distinguished node called the root and such that there is
a path from the root to every other node. If (u, v) ∈ E, then v is a child of u. The leaves of a tree are
those nodes with no children; non-leaves are also called internal nodes. An orient tree is a tree in which the
children of each node are totally ordered (so one can speak of the first child, second child, etc).

Asymptotics. Let φ, φ′ ∈ [N→ N]. We say φ ≤ φ′ eventually, and write

φ(x) ≤ φ′(x) (ev. x),

if there is some x0 such that if x > x0 then
φ(x) ≤ φ′(x). (34)

In any assertion (such as (34)) involving partial functions, it is assumed that the assertion is conditioned on all
the partial functions being defined at their stated arguments. We say φ ≤ φ′ infinitely often, and write

φ(x) ≤ φ′(x) (i.o. x)

if φ(x) ≤ φ′(x) holds at infinitely many values of x. For instance, if |domain(φ) ∩ domain(φ′)| < ∞ then this
relation automatically fails. We say φ is non-decreasing if x < y and φ(x), φ(y) ↓ then φ(x) ≤ φ(y).

Formal Language Theory. An alphabet Σ is a non-empty finite set of symbols. Each element of Σ is a letter.
A word (or string) w over Σ is a finite sequence of letters of Σ,

w = a1 · · · an, (n ≥ 0)

where ai ∈ Σ. The length of w is n, denoted |w|. The empty word is denoted ǫ; thus |ǫ| = 0. The set of all
words over Σ is denoted Σ∗. Also, Σ+ := Σ∗ \ {ǫ} is the set of non-empty words over Σ. If a ∈ Σ, then define
the counting function #a : Σ∗ → N where #a(w) is the number of occurences of a in w. The ith symbol in a
word w is denoted w[i] where i = 1, . . . , |w|. Assume w[i] is undefined for i outside this range. The reverse of a
word w is denoted wR. Thus w[i] = wR[n− i + 1] where n = |w|. A palindrome is a word w such that w = wR.
Let Σ∗ denote the set of words over Σ. A language is a pair of the form (Σ, A) where A ⊆ Σ∗. We usually refer
to “A” as the language (so the alphabet Σ is implicit). The complement of a language (Σ, A) is (Σ,Σ∗ \ A),
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denoted co-A. The concatenation of two words v and w is written v ·w or simply vw. This notation extends to
languages: A · B := {vw : v ∈ A,w ∈ B}. For any non-negative integer n and word w, we let wn denote the
n-fold self-concatenation of w. More precisely, w0 := ǫ and for n ≥ 1, wn := w · wn−1. Functions of the form
t : Σ∗ → Γ∗ are called word functions or transformations, depending on the context.

A set K of languages is usually called a class. For any class K, co-K is defined to be the class {co-L : L ∈ K}.
If Σ is any alphabet, let K|Σ be the subclass of K comprising those languages in K with alphabet Σ.

Sometimes, we go beyond finite strings. An infinite strings of the form w = a0a1a2 · · · where ai ∈ Σ, is
called an ω-word (or ω-sequence) over Σ. Alternatively, such a string w is a function w : N→ Σ so w(n) = an.
Let Σω denote the set of ω-words over Σ.

Logic. Boolean values are usually identified with B := {0, 1}. If a, b ∈ B, the logical operators of and, or and
not are denoted a∧ b, a∨ b and 6 a. Quantifiers are of two types: universal or existential, denoted ∀ and ∃,
respectively.

Classes and Families. Above, we only allowed new sets to be constructed from known sets. Otherwise,
there is danger in using the concept of “sets” too liberally, giving rise to various logical paradoxes. In general,
paradoxes arise for “very large sets” such as “the set of all sets”. Logicians are careful to introduce other terms
like “classes” or “families” for such large sets to prevent non-admissible set formations. We use “classes” and
“families” informally for some large sets in our book, but we make no true distinction between them except for
usage convention. For instance, consider L, the “set of all languages”. This is “large” because each language
depends on an underlying alphabet, and there is no fixed14 set of alphabets that we wish to commit ourselves
too. Similarly, the “set of all Turing machines” M is not really a set since we have not committed ourselves
to a definite set of possible symbols or states. Hence, C and M are not mathematical sets. They have many
features of sets: e.g., we can recognize individual members of L. Yet we never get into trouble because each
particular use can be justified or suitably circumscribed. Moreover, certain set operations such as power set
ought not to be performed. Usage conventions: we refer to “large sets” as classes when we speak of languages,
and as families when we speak of machines. For example, the “class of polynomial-time languages” and the
“family of deterministic Turing machines”.

–

OMIT BELOW THIS A language operator ω is a partial d-ary function, d ≥ 0, taking a d-tuple (L1, . . . , Ld)
of languages to a language ω(L1, . . . , Ld). Here we assume that the Li have a common alphabet which is also
the alphabet of ω(L1, . . . , Ld). Some simple language operators are now introduced. Other important operators,
to be introduced in the course of this book, are usually defined using machines; this is in contrast with the
following set-theoretic definitions.

Let (Σ, L), (Σ, L′) be languages. The complement of L, denoted co-L, is the language Σ∗ − L. The union,
intersection and difference of (Σ, L) and (Σ′, L′) are (resp.) the languages (Σ∪Σ′, L∪L′), (Σ∪Σ′, L∩L′) and
(Σ, L − L′). (The preceding are the Boolean operators.) The concatenation of L and L′, denoted L · L′, is the
language {ww′ : w ∈ L,w′ ∈ L′} over the alphabet Σ ∪ Σ′. For any non-negative integer n, we define the
language Ln inductively as follows: L0 consists of just the empty word. Ln+1 := Ln · L. The Kleene-star of L,
denoted L∗, is the language

⋃
n≥0 Ln. (Note that the Σ∗ and L∗ notations are compatible.) A related notation

is L+ defined to be L · L∗. The reverse of L, denoted LR, is {wR : w ∈ L} where wR denotes the reverse of w.
A language L is said to be finite (resp. co-finite) if |L| (resp. |co-L|) is finite.
Let Σ and Γ be alphabets. A substitution (from Σ to Γ) is a function h that assigns to each x ∈ Σ a subset

of Γ∗. h is naturally extended to a function (still denoted by) h that assigns to each word in Σ∗ a set of words in
Γ∗: h(a1a2 · · · an) := h(a1)h(a2) · · ·h(an). We say h is non-erasing if ǫ 6∈ h(x) for all x ∈ Σ. A homomorphism
is a substitution h where each set h(x) has exactly one element (we may thus regard h(x) as an element of Γ∗).
A letter homomorphism is a homomorphism where h(x) is a word of length 1 for all x ∈ Σ (we may thus regard
h(x) as an element of Γ ). An isomorphism is a letter homomorphism such that h is a bijection from Σ to Γ .
An isomorphism is therefore only a ‘renaming’ of the alphabet.

For every substitution h from Σ to Γ, we may define the language operator (again denoted by h) that takes
a language (Σ, L) to the language (Γ, h(L)) where h(L) is the union of the sets h(w) over all w ∈ L. We also
define the inverse substitution operator h−1 that takes a language (Γ, L′) to (Σ, h−1(L′)) where h−1(L′) is the
set {w ∈ Σ∗ : h(w) ⊆ L′}.

14Actually, we establish two conventions (α and β) in which these “large sets” can be completely rigorous.
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A (language) class K is a collection of languages that is closed under isomorphism. We emphasized in
Chapter 1 that complexity theory is primarily the study of language classes, not of individual languages. The
classes which interest us are usually defined using machines that use a limited amount of computing resources.
In this case, we call K a complexity class although this is only an informal distinction.

Operators are important tools for analyzing the structure of complexity classes. For instance, many impor-
tant questions are of the form “Are two complexity classes K and K ′ equal?”. If Ω is any set of operators,
let

Ω(K) := {ω(L1, . . . , Ld) : Li ∈ K,ω is ad-ary operator in Ω}.
The closure of K under Ω is

Ω∗(K) :=
⋃

n≥0

Ωn(K)

where Ω0(K) := K and Ωn+1(K) := Ω(Ωn(K)). One possible approach to showing that K is not equal to K ′ is to
show that, for a suitable class of operators Ω, K is closed under Ω (i.e., Ω∗(K) = K) but K ′ is not. An important
simple case of Ω is where Ω consists of just the Boolean complement operator; here Ω(K) = {co-L : L ∈ K} is
simply written as co-K. A branch of formal language theory called AFL theory investigates closure questions
of this sort and certain complexity theory questions can be resolved with this approach.

Exercises

[0.1] Construct dfa’s to accept the following languages:
(i) {w ∈ {0, 1}∗ : w has 0101 as substring}.
(ii) {w ∈ {0, 1}∗ : w has neither 00 nor 11 as substring}.

[0.2] If A is regular, show that its reverse AR = {wR : w ∈ A} is regular.

Write regular expressions for (i) and (ii) in the previous question.

[0.3] Construct nfa’s to accept the languages indicated by the following expressions:
(i) (01)∗(10)∗ + 00∗.
(ii) ((01 + 001)∗0∗)∗.
Be sure to parse these regular expressions correctly when we paretheses are omitted.

[0.4] Prove or disprove that each of the following languages is regular:
(i) {1n : n is divisible by 7}.
(ii) {w ∈ {0, 1}∗ : w is a binary number divisible by 7}.
(iii) {0n10m10m+n : n,m ≥ 1}.
(iv) {ww′ ∈ {0, 1}∗ : w′ is obtained from w by interchanging 0 and 1}.

[0.5] A letter homomorphism is a function h : Σ→ Γ∗ where Σ,Γ are alphabets. We can extend h to the
function

h : Σ∗ → Γ∗

in the natural way, so that h(vw) = h(v)h(w) for all v, w ∈ Σ∗. In particular, h(ǫ) = ǫ. If A ⊆ Σ∗, then
define h[A] = {h(w) : w ∈ A} ⊆ Γ∗. Show the following.
(i) If A ⊆ Σ∗ is regular, so is h[A].
(ii) If B ⊆ Γ∗ is regular, so is that h−1[B] = {w ∈ Σ∗ : h(w) ∈ B}. HINT: start from a dfa M for
B and construct one that, when it reads an input symbol a, tries to simulate M on h(a). HINT: This
exercise shows the differences in regular expressions and nfas as computing devices. Part (i) is easy to
solve using regular expressions, but dfa’s are better for part (ii).

[0.6] (Ó’Dúnlaing) For k ≥ 1, let ({0, 1}∗, Lk) be the language consisting of binary strings of period k: say
a word w has period k if |w| ≥ k and for all i = 1, 2, . . . , |w| − k − 1, w[i] = w[i + k + 1].
(i) Show that the complement of Lk can be accepted by a ‘small’ nondeterministic finite automaton,
say with 2k + 2 states.
(ii) Prove that Lk cannot be accepted by any nondeterministic finite automaton with less than 2k states.



52 CHAPTER 0. INTRODUCTION TO COMPUTABILITY



Bibliography

[1] N. Cutland. Computability: an introduction to recursive function theory. Cambridge University Press,
Cambridge, 1980.

[2] M. Davis. Computability and Unsolvability. McGraw-Hill, New York, 1958. Reissued by Dover Publications,
Inc., 1982.

[3] P. R. Halmos. Naive Set Theory. Van Nostrand Reinhold Company, New York, 1960.

[4] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8:231–
274, 1987.

[5] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Automata. Addison-Wesley
Publishing Co., Reading, Massachusetts, 1969.

[6] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall Inc, Upper
Saddle River, New Jersey, second ed. edition, 1998.

[7] A. Nerode. Linear automaton transformations. Proc. AMS, 9:541–544, 1958.

[8] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. of Research and Devel-
opment, 3:114–125, 1959.

[9] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

[10] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Co, Boston, 1997.

[11] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London
Math. Soc. Series 2, 42:230–265, 1936. Corrections: Vol.43 (1937) pp.544-546.

53



Chapter 2

Initiation to Complexity Theory

April 13, 2009

This book presumes no background in complexity theory. The formal introduction of complexity theory will begin
in the next chapter. In the present chapter, we address some preparatory considerations. Here, we often compare
and contrast the complexity quest against the older theory of computability. The rudiments of computability theory
are provided in Chapter 0, but even without such a background, a reader should be able to understand the essential
thrusts of this informal chapter. The rest of the book does not depend on this chapter except for the asymptotic
notations of section 3.

2.1 Central Questions

Many fields of study are centered around some basic phenomenon, the understanding of which is either intrinsically
interesting or could lead to practical benefits. For us, the phenomenon is the intuitive notion of complexity of
computational problems as it arises in mathematical and computational sciences. The understanding of what
makes a problem (computationally) complex is one cornerstone of the art and science of algorithm design. The
stress in ‘complexity of computational problems’ is on ‘complexity’; the concept of ‘computational problem’, is
generally relegated to the background.1

To set the frame of mind, we examine some rather natural questions. A main motivation of our subject is to
provide satisfactory answers to questions such as:

(1) Is multiplication harder than addition?

The appeal of this question, first asked by Cobham [5], is that it relates to what are probably the two most widely
known non-trivial algorithms in the world: the so-called high school algorithms for addition and multiplication. To
add (resp. multiply) two n-digit numbers using the high school algorithm takes linear (resp. quadratic) time. More
precisely, the addition (resp. multiplication) algorithm takes at most c1n (resp. c2n

2) steps, for some positive
constants c1 and c2. Here a ‘step’ is a basic arithmetic operation (+,−,×,÷) on single digit numbers. So a simple
but unsatisfactory answer to (1) is ‘yes’ because c2n

2 dominates c1n when n gets large enough. It is unsatisfactory
because the answer only says something about particular methods of adding and multiplying. To provide a more
satisfactory answer, we probe deeper.

It is intuitively clear that one cannot hope to do additions in less than n steps. This is because any algorithm
must at least read all the n input digits. So the high school method for addition is optimal – note that here and
throughout the book, optimality is taken up to some multiplicative constant factor. The situation is less clear
with multiplication: Is there any algorithm for multiplication that is asymptotically faster than the high school
method? The answer turns out to be ‘yes’; in 1971 (culminating a series of developments) Schönhage and Strassen
[30] discovered what is today asymptotically the fastest known multiplication algorithm. Their algorithm takes

1There is no general theory of computational problems except in special cases. Such a theory should study the logical structure
of problems, their taxonomy and inter-relationships. Instead, complexity theory obliterates all natural structures in computational
problems by certain sweeping assumptions we will come to.

1
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c3n log n log log n steps2 on a multitape Turing machine. This model, to be introduced in Chapter 2, is a simple
extension of the Simple Turing machine of the previous chapter. Since Turing machines are more primitive than
any real-world computer, this means the same time bound is achievable on actual computers. For now, let us just
accept the fact Turing machines are fundamental and thus statements about computations by Turing machine are
intrinsically important. But is the Schönhage-Strassen algorithm the best possible? More precisely,

(2) Must every Turing machine that multiplies, in worst-case, use at least cn log n log log n steps,
for some c > 0 and for infinitely many values of n? Here c may depend on the Turing machine.

This is an important open problem in Complexity Theory. A negative answer to question (2) typically means
that we explicitly show an algorithm that is faster than Schönhage-Strassen. For instance, an algorithm with
running time of n log n will do. We say such an algorithm shows an upper bound of n logn on the complexity
of multiplication. (It is also conceivable that the negative answer comes from showing the existence of a faster
algorithm, but no algorithm is exhibited in the proof3.) On the other hand, answering question (2) in the affirmative
means showing a lower bound of cn log n log log n on the complexity of multiplication. Such a result would evidently
be very deep: it says something about all possible Turing machines that multiply! Combining such a result with the
result of Schönhage-Strassen, we would then say that the intrinsic complexity of multiplication is n logn log log n.
In general, when the upper and lower bounds on the complexity of any problem P meet (up to a constant
multiplicative factor) we have obtained a bound which is intrinsic4 to P . We may now (satisfactorily) interpret
question (1) as asking whether the intrinsic complexity of multiplication is greater than the intrinsic complexity
of addition. Since the intrinsic complexity of addition is easily seen to be linear, Cobham’s question amounts to
asking whether multiplication is intrinsically non-linear in complexity. (Most practitioners in the field believe it
is.) Generally, for any problem P , we may ask

(3) What is the intrinsic complexity of P ?

It turns out that there is another very natural model of computers called Storage Modification Machines (see
§5) which can multiply in linear time. This shows that complexity is relative to a given model of computation.
From Chapter 0, we learned that all reasonable general models of computation are equivalent in the sense that
they define the class of total and partial computable functions: this is known as Church’s Thesis. But simplistic
attempts to formulate analogous statements in Complexity Theory would fail. For instance, there are problems
which can be solved in linear time in one model but provably take cn2 (for some c > 0, for infinitely many n) in
another model. So a fundamental question is:

(4) Which model of computation is appropriate for Complexity Theory?

Perhaps there is no uniquely appropriate model of computation for Complexity Theory. This suggests that we
examine various models and discover their inter-relations. We shall see in section 7 that we can recover some
version of Church’s Thesis in Complexity Theory if we take some care in selecting models and classifying them
according to their ‘computational mode’.

This question about intrinsic complexity of a problem P begs another question:

(5) How should the input and output values of problems be encoded?

For instance, we have implicitly assumed that the multiplication problem has its inputs and outputs as binary
numbers. But other representations of numbers are conceivable and this choice can be shown to affect the answer
to (3). In section 4, we discuss this in more detail (it turns out that without a proper theory of problems, few
precise statements can be made about choice of encodings and we are stuck with assumptions such as in the case
of multiplication: each problem P comes equipped with a definite encoding).

The discussion of the complexity of multiplication so far centers around speed of computation or time. Time
is an instance5 of a computational resource. We measure complexity in terms of the amount of computational
resources used up during a computation. Another natural resource is memory size or space. (The high-school
algorithm is seen to take quadratic space with usual hand-calculation but it can easily be reduced to linear space.)
We can imagine composite resources that combine time and space, for instance.

2Unless otherwise indicated, the reader may always take logarithms to the base 2. We shall see that the choice of the base is
inconsequential.

3Such proofs are known but are rare. For instance, the work of Robertson and Seymour on graph minors leads to such conclusions
(see for example [18]). Indeed the situation could be more complicated because there are degrees of explicitness.

4See section 8 for more discussion of this.
5No pun intended.
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(6) What are other natural computational resources and their inter-relations?

It is seen that time and space are related: assuming each step can access one new unit of space, the amount
of space used by an algorithm is no more than the amount of time consumed. However, there is a fundamental
difference between time and space: space, but not time, is reusable. There can be trade-offs between time and
space in the sense that an algorithm can run in less time only at the (unavoidable) cost of using more space. Up
to a degree, resources depends on the computational model.

The high-school multiplication algorithm exhibits an interesting feature not generally true of algorithms: for
all inputs of a given size, the algorithm executes the same number of steps. This is because it has no ‘decision’
steps (e.g. ‘if x = 0 then · · · else · · · ’).6 The various known sorting algorithms are examples of decision-making
algorithms. For such algorithms the running time may vary for different inputs of the same size. Then one has the
choice of measuring the worst-case or the average-case time. In other words, the method of aggregating the total
resources used by the algorithm is an issue to be decided in measuring complexity.

Another issue arises when we consider probabilistic computations where the algorithm makes random decisions
by ‘tossing a coin’. For a fixed input, different runs of the algorithm may produce different outputs. We are then
faced with defining a suitable notion of the ‘correct output’: this is not formidable once we realize that the output
can be a random variable.

We summarize the above discussion by saying that the complexity measure is a function of (a) the model of
computation, (b) the computational resources of interest, (c) the method of aggregating the resource usage and (d)
the definition of the algorithm’s output (not to be confused with encoding the output of a computation problem).
Thus question (6) translates into a question about complexity measures.

The theory in this book will address these and other related questions. In the rest of this chapter, we lay
the foundations by discussing some issues of methodology. The assumptions of methodology are embodied in
conventions, definitions and notations. Whenever possible, we will isolate them with a letter label ((A), (B), etc.).

2.2 What is a Computational Problem?

The concept of a computational problem (or simply, problem) in informal language can take many meanings and
shades. Even restricting the concept to its use in Computer Science is too wide. The theory we propose to develop
takes the prototypical and simplest aspects only. This is a natural choice to start with, and it is already enough to
give us a rich and meaningful theory.

There are three main aspects of a problem in its natural context: (i) The problem statement, P . (ii) The
methods available for its solution, M . (iii) The criteria for evaluating and comparing different solutions, C. The
triple 〈P, M, C〉 may be called a problem-in-context. We will identify M with the model of computation and C with
the complexity measure. A solution to 〈P, M, C〉 is simply an algorithm in M that satisfies the specifications of
P and that is optimal or correct in the sense of C. It is not very meaningful to discuss P without this context.
In practice, it is not always easy to separate a problem-in-context into the three components. Roughly speaking,
P specifies the input-output behavior (i.e., the relationship between any given input x with the output y of any
purported algorithm for this problem). Generally, M is dependent on P , and likewise C depends on both M and
P . If M ′ (respectively, C′) is different from M (respectively, C) then the two problems-in-context 〈P, M, C〉 and
〈P, M ′, C′〉 should really be considered different problems, even though they share a common P .

Let us illustrate the preceding discussion using the well-known example of sorting. Let P be the sorting problem
where, given a set X of integers, the problem is to ‘list the elements of X in a non-descending order’. Three very
different models of computation Mi (i = 1, 2, 3) have been extensively studied in the literature.

M1: The comparison tree model where algorithms are finite binary trees whose nodes correspond to comparisons.

M2: The tape merging model where algorithms wind and rewind tapes based on outcomes of comparing the data
at the front-ends of the tapes.

M3: The comparison network model where algorithms are directed acyclic graphs whose nodes (called comparators)
have in-degrees and out-degrees of 2.

The complexity measure studied is dependent upon the model: In M1, the goal is to minimize the height of the
binary trees. Depending on whether we consider ‘worst-case height’ or ‘average height’, we get different measures.

6One can argue that the multiplication algorithm has decisions in the form of checking for carry bits. However, such decisions are
unessential for integer multiplication since we may assume that carry bits (possibly 0) are present at each step. Nevertheless we can
modify the algorithm to incorporate decision steps that are not so easily dismissed, such as to check if one of its arguments is zero.
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In M2, the criterion is to minimize tape motion (rather than the number of comparisons, as in M1). In M3, the
criterion is to minimize the number of comparators or to minimize the length of the longest path.

Intuitively, P is the most fundamental of the three parameters 〈P, M, C〉, and we shall try to restrict the use
of the term ‘problem’ to mean P alone. This is not entirely possible but we shall largely get by with the (mild)
myth that our problems P do not imply any particular M or C. So the task that confronts us after the preceding
clarifications, is to formalize P , this notion of ‘problem-in-the-restricted-sense’. Let us begin by listing some typical
problems in Computer Science:

(i) (Rubik’s puzzle) For any given configuration of the Rubik’s Cube, find the least number of moves required
to reach a configuration which is monochromatic on each face. This is a finite problem since there are a
finite number of possible input configurations.

(ii) (Planarity Testing) For each graph G, the problem is to decide if G is planar (i.e., embeddable in the
plane). This is an example of a decision problem where the algorithm has to decide between a ‘yes’ and a
‘no’ answer. Alternatively, it is called a recognition problem where the algorithm has to “recognize” inputs
that represent planar graphs.

(iii) (Fibonacci numbers) Let f(n) be the nth Fibonacci number. The sequence of Fibonacci numbers is
0, 1, 1, 2, 3, 5, 8, . . . . For each input n, the problem is to compute f(n). This is an instance of computing a
number theoretic function.

(iv) (Linear Programming) For each m by n matrix A and an n-vector c, find any n-vector x such that Ax ≥ 0
and c ·x is maximized. If there are no x satisfying Ax ≥ 0, or if c ·x is unbounded, indicate so. (We assume
that m and n can vary and are part of the input.) This exemplifies the class of optimization problems
which typically arise in the field of Operations Research.

(v) (Element identification) For each input set X of integers, |X | < ∞, construct a data-structure D(X) such
that queries Q of the form: ‘Is x in X?’ can be rapidly answered using D(X). This is an instance of a
preprocessing problem where the inputs are given in two stages and separate algorithms are involved in each
stage. In the first stage we have an algorithm A to ‘preprocess’ the input X . In the second stage, we have
an algorithm B which uses the preprocessed structure D(X) to answer queries about X . If X comes from
some linear order, then a typical solution to this ‘element identification problem’ builds a binary search
tree to serve as D(X) and uses a binary search tree algorithm for the second stage. Many preprocessing
problems arise in Computational Geometry. For example: Given a set X of points in the plane, construct
D(X). We want to use D(X) to quickly answer queries of the form: “Retrieve the subset of points in X
that are contained in a given half-plane H” (It turns out that we can build a D(X) that uses linear space
and answer queries on D(X) in logarithmic time.)

How can we hope to build a theory that encompasses such a wide variety of problems? The key is that any
problem that can be solved mechanically by a computer is ultimately encodable into a finite sequence of symbols,
where the symbols come from some arbitrary but fixed finite set Σ. This is essentially the argument used by Turing
in his celebrated paper [32] that introduce these machines.

A finite set Σ of symbols is called an alphabet. A finite sequence of symbols from Σ is called a word over Σ.
The set of all words over Σ is denoted by Σ∗. A subset L of Σ∗ is called a language over Σ. The empty sequence,
denoted ǫ, containing no symbols is also a word. The length of a word w is denoted |w|.7 Thus |ǫ| = 0. We shall
embody (part of) the Turing analysis in the following convention.8

(A) The input and output objects of a problem are words over some arbitrary but fixed alphabet.

We could have allowed different alphabets for the input and output objects but this is not essential. For each
problem P in (i-v) above, we chose some encoding of the input and output domains of P into Σ∗. In (i), we may
encode each Rubik cube configuration by specifying for each face (in some predetermined order) the colors of each
square on the face. The answer encodes a sequence of moves, where we must choose a systematic representation
for the cube faces and their rotations. In (ii), we may use binary numbers to encode natural numbers. Note that
each of problems (i) and (ii), after the choice of a suitable encoding, becomes a function f : Σ∗ → Σ∗. In (iii), a
graph G is represented by the list (in any order) of its edges. The problem of testing for planar graphs may now

7In general, there ought to be no confusion over the fact that we also use | · | to denote the absolute value of a real number as
well as the cardinality of a set: it will be clear from context whether we are discussing strings, numbers or sets. One case where this
overloading of notation might be confusing will be noted when it arises.

8This is analogous to the situation in computability theory where we have the arithmetization or Gödelization of machines. Thus
(A) amounts to the ‘arithmetization of problems’.
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be represented as a language L over Σ where a word w is in L iff w represents a graph G which is planar. In (iv),
we have to be more careful. In mathematics, the problem usually assumes that the entries of the matrix A, vectors
c and x are arbitrary real numbers. For computational purposes, we will assume that these are rational numbers
of arbitrary precision. (In general, replacing real numbers by rationals affects the nature of the problem.) The
linear programming problem can be encoded as a binary relation R ⊆ Σ∗ × Σ∗, where (w, v) ∈ R iff w encodes
an input (A, c) and v encodes an output vector x such that c · x is maximized, subject to Ax ≥ 0. In (v), we
may represent X by a sequence of binary numbers. We then encode the element identification problem as a 3-ary
relation R ⊆ Σ∗ × Σ∗ × Σ∗ where (u, v, w) ∈ R iff u encodes a set X , v encodes a query on X , and w encodes the
answer to the query.

Finite problems such as (i) are usually of little interest to us. In the remaining cases, we find that the problems
assume significantly different forms: language in (ii), functions in (iii), and relations in (iv) and (v). These forms
are list in order of increasing generality. Which is the appropriate paradigm? It turns out that we choose the
simplest form:

(B) A problem is a language.

This answers the question posed as the title of this section.9 However, it is far from clear that (B) will be
satisfactory for studying problems that are functions or relations. The sense in which (B) is reasonable would
hopefully be clearer by the end of this chapter. Before we see some deeper reasons (in particular in §8.2, and
also §2 of chapter 3) for why (B) is a reasonable choice, it is instructive to first note a simple connection between
recognition problems and functional problems.

Consider the following recognition problem: given a triple (x, y, z) of binary numbers, we want to recognize if
xy = z. This problem is obtained by a transformation of the functional problem of multiplication, and it is easy
to see that the transformation is completely general. Clearly an algorithm to solve the functional multiplication
problem leads to a solution of this problem. It is not obvious if there is a converse, that is, a solution to the
recognition problem will lead to a solution of the functional problem. Fortunately, a slight modification of the
recognition problem does have the desired converse (Exercises). Part of the justification of (B) hinges upon such
an ability to convert any functional problem of interest to a corresponding recognition problem, such that their
complexity are closely related.

2.3 Complexity Functions and Asymptotics

We measure the complexity of algorithms or problems using complexity functions. The following definition captures
the class of functions we want:

Definition 1. Let f be a partial function from R real numbers R∪{∞} (the extended reals). If f(x) is undefined,
we write10 f(x) =↑, otherwise write f(x) =↓. Note that f(x) =↑ is distinguished from f(x) = ∞. We call f a
complexity function if f is defined for all sufficiently large natural numbers. The complexity function is finite if
f(x) < ∞ whenever f(x) is defined.

Let us motivate some decisions implicit in this definition. We want f to be defined for sufficiently large natural
numbers so that comparisons such as “f(x) ≤ g(x) for sufficiently large x” is never vacuous. More on this below.

For each algorithm A and computational resource R, we can associate a complexity function fA,R(n) (or, simply
fA(n) if R is understood) such that for inputs of size n, the algorithm uses no more than fA(n) units of R and for
some input of size n, the algorithm uses exactly fA(n) units of R. By definition, fA(n) = ∞ if the algorithm uses
an unbounded amount of R on some input of size n. We also specify that fA(x) is undefined for x not a natural
number.

The definition of complexity functions is basically intended to capture such functions as fA. The domain
and range of fA is often the set of natural numbers. So why do we extend these functions to real numbers and
artificially allow them to be undefined at non-natural numbers? First, the range of fA is frequently not the
natural numbers. For instance, if fA(n) is the average use of resource R over all inputs of length n. Second, the
function fA may be quite bizarre or difficult to determine exactly, and it is useful to provide an bounds on fA

using nicer or more familiar functions. For instance, it may be enough to know fA(n) ≤ √
x, even though fA(n)

is really ⌈√n⌉ − ⌊3 logn + 4.5e−n⌋. These nicer functions are often defined over the reals. This also motivates

9Earlier we said that the study of computational problems is relegated to the background in Complexity theory: we see this embodied
in assumptions (A) and (B) which, together, conspire to strip bare any structure we see in natural problems. Of course this loss is also
the theory’s gain in simplicity.

10This notation is part of our general notation, repeated here for completeness. Also, we do not write “f(x) ↑” or “f(x) ↓”, as this
has a different meaning.
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the use of partial functions, since nice and useful functions such as logarithms and divisios are partial functions.
We could artificially convert the real function into a number theoretic function by restricting its domain to N

and introducing ceiling or floor functions to convert the range into natural numbers. E.g., g(x) = log2 x may
becomes g(n) := ⌈log2 n⌉. But this destroys natural smoothness properties, and becomes awkward in the functional
composition of two such functions, (g1 ◦ g2)(x) = g1(g2(x)). Composition of complexity functions is important
because it corresponds to some subroutine calls between algorithms. All these considerations are enshrined in our
definition of complexity functions. But that is not all. The astute reader will note that complexity functions tend
to be non-negative and monotonically non-decreasing, for sufficiently large values of its arguments; informally call
these “growth functions”. Why not place these restrictions into the definition as well? The reason is that we need
to manipulate and solve complex recurrences involving complexity functions. Sometimes this will take us outside
the domain of growth functions.

Quantification over partial predicates. A partial predicate R over a domain D is a partial function R : D →
{0, 1}. If R is a total function, then it is a total predicate (which is the ordinary notion of predicates). We obtain
real predicates from complexity functions using the usual relational operators of ≤, <, =, 6=, etc. For example, if
f, g are complexity functions, consider the real predicate “R(x) ≡ f(x) ≥ g(x)”. This predicate is11 at x iff both
f(x) and g(x) are defined. Our definition of complexity functions ensures that R(x) will be defined when x is a
sufficiently large natural number. Given partial predicates R(x) and S(x) over a common domain D, we define their
Boolean combinations R ∧ S, R ∨ S,¬R which are again partial predicates. Quantification over partical predicates
need to be treated with care. Consider

(∀x ∈ D)R(x), (∃x ∈ D)R(x).

These are interpreted as follows: (∀x ∈ D)[R(x) =↓→ R(x)] and (∃x ∈ D)[R(x) =↓ ∧R(x)]. Exercise: is the
following true?

¬(∀x ∈ D)R(x) ≡ (∃x ∈ D)¬R(x)

Asymptotic Considerations. The complexity function fA have properties that seem to be nonessential and
incidental to the problem for which A is a solution. There are three reasons for this: (a) First, the behavior of
fA for initial values of n seems unimportant compared to the eventual or asymptotic behavior of fA(n). To see
this, suppose that fA(n) is “unusually large” for initial values of n. For instance, fA(n) = 101000 for n < 20 and
fA(n) = n otherwise. We could replace A by another B which does a ‘table look-up’ for the first 100 answers but
otherwise B behaves like A. Under reasonable assumptions, B uses almost no resources for n ≤ 100, so fB(n) is
small for n ≤ 100. Since B is essentially A, this illustrates the incidental nature of initial values of fA. (b) Second,
most algorithms have some degree of model independence which we would like to see reflected in their complexity.
For instance, the essential idea of the “mergesort algorithm” (or substitute your favorite algorithm) is generally
preserved, whether one implements it in Java, C/C++ or some more abstract computational model. This fact shows
when you analyze the complexity of the algorithm under each of these models: they are all related by a constant
factor. (c) Third, in some models of computation, one may be able to “speed-up” an algorithm A by desired any
constant factor. In chapter 2, we will see this phenomenon in the Turing model: for any Turing machine A, and
constant c > 1, we can find another Turing machine B such that fB(n) ≤ n + fA(n)/c. We would like fA and fB

to be regarded as as equivalent.
These considerations motivates the next two definitions.

Definition 2. Let f, g be complexity functions. We say f dominates g if there exists a positive constant n0 such
that for all n ≥ n0, f(n) ≥ g(n). We have a notation for this:

f ≥ g (ev.)

(read “f ≥ g eventually”). If we want to indicate the variable in this notation, we may also write “f(n) ≥
g(n) (ev.n)”. If F and G are two sets of complexity functions, we say F dominates G if for each g ∈ G there is an
f ∈ F that dominates it.

Note that “f(n) ≥ g(n)” in this definition is a partial predicate that is defined iff f(n) =↓ and g(n) =↓. We
need to know how to interpret partial predicates under quantifiers. Let R(x) be a partial real predicate and D ⊆ R.
When we write

(∀x ∈ D)[R(x)], (1)

11If f(x) = ∞, it is reasonable to declare that R(x) is define and true, even if g(x) =↑. But we will not take this approach.
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the full expansion of this predicate is “(∀x ∈ R)[(x ∈ D ∧ R(x) =↓) → R(x)]”. For instance, if R(x) =↑ for all
x ∈ D, then the statement is vacuously true. Similarly, the full expansion of

(∃x ∈ D)[R(x)] (2)

is “(∃x ∈ R)[(x ∈ D ∧ R(x) =↓) ∧ R(x)]”. There is no vacuousness when satisfying an existential statement. The
usual equivalence “¬∀ ≡ ∃¬” and “∀¬ ≡ ¬∃” continues to be trur. See Exercises.

Let us apply this understanding to a generalization of the “eventually notation”. We can think of “eventually”
as a new quantifier, denoted EV. If R(x) is a partial real predicate. then we write

(EVx)[R(x)]

or R(x) (ev.x) if there is some x0 such that for all x ≥ x0, if R(x) =↓ then R(x) holds.
The complement of the eventually notation is “infinitely often”. It can also be thought of as a new quantifier,

denoted IO. We write
(IOx)[R(x)]

or R(x) (i.o.x) if for all x there exists y ≥ x such that R(x) =↓ and R(x) holds. The EV/IO pair of quantifiers are
related in analogy to the ∀/∃ pair of quantifiers. See Exercise.

Big-Oh Notation. The next definition is of fundamental importance in complexity theory. There are several
formulations of this notation which dates back to Du Bois-Reymond (1871) and Bachmann (1894); and Knuth’s[21].
We chose a variant [7] that seems particularly useful:

Definition 3. (The O-notation) For any complexity function f , O(f) denotes the set of all complexity functions
g such that for some positive constant C = C(g),

0 ≤ g ≤ C · f (ev.).

Note that O(f) is empty unless f ≥ 0 (ev.). If F is a set of functions, O(F ) denotes the union over all O(f) for
f ∈ F . We read ‘O(F )’ as ‘big-Oh of F ’ or ‘order of F ’.

We extend this definition to recursively defined expressions.

Syntax and semantics of O-expressions. The set of O-expressions is defined by the following recursive rule.
Let n be a real variable12, f be any symbol denoting a complexity function, and c any symbol that denotes a real
constant. Here are some O-expressions:

Basis: f, n, c

Induction: O(E), E + F, E − F, E · F, E/F, EF , E ◦ F.

where E, F are recursively defined O-expressions. If E is the symbol f , we may write ‘f(F )’ instead of ‘f ◦ F ’ (◦
denotes functional composition). We may freely introduce matching parentheses to improve readability.

Note an O-expression need not contain any occurrences of the symbol ‘O’. An O-expression that contains
some occurrence ‘O’ is called an explicit O-expression; otherwise it is an implicit O-expression. Some examples of
O-expressions follow.

3 + 2n, n + O(n−1 + log(n) + 5), O(n2) + logO(1) n, fO(g), (f(g))h2

.

Here the real constant ‘c’ denotes the constant function, f(n) = c for all n; and ‘n’ denotes the identity function
f(n) = n, etc.

Each O-expression E denotes a set [E] of complexity functions. We define [E] recursively: (Basis) If E = f is a
function symbol, then [f ] is the singleton set comprising the function denoted by f . Similarly if E = n or E = c,
[n] = {ι} and [c] = {fc} where fc(n) = c. If E = O(F ) then [E] is defined to be O([F ]), using definition 3 above.
The semantics of the other O-expressions are the obvious ones:

[E ◦ F ] := {e ◦ f : e ∈ [E], f ∈ [F ]}, [E + F ] := {e + f : e ∈ [E], f ∈ [F ]}, etc.

12The literature uses ‘n’ for the variable of (univariate) complexity functions, in part because domains of complexity functions are
often restricted to natural numbers. We continue to use ‘n’ with complexity functions even though we intend to let n range over all
real numbers. The tradeoffs in making this choice is between the potential of misleading the reader, and the familiar contexts of such
complexity functions. We opt for the latter.
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Henceforth, we intend to commit the usual linguistic abuse, by letting symbols (syntactical objects) such as f
and c stand for the functions (semantical objects) that they denote, when the context demand a function rather
than a symbol. This abuse should not lead to any confusion.

The main use of O-expressions is this: If F is an O-expression and E is an explicit O-expression, we may say

‘F is E’ and write ‘F = E’.

This simply means that [F ] ⊆ [E]. An important special case is where F = f and E = O(g) where f, g are function
symbols. For instance, if t(n) denotes the time complexity of the high school multiplication algorithm then we may
write ‘t(n) = O(n2)’. Note that we restrict E to be an explicit O-expression since there is potential for confusion
otherwise.

The use of the equality symbol in this context is clearly an abuse of our usual understanding of equality: we do
not regard ‘E = F ’ and ‘F = E’ as interchangeable. Thus O(n2) = O(n3) is true but O(n3) = O(n2) is not. For
this reason, the equality symbol here is called the one-way equality.

A corollary of the inclusion interpretation of the one-way equalities is this: an inequality involving O-expressions
is to be interpreted as non-inclusion ‘6⊆’. Thus ‘n log n 6= O(n)’ is true but ‘n 6= O(n log n)’ is false.

Some authors avoid the one-way equality symbol by writing the more accurate form

‘F ⊆ E’

or, in the case F is a function symbol f , ‘f ∈ E’. We shall not use this alternative form.

Example 1. Further examples of usage:

(i) The O-expressions O(1), O(n) and nO(1) denote, respectively, the set of all functions that are eventually
dominated by constants, by linear functions and by polynomial functions. For instance 1

n = O(1) even though
the value becomes unbounded when n → 0.

(ii) Depending on the context, the appearance of an O-expression may sometimes denote a set of functions,
rather than as denote some unspecified member in this set. For instance, when we write NP = NTIME (nO(1)),
we intend to use the full set of functions denoted by the expression “O(1)”. This is a potential pitfall for
students.

(iii) By the non-inclusion interpretation, f 6= O(g) means that for all c > 0, there are infinitely many n such
that f(n) > cg(n). There is, however, a useful intermediate situation between f = O(g) and f 6= O(g):
namely, there exists c > 0 such that for infinitely many n, f(n) > cg(n). Below, we will introduce a notation
to express this.

(iv) The O-notation factors out unessential features of complexity functions: thus we say ‘f(n) = O(log n)’
without bothering to specify the base of the logarithm.

(v) The notation saves words: we simply write ‘f(n) = nO(1)’ instead of saying that f(n) is dominated by some
polynomial. It also conserves symbols: we say ‘f(n) = O(1)n’ instead of saying that there exists n0, c > 0
such that f(n) ≤ cn for all n ≥ n0. Thus we avoid introducing the symbols c and n0.

(vi) It is handy in long derivations. For example,

n + O(n−1) = n + O(1) = O(n) = O(n2).

A subscripting convention.13 We augment the O-notation with another useful convention:

(i) It often occurs that we want to pick out some fixed but non-specific function f ′ in the set O(f), depending
on some parameter α. Then we write Oα(f) to refer to this f ′. If f ′ depends on several parameters α, β, . . .
then we write Oα,β,...(f). An O-expression is fully subscripted if each occurrence of ‘O’ is subscripted. So a
fully subscripted O-expression refer to a single function.

(ii) As an extension of the one-way equality, the ‘equality symbol’ between two fully subscripted O-expressions
denotes domination between two functions. For instance, we write ‘g = Oα(f)’ to indicate that g is dominated
by some f ′ ∈ O(f) whose choice depends on α. There is much room for syntactic ambiguity and we assume
common sense will avoid such usage (for instance, an implicit O-expression E is, by definition, fully-subscripted
and it would be confusing to write ‘g = E’).

13This convention is peculiar to this book.
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(iii) Sometimes we want to annotate the fact that among the various occurrences of an O-expression, some refers
to the same function. We may use subscripts such as O1, O2, etc., as an ‘in-line’ device for showing this
distinction.

Example 2. We illustrate the subscripting convention.

(i) We say an algorithm A runs in time OA(n) to mean that the running time is dominated by kn for some k
depending on A.

(ii) We could write n2k = Ok(n) as well as n2k = On(2k), depending on the context.

(iii) Suppose g(n) = O1(n
2 log n) and f(n) = O2(n) + 3O1(n

2 log n). The two occurrences of ‘O1’ here
refer to the same functions since they subscript identical O-expressions. Then we may write their sum as
f(n) + g(n) = O2(n) + 4O1(n

2 log n) = O3(n
2 log n).

(iv) We emphasize a fully-subscripted O-notation no longer denotes a set of functions. Hence it is meaningful
to write: ‘O1(f) ∈ O(f)’.

(v) We illustrate a more extensive calculation. The following recurrence arises in analyzing the running time
T (n) of certain list manipulation algorithms (e.g., the ‘finger tree’ representation of lists in which we admit
operations to split off prefixes of a list): T (1) = 1 and for n ≥ 2,

T (n) = max
1≤i<n

{T (i) + T (n − i) + log min{i, n− i}}

To see the subscripting convention in action, we now prove that T (n) = O1(n) − O2(log(2n)). If n = 1, this
is immediate. Otherwise,

T (n) = max
1≤i<n

{O1(i) − O2(log(2i)) + O1(n − i) − O2(log(2(n − i)))

+ logmin{i, n− i}}
= max

1≤i<n
{O1(n) − O2(log(2i)) − O2(log(2(n − i))) + log min{i, n − i}}

≤ max
1≤i≤n/2

{O1(n) − O2(log(2i)) − O2(log(2(n − i))) + log i}

(since the expression is symmetric in i and n − i)

= O1(n) − min
1≤i≤n/2

{O2(log(2(n − i)))}

(we may assume O2(log(2i)) ≥ log i)

= O1(n) − O2(log n)

Note that we have used “≤” in the above derivation. This is something we would not write without the
accompanying subscripting convention.

We shall have occasion to use four other related asymptotic notations, collected here for reference:

Definition 4. (Other asymptotic notations)
(i) Ω(f) denotes the set of functions g such that there exists a positive constant C = C(g) such that C · g ≥

f ≥ 0 (ev.).
(ii) Θ(f) denotes the set O(f) ∩ Ω(f).
(iii) o(f) denotes the set of all g such that for all C > 0, C · f ≥ g ≥ 0 (ev.). This implies that ratio g(n)/f(n)

goes to zero as n goes to infinity. Also o(f) ⊆ O(f).
(iv) ω(f) denotes the set of all g such that for all C > 0, C · g ≥ f ≥ 0 (ev.). This implies the ratio g(n)/f(n)

goes to infinity as n goes to infinity.

These notations are used in ways analogous to that in O-notations; in particular, we use one-way equalities such
as ‘f = o(g)’. The subscripting convention extends to the these notations. The O-notation and the Ω-notation are
inverses in the sense that

f = O(g) ⇐⇒ g = Ω(f).

Similarly,
f = o(g) ⇐⇒ g = ω(f).
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To verbally distinguish the O-notations from the o-notations, we also call them the “Big-Oh” and the “Small-Oh”
(or, “Little-Oh”) notations, respectively. Clearly, f = o(g) implies f = O(g). Also f = Θ(g) iff g = Θ(f) iff
f = O(g) and g = O(f).

We sometimes call the set O(f) the big-Oh order of f , and if g = O(f), we say g and f have the same big-Oh
order. Similarly, Θ(f) is the big-Theta order of f , etc.

We warn that incorrect usage of these less-frequently used asymptotic notations is common. Furthermore, they
are sometimes given rather different definitions. For instance, in [1] ‘Ω(f)’ denote the set of functions g such that
for some c, g(n) ≥ cf(n) for infinitely many n. (This is the intermediate situation between g = O(f) and g 6= O(f)
mentioned above.) But notice that ‘g = Ω(f)’ under the definition of [1] is recaptured as our notation

g 6= o(f).

Although we seldom use this concept in this book, it is a typical situation that obtains when one proves “lower
bounds” in concrete complexity.

Three final notes on usage:
(a) Clearly we could introduce Ω-expressions, etc. The meaning of mixed asymptotic expressions such as O(n2) +
Ω(n log n) can also be defined naturally. A proper calculus of such expressions needs to be worked out. Fortunately,
there seems to be little need of them.
(b) The reader must have noticed the similarities between the expression f = O(g) and the inequality x ≤ y.14. In
fact, the similarities extend to the other notations:

f = O(g), f = Θ(g), f = Ω(g), f = o(g), f = ω(g)

are analogous (respectively) to the inequalities

x ≤ y, x = y, x ≥ y, x << y, x >> y

on real numbers x, y. Such analogies has has led authors to write expressions such as

f ≤ O(g), f ≥ Ω(g). (3)

Why write f ≤ O(g) when you could write f = O(g)? One strong motivation is the wish to refer to some anonymous
function g1 in O(g) and we intend to do a pointwise comparison f ≤ g1. But this is precisely our rationale for
introducing the subscripting convention. In any case, once we admit (3), it is hard to avoid writing f ≥ O(g)
(again, the appearance of ‘≤’ is supposed to indicate that we are referring to some anonymous g2 ∈ O(g) such
that f ≥ g2). But it would appear odd indeed to write “n ≥ O(n2)”. This could also lead to trouble15 since
one is next tempted to manipulate these expressions under the usual rules of inequalities. On the other hand, a
fully subscripted O-expression (say) refers to a particular function and inequalities involving such an expression
can be interpreted as domination and manipulated confidently: for instance, we do not consider the expression
n2 ≥ O1(f(n)) to be inappropriate. In short, we never use inequality symbols ≤ or ≥ with expressions containing
unsubscripted occurrences of the O-notation.
(c) One could extend the definition of complexity functions and all the associated asymptotic notation to admit
multiple parameters such as f(m, n). This becomes necessary when discussing complexity classes defined by several
simultaneous resource bounds.

Additional Notes: See Hardy and Wright [14] for the treatment of similar notations. Knuth’s original
definition of the O-notation goes as follows: g = O(f) if there are constants n0 and c > 0 such that for all n > n0,
|g(n)| ≤ c · f(n). Our definition departs from Knuth (who is closer to the classical precedents) in that we use
g(n) instead of the absolute value of g(n) in the above inequality. Also, following [7], we added a non-negativity
requirement g ≥ 0 (ev.). Like Knuth, however, we do not take the absolute value in the Ω-notation; Knuth explains
the asymmetry by thinking of ‘O’ as referring to the neighborhood of zero and ‘Ω’ as referring to a neighborhood
of infinity. For an updated discussion of these notations, see [34] [3] [12].

2.4 Size, Encodings and Representations

Complexity is a function of the size of the input. In the natural setting of certain problems, a correct choice for the
size parameter is often not obvious. For example, let D be the set of square matrices with rational entries. An n×n

14For instance, viewing “f = O(g)” as a binary relation, then reflexivity (f = O(f)) and transitivity (f = O(g), g = O(h) imples
f = O(h)) holds. Even anti-symmetry holds: f = O(g), g = O(f) imples f = Θ(g).

15As indeed has happened in the literature.
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matrix M in D has three candidates for its size: its dimension n, the number of entries n2, and the total number
of bits to represent all the entries. The convention (A) above removes this problem: if the matrix M is encoded as
a string w over Σ, then we define the size of M to be |w|. In general, let D be any (mathematical) domain (such
as matrices, integers, finite graphs, etc). An encoding of D is a function e : D → Σ∗ (for some alphabet Σ) that is
one-one. Relative to e, the size of x ∈ D is simply defined as |e(x)|.

The use of encoding solves the problem of defining size but it introduces other issues. In particular, the
complexity of the problem depends on the choice of encoding. We may be willing to accept two different encodings
of the same mathematical problem as really two distinct computational problems, but that is perhaps too easy a
way out. This is because two encodings may be different for rather trivial reasons: for instance, suppose each input
x to a problem P is encoded by a word e(x) ∈ Σ∗, and the complexity of P under the encoding e is f(n). For

any constant k > 0, we can choose another encoding e′ such that for each input x, |e′(x)| ≤ |e(x)|
k (how?). With

reasonable assumptions, we see that the complexity of the problem under e′ is g(n) = f(n/k). In this sense g(n)
and f(n) are essentially the same.16

The next problem with encodings is that e : D → Σ∗ may not be an onto function so a certain word w ∈ Σ∗ may
not encode any element of D. Let us call w well-formed if it does encode some x in D; otherwise w is ill-formed.
Should we assume that the algorithm need only restrict its attention to well-formed inputs? If so, the complexity
function becomes undefined at those values of n where there are no well-formed inputs of length n. (For example,
if D is the set of square boolean matrices and e encodes a boolean matrix in row-major order i.e. listing the rows
where successive rows are separated by a marker symbol, then all well-formed inputs have length n2 + n − 1.) To
simplify things somewhat, we make the following decision:

(C) All words in Σ∗, well-formed or not, are possible inputs.

This decision is inconsequential if the set of well-formed words can easily be recognized: in many problems,
this is indeed the case. Otherwise, given an algorithm that works on only well-formed words, we modify it to work
on all inputs simply by attaching on the front-end a ‘parsing phase’ to screen the inputs, rejecting those that are
not well-formed. If this parsing phase is expensive relative to the actual computation phase, then the complexity
of this problem may turn out to be an artifact of the encoding. In section 5.3 we shall see examples where the
parsing complexity is intrinsically high. In any case, the abandonment of (C) should lead to interesting variants of
the theory.

One way to avoid an intrinsically hard parsing problem is to generalize the notion of encodings by allowing
several words to represent the same object. More precisely, a representation r of a domain D over Σ is an onto
partial function

r : Σ∗ → D.

We call w ∈ Σ∗ an r-representative of x if r(w) = x. The fact that r is onto means that every object has at least one
representative. Since r is a partial function, let us say w ∈ Σ∗ is well-formed or ill-formed (relative to r) depending
on whether r(w) is defined or not.

If r is also 1-1, then in fact the inverse of r is an encoding. We have two computational problems associated
with any representation r:

1. The r-parsing problem is the problem of recognizing well-formed words.

2. The r-isomorphism problem is the problem of deciding when two words w, w′ are r-representatives of the
same element: r(w) = r(w′).

If r is in fact an encoding then the isomorphism problem is trivial. Thus, the use of representations has simply
shifted the parsing complexity to the isomorphism complexity. This suggests that there is an inherent complexity
associated with certain domains D in the sense that every representation of D has a hard parsing problem or a
hard isomorphism problem (Exercise).

It is clear that a representation r cannot be arbitrary if the notion of complexity is to be meaningful: consider
the following encoding of the domain D of finite graphs, and let P ⊆ D be the set of planar graphs. If for G ∈ D,
the first symbol in the encoding e(G) is ‘1’ iff G ∈ P , then clearly the encoding e is rather contrived and particularly
ill-suited for encoding the planarity testing problem. We have no theoretical guidelines as to how representations
must be restricted. Fortunately, it is not as sorry a state of affairs as we might imagine. Despite the lack of a
general theory, for most problems that arise, either there is a consensus as to the natural representation to use, or

16This seems to argue for a notation for the set of all g such that g(n) = O(f(O(n))): denote this set by ⊙(f). Thus 5n = ⊙(2n)
but not 5n = O(2n). The O- and ⊙-notations coincide when restricted to polynomials. In Complexity Theory, we should perhaps only
distinguish complexity functions up to their ⊙-order; after all complexity practitioners normally do not distinguish between 5n and 2n.
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else the different choices of representations are equivalent in some sense. In the remainder of this section we show
how this is so.

We give an initial informal criterion for choosing between various natural representations (without actually
resolving the issue of which representations are ‘natural’):

(D) Let r and r′ be two natural representations for a problem P . Then r is to be preferred over r′ if the
following holds:

(D1) The parsing problem for r is easier.
(D2) The isomorphism problem for r is easier.
(D3) The intrinsic complexity of P under r is more than that under r′.

We would apply the criteria (D1-3) in the indicated order: for instance, if the parsing problem for r and r′ are
equivalent, but the isomorphism problem for r is easier that for r′, we would prefer r over r′. If criteria (D1-3)
cannot distinguish between two representations, then it turns out that, in practice, there is no reason to differentiate
between them anyway.

We have seen the reasons for (D1, D2). Observe that (D2) implies that we should prefer encodings over general
representations. The intuitive reasoning for (D3) begins with the observation that some representations are more
compact (or, more succinct or efficient) than others. The intuitive notion of the most compact representation of a
problem seems to be meaningful, but the notion of least compact representation does not. For, it is easy to imagine
representations that introduce an arbitrary amount of irrelevant data (‘padding’) or that are arbitrarily redundant.
If a problem is encoded more compactly than another, then the complexity of the more efficiently encoded one
tends to be greater (not less!). Hence (D3) rejects redundant or padded representations.

Example 3. The contrast between compact and non-compact representations is illustrated by the following results.
Suppose we want to choose between two encodings of positive integers: the usual unary encoding (a positive integer
n is represented by a string of n zeroes) and the ‘exponential unary encoding’ (n is representated by a string of
2n zeroes). A well-known result of Minsky[23] says that every partial recursive function can be computed by a
2-counter machine (see exercises in chapter 2 for a definition of counter machines), assuming the exponential unary
encoding of numbers. A less well-known result, independently obtained by Schroeppel[31] and by Frances Yao[35]
says that no 2-counter machine can compute the function f(n) = 2n, assuming the unary encoding of numbers.
Now by criteria (D1) and (D2), there is no distinction between these two encodings. But (D3) says the usual unary
encoding is preferable.

Despite the ad hoc nature of (D), we are able to use it in some common examples illustrated next.

2.4.1 Representation of Sets

Suppose D′ is the domain of finite subsets of another domain D, and e : D → Σ∗ is an encoding of D. We can
extend e to a representation r of D′: let # be a symbol not in Σ. The word

e(x1)#e(x2)# · · ·#e(xk) (4)

is called a standard representative of X = {x1, . . . , xk} ∈ D′, provided x1, . . . , xk are distinct. Since the order of the
xi’s are arbitrary, X has k! (k factorial) standard representatives. If e(x1), . . . , e(xk) are in ascending lexicographical
order (assuming an arbitrary but fixed ordering on Σ) then (4) is unique and is called the canonical encoding of
X . If e were a representation to begin with, then the standard representation of D′ is still well-defined but the
canonical encoding is not well-defined.

Consider the problem of recognizing membership in P where P ⊆ D′. Let

Lc = {e′(x) : x ∈ P}

where e′ is the canonical encoding, and

Ls = {w : w is a standard representative of some x ∈ P}.

Both Lc and Ls appear to be natural, so we attempt to distinguish them using the criteria (D). Let fc and fs be
the complexity of Lc and Ls (respectively). Under reasonable assumptions, it is seen (Exercise) that fc and fs are
related as follows:

fc ≤ fs + f0 (5)
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fs ≤ fc + f1 (6)

where f0 is the complexity of deciding if a word of the form (4) is in ascending order, and f1 is the complexity of
sorting a sequence of words e(x1), . . . , e(xk) given in the form (4) into ascending order. Now in typical models of
computation and complexity measures, we have

f0(n) = O(n) and f1(n) = O(n log n).

If fc and fs are Ω(n log n), then (5) and (6) implies that fc = Θ(fs), i.e., they are indistinguishable in the sense of
(D). This is a reassuring conclusion: it does not matter which representation of sets is used, provided Lc and Ls

have large enough complexity. We will adopt the convention:

(E) Sets are given by their canonical or standard representation.

2.4.2 Representation of Numbers

The usual choice for representing natural numbers 1, 2, 3, · · · is the k-ary (k ≥ 1) notation over the alphabet
Σ = {0, 1, 2, . . . , k − 1}. Clearly the unary (k = 1) notation is an encoding but for k > 1, we only have a
representation since a prefix string of zeroes does not affect the value of a k-ary number. In this latter case, we can
get an encoding by restricting the k-ary numbers to those that begin with a non-zero symbol. Note that criteria
(D1-2) do not distinguish the various choices of k, so we need to test with (D3).

Consider the problem of recognizing a set P of natural numbers (such as the set of primes: 2, 3, 5, 7, 11, 13, · · · ).
Let Lk ⊆ {0, 1, . . . , k − 1}∗ be the set of k-ary numbers in P and fk be the complexity of Lk. Consider the k- and
l-ary encodings for any fixed k, l > 1. Then

fk(n) = O(fl(n)) + O(n2). (7)

This comes from the fact that (using reasonable computational models) there are algorithms converting between
k-ary and l-ary notations that run in O(n2) time. Furthermore, for all natural numbers m, if v and w are k-ary and l-
ary numbers (respectively) encoding the same number m, then their lengths are related by |v| = Θ(|w|)(= Θ(logm)).
(Exercise) We conclude that all k-ary notations (k > 1) are indistinguishable in the sense of (D) for problems with
complexity Ω(n2).

Unfortunately the above result does not hold for the unary notation. We note an exponential discrepancy
between unary and k-ary (k ≥ 2) notations: if u (in unary notation) and v (in k-ary notation, k > 1) represent
the same integer, then |u| = Θ(k|v|). Therefore to convert a k-ary number v to a unary number takes Ω(k|v|) time
since this is the time just to write each output symbol. Therefore, if fk is subexponential (i.e., fk(n) = ω(cn) for
any c > 0) then f1 is a slower (sic) growing function than fk. (What if fk is at least exponential?) Criterion (D)
then says we must reject the unary notation. In conclusion, the following convention will be used.

(F) Integers are encoded in k-ary for some k > 1.

There are other representations of numbers besides k-ary notations. For example, from basic number the-
ory we know that each number greater than 1 has a unique decomposition into a product of powers of distinct
prime numbers. We may encode such a number by a sequence of non-negative integers (say in binary notation)
p1#x1#p2# · · ·#pk#xk where p1 < p2 < · · · < pk are primes and each xi ≥ 1. This sequence represents the
number px1

1 px2

2 · · · px2

k . Multiplication under this encoding is linear time, but addition seems hard. It is not easy
to dismiss this notation as ‘unnatural’ (a number theorist may not think so). We may then ask if addition is
intrinsically harder than multiplication under this encoding, a curious reversal of Cobham’s question in Section 1.
This points out that the choice (F) at this point of our understanding is somewhat ad hoc.

An equally reasonable alternative to (F) would be to assume the k-adic notation: for each k ≥ 1, we have an
isomorphism between the strings over Σ = {1, . . . , k} and the non-negative numbers where the correspondence is
given by

a0a1 · · ·an ∈ Σ∗ ↔
n
∑

i=0

aik
i(n ≥ 0).

In other words17, k-adic notation differs from k-ary notation only in its use of the integers {1, . . . , k} instead of
{0, . . . , k − 1}. The k-adic notation avoids the well-known problem of non-uniqueness of k-ary notation.

17The term ‘unary’ as it is normally used is really a misnomer: it should be ‘unadic’. With this warning, we will perpetrate the
abuse. It seems that Quine [26] is one of the first to use this notation.
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2.4.3 Representation of Graphs

In graph theory, two different graphs g and g′ are usually identified if they are isomorphic, i.e., the actual identity of
the nodes is considered unimportant. In Computer Science, we normally distinguish between g and g′. To emphasize
this distinction we say that graph theory treats unlabeled graphs while Computer Science treats labeled graphs. In
this book, the word graph always denotes an undirected, labeled graph; we permit self-loops but not multiple
edges in our graphs. There are three well-accepted methods of representing graphs: (1) Adjacency matrices. (2)
Adjacency lists. (3) Edge lists (i.e., lists of unordered pairs of vertices). It is not hard to see that these three
representations are interconvertible in time O(n2) in most reasonable models, where n is the number of nodes in
the graph. This amounts to a linear time conversion for dense graphs (i.e., with Ω(n2) edges) but in any case at
most quadratic time. Thus criterion (D) justifies the following.

(G) Graphs are represented using any of the three representations of adjacency matrix, adjacency list
or edge list.

Now consider the problem of representing unlabeled graphs. We can use a representation where each encoding
e(g) of a labeled graph g (using any of the above 3 methods) is said to be a representative of its unlabeled counterpart
G. Thus the unlabeled graph G has n! representations. The isomorphism problem for this representation is the
well-known problem of graph isomorphism for which no polynomial time algorithm is known. So this is somewhat
unsatisfactory. On the other hand, we can define an encoding of G by using a canonical labeling of G: let g be the
labeled version of G such that e(g) is lexicographically minimal among all other labelings of G. There is theoretical
evidence that the parsing problem in this case is hard, and using criteria (D1), this canonical encoding should be
rejected in favor of the previous representations. Perhaps it is not our inability to find representations with easy
isomorphism problems or encodings with easy parsing problems, but that such representations simply do not exist.
This suggests the problem of classifying mathematical domains (using the tools of mathematical logic) according
to ‘the inherent complexity of their representations’. Other domains whose representations have apparently large
complexity include many groups and rings. Specifically, the representation of multivariate polynomials (a basic
example of rings) is an important one with repercussions in the attempts to classify the complexity of algebraic
problems such as polynomial factorization.

In summary, in this section we made a critical decision (C) to allow all inputs, and we gave some informal
criteria for how to use our theory (namely, how to represent a problem so that the notions of size has some natural
meaning). As for decision (C), we are well-aware of its shortcomings. We will see instances where we would like
to analyze the complexity of an algorithm A relative to some proper subset of possible inputs. For instance, if
A is used to operate on the outputs of another algorithm A′ (this happens when we study reducibilities, where
we use A′ reduce another problem to the problem solved by A). As for the questions of representing problems,
we have seen that for many problems with sufficiently large complexity (in the cases examined, complexity of
Ω(n2) is enough) any of a number of natural representation are equivalent (relative to criterion (D)). In the rest
of this book, when we discuss natural problems involving numbers, sets or graphs, we normally will not be explicit
about their representation because of the preceding conclusions (assumptions (E),(F) and (G)). For the interested
reader, the following is a very incomplete list of additional references on the relationship between representation
and complexity: [33], [22], [19].

2.5 Models of Computation

The theory of computability [28] begins with the fundamental question:

(1) What is the concept of computability?

For definiteness, assume we ask this question of number theoretic functions. Naturally, ‘computable” must be
defined in the context of some suitable formal system F of computing devices. It must be emphasized that we require
F to be “sufficiently general” in the sense that any function that we all intuitively understand to be computable
should be computable within the formalism of F . For instance, we intuitively believe that the multiplication of two
numbers, the function f(n) that produces the sum of the first n primes, the function f(n) = ⌊

∫ n

a=0
x3dx⌋ should

be computable. Logicians interested in the foundations of mathematics introduced different formalizations of F .
The equational calculus of Herbrand and Hilbert, the λ-definable functions of Church, the µ-recursive functions of
Kleene and Gödel, and the machines of Turing are among these formalisms. For each F , we now have the concept
of F -computable functions. It turns out to be natural to extend the concept to partially F -computable functions.
The pleasant surprise is that for any two of these formalisms F and F ′, one can prove that a function is (partially)
F -computable if and only if it is (partially) F ′-computable. These discoveries are elevated into a general law called
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Church’s thesis18 [4]: for all general computational formalisms, the concepts of computable and partially computable
are invariant. We have now provided a satisfactory answer to (1).

Furthermore, we conclude that all partially computable functions can effectively be enumerated (since we can
clearly list, say, all Turing machines and conclude from Church’s thesis that all partially computable functions are
thereby named). It is not hard to use an older diagonalization argument due to Cantor to conclude that there
exists an uncomputable function. In 1931, Gödel[10] showed that the validity of statements in number theory
is undecidable. This landmark discovery demonstrates that uncomputable functions not only exist, but occur
naturally.19 Such discoveries give rise to a central theme of computability theory:

(2) Which functions are computable and which are not?

Note that this question makes sense because of Church’s thesis. Extending this fundamental distinction, logicians
went on to classify the uncomputable problems into ‘degrees of uncomputability’. Unfortunately, they rarely try to
classify the computable problems. In a sense, computability theory and Complexity Theory are really one subject:
the latter does for the computable problems what the former does for the uncomputable ones. Complexity theory
draws many of its methods (e.g., diagonal arguments) and concepts (e.g., reducibilities) from computability theory.
Many phenomena at the uncomputable levels are mirrored at the lower levels. However, many of these phenomena
become considerably more subtle at the lower levels. For instance, many questions that have been solved at the
higher level remain open at the lower level. In this and the next section, we shall examine the complexity theoretic
versions of (1) and (2).

Our view must necessarily be richer because researchers noticed that not all forms of computation are equivalent.
The word ‘computational form’ is advisedly chosen in this context; it is intended to capture the concrete versions of
computational models, before any attempt to put them into equivalence classes.20 And yet, researchers also noticed
that many forms of computation are equivalent. Here, “equivalence of computational form” is somewhat vague but
in each concrete situation, we can make correspondences across forms. For example, ‘time’ resource can be identified
in two computational forms and some suitable notion of equivalence (mutual simulation in polynomial time) defined.
This not-all-forms-are-equivalent and many-forms-are-equivalent phenomena at first appear confusing. The former
says that we have lost Church’s thesis; the latter suggests that there might be some hope. Before pointing a way
out of this paradise-lost, we need to sharpen our concept of computational form. Let us begin with examples of
computational forms (this list is incomplete and includes computational forms that are not “general” in the sense
demanded of F -formalisms above):

Turing machines, storage modification machines, arrays of finite automata, pushdown automata, finite state

automata, random access machines, vector machines, aggregates, formal grammars, various proof systems,

lambda calculus of Church, µ-recursive functions of Kleene and Gödel, Herbrand and Hilbert’s equational

calculus, Post’s canonical systems, Markov algorithms, Shepherdson and Sturgis’ register machines, random

access stored programs of Elgot and Robinson, Elementary Formal Systems of Smullyan.

The reader is not expected to know any in this list. We propose to characterize computational forms along two
orthogonal directions:

(i) Model of computation: this identifies the basic computational structures (control, instructions and data
structures). Several computational forms will be collapsed into a common model corresponding to our intent
that members of the same model use similar computational structures: thus finite state automata and Turing
machines will be regarded as falling under the same model (the Turing model).

(ii) Mode of computation: this refers to the method of using the computational structures to define computation.
For example, the Turing model can compute in the deterministic, probabilistic or nondeterministic mode (see
next section).

A computational form is defined by specifying the model and mode. Computational models and modes are
essentially independent notions in the sense that within each model we can define machines operating in any

18Also called the Church-Turing Thesis. Note that, as “discoveries”, we have a collection of descriptive statements. But as a law,
it carries a prescriptive weight – henceforth any new formalism F ′ that diminishes or enlarges the class of computable functions is
inadmissible.

19It seems that the existence of such functions per se seems uninteresting unless one can show ‘natural’ examples. There is an
analogous situation in Complexity Theory: although we already know from the work of Hartmanis that there are arbitrarily hard-
to-recognize languages, greater interest was generated when Meyer and Stockmeyer showed that such languages occur naturally. See
chapters 5 and 6. Another recent example in logic is the work Paris-Harrington in combinatorial number theory.

20Taken literally, any perceptible difference between two models should lead to distinct computational forms. But this cannot be
taken too seriously either. Anticipating our “model-mode” view of the world to be discussed shortly, a computational form is a mixture
of model and mode.
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given mode.21 However, this must be qualified because some computational models were specifically designed
for particular modes and do not naturally embrace other modes. For example, grammars or production rules in
formal language theory essentially compute in nondeterministic modes, and do not to easily embrace some other
computational modes. Or again, the Boolean circuit model22 one single is essentially a parallel model and it is
not very natural to define sequential modes for circuits. We will say that a model is general if it does embrace all
modes. For instance, the Turing model and the pointer machine model will be seen as general. Since the concept
of computational modes post-dates the definitions of these models, we sometimes take the liberty of modifying
original definitions of some models to make them general. The remainder of this section is a brief exposition of
some important computational models; computational modes will be treated in the next section.

We now examine the computational structures that characterize some important computational models.

(i) Turing model. This will be covered in chapter 2 and is the most important one for this book. Essentially
each computing agent in this model has finitely many states and symbols, and a finite number ‘heads’ each of
which scans some memory location. The memory locations have some fixed neighborhood structure (which is
specified by a bounded degree undirected graph with locations as vertices). Each location can store a symbol.
The simplest example of a fixed neighborhood structure is that of a total linear relation, giving rise to what is
usually known as a Turing machine tape. The computing agent has a finite set of instructions specifying what
to write into scanned locations and how to move its heads when in a given state scanning certain symbols.

(ii) Pointer machine model. This model, also known as the storage modification machine model, was introduced by
Schönhage in 1970 [29]. Similar models were earlier proposed by Kolmogorov and Uspenskĭi, and by Barzdin
and Kalnin’sh. Like Turing’s model, this uses finite state control to determine the step-by-step execution of
instructions. The essential difference comes from having a varying neighborhood structure that is represented
by a fixed out-degree (arbitrary in-degree) directed graph G. We also fix a finite set ∆ of symbols; each
a ∈ ∆ is called a color. The edges of G are called pointers, and are labeled by some color in ∆. Every node
has outdegree |∆| and outgoing edges from a node have distinct colors. One of the nodes is designated the
center. Call G a ∆-structure. Each word w ∈ ∆⋆ is said to access the unique node obtained by following
the sequence of pointers labeled by symbols in w, starting from the center. Let this node be denoted [w]G (or
simply [w] when G is understood). Thus the node [ǫ] is the center. In Figure 2.1, the center is indicated by
an arrow from nowhere, with no label. Such graphical representations use two conventions to reduce clutter:
(a) if a pointer is a self-loop (i.e., its target and source are the same, we may omit them from the diagram.
(b) if two or more pointers share the same source and target, then we only draw one edge and label them
with the list of colors for these pointers.

a

b b b

a ab b

a

a

a

b

Figure 2.1: Pointer machine ∆-structure (∆ = {a, b}). The center is indicated by the arrow without any label.

We define a pointer machine (for any color set ∆) as a finite sequence of instructions of the following types:

(i) w := w′ (assignment statement)

(ii) w := new (node creation statement)

(iii) if w′ = w goto L (branch statement)

21Up till now, we have used the word ‘algorithm’ to describe the computing agent. When we discuss particular forms of computation,
we traditionally refer to ‘machines’ of that form. A useful distinction (which we try to adhere to) is that ‘algorithms’ are abstract
objects while ‘machines’ are their concrete representations within a form. Thus, we have ‘the’ high school multiplication algorithm, but
various Turing machines or PASCAL programs can be regarded as implementing the same high-school algorithm. Another term which
we regard as essentially synonymous with ‘machine’ is ‘program’.

22Actually, circuits raises another more annoying issue for our attempt to classify models – it is what is known as a ‘non-uniform’
model. There are many easy (though not necessarily natural) ways to make it uniform like Turing machines. We will assume this step
has been taken if necessary.
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(iv) Choose (L, L′) (choice statement)

(v) HALT(w) (output the node [w])

Here w, w′ ∈ ∆⋆ and L, L′ are natural numbers viewed as labels of instructions. The instructions of the
pointer machines are implicitly labeled by the numbers 1, 2, 3, . . . in sequential order. Let us now give the
semantics of these instructions. Suppose G is the graph before executing an instruction and G′ is the graph
after.

(i) If w′ accesses the node v in G then after executing this assignment, both w and w′ access v in G′. In
symbols, [w]G′ = [w′]G′ . This is achieved by modifying a single pointer in G.

(ii) We add a new node v to G to form G′, and w now accesses v. Furthermore, each pointer from v points
back to itself.

(iii) If [w′]G = [w]G then we branch to the Lth statement; otherwise we execute the next instruction in the
normal fashion. The ∆-graph is unchanged, G = G′.

(iv) The machine can go to the Lth or the L′th instruction. This corresponds to computational choice.

(v) The machine halts with the output [w]. In case we view the machine as an acceptor, a simple convention
is that it accepts iff [w] = [ǫ].

Input and output conventions. Here is a suggested convention. Suppose we want a PM to compute a
transformation t : {0, 1}∗ → {0, 1}∗. We specify three special colors α, β, ν ∈ ∆. For any string w ∈ ∆∗, we
say that the node [w] represent a 1 or a 0 bit, depending on whether [wβ] = [ǫ] or not. Thus, β is interpreted
as tbe “bit color”. To represent a binary string, we represent a sequence of nodes using ν-pointers as follows.
Define the node list

L(w) := ([wν], [wν2], [wν3], . . . , [wνm])

where each node in this list is distinct from [ǫ], but [wνm+1] = [ǫ]. We allow L(w) to be the infinite list in
case [wνi] 6= [ǫ] for all i ≥ 0. Thus, the ν-pointers is the “next node indicator”. We can then interprete
L(w) as a binary string using the bit indicators. Finally, the input to our PM is simply the binary string
represented by L(α), and the output of the PM is given L(w) when we encounter the instruction HALT (w).
These conventions can be generalized when we need several input strings, L(α), L(α2), etc. If we need strings
over a larger alphabet Σ, we simply re-interpret the β-pointer as follows: the node [wβ] is viewed as the
symbol contained in [w]. Since [wβ] can be an arbitrary node in G, we may want to restrict it to some finite
set Σ = {[σ], [σ2], . . . , [σn]} where σ ∈ ∆ is yet another special color, and [σn+1] = [ǫ]. In this way, the list
L(w) represents an arbitrary string in Σ∗.

Just as the Turing model, Point machines are capable of many interesting variations. First of all, we should
probably expand the repetoire of instructions in non-essential ways (e.g., allowing the ability to branch on
a general Boolean combination of equality tests). But non-trivial extensions include allowing each node to
store an arbitrary integer, and providing basic arithmetic or bitwise operations on a single instruction.

(iii) Random access machines (RAM). This is perhaps the closest model to real world computers. Again, each
computing agent here consists of a finite set of instructions executed under a finite state control. The difference
here is the use of registers to store an arbitrarily large integer. The contents of registers can be tested for
zero, compared to each other, have arithmetic operations performed on them, all in one step. Registers have
unique integer addresses, and registers are accessed in instructions by (i) specifying its address explicitly in
the instruction or (ii) indirectly by specifying the address of a register which contains its address.

The reader will appreciate our earlier remark that a computational model is usually characterized by its data
structures: Turing machines have fixed topology data structures (called tapes) where each location stores a finite
symbol. The data structures in pointer machines have variable topology while random access machines have
fixed topology but non-atomic memory locations. Wagner and Strong is an early effort to characterize abstract
computational models,

Exercises

Exercise 0.1: Let M be a pointer machine that accepts a language L0 = L(M). Show that there is another
pointer machine N with only two colors that accept L0. ♦

End Exercises
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2.6 Modes of Computation: Choice and Parallelism

Despite the multiplicity of computational forms, it is possible to isolate a small number of equivalence classes
among them: each equivalence class corresponds to basic and intuitive concepts of computation. We identify each
equivalence class with a particular mode of computation.23 As we shall see, within each equivalence class, we can
formulate a version of Church’s Thesis.

We distinguish two dimensions of modes. In the first dimension, the computation is either deterministic or
it may have choice. In the second dimension, the computation is either sequential or parallel. So the four basic
classifications of modes are: deterministic-sequential, deterministic-parallel, choice-sequential and choice-parallel.
We can have varying degrees of choice (resp. parallelism), with determinism (resp. sequentialism) being the limiting
case of no choice (resp. no parallelism). Therefore, in the above four classes of modes, only the deterministic-
sequential mode is uniquely determined: the other three classifications can be further refined. We next indicate
characteristics of such modes.

2.6.1 The Fundamental Mode of Computation

The prototypical computation is in the deterministic-sequential mode. Indeed, this mode is usually the only one
recognized in theory of computability; of course, the other modes turn out to be no more general in the sense of
Church’s Thesis. We shall therefore call this the fundamental mode of computation. A computation (by a machine
M) operating in this mode has the following typical features:

(a) There is a bounded number of internal states, of which one is designated the ‘current state’.

(b) There is a finite but unbounded number of memory locations (chosen from an infinite reserve) that are used
at any moment. By this we mean that each location at any moment contains a symbol from an alphabet Σ
and a location is considered unused if the symbol it contains is a certain pre-designated ‘blank’ symbol. Each
location has a bounded number of other locations which are its ‘neighbors’.

(c) A bounded number of the memory locations are ‘scanned’ at any instant.

(d) At each time moment, a unique instruction (which only depends on the symbols scanned in (c) and the current
internal state of (a)) is executed. The instruction can change the contents of the scanned locations, the
current state, and the set of scanned locations. The new set of scanned locations must be neighbors of the
previously scanned ones.

(e) There are fixed conventions for starting, halting, error handling, inputs, and outputs.

It is interesting to compare (a)-(e) with the well-known characterization given in chapter 1 of Rogers [28]. The
reader is encouraged to identify our abstract description with the execution of a program on a real computer – most
of the above can have a reasonable interpretation (the assumption of an unbounded number of memory locations in
(b) is most problematic in this comparison). All the ‘bounded numbers’ in (a)-(c) are bounded by constants that
solely depend on M . At each instant, the instantaneous description (ID) of M consists of the current state, the set of
scanned locations and the contents of all the used memory locations. Thus we can regard the instructions described
in (d) as transforming ID’s. If I and I ′ are ID’s such that I is transformed in one step to I ′, we write I ⊢ I ′, and
say I directly derives I ′. The characterization of M above is deterministic because once the computation is started,
the succession of ID’s is uniquely determined. The sequence of ID’s (possibly infinite) is called a computation path.
M is sequential because at each time unit, the contents of only a bounded number of locations can be scanned and
modified.

Assumption. We have tacitly assumed time and space are discrete above. More generally, all resources are
discrete. When we discuss non-fundamental modes with more than one computing agent, we will further assume
time is synchronized or global. This is assumed throughout this book.

To facilitate discussion of the next mode of computation, we elaborate on (e) somewhat. Let us assume that
M is a machine for recognizing its inputs. There are two designated internal states designated as rejecting and
accepting. The computation stops iff the machine reaches either of these states. If π is any computation path
we define the predicate ACCEPT0(π) to equal 1 if π is finite and the last ID in π contains the accepting state.
Otherwise ACCEPT0(π) = 0. Then M is said to accept an input x if ACCEPT0(π) = 1, where π is the computation
path of M on input x.

23Our notion of modes is partly inspired by the ‘computational types’ by Hong Jia-wei. The latter concept appears to be a mixture
of computational models and computational modes.
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2.6.2 Choice Modes

Let us now turn to computational modes that replace ‘determinism’ with ‘choice’. This involves replacing (d) above
and (e) above.

(d)* At each time unit, a set (which only depends on the symbol scanned and the current internal state) of next
instructions is ‘executable’. The machine can ‘choose’ to execute any one of these instructions. As in (d),
each instruction can change contents of locations, current state and set of scanned locations.

(e)* A suitable ‘choice aggregation’ function is used to determine the output, as illustrated next.

For simplicity, assume that there is only a choice of two next instructions to execute. On input x, we now have
a binary computation tree T = T (x) whose nodes are ID’s defined as follows. The root of T is the initial ID (this
is a function of x and M ). If I is a node of T , and I1 and I2 are the ID’s which result from I by executing the
two executable instructions, then in T the node I has I1 and I2 as its two children. A maximal path in T from the
root (terminating in a leaf if the path is finite) corresponds to a computation path.

We want to define the analogue of the ACCEPT0 function above, and it should be a function of the computation
tree T . We describe two main ways to do this. In the first way, we define the predicate ACCEPT1 by

ACCEPT1(T ) = 1 iff there is a path π in T such that ACCEPT0(π) = 1.

The choice mode machine M which accepts its input x iff ACCEPT1(T (x)) = 1 is said to compute in the existential-
sequential mode (or more commonly known as the nondeterministic mode).

Another way to define acceptance is to assign probabilities to each node in T . Each node I at level k has
probability Pr(I) = 2−k, and in particular the root has probability 1. We define the predicate ACCEPT2 by

ACCEPT2(T ) = 1 iff
∑

I

Pr(I) > 1/2,

where I ranges over those leaf nodes in T with the ‘accept’ state. The choice mode machine M which accepts its
input x iff ACCEPT2(T (x)) = 1 is said to compute in the probabilistic-sequential mode (or more commonly known
as the probabilistic mode). We shall see other choice modes in the book.

The existential mode of computation may appear strange at first. Yet it turns out to be an accurate model of the
notion of a formal axiomatic system. With suitable conventions, a nondeterministic machine M corresponds exactly
to a formal axiomatic system S: the machine M accepts an input x iff x encodes a theorem of S. The reader familiar
with grammars in formal language theory will also be able to make connections with nondeterminism. Perhaps the
main reason for the importance of the existential-sequential mode is its use in defining a class of problems denoted
NP , which has great empirical importance. We shall study NP in chapter 3.

2.6.3 Parallel Modes

Now we consider the deterministic-parallel modes. Such modes have begun to assume increasing importance with
the advent of mass-produced very large scale integrated (VLSI) circuits as well as the rapidly maturing technology
of multiprocessor computers. In parallel computation, we will call the entire set of machines which can execute
in parallel the ensemble. We shall always assume that the ensemble works synchronously.24 Each computational
model described in the previous section (Turing machines, pointer machines, random access machines) amounts to
specifying individual computing units – this is true in general. Hence to describe ensembles, we need to specify
how these units are put together. This comes from four additional design parameters:

(f) (Computing Units) The ensemble is made up of an infinite number of computing units, each operating in
the fundamental mode (a)-(e). These units may be finite in nature (e.g. finite state automata) or infinite
(e.g. general Turing machines).

(g) (Topology) The units have a connectivity (or neighborhood) structure which may be represented by a graph
of bounded degree. The graph may be directed or undirected. Units can only communicate with their
neighbors. The connectivity may be variable or fixed depending on the model.

24The study of asynchronous or distributed ensembles in discrete computations is an emerging subject that seems to give rise to a
rather different theory. The emphasis there is the complexity of communication (message passing) between independent agents in the
ensemble.
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(h) (Sharing and Communication) Each pair of machines which share an edge in the connectivity graph has
access to a common bounded set of memory locations: simultaneous reads of this shared memory are allowed,
but write conflicts cause the ensemble to halt in error. Note that this shared memory is distinct from the
infinite local memory which individual machines have by virtue of (b).

(i) (Activation, Input and Output) There is a designated ‘input unit’ and another ‘output unit’. Input and
output conventions are relative to these two units. These two units are not necessarily distinct. Every unit
is either ‘active’ or ‘inactive’ (quiescent). Initially, all but the input unit is inactive. An active machine can
activate its quiescent neighbors. Thus at any moment, a finite but unbounded number of machines are active.
The ensemble halts when the output unit enters certain special states (accept or reject).

It is easy to suggest further variations of each of the aspects (f)-(i) above; the literature contains many examples.
For instance, unlike the suggestion in (f), not all the individual machines need to be identical. Or again, the sharing
need not be local as suggested by (h) if we postulate a global memory accessible by all machines. This is sometimes
called the ultra-computer model, a term popularized by Jack Schwartz. Another very important practical issue
arising from shared memory is the resolution of reading and writing conflicts. Instead of our stringent condition on
disallowing writing conflicts in (h), there are three more liberal approaches:

We may allow simultaneous writing to a location provided all processors write the same value, or we may have

no restrictions on simultaneous writes but say that some arbitrarily chosen processor is successful in writing, or

we may say that the smallest numbered processor will be successful.

Another extreme case of (h) is where the machines may have almost no common memory except for a flag associated
with each channel or port. The channel or port of a machine may be specific (connected to a particular machine)
or non-specific (any machine may try to communicate through that port).

In view of the large number of variations in parallel models, it is all the more surprising that anything significant
or unifying can be said about computations in this mode. It is evidence that we are correct in designating essentially
one computational mode to all these.

The literature sometimes regards choice modes as ‘parallel’ modes, since we can think of the various choices of
executable instructions as being simultaneously executed by distinct copies of the original machine (reminiscent of
‘fork’ in UNIXTM ). We do not use “parallel” in this sense. In true parallelism (unlike choice) processes are able
to communicate during their simultaneous computations.25 Consequently, the aspects (f)-(i) of parallel machines
are irrelevant for the choice-sequential mode. More importantly, choice computation is not to be confused with
parallelism because acceptance by choice computation is done post-computation (by a fixed evaluation mechanism
that is independent of the machine).

The final class of modes, choice-parallel ones, can easily be conceived after the preceding development. For
instance, if there are m active computing units at some moment in a choice-parallel computation, each unit having
a branching factor of 2, then the entire ensemble has a branching factor of 2m. We shall not elaborate on this mode
of computation.

In conclusion, we see that the computer scientists’ answer to the fundamental question (1) of section 5 is quite
different from the one the logicians obtained. This is captured in the notion of computational modes. We next
turn to the computer scientists’ view of question (2) in section 5.

Exercises

Exercise 2.6.3.2: Construct a pointer machine PM that adds two dyadic numbers.
(i) Describe the dyadic algorithm for addition. Is it simpler or more complex than binary addition?
(ii) We need some I/O conventions for pointer machines (PM’s). Let ∆ be the alphabet for the PM, and
G be the computation graph of the PM. If w ∈ ∆∗, let [w]G denote the node in G represented by w. For
instance, the empty string ǫ represents the center [ǫ]. Assume a special symbol β ∈ ∆ that denotes the bit
value of any node w ∈ ∆∗ in the following sense: if [w.β] = [ǫ], then we say that the node [w] stores the 1
bit, else it stores tbe 0 bit. How do we represent a list of nodes? Assume a special “next symbol” ν ∈ ∆ such
that [w.ν] represents the next node after [w], provided [w, ν] 6= [ǫ]; otherwise we say there is no next node.
Define the list headed by w to be the sequence

L(w) := ([w], [wν], [wν2 ], . . . , [wνn−1]),

25The reader will appreciate this distinction if she attempts to show ‘in an obvious manner’ that the class NP (to be defined in
chapter 2) is closed under complementation and faces up to the inability for different branches of a nondeterministic computation to
communicate.
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terminated by the first n such that [wνn] = [ǫ]. The list L(w) may be infinite (in the case of a loop). The
binary string represented by w is simply the sequence of bit string stored in L(w). Input are indicated by
two linear lists L(α) and L(α2), where α ∈ ∆ is a special “input symbol”. When the computation ends, we
want the output string to stored in the list L(α3).

Exercise 2.6.3.3: Describe a parallel model of Turing machines, and also a parallel model of pointer machines.
Then prove a simulation theorem, showing that each model can simulate the other model within polynomial
parallel time.

End Exercises

2.7 Tractability and some Computational Theses

It has been observed in the computing milieu that many problems such as the Perfect Matching Problem in graph
theory have polynomial time algorithms (even though the initial mathematical characterization of ‘perfect match-
ings’ only suggested exponential algorithms). In contrast, certain computational problems such as the Traveling
Salesman Problem (TSP) defy persistent attempts to design efficient algorithms for them. All known algorithms
and suggested improvements for these algorithms still have, in the worst case, super-polynomial26 running time.
Typically, this means an exponential running time such as 2n. The obvious question is whether a problem such as
TSP is intrinsically super-polynomial. The gap between an exponentially growing function (say) 2n and a polyno-
mial function (say) n2 is quite staggering: on a computer executing 106 instructions per second, an input of size 200
would require 2200 (resp., 2002) steps or more than 1046 years (resp., less than a second) of CPU time. Of course,
the difference increases dramatically with increasing n. This unbridgeable gap between polynomial functions and
exponential functions translates into a clear distinction between problems with polynomial complexity and those
with super-polynomial complexity. Super-polynomial problems are ‘practically uncomputable’ (except for small
values of n) even though they may be computable in the sense of computability theory.27 The phenomenon ap-
pears very fundamental and researchers have coined the term ‘infeasible’ or ‘intractable’ to describe these difficult
problems:

(H) A problem is tractable if it has polynomial complexity; otherwise the problem is intractable.

Cobham [5] and Edmonds[8] were among the first harbingers of the tractable-intractable dichotomy.28 Let us
note an obvious criticism of (H). While we may agree that super-polynomial problems are intractable, we may not
want to admit all polynomial problems as tractable: a problem with complexity of n37 hardly deserves to be called
tractable! In practice, we seldom encounter such high degree polynomials. On the other hand, it is difficult to
decide on theoretical grounds when polynomials become intractable, and hence (H).

Note that (H) is really a general principle in the sense that we have not restricted it to any particular model,
mode of computation or computational resource. For instance, if we consider the Turing model operating in the
deterministic mode, and use space as our resource, then this principle tells us that the tractable problems are what
is normally called PSPACE . (If we operate in the nondeterministic mode, a well-known result of Savitch which we
will encounter in chapter 2 says that precisely the same class of problems are tractable.) One reason why (H) is
attractive is that it is a very robust concept: tractability is easily seen to be invariant under minor modifications of
the computational models. A far-reaching generalization of this observation is the tractability thesis below which
basically says that the concept is robust enough to withstand comparisons across totally different computational
models, provided we compare these models using the same computational mode and using corresponding resources.
There is a problem with the last assertion: what do we mean by ‘corresponding resources’? For this to be non-
vacuous, we must be sure that there are certain computational resources which are common to every conceivable
model of computation. In the actual models that have been studied in the literature, this is not problematic. In
any case, we postulate three fundamental resources in every computational model:

26A complexity function f is super-polynomial if f(n) is not O(nk) for any fixed value of k. A complexity function f is said to be (at
most) exponential if f(n) = O(1)n, double exponential if f(n) = 2O(1)n

, etc.
27This remark must be balanced against the fact that very often, naturally occurring instances of an intractable problem can be

solved by efficient special methods.
28Edmonds called an algorithm ‘good’ if it runs in polynomial time in the fundamental mode. In [9] he informally introduced the

class NP by describing such problems as having ‘good characterization’.
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(I) For every computational model in a given computational mode, there is a natural notion of time,
space and reversal resources.

Time and space have intuitive meaning; reversal on Turing machines is intuitively clear but it can be formulated
for all other models as well. For postulate (I) to be meaningful, there ought to be axioms that these measures
obey (otherwise, how do we know if ‘time’ on one model-mode is really to be equated with ‘time’ on another
model-mode?). For example, we expect that “space is at least as powerful as time”. We said that the Boolean
circuit model29 does not naturally yield a notion of sequential mode. One possible approach is to use what is
known as a ‘straight-line program’ representation of a circuit (that is, we list the gates in a linear sequence, where
each gate must have its inputs coming from earlier gates or from the external inputs). Then (sequential) time is
simply the length of this straight-line program. More generally, Hong has suggested that sequential time is simply
the total number of individual actions that take place inside a computation (although the circuit example blurs the
distinction between the computing device and the computation itself). We leave such issues as matters of further
research. In any case, when we say ‘resources’ below, they could refer to composite resources such as simultaneous
time and space.

We are now ready to assert what may be called the “polynomial analogue of Church’s Thesis”.

(J) (Tractability Thesis) For each computational mode and each computational resource, the notion
of tractability is invariant over all models of computation.

For comparison, we also formulate a version of Church’s Thesis here.30

(K) (Church’s Thesis) The notion of computability is invariant over all models of computation.

When restricted to the time resource in the fundamental mode, thesis (J) is sometimes called Cobham’s thesis
after Cobham who made the first observations about its invariance properties. Although the thesis (J) has not
been tested in its full generality (especially, in some of the newer modes), it is useful as a working hypothesis or as
a research program.

In all our theses, there is an implicit restriction to ‘reasonable’ models of computation. Or at least, we intend
to call a model ‘unreasonable’ if it violates such principles. Thus we might appeal to the tractability theses to
reject certain models of computations as unreasonable. For instance, it is clear that if we severely restrict our
computational model we could violate (J). Likewise, it is not hard to imagine a model too powerful to respect the
tractability thesis. This is not surprising, but simply points out that our theses need a priori conceptual analysis
in order to establish them firmly. Subject to this qualification, and provided that we accept (H) and (I), we see
that (J) has mathematical content in the sense that we may verify it for each proposed model of computation. On
the other hand, (J) is not a mathematical theorem, and (as Emil Post remarked, concerning Church’s thesis) “it
requires continual verification”. In summary, we say that the thesis serves both a normative as well as descriptive
function.31

Thesis (J) is the consequence of another more general polynomial smearing phenomenon that says, with respect
to a fixed resource, all reasonable computational models computing in a fixed mode are equally powerful up to a
polynomial factor. More precisely: say that a computational model M polynomially simulates another model M ′ in
resource R if for every machine A′ in M ′ which uses f(n) units of resource R, there is a machine A in M which uses
O((f(n))k) units of R and which solves the same problem as A′. The constant k here may depend on A′, although
we find that in all known models, k may be uniformly chosen (e.g. k = 2). We say M and M ′ are polynomially
equivalent in resource R if they polynomially simulate each other.

(L) (Polynomial Simulation Thesis) Within each computational mode, and with respect to a given
computation resource, all models of computation are polynomially equivalent.

Clearly (H) and (L) imply (J). Hong[17] has provided strong evidence for this thesis (his so-called ‘similarity
theorems’). We now state two conjectures and one more thesis. These relate across computational modes and
resources:

29suitably made ‘uniform’, see chapter 10.
30As Albert Meyer points out to us, it is possible to interpret Church’s thesis in a much wider philosophical sense. See (for example)

[16] for such discussions. The mathematical content of this wider thesis is unclear and our formulation here is, for our purposes, the
generally accepted mathematical interpretation of the thesis.

31The same can be said of Church’s thesis – we would use its normative role to dismiss someone who insists that finite automata be
admitted as general computing devices. Taking Lakatos’ critique of mathematical truth as a clue, we might modify Post’s position and
say that these theses require continual refinement.



2.8. WHAT IS COMPLEXITY THEORY? 23

(M) (The P 6= NP Conjecture) With respect to time measure, tractability in the fundamental mode
and tractability in the nondeterministic mode are different.

(N) (Parallel Computation Thesis) Time measure in the deterministic-parallel mode is polynomially
related to space measure in the fundamental mode.

(O) (Duality Conjecture) The resources of Space and Reversal are duals (see text below) of each other
when the simultaneous bounds on space and reversals are polynomially related.

Conjecture (M) is perhaps the most famous open problem in the subject, and we shall return to it in chapter
three. Thesis (N) (proposed by Pratt and Stockmeyer [25] and Goldschlager [11]) equates the tractable problems
in the deterministic-parallel mode under time resource bounds with the tractable problems for the fundamental
mode under space resource bounds. See also [24]. The duality conjecture was formulated by Jia-Wei Hong. It is
more technical and involves simultaneously bounding the space and reversal resources. Roughly, it says that if a
complexity class is defined by Turing machines bounded by O(f) space and O(g) reversal simultaneously then the
same class is described by O(f) reversal and O(g) space simultaneous bounds.

In this book we shall provide evidence for the above theses. We note the tremendous unifying power of (H)-(O):
First, (H) gives us a ‘world-view’ by pointing out a fundamental distinction (just as the computable-uncomputable
distinction in computability theory); this in turn guides the basic directions of research. Second, these theses lead
us to the general principle (or metathesis):

The truly fundamental phenomena of Complexity Theory are invariant across computational models.

Third, the theses (M), (N) and (O) suggest that the concepts of modes and resources are not arbitrary. Rather,
their interrelation reflects an internal structure of the concept of computation that awaits discovery. This could be
the most exciting direction in the next stage of Complexity Theory. It is fair to add that the mode-resource-model
structure we have imposed on the corpus of the known complexity substratum may not bear careful scrutiny, or at
least requires new clarifications, especially as new computational concepts proliferate.32

Exercises

Exercise 2.7.0.4: Verify the Polynomial Simulation Thesis (L), for Turing machines and Pointer machines. We
want to verify the following cases, depending on the mode µ and resource ρ: we want you to verify:
(i) (µ, ρ) = (Fundamental Mode, Time). More precisely, DTIME (nO(1)) = DTIMEPM (nO(1)). The latter
class is the class of languages accepted by PM’s in deterministic polynomial time.
(ii) (µ, ρ) = (Nondeterministic Mode, Space). That is NSPACE(nO(1)) = NSPACEPM (nO(1)).
(iii) (µ, ρ)= (Fundamental Mode, Reversal). That is DREVERSAL(nO(1)) = DREVERSALPM (nO(1)).

Exercise 2.7.0.5:

End Exercises

2.8 What is Complexity Theory?

We have given an impressionistic tour of Complexity theory in this chapter and outlined some of the methodological
framework. This framework is plausible but not necessarily convincing. In any case, we sometimes refer to these
assumptions (if only to hint at alternative assumptions) as Standard Complexity Theory. We are ready to round
up with three perspectives of what the subject is about, plus a very brief historical perspective. By complexity
classes below we mean any set of languages. In practice, these classes are defined by some well-defined and general
mechanism which admits some concept of complexity.

a) The study of computational complexity is usually taken in a wider sense than that taken by this book. In
particular, it usually incorporates a very large and important literature on the analysis of algorithms and data-
structures. Complexity Theory there is sometimes called concrete complexity (dealing in ‘concrete’ as opposed
to ‘abstract’ problems). However, complexity in concrete complexity is often more a property of the particular
algorithm being analyzed, rather than a property of the problem that the algorithm solves. In contrast:

32Such proliferation seems as inevitable as in subatomic Physics. The challenge is to provide an adequate unified field theory of
complexity theory as the world of complexity unfolds. It is also useful to remember that although Newtonion Physics is superseded, it
is hardly extinct, thanks to its compact embodiment of non-extremal physical phenomena.
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Complexity Theory is concerned with the intrinsic complexity of problems.

Specifically, we are interested in classifying problems according to their intrinsic complexity.
Let us probe deeper this intuitive concept of intrinsic complexity. The notion turns out to be rather subtle: one

phenomenon that may arise is that there may be no fastest algorithm – for each algorithm there exists a faster one.
We will see examples of such ‘speed-up’ phenomena. If we consider two or more computational resources, there may
be inherent tradeoffs between the complexities with respect to these resources. In the face of these possibilities,
we can still attempt to classify the complexity of a problem P relative to a given hierarchy of complexity classes:
more precisely, if

K1 ⊆ K2 ⊆ K3 ⊆ · · · (8)

is an non-decreasing (not necessarily strict) sequence of complexity classes, we say that P is in the ith level of
this hierarchy if P ∈ Ki − Ki−1 (i = 1, 2, . . . and K0 = ∅). Note that this abstract method of classification is a
really profound departure from the original idea of comparing growth rates of complexity functions. The hierarchy
{K1, K2, . . .} that replaces complexity functions need not have any clear connection to complexity functions. Let
us call any hierarchy (8) used for this purpose a complexity ruler. Once we agree to classify problems relative
to complexity rulers, some very fruitful directions in complexity theory become possible. Such classifications are
studied in chapter 9.

One complexity ruler that is used commonly is the canonical ruler formed from the canonical list (see chapter
2, section 3), but omitting the class PLOG:

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE

⊆ DEXPTIME ⊆ NEXPTIME ⊆ EXPSPACE

One of the first things a complexity theorist does on encountering a computational problem is to find out where
it fits in this canonical ruler. Another ruler is this: a logarithmico-exponential function (for short, L-function)
f(x) is a real function that is defined for values x ≥ x0 (for some x0 depending on f) and is either the identity or
constant functions, or else obtained as a finite composition with the functions

A(x), log(x), ex

where A(x) denotes a real (branch of an)33 algebraical function. A classical result of Hardy[13] says that if f, g
are L-functions then either f = Θ(g), or f dominates g, or g dominates f . Hence the family R0 consisting of
the classes DTIME (Θ(f)) where f is an L-function forms a complexity ruler. (Of course, the ruler is doubly
infinite in both directions, dense and all that.) In practice, when complexity theorists discuss the time complexity
of concrete problems (like matching, multiplication, etc), they are implicitly using the ruler R0. For instance,
although multiplication has time complexity t(n) that satisfies the inequalities n ≤ t(n) = O(n log n log log n),
there may in fact be no single function f(n) ∈ R0 such that t(n) = Θ(f(n)); nevertheless it makes sense to talk
about the sharpest upper (or lower) bound on multiplication relative to the ruler R0.

Actually, the use of rulers to measure complexity can be further generalized by introducing the concept of
reducibility among languages (chapter 4). The inclusion relation can be replaced by the reducibility relation.

b) The discussion of encodings and models of computations leads us to conclude that our theory, necessarily
becomes quite distorted for problems with low-level complexity (say o(n2) time). On the other hand, the concept
of computational modes arises because we are also not very concerned with high-level complexity (otherwise they
all become equivalent by Church’s thesis (K)). In short:

Complexity Theory is concerned with medium-level complexity.

Here (if one has to be so precise) one may identify as medium-level those problems which are elementary or
primitive recursive.34 It is this concern for medium level complexity that makes the fundamental dichotomy (H)
a meaningful one. Indeed a central concern of the theory is to classify problems as tractable or otherwise (with
respect to any mode or resource). Our interest in medium level complexity partly justifies some of our assumptions.
For instance, even though assumption (B) captures recognition problems only, many functional or optimization
problems are polynomially equivalent to suitable recognition problems (chapter 3, section 2); studying complexity
up to polynomial equivalence seems justifiable for medium level complexity.

c) Finally, we contend that

33For instance, the polynomial p(x) = x2 defines two branches corresponding to the positive and negative square-root functions.
Generally speaking, a polynomial p(x) of degree d defines d functions corresponding to the d roots of p(x) as x varies. These functions
are called ‘branches’ of p(x).

34‘Elementary recursive’ and ‘primitive recursive’ are technical terms in recursive function theory. Section 6 of chapter 5 has a
definition of elementary recursiveness.
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Complexity Theory is essentially a theory of classes of problems

as opposed to a theory of individual problems. No doubt, the complexity of certain important problems (graph
isomorphism, multiplication, primality testing, etc) in particular models of computation has abiding interest. But
the exact complexity of an individual problem is to some degree an artifact of the details of the computational
model. It is only when we examine an entire class of (suitably chosen) problems that we manage to have truly
invariant properties. Moreover, even when we study the complexities of individual problems, we usually aim at
placing the problem in a well-known complexity class or in some level of a hierarchy. Another case we may adduce
to support our claim is the existence of the tractability thesis: the class of interest there are those problems with
polynomial complexity. Other examples can be provided (see also the Preface). Indeed, we regard this emphasis on
complexity classes as the chief distinguishing mark of the Complexity Theory represented by this book, and hence
the book title.

d) The preceding three perspectives on Complexity Theory are from an intrinsic or genetic standpoint. A
historical perspective would also be greatly rewarding especially for the student of the history and philosophy of
science. Unfortunately, only a few remarks can be offered here. The theory of computational complexity (which
we shorten to Complexity Theory in this book) took its name from the seminal paper of Hartmanis and Stearns
[15] in 1965. The earlier papers of Rabin [27] and Blum [2] are generally counted among the most influential works
associated with the founding of this subject. We refer the interested reader to the volume [6] for further references
as well as personal accounts from that seminal period. The work of Cook and Karp in the early 1970s profoundly
changed the field by raising certain important questions; these questions though still open, play a paradigmic role
that has influenced directly or indirectly much of subsequent research programs.

Exercises

[2.1] Let R(x) be a partial real predicate, and D ⊆ R. Show the following
(i) ¬(∀x ∈ D)[R(x)] iff (∃x ∈ D)[¬R(x)].
(ii) ¬(∃x ∈ D)[R(x)] iff (∀x ∈ D)[¬R(x)].
(iii) ¬(EVx ∈ D)[R(x)] iff (IOx ∈ D)[¬R(x)].
(iv) ¬(IOx ∈ D)[R(x)] iff (EVx ∈ D)[¬R(x)].

[2.2] Verify the assertion in the text: g 6= o(f) means that there is some c > 0 such that for infinitely many n,
g(n) ≥ cf(n).

[2.3] What is the distinction between f(n) = Ω(g(n)) and g(n) 6= O(f(n)), and between f(n) = ω(g(n)) and
g(n) 6= o(f(n))?

[2.4] (i) A useful notation is f(n) ∼ g(n), defined here to mean

f(n) = (1 ± o(1))g(n).

Show that if f(n) ∼ g(n) then g(n) ∼ f(n).
(ii) Suppose x2x = n holds for all n. We want to solve for x = x(n). Show that x(n) = log n − log log n +
O( log log n

log n )

(iii) Conclude that log n − x(n) ∼ log log n.

[2.5] ** (i) Are there useful applications of mixed asymptotic expressions (big-Oh, big-omega, small-oh, etc)?
Does it make sense to say that the running time of a machine is Ω(nO(n))?
(ii) More generally, work out a calculus of these mixed notations.

[2.6] Extend the asymptotic notations to multi-parameter complexity functions.

[2.7] Let g(n) = exp exp(⌊log2 log2 n⌋)) where exp(m) = 2m. Clearly g(n) = Ω(nα) and g(n) = O(nβ) for some
constants α, β > 0. Give the values for α and β that are sharpest in the sense that for any ǫ > 0, both the
Ω- and the O-bound would not be true if α + ǫ and β − ǫ (respectively) were used.

[2.8] Show:
(i) Hn = Θ(log n) where Hn (the harmonic series) is defined as

∑n
i=1

1
i .

(ii)
∑log n

i=1 2i log
(

n
2i

)

= Θ(n). [Obtain the best constants you can in the upper and lower bounds on the
sums in (i) and (ii).]
(iii) (x + a) log(x + b) = x log x + a logx + b + o(1).
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[2.9] Describe an O(n2) algorithm for converting k-ary numbers to k′-ary numbers for k, k′ > 1. Can you do
better than O(n2)? Hint: Regard the k-ary number anan−1 · · · a0 (ai = 0, . . . , k − 1) as the polynomial
p(x) =

∑n
i=0 aix

i and evaluate p(x) at x = k in k′-ary notation.

[2.10] Demonstrate the inequalities (2-4) in Sections 4.1, 4.2. Make explicit any reasonable assumptions about
the computation model and complexity measure.

[2.11] Referring to section 4.2, show that for k > 1,

fk(n) = O(f1(Θ(kn))) + O(kn).

f1(n) = O(fk(Θ(log n))) + O(n log n).

What can you say about the relative growth rates of f1 and fk if fk is exponential?

[2.12] There are three possible responses to the following statements: True, False or Unknown. “Unknown”
reflects the uncertainty that only assume the results in chapter 2. If your answer is True or False, you must
give brief reasons in order to obtain full credit. For Unknown, discuss relevant results.
(a) T/F/P: NSPACE (n) ⊆ DTIME (O(1)n).
(b) T/F/P: NTIME (n) ⊆ DTIME (2n).
(c) T/F/P: NREVERSAL(n) ⊆ DREVERSAL(O(1)n).

[2.13]
(i) List differences and similarities between k-adic from k-ary notations for k ≥ 1.
(ii) Describe the dyadic addition algorithm.
(iii) Describe the dyadic multiplication algorithm.

[2.14] * Give a systematic treatment of the possible variations of parallel mode of computation. Extend this to
the parallel-choice modes of computation.

[2.15] Verify that multiplication is indeed linear time under the suggested prime number encoding of numbers
in Section 4.2. What is the complexity of addition?

[2.16] Recall the recognition problem in Section 2 for triples (x, y, z) of binary numbers such that xy = z. We
modify this so that the relation is now xy ≥ z. Show that the ordinary multiplication problem can be
reduced to this one. If this recognition problem can be solved in T (n) time on inputs of length n, give an
upper bound for the multiplication problem.

[2.17] Construct a pointer machine to add two numbers. Assume that numbers are encoded in binary, using
input/output conventions described in the text.

[2.18] Let M be a deterministic Turing machine that accepts in time-space (t, s). Show how a pointer machine
can simulate M in O(t, s) time and space.

[2.19] Let P be a deterministic Pointer machine that accepts in time-space (t, s). Fix a convention for input, and
assume that P cannot change this input, to make it compatible with our convention for Turing machines.
Show how a Turing machine can simulate M in O(t log s, s log s) time and space.

[2.20] Verify the Polynomial Simulation Thesis (J) for Pointer Machines and Turing Machines. In other words,
for each mode µ and resource ρ, show that the class of languages accepted by µ-Turing machines using
a polynomial amount of ρ is the same as the class of languages accepted by µ-Pointer machines using a
polynomial amount of ρ. Specifically, consider
(i) DTIME (nO(1)) = DTIMEPM (nO(1)), where the subscript “PM” refers to Pointer machines.
(ii) NSPACE (nO(1)) = NSPACEPM (nO(1)).
(iii) DREVERSAL(nO(1)) = DREVERSALPM(nO(1)). In this case, you need to define the reversals
resource for Pointer machines. Here is an outline. Let a configuration of a PM be a pair (i, G) where i is
the label of the PM instruction that is about to be executed, and G is the ∆-structure for the PM. We
define a computation sequence C0 ⊢ C1 ⊢ · · · ⊢ Cm in the expected way. Again, computation sequence is
called a “phase” if each of its transitions Ci ⊢ Ci+1 does not depend on on the outcome of actions in the
same phase. The reversals of a computation sequence is the minimum number of phases that it can be
subdivided into.
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[2.21] ** Axiomatize or give abstract characterizations of the computational models in the literature. Some work
in the past have done precisely this for some models. Describe the various computational modes for in
each of these models. With our new distinction between modes and models, this task requires new care.

[2.22] ** Give proper foundations for the computational theses outlined in section 7. This presumes a suitable
solution of the preceding question.

[2.23] * There are many ways to represent a real algebraic number α (i.e. α is a root of some polynomial p(x)
with integer coefficients). (i) We can exploit the fact that real numbers are ordered and represent α as
〈p(x), i〉 if α the ith real root of p(x). (ii) We can isolate the root of interest by an interval, so use the
representaion 〈p(x), I〉 where I is an interval with rational endpoints containing α but no other roots of
p(x). (iii) We can exploit Thom’s lemma that asserts that if we assign a sign σ(Di(p)) ∈ {−1, 0, +1}) to the
ith derivative Di(p) of p(x) for each i ≥ 0 then the set of real numbers a such Di(p)(a) has sign σ(Di(p))
forms an interval (possibly empty) of the real line. In particular, if we choose σ(D0(p)) = σ(p) = 0 then
either the set of such a is empty or else we have identified a unique root. Hence α can be represented by
〈p(x), σ〉 for a suitable σ. Compare the three representations using criteria (D).

[2.24] * Consider the problem of representing multivariate polynomials whose coefficients are integers. What
are the various methods of encoding? Discuss the consequences of these on the complexity of various
algorithms on polynomials (a) GCD, (b) factorization. In this connection, the reader is referred to the
work of Erich Kaltofen on the straight-line program representation of polynomials (e.g., [20]).

[2.25] ** Investigate the theory of computational problems (see footnote 1). In this regard, compare the ‘theory
of first order problems’ for linear orderings in [36] (which is taken from [37]).

[2.26] ** Show that some mathematical domains D (such as unlabeled graphs) have an inherently high ‘rep-
resentaional complexity’ in the sense that fore any representation r : Σ∗ → D, either the r-parsing or
r-isomorphism problem is complex (compare the next exercise).

[2.27] ** Investigate the effects of encodings on complexity. On a methodological level, we could say that the
issue of encodings is outside Complexity Theory, that Complexity Theory begins only after a problem is
suitably encoded. E.g., Megiddo [22] points out that the the known polynomial time algorithms for the
linear programming problem (originally shown by Khacian) assumes a certain encoding for the problem.
Yet it may be possible to bring this encoding into our theory if we resort to meta-mathematical tools.
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Appendix A

Basic Vocabulary

NOTE: THIS HAS BEEN MOVED TO CHAPTER 0!!! REMOVE THIS SECTION.
This appendix establishes some general terminology and notation used throughout the book.
We assume the usual set theoretic notations. We write S ⊆ S′ for set inclusion, and S ⊂ S′ for proper set

inclusion. We let |S| denote the cardinality of a set S.
Instead of the equality sign, we use ‘:=’ to indicate a definitional equality. For example, we write ‘S := . . .’ if

‘. . . ’ serves as a definition of the set S.
Let D, R be sets. By a partial function f with domain D and range R we mean a rule that associates certain

elements x of D with an element f(x) ∈ R. So D and R are assumed to be specified when f is given. The function
is said to be undefined at x if the rule does not associate x to any element of R, and we denote this by f(x) =↑;
otherwise, we say f is defined at x and write f(x) =↓. If f is defined at all elements of its domain, we say f is
total. Composition of functions is denoted f ◦ g where (f ◦ g)(x) := f(g(x)).

The set of integers and the set of real numbers are denoted Z and R, respectively. The set of extended reals
refers to R∪ {∞}. The set N of natural numbers refers to the non-negative integers, N = {0, 1, 2, . . .}. The floor
function takes any real number x to the largest integer ⌊x⌋ no larger than x. The ceiling function takes any real
number x to the smallest integer ⌈x⌉ no smaller than x. So ⌊0.5⌋ = 0 = ⌈−0.9⌉.

An alphabet Σ is a non-empty finite set of markings. We call each element of Σ a letter or symbol. The set of
finite sequences of letters (called words or strings) over an alphabet Σ is denoted Σ∗. The empty word is denoted ǫ.
A language is a pair (Σ, L) where Σ is an alphabet and L is a subset of Σ∗. Usually, the alphabet Σ of a language
(Σ, L) is either understood or immaterial, and we shall loosely refer to L as the language. The language L is trivial
if L = Σ∗ or L = ∅ where ∅ denotes the empty set. The complement of L, denoted co-L, is the language (Σ, Σ∗−L).
Note that the complementation operation is an instance of a language operator whose proper definition requires
that the alphabet of the language be explicitly given. A collection K of languages is usually called a class. For any
class K, co-K is defined to be the class {co-L : L ∈ K}.

The concatenation of two words v and w is written v · w or simply vw. This notation extends naturally to sets
of words: if S and T are sets of words then S · T := {vw : v ∈ S, w ∈ T }. The length of a word w is denoted |w|.
The unique word in Σ∗ of length zero is denoted ǫ, and Σ+ is defined as Σ∗ − {ǫ}. (We may assume that the word
ǫ is common to all Σ∗.) For any non-negative integer n and word w, we let wn denote the n-fold self-concatenation
of w. More precisely, w0 := ǫ and for n ≥ 1, wn := w · wn−1.

A language operator ω is a partial d-ary function, d ≥ 0, taking a d-tuple (L1, . . . , Ld) of languages to a language
ω(L1, . . . , Ld). Here we assume that the Li have a common alphabet which is also the alphabet of ω(L1, . . . , Ld).
Some simple language operators are now introduced. Other important operators, to be introduced in the course of
this book, are usually defined using machines; this is in contrast with the following set-theoretic definitions.

Let (Σ, L), (Σ, L′) be languages. The complement of L, denoted co-L, is the language Σ∗ − L. The union,
intersection and difference of (Σ, L) and (Σ′, L′) are (resp.) the languages (Σ ∪ Σ′, L ∪ L′), (Σ ∪ Σ′, L ∩ L′) and
(Σ, L − L′). (The preceding are the Boolean operators.) The concatenation of L and L′, denoted L · L′, is the
language {ww′ : w ∈ L, w′ ∈ L′} over the alphabet Σ∪Σ′. For any non-negative integer n, we define the language
Ln inductively as follows: L0 consists of just the empty word. Ln+1 := Ln · L. The Kleene-star of L, denoted L∗,
is the language

⋃

n≥0 Ln. (Note that the Σ∗ and L∗ notations are compatible.) A related notation is L+ defined

to be L · L∗. The reverse of L, denoted LR, is {wR : w ∈ L} where wR denotes the reverse of w.
A language L is said to be finite (resp. co-finite) if |L| (resp. |co-L|) is finite.
Let Σ and Γ be alphabets. A substitution (from Σ to Γ) is a function h that assigns to each x ∈ Σ a subset

of Γ∗. h is naturally extended to a function (still denoted by) h that assigns to each word in Σ∗ a set of words
in Γ∗: h(a1a2 · · · an) := h(a1)h(a2) · · ·h(an). We say h is non-erasing if ǫ 6∈ h(x) for all x ∈ Σ. A homomorphism
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is a substitution h where each set h(x) has exactly one element (we may thus regard h(x) as an element of Γ∗).
A letter homomorphism is a homomorphism where h(x) is a word of length 1 for all x ∈ Σ (we may thus regard
h(x) as an element of Γ ). An isomorphism is a letter homomorphism such that h is a bijection from Σ to Γ . An
isomorphism is therefore only a ‘renaming’ of the alphabet.

For every substitution h from Σ to Γ, we may define the language operator (again denoted by h) that takes
a language (Σ, L) to the language (Γ, h(L)) where h(L) is the union of the sets h(w) over all w ∈ L. We also
define the inverse substitution operator h−1 that takes a language (Γ, L′) to (Σ, h−1(L′)) where h−1(L′) is the set
{w ∈ Σ∗ : h(w) ⊆ L′}.

A (language) class K is a collection of languages that is closed under isomorphism. We emphasized in Chapter
1 that complexity theory is primarily the study of language classes, not of individual languages. The classes which
interest us are usually defined using machines that use a limited amount of computing resources. In this case, we
call K a complexity class although this is only an informal distinction.

Operators are important tools for analyzing the structure of complexity classes. For instance, many important
questions are of the form “Are two complexity classes K and K ′ equal?”. If Ω is any set of operators, let

Ω(K) := {ω(L1, . . . , Ld) : Li ∈ K, ω is ad-ary operator in Ω}.

The closure of K under Ω is
Ω∗(K) :=

⋃

n≥0

Ωn(K)

where Ω0(K) := K and Ωn+1(K) := Ω(Ωn(K)). One possible approach to showing that K is not equal to K ′ is to
show that, for a suitable class of operators Ω, K is closed under Ω (i.e., Ω∗(K) = K) but K ′ is not. An important
simple case of Ω is where Ω consists of just the Boolean complement operator; here Ω(K) = {co-L : L ∈ K} is
simply written as co-K. A branch of formal language theory called AFL theory investigates closure questions of
this sort and certain complexity theory questions can be resolved with this approach.
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Chapter 2

The Turing Model: Basic Results

April 13, 2009

2.1 Introduction

We take the Turing model of computation as the canonical one in Complexity Theory. In this we are simply following
the usual practice but other more logical reasons can be given: the fundamental analysis by which Turing arrives at
his model is still one of the most cogent arguments in support of Church’s thesis.1 The simplicity of Turing’s basic
model is appealing. Despite the fact that Turing predated our computer age, there is a striking resemblance between
his machines and modern notions of computation. Henceforth, any new model that we introduce shall (perhaps
only implicitly) be compared with this canonical choice. Of course, Turing considered only the fundamental mode
of computation but we can naturally adapt it to the other computational modes. Furthermore, we find it convenient
to consider variants of the original Turing machine. Recall from chapter 1 that all these model-specific details turn
out to be unimportant for the major conclusions of our theory. It is somewhat paradoxical that some form of these
model-dependent details cannot be avoided in order to attain our model-independent conclusions.2

In this chapter we will study some basic complexity results in the Turing model. For the time being, we restrict
ourselves to the fundamental and the nondeterministic modes of computation. The central features of a Turing
machine, as we saw in Chapter 0, consist of a finite-state ‘black-box’ operating on one or more tapes where each
tape is divided into an infinite linear sequence of squares. Each square is capable of storing a single symbol (chosen
from a finite set depending on the particular machine). Each tape has a reading head scanning a square. Under
the control of the black-box, in one step the heads can change the contents of the square being scanned and can
move left or right to the adjacent squares. The following computational resources have been studied with respect
to Turing machines:

time, space, reversals, ink, tapes, symbols, states.

Time and space are intuitively clear, so we briefly explain the other resources. ‘Reversal’ is the number of times
some tape head changes directions. ‘Ink’ measures the number of times the machine has to write on a tape square
(a tape square may be rewritten many times). ‘Tapes’ (‘symbols, ’ ‘states, ’ respectively) are the number of tapes
(symbols, states, respectively) used in the definition of the machine. The latter three resources are called static
resources because they are a function of the machine description only. The others are dynamic resources since
the amount of (say) time or space used also depends on the particular computation. In Complexity Theory, we
primarily study dynamic resources. Time, space and reversals are considered basic and will be studied in this
chapter. Reversals (in contrast to time and space) may initially appear artificial as a measure of complexity. It is
a comparatively recent realization that reversal is an essential ingredient for gluing together space and time.

Reading Guide. This is a long chapter containing basic technical results about the Turing model. The reader
should be familiar with the vocabulary of formal language theory; the appendix in Chapter 0 may be referred
to. Sections 6, 7 and 8 form a group of results about efficient simulations that use time, space and reversals
(respectively). These techniques are fundamental and should be mastered. Sections 10 and 11 may be safely
omitted since later chapters do not rely on them.

1According to Martin Davis [10] Gödel did not believe in Church’s thesis until he heard of Turing’s results. Gödel’s skepticism arose
from his insistence on an á priori analysis of the concept of computation (which is what Turing provided). The article contains an
authoritative account of the origins of Church’s thesis.

2One is reminded of Sir Arthur Eddington’s elephants in Nature of the Physical World.
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2.2 Turing Machines

The multitape Turing machine is now introduced. Turing machines will be used in two capacities: to define
languages and to define functions over words.3In the former capacity, we call them acceptors and in the latter,
transducers. For now, we focus on acceptors.

We regard a Turing acceptor as having two parts: a transition table δ to define a set of machine instructions,
together with an acceptance rule to specify when a computation of accepts its input. The advantage of this
approach is that, just by specifying alternative acceptance rules, we obtain different choice modes. This separation
is also a recognition of the distinction between the Turing model of computation and computational modes (which
are basically model independent).

Informally, a multitape Turing acceptor may be viewed as a physical machine or system consisting of a finite
state automaton equipped with k+1 tapes for some k ≥ 0: an input tape (tape 0) and k work tapes (tapes 1, . . . , k).
Each tape consists of a doubly infinite sequence of cells (or tape squares) indexed by the integers. Each tape square
contains a symbol in Σ∞ . On tape i (i = 0, . . . , k), there is a head (head i) that scans some tape cell. The input
head refers to head 0 and the rest are called work heads. To begin a computation, we are given an input word
x = a1a2 · · · an on the input tape; initially every cell of the each tape contains the blank symbol except for cells
1, 2, . . . , n of the input tape containing the input string x. The head on each tape initially scans cell 1. Depending
on the current state and the k + 1 symbols scanned under the heads, the machine has certain instructions that
are executable. Executing one of these instructions results in a new state, in new symbols under each head, and
in the movement of each head at most one cell to the right or left of the current cell. The machine halts when it
has no executable instruction. By definition, the input head is restricted so that it may not change the contents of
its tape. In general, a tape with such a restriction is termed read-only. Figure 2.1 illustrates a multitape Turing
machine in state q and scanning b0 on the input tape.

..

.

...

. . .

. . . . . .

. . . . . .

tape k

b0

b1

bk

q

tape 0 (input)

tape 1

Figure 2.1: An off-line k-tape Turing machine.

The machine just described is also known as an off-line k-tape Turing machine. If we restrict the input head so
that it cannot move left, we obtain an on-line version. In general, a tape is called one-way if its head is constrained
to move in only one direction (and for emphasis, we call ordinary tapes two-way). (In the literature, off-line and
on-line machines are also called 2-way or 1-way machines, respectively.) Sometimes we have a k-tape (k ≥ 1)
Turing machine without an input tape; then the input is conventionally placed on one of the work-tapes; the special
case where k = 1 is the simple Turing machine of Chapter 0. In the rest of this book, we mainly use the off-line
multitape version (and simply call them ‘Turing machines’ without qualifications). The main reason for the use of
an input tape is so that we can discuss sublinear space complexity (otherwise, the space is at least linear just to
represent the input).

Remark: Many other variants of Turing machines have been studied: we may allow more than one head on
each tape, consider tapes that are multi-dimensional (the above tapes being one-dimensional), allow tapes that
have a binary tree structure, tape heads that can remember a fixed number of previously visited positions and can
‘reset’ to these positions in one step, etc. For reasons discussed in the previous chapter, these variations are not
inherently interesting unless they give rise to interesting new complexity classes.

Recall our Conventions (α) and (β) in Chapter 0 concerning the universal sets Σ∞ and Q∞ of symbols and
states. We assume these in our formalization of multitape Turing machines.
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Definition 1. Let k ≥ 0. A k-tape transition table δ is a finite subset of

Σk+1
∞ ×Q∞ × Σk

∞ ×Q∞ × {+1, 0,−1}k+1

Each (3k + 4)-tuple in δ may be written in the form of a transition rule

〈b0, b1, . . . , bk, q1 → c1, . . . , ck, q2, d0, . . . , dk〉 (1)

and represents a machine instruction which is interpreted as follows:

“if bi (for each i = 0, . . . , k) is the symbol being scanned on tape i and q1 is the current state, then change bj (for
each j = 1, . . . , k) to cj (leaving b0 unchanged), make q2 the next state, and the ith tape head (for i = 0, . . . , k)
should move left, stay in place or move right according as di = −1, 0 or +1”

To simplify proofs, it is convenient to make the following restrictions on transition tables:

(1) The input head never scans more than one blank cell past the input word in either direction.

(2) There are no state transitions from the accept or reject states qa, qr or into the initial state q0. (Recall that
qa, qr, q0 are distinguished states in Q∞.)

(3) The blank symbol ⊔ cannot be written on any of the work tapes (thus, after a blank cell is visited it turns
non-blank). Formally, this means that in (1), cj 6= ⊔ for each j.

A transition table satisfying the above restrictions is said to be in standard form. It is easy to make syntactic
restrictions on transition tables to ensure that they are in standard form. The restrictions on δ to obtain an on-line
machine is also simple.

The tape alphabet of δ is the set of symbols (excluding the blank symbol) that occur in some tuple of δ. The
input alphabet of δ is the set of symbols (excluding the blank) that occur as the first component of a tuple in δ (i.e.,
as b0 in (1)). Thus the input alphabet is a subset of the tape alphabet. The state set of δ is similarly defined.

A configuration of δ is a (2k + 3)-tuple

C = 〈q, w0, n0, w1, n1, . . . , wk, nk〉 = 〈q, wi, ni〉ki=0 (2)

where q is in the state set of δ, each wj(j = 1, . . . , k) is a word over the tape alphabet of δ, w0 is a word over the
input alphabet of δ, and 0 ≤ ni ≤ 1 + |wi|(i = 0, . . . , k). The string wi represents the non-blank portion of tape i.
The convention that blanks cannot be written ensures that the non-blank portion of each tape is contiguous. The
integer ni indicates that head i is scanning the nith symbol in wi. For a string x, let x[i] denote the ith symbol
in x if 1 ≤ i ≤ |x|. If i is outside the indicated range, then by definition, x[i] denotes the blank symbol. Thus if
wi is not the empty string ǫ then ni = 1 (respectively, 0) means the first (respectively, the blank prior to the first)
symbol of wi is scanned. The initial configuration on input x is defined to be

C0(x) = 〈q0, x, 1, ǫ, 1, . . . , ǫ, 1〉

where q0 is the start state.
Remarks: The integers ni are relative addresses of cells, namely, relative to the leftmost non-blank cell. Oc-

casionally we use instead the absolute addressing of cells, but there ought to be no confusion. In the literature,
configurations are also called instantaneous descriptions (ID’s).

We define the binary relation ⊢δ (or ⊢, if δ is understood) on configurations of δ. Informally, C ⊢δ C′ means
the configuration C′ is obtained by modifying C according to some instruction of δ. More precisely, suppose C is
given by (2) and δ contains the instruction given in (1). We say the instruction (1) is applicable to C if q = q1 and
wi[ni] = bi for each i = 0, . . . , k. Then applying (1) to C we get

C′ = 〈q′, w′
0, n

′
0, . . . , w

′
k, n′

k〉

where q′ = q2, n′
i = di + max{1, ni} (i = 0, . . . , k), 4 w′

0 = w0 and for j = 1, . . . , k:

w′
j =







cjwj if nj = 0
wjcj if nj = |wj |+ 1

ujcjvj if wj = ujbjvj , and|ujbj| = nj

4This unintuitive formula takes care of the case ni = 0 in which case n′

i = 1 even though di = 0.
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We write C ⊢δ C′ in this case; C′ is called a successor of C and the sequence C ⊢δ C′ is called a derivation
or transition or a step. Write C ⊢k

δ C′ if there is a k-step sequence C0 ⊢ C1 ⊢ · · · ⊢ Ck such that C = C0 and
C′ = Ck. Typically, we simply write “⊢” instead of ⊢δ when δ is understood from the context. If there is some
k ≥ 0 such that C ⊢k C′, then we simply write C ⊢∗ C′. Alternatively, ⊢∗ is the reflexive, transitive closure of the
binary relation ⊢ .

In general, several instruction (if any) of δ may be applicable to C. We say δ is deterministic if each configuration
C has at most one applicable instruction. Otherwise δ has choice. We say the Turing machine with a deterministic
δ operates in the deterministic mode, otherwise it operates in the choice mode.

A configuration is accepting if its state is the accept state qa. Similarly for rejecting if its state is the accept state
qr. It is terminal if it has no successor. For transition tables in standard form, accepting or rejecting configurations
are terminal. A computation sequence is either a finite sequence of configurations

C = (C0, C1, . . . , Cm) = (Ci)
m
i=0

or an infinite one
C = (C0, C1, C2, . . . ) = (Ci)i≥0

such that for each i ≥ 0, Ci ⊢ Ci+1. We call C a computation path if, in addition, C0 is an initial configuration
and, when the path is finite, Cm is terminal. We may denote C by

C = C0 ⊢ C1 ⊢ C2 ⊢ · · · ⊢ Cm

or
C = C0 ⊢ C1 ⊢ C2 ⊢ · · · .

We call C an accepting path on input x if it is a finite computation path with C0 = C0(x) and Cm is an accepting
configuration. Non-accepting computation paths come in two flavors: they either do not terminate or terminate
in non-accepting configurations. This distinction is sometimes crucial (see §9; also chapters 7 and 8). The next
definition captures an important form of the choice mode:

Definition 2. A nondeterministic Turing acceptor M is given by a transition table δ = δ(M), together with the
following acceptance rule.

Nondeterministic Acceptance Rule. A word x is accepted by M iff x is over the input alphabet of
M and there is an accepting computation path of δ for x.

M is a deterministic Turing acceptor if δ is deterministic. By convention, a Turing acceptor is assumed to be
nondeterministic unless otherwise specified. The language accepted by M is given by (Σ, L) where Σ is the input
alphabet of δ(M) and L consists of those words that are accepted by M. We write L(M) for the language accepted
by M.

Example 1. We describe informally a 1-tape deterministic Turing acceptor which accepts the palindrome language
Lpal = {w ∈ {0, 1}∗ : w = wR} where wR is the reversal of the word w. The reader should feel comfortable in
translating this into a formal description (i.e. in terms of δ) because, from now on, we shall describe Turing
machines in such informal terms. The acceptor works in three stages:

(i) Copy the input w onto tape 1.

(ii) Move the input head back to the start of the input, but leave the head on tape 1 at the right end.

(iii) Move the input head right and head 1 left, in synchrony, comparing the symbols under each head – they
should agree or else we reject at once. Accept iff all the symbols agree.

Example 2. (Guessing, verifying and nondeterminism) We give a nondeterministic 1-tape acceptor for the com-
plement co-Lpal of the palindrome language. Note that x ∈ {0, 1}∗ is in co-Lpal iff for some i:

1 ≤ i ≤ n = |x| and x[i] 6= x[n− i + 1]. (3)

Using nondeterminism we can ‘guess’ such an i and ‘verify’ that it has the properties in (3). By ‘guessing’ an i we
mean that the machine initially enters a state q1 such that in this state it has two choices:
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(i) Write down a ‘1’ in its single work-tape, move head 1 one position to the right and remain in state q1;

(ii) Write a ‘1’ in the work-tape, keeping head 1 stationary and enter a new state q2.

During the guessing stage (state q1), the input head does not move. When we enter state q2, there is a unary
word on work-tape. This is the unary representation of the guessed i. Let x be the input of length n. To ‘verify’
that i has the right properties, we can determine x[i] by moving the input head to the right while moving head 1
to the left, in synchrony. When head 1 reaches the first blank past the beginning of i, the input head would be
scanning the symbol x[i]. We can ‘remember’ the symbol x[i] in the finite state control. Notice that the guessed i
may be greater than n, and this could be detected at this point. If i > n then we reject at once (by this we mean
that we enter some non-accepting state from which there are no transitions). Assuming i ≤ n, we can similarly
determine x[n − i + 1] by moving the input head to the end of x and moving i steps to the left, using tape 1 as
counter. We accept if x[i] 6= x[n− i + 1], rejecting otherwise.

To check that the above machine accepts the complement of Lpal, observe that if x is in Lpal then every
computation path will be non-accepting; and if x is not in Lpal then the path corresponding to the correct guess
of i will lead to acceptance. This example shows how nondeterminism allows us to check if property (3) for some
values of i, by testing for all values of i simultaneously. This ability is called “guessing”, and generally, it simplifies
the logic of our machines.

Transformations and Turing Transducers

This subsection is placed here for easy reference. The concepts of transformations and transducers will be used in
section 9.

Definition 3. A multivalued transformation is a total function

t : Σ∗ → 2Γ∗

where Σ, Γ are alphabets and 2S denotes the power set of S. If t(x) is a singleton set for all x ∈ Σ∗ then we call t
a transformation and think of t as a function from Σ∗ to Γ∗.

Definition 4. A nondeterministic k-tape transducer T is a nondeterministic (k + 1)-tape (k ≥ 0) Turing acceptor
such that tape 1 is constrained to be one-way (i.e., the head may not move left). Tape 1 is called the output tape
and the non-blank word on this tape at the end of any accepting computation path is called the output word of
that path. The work tapes of T now refer to tapes 2 to k + 1. T is said to compute a multivalued function t in the
natural way: for any input x, t(x) is the set of all output words y in accepting computation paths.

The set t(x) can be empty. In case T computes a transformation, then T has the following properties: (a) For
each input x, there exists at least one accepting path. (b) On a given x, all accepting paths lead to the same
output word. We call such a transducer univalent. The usual example of a univalent transducer is a deterministic
transducer that accepts all its inputs.

Complexity of transducers. In the next section we will define computational complexity of acceptors for
various resources (time, space, reversal). The computational complexity of a transducer T is identical to the
complexity when T is regarded as an acceptor, with the provision that space on tape 1 is no longer counted.

2.3 Complexity

In this section, we see the first concepts of computational complexity. We consider the three main computational
resources of time, space and reversal.

The time of a computation path C = (C0, C1, · · · ) is one less than the length of the sequence C; the time is
infinite if the length of the sequence is infinite. The space used by a configuration C = 〈q, wi, ni〉ki=0 is defined as

space(C) =

k∑

i=1

|wi|

Observe that the space in the input tape is not counted. The space used by the computation path C = (Ci)i≥0 is
sup{space(Ci) : i ≥ 0}; again the space could be infinite. It is possible for the time to be infinite while the space
remains finite.
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The definition of reversal is a little subtle. Let C = (Ci)i≥0 be a computation path of a k-head machine. We
say that head h (h = 0, . . . , k) tends in direction d (for d ∈ {−1, +1}) in Ci if the last transition Cj−1 ⊢ Cj (for
some j ≤ i) preceding Ci in which head h moves is in the direction d. This means that the head h “paused” in the
time from j + 1 to i. If head h has been stationary from the start of the computation until Ci we say head h tends
in the direction d = 0 in Ci. We also say that head h has tendency d if it tends in direction d. It is important to
note that the head tendencies of a configuration C are relative to the computation path in which C is embedded.
We say head h makes a reversal in the transition Cj−1 ⊢ Cj in C if the tendency of head h in Cj−1 is opposite to
its tendency in Cj . We say Cj−1 ⊢ Cj is a reversal transition. The reversal in a reversal transition Cj−1 ⊢ Cj is
the number of heads (including the input head) that makes a reversal. So this number is between 1 and 1+ k. The
reversal of C is the total number of reversals summed over all reversal transitions in the entire computation path.

Observe that changing the tendency from 0 to ±1 is not regarded as a reversal. Each computation path C can
be uniquely divided into a sequence of disjoint sub-computation paths P0, P1, . . . , where every configuration in Pi

(i = 0, 1, , . . . ,) has the same head tendencies. Each Pi is called a phase. The transition from one phase Pi to the
next Pi+1 is caused by the reversal of at least one head. Clearly the reversal of C bounded by k + 1 times the the
number of phases in C.

Remarks: An alternative to our definition of reversal complexity is to discount reversals caused by the input
head. Hong [20] (see section 8.3) uses this alternative. This would be consistent with our decision not to count the
space used on the input tape. However, the real concern there was to admit sublinear space usage to distinguish
problems with low space complexity. Our decision here allows possible complexity distinctions which might be
otherwise be lost (see remark at the end of §7).

We give two ways to define the usage of resources.

Definition 5. (Acceptance complexity) If x is an input for M, define AcceptT imeM(x) to be the least time of an
accepting computation path for x. If M does not accept x, AcceptT imeM(x) := 0. If n ∈ N, define

AcceptT imeM(n) := max
x
{AcceptT imeM(x)}

where x ranges over words in L(M) of length n. Note that if L(M) has no words of length n then AcceptT imeM(n) =
0. Let f be a complexity function. M accepts in time f if f(n) dominates AcceptT imeM(n).

Note that AcceptT imeM(x) is a complexity function; it is a partial function since it is defined iff x is a natural
number. Although this definition is stated for the time resource, it extends directly to the space or reversal resources.
Indeed, all the definitions we give in this section for the time resource naturally extend to space and reversal. One
consequence of our definition is that any finite or co-finite language is accepted by some Turing acceptor in time
(respectively, space, reversal) f(n) = O(1) (respectively, f(n) = 0, f(n) = 0). Another technical consequence is
that a k-tape acceptor uses at least k tape cells. Thus to achieve space 0, we must use 0-tape acceptors.

The fact that M accepts x in time r does not preclude some (whether accepting or not) computation on input
x from taking more than r time. Furthermore, if x is not in L(M), it is immaterial how much time is used in any
computation on x! This stands in contrast to the next definition:

Definition 6. (Running complexity) For any input x for M, let RunT imeM(x) be the maximum over the time of
all computation paths of M on input x. Thus, RunT imeM(x) <∞ iff M halts on input x. For n ∈ N, let

RunT imeM(n) := max
x

RunT imeM(x)

where x ranges over all words (whether accepted by M or not) of length n. For any complexity function f , we say
M runs in time f if f(n) dominates RunT imeM(n).

Note that if M runs in time f then f(n) ↓ for all n ∈ N. If f(n) < ∞ then M must halt in every computation
path on inputs of length n. If M is deterministic and x ∈ L(M) then AcceptT imeM(x) = RunT imeM(x).

Example 3. Refer to examples 1 and 2 in the last section. The space and time of the deterministic acceptor for
palindromes are each linear; the reversal is 3. Similarly, acceptance space and time of the nondeterministic acceptor
for the complement of palindromes are each linear, with reversal 3. However the running space and time of the
nondeterministic acceptor is infinite for all n since the guessing phase can be arbitrarily long. We leave as exercises
for the reader to modify the machine to satisfy the following respective complexity bounds: (a) the running space
and time are each linear; (b) the time is linear and space is logarithmic. In (a), you can actually use a 1-tape
machine and make only 1 reversal. What is the reversal in (b)?
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The following notion is sometimes useful: we call f time-constructible function if there is a deterministic M
such that for all inputs x of sufficiently large length, RunT imeM(x) = f(|x|).
M is said to time-construct f .

The definitions of space-constructible or reversal-constructible are similar: systematically replace the word ‘time’
by ‘space’ or ‘reversal’ above. We have defined constructible functions with respect to deterministic machines only,
and we use running complexity. Such functions have technical applications later. The reader may try this: describe
a 1-tape Turing machine that time-constructs the function n2. It may be easier to first “approximately” time-
construct n2. See the Exercises for more such constructions.

The Turing acceptor for the palindrome language in the example of the last section is seen to run in linear time
and linear space. But see section 9 for a more space-efficient machine: in particular, logarithmic space is sufficient
(but at an inevitable blow-up in time requirement).

We shall use acceptance complexity as our basic definition of complexity. The older literature appears to prefer
running complexity. Although running complexity has some desirable properties, in proofs, it sometimes takes
additional effort to ensure that every computation path terminates within the desired complexity bound. Conse-
quently, proofs for accepting complexity are often (but not always) slightly shorter than for running complexity. A
more compelling reason for acceptance complexity is that it is more basic: we could define ‘rejection complexity’
and view running complexity as a combination of acceptance and rejection complexity. The problem of termination
can be overcome by assuming some ‘niceness’ conditions on the complexity function. The exact-time complexities
and time-constructible complexities are typical notions of niceness. Indeed, for nice functions, complexity classes
defined using running complexity and acceptance complexity are identical. Since most of the important complexity
classes (such as P ,NP , etc, defined next) are bounded by nice functions, the use of running or acceptance com-
plexity lead to the same classes in these cases. It is important to realize that most common functions are nice (see
Exercises). The general use of running complexity is largely avoided until chapter 8 when we discuss stochastic
computations where it seems that running complexity is the more fruitful concept.

Resource bounded complexity classes. We introduce some uniform notations for complexity classes de-
fined by bounds on computational resources used by acceptors.5 Let F be a family of complexity functions.
The class NTIME (F ) is defined to consist of those languages accepted by nondeterministic Turing acceptors in
time f , for some f in F . If F = {f}, we simply write NTIME (f). The notation extends to languages ac-
cepted by deterministic Turing acceptors (DTIME (F )), and to space and reversal complexity (XSPACE(F ) and
XREVERSAL(F ) where X = N or D indicates nondeterministic or deterministic classes). When running com-
plexity (time, space, reversal, etc) is used instead of acceptance complexity, a subscript ‘r’ is appended to the usual
notations for complexity classes. For instance, NTIME r(F ), NSPACE r(F ), DREVERSALr(F ), etc. It is clear
that DTIME r(F ) ⊆ DTIME (F ) and NTIME r(F ) ⊆ NTIME (F ), and similarly for the other resources.

Canonical Classes. Most common families of complexity functions can be obtained by iterating the following
operations lin, poly, expo on an initial family F : lin(F ) = O(F ), poly(F ) = FO(1), expo(F ) = O(1)F . For instance,
the following families will be used often:

{log n}, logO(1) n, {n + 1}, O(n), nO(1), O(1)n, O(1)nO(1)

.

Each family in this sequence ‘dominates’ the preceding family in a natural sense. For future reference, we collect
in the following table the special notation for the most important complexity classes:

4In the literature, a function that f(n) of the form RunTimeM (n) is sometimes said to be ‘time-constructible’. What we call
time-constructible is also described as ‘fully time-constructible’. Other related terms include: measurable (Hopcroft-Ullman), real-time
computable (Yamada) or self-computable (Book), honest (Meyer-McCreight).

5We appear to be following Ronald Book in many of these notations. He attributes some of these suggestions to Patrick Fischer.
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Canonical Classes
Special Symbol Standard Notation Name
REG DSPACE(0) regular languages
DLOG DSPACE(log n) deterministic log-space
NLOG NSPACE(log n) n ondeterministic log-space

PLOG DSPACE(logO(1) n) polynomial log-space

P DTIME(nO(1)) deterministic poly-time

NP NTIME(nO(1)) nondeterministic poly-time
PSPACE DSPACE(nO(1)) polynomial space
DEXPT DTIME(O(1)n) deterministic simply-exponential time
NEXPT NTIME(O(1)n) nondeterministic simply-exponential time

DEXPTIME DTIME(2nO(1)

) deterministic exponential time

NEXPTIME NTIME(2nO(1)

) nondeterministic exponential time
EXPS DSPACE(O(1)n) simply-exponential space

EXPSPACE DSPACE(2nO(1)

) exponential space

These classes are among the most important in this theory and for convenience, we shall refer to the list here
as the canonical list.6 Note that our distinction between “exponential” and “simply-exponential” is not standard
terminology. It will follow from results later in this chapter that (after omitting PLOG, DEXPT and NEXPT )
each class in the above list is included in the next one on the list.

In Chapter 1 we said that complexity theory regains a Church-like invariance property provided that we
parametrize the complexity classes with (1) the computational resource and (2) the computational mode. Our
notation for complexity classes reflects this analysis: each class has the form

µ− ρ(F )

where µ = D, N , etc., is the computational mode, and ρ = TIME ,SPACE , etc., is the computational resource.
According to the computational theses in Chapter 1, these classes are model-independent in case F = nO(1). In
particular, the canonical classes P , NP and PSPACE have this invariance. That is, if we had defined these notions
using some other general computational model such as pointer machines instead of Turing machines, we would have
ended up with the same classes (P ,NP ,PSPACE ).

Simultaneous resource bounds. In the preceding definitions of complexity, we bound one resource but place
no restrictions on the other resources (actually the resources are not completely independent of each other). In
‘simultaneous complexity’ we impose bounds on two or more resources within the same computation path.

Definition 7. (Acceptance within simultaneous bounds) Let t, s ≥ 0 be real numbers and f, g be complexity
functions. An acceptor M accepts an input x in time-space bound of (t, s) if there exists an accepting computation
path for x whose time and space are at most t and s, respectively. M accepts in time-space (f, g) if there is some
n0 such that for all x ∈ L(M), if |x| ≥ n0 then M accepts x in time-space (f(|x|), g(|x|)).

For any complexity functions t and s, let X-TIME-SPACE(t, s) (where X = D or N) denote the class of
languages L that are accepted by some (deterministic or nondeterministic, depending on X) Turing machine M
that accepts in time-space (t, s). The complexity classes defined in this way are called simultaneous space-time
classes. Clearly,

X-TIME-SPACE(t, s) ⊆ XTIME (t) ∩ XSPACE (s)

although it seems unlikely that this would be an equality in general. Similarly we will consider simultaneous
space-reversal, time-reversal, time-space-reversal classes denoted, respectively,

X-SPACE-REVERSAL(s, r),X-TIME-REVERSAL(t, r)

and
X-TIME-SPACE-REVERSAL(t, s, r)

where t, s and r are time, space and reversal complexity bounds. For a more compact notation, we could use
(but do not recommend) the alternative XTISP, XTIRE, XSPRE and XTISPRE for X-TIME-SPACE, X-TIME-
REVERSAL, etc.

Finally, we note these notations will be extended later (see chapter 7) when ‘X ’ in these notations may be
replaced by symbols for other computational modes.

6Note that P should really be ‘DP’ but the ‘P ’ notation is so well-accepted that it would be confusing to change it. DLOG is also
known as L or LOG in the literature. Similarly, NLOG is also known by NL.
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Recursively enumerable languages. In our table of canonical classes, the first entry is the class of regular
languages DSPACE(0). We will investigate its properties in Section 11. The complexity class on the other extreme
comprises languages that are accepted by Turing acceptors without any complexity bounds:

Definition 8. A language is recursively enumerable or, r.e., if it is accepted by some deterministic Turing acceptor.
A halting Turing machine is one that does not have any infinite computation path on any input. A language is
recursive if it is accepted by some halting Turing acceptor. Let RE and REC denote the classes of r.e. and recursive
languages, respectively.

In recursive function theory, the fundamental objects of study are partial number-theoretic functions instead of
languages. The recursive function theory analogues of the above definitions are: a partial function from the natural
numbers to natural numbers is partial recursive if it is computed by some Turing transducer (assume that natural
numbers are encoded in binary) where the function is undefined at the input values for which the transducer does
not halt. If the function is total, then it is called a (total) recursive function.

Essentially, the class RE corresponds the partial recursive functions, while the class REC corresponds to the
recursive functions. Whether we use languages or number-theoretic functions to study computability is a matter
of taste (roughly corresponding to that of the computer scientist or that of the mathematician). The advantage
of language theoretic approach (which is that taken by this book) is that it corresponds more to real world
computation, and is better suited for subrecursive complexity theory (which is our subject). On the other hand,
the number-theoretic approach has a simplicity and elegance that is generally7 hard to beat.

2.4 Linear Reduction of Complexity

The results to be shown are of the form: if a language can be accepted in (time, space, or reversal) resource f then
it can be accepted in resource cf , for any c > 0. The idea is that, by using a transition table with more states and a
larger alphabet, we can trade-off dynamic complexity for static complexity. These technical results are very useful:
they justify the use of the ‘big-oh’ notation for complexity functions. For instance, we can talk of a language being
accepted in ‘quadratic time’ or ‘logarithmic space’ without ambiguity. It also illustrates our discussion in chapter
1 where we concluded that complexity functions must not be taken in an absolute sense, but only up to O-order.

Our first theorem, taken from Stearns, Hartmanis and Lewis [15], says that the space complexity of a problem
can be reduced by any constant factor and it is sufficient to use a 1-tape acceptor.

Theorem 1 ((Space Compression)). Let c > 0 be a constant and s = s(·) a complexity function. For any multitape
M that accepts in space s, there is a 1-tape N that accepts L(M) in space cs. If M is deterministic, so is N.

Proof. As will be the rule in such proofs, we only informally describe N since the formal description of N is
tedious although straightforward. It is sufficient to show this for c = 1/2 since we can make c arbitrarily small with
repeated applications of the construction. The single work tape of N contains k ‘tracks’, one track for each work
tape of M. See Figure 2.2.

Each cell of N can be regarded as containing a “super symbol” that is essentially a k by 4 matrix with the ith
row containing 4 tape symbols (possibly blanks) of the ith work-tape of M, and possibly a marker (↑) for the head
position. There are five forms for each row:

[b1b2b3b4], [↑ b1b2b3b4][b1 ↑ b2b3b4][b1b2 ↑ b3b4][b1b2b3 ↑ b4]

where each bi is either a blank symbol or a tape symbol of δ(M). The marker ↑ indicates that the immediately
succeeding bi is being scanned. Thus a symbol of N encodes 4k symbols of M. Since all the scanned cells have
absolute indexing from −s(n) + 1 to s(n) − 1 on an input of length n, we see that s(n)/2 + O(1) super symbols
of N suffice to encode the contents of M’s tapes. But in fact ⌊s(n)/2⌋ cells suffice if we exploiting the finite state
machinery of N to store a constant amount of extra information. N simulates a step of M by making a ‘right-sweep’
(i.e., starting from the leftmost non-blank cell to the rightmost non-blank) of the non-blank portion of N’s tapes,
followed by a return ‘left-sweep’. The ‘current neighborhood’ of M consists of those cells of M that either are
scanned by some tape head, or are immediately adjacent to such a scanned cell. On the right-sweep, N takes note
of (by marking in some appropriate manner) the current neighborhood of M. On the left-sweep, it updates the
current neighborhood to reflect the changes M would have made. It is clear that N accepts in space s(n)/2. Note
that N is deterministic if M is deterministic.

7But not always. For instance, in the Gödelization of machines, the encoding of machines by strings is straightforward. But to
encode a machine as a number appears more contrived.
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Figure 2.2: Super-cell with k tracks.

The proof illustrates the reduction of dynamic complexity at the expense of static complexity. In this case,
we see space being reduced at the cost of increasing the number of tape symbols and the number of states. The
amount of information that can be encoded into the static complexity of an acceptor is clearly finite; we refer to
this technique as storing information in the finite state control of the acceptor. While the reader may feel this
is “cheating”, the fact remains that there are limits as how much this cheating helps; such limits have inherent
interest.

Corollary 2. Let X = D or N . For any complexity function s,

XSPACE (s) = XSPACE(O(s)).

The reader may verify that Theorem 1 and its corollary hold if we use ‘running space’ rather than ‘acceptance
space’ complexity. The next result from Hartmanis and Stearns [16] is the time analog of the previous theorem.

Theorem 3 ((Linear Speedup)). Given c > 0 and a k-tape acceptor M that accepts in time t(n) > n, there is a
(k + 1)-tape N that accepts in time n + ct(n) with L(M) = L(N). If M is deterministic so is N.

Proof. Choose d > 1 to be an integer to be specified. Tape j of N, for j = 1, . . . , k, will encode the contents of
tape j of M using super symbols. Similar to the last proof, each super symbol encodes d tape symbols (including
blanks) of M; but unlike that proof, the present super symbols do not need to encode any head positions of M and
do not need multiple tracks. Tape k + 1 in N will be used to re-code the input string using super symbols. We
describe the operation of N in two phases. Let the input string be x with |x| = n.

Set-up Phase. First N copies the input x from tape 0 to tape k + 1. This takes n + 1 steps. So now tape k + 1
contains x in a ‘compressed form’. Next N moves head k + 1 leftward to the first non-blank super symbol using
n
d + O(1) steps. Henceforth, N ignores tape 0 and treats tape k + 1 as the input tape.

Simulation Phase. N now simulates M by making repetitive executions of a 6-step movement. Each such
movement simulates d moves of M. It is enough to explain these 6 step on some generic tape t = 1, . . . , k. Define
the ‘current neighborhood’ of N on tape t to be the supercells containing the (ordinary) cells on tape t that M
will visit in the next d steps. These will comprise at most 2 cells, the current supercell j and another cell (either
supercell j − 1 or j + 1). We use 4 steps to determine the current neighborhood of the t-th head (e.g., move left,
right, right, left). In two more steps, N can update the current neighborhood to reflect the result of executing d
steps on M. Moreover, N can place its tape heads to be in the correct supercell, in preparation for the next 6-step
movement. If M accepts or reject within the next d steps, then N can accepts or rejects before the next movement.
This completes the simulation phase.

Timing Analysis. We show that N uses ≤ n + ct(n) moves in the above simulation of M. In the set-up phase,
n+ n

d +O(1) moves were made. In the simulation phase, we see that each sequence makes at most 6 steps correspond

to d steps of M. Thus N made ≤ 6t(n)
d + O(1) moves in this phase. Summing the time for the two phases we get

n + n
d + 6t(n)

d + O(1) < n + 7t(n)
d + O(1). Thus, if we choose d > 7/c, the total time will be ≤ n + ct(n)(ev.).
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The following is immediate:

Corollary 4.

(i) If t(n) = ω(n) then XTIME(t)=XTIME (O(t)), where X = D or N .

(ii) For all ǫ > 0,DTIME((1 + ǫ)n) = DTIME (O(n)).

We do not state the nondeterministic version of Corollary 4 (ii) because a stronger result will be shown next.
We show that with k + 3 (rather than k + 1) work-tapes we can exploit nondeterminism to strengthen Theorem 3.
In fact the three additional tapes of N are known as ‘checking stacks, ’ i.e., the contents of these tapes, once
written, are not changed. The basic idea is that the set-up and simulation phases in the proof of Theorem 3 can
be carried out simultaneously. Nondeterminism is used in an essential way: the reader who is not familiar with
nondeterministic computations will find the proof highly instructive. The proof is adapted from Book and Greibach
[4]; the same ideas will be exploited later in this chapter when we consider the problem of reducing the number of
work-tapes with no time loss.

Theorem 5 ((Nondeterministic linear speedup)). For all c > 0, and for any k-tape M that accepts in time t(n) ≥ n,
there is a nondeterministic (k + 3)-tape N that accepts in time max{n + 1, ct(n)} with L(M) = L(N).

Proof. Let d be some integer to be specified later. As in the proof of Theorem 3, N ‘compresses’ the tape
contents of M, i.e., it uses super symbols that encode d tape symbols of M at a time. The tapes of N are used as
follows. Tape i (i = 1, . . . , k) of N represents in compressed form the contents of tape i of M. Tape k + 1 contains
in compressed form an initial segment of the (actual) input string. Tapes k + 2 and k + 3 each contains a copy of
a ‘guessed’ input string, again in compressed form. In addition, the simulation of M by N uses tape k + 3 as its
‘input’ tape. The idea is for N to proceed with the 6-move simulation of Theorem 3 using a ‘guessed’ input string.
In the meantime, N verifies that the guess is correct.

We describe the operations of N in two phases; each phase consists of running two simultaneous processes (the
reader should verify that this is possible because the simultaneous processes operate on different tapes).

Initial Phase. The following two processes run in parallel.

Process 1. This process copies some initial prefix x1 of the input x into tape k + 1, in compressed form.
This takes |x1| steps. The prefix x1 is nondeterministically chosen (at each step, the transition table of
N has two choices: to stop the process instantly or to continue, etc).
Process 2. On tapes k + 2 and k + 3, N writes down two copies, in compressed form, of a guessed string
y in the input alphabet of M. When the writing of y is completed (nondeterministically of course),
heads k + 2 and k + 3 move synchronously back (ie., left-ward) over the string y. Process 2 halts
nondeterministically at some point before these heads move past the first blank symbol left of y.

The initial phase ends when both processes halt (if one process halts before the other then it marks time, doing
nothing). At this point, on tape 0, we have x = x1x2 where x1 is the initial segment that process 1 copied onto
tape k + 1 and head 0 is scanning the first symbol of x2. Similarly, y = y1y2 where heads k + 2 and k + 3 (on
their respective tapes) are scanning the super symbol that contains the first symbol of y2. Note that any of xi or
yi(i = 1, 2) may be empty. The figure 2.3 illustrates the situation (not to scale!) where w̄ denotes the compressed
version of a string w and ↑ indicates a head position.

Final Phase. We run the following two processes in parallel.

Process 3. The input head continues to scan the rest of the input (i.e., x2), comparing it with the
compressed copy of y2 on tape k + 2: for this purpose, note that heads 0 and k + 2 are conveniently
positioned at the left-most symbol of x2 and y2, respectively, at the start of the final phase. If x2 6= y2,
then N rejects at once. Process 3 halts when the checking confirms that x2 = y2.
Process 4. First we verify that x1 = y1, using x1 on tape k + 1 and y1 on tape k + 3. If x1 6= y1, N
rejects at once. Otherwise, head k + 3 will now be positioned at the beginning of y and we can begin
the “6-move simulation” of M (as in the proof of Theorem 2). Process 4 halts when this simulation is
complete.

We remark that in processes 3 and 4 above, when we say “N rejects at once”, we mean that the described
computation path halts without acceptance. It does not mean that N is rejecting the input in a global sense. This
explanation holds generally for other similar situations.
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Figure 2.3: At the end of the initial phase

The final phase ends when both processes halt. N accepts if neither process rejects: this means x = y and
N’s simulation of M results in acceptance. To see the time taken in this phase, clearly process 3 takes ≤ |x2|
steps. Checking x1 = y1 by process 4 takes ≤ |x1|

d + O(1) steps since x1 and y1 are in compressed form. Since

the 6-move simulation takes 6t(|x|)/d steps, process 4 takes |x1|
d + 6t(|x|)

d + O(1) steps. Thus the final phase takes

1 + max{|x2|, |x1|
d + 6t(|x|)

d + O(1)} steps. (Note that the “1+” is necessary in making the final decision to accept
or not.)

We now prove that L(M) = L(N). If x is not in L(M) then it is easy to see that every computation path of N
is non-accepting x because one of the following will fail to hold:

(a) y2 = x2,

(b) y1 = x1,

(c) M accepts x.

Conversely, if x is in L(M) then there is a computation path in which (a)-(c) hold and the final phase accepts.
It remains to bound the acceptance time of N. Consider the computation path in which, in addition to (a)-(c),

satisfies the following:

(d) |x1| = ⌈2n/d⌉ where n = |x|.

Process 2 uses ⌈n
d ⌉ steps to guess y and ⌈ |y2|

d ⌉ steps to position the heads k + 2 and k + 3. When we specify d

below, we will ensure that d ≥ 3. Hence for n large enough, the initial phase takes ≤ max{|x1|, n+|y2|
d + O(1)} =

|x1| steps. Combining this with the time taken by the final phase analyzed earlier, the total time is

|x1|+ 1 + max{|x2|,
|x1|
d

+
6t(|x|)

d
+ O(1)}

≤ 1 + max{n,
(d + 1)|x1|

d
+

6t(n)

d
+ O(1)}

≤ 1 + max{n,
11t(n)

d
}(since t(n) ≥ n).

The last expression is ≤ max{n + 1, ct(n)} if we choose d > 11/c. Hence d can be any integer greater than
max{3, 11/c}.

An interesting consequence of the last result is:

Corollary 6. NTIME (n + 1) =NTIME (O(n)).

A Turing acceptor that accepts in time n + 1 is said to be real-time.8 Thus the real-time nondeterministic
languages coincide with those linear time nondeterministic languages. This stands in contrast to the fact that
DTIME (n + 1) is a proper subset of DTIME (O(n)).

Before concluding this section, we must make a brief remark about ‘linear reduction of reversals’. In some sense,
reversal is a more powerful resource than either space or time, since for every k > 0 there are non-regular languages

8In the literature NTIME(n + 1) is also denoted by Q standing for ‘quasi-realtime’.



2.5. TAPE REDUCTION 63

that can be accepted using k reversals but that cannot be accepted using k − 1 reversals [13]. In contrast, only
regular languages can be accepted using a constant amount of space or time. Indeed, in section 6, the power of
reversals is even more dramatically shown when we prove that all RE languages can be accepted with just two
reversals when we allow nondeterminism.

For simple Turing machines, reversal complexity seems to behave more to our expectation (based on our
experience with time and space): Hartmanis[12] has shown that only regular languages can be accepted with
O(1) reversals. Furthermore, Fischer [11] shows there is a linear speedup of reversals in this model. However, it is
not clear that a linear speedup for reversals in the multi-tape machine model is possible in general. It is impossible
for small complexity functions because of the previous remark about languages accepted in k but not in k − 1
reversals.

Exercises

Exercise 2.4.0.1: The 6-step (simulation) phase in the linear speedup theorem is capable of improvement. But
what constitute an improvement must be clearly stated. Let c ∈ N be any constant. Our goal is to construct
a k-tape N to simulate c steps of a given k-tape TM M . The key ground rule is that each tape symbol of N
must represent ≤ c symbols of M . Call symbols and cells of N “supersymbols” and “supercells”.
(i) Describe a 4-step phase in case M is a 1-tape TM.
(ii) Describe a 5-step phase in the general case.
(iii) Describe a 4-step phase in the general case. Of course, such a phase subsumes parts (i) and (ii). HINT:
we can relax our 6-step phase in two ways. Focusing as usual on only one tape, let us call the “supercell”
containing the current head position of M the “active supercell”. First, the current head position of N need
not be at the active supercell, but is next to it. Our original simulation maintains a direct correspondence
between the contents of M ’s tapes and N ’s tapes. But now, the current supercell (and only this supercell) is
allowed not to contain the correct supersymbol required by this correspondence. The idea is that it will be
updated in our next move (thus allowing a slight delay).

Exercise 2.4.0.2: Let us change one of the ground rules in the previous exercise: suppose a supersymbol of N is
allowed to store 2c symbols of M , but we still want to simulate c steps of N in one phase.

End Exercises

2.5 Tape Reduction

Theorem 1 shows that with respect to space, a Turing acceptor may as well use one work-tape. This section has
three similar results on reducing the number of work-tapes. The first is a simple result which reduces k work-tapes
to one work-tape, at the cost of increasing time quadratically. The second is a classic simulation of a k-tape machine
by a 2-tape machine due to Hennie and Stearns [18], in which the simulation is slower by a logarithmic factor.
Although these results hold for nondeterministic as well as deterministic machines, our third result shows that
we can do much better with nondeterministic simulation. This is the result of Book, Greibach and Wegbreit [5]
showing that a nondeterministic 2-tape machine can simulate a k-tape machine without increasing the time, space
or reversals by more than a constant factor. Finally, a tape-reduction result for deterministic reversals is indicated
at the end of section 8.

Such tape reduction theorems have important applications in later chapters. Essentially they imply the existence
of ‘efficient universal’ Turing machines (chapter 4), which in turn are used to prove the existence of complete
languages (chapter 5) and in obtaining hierarchy theorems (chapter 6).

We now state the first result.

Theorem 7. If L is accepted by a multitape Turing machine M within time t then it is accepted by a 1-tape Turing
machine N within time OM(t2). N is deterministic if M is deterministic. Moreover, the space (resp., reversal) used
by N is bounded by a constant times the space (resp., O(t)) used by M.

Proof. Assume M has k work-tapes. We can use the 1-tape machine N described in the proof of the space
compression theorem, where each symbol of N is a viewed as k × d matrix of M’s tape symbols. For the present
proof, d may be taken to be 1. Note that the size of the non-blank portion of N’s work-tape is ≤ i after the ith step.
Hence the ith step can be simulated in OM(i) steps of N. So to simulate the first t steps of M requires

∑t
i=1 OM(i)

= OM(t2) steps of N. The claim about space and reversal usage of N is immediate.
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We know that the above simulation is essentially the best possible in the deterministic case: Maass [27] shows
that there are languages which require time Ω(n2) on a 1-tape machine but can be accepted in real time by a 2-tape
machine. See also [25].

Theorem 8 ((Hennie-Stearns)). If L is accepted by a k-tape Turing machine in time-space (t(n), s(n)) then it is
accepted by a 2-tape Turing machine within time-space O(t log t, s).

Proof. We use an ingenious encoding of the work-tapes of a k-tape machine M using only tape 1 of a 2-tape
machine N. The other work-tape of N is used as a scratch-tape. Tape 1 of N has 2k tracks, two tracks for each
tape of M. Each cell of N is a super symbol viewed as a column containing 2k symbols (possibly blanks) of M. The
cells of N are grouped into ‘blocks’ labeled by the integers:

· · · , B−2, B−1, B0, B1, B2, B3, · · ·

where B0 consists of just a single cell (call it cell 0) of N. We will number the individual cells by the integers also,
with the initial head position at cell 0. For j > 0, Bj (respectively, B−j) consists of cells of N in the range

[2j−1, 2j) = {2j−1, 2j−1 + 1, . . . , 2j − 1}

(respectively, (−2j ,−2j−1]). Thus blocks Bj and B−j each has 2j−1 cells, j > 0. We assume the boundaries of
these blocks are marked in easily detectable ways as cells are visited, the details being left to the reader. The key
idea is that, instead of having the k simulated heads of M at different parts of N’s tracks, we constrain them to
always be at cell 0. The contents in M’s tapes are translated laterally to allow this. Essentially this means that
when head i of M moves leftward (say) the entire contents of tape i must be shifted rightward so that the currently
scanned symbol of tape i is still in cell 0 of N’s tape 1. This may appear to require expensive movement of data,
but by a suitable scheme of ‘delayed’ data movement, we show that there is only a small time penalty.

It is enough for us to explain what occurs in two of the tracks that represent some work-tape T of M. These
two tracks are designated upper and lower, and let BU

j and BL
j denote the restriction of Bj to the upper and lower

tracks, respectively. Inductively, there is an integer i0 ≥ 0 that is non-decreasing with time such that a block Bi

is ‘active’ iff |i| ≤ i0. We initialize i0 = 0. The non-blank portion of tape T is contained in the active blocks. We
hold the following property to be true of each active block Bi:

(1) Each BX
i (X = U or L) is either full (i.e., represents 2i−1 symbols of M, including blanks) or empty (i.e.,

does not represent symbols of M, not even blanks). The contents of a full block represent contiguous symbols
of T . Note that BX

i is regarded as full even when it is entirely filled with blanks of M.

(2) Exactly two of BU
i , BL

i , BU
−i and BL

−i are full. In particular, both BU
0 and BL

0 are always full (it is easy to
initialize this condition at the beginning of the computation). In addition, if BL

i is empty, so is BU
i . But we

allow BU
i to be empty when BL

i is full.

(3) If −i0 ≤ i < j ≤ i0 then Bi represents contents of T that are to the left (in their natural ordering on tape T )
of those represented in Bj . Furthermore, if both BL

i and BU
i are full then BL

i represents contents of T that
are to the left of those in BU

i .

Let us now see how to simulate one step of M on T . Suppose that the head of T moves outside the range of
the two symbols stored in B0. Say, the next symbol to be scanned lies to the right and i ≤ i0 is the smallest
positive integer such that BL

i is full (recall that if BL
i is empty then BU

i is also empty). [If no such i exists, we may
increment i0, fill both tracks of Bi0 with blanks of M, and make both tracks of B−i0 empty. Now we may choose i
to be i0.] Clearly, the upper track of BU

−i is empty, and both tracks of Bj for j = −i + 1,−i + 2, . . . ,−1, 0 are full.
We copy the contents of these Bj ’s (there are exactly 2i symbols) onto the scratch-tape in the correct sequential
order (i.e., as they would appear in tape T ). There are two cases:

(i) BL
−i is empty. Then transcribe the 2i symbols in the scratch-tape to the lower tracks of B−i, B−i+1, . . . , B−1, B0.

(ii) BL
−i is full. Then we transcribe the contents of the scratch tape to the upper track of B−i and to the lower

tracks of B−i+1, . . . , B−1, B0.

Observe that there is exactly enough space in cases (i) and (ii). Now copy the contents of BL
i to tape 2 and

transcribe them onto the lower tracks of B1, . . . , Bi−1 and the upper track of B0: again there is exactly enough
space. (If BU

i is full we then move it to the lower track.) We call the preceding computations an order |i| operation.
Note that we have now returned to our inductive hypothesis and the scanned symbol of T is in B0 as desired.
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Clearly a order |i| operation takes O(2|i|) time. Repeating this for each of the k tapes of M, we have completed
the simulation of one step of M.

To analyze the cost of this simulation, note that an order i ≥ 1 operation can only occur if the lower track lying
strictly between B0 and B−i or between B0 and Bi is empty. Also, immediately following such an operation, the
cells in the lower track between B−i and Bi are full. This implies that M must make at least 2i−1 moves between
two consecutive order i operations. It is also clear that the first order i operation cannot occur until M has made
at least 2i−1 moves. Suppose M makes t moves. Then the largest value of i such that some order i operation is
made is m0 = 1 + ⌊log2 t⌋. Therefore the number of order i operations is ≤ t

2i−1 and the total number of moves
made by N is

m0∑

i=1

t ·O(2i)

2i−1
= O(t log t).

In section 8, we will prove a tape reduction result for deterministic reversal-bounded machines. The result
shows that a deterministic k-tape machine that accepts in r(n) reversals can be simulated by a deterministic 2-tape
machine in O(r2) reversals. The next result, from Book, Greibach and Wegbreit, shows that this quadratic blow-up
can be avoided when we use nondeterministic simulation.

First we need some definitions. Let (Σ, L) be accepted by a nondeterministic k-tape machine M. Let ∆ be the
tape alphabet of M, Q the states of M, and suppose that the δ(M) contains p ≥ 1 tuples which we number from 1
to p. Let

Γ = Σ×Q×∆k × {0, 1, . . . , p}
be a new alphabet with super symbols which may be regarded as (k + 3)-tuples as indicated. Define a trace of a
configuration C as a symbol of Γ of the form

b = 〈a, q, c1, . . . , ck, β〉 (4)

where a is the currently scanned input symbol in C, q is the state in C, each cj is currently scanned symbol in the
work tape j, and β is the number of any tuple in δ(M) which is applicable to C. If there are no applicable tuples
then β = 0. The trace of a computation path C̄ = (C0, . . . , Cm) is the word b0b1 · · · bm where bi ∈ Γ is a trace
of Ci, and for each j < m, the tuple number in bj (i.e., the last component of bj) identifies the instruction of M
causing the transition Cj ⊢ Cj+1. The trace of C̄ is unique. We are now ready for the proof.

Theorem 9 ((Tape Reduction for Nondeterministic Machines)). Let t(n) ≥ n and M be a nondeterministic machine
accepting in simultaneous time-reversal bound of (t, r). Then there is a 2-tape nondeterministic machine N accepting
L(M) in simultaneous time-reversal bound of O(t, r).

Proof. Let M be as in the theorem. With ∆ and Γ as above, we construct a 2-tape N that operates as follows: on
input x, N guesses in tape 1 a word w = b0 · · · bm ∈ Γ∗ that is intended to be the trace of an accepting computation
of M on x. It remains to show how to verify if w is indeed such a trace. We may assume that w is generated in
such a way that the transitions from bi to bi+1 are plausible, e.g., if the instruction (corresponding to the tuple
number) in bi causes a transition to a new state q then bi+1 has state q. Furthermore, the state in bm is accepting.
It remains to check that the symbol scanned under each head is the correct one.

For each j = 1, . . . , k, we will check the symbols under head j is correct. To do this for a particular j, first N
re-positions head 1 at the beginning of w. This takes O(m) steps. Then N scans the word w from left to right,
carrying out the actions specified each super symbol bi (i = 0, . . . , m) using its own input head to move as directed
by the instructions in bi, and using tape 2 to act as tape j of M. If N discovers that the symbol under its own input
head does not agree with the symbol indicated in bi, or the symbol scanned on its tape 2 does not agree with the
symbol indicated in bi, then N rejects at once. Otherwise, it proceeds to check the symbols for head j + 1. When
all tapes are verified in this manner, then N accepts.

Note that the checking of tape contents is entirely deterministic. We now prove that this N accepts if and only
in M accepts. If M accepts, then clearly N accepts. Suppose N accepts with a particular word w = b0 · · · bm ∈ Γ∗.
We can construct inductively for each i ≥ 0, a unique sub-computation path C0, . . . , Ci such that each bi is a trace
of Ci and C0 is the initial configuration on input x. In particular, there is an accepting computation path of length
m. Finally, we note that the time used by N is O(m); moreover, if the accepting computation makes r reversals,
then N makes r + O(1) reversals.

Note that we can apply the nondeterministic linear speedup result to N to reduce the time complexity from
O(t) to max{n + 1, t(n)} = t(n), but the number of work-tape would increase to 5. But if t(n) is sufficiently fast
growing, we can first apply speedup result to M then apply the above construction to achieve 2-tape machine with
time complexity t(n) rather than O(t).
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The cited paper of Maass also shows a language accepted by a real-time deterministic 2-tape machine that
requires Ω(n2/log5 n) time on any 1-tape nondeterministic machine. This shows that the Book-Greibach-Wegbreit
result cannot be improved to 1-tape.

Remark: There are complexity differences between k and k + 1 tapes for all k when we restrict attention to
real-time computations: more precisely, there are languages accepted in real-time by some (k + 1)-tape acceptor
but not by any real-time k-tape acceptor. Rabin [32] proved this for k = 1 and Aanderaa [1] showed this in general.
See also [31].

2.6 Simulation by Time

In this section, we will bound space and reversal resources in terms of time. The results are of the form

X-TIME-SPACE-REVERSAL(t, s, r) ⊆ Y-TIME(t′)

where X, Y ∈ {D, N}. Generally, we show this by showing how to simulate a X-mode machine M using time-
space-reversal (t, s, r) using a Y -mode machine N in time t′. We then say we have a ‘simulation by time’. We think
of simulation by time as an attempt to minimize time without consideration of other resources. In the next two
sections, we obtain similar results on simulations by space and by reversal. The importance of these three sections
taken together is how they exemplify the vastly different computational properties of each of these resources.

Theorem 10. Let t be a complexity function, X = D or N . Then

XTIME (t) ⊆ X-TIME-SPACE-REVERSAL(t, O(t), O(t)).

Proof. Observe that if a k-tape M accepts in time t then it clearly accepts in space kt and in reversal (k+1)t.
In particular, XTIME (f) ⊆ XSPACE (O(f)) = XSPACE (f), by the space compression theorem.

Theorem 11. Let M be a deterministic or nondeterministic acceptor. For all complexity functions r, s, if M accepts
in space-reversal (s, r) then
a) each phase of M has length OM(n + s), and
b) M accepts in time OM((n + s) · r).

Proof. A computation path C of M can be uniquely divided into phases which correspond to the time periods
between reversals. Choose C so that no configuration is repeated in C. There is a constant OM(1) such that if
all tape heads of M remain stationary for OM(1) consecutive steps then some configuration would be repeated;
by choice of C, some tape head must move in any consecutive OM(1) steps. There are at most n head motions
that is attributable to the input head – the rest is clearly bounded by s. Hence if the simultaneous space-reversal
of C is (s, r), then each phase has OM(n + s) steps. This proves (a). Since there are r phases, the time of C is
OM((s + n)r), proving (b).

Corollary 12. or X = D, N ,

X-SPACE-REVERSAL(s, r) ⊆ XTIME (O((n + s) · r)).

Lemma 13. Let M be fixed k-tape acceptor, x be an input and h > 0 any integer. Let

CONFIGSh(x) = {〈q, wi, ni〉ki=0 : w0 = x,

k∑

j=1

|wj | ≤ h}

be the set of configurations of M with input x using at most space h. Then

|CONFIGSh(x)| = n ·OM(1)h

where n = |x|+ 1.

Proof. There are at most n + 1 positions for head 0, and at most (h + 2) positions for each of heads 1, . . . , k,
in a configuration of CONFIGSh(x). There are at most

(
h+k−1

k−1

)
ways to distribute h cells among k tapes. These

h cells can be filled with tape symbols in at most dh ways where d is the number of tape symbols of M, including
with the blank symbol. Let q be the number of states in M. Thus:

|CONFIGSh(x)| ≤ q · (n + 2) · (h + 2)k ·
(

h + k − 1

k − 1

)

· dh = n ·O(1)h.
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Theorem 14. If M is a Turing machine that accepts in space s then M accepts in time n · OM(1)s(n). M can be
deterministic or nondeterministic.

Proof. Let C be a shortest accepting computation path on input x using space s(|x|). Then the configurations
in C are all distinct and by the previous lemma, the length of C is upper bounded by n ·OM(1)s(n).

Corollary 15. ith X = D, N , we have

XSPACE(s) ⊆ X-TIME-SPACE (n ·O(1)s(n), s(n)).

Theorem 16. NSPACE (s) ⊆ DTIME (n ·O(1)s(n)).

Proof. Let M be a nondeterministic k-tape machine accepting in space s. The theorem is proved by showing
a deterministic N that accepts the same language L(M) in time n · O(1)s(n). It is instructive to first describe a
straightforward simulation that achieves O(n2 log n ·O(1)s(n)).

On input x, N computes in stages. In stage h (for h = 1, 2, . . .), N has in tape 1 exactly h cells marked
out; the marked cells will help us construct configurations using at most h space. Then N lists on tape 2 all
configurations in CONFIGSh(x). Since |CONFIGSh(x)| = n ·O(1)h, and each configuration needs h + log n space
(assuming the input head position is in binary and input word is not encoded with a configuration), we use a total
of n log n · O(1)h space. On a separate track below each configuration in tape 2, we will mark each configuration
as having one of three possible statuses: unseen, seen and visited. Initially, all configurations are marked ‘unseen’,
except for the initial configuration which is marked ‘seen’. Now N performs a sequence of ≤ |CONFIGSh(x)| sweeps
of the input data, where each sweep corresponds to visiting a particular ‘seen’ configuration; after the sweep, that
‘seen’ configuration will have a ‘visited’ status. To pick a configuration for sweeping, N picks out the leftmost ‘seen’
configuration C on tape 2. When visiting configuration C, N first generates all configurations derivable from C,
say C1 and C2, and puts them on two different tapes. Then N goes through tape 2 again, this time to locate the
occurrences of C1 and C2 in tape 2. This can be done in time n log n ·O(1)h. If Ci is located in tape 2, we mark
it ‘seen’ if it is currently ‘unseen’; otherwise do nothing. Then we mark C itself as ‘visited’. If we ever mark an
accepting configuration as ‘seen’, we can accept at once; otherwise, when there are no more ‘seen’ configurations,
we proceed to stage h + 1 (thus we will not halt if the input is not accepted). The total time in stage h is seen to
be n2 log n ·O(1)h. The correctness of this simulation follows from the fact that the input x is accepted by M iff N
accepts at some stage h, h ≤ s(|x|). The total time to accept is

s(n)
∑

h=1

n2 log n ·O1(1)h = n2 log n ·O2(1)s(n).

We now improve on the O(n2 log n) factor. The idea [7] is to represent the input head positions implicitly.
Let us call a storage configuration to be a ‘standard’ configuration except that information about the input
tape (i.e., the input word and the input head position) is omitted. Thus, for a configuration that uses h space,
the corresponding storage configuration is just the current state, the contents of the work tapes and the positions
of the work heads. This can be stored in O(h) space. In stage h, we first compute on tape 2 a list L of all the
storage configurations using space h. This list can be represented by a string of length h · O(1)h = O(1)h. Then
we duplicate L n + 2 times. So tape 2 contains the string

T = L#L# · · ·#L
︸ ︷︷ ︸

n+2

.

This string represents every ‘standard’ configuration C as follows. If the input head of C is at position i (i =
0, 1, . . . , n + 1) and its storage configuration is S then C is represented by the i + 1st occurrence of S in T . Again,
we assume that the all the configurations in T are initially ‘unseen’ except the initial configuration is ‘seen’. As
long as T has any ‘seen’ configuration, we do repeated sweeps as before to ‘visit’ the leftmost ‘seen’ configuration.
To visit C, we must mark as ‘seen’ any successor C′ of C that is still ‘unseen’. Note that there are O(1) such
successors and these are within O(1)h distance from C. Hence the marking process takes only O(1)h time.

To find the next ‘seen’ configuration to visit, we would also like to spend O(1)h steps in finding it. It turns
out that this can only be done in the amortized sense. The idea is to keep track of the leftmost and rightmost
‘seen’ configuration: for each ‘seen’ configuration, we can store two flags, leftmost and rightmost, which will
be set to true or false according as the configuration is leftmost and/or rightmost. Note that if the next leftmost
‘seen’ configuration lies to the left of the configuration being visited, then we can find it in O(1)h steps. This is a
consequence of our policy to always visit the leftmost unseen configuration first. But if it lies to the right, there is
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basically no bound (i.e., the maximum number n · O(1)h of steps may be needed). However, we shall charge the
cost to traverse an entire block L of configurations to the last visited configuration on that block. Then it is not
hard to see that each visited configuration is charged at most once (assuming as we may, that each configuration
has at most two successors). Thus the charge of O(1)h per visited configuration is maintained. The total charges
over all visited configurations is then n ·O(1)h.

There is one other detail to mention: since the input head position in a configuration of T is implicit, we need
to know the current input symbol for any configuration that we visit in T . This is easy to take care of by using
the input head of the simulator to track the position of head 2. When head 2 is inside the ith copy of L in T ,
we assume that the simulator is scanning the ith cell in its input tape. This concludes our description. There are
n ·O(1)h sweeps and each sweep takes O(1)h time, the total time of stage h is n ·O(1)h. This implies the stated
bound in our theorem.

There is another basic method of doing a time simulation of nondeterministic space. First we review the
connection between Boolean matrices and digraphs. A digraph G on n vertices can be represented by its adjacency
matrix A where A is an n× n matrix with its (i, j)th entry Ai,j = 1 if and only if there is an edge from the vertex
i to vertex j. We assume that Ai,i = 1 for all i. Recall that the product of two Boolean matrices is defined as in
ordinary matrix multiplication except that addition becomes logical-or ‘∨’ and multiplication becomes logical-and
‘∧’. It is easy to see that if B = A2 (A squared) then Bi,j = 1 if and only if there is a vertex k such that
Ai,k ∧Ak,j = 1, i.e. there is a path of length at most 2 from i to j. Arguing the same way, with C = B2 = A4, we
see that Ci,j = 1 if and only if there is a path of length at most 4 from i to j. Therefore we see that A∗ given by

A∗ := A2k

(where k is the least integer such that 2k ≥ n) then A∗
i,j = 1 if and only if there is a path from i to j. The matrix

A∗ is called the transitive closure of A. There is a well-known method attributed to Warshall and to Floyd for

computing the transitive closure A∗. For s = 0, 1, . . . , n, let A(s) be the matrix defined as follows: A
(s)
i,j = 1 if and

only if there is a path from i to j such that the intermediate nodes (excluding i and j) lie in the set {1, . . . , s}.
Hence A∗ = A(n). Clearly A(0) = A. It is also easy to see that A(s+1) is obtained as follows:

A
(s+1)
i,j = A

(s)
i,j ∨

(

A
(s)
i,s+1 ∧A

(s)
s+1,j

)

.

It is easy to see that this algorithm has complexity O(n3) on a random-access machine. It turns out (Exercise)
that we can accomplish this on a Turing machine also, assuming that the matrix A is given in row-major order.
We exploit this connection between paths and transitive closure. In particular, if we regard configurations as nodes
of a graph, and edges correspond to the ⊢ relation, then deciding if a word is accepted amounts to checking for a
path from the start configuration to any final configuration. We leave the details as an exercise. This alternative
method is slightly less efficient with complexity (nO(1)s(n))3 = n3O(1)s(n). We will encounter the transitive closure
method again.

A consequence of this theorem are the following two inclusions among the canonical classes:

NLOG ⊆ P , PSPACE ⊆ DEXPTIME . (5)

Although theorem 16 remains valid if we replace NSPACE with NTIME , the next theorem will show something
slightly stronger. But first we note a fact similar to lemma 13.

Lemma 17. Let M have k-tapes and x an input word. For any h ≥ 1, let CONFIGS ′
h(x) denote the set of

configurations of M that can be reached from the initial configuration on input x using at most h steps. Then

|CONFIGS ′
h(x)| = OM(1)h.

Proof. As before, if q is the number of states in M and d is the number of tape symbols of M, plus one, then
|CONFIGS ′

h(x)| ≤ q · (h + 2)k+1 · dh = O(1)h. The difference is that now, the input head position n0 satisfies
n0 ≤ h + 1.

Thus |CONFIGS ′
h(x)| does not depend on n = |x|.

Theorem 18. NTIME (t) ⊆ DTIME (O(1)t).

Proof. The proof proceeds as in theorem 16 but we now enumerate over configurations in CONFIGS ′
h(x) rather

than CONFIGSh(x).
Although theorems 16 and 18 uses accepting complexity, the results remain valid for running complexity (Ex-

ercise). The next result shows that reversal in the fundamental mode is bounded by a single exponential time.
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Theorem 19. Let M be a deterministic Turing machine accepting in r(n) reversals. Then AcceptT imeM(n) =
n ·OM(1)r(n) (assuming the left-hand side is defined).

Proof. Let M be a k-tape machine and C an accepting computation path on an input of length n > 0. The
theorem follows if we show that the length of C is n · OM(1)r(n). Call a step Cj−1 ⊢ Cj active if any work head
moves during this step from a non-blank symbol; otherwise the step is inactive. Thus, during an inactive step,
the input head can freely move and the work heads may move from a blank symbol. We obtain a bound on the
number of active steps. By assumption, C has r ≤ r(n) phases. Let mi be the number of active steps in phase i
(i = 1, . . . , r).

For any configuration Cj , recall that each head h (h = 0, . . . , k) tends in some direction dh ∈ {−1, 0, +1}.
The potential of tape h in Cj is the number of non-blank cells that would be encountered as head h moves in the
direction dh, starting from its current cell in Cj . If dh = 0 the potential is defined to be zero. For example, if head
h is at the rightmost non-blank symbol, and dh = +1 then the potential is 1; but if dh = −1 then the potential
would be the total number of non-blank cells on tape h. The potential of Cj is the sum of the potentials of all work
tapes (so we discount the potential of the input tape). Clearly the potential of Cj is at most the space usage in
Cj . Therefore, at the start of phase i the potential is at most

k

i−1∑

v=1

mv

since the number of active steps until that moment is
∑i−1

v=1 mv and each active step can create at most k new
non-blank cells, where k is the number of work heads. Suppose inductively that mv ≤ cn(k + 1)v for some c > 0.
This is true for v = 1. Now each active step in a phase consumes at least one unit of potential, so mi is bounded
by the potential at the beginning of the ith phase:

mi ≤ k

i−1∑

v=1

mv ≤ k

i−1∑

v=1

cn(k + 1)v < cn(k + 1)i.

Therefore in r phases, the total number of active steps is

r∑

v=1

mv < cn(k + 1)r+1 = n ·OM(1)r.

It remains to bound the number of inactive moves. There are OM(1) consecutive steps in which no head moves,
and there are at most n moves by the input head in any phase. Hence there are at most n+OM(mi) inactive moves
in the ith phase. Summing over all phases gives at most nr + OM(1)r inactive moves.

Corollary 20. DREVERSAL(r(n)) ⊆ D-TIME-REVERSAL(n ·O(1)r(n), r(n))

Remark: If reversals by input heads are not counted, then we get instead

DREVERSAL(r) ⊆ D-TIME-REVERSAL(n2O(1)r(n), r(n)).

2.7 Simulation by Space

We will present two techniques for simulating other resources so as to minimize deterministic space. These space
simulation techniques are quite different than the time simulation techniques of the previous section.

Theorem 21 ((Extended Savitch’s theorem)). If t(n) ≥ 2s(n) ≥ log n then

N-TIME-SPACE (t(n), s(n)) ⊆ DSPACE(s(n) log

(
t(n)

s(n)

)

).

Proof. Given a nondeterministic machine M accepting in simultaneous time-space (t, s), it suffices to show that
L(M) is accepted in space s log(t/s) by some deterministic N. (We require t(n) ≥ 2s(n) simply to prevent log(t/s)
from vanishing.) An input x of length n is accepted by M iff there is an accepting computation path C whose time-
space is (t(n), s(n)). As in lemma 13, for any h ≥ 1, let CONFIGSh(x) be the set of configurations of M on input
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x using space at most h. For configurations C, C′ ∈ CONFIGSh(x), define the predicate REACHABLEh(C, C′, m)
to be true if there is a sub-computation path from C to C′ of length ≤ m.

Claim A: Assume that the input x is freely available, we can evaluate REACHABLEh(C, C′, m) in deterministic
space O(m + h + log n). Proof of claim. Consider the tree T (C) rooted at C and whose paths comprise all those
sub-computation paths from C of length ≤ m and involving configurations in CONFIGSh(x). It suffices to search
for C′ in T (C) using a standard depth-first search. At any moment during the search, we are at some node labeled
C′′ in T (C). We first check if C′′ is the C′ we are looking for. If not, we try to visit an unvisited successor of
C′′ in CONFIGSh(x), provided C′′ is at depth less than m. If this is not possible, we backtrack up the tree. To
backtrack, we must be able to generate the parent C′′′ of C′′: this is easy if we had stored the instruction of M that
transformed C′′′ into C′′. The space to store this backtracking information is just O(1) per level or O(m) overall.
We also need O(h + log n) to store the current node C′′ and the target configuration C′. When we have searched
the entire tree without finding C′, we conclude that REACHABLEh(C, C′, m) is false. This proves our claim.

Claim B: Assume h ≥ log n and that the input x is freely available, we can evaluate REACHABLEh(C, C′, m)
in in deterministic space O(h log(2 + m

h ). Proof of claim. We use a following simple observation:

(*) REACHABLEh(C, C′, m) holds iff both REACHABLEh(C, C′′, ⌊m/2⌋) and REACHABLEh(C′′, C′, ⌈m/2⌉)
hold, for some C′′ ∈ CONFIGSh(x).

Thus we can evaluate REACHABLEh(C, C′, m) recursively: if m ≤ h, we use claim A to directly evaluate
REACHABLEh(C, C′, m) in space O(h), as desired. Otherwise, if m > h, we use observation (*) to make two
recursive calls to the predicate. Here are the details: To evaluate REACHABLEh(C, C′, m), assume tape 1 of the
machine N stores the value h, tape 2 stores the current arguments (C, C′, m) while tape 3 acts as the recursion stack.
We then systematically enumerate all configurations C′′ ∈ CONFIGSh(x). For each C′′, we recursively evaluate
REACHABLEh(C, C′′, m/2) and REACHABLEh(C′′, C′, m/2) in this order. But before making first recursive call,
we write the pair (C′, 0) on top of the recursion stack, where the Boolean value 0 indicates that this is the first of the
two recursive calls. Then the current arguments on tape 2 are updated to (C, C′′, m/2) and we continue recursively
from there. Similarly, before making the second recursive call, we write the pair (C, 1) on the recursion stack and
update the current arguments on tape 2 to (C′′, C′, m/2). If either one of these recursive calls returns with “failure”
(predicate is false), we generate the next configuration in CONFIGSh(x) and use it place of C′′; in case C′′ is the
last configuration in our enumeration of CONFIGSh(x), we return from the current call REACHABLEh(C, C′, m)
with “failure”. If both recursive calls returns with “success” (predicate is true), we return from the current call
with “success”.

The recursion depth in evaluating REACHABLEh(C, C′, m) is ⌈k⌉ = ⌈log(m/h)⌉ ≥ 1. The space to store the
arguments for each recursive call is O(h + log n) where the log n comes from having to represent the input head
position (the actual input x need not be stored). So the total space used is O((log n + h) log(m/h)), which is
O(h log(m/h)) when h ≥ log n.

Finally, that x is accepted by M if and only if REACHABLEh(C0, Ca, m) is true for some h ≤ s(n), m ≤ t(n),
where Ca ∈ CONFIGSh(x) is an accepting configuration and C0 the initial configuration on input x. By modifying
M, we may assume that Ca is unique in CONFIGSh(x). Since s(n) and t(n) are unknown, N must search for h
and m systematically, using a doubly-nested loop:

for p = 1, 2, . . . ,
for h = 1, . . . , p,

let m = h2⌊p/h⌋ and C0, Ca ∈ CONFIGSh(x).
Accept if REACHABLEh(C0, Ca, m) is true,

The correctness follows from two remarks:
(i) For any given value of p, the maximum space used in the inner loop is O(p). This is because the space to
evaluate REACHABLEh(C0, Ca, m) is order of h lg(m/h) ≤ p.
(ii) If input x is accepted by M then the double-loop accepts for some p = O(s log(t/s)); otherwise, the double-loop
runs forever.

We obtain several interesting corollaries, including the well-known result of Savage [34].

Corollary 22.
(i) (Savitch’s theorem) If s(n) ≥ log n then NSPACE(s) ⊆ DSPACE(s2).
(ii) If s(n) ≥ n then NTIME (s) ⊆ DSPACE(s).
(iii) If s(n) ≥ n, N-SPACE-REVERSAL(s, r) ⊆ DSPACE (s log r).
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Proof. (i) Use the fact that NSPACE (s) = N-TIME-SPACE(O(1)s, s) for s(n) ≥ log n.
(ii) This follows since NTIME (t) ⊆ N-TIME-SPACE (2t, t) but N-TIME-SPACE(2t, t) ⊆ DSPACE (t) by applying
the theorem.
(iii) This follows since N-SPACE-REVERSAL(s, r) ⊆ N-TIME-SPACE ((n + s)r, s) and N-TIME-SPACE((n +
s)r, s) ⊆ DSPACE (s log r) by applying the theorem.

We remark that our formulation of the generalized Savitch theorem is motivated by the desire to combine (i)
and (ii) of this corollary into one theorem.

If s(n) = o(log n), Savitch’s theorem yields NSPACE (s) ⊆ DSPACE (log2 n). Monien and Sudborough have
improved this to

NSPACE (s) ⊆ DSPACE(s(n) log n).

In chapter 7, we further improve upon Monien and Sudborough via a strengthening of theorem 21. Indeed, chapter
7 shows four distinct extensions of Savitch’s theorem!

Corollary 23.

(i) DSPACE (nO(1)) = NSPACE (nO(1)).

(ii) DSPACE(O(1)n) = NSPACE (O(1)n).

This corollary justifies our notation ‘PSPACE ’ since we need not distinguish between ‘D-PSPACE’ and ‘N-
PSPACE’. The notations EXPS and EXPSPACE are likewise justified.

We next simulate deterministic reversals by deterministic space. Istvan Simon [35] had shown how to simulate
simultaneous time-reversal by space. Our next result strengthens his result to space-reversal.

Theorem 24. If s(n) ≥ log n,

D-SPACE-REVERSAL(s, r) ⊆ DSPACE (r log s).

Proof. Given a deterministic k-tape M accepting in space-reversal (s, r), it suffices to construct a deterministic
N accepting L(M) in space r log s. For any configuration C in a computation path C, the trace of C refers to the
head tendencies in C (relative to C) and to information that remains in C after we discard all the tape contents
except for what is currently being scanned.9 More precisely, the trace of C is defined as

〈q, b0, . . . , bk, n0, . . . , nk, d0, . . . , dk〉

where q is the state in C, the bi’s are the scanned symbols, the ni’s are the head positions, and the di’s are the head
tendencies. We remark that the ni’s are absolute positions, unlike our usual convention of using relative positions
in configurations. To simulate the jth step means to compute the trace of the jth configuration of the computation
path. We shall also need the concept of a partial trace: this is like a trace except any number of the bi’s can be
replaced by a special symbol ‘∗’. We say bi is unknown if bi = ∗. Thus a trace is also a partial trace although for
emphasis, we may call a trace a full trace.

On tape 1 of N we assume that we had already computed a sequence

τ1, τ2, . . . , τm

where τi is the trace of the first configuration in phase i. To begin, we can always place the trace τ1 of the initial
configuration on tape 1. Call the last phase (phase m) represented in this sequence the current phase. This means
that our simulation has reached some step in the mth phase.

To simulate a step of a phase, it turns out that we need to simulate k steps from previous phases and thus we
can use recursion. To keep track of these recursive calls, we use tape 2 of N as a recursion stack. On the recursion
stack, we will in general store a sequence of the form

σi1 , σi2 , . . . , σiv
(v ≥ 1)

where m = i1 > i2 > · · · > iv ≥ 1 and each σij
is a partial trace of a configuration in the ijth phase. Furthermore,

all the σij
’s, except possibly for σiv

, are not full traces. Note that σi1 is always in the current phase (phase m).
Intuitively, we are really trying to evaluate σi1 but its evaluation calls for the evaluation of σi2 , which calls for the
evaluation of σi3 , etc. Thus σiv

is the top entry of the recursion stack.

9Warning: in this book we use the term ‘trace’ for several similar but non-identical concepts. The reader should check each context.
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This is how the recursive calls arise. Suppose that at some point in our simulation we managed to compute the
full jth trace τ where the jth configuration belongs to the current phase. Also assume that the recursion stack
contains τ as its only entry. We now want to simulate the (j + 1)st step. Note that we can obtain the partial trace
of the (j + 1)st configuration from the full jth trace: the only unknowns about the (j + 1)st trace are the symbols
under any head that has moved in the transition from the jth configuration to the (j + 1)st configuration. At this
moment, we replace τ on the recursion stack by partial (j + 1)st trace σi1 (as the only stack entry).

Now inductively, assume that we have σi1 , . . . , σiv
(v ≥ 1) on the stack. Let

σiv
= 〈q, b0, . . . , bk, n0, . . . , nk, d0, . . . , dk〉

be the partial trace on top of the stack. We may assume that b0 is known (i.e. not equal to ∗) since this is on the
input tape. Let h ≥ 1 be the smallest index such that bh = ∗ (if σiv

is a full trace, then let h = k + 1). We take
following action depending on two cases:

(1) If h ≤ k then we want to determine bh. Note that we know the position (= nh) of bh and hence from the
contents of tape 1, we can determine the phase preceding phase iv in which cell nh was last visited. If this
cell had never been visited before, we can also determine this fact and conclude that bh is the blank symbol
. Suppose this cell was last visited by configuration C in phase iv+1 (iv > iv+1 ≥ 1). Note that in the

configuration following C, head h must no longer scan cell nh. Our goal is to compute the trace of C. We
say the trace of C is sought after by σiv

. To do this, we copy the trace of the starting configuration of phase
iv+1 to the top of the stack. This trace, σiv+1 , is available in tape 1.

(2) If h = k + 1 then σiv
is a full trace. There are two cases: (i) If this is the trace sought after by the preceding

partial trace σiv−1 then we can fill in one of the unknown symbols in σiv−1 and erase σiv
from the top of the

stack. (ii) If this is not the trace sought after by the preceding partial trace then we simply replace σiv
on

the stack by its successor partial trace. By definition, if v = 1 then case (ii) is applied.

It is clear that we eventually convert the partial trace σi1 into a full trace, and hence repeat the cycle. We need
to consider the action to take when we enter a new phase. Suppose τ = σi1 had just turned into a full trace. Just
before we replace τ on the stack by its successor τ ′, as described in (2), we check whether τ is the beginning of a
new phase, and if so we first store it on tape 1. In fact, the information indicating whether τ is the start of a new
phase could already be determined as we initially form the partial trace corresponding to τ .

The total amount of space required on tapes 1 and 2 of N is O(r log s) since each partial trace uses O(log s)
space. The assumption s(n) ≥ log n is needed to represent the input head positions.

Corollary 25.
(i) (Istvan Simon) D-TIME-REVERSAL(t, r) ⊆ DSPACE (r log t).
(ii) DREVERSAL(O(1)) ⊆ DSPACE (log n) = DLOG.
(iii) For r(n) ≥ log n, DREVERSAL(r) ⊆ DSPACE(r2).

To see (i) use the fact that D-TIME-REVERSAL(t, r) ⊆ D-SPACE-REVERSAL(t, r). For (ii) and (iii), use the
fact that

DREVERSAL(r) ⊆ D-TIME-REVERSAL(n ·O(1)r, r).

As application of part (ii) of this corollary, we note that since the palindrome language can be accepted in linear
time by an acceptor making three reversals, it can be accepted in log space.

Since time, space and reversals are not independent, it is worth pointing out some conditions under which the the-
orem D-SPACE-REVERSAL(s, r) ⊆ DSPACE (r log s) is stronger than its corollary (i), D-TIME-REVERSAL(t, r) ⊆
DSPACE (r log t). For instance, let s(n) = θ(n) = O(log r(n)). Then corollary (i) implies D-SPACE-REVERSAL(s, r)
⊆ DSPACE(r log n) while the theorem yields the stronger D-SPACE-REVERSAL(s, r) ⊆ DSPACE(r log log n).

Remark: Rytter and Chrobak [33] have shown that the the converse of corollary (ii),

DLOG ⊆ DREVERSAL(O(1)),

holds, provided we do not count reversals made by the input head. This extra condition of Rytter and Chrobak is
essential, as pointed out by Lískiewicz10: Book and Yap [3] proved that all tally languages in DREVERSAL(O(1))
are regular. On the other hand, Mehlhorn and Alt (see section 11) has given a non-regular tally language. Thus
corollary (ii) is a proper inclusion. Nevertheless, we cannot strengthen corollary (ii) to DREVERSAL(O(1)) ⊆
DSPACE (s) for any s(n) = o(log n), because the language {anbn : n > 0} belongs to DREVERSAL(O(1)) but not
to DSPACE (s).

10Private communication.
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2.8 Simulation by Reversal

We consider simulation techniques that seek to minimize reversals. Reversal complexity seems much more ‘powerful’
than time and space complexity. For example, to double an arbitrarily large tape segment on a 2-tape Turing
machines takes only 2 reversals – yet the time and space charged against this activity would be linear. Our
intuition about reversals, relative to time or space, is much less developed. This is illustrated by a somewhat
unexpected result from Baker and Book [2] about reversal complexity in the nondeterministic mode:

Theorem 26. RE ⊆ NREVERSAL(2).

Proof. Without loss of generality, let L be a recursively enumerable language accepted by a simple Turing
machine M. Suppose x ∈ L and let C0, C1, . . . , Ck be the accepting computation path of M on x. Assume that all
the Ci’s are encoded by strings of the same length. We construct a two-tape nondeterministic N that accepts L as
follows: on input x, N guesses some sequence C0#C1# · · ·#Ck on tapes 1 and 2 (so the two tapes have identical
contents). Now head 2 reverses until it is at the #-separator between Ck−1 and Ck; while doing this N can verify
if Ck is an accepting configuration. Next, after reversing the direction of head 1, we can easily check that Ck−1

(on tape 2) and Ck (on tape 1) are consecutive configurations of some computation path. If not, N immediately
rejects; in particular, N rejects if |Ck−1| 6= |Ck|. Without any further head reversals, we can continue in this fashion
to check that Ci−1 (on tape 2) and Ci (on tape 1) are consecutive configurations of some computation path, for
i = k − 1, k − 2, . . . , 1. We must ensure that C0 is the initial configuration on input x; but it is simple to ensure
this (without any additional head reversals) while we are guessing the Ci’s.

This result, combined with the earlier

DREVERSAL(r) ⊆ DTIME (nO(1)r),

tells us that there is no fixed complexity function f such that any language accepted nondeterministically in reversal
r(n) can be accepted deterministically in reversal f(r(n)) (contrast with theorem 18 and Savitch’s theorem for time
and space). Thus reversal seems to be rather different than time or space. Later in this book, we see that when
reversal is simultaneously bounded with either time or space, then the corresponding complexity classes are better
behaved.

2.8.1 Basic Techniques for Reversals

In this subsection, we show that reversal complexity in the fundamental mode is also relatively well-behaved. These
results are from [9]. First we give a series of technical lemmas.

Lemma 27 ((Natural Number Generation)). Given as input any integer r > 0 in unary, the string

0̄#1̄#2̄# · · ·#2r − 1#

can be generated by a 2-tape Turing machine M making O(r) reversals. Here m̄ denotes the binary representation
of the integer m of length r, prefixed with 0’s if necessary.

Proof. M first generates the pattern (0r#)2
r

on tape 1. This can be done within O(r) reversals, using a simple
doubling method. Call each portion of the tape 1 between two consecutive # symbols a segment. Similarly, M
generates a pattern P1 = (01)2

r

on tape 2.
Now M uses r stages, making a constant number of reversals per stage, to ‘fix’ the r bits in each segment in

tape 1. (The final string #̄0# · · ·#2r − 1# is going to be the contents of tape 1 at the end of the stages, so ‘fixing’
a bit means making it the symbol 0 or 1 that should appear finally.) For example, with r = 3, the rightmost bit
of the 23 = 8 segments alternates between 0 and 1, i.e. has the pattern P1 = 10101010. The next bit has pattern
P2 = 11001100, and the final bit has pattern P3 = 11110000.

Suppose that at the beginning of the (i+1)st (i ≥ 0) stage, M has fixed the last i bits for each segment on tape
1, and suppose the pattern

Pi+1 = (02i

12i

)2
r−i

is inductively available on tape 2. Here the first bit of a segment refers to its least significant bit. Note that the
(i + 1)st bit of the jth segment is exactly the jth bit of pattern Pi+1.

In the (i+1)st stage M needs to know which bit in the jth segment is the (i+1)st bit. This is solved by placing
a special mark on another track below the ith bit of each segment. These marks are easily updated at each stage.
Now with only one phase, M can fix the (i + 1)st bit for each segment of Pr on tape 1.
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Using a constant number of sweeps, M can generate the pattern Pi+2 = (02i+1

12i+1

)2
r−i−1

from Pi+1. At the
end of the rth stage, the string 0̄#1̄#2̄# · · · 2r − 1# is on tape 1 of M. This completes the proof.

A string of the form
x1#x2# · · ·#xn#, n ≥ 1

(xi ∈ Σ∗, # /∈ Σ) is called a list of n items (xi is the ith item). A list is said to be in normal form if n is a power
of 2 and each xi has the same length. The next lemma shows how to convert any list into one in normal form.

Lemma 28 ((List Normalization)). There is a 2-tape Turing machine M which, given a list x1#x2# · · ·#xn# of
n items on its input tape, can construct another list y1#y2# · · ·#y2k# in normal form using O(log n) reversals.
Therefore,

(a) 2k−1 < n ≤ 2k ;

(b) each yi (i = 1, . . . , 2k) has length max
i=1,...,n

|xi|; and

(c) each yi (i = 1, . . . , n) is obtained by padding xi with a prefix of zeroes and each yj (j = n + 1, . . . , 2k) is a
string of zeroes.

Proof. First M computes the unary representation z0 ∈ {0}∗ of max
i=1,...,n

|xi| as follows: With O(1) reversals, M

initializes tape 1 to have all the odd numbered items from the original list and tape 2 to have all the even numbered
items. So tape 1 and 2 contain the lists x1#x3#x5# · · · and x2#x4#x6# · · · , respectively. In another pass, M
compares x2i−1 on tape 1 with x2i on tape 2 (i = 1, 2, . . . , ⌈n/2⌉), marking the longer of the two words. In O(1)
passes, M can produce a new list z1#z2# · · ·#z⌈n/2⌉# of these marked words. M repeats this process: splits the
list into two with roughly the same number of items, compares and marks the longer item of each comparison,
produces a new list consisting of only the marked items. After O(log n) reversals, M is left with a list containing
only one item. This item has the longest length among the xi’s. It is now easy to construct z0.

The next goal is to construct a string of the form

(z0#)2
k

(where k = ⌈log2 n⌉).

Suppose we already have (z0#)2
i

. Using x1#x2# · · ·#xn# and (z0#)2
i

, M can compare n with 2i: if n ≤ 2i then

we are done, otherwise we will construct (z0#)2
i+1

from (z0#)2
i

using O(1) reversals.

Finally, from (z0#)2
k

, we can easily construct the desired y1#y2# · · ·#y2k#.
A more complicated problem is computing the transitive closure of a matrix. It turns out that the key to

computing transitive closure is a fast matrix transposition algorithm:

Lemma 29 ((Matrix Transposition)). There is a 2-tape Turing machine M such that, given an n × m matrix
A = (aij), M can compute the transpose AT of A using O(log min{m, n}) reversals. Here we assume both A and
AT are stored in row major form.

Proof. Because of the preceding list normalization lemma, we may assume that A satisfies the property m = 2k

for some integer k ≥ 1 and each entry of A has the same length. Let us first show how to compute AT in O(log m)
reversals.

For each i = 0, 1, . . . , k, and for j = 1, 2, . . . , 2i, let A
(i)
j denote the n × 2k−i matrix consisting of the columns

indexed by the numbers
((j − 1)2k−i + 1), ((j − 1)2k−i + 2), . . . , (j2k−i).

For example, A
(k)
j is the jth column of A and for each i,

A = A
(i)
1 |A

(i)
2 | · · · |A

(i)
2i

(where | means concatenation of matrices). An i-row representation of A is a string consisting of the row-major

forms of A
(i)
1 , A

(i)
2 , . . . , A

(i)
2i , listed in this order, separated by ‘$’.

Let A(i) denote the i-row representation of A. The lemma follows if we can show how to obtain A(i+1) from
A(i) in O(1) reversals. This is because the input is A(0) (the row major form of A) and the desired output is A(k)

(the column major form of A).
In order to do the A(i) → A(i+1) transformation, we need some auxiliary data. Define the block pattern:

P (i) = ((w2k−i−1

0 w2k−i−1

1 #)n$)2
i

(i = 0, . . . , k − 1)
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where w0 = 0s and w1 = 1s, and s is the length of each entry of A. Each w2k−i−1

0 (respectively, w2k−i−1

1 ) ‘marks’

a left (respectively, right) half of the rows of A
(i)
j , j = 1, 2, . . . , 2i. P (i) helps us to ‘separate’ the rows of each A

(i)
j

into ‘left half’ and ‘right half’.
We may inductively assume that each tape has two tracks with the following contents: A(i) is on track 1 and

P (i) is positioned directly underneath A(i) on track 2. The case i = 0 is initialized in O(1) reversals. A copy of
P (i+1) can be made on track 2 of tape 2 using P (i). Now it is easy to obtain A(i+1) on track 1 of tape 2.

It is not hard to show that AT can also be computed in O(log n) reversals. We leave the details as an exercise.
Hence if we first determine the smaller of m and n in O(1) reversals, we can then apply the appropriate matrix
transposition algorithm to achieve the O(log min{m, n}) bound.

Lemma 30 ((Parallel Copying Lemma)). There is a 2-tape Turing machine M which, given an input x = 0n#x1x2 · · ·xm,
where xi ∈ Σ∗, (i = 1, . . . , m), produces string y = x2n

1 x2n

2 · · ·x2n

m within O(n) tape reversals, where we assume that
M can recognize the boundary between blocks xi and xi+1, i = 1, . . . , m− 1.

Proof. Using O(n) reversals, M can get a string S = (x1x2 · · ·xm)2
n

. Notice that x2n

1 x2n

2 · · ·x2n

m is the transpose
of S if we regard S as being a m× 2n matrix.

From the last two important lemmas, we get immediately,

Lemma 31 ((Matrix Multiplication)). There is a 2-tape Turing machine M such that, given two n × n Boolean
matrices A = (aij) and B = (bij) in row major form, M computes their product AB = (cij) in O(log n) reversals.

Proof. By lemma 29, we can obtain the transpose BT of B within O(log n) reversals. Let

A = (a11 · · · a1na21 · · · a2n · · ·an1 · · · ann)

and
BT = (b11 · · · bn1b12 · · · bn2 · · · b1n · · · bnn).

By lemma 30, we can get
A1 = (a11 · · · a1n)n(a21 · · · a2n)n · · · (an1 · · · ann)n

and
BT

1 = (b11 · · · bn1b12 · · · bn2 · · · b1n · · · bnn)
n

within O(log n) reversals. Then O(1) more reversals will give AB. So O(log n) reversals are enough for n × n
Boolean matrix multiplication.

Lemma 32 ((Matrix Transitive Closure)). There is a 2-tape Turing machine M such that given an n× n Boolean
matrix A = (aij), stored in row major form, M computes the transitive closure A∗ of A in O(log2 n) reversals.

Proof. Since A∗ = (E +A)m for any m ≥ n, where E is the identity matrix, we can reduce this problem to log n
matrix multiplications.

Sorting seems a very important tool for reversal complexity. Here we give an upper bound for sorting.

Lemma 33 ((Sorting)). There is a 2-tape Turing machine M that, given a list

x1#x2# · · ·#xn#

on its input tape, can construct the sorted list

xπ(1)#xπ(2)# · · ·xπ(n)#

in O(log n) reversals. Here each item xi is assumed to have the form (ki&di) where ki is a binary number repre-
senting the sort key, di is the data associated with ki and & some separator symbol.

Proof. By lemma 28, we can assume that the input list is in normal form. We will be implementing a version
of the well-known merge sort. The computation will be accomplished in k phases, where n = 2k. To initialize the
first phase, we use the parallel copying lemma to construct on tape 1 a string of the form

(x1$)n#(x2$)n# · · ·#(xn$)n#

(for some new symbol $) using O(log n) reversals.

For i = 1, 2, . . . , k, let f(i) = 2k −∑i−1
j=1 2j = 2k − 2i + 2. So f(1) = 2k and f(k) = 2. At the beginning of the

(i + 1)st phase (i = 0, 1, . . . , k − 1), we will inductively have on tape 1 a string of the form



76 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

B1#B2# · · ·#B2k−i#

where each Bj has the form

(xj,1$)f(i+1)%(xj,2$)f(i+1)% · · ·%(xj,2i$)f(i+1)

where xj,1, xj,2, . . . , xj,2i are distinct items from the original list, already sorted in non-decreasing order. Call Bi

the ith block. The substring in a block between two consecutive ‘%’ is called a subblock. Observe phase 1 has been
properly initialized above.

We also need some auxiliary data to carry out the induction. Let w0 = 0s1 where s = |xi| (for all i). For this,
we assume that at the beginning of the (i + 1)st phase, we also store on tape 1 the patterns

Pi = (w2i

0 #)
n

and

Qi = (w
f(i)
0 #)

n

Note that Qi can be easily obtained from Pi−1 and Qi−1 within O(1) reversals and Pi can be obtained from Pi−1

in another O(1) reversals. Again, phase 1 is easily initialized.
Let us now see how we carry out phase i + 1. First we split the string B1#B2# · · ·#B2k−i# into two lists

containing the odd and even numbered blocks: tape 1 now contains B1#B3# · · ·#B2k−i−1# and tape 2 contains
B2#B4# · · ·#B2k−i#. This can be done using O(1) reversals.

Our goal is to ‘merge’ B2j−1 with B2j , for all j = 1, 2, . . . , 2k−i−1 in parallel. Let

B2j−1 = (y1$)f(i+1)%(y2$)f(i+1)% · · ·%(y2i$)f(i+1)

and
B2j = (z1$)f(i+1)%(z2$)f(i+1)% · · ·%(z2i$)f(i+1)

We begin by comparing the first copy of y1 with the first copy of z1. Suppose y1 ≥ z1 (‘≥’ here is the ordering
on the items, as defined by the sort key). Then we ‘mark’ the first copy of z1 and move head 2 to the first copy
of z2 in the block B2j . We can compare the second copy of y1 with this copy of z2, marking the smaller of y1 and
z2. If y1 is smaller, we move to the first copy of y2 and next compare y2 with z2. Otherwise, z2 is smaller and we
next compare the 3rd copy of y1 with the first copy of z3. In general, suppose we compare (some copy of) yi with
(some copy of) zj. We mark the smaller of the two. If yi is smaller, we next move head 1 to the first copy of yi+1

and move head 2 to the next copy of zj and proceed with comparing these copies of yi+1 and zi; Otherwise, zj is
smaller and the roles of y and z are exchanged in the description. (For correctness, we will show below that there
is a sufficient number of copies of each item.)

Eventually, one of the blocks is exhausted. At that point, we scan the rest of the other block and mark the first
copy of each remaining item. Notice that each subblock now contains exactly one marked copy. We then proceed
to the next pair of blocks (B2j+1 and B2j+2).

After we have compared and marked all the pairs of blocks, we will get two strings S1 and S2, with one copy of
an item in each subblock of each block marked, on the two tapes, respectively. Our goal is to produce the merger
of B2j−1 and B2j from S1 and S2. Call the merged result B′

j . We will scan S1 and output on tape 2 a partially
instantiated version of B′

j . Our preceding marking algorithm ensures that if a marked copy of item w in S1 is
preceded by h copies of w then w has been compared to and found larger than h other items in S2. In the merge
result, we want to place these h smaller items before w. Since each item should be repeated f(i + 2) times in its
subblock in B′

j we must precede w with

h(1 + |z1$|f(i + 2))

blank spaces to accommodate these h subblocks which will be placed there in another pass. With the help of the
pattern Qi+2, we can leave the required amount of blank spaces for each subblock in B′

j . More precisely, we make
a copy of Qi+2 in a track of tape 2 and use it as a ‘template’ which has the block and subblock structure already
marked out. As we scan string S1, for each unmarked copy of an item preceding its marked version, we skip a
subblock of Qi+2. When we reach a marked version of item w in S1, we will copy that f(i + 2) successive copies of
w into a subblock of Qi+2. To see that there are enough copies of w on S1 following this marked w, observe that
there are a total of f(i + 1) copies of w in its subblock in S1 and since at most 2i copies of w precedes its marked
version, there are at least f(i + 1) − 2i ≥ f(i + 2) copies left. When we finish this process, we scan the partially
formed B′

j and the string S2 simultaneously, and fill in the remaining subblocks of B′
j . We finally have a new list

of blocks:
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B′
1#B′

2# · · ·#B′
2k−i−1

#

where each B′
j has the required form

(xj,1$)
f(i+2)

%(xj,2$)
f(i+2)

% · · ·%(xj,2i+1$)
f(i+2)

.

This completes the proof.
For some applications, we need the sorting algorithm to be stable:

Lemma 34 ((Stable Sorting)). The above sorting algorithm can be made stable in this sense: if the output list is

xπ(1)#xπ(2)# · · ·#xπ(n)#

where each xπ(i) has the key-data form kπ(i)&dπ(i), then for each i = 1, . . . , n − 1, kπ(i) = kπ(i+1) implies π(i) <
π(i + 1).

Proof. To do this, we first number, in another track (say track K) of the tape, the items in the string to be
sorted sequentially. This takes O(log n) reversals. Next use the method of lemma 33 to sort the string. After
sorting, those items with a common sort key will form a contiguous block. We apply the sorting method again to
each block of items, where we now sort each block by the numbers of items (as written on track K). To do this
in O(log n) reversals, we must do this second sorting for all the blocks simultaneously − our above method can be
modified for this.

2.8.2 Reversal is as powerful as space, deterministically

We now have the tools to prove the main result of this subsection, which is an efficient simulation of a space-
bounded computation by a reversal-bounded computation (all deterministic). The idea is roughly this: to simulate
a machine using s(n) space, we first use the Natural Number Generation lemma to generate all configurations
using space s(n). Then we use the Parallel Copying Lemma to obtain a string S containing many copies of these
configurations. With two identical copies of S, we can march down these two copies in a staggered fashion (as in
the proof of the Baker-Book theorem), to extract a computation path. This method is reversal efficient because
most of the reversals are made when we generated S.

Theorem 35. Suppose s(n) = Ω(log n). Then any language L ∈ DSPACE (s(n)) can be accepted by a 2-tape
deterministic Turing machine M within O(s(n)) reversals.

Proof. First we assume that s(n) is reversal constructible and s(n) = Ω(n).
Let N be a deterministic Turing machine N that accepts L in space s(n). We construct a 2-tape Turing machine

M that accepts L in O(s(n)) reversals. Fix any input x of length n.

(a) We first construct an integer s = θ(s(n)) in unary, using s reversals (recall the definition of reversal con-
structible).

(b) Given an input x of length n, M first generates a string of the form

W1 = 0̄#1̄#2̄# · · ·#2s − 1#

We can suppose that all the possible configurations of N on input x are included in the string W1.

(c) From string W1, using O(1) reversals, we can construct another string

W2 = z0#z1# · · ·#z2s−1#

such that |zm| = s and zm is the ‘successor configuration’ of configuration m in the string W1, m =
0, 1, . . . , 2s − 1. If m is a terminal configuration, we may indicate this by using some suitable zm.

Combining strings W1 and W2 into one tape, we get a string

W3 = u1#u2# · · ·#u2s

with each um (m = 1, 2, . . . , 2s) is a 2-track string of the form
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Cm

C′
m

where Cm and C′
m are configurations of N on input x such that Cm ⊢ C′

m.

(d) Next we construct two identical strings S1 and S2 on tapes 1 and 2 of M, respectively, using O(s) reversals:

S1 = S2 = ((u1$)2
s

#(u2$)2
s

# · · ·#(u2s$)2
s

%)
2s

We will call each substring of the form (u1$)
2s

#(u2$)
2s

# · · ·#(u2s$)
2s

(as determined by two consecutive

%-symbols) a block of S1 or of S2. For each j = 1, 2, . . . , 2s we call the substring (uj$)
2s

a uj -segment.

(e) With these two strings, we now construct the computation path

P = C0 ⊢ C1 ⊢ · · · ⊢ Ci ⊢ · · ·

of N on input x in another O(1) reversals as follows.

(e1) Consider the first ui1 -segment in S1 where the upper track of ui1 contains the initial configuration C0 of N
on input x. Begin by marking the first copy of ui1 in this segment and place head 1 between the first and
second copies of ui1 in the ui1 -segment. (By ‘marking’ of a copy of ui1 , we mean a special symbol is placed at
the end of that copy on a separate track. This marking amounts to nothing in the following procedure, but
helps the visualization of the proof.) Moreover, place head 2 at the beginning of the first block of string S2;

(e2) Inductively, suppose we have already found and marked a sequence ui1 , ui2 , . . . , uiq
on the string S1 on tape

1 such that the lower track of uij
is identical to the upper track of uij+1 , j = 1, 2, . . . , q− 1. Hence the upper

track of uil
contains the configuration Cl in the above path P for l = 1, 2, . . . , q. Suppose also that head 1 is

placed between the first and second copies of uiq
in the qth block in S1 and that head 2 is placed at beginning

of the qth block in S2. Our goal is to find a segment (uiq+1$)
2s

in the qth block of S2 such that the lower
track of uiq

is identical to the upper track of uiq+1 . Let Cq+1 be the configuration in the lower track of uiq
. If

Cq+1 is accepting (respectively, terminal), then we accept (respectively, reject) at once. Otherwise, we look
for an occurence Cq+1 in the first upper configuration of each segment of the qth block of S2. Note that to
do this without any head reversals, we use the 2s − 1 successive copies of Cq+1 in the current segment of S1.

We will surely find the desired segment (uiq+1$)
2s

in the qth block of the string S2. In particular, if the
2s−1 copies of Cq+1 in the current segment are used up, the desired uiq+1 must be the very last segment (the
u2s-segment) in the qth block. Head 2 is now between the first and second copies of uiq+1 in the uiq+1 -segment.

Our goal now is to return to the inductive basis: with head 1 between the first and second copies of uiq+1

in the q + 1st block of S1, and head 2 at the beginning of the q + 1st block of S2. But the procedure just
described can be applied with simple changes (viz., we reverse the roles of S1 and S2 and look for the first
occurence of uiq+1 in the next block of S1). When this is done, we are ready for next iteration looking for
uiq+2 .

If we exhaust the entire string S1 without accepting or rejecting in the above procedure, then N must be in a
loop. Then M will reject.

We now return to two assumptions we made at the beginning of this proof: (a) First we indicate how to modify
the above proof for the case s(n) = o(n). The above assumed that the entire input string x is stored with each
configuration. This information is now omitted, although the input head position is retained. Then by sorting the
string W1 by the positions of the input head, followed by one sweep of the input x, we are able to record the ‘current
input symbol’ into each of the modified configurations. A similar sort can be applied to W2 in its construction.
Then the entire procedure can be carried out as before. (b) Finally, we show how to avoid the assumption that
s(n) is reversal constructible. The problem arises because we cannot do the usual trick of trying successive values
of s by increments of one. This is because reversal, unlike space, is not reusable and it would lead to s(n)2 reversals
overall. But we can easily fix this by doubling the value of s at each stage (s = 1, 2, 4, 8, . . ., etc).

Corollary 36. For any s(n) = Ω(log n),

DSPACE (s) ⊆ DREVERSAL(s).

Thus, for deterministic Turing machines, reversal as a complexity resource is at least as powerful as space.
Combined with Savitch’s result, we obtain:
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Corollary 37. For any s(n) = Ω(log n),

NSPACE (s(n)) ⊆ DREVERSAL(s(n)2).

Using the fact that DREVERSAL(r) ⊆ DSPACE (r2) for r(n) = Ω(log n) (see previous section), we get impor-
tant consequences:

Corollary 38.
PLOG := DSPACE(logO(1) n) = DREVERSAL(logO(1) n)

PSPACE := DSPACE (nO(1)) = DREVERSAL(nO(1))

EXPS := DSPACE (O(1)n) = DREVERSAL(O(1)n)

In short, in the fundamental mode of computation, space and reversals are polynomially related.
Finally, it turns out that the above results and techniques yields a tape-reduction theorem of the form:

Theorem 39. (Tape reduction for reversals) Let r(n) = Ω(log n). If L is accepted by a determinisitic multitape
machine within r(n) reversals then it is accepted by a 2-tape deterministic machine within O(r(n)2) reversals.

Further results on reversal complexity can be found in [8].

2.8.3 Reversal is more powerful than time, deterministically

We now prove a result of Lískiewicz [26] showing that deterministic reversal is stronger than deterministic time by
a square factor:

Theorem 40. For all complexity function t(n) ≥ n, DTIME (t) ⊆ DREVERSAL(
√

t).

A fundamental problem that we need to solve is the problem of retrieving data from a table. We have already
seen this problem, but let us now give it an abstract description. A table T is just a m× 2 matrix,

T = k1$d1#k2$d2# · · ·#km$dm, (ki, di ∈ Σ∗).

Each ki is called a key and di is called the data item associated to ki. We may assume that the keys ki’s are
distinct. The retrieval problem is formulated as follows: given the table T on tape 1 and a key k ∈ Σ∗ on tape
2, to locate k in T and then write its associated data d out to some specified output tape; if k is not a key in T ,
we output some special symbol. Using the previous techniques, we can solve this problem in O(log m) reversals:
first, we generate (k$)m on tape 3 in O(log m) reversals. Then we can search for occurence of k in T in the obvious
way: compare the ith copy of k on tape 3 to ki in tape 2. If they are equal, we can output di on the output tape,
otherwise, we go to the next i.

A key idea in Lískiewicz’s proof is what we shall call turbo-charged retrieval: the table T is now replaced
by

T ′ = (k1$d1$)m#(k2$d2$)m# · · ·#(km$dm$)m

and the search argument k is replaced by (k$)m. We want the output to be (d$)m where d is the data associated
to k.

Lemma 41. The turbo-charged retrieval problem can be solved in O(1) reversals.

Proof. We proceed as in the retrieval method above that uses O(log m) reversals, except that we skip the
O(log m) reversals needed to make m copies of k. Once a copy of the key k is located in T ′, it is a simple matter
to write out the desired output (d$)m in O(1) additional reversals.

Next, we reduce the problem of simulating a deterministic machine M that accepts in time t(n) to a sequence of
retrievals. On input of length n, let h =

√

t(n). If C, D are of configurations of M, we say that D is a h-successor
of C if C derives D in exactly h steps, unless the computation path from C terminates in less than h steps in which
case D is the terminal configuration. Intuitively, we want to construct a table T whose pairs (ki, di) correspond to
pairs (C, D) where D is a h-sucessor of C. Then, starting from the initial configuration C0, we can do a sequence of
h retrievals from T to obtain C1, C2, . . . , Ch where Ci+1 is the h-successor of Ci. Of course, we should turbo-charge
T and C0 so that we only use O(1) reversals per turbo-charged retrieval. The problem with this scenario is that
the turbo-charging is too expensive because there are Ω(2t) distinct configurations in T and this would require Ω(t)
reversals for turbo-charging.

This brings us to the second idea of the simulation: we shall consider fragments of configurations. Let M have k
work tapes. We first partition each tape (input tape as well as work tapes) into h-blocks where each block consists
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of h consecutive cells. We may assume that an h-block occupies the cells numbered (i−1)h+1, (i−1)h+2, . . . , i ·h
for some i ∈ Z; we may call this the ith block. An extended h-block is just 3 consecutive blocks on some tape;
these blocks are called the left-, center- and right-blocks, respectively, of the extended block. An h-fragment
is a sequence

F = F0%F1% · · ·%Fk

where each Fi is the contents of an extended h-block of tape i. (We simply say ‘block’, ‘fragment’, etc, when the
h is understood or irrelevant.) The ‘contents’ of a cell shall include the current state q if that cell is currently
scanned: if a cell contains symbol a and is currently being scanned, then its contents is the pair (q, a). We say that
the fragment F = F0% · · ·%Fk is centered if, for each i = 0, . . . , k, some cell in the center-block of Fi is being
scanned. Note that in a centered fragment, the state q is duplicated k + 1 times. For any configuration C, there is
a unique centered h-fragment associated to C.

The importances of h-fragments is that there are O(1)h of them. If F is a centered h-fragment, we define an
h-fragment G to be the h-successor of F as follows: let F be associated to some configuration C, and D be the
h-successor of C. Then G is the h-fragment obtained from D by considering the contents of the blocks used in
F . Note that G need not be centered; it is also easy to see that G is uniquely defined (it is independent of our
choice of C). Let Th be the search table whose keys are precisely all the O(1)h centered h-fragments, and the data
associated to a fragment F is just the h-successors G of F .

Lemma 42. Given h in unary, we can set up the search table Th in O(h) reversals.

Proof. We first generate a sequence
k1#k2# · · ·#km

of all centered h-fragments. This is done using the number generation technique and discarding those “numbers”
that do not correspond to centered h-fragments. In O(1) reversals, convert this to the trivial identity table:

Th = k1$d1#k2$d2# · · ·#km$dm

where di = ki for each i. Next, we ‘scan’ this table h times, and each time we replace the data di by its 1-successor
fragment. Each ‘scan’ actually takes O(1) reversals.

We then turbo-charge table Th to

T ′
h = (k1$d1$)m#(k2$d2$)m# · · ·#(km$dm$)m

This amounts to parallel copying, and can be done in O(h) reversals. The final step is to carry out the simulation.
We need to describe the representation of configurations. Let C be a configuration of M. For i = 0, . . . , k, let

the nonblank contents Wi of tape i be contained in blocks ℓ to u:

Wi = BℓBℓ+1 · · ·Bu−1Bu.

Let us note that W0 always uses ⌈n/h⌉ blocks; but for i = 1, . . . , k, we initially represent only one block in Wi

(this block is all blank except for the indication of the position of head i). During the simulation, we will add
more blocks of blanks as needed. Normally, we would represent C as W0%W1% · · ·%Wk. But to turbo-charge the
representation, we represent C as C = W ′

0%W ′
1% · · ·%W ′

k where

W ′
i = (Bℓ$)m#(Bℓ+1$)m# · · ·#(Bu$)m.

We now return to the proof of the main theorem. We shall operate in stages. In stage i = 1, 2, 3, . . . , we store
the value h = 2i in unary on tape 1. Using the stored valued of h, we can set up the turbo-charged table Th on tape
2, and the turbo-charged initial configuration C0 on tape 3. Setting up tapes 2 and 3 each takes O(h) reversals.
We now do the following “block simulation step” for a total of h times:

Block Simulation Step. Inductively, let tape 3 contain some turbo-charged configuration C. We first extract
onto tape 4 the extended blocks corresponding to head positions on each tape of M:

(B0
L$)m#(B0

C$)m#(B0
R$)m% · · ·%(Bk

L$)m#(Bk
C$)m#(Bk

R$)m. (6)

Here, Bi
LBi

CBi
R represents an extended block of tape i. This can be done in O(1) reversals. Using the matrix

transpose technique, in O(1) reversals, we convert this into

(B0
LB0

CB0
R$)m#(B1

LB1
CB1

R$)m# · · ·#(Bk
LBk

CBk
R$)m.
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Doing this one more time, we convert it to the “turbo-charged h-fragment”

(F%)m = (B0
LB0

CB0
R#B1

LB1
CB1

R# · · ·#Bk
LBk

CBk
R%)m.

We can use this as the search key for a turbo-charged retrieval on the table Th. We may assume that the retrieved
data (G%)m is placed in tape 4, replacing (F%)m. By reversing the above process, we convert (G%)m into the form
equation (6) in O(1) reversals; this is still stored in tape 4. Then in O(1) reversals, we can update the configuration
C in tape 3 using the contents of tape 4. This ends a “block simulation step”. The number of reversals in O(1).

Clearly, if C is the configuration at time t then after a block simulation step, C is the configuration at time
t + h (or else it is the terminal configuration). Thus after h block simulation steps, we have reached terminal
configuration if the computation path terminates in ≤ h2 steps. If a terminal configuration, we can accept or reject
accordingly. Otherwise, we double h and go to the next stage. The total number of reversals in stage h is O(h).
Clearly if the input is accepted in ≤ t(n) steps then the value of h is bounded by 2

√

t(n). Hence the total number

of reversals is easily seen to be O(
√

t(n)). This proves the theorem of Lískiewicz.

2.9 Complementation of Space Classes

In this section, we prove that deterministic and nondeterministic space classes, with some reasonable technical
restrictions, are closed under complement. This result for nondeterministic space classes solves a major open
problem dating back to Kuroda in 1964, namely, NSPACE (n) is closed under complementation. Kuroda’s problem
is closely related to the so-called LBAQuestion. We may identify linear bounded automata with nondeterministic
Turing machines that operate in linear space. Hence the class NSPACE(n) is also denoted LBA. The deterministic
version, DSPACE (n) is known as DLBA. The LBAQuestion asks if LBA = DLBA? See §4.1 for a discussion of
this and related questions. There is an important alternative characterization of LBA: it is precisely the class of
context-sensitive languages studied in formal language theory.

The solution was independently obtained by Immerman [22] and Szelepcsényi [37]. Their solution was a surprise
in two ways: the solution was surprisingly simple, and many researchers had expected the opposite result. The
technique for this result has wider applications that the interested reader may further pursue (e.g., [28, 38, 24, 6]).

This section uses running complexity rather than accepting complexity. Recall our notation for running com-
plexity classes uses the subscript ‘r’, as in DSPACEr(s) or NSPACE r(s). It is also crucial that the complexity
function s = s(n) has the property that for all n ∈ N, s(n) is defined and <∞. Suppose a machine M has such a
running space complexity s(n). Then for all computation paths, on any input, use only a finite amount of space.
It is important to realize that this does not preclude infinite computation paths.

2.9.1 Complement of Deterministic Classes

To motivate the proof, observe that deterministic running time classes are closed under complementation:

co-DTIME r(t) = DTIME r(t) (7)

In proof, suppose a deterministic acceptor M runs in time t. We can easily define a deterministic acceptor N that
runs in time t such that co-L(M) = L(N): N simply rejects iff M accepts, but in all other respects, N behaves
exactly as M. This proves (7). Note that the restriction t(n) <∞ is essential and implies that M always halts. The
main result of this subsection is to show the space analogue of (7) using a technique of Sipser [36].

Theorem 43 ((Complement of deterministic space classes)). If s(n) < ∞ for all n, then co-DSPACE r(s) =
DSPACE r(s).

The above trick of reversing the roles of acceptance and rejection is insufficient because the fact that M runs
in a finite amount of space does not guarantee that M halts. The proof of theorem 43 therefore hinges upon the
ability to guarantee halting; indeed it is easily seen to be an immediate consequence of:

Lemma 44. For every deterministic Turing acceptor M that runs in space s(·), there is a deterministic N that runs
in space s such that L(M) = L(N) and N halts on all computation paths.

One idea for proving this result is to keep two running counts for the number of steps t taken and the amount
of space s used: if t > nOM(1)s, we know that we must be looping. However, this proof requires that s(n) ≥ log n
in order to store the value of t (why?). The following proof places no such restrictions on s(·).
Proof of lemma 44. Without loss of generality, assume that M has only one work tape. This means that if C ⊢ C′

then space(C′)− space(C) is 0 or 1. Let us also fix an input x of M throughout the following proof. For any h > 0,
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let V = CONFIGSh(x) be the set of configurations of M on input x using space at most h. Let G = Gh = (V, E)
be the digraph whose edges comprises (C, C′) ∈ V 2 such that C ⊢M C′. Since M is deterministic, each node of G
has outdegree at most 1. It is also not hard to see that G has indegree bounded by some constant OM(1). The
graph G has many properties, as illustrated by figure 2.4.

Figure 2.4: Components of a digraph G with outdegree ≤ 1.

Each acyclic component of G will just be a rooted tree. If a component is not a rooted tree, then it has a unique
cycle C and has a set of trees, each rooted at some node of C. In this discussion, the edges of a tree are always
directed towards the root.

For any configuration C ∈ V , let T (C) denote the subgraph of G induced by the subset of configurations C′ ∈ V
that can reach C. Note that by our machine conventions, if C ⊢ C′ then space(C) ≤ space(C′); hence the space
usage of each configurations in T (C) is at most space(C). If C is a node in a directed cycle of G then T (C) an
the entire component of G; otherwise, T (C) is a tree. Unfortunately, to discover if C is in a cycle may take a long
time. For our application, an alternative easy-to-check condition is sufficient: we say C is expectant if C ⊢ C′ and
space(C′) > space(C). The following is immediate:

Fact. If C is expectant or terminal then T (C) is a tree.
We describe a search procedure for T (C) where C is expectant or accepting (hence terminal). This procedure

returns “success” if the initial configuration C0(x) is in T (C), and “failure” otherwise. We will use the standard
depth-first search (DFS) order of visiting the nodes, but with one important difference: In the usual implementation
of DFS, we need to represent the path from the root to the currently visited node, maintained on a (recursion)
stack. This information is needed to return from a node to its parent. However, in a DFS on T (C) we can avoid
storing this information since the parent of a node C′ is simply the successor of C′.

Search(C):
Input: configuration C such that T (C) is a tree.

if C = C0(x), return(“success”).
for each child C′ of C

Recursively search(C′).
If search of C′ is successful, return(“success”).

return(“failure”). //no recursive calls were successful.

We now show how to implement Search(C). on a Turing machine N using O(space(C)) amount of space. Notice
that the conventional representation of C uses O(space(C) + log |x|) space. We avoid the log |x| term by assuming
that x is available on the input tape, and the input head is at the correct position of the input. Hence there is no
need to represent x or the input head position explicitly on the work tapes. Let N use two work tapes only. Tape
0 stores the input x; tape 1, it stores the current node C that is being visited; tape 2 is used as scratch space. At
the start of the recursive call, N checks if C is equal to C0(x) and if so, returns with “success”. Else, if C is a leaf,
return with “failure”. Otherwise, N will generate the first child C1 of C and store it on tape 1, and recursively call
search on C1. We leave as an exercise to work out the details of this generation. In general, suppose we have just
returned from a recursive search on some child Ci of C. By assumption, we a copy of Ci on tape 1. It is easy to
generate C from Ci, since Ci ⊢ C. If the search of Ci is a success, we return success from C; otherwise, we try to
generate the next child Ci+1 to repeat the recursive search. If C has no more children, we return “failure”. This
completes the description of search.
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To conclude the proof of the lemma, we show how to use the search procedure. N will compute in stages. In
stage h (h = 1, 2, . . .) N systematically generates all configurations C that use space h. At the start of stage h, we
initialize a found flag to false. For each expectant or accepting C, N calls the search(C). If the search is successful
we take one of two actions: if C is accepting, we accept (terminating the entire computation). Otherwise, C is
expectant, and we set the found flag to true. After we have examined all configurations using space h, we check
the found flag. This flag is true iff C0(x) can reach some expectant configuration using space h. In this case N
proceeds to stage h + 1. Otherwise, we terminate the entire computation and reject.

Why is this procedure correct? If this procedure accepts, then C0(x) reaches some accepting configuration. If
this procedure rejects, C0(x) does not reach any accepting configuration using space ≤ h, and moreover, it can
never reach any configuration using more than space h. Hence we may safely reject. Thus acceptance or rejection
decisions by our procedure are always correct. But we must guard against the possibility of looping. But our
requirement for proceeding from stage h to the stage h + 1 ensures that the original machine M actually runs in at
least h + 1 space if we reach stage h + 1. Since s(n) <∞, we must get a decision in some finite stage.

As an interesting consequence of the previous lemma, we have:

Theorem 45. If n ≤ s(n) <∞ is an exact space-complexity then s(n) is space-constructible.

Proof. Let M run in space exactly s. By the previous lemma, we may assume that M halts on all inputs. Now
construct another acceptor N as follows: given an input of length n, N ignores the input except for noting its
length. Then for each word x of length n, N simulates M on x, marking out the number of cells used. It is clear
that N will mark out exactly s(n) cells. The condition that s(n) ≥ n is needed in order to cycle through all words
of length n.

Note: Hopcroft and Ullman, [21] originally showed that DSPACEr(s) is closed under complementation under
the restriction s(n) = Ω(log n)s, using the idea of a counter mentioned above. Later Hartmanis and Berman [14]
proved that, in case the input alphabet is unary, we can drop the assumption s(n) = Ω(log n). The above proof
from Sipser shows that we can drop this assumption in general.

Jianer Chen has shown that deterministic reversal classes are also closed under complement:

Theorem 46. Let M accept in f(n) <∞ reversals where f is time-constructible. Then there is a machine N that
accepts L(M) in O(f) reversals and always halts.

2.9.2 Complement of Nondeterministic Classes

We prove the Immerman-Szelepcsényi result:

Theorem 47 ((Complement of nondeterministic space classes)). If log n ≤ s(n) <∞ for all n then NSPACE r(s) =
co-NSPACE r(s).

For the proof, let us fix M to be any acceptor running in space s(n) ≥ log n. We also fix the input word x.
For any h ≥ 0, m ≥ 0, let REACHh(m) denote the set of all configurations of M using space at most h that can
be reached from the initial configuration C0(x) in at most m steps. The (reachability) census function αh(m) (or
simply αh(m)) is given by

αh(m) = |REACHh(m)|.

Note that αh(0) = 1 and αh(m) ≤ αh(m+1). Moreover, if αh(m) = αh(m+1) then for all j > m, αh(m) = αh(j).
Our basic goal is to compute this census function.

But first, let us see how such a census function is used. This is seen in a nondeterministic subroutine

Check(C, h, m, αh(m))

that “accepts” iff C ∈ REACHh(m).
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Check(C, h, m, αh(m)):
begin checking
c0 ← 0; // Initialize counter
For each configuration C′ using space at most h,

begin // iteration
Nondeterministically guess a path using ≤ h space
and ≤ m steps, starting from C0(x);

If this path reaches C then accept;
If this path reaches C′ then increment c0 by 1;

end // iteration
If c0 = αh(m) then reject;
Else loop;
end // checking.

Note that this procedure terminates in one of three ways: accept, reject, loop. These are indicated (respectively)
by entering state qa, state qr or reaching any terminal configuration that is neither accepting nor rejecting. Assuming
h ≥ log |x|, it is not hard to see that the space used by the algorithm is

h + log m

(the log m space to count the number of steps in guessed paths). This algorithm is remarkable in three ways. First,
we notice that this algorithm does not take all inputs, but only those 〈C, h, m, p〉 whose last three arguments are
constrained by the equation p = αh(m). Such inputs are called well-formed for this algorithm.11 Logically speaking,
the last argument is redundant because h and m determines αh(m). However, from a complexity viewpoint, this
argument is not redundant because it is not easy to compute αh(m) from h and m. Second, we make a distinction
between rejection (i.e., halting in the reject state qr) and looping. In general, looping means that the machine
either does not halt or enters a terminal state that is neither accepting nor rejecting. Third, our acceptor has the
property that on any well-formed input:
(a) at least one path accepts or rejects;
(b) there does not exist two paths, one accepting and the other rejecting.

In general, we call a nondeterministic acceptor M unequivocal if it satisfies (a) and (b) above. We then say that
M unequivocally accepts its (well-formed) inputs.

Recall in section 2 the definition of univalent (nondeterministic) transducers that compute transformations. We
want to use such transducers to compute αh(m). The input k and output αh(m) are represented in binary.

Lemma 48. Let h ≥ log |x|. There is a univalent transducer N that computes αh(m) for any h, m ≥ 0. The running
space of N is O(h + log m).

Proof. Suppose that we have recursively computed αh(m − 1); note that this value can be stored in space
O(h + log |x|). This is computed univalently, meaning that at least one partial computation path that leads to the
value αh(m − 1) and enters a special state q1; furthermore, all paths that lead to state q1 yield the same value.
Assuming that we have reached this special state q1, we then call the following Count subroutine that computes
αh(m) from αh(m− 1):

Count(h, m, αh(m− 1)):
begin counting;

c1 ← 0; // initialize counter
For each configuration C using space at most h,

begin // outer iteration
c2 := 0; // initialize counter
For each configuration C′ using space at most h,

begin // inner iteration
res ← Check(C′, h, m− 1, αh(m− 1));
If ((res=“accepts”) and (C′ = C or C′ ⊢ C)) then c1 ← c1 + 1 and break;

end // inner iteration
end // outer iteration

Return(c1);
end // counting.

11Cf. assumption (C) in chapter 1 (§4).
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The counter c1 is incremented if we found C that can be reached in at most m steps. Note that once counter c1

is incremented, we break out of the inner loop. Hence, c1 counts the number of configurations that are reachable
in at most m steps. If the nondeterministic subroutine Check loops, then we automatically loop.

Let us verify that the procedure for computing αh(m) is univalent. The key observation is that for every
configuration C, the paths (restricted to the inner iteration only) have these properties:

• If C ∈ REACHh(m) then there is a non-looping path that increments c1. Moreover, every path that fails to
increment c1 must loop.

• If C 6∈ REACHh(m) then c1 is never incremented. Moreover, there is a non-looping path.

The space used is O(h + log m). Our lemma is proved.
We conclude the proof of the main theorem. On input x, we show how to accept x if and only if x is not

accepted by M.

MAIN PROCEDURE

0. h← log |x|. // initialize
1. // Start of stage h
2. For m = 1, . . . , m0, compute the αh(m),

where m0 is the first value satisfying αh(m0) = αh(m0 − 1).
3. For each accepting configuration C using space ≤ h,
3.1. Call Check(C, h, m0, αh(m0));
3.2. If Check accepts, we reject.
3.3. (N.B. If Check loops, we automatically loop.)
4. “Either accept or else increment h and go back to step 2.”

Note that since h ≥ log |x|, and m0 = |x|OM(1)h, the previous lemma ensures that we use only O(h) space. Since
Check is an unequivocal procedure, it is clear that the main procedure is also unequivocal. We must now explain
step 4. We must decide whether to accept or to repeat the procedure with a larger value of h. Perhaps Check
did not accept within the for-loop in step 3 because h is not “large enough”, i.e., M could accept the input with
more space. How do we know whether this is the case? Well, this is the case provided there is a path in which M
attempts to use more than h space. To detect this situation, it is easy to put a ‘hook’ into the Count procedure
that will set a flag Continue to true iff there exists a configuration C ∈ REACHh(m) where C ⊢ C′ for some C′

that uses ≥ h + 1 space. (So C is ‘expectant’ in the sense of the proof of the deterministic result.) So the Continue
flag is properly set after step 2. Now in step 4 we will accept if Continue=false; otherwise we increment h and go
back to step 2.

This concludes our proof. An open question is whether the condition s(n) ≥ log n can be removed.

2.10 *The Complexity of Palindromes

We consider the (binary) palindrome language over {0, 1},

Lpal = {w : w ∈ {0, 1}∗ and w = wR}.

The simultaneous time-space complexity of Lpal is remarkably well-understood (in view of what little we know
about the complexity of other languages). We first prove a lower bound on the simultaneous time-space complexity
of Lpal using an counting technique based on ‘crossing sequences’. The notion of crossing sequences is fairly
general. It was originally developed by Hennie [17] for deterministic simple Turing machines, but we shall see that
the technique extends to nondeterministic computations. It has recently resurfaced in proving lower bounds on
VLSI computations.

Consider a computation path C̄ = (Ct : t ≥ 0) of a Turing machine M on a fixed input w0 of length n.
Recall (§6, proof of theorem 16) that the storage configuration of M (at instant t) refers to the (2k + 1)-tuple
〈q, w1, n1, . . . , wk, nk〉 that is identical to the configuration Ct except that the input word w0 and input head
position n0 are omitted. For integer i, the i-crossing sequence of C̄ is (s1, . . . , sm) where m ≥ 0 is the number of
times the input head crosses the boundary between the ith and the (i + 1)st cells of tape 0, and sj is the storage
configuration of M during the jth crossing. Note that i may be restricted to 0, . . . , n by our standard machine
convention. Consecutive storage configurations in a crossing sequence represent crossings in opposite directions.

11* This optional section is independent of the rest of the book.
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The sum of the lengths of crossing sequences of C̄ at positions i, for all i = 0, . . . , n, is at most the time of the
computation path. Observe that crossing sequences combine elements of time and of space, so it is not surprising
to see that they will be used to obtain a simultaneous lower bound on these two resources. The basic property we
exploit is described in the following simple lemma:

Lemma 49 ((fooling lemma)). Let M be a nondeterministic machine that accepts the words u = u1u2 and v = v1v2.
If there exist accepting computations paths πu, πv for u and v such that the crossing sequences of these paths at
position |u1| for input u and at position |v1| for input v are identical then M also accepts u1v2 and v1u2.

Proof. By induction on the length of the |u1|-crossing sequence, we can splice together an accepting computation
path for u1v2 composing of sections that come alternately from πu and πv.

The following is a useful inequality:

Lemma 50. Let A = (ai,j) be an m×n matrix where the ai,j are real numbers. Let cj = 1
m

∑m
i=1 ai,j be the average

value of the numbers on the jth column. Then

max
i=1,...,m





n∑

j=1

ai,j



 ≥
n∑

j=1

cj .

Proof. The left-hand side of the inequality is at least

1

m





n∑

j=1

a1,j



 +
1

m





n∑

j=1

a2,j



 + · · ·+ 1

m





n∑

j=1

am,j



 =
1

m

m∑

i=1

n∑

j=1

ai,j ,

which is seen to equal the right-hand side.
Hennie originally showed that a simple Turing machine requires time Ω(n2) to Lpal. We now generalize this

result to nondeterministic multi-tape machines; in this more general setting, we only lower bound the product of
time and space.

Theorem 51. Let t and s be non-decreasing complexity functions. If

Lpal ∈ N-TIME-SPACE(t, s)

then
t(n) · s(n) = Ω(n2).

Proof. Suppose Lpal is accepted by some nondeterministic M in time t and space s. Without loss of generality,
consider palindromes of even length; the same proof can be modified for palindromes of odd length. Let Sn denote
the set of palindromes of length 2n. Thus |Sn| = 2n. For each w ∈ Sn, let C̄w denote some accepting computation
path for w. Let Rn be the set consisting of all the C̄w’s, w ∈ Sn. For i = 0, . . . , n, let Rn,i denote the multiset12

of i-crossing sequences of computation paths in Rn. For u, v ∈ Sn, let u1 and v1 denote the prefixes of u and v of
length i. If u1 6= v1 then the fooling lemma implies that the i-crossing sequences of C̄u and C̄v are distinct. Since
there are 2i distinct prefixes of length i in Sn, it follows that |Rn,i| ≥ 2i. Let rn,i denote the average length of
crossing sequences in Rn,i – since Rn,i is a multiset, this is a weighted average which takes the multiplicity of a
crossing sequence into account. Applying the inequality in the preceding lemma yields

t(2n) ≥
n∑

i=1

rn,i

where the matrix entries ai,j correspond to the length of the jth crossing sequence in the ith computation path.
Since at most |Rn,i|/2 of these crossing sequences have length ≥ 2rn,i, hence at least |Rn,i|/2 ≥ 2i−1 of these
crossing sequences have length < 2rn,i. Now there are σ = OM(1)s(2n) storage configurations since M accepts in
space s(2n). Let τn,i = σ2rn,i . So there are at most τn,i crossing sequences of length < 2rn,i. Hence τn,i ≥ 2i−1, or
OM(1)s(2n)2rn,i ≥ 2i−1. Taking logarithms, s(2n)rn,i = ΩM(i). Hence

s(2n) · t(2n) ≥ s(2n)
n∑

i=1

rn,i =
n∑

i=1

ΩM(i) = ΩM(n2).

The preceding lower bound is essentially tight in the sense of the next result. Its proof is left as an exercise.

12We say ‘multiset’ instead of ‘set’ here to indicate that each i-crossing sequence χ ∈ Rn,i is associated with a multiplicity. In
other words, each χ is tagged with the computation path C̄w ∈ Rn from which χ is derived. The number of distinct tags for χ is its
multiplicity.
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Theorem 52. Let log n ≤ s(n) ≤ n be space-constructible. Then

Lpal ∈ D-TIME-SPACE(
n2

s(n)
, s(n)).

We might add that the above proofs go through if we had used marked palindromes instead; this is defined as
the language over {0, 1, #} consisting of words of the form x#xR for all x ∈ {0, 1}∗. The language of marked palin-
dromes is intrinsically less complex than palindromes.13 The above results on palindromes motivate an interesting
composite-complexity class:

Definition 9. Let f be a complexity function, M a nondeterministic machine. We say M accepts in time-space
product f if for each w ∈ L(M), there is an accepting computation path of w that uses time-space (p, q) such that
pq ≤ f(|w|). We denote the class of such languages by NTIME × SPACE(f).

Thus the time-space product complexity of palindromes is Θ(n2). This definition extends to products of other
pairs (or tuples) of resources. Observe that for any complexity functions t, s,

N-TIME-SPACE(t, s) ⊆ NTIME × SPACE(t · s).
In the next section we will consider space-reversal product complexity classes.

2.11 Absolute Lower Bounds

The well-known class of regular languages is equal to DSPACE (0), i.e., those languages accepted by acceptors using
no space. Recall that machines that uses no space must be 0-tape Turing acceptors: these machines are also called
(nondeterministic) finite automata. Regular languages are very well understood. For instance, we know that

NSPACE(0) = NSPACE (O(1)) = DSPACE(0).

It is generally regarded that space bounds of o(log n) or time bounds of o(n) are uninteresting for Complexity
Theory. In particular, we generally consider

D-TIME-SPACE(n + 1, log n)

as the smallest interesting class for Complexity Theory. This section shows that, for a certain resource ρ, there are
absolute lower limits on the complexity in the following sense: there exists a complexity function gρ such that if
L is a non-regular language accepted in f units of resource ρ then f = Ω(gρ). Thus gρ is a lower bound on the ρ
complexity of any non-regular language. We show two results of this kind. Both proofs have the same structure.
But before we do that, it is instructive to dispose of the following simple observation:

Lemma 53. If t(n) ≤ n for any n then NTIME (t(n)) is regular.

Proof. Let an acceptor M accept in time t(n) and suppose t(n0) ≤ n0 for some n0. So for each word x of length
n0, M does not attempt to read the first blank symbol to the right of x. This means that for any word with prefix
x, M would behave in exactly the same way. Since x is arbitrary, every input of length greater than n0 is accepted
or rejected according to the behavior of M on its prefix of length n0. Any such language is seen to be regular.

We now prove a result from Hong [19]. Recall the definition of product complexity classes in the last section.

Theorem 54. Let f be complexity function such that f(n) = o(n). Then the product class NSPACE×REVERSAL(f)
is precisely the class of regular languages. In this result, reversals made by the input head are not counted.

We remark that if reversals by input heads are counted (as in our usual definition of reversal complexity) then
this theorem would have been a direct consequence of our previous lemma (using the fact that the product of space
and reversal is big-Oh of time).

Proof. Suppose L is accepted by a k-tape M in space-reversal product f . To show the theorem, it suffices to
prove that L is regular. Let M have as tape alphabet Γ (including the blank ), input alphabet Σ, and state set
Q. Let

∆ = {first, last} ×Q× Γk

where first and last are two special symbols. Let w ∈ Σ∗ with |w| ≥ 2. In the following, if d = first then w[d]
denotes the first symbol of w and if d = last then w[d] denotes the last symbol. We define the binary relation Rw

on ∆ as follows. Let
t = 〈d, q, b1, . . . , bk〉, t′ = 〈d′, q′, b′1, . . . , b′k〉

be tuples in ∆. Then 〈t, t′〉 ∈ Rw iff there is a sub-computation path C̄ = (C1, . . . , Cm) where:

13The language of palindromes is context-free but not deterministic context-free. Marked palindromes are deterministic context-free.
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(i) C1 corresponds to starting M in state q with w as input, with its input head scanning w[d], and the head i
scanning bi (for i = 1, . . . , k).

(ii) The head on each work-tape stays stationary throughout C̄. The input head may move. The symbols under
the work heads may change.

(iii) In Cm−1, the input head is scanning w[d′] and in Cm, it is scanning a blank (so it has left the region on the
tape containing w). The state and symbols scanned by the work-tape heads in Cm are q′, b′1, . . . , b

′
k.

For instance, Rw is empty implies that if we start the machine with w as the input word, in any initial state, with
the input head at the first or last symbol of w and with any symbols under the work-tape heads, then one of two
things must happen:

(1) The input-head never leaves the area of w, thus violating (iii).

(2) Eventually some work-tape head will make a move while the input head is still scanning w, violating (ii).

Note that since |∆| = OM(1), there are OM(1) distinct relations of the form Rw (over all w). Let α1 denote the
number of such relations Rw. We call Rw the characteristic relation of w.

For each h ≥ 0, let L[h] denote those words w in L for which the minimal space-reversal product of any accepting
computation of M for w is h. (Reversals by input head not counted.) Hence the sets L[h] form a partition of L.
If L[h] is empty for all but finitely many values of h, then it is easy to show that L is regular (we leave this as
an exercise). So for the sake of contradiction, let us assume L[h] is non-empty for infinitely many h. If L[h] is
non-empty, then let µ(h) denote the length of the shortest word in L[h]; else, we define µ(h) = 0.

We claim that µ(h) < (α1 +2)(h+1), where α1 is the constant described earlier. To see this, suppose otherwise.
Then for some w ∈ L[h], we have µ(h) = |w| ≥ (α1 + 2)(h + 1). Let C̄ be the accepting computation path on
input w that has space-reversal product of h. Let an active step of C̄ refer to one in which at least one of the
work heads actually moves (the input head’s movement does not count). If C̄ makes (r, s) reversal-space then the
number of active steps of C̄ is at most rs ≤ h. Divide w into h + 1 subwords each of length at least α1 + 2: a
simple pigeon-hole argument shows that for some such subword u, all the work heads of M are stationary whenever
the input head is scanning u. More precisely, every step of the form C ⊢ C′ where the input head in C is scanning
a symbol in u is an inactive step. Among the α1 + 1 of prefixes of u of length ≥ 2, there must be two prefixes v
and v′ with the same characteristic relation, Rv = R′

v. If v′ is the shorter of the two prefixes, replace v with v′ in
w to obtain a shorter word w′. It follows from the definition of characteristic relations that w′ is also accepted by
M, with the same space-reversal product complexity as w. (This is essentially the fooling lemma in the previous
section.) This contradicts our choice of w as the shortest word in L[h].

We conclude that for any shortest length word w in L[h], |w| < (α1 +2)(h+1) or h = ΩM(|w|). Since f(|w|) ≥ h,
and there are infinitely many such w’s, we conclude f(n) 6= o(n). This contradicts our assumption on f .

We next prove a similar result of Hopcroft and Ullman [21]. To do this, we extend the notion of characteristic
relations to allow the work-tape heads to move. With M, Q, Σ and Γ as above, we now define for any integer h ≥ 1:

∆h = {first, last} ×Q× (Γh)k × {1, . . . , h}k.

(The previous definition of ∆ may by identified with the case h = 1.) Consider a tuple

t = 〈d, q, w1, . . . , wk, n1, . . . , nk〉 ∈ ∆h.

Each word wi is of length h and, roughly speaking, denotes the contents of the ith tape of M and ni indicates the
position of head i in wi. For any w ∈ Σ∗, |w| ≥ 2, we again define a binary relation Rh

w over ∆h as follows. Let
t ∈ ∆h be as given above and t′ ∈ ∆h be the primed version. A pair 〈t, t′〉 is in Rh

w iff there is a sub-computation
path C̄ = (C1, . . . , Cm) such that

(i) C1 corresponds to starting M with w as input string, input head scanning w[d], and for i = 1, . . . , k: the
non-blank part of tape i is wi with head i scanning wi[ni].

(ii) The work-tape heads stays within the wi’s throughout the computation. The input head similarly stays
within w except during the last configuration Cm.

(iii) In Cm−1, the input head is scanning w[d′] and in Cm, the input head has left the region of w. The state,
contents of the work-tapes and the corresponding head positions in Cm are given by the rest of the tuple t′.
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Note that
|∆h| = hkOM(1)h = OM(1)h.

For any set X with n elements, the number of binary relations over X is 2n2

. Hence if αh denotes the number of
distinct relations Rh

w, over all possible words w, then there exists some constant C = OM(1) that does not depend
on h such that

αh ≤ 2Ch

We can now prove the result of Hopcroft and Ullman:

Theorem 55. Let s be a complexity function such that s(n) = o(log log n). Then DSPACE (s) is the set of regular
languages.

Proof. Let L be accepted by some M in space s(n). The proof proceeds quite similarly to the previous one. For
each h ≥ 0, let L[h] be the set of words in L accepted in space h but not in space h − 1. If L[h] is empty for all
but finitely many values of h then L is regular. So for the sake of contradiction, assume otherwise. Define µ(h) to
be the length of the shortest word in L[h] when L[h] is non-empty; otherwise µ(h) = 0. If w is a word of shortest
length in a non-empty L[h] then we claim

|w| = µ(h) ≤ 2Cs(|w|)

. (8)

Otherwise, there exists a pair of distinct prefixes u and v of w that have identical characteristic relations, Rh
u = Rh

v .
Assuming that u is the longer of the two prefixes, we can decompose w into w = vv′w′ = uw′ where v′ 6= ǫ. It
is easy to verify that vw′ is also accepted by M in the same space h (again, the fooling lemma argument). This
contradicts our choice of w as the shortest word. From (8) and the fact that there are infinitely many such words
w, we conclude that s(n) 6= o(log log n). This contradicts our assumption on s(n).

We can conceive of other methods of defining languages and complexity that admit non-regular languages with
space complexity bounded by functions growing slower than log log n. A simple way to do this would be to assume
that the Turing machine comes equipped with a complexity function h such that on input of length n, h(n) cells are
automatically marked out before the computation begins, and that the Turing machine never exceeds the marked
cells. Hence the machine uses space h(n), which of course can be chosen arbitrarily slowly growing. Our preceding
proofs would no longer be valid; indeed, it is easy to see that even non-recursively enumerable languages can be
accepted this way (how?). We refer to [30] for languages with such low space complexity.

To end this section, we note that the preceding absolute lower bounds are essentially tight in the following
sense:
(i) There are non-regular languages whose space-reversal product is O(n). This is illustrated by the palindrome
language: it is non-regular and it can be accepted in linear space and O(1) reversals.
(ii) There non-regular languages in the class DSPACE(log log n). In fact, the following language is an example.

L0 = {1̄#2̄# · · ·#n− 1#n̄ : n is a natural number}

where m̄ denotes the binary representation of the integer m. There is another candidate language due to Mehlhorn
and Alt[29]. It is rather interesting because it is over a single letter alphabet. First let q(n) denote the smallest
number that does not divide an integer n.

L1 = {1n : n is a natural number and q(n) is a power of two }

where 1n is the unadic representation of n.
We leave it as an exercise to show that both these languages have the required properties.

2.12 Final remarks

This chapter introduces the basic model of computation that is to be the basis for comparing all future models
of computation. This choice is not essential to the theory because of the computational theses in chapter 1. The
results in this chapter are of two types: (I) technical ones about Turing machines in particular and (II) relationships
about complexity classes. Although we are mainly interested type (II) results, some of the model-specific results are
unavoidable. This would be true regardless of our choice of model of computation. Our choice of the Turing model
is particularly fortunate in this regard because the literature contains a wealth of these model-specific results. We
have restricted ourselves to those type (I) results that are needed later.

The three simulation sections use the very distinct techniques for each resource. They illustrate the fundamen-
tally different properties of these resources. A common aphorism expressing this difference between time and space



90 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

says time is irreversible but space is reusable.14 Both the Savitch and Istvan Simon techniques exploit the reusabil-
ity of space. But what of reversals? Within a phase of a computation, all the individual actions are independent
of one another. This is exactly the nature of time in parallel computation. This prompted Hong Jia-wei to identify
reversals with parallel time. This identification is essentially correct except for low level complexity; we will return
to the precise relationships in later chapters. Since time and space without reversal is useless (why?), we offer this
complement to the above aphorism: reversal is the ingredient to convert reusable space into time.

The interplay of the triumvirate is best illustrated by deterministic computation: if tM(n), sM(n) and rM(n) are
the exact running time, space and reversal of a halting deterministic Turing machine M, then there are constants
c1, c2, c3 > 0 that make the following fundamental inequalities true:

sM + rM ≤ c1tM ≤ c2(n + sM)rM ≤ c3t
2
M.

A basic challenge of complexity theory is to refine these inequalities and to extend them to other computational
modes.

Exercises

[2.1] Construct a simple Turing machine that on input x ∈ {0, 1}∗ converts x to x − 1 where we regard x as a
binary integer. Hence the machine decrements its input. For instance if x = 0110100 then the machine
halts with 0110011. Write out the transition function δ of your machine explicitly.

[2.2] (i) Give a nondeterministic Turing acceptor that accepts the complement of the palindrome language Lpal

using acceptance space of log n. The exercise in last question is useful here. (Note that the acceptor in
example 2 uses linear space).
(ii) Show (or ensure) that your machine accepts in linear time. (It is probably obvious that it accepts in
O(n log n) time.)

[2.3] Give an algorithm for obtaining δ(N) from δ(M) having the nondeterministic speedup properties described
in theorem 2. What is the complexity of your algorithm?

[2.4] Consider the recognition problem corresponding to multiplying binary numbers: MUL is the language
comprising those triples of the form 〈a, b, c〉 where a, b, c are binary numbers and ab = c. Show that MUL
is in DLOG.

[2.5] Define ‘rejection complexity’ for deterministic machines such that the acceptance and rejection time com-
plexity of L are both f(·) iff the running time complexity of L is also f . Can this be extended to nonde-
terministic machines? Remark: If acceptance complexity corresponds to ‘proofs’ in formal proof systems
then rejection complexity corresponds to ‘disproofs’ of (or, counter-examples to) non-theorems.

[2.6] (i) Show that if f(n) = ω(n) and f is time-constructible, then XTIME r(f) = XTIME (f), X = D, N .
(ii) Show a similar result for space-constructible f , but no longer assuming f(n) = ω(n).

[2.7] * Show that the following functions are time-constructible for any positive integer k:
(i) n logk n, (ii) nk, (iii) n! (factorial), (iv) kn. (See [23] for a systematic treatment of such proofs.)

[2.8] Redo the last problem for reversal-constructible. (Recall that reversal-constructible is defined slightly
differently than in the case of time or space.)

[2.9] Suppose f(n) ≥ n and g(n) is an integer for all n, and both f and g are time-constructible.
(i) Show that the functional composition f ◦ g is time-constructible. (Note: f ◦ g(n) = f(g(n)). It is easy
to see that f(n) + g(f(n)) is time-constructible, but we want f(g(n)).)
(ii) If f(n) is also an integer for all n, show that f · g (product) is time-constructible.

[2.10] * (i) Show that log n is space-constructible.
(ii) Define log∗ n to be the largest integer m such that exp(m) ≤ n where exp(0) = 0 and exp(m + 1) =
2exp(m). Show that n log∗ n is space-constructible.
(iii) (Ladner, Freedman) Show that there exists a space-constructible f such that f(n) = O(log log n) and,
for some C > 0, f(n) ≥ C log log n infinitely often. Hint: f(n) is the largest prime p such that every prime

14Algebraically, this means that we must sum (respectively, take the maximum of) the time (respectively, space) used by several
independent computations.
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q ≤ p divides n. Some basic knowledge of number theory (mainly the prime number theorem) is required
for this problem.
(iv) (Seiferas) Show that log log n is not space-constructible. Hint: prove that any space-constructible
function not in Ω(log n) must be O(1) infinitely often.

[2.11] For most applications, a weaker notion of constructibility suffices: A function f is approximately time-
constructible if there is a time-constructible function f ′ such that f = Θ(f ′). Redo the above exercises but
using the “approximate” version of time-constructibility instead. It should be much easier.

[2.12] (J.C. Shepherdson, 1959) The usual definition of regular languages is that is is accepted by a finite
automata. A finite automata is basically a simple Turing machine in which the sole tape head can only
move from left to right. It must accept when it reaches the first blank cell. Prove that this definition gives
rise to the same class REG. HINT: if (L, Σ) is a language, and x, y, z ∈ Σ∗, then x ≡L y iff for all z,
xz ∈ L iff yz ∈ L. There are finitely many equivalence classes of the relation ≡L when L is regular.

[2.13] Show that the two languages at the end of Section 11 are non-regular and can be accepted in O(log log n)
space. For non-regularity, the reader should use the ‘pumping lemma for regular languages’.

[2.14] Show that if a function is time-constructible, then it is space-constructible.

[2.15] Prove that for any constant k, NTIME (k) is a proper subclass of
NSPACE (0).

[2.16] There are three possible responses to the following statements: True, False or Perhaps. ‘Perhaps’ reflects
the uncertainty from what we know (assume only the results in this chapter). If your answer is True or
False, you must give brief reasons in order to obtain full credit.
(a) T/F/P: NSPACE (n) ⊆ DTIME (O(1)n).
(b) T/F/P: NTIME (n) ⊆ DTIME (2n).
(c) T/F/P: NREVERSAL(n) ⊆ DREVERSAL(O(1)n).

[2.17] (Hartmanis) For every t(n) ≥ n log n, if M is a simple Turing machine accepting in time t then M accepts
in space O(t(n)/ log t(n)). Note: This result has been improved in two ways: First, this result has been
shown for multitape Turing machine by Hopcroft, Valiant and Paul (but Adleman and Loui provided a
very different proof). For simple Turing machines, Paterson shows that if a language is accepted by a
simple Turing machine in time t then it can be accepted in space t1/2. See chapter 7 for these results and
references.

[2.18] (i) Construct a Turing machine that computes the Boolean matrix µx,h and then the transitive closure
µ∗

x,h (say, using the Floyd-Warshall algorithm) in time O(m3) where the matrix µc is m×m. (We already

know that transitive closure can be computed in O(m3) time on a random access machine – the question
is whether a Turing machine can achieve the same time bound. The organization of the Boolean matrix
on the tapes is crucial.)
(ii) Give an alternative proof of theorem 16 using the previous result on computing transitive closure.

[2.19] Modify the proof of theorem 18 for the corresponding result for running complexity.

[2.20] * Show that DTIME (n + 1) 6= DTIME (O(n)).

[2.21] (Hopcroft-Greibach) If L ∈ NTIME (n + 1) then L has the form h(L1 ∩ · · · ∩ Lk) where the Li’s are
context-free languages and h is a letter homomorphism.

[2.22] This exercise gives a characterization of NTIME (t) for any complexity function t. Let h : Σ → Γ∗ be a
homomorphism and t a complexity function. We say h is t-bounded on L if for all n large enough, for all
x ∈ h(L) with |x| ≥ n, there exists w ∈ L such that h(w) = x and |w| ≤ t(|x|). 15 For any complexity
class K, define Ht[K] to be

{h(L) : L ∈ K ∧ h is t-bounded on L}.
Prove that for all t, NTIME (t)=Ht[NTIME (n + 1)]. Conclude from this that NTIME (n + 1) is closed
under non-erasing homomorphism. (Note: h is non-erasing if h(b) 6= ǫ for all b ∈ Σ.)

15Our definition here differs from the the literature because of our use of acceptance time rather than running time. The usual
definition simply says: ∃c > 0, for all w ∈ L, |w| ≤ ct(|x|).
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[2.23] Prove theorem 52.

[2.24] (Hennie) Show that every simple Turing acceptor for the palindrome language Lpal takes time Ω(n2).

[2.25] A worktape of a Turing machine is said to be a pushdown store if it is initialized with one special symbol
(called bottom symbol) which is never erased, and tape head is constrained so that (1) if it moves left,
it must write a blank on the current cell (this is called a pop move, and (2) the blank symbol is never
written under any other circumstances. When the head moves moves right, we call it push move. These
requirements imply that the tape head is always scanning the rightmost non-blank cell on the tape (called
the top symbol) or (temporarily for one moment only) the blank symbol on the right of the top symbol.
An auxiliary pushdown automata (apda) is a nondeterministic 2-tape Turing acceptor in which tape 1 is a
pushdown store and tape 2 is an ordinary worktape. For apda’s, we only count the space usage on tape 2;
that is, space on the pushdown store is not counted. Show the following to be equivalent:
(a) L is acceptd by a deterministic apda using space s(n).
(b) L is acceptd by a nondeterministic apda using space s(n).
(c) L ∈ DTIME (O(1)s(n)).

[2.26] (Fischer, Meyer, Rosenberg) A counter machine (CM) is a multitape Turing machine except that instead
of tapes, the CM has ‘counters’. A counter contains a non-negative integer which the CM can increment,
decrement or test to see if it is equal to zero. More precisely, if the CM has k counters, we may represent
its transition table by a set of tuples (instructions) of the form

〈q, a, z1, . . . , zk, q′, d0, d1, . . . , dk〉

where q, q′ are states, a is an input symbol, z1, . . . , zk ∈ 0, 1 and d0, d1, . . . , dk

∈ {−1, 0, +1}. The above instruction is applicable if the current state is q, the input head is scanning the
symbol a, and the ith counter (i = 1, . . . , k) contains a zero iff zi = 0. To apply the instruction, make the
next state q′, move the input head in the direction indicated by d0, and increment or decrement the ith
counter by di. The space used by the counter on an input w is the largest integer attained by any counter
during the computation. Show that for any CM accepting in space f , there is another CM accepting the
same language but using space only f1/2. (Thus counter machines exhibit a ‘polynomial space speedup’.)
Hint: show how to replace one counter by two counters where the new counters never contain a number
larger than the square-root of the largest number in the original counter.

[2.27] (P. Fischer) Show a linear speedup result for simple Turing machines. Hint: the Linear Speedup theorem
as stated fails but what stronger assumption about t(·) must be made?

[2.28] Show how to reduce the retrieval problem (section 2.8.3) to the sorting problem, thereby giving another
O(log m) deterministic reversal solution. [Recall the retrieval problem is where we are given, say, on tape
1 an integer h ≥ 1 in unary, on tape 2 a word c ∈ {0, 1}∗, and on tape 3 the table

c1$d1#c2$d2# · · · cm$dm$, (ci, di ∈ {0, 1}∗)

where m = 2h, and the ci’s are assumed distinct. We want to output di on tape 4 where c = ci for some
i = 1, . . . , m. You may assume that c does occur among c1, . . . , cm.

[2.29] (Chrobak and Rytter) Show that if we do not count reversals made by the input head then DLOG can be
simulated in constant reversals.

[2.30] Give a proof that the class DSPACE (s(n)) is closed under complementation if s(n) ≥ log n, using the idea
of counters described in section 8.

[2.31] Show that the census technique can also be used to show that the class NSPACE e(s(n)) of languages
accepted by unequivocal acceptors in space s(n) ≥ log n is closed under complementation. Recall that on
any input, the computation tree of an unequivocal acceptor has at least one accepting path or one rejecting
path (rejection is by entering the special state qr only). Moreover, the computation tree cannot have both
accepting and a rejecting path.

[2.32] (Fischer, Meyer, Rosenberg) Suppose we allow each work-tape to have more than one reading head, but
the number is fixed for each tape, depending on the particular machine. Furthermore, when two or more
tape heads are scanning the same cell, this information is known to the machine. Formalize this multihead
multitape model of Turing machines. Show that any such machine can be simulated by ordinary multitape
machines without time loss.
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[2.33] Let t, s, r be the running time, space and reversal of a halting Turing machine M. Does the fundamental
inequalities s+ r = OM(t) = OM((s+n)r) = OM(t2) (see the concluding section) hold for nondeterministic
M?

[2.34] * Define the static complexity of a problem L to be the smallest sized Turing machine that will accept L.
‘Machine size’ here can be variously interpretated, but should surely be a function of the tape alphabet
size, the number of tapes and the number of states. Does every problem L have a unique static complexity?
How sensitive is this complexity to change in Turing machine conventions?

[2.35] * Is there some form of linear speedup theorem for reversal complexity?

[2.36] * Can the tape reduction theorem for reversal complexity be improved?

[2.37] * In the inclusion D-SPACE-REVERSAL(s, r) ⊆ DSPACE(r log s), can we replace the left-hand side by
N-SPACE-REVERSAL(s, r) possibly at the expense of a large space bound on the right-hand side? E.g.,
N-SPACE-REVERSAL(s, r) ⊆ DSPACE(rs/ log s).

[2.38] * Prove or disprove: let t(n) = Ω(n2), r(n) = Ω(log t(n)), s(n) = Ω(log t(n)), r(n) · s(n) = O(t(n)). Then
DTIME (t)−D-SPACE-REVERSAL(s, r) 6= ∅.
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Chapter 3

Introduction to the Class NP

April 13, 2009

3.1 Introduction

According to the principles outlined in chapter 1, the class P = DTIME (nO(1)) (resp. NP = NTIME (nO(1)))
corresponds to those problems that are time-tractable when we compute in the fundamental (resp. nondeterministic)
mode. Clearly P ⊆ NP ; the P versus NP (or ‘P 6= NP ’) question asks if this inclusion is proper. Since most
real world computers operate in the fundamental mode, P is clearly very important. The practical significance
of NP is not immediately evident. In 1971, Cook [4] proved a theorem connecting P and NP that was destined
to play a decisive role in Complexity Theory. Cook showed that the well-known problem of recognizing satisfiable
Boolean formulas1 is the “hardest” problem in NP in the sense that if this problem is in P then P = NP . Shortly
afterwards, Karp [7] showed that a large list of problems that are of practical importance in the field of operations
research and combinatorial optimization are also hardest in this sense. Independently, Levin [11] proved a theorem
similar to Cook’s result. The list of hardest problems has since grown to include hundreds of problems arising in
practically every area of the computational literature: see Garey and Johnson [5] for a comprehensive catalog up
till 1979. The list highlights the fact that NP is empirically (not just theoretically) a very important class. The
added significance of the Cook-Karp discoveries is that these problems in NP have defied persistent attempts by
researchers to show that they are in P . Although we are probably a long way from settling the P versus NP
question, most researchers believe that P is not equal to NP . Because of this belief, a proof that a certain problem
is hardest for NP is taken as strong evidence of the fundamental intractability2 of the problem. For designers of
efficient algorithms, this is invaluable information: it warns that unless one has new and deep insights to these
problems that escaped previous researchers, one should not expect to find polynomial time solutions.

We introduce a well-known problem that is not known to be fundamentally tractable:

Traveling Salesman Optimization Problem (TSO)
Given: An n× n matrix D = (di,j) whose entries are either

non-negative integers or ∞, and di,i = 0 for all i.
Find: A cyclic permutation π = (π(1), π(2), . . . , π(n)) of the integers

1, 2, . . . , n such that D(π) is minimized:
D(π) := dπ(1),π(2) + dπ(2),π(3) + · · · + dπ(n−1),π(n) + dπ(n),π(1).

The TSO represents the problem of a salesman who wants to visit each of n cities exactly once and then return to
his original city. The entry di,j of the matrix D represents the distance from city i to city j. Each cyclic permutation
π corresponds to a tour of the n cities where the traveling salesman visits the cities π(1), π(2), · · · , π(n), and π(1)
in turn: here it does not matter which is the first city and, without loss of generality, we always let π(1) = 1. D(π)
is called the length of the tour.

The brute force method of solving this problem involves generating all (n−1)! cyclic permutations and choosing
the permutation with the minimal tour length. Thus the method takes Ω((n − 1)!) time. There is a dynamic
programming method due to Karp and Held that improves on this, giving O(n2n) time (see Exercises).

1Actually, Cook stated his theorem in terms of recognizing the set of tautologous Boolean formulas.
2We use the term ‘fundamental intractability’ for any problem (not necessarily a recognition problem) that cannot be solved in

polynomial time when computing in the fundamental mode.

1
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The reader may have observed that the TSO is not a recognition problem which is what our theory normally
treats. In the next section we illustrate the empirical fact that for most optimization or functional problems Q that
are not known to be fundamentally tractable, we can easily derive a corresponding recognition problem Q′ with the
property that Q can be solved in polynomial time iff Q′ is in the class P . We say that Q and Q′ are polynomially
equivalent in this case. Note that we have not defined what it means for a functional problem like TSO to be solved
in polynomial time (in the fundamental mode): this can easily be done and we leave it to the reader.

3.2 Equivalence of Functional and Recognition problems

In this section, we consider three important functional problems, and in each case give a related recognition problem
that is polynomially equivalent to the functional problem. This will give evidence for our claim in chapter one that
recognition problems are adequate for the study of tractability.

We have just described the traveling salesman optimization problem. The corresponding recognition problem
is

Traveling Salesman Decision Problem (TSD)
Given: A matrix D as in TSO and an integer b.
Property: There exists a tour π such that D(π) ≤ b.

This example illustrates the typical way we describe recognition problems in this book: the well-formed inputs
for the problem are described under the heading Given, where some fixed but reasonable encoding (as discussed
in section 5, chapter 1) of these inputs is implicitly assumed. We then identify the recognition problem with
the language whose members encode those well-formed inputs satisfying the predicate given under the heading
Property. We want to show the following

Proposition A. The TSO problem is fundamentally tractable iff the TSD is in P .
Suppose that the TSO problem is fundamentally tractable. To solve the decision problem (on input 〈D, b〉), first

find the optimal tour πopt. Compute D(πopt) and accept iff D(πopt) ≤ b. Under reasonable assumptions, and using
the fact that πopt can be found in polynomial time, the described procedure for the TSD clearly takes polynomial
time.

Conversely, suppose that TSD is fundamentally tractable. Let R be an algorithm that solves the TSD problem
in polynomial time in the fundamental mode. First, we find bmin, the minimal tour length using a binary search
of the range [0, m] where m is the sum of all the finite entries of D: each probe of the binary search involves a
call to the algorithm R as subroutine. The number of probes is O(logm) which is linear in the size of the input.
Next we construct the minimal tour as follows. We regard D as representing a directed graph G(D) on n vertices
where an edge {i, j} is present iff di,j <∞. Now we successively ‘test’ each edge {i, j} (in any order) to see if the
removal of that edge would result in an increase in the minimal tour length. More precisely, we replace di,j with
∞ and call the subroutine R to see if the minimal tour length of the modified matrix D exceeds bmin. If it does
not increase the minimal tour length, we will permanently remove edge {i, j}; otherwise we conclude that the edge
{i, j} is necessary in any minimal tour involving the remaining edges of G(D). Proceeding in this fashion, we will
terminate after at most n2 − 2n tests. Note that exactly n edges will remain in the final graph, and this gives the
required tour. The entire procedure is seen to require only a polynomial number of calls to R. This completes the
proof of the proposition.

The transformation of the TSO problem into TSD is typical. We now illustrate a similar transformation on
a graph coloring problem. Let G = (V,E) be an (undirected) graph. For any positive integer k, a function
C : V → {1, . . . , k} is called a k-coloring of G if adjacent vertices in G are assigned distinct ‘colors’, i.e., {u, v} ∈ E
implies C(u) 6= C(v). If a k-coloring exists for G, then G is k-colorable. The chromatic number of G denoted by
χ(G) is the minimum number k such that G is k-colorable. The graph coloring problem asks for a coloring of an
input graph G using the χ(G) colors. The chromatic number problem is to determine χ(G) for any input graph G.
Both problems are abstractions of problems such as constructing examination time tables: the vertices represent
courses such as Computer Science I or Introduction to Ichthyology. We have an edge {u, v} if there are students
taking both courses u and v. Nodes colored with the same color will hold examinations in the same time slot.
So the graph is k-colorable iff there is a conflict-free examination time table with k time slots. Determining the
chromatic number is clearly an optimization problem and again there is no known polynomial-time algorithm for
it. We can derive a corresponding recognition problem as follows:

Graph Colorability Problem

Given: Graph G and integer k.
Property: G is k-colorable.
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Proposition B. The graph coloring problem, the chromatic number problem and the graph colorability are
polynomially equivalent. (see Exercises for proof)

The last pair of problems considered in this section relate to the satisfiability problem that arises in the subjects
of logic and mechanical theorem proving. The satisfying assignment problem is the problem where, given a CNF
formula F , we are required to find an assignment that satisfies F (if F is satisfiable). The definitions for this
problem appear in the appendix of this chapter. The recognition problem version of this problem is the following:

Satisfiability Problem (SAT)
Given : A CNF formula F .
Property : F is satisfiable.

Proposition C. The satisfying assignment problem and SAT are polynomially equivalent. (see Exercises for a
proof)

Exercises

Exercise 0.1: Consider the Euclidean Traveling Salesman Problem (ETSP) where you are given a graph G =
(V,E) as before, and each vertex v ∈ V is a point v = (vx, vy) in the Cartesian plane. The distance of any

edge (u, v) ∈ E is given by its Euclidean distance
√

(ux − vx)2 + (uy − vy)2.

We will assume that the coordinates of points are integers in binary notation. The “size” of a point v is
|v| := 1 + lg |vx · vy|. The size of G is (

∑

v∈V |v|) + |E| (the contribution of E to the size is chosen to be |E|
because the edges (u, v) ∈ E may be represented as a pair of numbers (#u,#v) where #v ∈ {1, 2, . . . , |V |} is
the index of v.
(i) It is not known if ETSP is in NP . Prove that ETSP problem is PSPACE .
(ii) Prove that ETSP is NP -hard. ♦

End Exercises

3.3 Many-One Reducibility

In showing that the TSO is tractable if the TSD is tractable (or vice-versa), we have illustrated the very important
idea of ‘reducing one problem to another’. In this section, we formalize one version of this idea; chapter 4 embarks
on a more systematic study.

We now use the concept of a transformation and transducer as defined in chapter 2 (section 2).

Definition 1. Let (Σ, L), (Γ, L′) be languages, and f : Σ∗ → Γ∗ be a transformation computed by a transducer
M. We say that L is many-one reducible to L′ via f (or via M) if for all x ∈ Σ∗,

x ∈ L iff f(x) ∈ L′.

If, in addition, M runs in deterministic polynomial time, then we say L is many-one reducible to L′ in polynomial
time and write

L ≤Pm L′.

The above reducibility is also known as Karp reducibility. To illustrate this reducibility, we consider a simplifi-
cation of the satisfiability problem. If k is any positive integer, a kCNF formula is one whose clauses have exactly
k literals. Consider the problem of recognizing satisfiable 3CNF formulas: call this problem 3SAT. Thus 3SAT ⊆
SAT (as languages). We show:

Lemma 1. SAT ≤Pm 3SAT.

In a formal proof of this lemma, we would have to construct a deterministic transducer M running in polynomial
time such that for any input word x over the alphabet of SAT, if x encodes (resp. does not encode) a satisfiable
CNF formula, then fM(x) encodes (resp. does not encode) a satisfiable 3CNF formula. First of all, note that it is
not hard for M to verify whether the input is well-formed (i.e. encodes a CNF formula) or not. If x is ill-formed, M
can easily output a fixed unsatisfiable formula. So assume that x does encode a CNF formula F . We will show how
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to systematically construct another 3CNF formula G such that G is satisfiable iff F is. The actual construction of
the transducer M to do this is a straightforward but tedious exercise which we omit. (However, the reader should
convince himself that it can be done.)

For each clause C in F we will introduce a set of clauses in G. Let C = {u1, u2, . . . , um}. First assume m > 3.
We introduce the set of clauses

{u1, u2, z1}, {z̄1, u3, z2}, {z̄2, u4, z3}, . . . , {z̄m−4, um−2, zm−3}, {z̄m−3, um−1, um}

where zi, (i = 1, . . . ,m− 3) are new variables. If m = 3, then we simply put C into G. If m = 2, we introduce the
following two clauses:

{u1, u2, z1}, {z̄1, u1, u2}.

If m = 1, we introduce the following four clauses:

{u1, z1, z2}, {u1, z̄1, z2}, {u1, z1, z̄2}, {u1, z̄1, z̄2}.

G has no other clauses except those introduced for each C in F as described above. To show that G is satisfiable
iff F is satisfiable, it is easy to verify that for any satisfying assignment I to the variables occurring in F , we can
extend I to the newly introduced variables (the zi’s) so that the extension also satisfies all the clauses in G.
Conversely, if I is an assignment that satisfies G, then the restriction of I to the variables occurring in F will
satisfy F . The reader should check these claims. This concludes the proof of lemma 1.

The following two lemmas concerning ≤Pm are basic.

Lemma 2. If L ≤Pm L′ and L′ ∈ P then L ∈ P .

Proof. By definition, there is a deterministic transducer M running in p(n) time (for some polynomial p(n))
such that L ≤Pm L′ via fM. Also, there exists an acceptor M′ which accepts L′ in p′(n) time (for some polynomial
p′(n)). We construct a machine N which accepts L by ‘calling’ M and M′ as ‘subroutines’. On input x, N first
computes fM(x) by simulating M. Then N imitates the actions of M′ on input fM(x), accepting iff M′ accepts.
Clearly N accepts L and runs in O(p(n) + p′(p(n))) time, which is still polynomial. Q.E.D.

Lemma 3. ≤Pm is transitive.

Proof. Let L ≤Pm L′ via some transducer M and L′ ≤Pm L′′ via some M′, where both M and M′ run in polynomial
time. The lemma follows if we construct another polynomial-time M′′ such that L is many-one reducible to L′′ via
M′′. This is done in a straightforward manner where M′′ on input x simulates M on x, and if y is the output of M
then M′′ simulates M′ on y. The output of M′′ is the output of M′ on y. Clearly |y| is polynomial in |x| and hence
M′′ takes time polynomial in |x|. Q.E.D.

The next definition embodies some of the most important ideas in this subject.

Definition 2. Let K be a class of languages. A language L′ is K-hard (under ≤Pm) if for all L ∈ K, L ≤Pm L′. L′

is K-complete (under ≤Pm) if L′ is K-hard (under ≤Pm) and L′ ∈ K.

Since we will not consider other types of reducibilities in this chapter, we will omit the qualification ‘under ≤Pm’
when referring to hard or complete problems. We also say L is hard (resp. complete) for K if L is K-hard (resp.
K-complete). From lemma 2, we have

Corollary 4. Let L be NP-complete. Then L ∈ P iff P = NP.

Thus the question whether P = NP is reduced to the fundamental tractability of any NP-complete problem.
But it is not evident from the definitions that NP contains any complete problem.

3.4 Cook’s Theorem

In this section we shall prove

Theorem 5 (Cook). SAT is NP-complete.
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This was historically the first problem shown to be NP -complete3 and it remains a natural problem whereby
many other problems L can be shown to be NP -hard by reducing SAT to L (perhaps by using transitivity). This
avoids the tedious proof that would be necessary if we had to directly show that every language in NP can be
reduced to L. We just have to go through this tedium once, as in the proof of Cook’s theorem below.

To show that a problem L is NP -complete we have to show two facts: that L is in fact in NP and that every
problem in NP can be reduced to L in polynomial time. For most NP-complete problems the first fact is easy to
establish. In particular, the three recognition problems in section 2 are easily shown to be in NP : for the TSD
problem, we can easily construct a Turing acceptor which on input 〈D, b〉 uses nondeterminism to guess a tour π
and then deterministically computes the tour length D(π), accepting iff D(π) ≤ b. To see that this is a correct
nondeterministic procedure, we note that if the input is in TSD, then there is a π which satisfies D(π) ≤ b and
the acceptor will accept since it will guess π along some computation path. Conversely, if the input is not in
TSD, then every choice of π will lead to a rejection and by definition, the acceptor rejects the input. Since the
procedure clearly takes only a polynomial number of steps, we conclude that TSD is in NP . Similarly, for the
graph colorability problem (resp. SAT), the acceptor guesses a coloring of the vertices (resp. an assignment to the
variables) and verifies if the coloring (resp. assignment) is valid. Let us record these observations in:

Lemma 6. The TSD, the graph colorability problem and SAT are in NP.

We will use simple Turing machines as defined in chapter 2. In particular, the transition table δ(M) of simple
Turing acceptor M is a set of quintuples

〈q, b, q′, b′, d〉
saying that in state q and scanning b on the tape, M can move to state q′, change b to b′, and move the tape-head
in the direction indicated by d ∈ {−1, 0,+1}. In chapter 2 we showed that a multi-tape machine can be simulated
by a 1-tape machine with at most a quadratic blow-up in the time usage. A very similar proof will show:

Lemma 7. If M is a multi-tape Turing acceptor accepting in time t(n) then there exists a simple Turing acceptor
N accepting the same language in time (t(n) + n)2. Moreover, N is deterministic if M is deterministic.

The import of this lemma is that for the purposes of defining the class of languages accepted in polynomial
time in deterministic (resp. nondeterministic) mode we could have used the simple Turing machines instead of
multitape Turing machines. This is also a simple demonstration of the polynomial simulation thesis described in
chapter 1.

Proof that every language L ∈ NP is reducible to SAT: The rest of this section is devoted to this proof. By
the preceding lemma, we may assume that L is accepted by a simple Turing acceptor M in time p(n) for some
polynomial p(n). To show that L is reducible to SAT, we must show a transducer N (computing the transformation
fN ) running in polynomial time such that for each input word x over the alphabet of L, fN (x) is in SAT iff x
is in L. The word fN (x) will encode a CNF formula. We shall describe this formula only, omitting the tedious
construction of N. As usual, once the transformation fN is understood, the reader should have no conceptual
difficulty in carrying out the necessary construction.

For the following discussion, let x be a fixed input of M where |x| = n. Let

C0, C1, . . . , Cp(n) (1)

be the first p(n) configurations in some computation path of M on x. (If the computation path has less than p(n)
configurations, then its last configuration is repeated.) The CNF formula (encoded by) fN(x) will specify conditions
for the existence of an accepting computation path of the form (3.1), i.e., the formula will be satisfiable iff there
exists an accepting computation path (3.1). In order to do this, fN (x) uses a large number of Boolean variables
which we now describe. Each variable denotes a proposition (‘elementary statement’) about some hypothetical
computation path given by (3.1). We will assume that the instructions (tuples) in δ(M) are numbered in some
canonical way from 1 to |δ(M)|.

Variable Proposition

S(q, t) Configuration Ct is in State q.
H(h, t) The tape-Head is scanning cell h in configuration Ct.
T (b, h, t) Cell h contains the Tape symbol b in configuration Ct.
I(j, t) Instruction j in δ(M) is executed in the transition Ct ⊢ Ct+1.

3Cook’s theorem in Complexity Theory is comparable to Gödel’s Incompleteness Theorem in Computability Theory: both play a
paradigmatic role (in the sense of Kuhn [10]). In Kuhn’s analysis, a scientific paradigm involves a system of views, methodology and
normative values for doing research. A further parallel is that the relation of P to NP can be compared to the relation between the
recursive sets and the recursively enumerable sets.
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In this table, the meta-variable4 t is the ‘time indicator’ that ranges from 0 to p(n), the meta-variable q
ranges over the states in M, and the meta-variableb ranges over the tape symbols (including the blank) of M. The
meta-variable h is the ‘head position indication’: it ranges over the 2p(n) + 1 values

−p(n),−p(n) + 1, . . . ,−1, 0, 1, 2, . . . , p(n) − 1, p(n)

since in p(n) steps, M cannot visit any cell outside this range. The meta-variable j is the “instruction indicator”
that ranges from 1 to |δ(M)|, the number of instructions in δ(M). Since the number of values for q, b and j is
OM(1), and there are O(p(n)) values for t and h, we see that there are O((p(n))2) variables in all. Therefore each
variable can be encoded by a word of length O(log n). We emphasize that these are Boolean variables; so the above
propositions associated with them are purely informal.

We now introduce clauses into the CNF formula fN (x) that enforce the above interpretation of the Boolean
variables. By this we mean that if v is a Boolean variable that stands for the proposition Pv as described in the
above table then for any satisfying assignment I to fN (x), there exists an accepting computation path of the form
(3.1) such that I(v) = 1 precisely when the proposition Pv is true of (3.1). For instance, the variable S(q0, 0) stands
for the proposition

The state in configuration C0 is the initial state q0.

It is clear that this proposition is true of (3.1). Hence we must set-up fN (x) so that if assignment I satisfies it then
necessarily I(S(q0, 0)) = 1.

The clauses in fN (x) correspond to the following eight conditions. For each condition we specify a set of clauses
that we will include in fN(x).

1. The configuration C0 is the initial configuration of M on input x. Suppose that x = a1a2 · · ·an where ai are
input symbols. To enforce condition 1, we introduce the following set of clauses, each containing only one
variable:

{S(q0, 0)}, {H(1, 0)}

{T (a1, 1, 0)}, {T (a2, 2, 0)}, . . . , {T (an−1, n− 1, 0)}, {T (an, n, 0)}

{T (⊔, h, 0)} for h 6∈ {1, . . . , n}

For the first two clauses to be true, the variables S(q0, 0) and H(1, 0) must be assigned 1. This ensures the
initial state is q0 and the head is initially scanning a1. Similarly, the next n clauses ensure that the input x is
contained in cells 1 to n. The remaining clauses ensure that the rest of the cells contain the blank symbol ⊔.

2. In each configuration Ct, M is in exactly one state.
Let St be the set of variables {S(q, t) : q is a state of M}. Then condition 2 amounts to ensuring that exactly
one variable in St is assigned ‘1’. For this, we have a convenient abbreviation. If X is any set of Boolean
variables, let U(X) denote the set of clauses consisting of the clause X and the clause {ū, v̄} for each pair of
distinct variables u, v in X . For example, if X = {x, y, z} then

U(X) = {{x, y, z}, {x̄, ȳ}, {x̄, z̄}, {ȳ, z̄}}.

Note that an assignment to X satisfies U(X) iff the assignment assigns a value of ‘1’ to exactly one variable
in X . (U stands for ‘unique’.) Therefore, for each t, condition 2 is enforced by introducing into fN(x) all the
clauses in U(St).

3. There is a unique symbol in each cell h of each Ct.
For each h, t, condition 3 is enforced by the clauses in U(Th,t) where Th,t is defined to be the set {T (b, h, t) :
b is a tape symbol of M}.

4. There is a unique head position h in each Ct. This is enforced by the clauses in U(Ht) where Ht = {H(h, t) :
h = −p(n),−p(n) + 1, . . . ,−1, 0, 1, . . . , p(n)}.

5. The last configuration is accepting.
Introduce the single clause {S(qa, p(n))} where qa is the accept state.

4I.e., the variable we use in describing actual Boolean variables of fN (x). These meta-variables do not actually appear in fN (x).
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6. Cells that are not currently scanned in Ct must contain the same symbol as in Ct+1.
This can be ensured by introducing the three-literal clause

{T (b, h, t), T (c, h, t+ 1), H(h, t)}.

for all h, t and tape symbols b, c, where b 6= c.

7. For each t < p(n) there is a unique instruction that causes the transition Ct ⊢ Ct+1.
This is ensured by the clauses in U(It) where It = {I(j, t) : j = 1, . . . , |δ(M)|}.

8. Changes in successive configurations follow according to the transition table of M.
For each state q, and tape symbol b (possibly ⊔), let δ(q, b) ⊆ {1, . . . , |δ(M)|} be the set instruction numbers
such that j ∈ δ(q, b) iff the first two components of the jth instruction are q and b. In other words, j ∈ δ(q, b) iff
the jth instruction is applicable to any configuration whose state and scanned symbol are q and b respectively.
For each t, h, we introduce this clause:

{T (b, h, t), S(q, t), H(h, t)} ∪ {I(j, t) : j ∈ δ(b, q)}.

In addition, for each j where the jth instruction is 〈q, b, q′, b′, d〉, introduce three clauses:

{I(j, t), S(q′, t+ 1)},

{I(j, t), H(h, t), T (b′, h, t+ 1)}

{I(j, t), H(h, t), H(h+ d, t+ 1)}
We ought to remark that to ensure that if the machine gets stuck or halts in less than p(n) steps, then we
assume there are rules in δ(M) to replicate such configurations.

It is curious to observe that, with the exception of the first condition, the rest of the clauses in fN(x) are not
directly related to the input x.

To show that the CNF formula fN (x) consisting of all the clauses introduced under the above eight conditions
is correct, we have to show that fN (x) is satisfiable iff x is in L. Suppose fN (x) is satisfiable by some assignment
I. Then we claim that an accepting computation path of the form (3.1) exists. This is seen inductively. Clearly
the configuration C1 is uniquely ‘determined’ by condition 1. Suppose that C1, . . . , Ct are already defined. Then
it is easy to define Ct+1. Hence sequence (3.1) can be defined. But condition 5 implies that Cp(n) is accepting.
Conversely, if an accepting computation path exists then it determines an assignment that satisfies fN (x).

Finally, we indicate why N can be constructed to run in polynomial time. Note that for any set X of k variables,
the formula U(X) contains O(k2) clauses, and these clauses can be generated in O(k3) time. It is not hard to
verify that all the clauses in conditions 1-8 can be generated in O((p(n))3) time. This concludes the proof of Cook’s
theorem.

We have the following interesting by-product of the above proof:

Corollary 8. There is a polynomial-time computable transformation t of an arbitrary Boolean formula F to a
CNF formula t(F ) such that F and t(F ) are co-satisfiable (i.e., F is satisfiable iff t(F ) is satisfiable).

See the Exercises for a direct proof of this result.

3.5 Some Basic NP-Complete Problems in Graph Theory

We study a few more NP -complete problems. This will give the reader a feeling for some of the techniques used in
proving NP -completeness. We typically prove that a language L is NP -hard by reducing a known NP -hard problem
L′ to L. This indirect approach is particularly effective if one chooses an L′ that is rather similar to L: the list of
over 300 NP-complete problems in [5] is a good resource when making this choice. We will assume the standard
terminology of graph theory and throughout this book, the terms ‘node’ and ‘vertex’ are fully interchangeable. The
following four problems will be considered in this section.

Vertex Cover Problem.

Given: Graph G = (V,E) and integer k.
Property: G has a vertex cover of size ≤ k.
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Figure 3.1: Some graphs

A vertex cover of G is a subset V ′ ⊆ V such that {u, v} ∈ E implies that u or v is in V ′. For example, the
graph in Figure 3.1(a) has a vertex cover {u, v, w} of size 3 but none of size 2.

Clique Problem.

Given: G = (V,E) and k.
Property: There exists a clique of size ≥ k in G.

A clique of G is a subset V ′ ⊆ V such that each pair of distinct vertices u and v in V ′ are adjacent in G. For
example, the graph in Figure 3.1(b) has two cliques {u, v, w} and {u, x, w} of size 3 but none of size 4.

Independent Set Problem.

Given: G = (V,E) and k.
Property: There exists an independent set of size ≥ k in G.

An independent set of G is a subset V ′ ⊆ V such that no two distinct vertices u and v in V ′ are adjacent in G.
Thus, the graph in Figure 3.1(b) has an independent set {v, x} of size 2 but none of size ≥ 3.

Hamiltonian Circuit Problem.

Given: G = (V,E).
Property: G has a Hamiltonian circuit.

A Hamiltonian circuit C = (v1, v2, . . . , vn) of G is a cyclic ordering of the set of vertices of G such that
{vi, vi+1} (for i = 1, . . . , n) are edges of G (here vn+1 is taken to be v1). For instance, the graph in Figure 3.1(d)
has a Hamiltonian circuit, but the one in Figure 3.1(c) has none.

These four problems are easily seen to be in NP using the usual trick of guessing and verifying. The first
three problems appear very similar. The precise relationship between vertex covers, cliques and independent
sets is given by the following result. The complement of G = (V,E) is co-G = (V̄ , Ē) where V̄ = V , Ē =
{{u, v} : u 6= v, {u, v} 6∈ E}.

Lemma 9. The following statements are equivalent:

(a) V ′ is a vertex cover for G.

(b) V − V ′ is an independent set for G.

(c) V − V ′ is a clique in co-G.

The proof is straightforward and left to the reader. From this lemma, it is evident that the three problems are
inter-reducible problems. So it is sufficient to show one of them NP-complete. We begin by showing that Vertex
Cover is NP -hard; this was shown by Karp.

Theorem 10. 3SAT ≤Pm Vertex Cover.
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Figure 3.3: Reduction of 3SAT to Vertex Cover

Proof. Let F be a 3CNF formula with m clauses and n variables. We will describe a graph G = (V,E) derived
from F such that G has a vertex cover of size at most 2m + n iff F is satisfiable. The actual construction of a
transducer to accomplish the task is a routine exercise which we omit.

The graph G contains two types of subgraphs: For each variable x in F , we introduce a pair of adjacent nodes
labeled by x and x̄, as in Figure 3.2(a).

For each clause {u1, u2, u3}, we introduce a triangle with nodes labeled by the literals in the clause (Figure
3.2(b)). To complete the description of G, we introduce edges connecting a node in any pair with a node in
any triangle whenever the two nodes are labeled by the same literal. For example, the graph for the formula
{{x1, x2, x3}, {x̄1, x2, x3}, {x̄1, x̄2, x3}} is shown in Figure 3.3.

We now claim that F is satisfiable iff G has a vertex cover of size 2m+ n. If F is satisfied by some assignment
I, then we choose V ′ to consist of (a) those nodes in the pairs of G labeled by literals u where I(u)=1 and (b)
any two nodes from each triangle of G, provided that all the nodes labeled by literals u where I(u)=0 (there are
at most two such per triangle) are among those chosen. There are n nodes chosen in (a) and 2m nodes chosen in
(b). Furthermore, one observes that every edge of G is incident to some node in V ′, and thus V ′ is a vertex cover.
Conversely, if G has a vertex cover V ′ of size at most 2m + n, then we easily see that each pair (resp. triangle)
must contain at least one (resp. two) nodes in V ′. This means that in fact the vertex cover has exactly one vertex
from each pair and two vertices from each triangle. The assignment which assigns to each variable x a value of 1
(resp. 0) iff the node in a pair labeled by x (resp. x̄) is in V ′ is seen to satisfy F . Q.E.D.

We next show that the Hamiltonian Circuit problem is NP -hard, a result of Karp.

Theorem 11. Vertex Cover ≤Pm Hamiltonian Circuit.

Proof. Given G = (V,E) and k, we construct Ḡ = (V̄ , Ē) such that G has a vertex cover with at most k nodes
iff Ḡ has a Hamiltonian circuit. Ḡ has two types of vertices. The first type consists of k nodes a1, . . . , ak connected
in a ring, i.e., ai is adjacent to both ai+1 and ai−1 where subscript arithmetic is modulo k. See Figure 3.4(a).



10 CHAPTER 3. INTRODUCTION TO THE CLASS NP

(a) ring (b) gadget

u u up p p p p p p p p p pu uu
uu
uu

uu
uu
uu

PPPP

' $

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

a1 a2 a3

ak

[e, u]out [e, v]out

[e, u]in [e, v]in

Figure 3.4: Constructions for Hamiltonian circuit

The second type of vertices is introduced by constructing a ‘gadget’ of 12 nodes for each edge e = {u, v} ∈ E
(Figure 3.4(b)). Four nodes in the gadget are specially labeled as

[e, u]in, [e, u]out, [e, v]in, [e, v]out.

So the total number of vertices in V̄ is k+ 12|E|. In addition to the edges in the ring and the gadgets, other edges
are introduced corresponding to each node u in V thus: let e1, . . . , em be the edges in E which are incident on u.
We form a ‘u-chain’ by introducing the following edges:

{[e1, u]out, [e2, u]in}, {[e2, u]out, [e3, u]in}, . . . , {[em−1, u]out, [em, u]in}. (2)

These edges string together the gadgets corresponding to the edges e1, . . . , em. This stringing of the gadgets imposes
an arbitrary ordering of the ei’s. We also connect [e1, u]in and [em, u]out to each of the nodes ai(i = 1, . . . , k) in
the ring. See Figure 3.5. Our description of Ḡ is now complete. It remains to show that G has a vertex cover of
size at most k iff Ḡ has a Hamiltonian circuit. Suppose U = {u1, . . . , uh} is a vertex cover of G, h ≤ k. For each
node uj in U , we define a path pj from aj to aj+1. Suppose e1, . . . , em are the edges in E which are incident on
uj . Let e1, . . . , em appear in the order as determined by the uj-chain. The path pj will include all the edges in
(3.2) and the two edges {aj, [e1, uj ]in} and {[em, uj ]out, aj+1}. The path pj must also connect the nodes [ei, uj]in
and [ei, uj]out for each i = 1, . . . ,m. We consider two ways to do this:

The first way (Figure 3.6(a)) visits every node in the gadget of ei but the second way (Figure 3.6(b)) visits only
half of the nodes. We route pj through the gadget of ei using the first way if the other node that ej is incident
upon is not in the vertex cover U ; otherwise we use the second way. This completes the definition of the path
pj . The concatenation of p1, p2, . . . , ph is seen to be a path P (U) from a1 to ah+1 which visits every node in each
gadget. Finally, this path P (U) is made into a circuit by connecting ah+1, ah+2, . . . , ak and a1 using edges in the
ring structure. The result is a Hamiltonian circuit for Ḡ.

Conversely, suppose there is a Hamiltonian circuit C for Ḡ. The circuit is naturally broken up into paths whose
end-points (but not other vertices) are in the ring. For each such path p that is non-trivial (i.e., has more than
one edge), we claim that there exists a unique vertex u(p) ∈ V , such that p visits all and only the gadgets in the
u-chain: this is because if p visits any gadget associated with an edge e = {u, v}, it must either enter and exit from
the nodes [e, u]in, [e, u]out or enter and exit from the nodes [e, v]in, [e, v]out. For instance, it is not possible to enter
at [e, v]in and exit from [e, u]out (why?). In fact, if p enters and exits from the gadget using the nodes [e, u]in and
[e, u]out, then there are essentially two ways to do this, as indicated in Figure 3.6. It is easily seen that set of all
such vertices u(p) forms a vertex cover U(C) of G. Since there are at most k such paths in C, the vertex cover
U(C) has size at most k. Q.E.D.

3.6 **Two Hard Problems

4** Optional section. These problems are “hard” in the sense of being non-trivial to show in NP .
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In all the problems seen so far, it was rather easy to show that they are in NP , but showing them to be NP-hard
required a bit more work. We now consider two problems for which it is non-trivial to show that they are in NP .

Primality Testing (Primes)
Given: Given a binary number n.
Property: n is a prime.

Integer Linear Programming (ILP)
Given: An integer m× n matrix A, and an integer m-vector b.
Property: There is an integer n-vector x such that the system of

linear inequalities Ax ≥ b hold.

These problems have practical importance. One important use of primes is in cryptographic techniques that
rely on the availability of large prime numbers (several hundred bits in length). We note first that the complement
of Primes is Composites, the problem of testing if a binary number is composite. It is easy to see that Composites is
in NP : to test if n is composite, first guess a factor m less than n and then check if m divides n exactly. Combined
with the result that Primes is in NP , we conclude

Primes ∈ NP ∩ co-NP . (3)

Now Primes is not known to be NP -complete and (3.3) gives strong evidence that it is not. This is because if it
were NP -complete then it would be easy5 to conclude from (3.3) that NP=co-NP . This is unlikely, for example,
based on extensive experience in the area of mechanical theorem proving.

The ILP problem is also known as the Diophantine linear programming problem and is studied in [12]. Let
Rational LP (or RLP) denote the variant of ILP where we allow the input numbers and output numbers to be
rationals. The rational LP problem was shown to be in P in 1979 by Khachian [8]; this solved a long standing open
problem. See [1] for an account. Previously, all algorithms for the rational linear programming problem had been
based on the Simplex Method, and it was shown by Klee and Minty[9] that such an approach can be exponential
in the worst case.6 Khacian’s algorithm and other polynomial time algorithms for RLP are called “interior point
methods” because they look for solutions that may be in the interior of the defining polytope. Originally, interior
point algorithms do not seem to be competitive with the simplex method(s) in practice. This situation has since
changed, following extensive development of interior point algorithms especially one such algorithm discovered by
Karmarkar.

3.6.1 Primality Testing

This subsection requires some elementary number theory; Hardy and Wright [6] may serve as an excellent reference.
Henceforth, “number” means natural number. We follow the usual convention that the number 1 does not count
as a prime: thus the smallest prime is the number 2. It is also the only even prime. An integer n divides another
m, denoted n|m, if there is some integer a such that na = m. The greatest common divisor of m and n is denoted
by GCD(m,n), with the convention GCD(0, 0) = 0. Note that GCD(0, n) = GCD(n, 0) = |n|. Two integers m,n are
co-prime if GCD(m,n) = 1. E.g., GCD(18, 14) = 2 and 16, 27 are co-prime. For any number n ≥ 1, let

Zn = {0, 1, . . . , n− 1} and Z
∗
n = {m : 1 ≤ m ≤ n, GCD(m,n) = 1}.

Notice that we have defined Z
∗
n in such a way that Z

∗
n ⊆ Zn is true for all n ≥ 2. But when n = 1, Z1 = {0} and

Z
∗
1 = {1}.

Congruences. We say x and y are congruent modulo n, written x ≡ y( mod n), if n|x − y. For any m, we
write (mmodn) for the unique element in Zn that is congruent to m modulo n. The following fact will be useful:
given integers a, b, n, the congruence ax ≡ b( mod n) has a solution in x iff

GCD(a, n)|b. (4)

5See chapter 4.
6Recently major progress have been made in understanding the average behavior of the Simplex-based algorithms. They essentially

confirm the experimental evidence that, on the average, these methods take time linear in the number m of constraints, and a small
polynomial in the dimension n. See [2].
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In proof, if GCD(a, n) = d and d|b then ax ≡ b( mod n) iff a′x ≡ b′( mod n′). a = da′, b = db′, n = dn′. Since
GCD(a′, n′) = 1, it follows that, modulo n′, a′ has an inverse a′−1. So a solution is x = b′a′−1. Conversely, if d does
not divide b then the equation b = ax+ ny does not have any solution (x, y) because d divides the right-hand side
but not the left-hand side. But b = ax+ ny has a solution iff ax ≡ b( mod n) has a solution.

The preceding concerns linear congruences. Now suppose A(x) =
∑d

i=0 aix
i is an polynomial (ai ∈ Z) and we

want to solve the congruence A(x) ≡ 0( mod p) for some prime p. Without loss of generality, p does not divide
ad. Lagrange shows that A(x) has at most d distinct solutions modulo p. In proof, if d = 0 or if A(x) ≡ 0( mod p)
has no solutions modulo p, the result is trivial. Otherwise, let a be a solution. Then (using long division) we can
write A(x) = (x− a)B(x) +A(a) where B(x) is an integer polynomial of degree d− 1 and A(a) ≡ 0( mod p). For
any other solution b of A(x) ≡ 0( mod p), A(b) ≡ (b − a)B(b) ≡ 0( mod p) implies b is a solution of B(x) ≡ 0(
mod p). But by induction, there are at most d− 1 distinct solutions b modulo p.

Euler’s Totient Function. Euler’s totient function φ(n) is defined to be |Z∗
n|. For example,

φ(0) = 0, φ(1) = φ(2) = 1, φ(3) = φ(4) = φ(6) = 2, φ(5) = 4.

Clearly, 1 ≤ φ(n) ≤ n − 1 with φ(n) = n − 1 iff n is prime. It is easy to give a formula for φ(n) in terms of the

prime factorization of n. If n =
∏k
i=1 q

ek

i where ek ≥ 1 and q1, . . . , qk are distinct primes, then

φ(n) = n
k
∏

i=1

(

1 − 1

qi

)

(5)

To see this, note that the proposed product formula for φ(n) expands into

φ(n) = n−
∑

1≤i≤k

n

qi
+

∑

1≤i<j≤k

n

qiqj
− · · · + (−1)k

n

q1q2 · · · qk
. (6)

But the term n
qi

is the number of numbers in {1, 2, . . . , n} that are divisible by qi, and the term n
qiqj

is the number of

numbers in {1, 2, . . . , n} that are divisible by both qi and qj , etc. By the inclusion exclusion formula, this expression
gives the number of numbers in {1, 2, . . . , n} that is not divisible by any of the qi’s. But this number is precisely
φ(n), thus validating the formula (3.5). A corollary of (3.5) is that φ is multiplicative:

GCD(m,n) = 1 ⇒ φ(mn) = φ(m)φ(n). (7)

In particular, when n is a prime, φ(n) = n − 1. On the other hand, we see that φ(n) < n − 1 if n is composite.
For, if k = 1, then a composite n has the form n = qe11 for some e1 ≥ 2, and φ(n) = n − qe1−1

1 ≤ n − 2. For
k > 1, we may write n as a product n = n1n2 of two co-prime numbers, and by induction, φ(n1n2) = φ(n1)φ(n2) ≤
(n1 − 1)(n2 − 1) < n− 2. We conclude: φ(n) ≤ n− 1 with equality iff n is prime.

Another identity involving φ(n) is this:

n =
∑

m|n

φ(m). (8)

In proof, suppose n =
∏k
i=1 q

ei

i where qi are distinct primes. First, we claim that the sum in (3.8) is equal to the
product

k
∏

i=1

(

φ(1) + φ(qi) + φ(q2i ) + · · · + φ(qei

i )
)

=

e1
∑

d1=0

e2
∑

d2=0

· · ·
ek
∑

dk=0

k
∏

i=1

φ(qdi

i ). (9)

To see this, note each summand on the right-hand side has the form
∏k
i=1 φ(qdi

i ) which, because of the multiplicative

nature of φ, is equal to φ(
∏k
i=1 q

di

i ) = φ(m) where m =
∏k
i=1 q

di

i . Clearly m|n. and every m that divides n
contributes a summand φ(m) to the right-hand side of (3.9). Thus (3.9) is just another way to express the sum in
(3.8), as claimed. Now each factor in the left-hand side of (3.9) is equal to

1 + (qi − 1) + (q2i − qi) + · · · + (qei

i − qei−1
i ) = qei

i

and hence the left-hand side is equal to
∏k
i=1 q

ei

i = n. This proves (3.8).
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A Characterization of Primes. The result that Primes is in NP is due to Pratt [13]. To motivate his approach,
consider a little gem of number theory:

Theorem 12 (Fermat’s Little Theorem). If p is prime and p does not divide a, then ap−1 ≡ 1( mod p). More
generally, for any n and a ∈ Z

∗
n, a

φ(n) ≡ 1( mod n).

Proof. Write S for the set Z
∗
n. Then the elements in aS = {(a · xmodn) : x ∈ S} are all distinct modulo

n: otherwise, for x 6= y ∈ S, we have ax ≡ ay( mod n), or, a(x − y) ≡ 0( mod n). But this is impossible
since x − y 6≡ 0( mod n) and a 6≡ 0( mod n). Hence S = aS and

∏

x∈S x =
∏

y∈aS y = aφ(n)
∏

x∈S x. Since
∏

x∈S x 6=≡ 0( mod n), we conclude 1 ≡ aφ(n)( mod n). Q.E.D.

This gives us a negative test for primality: we know n is non-prime if an−1 6≡ 1( mod p). Unless a is given to
us, this only shows that the complement of Primality is in NP , which we already knew. The question is whether we
can strengthen this line of thinking into a complete test. That is precisely what the following key theorem provides.

We say that a belongs to (the exponent) d modulo n if d is the smallest number such that ad ≡ 1( mod n).
For example, if n = 5 and a = 3 then we have a2 ≡ 4, a3 ≡ 3, a4 ≡ 16 ≡ 1 (all mod 5). Thus a belongs to d = 4
modulo 5. It is easy to see that if a belongs to d modulo n, then

am ≡ 1( mod n) ⇒ d|m. (10)

This is because otherwise m = sd+ t for some s, t with 1 ≤ t < d and 1 ≡ am ≡ asd+t ≡ at, contradiction.

Theorem 13 (Key Lemma). Let n > 2. Then n is prime if and only if there exists an a ∈ Z
∗
n that belongs to the

exponent n− 1.

We split this theorem into two halves. The easier half of this theorem is due to Lucas [6, p.72].

Theorem 14. Let n, a be numbers. If a belongs to the exponent n− 1 modulo n then n is prime.

Proof. Since an−1 ≡ 1( mod n) yields a solution to the congruence ax ≡ 1( mod n), we conclude from (3.4)
that GCD(a, n) divides 1. So a, n are co-prime. Next, a1, a2, . . . , an−1 are distinct elements ( mod n): otherwise if
ai ≡ ai+m( mod n) for some 1 ≤ i < i +m < n, then am ≡ 1( mod n), contradiction. But (aimodn) ∈ Z

∗
n for

each i = 1, . . . , p− 1. Hence φ(n) ≥ n− 1. It follows φ(n) = n− 1, which characterizes n as prime. Q.E.D.

The harder half of theorem 13 is the statement that if p is prime then there exists an a ∈ Z
∗
p that belongs to

the exponent p− 1. Another way to say this is that Z
∗
p is a cyclic multiplicative group with generator a. In fact,

there are φ(p − 1) such generators. For instance, if p = 17 then φ(16) = 24 − 23 = 8. So there are 8 generators of
the mulplicative group Z

∗
17. (Exercise: determine these generators.) All these facts are a consequence of the next

result.

Theorem 15. Let p be prime and let d ≥ 1 divide p− 1. Then there are exactly φ(d) elements in Z
∗
p that belongs

to exponent d.

Proof. Each a ∈ Z
∗
p belongs to some exponent d modulo p. Let ψ(d) denote the number of elements in Z

∗
p that

belongs to d modulo p. Our theorem says that if d|p − 1 then ψ(d) = φ(d). First note that ψ(d) = 0 if d does
not divide p − 1: for, if a belongs to d modulo p, and d does not divide p − 1 then p − 1 = sd + t for some s, t
with 1 ≤ t < d. Then 1 ≡ ap−1 (Fermat’s little theorem) implies 1 ≡ ast+t ≡ at( mod p). But at ≡ 1 and t < d
contradicts the assumption that a belongs to exponent d. This proves that

p− 1 =
∑

d|p−1

ψ(d). (11)

Observe that (3.8) implies

p− 1 =
∑

d|p−1

φ(d).

From these two expresions for p− 1, it would follow that ψ(d) = φ(d) if show that for all d|p− 1,

ψ(d) ≤ φ(d). (12)

If ψ(d) = 0 then (3.12) is trivially true. Otherwise, there exists an a that belongs to d modulo p. Now, the set
S = {1, a, a2, . . . , ad−1} contain d distinct elements modulo p (there is a similar argument in the above proof of
Lucas’ theorem). Moreover, each element in S is a solution to the equation xd ≡ 1( mod p). This is because
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(ai)d ≡ (ad)i ≡ 1( mod p). But Lagrange’s theorem tells us that a polynomial of degree d has at most d distinct
solutions modulo p. Hence S contains every element that belongs to d. It remains to show that exactly φ(d)
elements in S has exponent d. This follows if we show ai has exponent d iff i, d are co-prime. In one direction, if
i, d are co-prime, then (ai)j ≡ 1( mod p) implies d|ij (cf. (3.10)) and hence d|j. Thus ai belongs to d. Conversely,
if GCD(i, d) = g > 1 then (ai)d/g ≡ (ad)i/g ≡ 1i/g( mod p), so that ai belongs to exponent ≤ d/g. Q.E.D.

Note that theorem 13 is not quite enough to show that primality is in NP : to check if n is prime, we guess an
a ∈ Zn and verify that (i) an−1 ≡ 1( mod n) and (ii) for all m = 1, . . . , n−2, am 6≡ 1( mod n). Unfortunately, this
is not polynomial time as there exponentially many choices of m. Pratt notes that we can avoid this exponential
check if we have a prime factorization of n− 1.

Lemma 16. Given n > 2 and a ∈ Z
∗
n, let n − 1 = 2r

∏k
i=1 qi be a prime factorization of n − 1 where the qi’s are

odd primes (not necessarily distinct). Then a belongs to exponent n− 1 modulo n if and only if
(i) an−1 ≡ 1( mod n).
(ii) a(n−1)/qi 6≡ 1( mod n) for all i = 1, . . . , k.

Proof. One direction is trivial. In the other direction, we claim that (i) and (ii) implies a belong to the exponent
n− 1. Suppose a belongs to m for some m = 2, . . . , n− 2. If m divides n− 1, then (n− 1)/m must have the form
qs for some q and s where q ∈ {q1, . . . , k}. Then am = a(n−1)/(sq) ≡ 1( mod n) implies a(n−1)/q ≡ (am)s ≡ 1(
mod n), contradicting (ii). But if m does not divide n−1, then n−1 = sm+t for some numbers s, t and 1 ≤ t < m.
This means 1 ≡ an−1 ≡ asm+t ≡ (am)sat ≡ at, contradicting the assumption that a belongs to the exponent m.

Q.E.D.

We finally show that Primes is in NP : on input n, we can easily say n is prime or non-prime if n = 2 or if n is
even. Otherwise, we guess an a ∈ Zn and verify that GCD(a, n) = 1. We then guess a prime factorization of n − 1
as in the preceding lemma: this amounts to guessing the numbers r, q1, q2, . . . , qk subject to the restriction that
r, k ≤ lgn and 3 ≤ qi ≤ n. We finally check that each of the following holds:

(a) an−1 ≡ 1( mod n).

(b) The product 2r
∏k
i=1 qi is equal to n− 1.

(c) a
n−1

qi 6≡ 1( mod n), for each i.

(d) Recursively, each of the qi is a prime.

To verify (a) we must raise a to the (n−1)st power. Using the squaring technique, we need use only a linear number
(i.e., O(log n)) of multiplications of numbers whose magnitudes are each less than n (this is done by repeatedly
reducing the intermediate results modulo n). Hence this takes at most cubic time. To verify (b), there are at most
logn factors (counting multiplicities), and again cubic time suffices. Part (c) is similarly cubic time. Hence, if t(n)
is the time of this (non-deterministic) algorithm on input n, then

t(n) = O(log3 n) +

k
∑

i=1

t(pi)

It is easy to verify inductively that t(n) = O(log4 n). Thus Primes is in NP . Of course, if we use faster multiplication
algorithms, this bound can be improved.

3.6.2 Integer Linear Programming

We begin by showing that ILP is NP -hard. This is quite easy, via a reduction from 3CNF: given a 3CNF formula
F consisting of the clauses

C1, C2, . . . , Cm

we introduce a set of inequalities. For each variable v, if v or its negation v̄ occurs in F , we introduce the inequalities:

v ≥ 0, v̄ ≥ 0, v + v̄ = 1.

For each clause C = {α, β, γ}, introduce
α+ β + γ ≥ 1.

It is easy to write all these inequalities in the form Ax ≥ b for a suitable matrix A and vector b. Furthermore,
this system of inequalities has an integer solution iff F is satisfiable.
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The original proof7 that ILP is in NP is by von zur Gathen and Sieveking[14]. To show that ILP is in NP , we
want to guess an x and check if the system Ax ≥ b holds on input A,b. However we cannot do this checking in
polynomial time if the smallest size solution x is too large. The basic issue is to show that if there is a solution
then there is one of small size. In this context, the size of a number or a matrix is the number of bits sufficient
to encode it in standard ways. More precisely, we define the size of a number n as logarithm of its magnitude |n|;
the size of a m × n matrix is defined as mn plus the sum of the sizes of its entries; the size of the input to ILP
is defined as the sum of the sizes of A and b. The proof which takes up the remainder of this subsection requires
some elementary linear algebra. The basis of our estimates is the following simple inequality:

Lemma 17. Let B be an n square matrix whose entries each have size at most β. Then the determinant det(B) is
bounded by n!βn < s2s, where s is the size of B.

This result is seen by summing up the n! terms in the definition of a determinant. In the remainder of this
subsection, except noted otherwise, the following notations will be fixed:

A = (Ai,j) : an m× n matrix with integer entries with m ≥ n.
b = (bi) : an m-vector with integer entries.
α : the maximum magnitude (not size) of entries in A,b.
s : the size of the A plus the size of b.
ai : the ith row of A.

Lemma 18 (Key lemma). Let A,b be given as above. If there exists an integer solution x to the system Ax ≥ b
then there is a solution x each of whose entries has magnitude at most 2s7s.

It is easy to see that this implies that ILP is in NP : First observe that the size s of the input 〈A,b〉 satisfies

s ≥ mn+ logα.

On input 〈A,b〉, guess some vector x each of whose entries has magnitude at most 2s7s. Since each entry has size
O(s2), the guessing takes time O(ns2). Compute Ax and compare to b, using time O(mn2s3) = O(s5). Accept if
and only if Ax ≥ b.

We prove some lemmas leading to the Key lemma. The kth principal submatrix of any matrix B is the k × k
submatrix of B formed by the first k columns of the first k rows of B; let B(k) denote this submatrix.

Lemma 19. Suppose the hth principal submatrix A(h) of A is non-singular. If h < rank(A) then there exists an
integer n-vector z, z 6= 0, such that

(i) aiz = 0 for i = 1, . . . , h,

(ii) each of the first h+ 1 components of z has magnitude at most s2s, but all the remaining components are
zero.

Proof. If the c is the h-vector composed of the first h entries of the (h + 1)st column of A then there is an
h-vector v = (v1, . . . , vh) such that A(h)v = c. In fact, Cramer’s rule tells us that the entries of v are given by
vi = ±Ci/∆ where Ci,∆ are determinants of the h× h submatrices of the h× (h+ 1) matrix (A(h)|c). We define
the required z by

zi =







vi∆ = ±Ci if 1 ≤ i ≤ h
−∆ if i = h+ 1
0 otherwise.

It is easy to see that z is a non-zero integer vector and aiz = 0 for i = 1, . . . , h. Each zi has magnitude ≤ s2s.
Q.E.D.

Lemma 20. Assume 0 ≤ h < rank(A). Suppose that the hth principal submatrix A(h) is non-singular and Ax ≥ b
has an integer solution x such that for 1 ≤ i ≤ h, the ith row of A satisfies

bi ≤ aix < bi + s4s. (13)

Then there is a matrix A′ obtained by permuting the rows and columns of A such that

7Our proof is based on notes by Ó’Dúnlaing. Kozen points out that the usual attribution of this result to [3] is incorrect. Borosh
and Treybig showed a weaker form of the Key lemma above: namely, if Ax = b has a solution then it has a small solution. It does not
appear easy to derive the Key lemma from this weaker form.
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(i) the (h+ 1)st principal submatrix A′(h+1) is non-singular, and

(ii) Let b′ = (b′1, . . . , b
′
m) be the permutation of b corresponding to the permutation of the rows of A to derive

A′. There is a solution x′ to A′x′ ≥ b′ such that for all 1 ≤ i ≤ h+ 1, the following inequality holds:

b′i ≤ a′
ix

′ < b′i + s4s.

Proof. In the statement of this lemma, the principal submatrix A(0) is conventionally taken to be non-singular.
By permuting the columns ofA if necessary, we can assume that the first h+1 columns ofA are linearly independent.
By the previous lemma, there is a non-zero vector z such that (i) aiz = 0 for all i = 1, . . . , h, and (ii) the first
h+ 1 components of z are at most s2s and the remaining components are 0. Since the first h+ 1 columns of A are
linearly independent, there exists i, (h < i ≤ n), such that aiz 6= 0. Assume that there exists some i such that aiz
is positive (the case aiz < 0 is similar), and let J ⊆ {h+ 1, . . . ,m− 1,m} consist of all those j satisfying

ajz > 0.

Let δ be the smallest non-negative integer such that if x′′ = x − δz then for some j0 ∈ J , bj0 ≤ aj0x
′′ < bj0 + s4s.

We claim that

(a) aix
′′ = aix for i = 1, . . . , h, and

(b) aix
′′ ≥ bi for i = h+ 1, . . . ,m.

It is easy to see that (a) follows from our choice of z. As for (b), the case δ = 0 is trivial so assume δ > 0. When
i 6∈ J , (b) follows from the fact that aix

′′ ≥ aix. When i ∈ J , our choice of δ implies that

bi + s4s ≤ aix− (δ − 1)aiz

But aiz ≤ nαs2s ≤ s4s implies aix
′′ ≥ bi. This proves (b). By exchanging a pair of rows of (A|b|x′′) to make the

j0th row of A the new (h+ 1)st row, we get the desired (A′|b′|x′). Q.E.D.

We are finally ready to prove the Key lemma. Let x = (x1, . . . , xn) be an integer solution to Ax ≥ b. For each
i, clearly xi ≥ 0 or −xi ≥ 0. Hence there exists an n square matrix M whose entries are all zero except for the
diagonal elements which are all +1 or −1 such that Mx ≥ 0. Let A′ be the (m+ n) × n matrix

(

A

M

)

and b′ be the (m + n)-vector obtained by appending zeroes to b. Thus A′x ≥ b′ has a solution. But observe
that A′ has at least as many rows as columns and it has full rank (equal to the number n of columns). Hence the
previous lemma is applicable to A′,b′ successively, for h = 0, 1, . . . , n− 1. This shows the existence of an integer
solution x′ to A′′x′ ≥ b′, where A′′ is a row and column permutation of A′ and the individual components of A′′x′

are bounded by s+ s4s ≤ 2s4s. Since rank(A′′) = n, there is an n× n nonsingular submatrix B of A′′. If Bx′ = c
then x′ = B−1c.

We now bound the size of the entries of x′. We claim that each entry of B−1 has magnitude at most s2s: to
see this, each entry of B−1 has the form Bi,j/∆ where ∆ is the determinant of B and Bi,j is the co-factor of the
(i, j)th entry of B. Since a co-factor is, up to its sign, equal to a (n− 1)× (n− 1) subdeterminant of B, our bound
on determinants (lemma 17) provides the claimed upper bound of s2s. Now each entry of c has magnitude at most
2s4s. Thus each entry of x′ = B−1c has magnitude at most 2ns6s < 2s7s. Finally observe that some permutation
of x′ corresponds to a solution to Ax ≥ b. This concludes our proof of the Key lemma.

3.7 Final Remarks

This chapter not only introduces the class NP but opens the door to the core activities in Complexity Theory:
many questions that researchers ask can be traced back to the desire to understand the relationship between NP
(which encompasses many problems of interest) and P (which constitutes the feasably solvable problems in the
fundamental mode). For instance, the concepts of reducibilities and complete languages will be extended and serve
as subject matters for the next two chapters.

Another important motivation for NP comes from the theory of recursive functions: the class P is often
compared to the recursive sets. Then the class NP is the analogue of the class of recursively enumerable sets.
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We began this chapter with the traveling salesman problems, TSO and TSD. Now we can easily show the
recognition problem TSD is NP -complete. It is enough to show how to transform any graph G = (V,E) into an
input 〈D, b〉 for the TSD problem such that G has a Hamiltonian circuit iff 〈D, b〉 ∈ TSD. Assume that the vertices
of G are 1, 2, . . . , n. The n× n matrix D = di,j is defined by di,j = 1 if {i, j} ∈ E; otherwise di,j = 2. It is easy to
see that D has a tour of length b = n iff G has a Hamiltonian circuit. The simplicity of this reduction illustrates
an earlier remark that showing a problem L to be NP -hard can be facilitated if we have a closely related problem
L′ already known to be NP -hard.

Algebraic versus Bit Models of complexity In computational problems involving numbers, typically prob-
lems in computational geometry, we have two natural models of complexity. One is the Turing machine model
where all numbers must ultimately be encoded as finite bit-strings; the other is where we view each number as
elementary objects and we count only the number of algebraic operations. In simple situations, the only algebraic
operations are the four arithmetic operations of +,−,×,÷. Often

√· is added. These two complexity models are
usually called the bit model and arithmetic model, respectively. Complexity in the two models are often closely
related. However, we point out that these models are probably independent from a complexity viewpoint. More
precisely, there may be problems requiring non-polynomial time in one model but which uses only polynomial time
in the other. For instance, the linear programming problem is polynomial time under the bit model, but not known
to be polynomial time in the algebraic model. On the other hand, the problem of shortest paths between two points
amidst polygonal obstacles is polynomial time in the algebraic model, but not known to be in polynomial time in
the bit model.
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Exercises

[3.1] Prove propositions B and C.

[3.2] Construct the Turing transducer N that computes the transformation in the proof of Cook’s theorem.

[3.3] * Convert the satisfying assignment problem into an optimization problem by asking for an assignment
which satisfies the maximum number of clauses in a given CNF formula F . Is this problem is polynomially
equivalent to SAT?

[3.4] Show that 2SAT, the set of satisfiable CNF formulas with exactly two literals per clause can be recognized
in polynomial time.

[3.5] Let X be a set of n Boolean variables and k be a positive integer less than n. Construct a CNF formula
Tk(X,Y ) containing the variables in the set X ∪ Y where Y is an auxiliary set of variables depending on
your construction satisfying the following property: an assignment I : X ∪ Y → {0, 1} satisfies Tk(X) iff I
makes at least k variables in X true. Let us call Tk(X,Y ) the k-threshold formula. Your formula should
have size polynomial in n. What is the smallest size you can achieve for this formula? Hint: it is easy to
construct a formula where Y has kn variables. Can you do better?

[3.6] Show a log-space reduction of the following problems to SAT. Note that there are well-known deterministic
polynomial time algorithms for these problems. However, you should give direct solutions, i.e., without
going through Cook’s theorem or appeal to the known deterministic polynomial time algorithms. Hopefully,
your reductions to SAT here are less expensive than solving the problems directly! So your goal should be
to give as ‘efficient’ a reduction as possible. In particular, none of your transformations should take more
than quadratic time (you should do better for the sorting problem).

(i) Graph matching: input is a pair 〈G, k〉 where k is a positive integer and G is n by n Boolean matrix
representing an undirected graph; the desired property is that G has a matching of cardinality k. The
threshold formulas in the previous problem are useful here.

(ii) Sorting: input is a pair 〈L,L′〉 of lists where each list consists of a sequence of the form

#k1#d1#k2#d2# · · ·#kn#dn#

where ki and di are binary strings. Regarding ki as the ‘key’ and di as the corresponding ‘data’,
this language corresponds to the problem of sorting the data items according to their key values.
The ‘input’ list L is arbitrary but the ‘output’ list L′ is the sorted version of L: L′ ought to contain
precisely the same (key, data) pairs as L, and the keys in L′ are in non-decreasing order.

(iii) Non-planarity testing: input is a graph G and the property is that G is non-planar. (Use the two
forbidden subgraphs characterization of Kuratowski.)

(iv) Network flow: input is 〈G, s, t, C, k〉 where G is a directed graph, s and t are distinct nodes of G
(called the source and sink), C assigns non-negative integer values to the nodes of G (C(u) is the
capacity of node u), and k ≥ 0 is an integer. The desired property is that the maximum value of a
flow from s to t is k. Note that integers are represented in binary, and C can be encoded by a list of
pairs of the form (u,C(u)) for each node u. (Use the max-flow-min-cut theorem and the fact that we
can restrict flows to be integral.)

[3.5] Recall that a 3DNF formula has the form
m
∨∨

i=1

3
∧∧

j=1
ui,j

where ui,j are literals. We also let 3DNF-SAT denote the set of satisfiable (encoded) 3DNF formulas. Show
that 3DNF-SAT can be recognized in polynomial time.

[3.6] (Bauer-Brand-Fisher-Meyer-Paterson) Let F be a Boolean formula. Show a systematic transformation
of F to another 3CNF G such that they are co-satisfiable (i.e., both are satisfiable or both are not).
Furthermore, |G| = O(|F |) where |G| denotes the size of the formula G. Hint: For each subformula H
of F , introduce an additional variable αH . We want to ensure that any assignment I to the variables of
H assigns to αH the value of the subformula H under I (i.e., if I makes H false then I(αH) = 0). For
instance, H = H1 ∨H2. Then we introduce clauses that enforce the equivalence αH ≡ αH1

∨ αH2
.
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[3.7] The parity function on n variables is x1 ⊕ x2 ⊕ · · · ⊕ xn where ⊕ is exclusive-or. Thus the function is
1 precisely when an odd number of its inputs are 1. Show that the smallest CNF formula equivalent to
the parity function is exponential in n. (Note that this shows that we could not strengthen the previous
exercise such that F and G become equivalent rather than just co-satisfiable.) Hint: Consider the following

CNF formula
∧k
i=1

∨

Ji where each Ji is a set of literals over x1, . . . , xn. Show that if this is the parity
function then |Ji| = n.

[3.8] Show that the problem of graph coloring is NP -complete.

[3.9] Show that the problem of deciding if a graph contains a pre-specified set of vertex-disjoint paths is NP-
complete. The input is an undirected graph together with some set {(ui, vi) : i = 1, . . . , k} of pairs of
vertices. The required property is that there are k pairwise vertex-disjoint paths connecting the given pairs
of vertices. Hint: Reduce from 3SAT.

[3.10] (Burr) A graph G = (V,E) is NMT-colorable (‘no monochromatic triangle’) if it can be 2-colored such
that no triangle (3-cycle) has the same color. Show that the problem of recognizing NMT-colorable graphs
is NP -complete. Hint: Construct three gadgets (I), (II) and (III) with the following properties. Gadget (I)
has two distinguished nodes such that any NMT-coloring of (I) must give them the same color. Gadget (II)
has two distinguished nodes such that any NMT-coloring of (II) must give them distinct colors. Gadget
(III) has four distinguished nodes A,B,C,D such that in any NMT-coloring of this gadget must make at
least one of A,B or C the same color as D. When the various gadgets are strung together, the D node of
all copies of Gadget (III) should be common.

[3.11] Prove that the 2-DISJOINT-PATH problem is NP -complete: given a digraph with source node s and sink
node t, and a bound B > 0, are there two node-disjoint paths of length at most B from s to t? HINT:
reduce from 3SAT or from PARTITION.

[3.12] Consider the regular expressions over some alphabet Σ involving the operators of concatenation (·), union
(+), and Kleene-star (∗). Each regular expression α denotes a subset of Σ∗. We now consider a class of
modified regular expressions in which Kleener-star is not used but where we allow intersection (∩). Show
that the problem of recognizing those modified regular expressions α where L(α) 6= Σ∗ is NP-hard. Hint:
imitate Cook’s theorem, but use such expressions to denote those strings that do not represent accepting
computations.

[3.13] (Cook) Show that the problem of recognizing input pairs 〈G,G′〉 of undirected graphs with the property
that G is isomorphic to a subgraph of G′ is NP -complete.

[3.14] * (Stockmeyer) Show that the problem of recognizing those graphs G that are planar and 3-colorable is
NP -complete. (Note: we can assume that the input graph is planar because planarity testing can be done
in linear time.) Hint: Reduce 3SAT to the present problem.

[3.15] * (Kozen) Show that the problem of recognizing valid sentences of the first-order predicate calculus with
the equality symbol but without negation is NP-complete. The language contains the usual logical symbols
(∧,∨, ∀, ∃) sans negation (¬), individual variables xi, relation symbols Rmi and function symbols Fmi (where
m ≥ 0 denotes the arity of the relation or function symbol, and for i = 0, 1, . . .). We further assume that
Rm0 is the standard equality symbol ‘=’. We are interested in valid sentences, i.e., closed formulas that are
true in all models under all interpretations (but equality is standard). Called this the validity problem for
positive first-order logic.

[3.16] (a) Show that the tiling problem is NP-complete. The input to this problem has the form 〈n, k, S〉 where
n and k are positive integers and S is a finite set of ‘tile patterns’. Each tile pattern in S is a sequence of
the form p = 〈c1, c2, c3, c4〉 where ci ∈ {1, . . . , k}. Any oriented unit square whose top, bottom, left and
right edges are colored with the colors c1, c2, c3 and c4, respectively, is said to have pattern p. The problem
is to decide whether it is possible to cover an n by n square area using n2 unit tiles satisfying the following
condition: (i) each unit tile has a pattern from S, and (ii) for any two tiles that abut, their two adjacent
edges have the same color. Hint: simulate a Turing machine computation using tiles.

(b) For fixed k, let the k-tiling problem be the restriction of the tiling problem to k colors. What is the
smallest k for which you can show that the k-tiling problem remains NP-complete? What is the largest k
for which you can show that the problem is in P ?
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[3.17] (Karp-Held) Give a dynamic programming solution to TSO which has a running time of O(n2n). Hint:
Let S ⊆ {2, 3, . . . , n} be a subset of the n cities, and k ∈ S. Let C(S, k) denote the minimum cost of a
route which starts at city 1, visiting all the cities in S exactly once, terminating at k. Give an expression
for C(S, k) in terms of C(T, i) for all T where T ⊆ S and |T | = |S| − 1.

[3.18] (a) Show that if p is prime and x is an integer, 1 ≤ x < p, then p divides

(

p
x

)

where

(

p
x

)

=

p(p−1)···(p−x+1)
x! .

(b) Conclude (using induction on k) that if p is prime then for all x1, . . . , xk,

(

k
∑

i=1

xi

)p

≡
(

k
∑

i=1

xpi

)

( mod p).

[3.19] Prove that if G is an Abelian group, and s and t are elements of G of orders m and n (respectively) then

G has an element of order LCM(m,n) (:= mn/GCD(m,n)). Hint: by replacing s with sGCD(m,n), we may
assume that LCM(m,n) = mn. What is the order of st?

[3.20] In the text, we show that Z
∗
n is a cyclic group when n is a prime.

(a) Extend this result to show that Z
∗
n is cyclic if n = 2, 4 or n = 2pe (e ≥ 2) where p is an odd prime.

(b) Show that if n is not of the above form, then Z
∗
n is not cyclic.

[3.21] * Suppose a ∈ Z
∗
n is a primitive root of n. Is there a polynomial certificate for this fact?

[3.22] Let R ⊆ {0, 1}∗ × {0, 1}∗. We call R a “certifier of primes” if it has the following property (1) (x, y) ∈ R
implies x is the binary notation for a prime number, and (2) for all prime number x in binary notation,
there exists y such that (x, y) ∈ R. If (x, y) ∈ R, we call y a “certificate for x”. Prove that there is a
certifier of primes R which can decided in polynomial time (i.e., there is a polynomial time Turing machine
with 2 input tapes which, given x, y placed on these input tapes, will halt in polynomial time and accept
iff (x, y) ∈ R). Moreover, (x, y) ∈ R implies |y| ≤ O(|x|2). This last requirement says that all primes have
quadratic size certificates.

[3.23] We want to demonstrate that if we allow the output tape of transducers to be a 2-way (but still read-only)
tape then we have a more powerful model. Recall the non-regular language L0 in the last section of chapter
2. Consider the problem where, given an integer n in binary, we want to output the string 1̄#2̄# · · ·#n̄ in
the language L0. The input size is O(log n) and the output size is O(n logn). (a) Show that if the output
tape is 1-way as in our standard definition of transducers, then the space used is linear, i.e. O(log n). (b)
Show that if we have a 2-way read-only output tape then logarithmic space (i.e. O(log logn)) suffices.

[3.24] * (Berman) Show that if there is a tally language L ⊆ {1}∗ that is complete for NP (under ≤Pm) then
P =NP .

[3.25] * The Euclidean Travelling Salesman’s Problem (ETS) is the following: given a set {p1, . . . , pn} of points
in the plane, find the shortest tour that connects all these points. It is assumed that the points have integer
coordinates and the distance between any pair of points p, q is the usual Euclidean distance:

d(p, q) =
√

(px − qx)2 + (py − qy)2

where p = (px, py), q = (qx, qy). ETS is known to be NP -hard, but why is it not obviously NP -complete?
Give a single-exponential time upper bound on the complexity of ETS.
Hint: Reduce the problem to comparing a sum of square-roots to zero.

[3.26] (Bloemer and Yap) Show that the following problem can be solved in deterministic polynomial time: given
integers ai and positive numbers ni (i = 1, . . . ,m) determine if S =

∑m
i=1 ai

√
ni is equal to 0. NOTE: In

contrast, testing if S > 0 is not known to be polynomial time.
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Appendix A

Propositional Logic

A Boolean variable is a variable that assumes a value of “1” or “0” (alternatively “true” or “false”). If x is a Boolean
variable, then its negation is denoted either x̄ or ¬x. A literal is either a Boolean variable or the negation of one.
A (Boolean) formula is either a variable or recursively has one of the three forms:

conjunction: (φ ∧ ψ)

disjunction: (φ ∨ ψ)

negation: (¬φ)

where φ and ψ are Boolean formulas. As an example of a Boolean formula, we have

((x1 ∨ x2) ∨ x3) ∧ (((x̄1 ∨ x2) ∨ x2) ∧ (x̄2 ∨ x̄3)). (1)

It is important to realize that formulas are syntactic objects, i.e., a sequence of marks laid out according to the
preceding rules, where the marks comes from ∨,∧,¬, (, ), and a unique mark for each variable xi, i = 1, 2, 3, . . ..
When encoding formulas to apply our theory, we cannot assume an infinite number of marks. Hence we must
encode each xi by a sequence from a (finite) alphabet Σ. A simple choice, and the one assumed in this book, is the
following: let

Σ = {∨,∧,¬, (, ), x, 0, 1}
and each xi is encoded by the symbol “x” followed by b0b1 · · · bm ∈ {0, 1}∗ where b0 · · · bm is the integer i in binary.
Using this convention, and assuming that no variable xi+1 is used unless xi is also used, it is easy to see that the
size of a formula φ is O(k+m logm) where k is the number of Boolean operator occurrences and m is the number
of variable occurrences.

A variable x occurs in a formula F if either x or its negation syntactically appears in F . If all the variables
occurring in F are among x1, x2, . . . , xn, we indicate this by writing F (x1, x2, . . . , xn). In this notation, some
(possibly all) xi may not occur in F . An assignment to a set X of Boolean variables is a function I : X → {0, 1}.
If X contains all the variables occurring in F , and I is an assignment to X then I (by induction on the size of F )
assigns a Boolean value I(F ) to F as follows: if F is a variable x, I(F ) = I(x); otherwise:

if F is the negation (¬φ) then I(F ) = 1 − I(φ);
if F is the conjunct (φ ∧ ψ) then I(F ) = min{I(φ), I(ψ)};
if F is the disjunct (φ ∨ ψ) then I(F ) = max{I(φ), I(ψ)}.

We say I satisfies F if I(F ) = 1. A formula F is satisfiable if there exists an assignment which satisfies it. Thus
the formula in equation (A.1) is satisfied by I with I(x1) = I(x2) = 1, I(x3) = 0.

Two formulas φ and ψ are equivalent, written φ ≡ ψ, if for any assignment I to the variables occurring in both
formulas, I(φ) = I(ψ). The formulas are co-satisfiable if they are either both satisfiable or both unsatisfiable.

As seen in the example (A.1), parentheses in formulas get to be tedious. We can avoid these parenthesis by
using the properties that conjunctions and disjunctions are associative, i.e.,

φ1 ∧ (φ2 ∧ φ3) ≡ (φ1 ∧ φ2) ∧ φ3; φ1 ∨ (φ2 ∨ φ3) ≡ (φ1 ∨ φ2) ∨ φ3,

and commutative, i.e.,
φ1 ∧ φ2 ≡ φ2 ∧ φ1; φ1 ∨ φ2 ≡ φ2 ∨ φ1,

23
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and using the fact that
φ ∨ φ ≡ φ; φ ∧ φ ≡ φ.

Thus (A.1) can be simply written as

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x2) ∧ (x̄2 ∨ x̄3). (2)

If S = {u1, . . . , un} is a set of literals, we also write

∨∨

S or
∨∨

u∈S
u or

n
∨∨

i=1
ui

for the conjunction of the literals in S. We use
∧∧

in a similar way for conjunctions. A formula that is a
conjunction of disjunctions of literals is said to be in conjunctive normal form (CNF). The example (A.2) is such
a formula. The disjunctive normal form (DNF) is similarly defined.

From the properties noted above, formulas in CNF can be given a convenient alternative form: A CNF formula
in clause form is a set of clauses, where a clause is a set of literals. There is an obvious way to transform a CNF
formula in the usual form to one in clause form; for example, the formula (A.2) in the clause form is

{{x1, x2, x3}, {x̄1, x2}, {x̄2, x̄3}}.

Note that since clauses are defined as sets, repeated literals are removed, as in the case of the second clause above.
Satisfiability of CNF formulas in the clause form is particularly simple: let X be the set of variables occurring in
the CNF formula F and let I be an assignment to X . Then I satisfies a clause C in F iff for some literal u in C
we have I(u) = 1. I satisfies F iff I satisfies each clause in F . For instance, the following CNF formula

{{x1, x̄2}, {x̄1, x2}, {x1}, {x̄2}}

is unsatisfiable.
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Chapter 4

Reducibilities

April 13, 2009

4.1 Inclusion Questions

Many open problems of Complexity Theory are inclusion questions of the form:

Is K included in K ′ ? (1)

Here K, K ′ are two classes of languages. The oldest such inclusion (or containment) question, dating back to 1960s,
is the linear bounded automata (LBA) question: Is NSPACE(n) included in DSPACE (n)? As explained in §2.9,
these two classes are also known as LBA and DLBA, respectively. The P versus NP problem is another instance
of the inclusion question. In chapter 3, we introduced Karp reducibility and showed its value for studying this
question. In general, reducibilities will be the key tool for investigating inclusion questions. We begin now with a
very general notion of reducibility.

Definition 1. A reducibility is a reflexive binary relation on languages. Let ≤ denote a reducibility. We use an
infix notation to reducibility relations: if (L, L′) belongs to the relation ≤, we write L ≤ L′. A reducibility is
transitive if it is transitive as a binary relation; otherwise it is intransitive.

In the literature, intransitive reducibilities are sometimes called “semi-reducibilities” and “reducibilities” are
reserved for transitive ones. Admittedly, our use of “≤” to denote semi-reducibilities can be confusing, since the
inequality symbol suggests transitivity. Intransitive reducibilities typically arise when the reducibility concept is
defined using nondeterministic machines (see §9).

We say L is ≤-reducible to L′ if the relation L ≤ L′ holds. Two languages L and L′ are ≤-comparable if either
L ≤ L′ or L′ ≤ L; otherwise they are ≤-incomparable. We also write L 6≤ L′ if L ≤ L′ does not hold; and write
L < L′ if L ≤ L′ and L′ 6≤ L.

Next assume that ≤ is transitive. If L ≤ L′ and L′ ≤ L then we say L and L′ are ≤-equivalent. The ≤-degree
of L is the class of languages ≤-equivalent to L.

The following generalizes some concepts from chapter 3.

Definition 2. Let K be a class of languages and ≤ a reducibility. Then L is K-hard (under ≤) if for every L′ in K,
L′ is ≤-reducible to L. L is K-complete (under ≤) if L is K-hard and L is in K. K is closed under ≤-reducibility
if for any L and L′, we have that L ≤ L′ and L′ ∈ K implies L ∈ K.

In Chapter 3 we proved that the language SAT is NP -complete. This definition reminds us that, in general, we
need to mention the particular reducibility concept used in such a result. The importance of complete languages
as a tool for studying the question (1) comes from the following easy generalization of the corollary to lemma 2 in
chapter 3.

Lemma 1 (The Basic Inclusion Lemma). Let K and K ′ be language classes and ≤ a reducibility. Assume
(a) K ′ is closed under ≤-reducibility, and
(b) L0 is a K-complete language (under ≤).
Then

K ⊆ K ′ ⇐⇒ L0 ∈ K ′.

1
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Under hypotheses (a) and (b) of this lemma, the inclusion question (1) is equivalent to the membership of a
single language L0 in K ′. Thus a K-complete language serves as a representative of the entire class K. This lemma
is the basis of most applications of reducibilities to the inclusion questions.

Choice of reducibilities (I). Given that we want to study a particular inclusion question, whether K ⊆ K ′,
within the framework of this lemma, how do we choose the reducibility ≤? One desirable property is that ≤ be
transitive. Then, we can show a language L ∈ K to be K-complete under ≤ simply by showing a known K-complete
language L0 is ≤-reducible to L. This tack is well-exploited in the field of NP -completeness theory as described in
Chapter 3. We will make several more remarks on the choice of reducibilities in the following section.

Closure under Complementation Questions. We say a class K is closed under complementation if K = co-K.
The question of closure under complement is equivalent to a special kind of inclusion question since

K = co-K ⇐⇒ K ⊆ co-K.

This is because K ⊆ co-K iff co-K ⊆ co-(co-K) = K. Of the many open inclusion questions, there is often a
weaker conjecture involving closure under complementation. For instance, it is not known if NP is closed under
complementation. If P = NP then NP must be closed under complementation. The converse is not known to be
true. Hence it is conceivably easier to prove that NP = co-NP than to prove that NP = P . Another example is
the LBA-question. While the LBA-question remains open, the general result about non-deterministic space classes
in §2.9 implies that LBA is closed under complementation.

We often wish to compare two reducibilities ≤1 and ≤2. We say ≤1 is as strong as ≤2 if L ≤2 L′ implies L ≤1 L′

for all L, L′. It is important to note the direction of implication in this definition since the literature sometimes
gives it the opposite sense.1 If ≤1 is as strong as than ≤2, and but not vice-versa, then ≤1 is stronger than ≤2.
Thus, the stronger reducibility strictly contains the weaker one, if we regard a reducibility as a set of ordered pairs
of languages.

Historical Notes. Reducibilities are extensively used in recursive function theory. At the subrecursive level, Cook
in the proof of his theorem, is an early example of defining a reducibility that takes complexity into account. Meyer
and McCreight [13] used such reducibilities in relating complexity of problems. Following Meyer, the reducibilities
that take complexity into account may be generically called ‘efficient reducibilities’. Systematic study of efficient
reducibilities was first undertaken by Ladner, Lynch, and Selman [8, 9, 10]. See also [3, 18].

Karp reducibility is denoted ≤Pm (§3.3). The superscript P here indicates polynomial-time; similarly, the sub-
script m indicates Karp reducibility is a form of “many-one reducibility”. Generally speaking, efficient reducibilities
are classified along two lines, and this is reflected in our notational scheme

≤χτ

for reducibilities: the symbol τ indicates the type of the reducibility, and the symbol χ indicates the complexity
characteristics (see §4.4).

Convention. The following abuse of notation is often convenient. If M (resp. T) is an acceptor (resp. transducer)
we sometimes use it to also denote the language (resp. transformation) defined by the indicated machine. Thus if
x, y are words, then we may say ‘x ∈ M’ or ‘y = T(x)’ with the obvious meaning.

4.2 Many-One Reducibility

Many-one reducibility (§3.3) is now treated in a more general setting. The terminology begs the question: is there
a one-one or a many-many reducibility? In recursive function theory, and occasionally in complexity theory (e.g.
[19]), one-one reducibility has been studied. Nondeterministic many-one reducibility (to be introduced in section
9) may be regarded as a many-many reducibility.

Definition 3. Let Σ, Γ be alphabets, and Φ be a family of transformations. We say a language (Σ, L) is many-one
reducible to another language (Γ, L′) via Φ if there exists a transformation t : Σ∗ → Γ∗ in Φ such that for all x ∈ Σ∗,

x ∈ L ⇐⇒ t(x) ∈ L′.

We write L ≤Φ
m L′ in this case.

1Our rationale is that the strength of the reducibility should be in direct proportion to the power of the machines used in defining
it: thus the polynomial time reducibility ought to be as strong as one defined by logarithmic space bounds. The opposite sense is
reasonable if we think of “logical strength of implication”. Kenneth Regan suggests the term “finer” which seems avoid all ambiguity.
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For any alphabet Σ, the identity transformation is t : Σ∗ → Σ∗ with t(x) = x for all x. The following proposition
is immediate.

Lemma 2.

(i) If Φ contains all identity transformations then ≤Φ
m is a reducibility.

(ii) If Φ is, in addition, closed under functional composition then ≤Φ
m is a transitive reducibility.

(iii) If Φ, Ψ are families of transformations where Φ ⊆ Ψ then ≤Ψ
m is as strong as ≤Φ

m.

If Φ is understood or immaterial, we shall simply write ‘≤m’ instead of ‘≤Φ
m’. Recall that a language L is

trivial if L or co-L is the empty set. It is easy to see that no non-trivial language is many-one reducible to a
trivial language and conversely, a trivial language is many-one reducible to any non-trivial one via some constant
transformation (i.e., t(x) = t(y) for all x, y). To avoid these special cases, we tacitly restrict all discussion to only
non-trivial languages when discussing many-one reducibilities. The following are some important cases of many-one
reducibility.

1. If Φ is the class of all transformations computed by halting deterministic Turing transducers, we will write
≤RECm for ≤Φ

m. We will say that L is recursively many-one reducible to L′ if L ≤RECm L′. Recall the
halting problem, HALT from Chapter 0. See the Exercise for a proof that HALT is RE -complete under
≤RECm .

2. In Chapter 3, we described Karp reducibility that uses the family Φ = P of transformations computed by
deterministic polynomial-time transducers.2

3. We introduce another important family, denoted DLOG, consisting of all transformations computed by
deterministic transducers running in logarithmic space. The corresponding reducibility is denoted ≤Lm and
called log-space many-one reducibility. The proof that DSPACE (s) ⊆ DTIME (n ·O(1)s(n)) in chapter 2 (§6)
can easily be adapted to show that

DLOG ⊆ P .

This implies that ≤Pm is as strong as ≤Lm.

Choice of reducibilities (II). An important instance of (1) is whether

NLOG ⊆ DLOG. (2)

Assuming that P 6= DLOG (as is generally conjectured), the class DLOG is not closed under ≤Pm (see Exercise).
Thus hypothesis (a) of the Basic Inclusion Lemma fails and we cannot use ≤Pm-reducibility to investigate question
(2). We say Karp reducibility is too strong for distinguishing DLOG from NLOG. More generally, hypothesis (a)
places an upper limit on the power of the reducibility used in studying inclusion questions. On the other hand, it
is easy to see that DLOG is closed under ≤Lm, and chapter 5 will show that NLOG has complete languages under
≤Lm. This is one of the motivations for introducing ≤Lm.

We now show that ≤Lm is a transitive reducibility. This follows immediately from the following theorem of Jones
[7] :

Theorem 3. The family DLOG of log-space transformations is closed under functional composition.

Proof. Let Σ0, Σ1, Σ2 be alphabets. For i = 1, 2, let ti : Σ∗
i−1 → Σ∗

i be computed by the transducer Ni that
runs in space log n. We shall construct a 2-tape transducer M that computes t0 : Σ∗

0 → Σ∗
2 that is the functional

composition of t1 and t2. To motivate the present proof, briefly recall the proof that ≤Pm is a transitive reducibility.
A direct adaptation of that proof to the present problem would yield a machine M′ which on input x, simulates
N1 to produce t1(x) and then simulates N2 on t1(x). In general such an M′ uses more than logarithmic space since
|t1(x)| may have length that is polynomial in |x|. To ensure that only logarithmic space is used, we shall avoid
storing t1(x), but rather recompute the symbols in t1(x) as often as needed.

By our convention on transducers, tape 1 of M is the output tape. Tape 2 has four tracks used as follows:

2We use bold letters to denote families of transformations.



4 CHAPTER 4. REDUCIBILITIES

Track 1: Work-space of N1 on input x.

Track 2: Work-space of N2 on input t1(x).

Track 3: An integer indicating the position of the input head of N2 on the input
t1(x).

Track 4: Counter used when simulating N1.

Initially, track 3 contains the integer 1 indicating that the input head of N2 is scanning the first symbol of t1(x).
In general, if track 3 contains an integer i, M will call a subroutine R that will determine the ith symbol of t1(x).
This is done as follows: R initializes the counter on track 4 to 0 and begins to simulate N1 using track 1 as its
work-tape. Each time N1 produces a new output symbol, R increments the count on track 4 and checks if the new
count equals the integer i on track 3; if so, R can immediately return with the ith symbol of t1(x). The operations
of M are essentially driven by a direct simulation of N2: to simulate a step of N2, M first calls subroutine R to
determine the symbol in t1(x) currently scanned by the input head of N2. It can then update the work-tape of N2

represented on track 2, and increment or decrement the integer on track 3 according to the motion of the input
head of N2. Clearly M computes t2(t1(x)). Finally, we must verify that M uses O(log n) space. Track 1 uses log |x|
space. It is not hard to see that track 2, 3 and 4 uses log(|t1(x)|) = O(log |x|) space. Q.E.D.

Choice of reducibilitites (III). For most of the open inclusion questions, the consensus opinion generally favor
a negative answer. Using smaller families of transformations (such as DLOG instead of P) to define reducibilities
gives us sharper tools for proving negative answers to these questions. For instance, suppose L is NP-complete
under some ≤-reducibility and P is closed under ≤ (thus the premises of the Basic Inclusion Lemma are satisfied).
To show that NP is not contained in P , it is sufficient to prove that L is not ≤-reducible to some P -complete
language L′ (in the next chapter we shall show the P does have complete languages). Clearly, it would be easier
to prove this result if ≤ were in fact ≤Lm rather than ≤Pm. However, there are inherent limits to this tact of tool
sharpening, as illustrated by the next result from [6].

Lemma 4. Let Φ be the families of transformations computed by transducers running in space f(n). If f(n)=o(log n)
then there does not exist NP-complete languages under ≤Φ

m-reducibility.

Proof. If t is a transformation computed by some transducer using f(n) = o(log n) space then for all x,
|t(x)| = |x|2O(f(|x|)) = o(|x|2). Let L0 ∈ NTIME (nk) for some k ≥ 1. If L′ ≤Φ

m L0 via t then it is easy to see
that L′ ∈ NTIME (n2k). In particular, if L0 is NP -complete under ≤Φ

m-reducibility then NP = NTIME(n2k). This
contradicts the fact that NP 6= NTIME (nk) for any k (this result is shown in chapter 6). Q.E.D.

Choice of reducibilities, conclusion (IV). This lemma says if the reducibility is weakened below logarithmic
space then it is useless for distinguishing P from NP . Combined with preceding discussions, we draw the lesson
that the strength of the reducibility should chosen appropriately for the inclusion question of interest. It turns out
that because the major questions we ask center around the canonical list, many-one log-space reducibility ≤Lm is
suitable for most of our needs.

Despite lemma 4, there are subfamilies of the logarithmic-space transformations DLOG that are useful for a
variety of purposes. We briefly describe three such subfamilies of DLOG.

(a) Consider what is essentially the smallest non-trivial family of transformations, namely, those computed by
transducers that use no space (these are called finite state transducers). Denote this family by FST. This
family is closed under functional composition [1]. If the input head of the transducer is constrained to be
one-way, we denote the corresponding subfamily by 1FST.3 We will show in chapter 6 that there are complete
languages for DTIME (nk) under such ≤1FST

m -reducibilities.

(b) Let Llin denote the subfamily of DLOG where t ∈ Llin implies that for all x, |t(x)| = O(|x|). Meyer, Lind
and Stockmeyer first considered these ‘log-linear’ transformations and corresponding ≤Llinm -reducibilities. In
chapter 6, we will see applications of such transformations in lower bound proofs.

(c) Let 1DLOG denote the family of transformations computable by transducers that use logarithmic space
but where the input tapes are one-way. The corresponding reducibility ≤1L

m has been studied by Hartmanis
and his collaborators. In particular, they point out that many of the well-known complete languages for
DLOG,NLOG,P and NP remain complete under ≤1L

m reducibilities. It is easy to see that such reducibilities
are transitive.

3The 1-way finite state transducers are also called generalized sequential machines or gsm.
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We next prove some useful properties about the canonical list of complexity classes of chapter 2 (§3):

DLOG, NLOG, PLOG , P , NP , PSPACE ,
DEXPT , NEXPT , DEXPTIME , NEXPTIME ,

EXPS , EXPSPACE .

Theorem 5.

(i) All the classes in the canonical list are closed under ≤Llinm -reducibility.

(ii) Each class in the canonical list, except for DEXPT and NEXPT, is closed under ≤Lm-reducibility.

Proof. (i) We prove this for the case DEXPT . Say L ≤Llinm L′ via some t ∈ Llin and L′ is accepted by some
M in deterministic time 2O(n). To accept L, we operate as follows: on input x compute t(x) and then simulate M
on t(x). The time taken is clearly O(1)|t(x)| = O(1)|x|.
(ii) Proofs similar to the above can be used except that, with log-space reducibilities, the transformed output t(x)
could have length polynomial in |x|. If M accepts in time O(1)n then to simulate M on t(x) takes time O(1)|t(x)|,
which is 6= O(1)|x|. This accounts for the exclusion of the classes DEXPT and NEXPT . Q.E.D.

4.3 Turing Reducibility

We introduce the idea of computing relative to oracles. Such a computation is done by a multitape Turing acceptor
M equipped with a special one-way oracle tape and with three distinguished states called QUERY, YES and NO.
Such an M is called an oracle or query machine or oracle TM. We allow M to be nondeterministic. Let A
be any language. A computation of M relative to the oracle set A proceeds in the usual way until the machine
enters the QUERY state. Then, depending on whether the word written on the oracle tape is in A or not, M next
enters the YES or NO state, respectively. This transition is called an oracle query. The oracle tape is erased (in an
instant) after each oracle query, and we proceed with the computation. We require that there are no transitions
into the YES and NO states except from the QUERY state. The machine M with oracle set A is denoted by M(A).
Since other oracle sets could have been used with M to produce different behavior, we denote the query machine
M without reference to any specific oracle by M(·). The acceptance time, space and reversal of M(A) are defined
as for ordinary Turing machines with the provision that space used on the oracle tape is not counted. We do not
feel justified in charging for the space on the oracle tape since the oracle tape does not allow space to be reused or
even to be reexamined (so this ‘space’ has properties more akin to time complexity). Clearly the time, space and
reversal of M(·) depend on the oracle. We say that the acceptance time of M(·) is f if for all oracles A, M(A) accepts
in time f . Similar definitions for acceptance space/reversals as well as for running complexity can be made: we
leave this to the reader. Query machines define language operators (see appendix of chapter 2): the oracle operator
φ = φM corresponding to a query machine M(·) is defined by φ(A)=L′ iff M(A) accepts L′. The alphabet of L′ is
taken to be the input alphabet of M(·).

Example 1. Recall the traveling salesman decision problem TSD in chapter 3. Consider the following variation,
called here the traveling salesman minimum tour problem (abbr. TSM):

Given: a pair 〈D, π〉 where D is a n× n matrix of non-negative integers and π is
a permutation on {1, . . . , n}.

Property: π represents a minimum cost tour.

It is easy to construct a query machine M(·) that solves TSM relative to an oracle for TSD: on input 〈D, π〉, M
begins by checking the input has the correct format and then computing the cost c of the tour π. Then it asks the
oracle two questions (by writing these words on the tape): 〈D, c〉 and 〈D, c− 1〉. Our machine M will accept if and
only if the first answer is yes, and the second answer is no. Clearly this oracle machine runs in polynomial time
and reduces the problem TSM to the problem TSD.

Extending our convention for acceptors and transducers, it is sometimes convenient to say ‘x ∈ M(L)’ to mean
that x is accepted by the query machine M(L).

Definition 4. Let L′ and L be languages and Ω a family of oracle operators. L′ is Turing-reducible to L via Ω,
denoted L′ ≤Ω

T L, if there exists an oracle operator φ ∈ Ω such that φ(L)=L′. If M is an oracle machine computing
φ, we also write L′ ≤T L via φ or via M. If K any class of languages, then we let ΩK denote the class of languages
that are Turing-reducible to some language in K via some operator in Ω. If K consists of a single language A, we
also write ΩA.
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Notation. Resource bounded complexity classes are defined by suitable resource bounded acceptors. If we replace
these acceptors by oracle machines with corresponding resource bounds, where the oracles come from some class
K, then the class of languages so defined is denoted in the original manner except that we add K as a superscript.
For instance, if F any family of complexity functions then DTIMEK(F ) denotes the class of languages accepted by
oracle machines M(A) in time t ∈ F with A ∈ K. Or again, N-TIME-SPACEK(nO(1), log n) is the class of languages
that are Turing-reducible to languages in K in simultaneous time-space (nO(1), log n). We call the classes defined
in this way relativized classes. The classes in the canonical list can likewise be ‘relativized’, and we have:

DLOGK ,NLOGK , PK ,NPK ,PSPACEK , etc.

Any question involving complexity classes can now be asked of relativized classes. In particular, the inclusion
questions can be relativized; for instance, the NP versus P problem can be relativized as follows:

Does there exist an oracle A such that NPA ⊆ PA?

Relativized classes are treated in Chapter 9.
For the time being we consider the deterministic oracle operators; in Section 9 we return to the nondetermin-

istic case. The two major families of deterministic oracle operators are P and DLOG, consisting of those oracle
operators computable by some deterministic query machine that runs in polynomial time and logarithmic space
(respectively).4 If Ω = P, the corresponding polynomial-time reducibility is denoted ≤PT . Similarly, if Ω = DLOG,
we denote the reducibility by ≤LT . Cook’s Theorem was originally stated using ≤PT instead of ≤Pm. In the literature,
≤PT is also known as Cook reducibility.

Lemma 6.

(i) ≤PT is a transitive reducibility.

(ii) ≤LT is a transitive reducibility.

Lemma 7.

(i) P is closed under ≤PT .

(ii) DLOG, NLOG and PLOG are closed under ≤LT .

The proofs of lemmas 6(i) and 7(i) are straightforward, and the proofs of lemmas 6(ii) and 7(ii) are similar to
the proof of Theorem 3. The nondeterministic version of Lemma 7(i) is not known to be true: it is not clear that
NP is closed under ≤PT (see Exercises). To gain more insight into this question, it is instructive to follow the proof
of our next result:

Lemma 8. The class NP ∩ co-NP is closed under Cook reducibility.

Proof. Let A be accepted by an nondeterministic polynomial-time acceptor M0, and co-A be accepted by a
similar acceptor M1. Suppose Q is a deterministic query machine that reduces B to A. Hence B = L(Q(A)).
We construct a nondeterministic polynomial-time acceptor (call it N) to accept B as follows: on any input x, we
simulate Q until a query z is made. At that moment, instead of asking an oracle, we dovetail two computations:
M0 on z and M1 on z. If M0 accepts, we continue the simulation of Q from the YES state of the query machine.
If M1 acccepts, we continue the simulation of Q from the NO state. We accept iff Q accepts.

We claim that if L(N) = B, and N accepts in polynomial time. Suppose x ∈ B. There there is an accepting
computation path of Q on input x, and corresponding accepting computation paths of M0 and M1 (depending on
whether the query was a YES or NO) which can be put together to form an accepting computation path of N of
polynomial length. If x 6∈ B, then it is easy to see that no computation path of N is accepting.

Since Q is deterministic, by interchanging the accept and reject states of Q, we obtain a query machine Q′

such that co-B = L(Q′(A)). Then the same argument as before proves that co-B is accepted by a nondeterministic
polynomial time machine. The theorem follows. Q.E.D.

Turing reducibility is the strongest notion of reducibility known. For example, it is stronger than many-one
reducibility if we view a transducer as a special type of oracle machine in which the oracle is asked only one question
at the end of the computation (and furthermore, this oracle machine accepts if and only if the oracle says yes).

4We use script letters for families of oracle operators.
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Alternative oracle models. The oracle machines as defined above are called one-way oracle machines. Although
such machines will serve as the standard model of oracle computation in this book, we point out some unexpected
properties. This leads to interest in alternative formulations. These properties arise in space-bounded oracle
computation. Note that the oracle tape is not counted among the work-tapes. The alternative is to allow the
oracle tape to behave like an ordinary work-tape until the machine enters the query state: then, as in the one-way
model, the machine next enters the YES or NO state, and the oracle tape is blanked in an instant. We call this
the two-way oracle machine. The amount of space used by the oracle tape is now included when considering space
usage. We give one motivation for preferring the one-way model: we generally expect Turing reducibility to be as
strong as the corresponding many-one reducibility. For instance, it seems that ≤LT ought to be as strong as the
many-one reducibility ≤Lm. Note that a one-way oracle machine using log-space may make queries of polynomial
length. Under the two-way oracle model the machine can only make queries of logarithmic length, and hence it is
no longer evident that ≤LT is as strong as ≤Lm. In fact, ≤LT is not even a reducibility (but ≤Lm clearly is a reducibility
— Exercise) The next two results illustrate further differences between the two oracle models.

Theorem 9. Under the two-way oracle model, for any oracle A and any complexity function s:

(i) (Relativized Savitch’s theorem) NSPACEA(s) ⊆ DSPACEA(s2).

(ii) NSPACEA(s) ⊆ DTIMEA(n2 log nO(1)s(n)).

The relativized Savitch’s theorem was noted in [18]. The proof of this theorem is an exercise but it is essentially
the same as in the unrelativized cases. In contrast, with respect to the one-way machine model, there are oracles
that belie the above result. We state such a result of Ladner and Lynch [9] here, but defer its proof till chapter 9.

Theorem 10. Let s be a complexity function that is space-constructible. Then there is an oracle A such that
NSPACEA(s) 6⊆ DSPACEA(O(1)s).

This theorem contradicts the relativized Savitch’s theorem in a very strong sense: there is an oracle A such
NSPACEA(s) 6⊆ DSPACEA(sk) for every integer k. It also contradicts the unrelativized result that NSPACE (s)
is included in DTIME (O(1)s), for s(n) ≥ log n. Such properties have suggested to researchers that our definitions
of oracle space may be “pathological”. To obtain a more reasonable notion, Gasarch suggests the following:

Definition 5. A tame oracle machine is a one-way oracle machine that has a distinguished set of states called
oracle states. The machine only writes on the oracle tape when in these states, and transitions from oracle states
are deterministic and can only go into other oracle states or enter the QUERY state.

Tameness implies that the oracle machine precedes an oracle query by entering the oracle states. If the machine
uses s space, then it has n2O(s(n)) configurations, where a configuration here does not include the contents on the
oracle tape. Hence the length of the query word in a tame oracle machine using space s(n) is n2O(s(n)). It is now
easy to prove the analog of theorem 9:

Theorem 11. Theorem 9 holds under the tame oracle model.

From now on, whenever space complexity is considered, we will assume that the one-way oracles are tame.

4.4 Efficient Universal Machines

In Chapter 0, we encountered the concept of a universal Turing machine (UTM). We now extend UTM’s to the
multitape model (this is routine) and further more take complexity into account (slightly less obvious).

Definition 6. A k-itape universal Turing acceptor U is a Turing acceptor with k ≥ 0 work-tapes and two
extra read-only tapes called the index tape and the input tape. Let Σ be the input alphabet of U . Inputs for U
are pairs of the form 〈i, x〉 where i, x ∈ Σ∗, with i on the index tape and x on the input tape. We usually inteprete
i as an natural number (in |Σ|-adic notation). For each i ∈ N, let Li be the language

Li = {x : U accepts 〈i, x〉}.

We call U is a universal acceptor for a class K if:

(i) For all i, Li ∈ K.

(ii) For each L ∈ K, there are infinitely many indices i such that Li = L. Call this the recurrence property.
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Alternatively, we say U accepts K or U presents K. Finally, if K is an arbitrary class, we say K has universal
acceptors (or is presentable) if for each alphabet Σ, K|Σ has a universal acceptor.

This definition updates the definition from Chapter 0 multitape Turing machines. The only twist is our require-
ment of the recurrence property – this will make all our subsequent argument simpler. With i fixed on the index
tape, we regard U as a Turing acceptor, denoted Ui, that accepts L(Ui). The number i is the index of the machine
Ui. We can also identify U with the family {Ui : i = 0, 1, 2, . . .} of Turing acceptors. However not every set of
Turing acceptors qualifies to be called a universal acceptor. Note that U can be deterministic or nondeterministic.

Example 2. (Standard Universal Machine Construction) Fix Σ. We construct a universal acceptor URE for the
class RE|Σ. For fixed k ≥ 2, let M0 be the family of all nondeterministic k-tape Turing acceptors whose input
alphabet is Σ. So the machines in M0 accept precisely the class RE|Σ. We represent each acceptor in M0 by
its finite transition table, listing in some arbitrary order the tuples in the table. Our universal Turing machine
URE will simulate each machine from this representation. Although the input alphabet of machines in M0 is fixed
as Σ, the tape alphabets is still arbitrary. Since URE must use a fixed alphabet, we will encode each symbol in
the universal symbol set Σ∞, say, as a word in {0, 1}∗. Once this is done, each machine M ∈ M0 is naturally
represented by infinitely many binary strings which we call indices of M. There are infinitely many indices because
we can add any number of spurious instructions that can never be executed in a computation beginning from an
initial configuration. An index i is interchangeably regarded as a natural number. However, when we write “|i|”,
we mean the length of the binary string i, not the absolute value of i as an integer. In case a binary string i does
not encode a valid machine description, we say it encodes the null machine that always halt and rejects its input.
The preceding conventions amount to an enumeration of the machines in M0:

φ0, φ1, φ2, . . . (3)

where each machine in M0 occurs infinitely often in the list. Now it is easy to construct URE that upon input
〈i, x〉 simulates the ith acceptor φi on input x in a step by step fashion; we leave the details to the reader.
We can make URE nondeterministic or deterministic, as desired. To make URE

i nondeterministic, we allow the
nondeterministically choice of not execute an executable instruction that is found in i but to scan i further for
another executable instruction. To make URE

i deterministic, we always execute the first executable instruction we
find in i. This completes our description of the (deterministic or nondeterministic) universal machine URE . Our
construction has the following properties:

(P1) For each machine φi in M0, if φi accepts in simultaneous time-space-reversal (t, s, r) then URE
i accepts L(φi)

in time-space-reversal Oi(t, s, r).

(P2) (The efficient recurrence property) For each i, there are infinitely many j’s such that L(URE
i ) = L(URE

j )

and, URE
i accepts in simultaneous time-space-reversal Oi(t, s, r) iff URE

j accepts in simultaneous time-space-
reversal Oj(t, s, r).

Property (P1) follows from the observation that URE
j uses Oi(1) units of its resource for each unit of the

corresponding resource of the φi. In Property (P2), we allow complexity of Ui and Uj to differ up to a constant
(depending on i and j).

Efficient Presentation. In Complexity Theory, it is not enough to say that a class K has a universal acceptor,
for we also want the universal acceptor to be “‘efficient”. Intuitively, the machine URE in the above example is
efficient because (P1) and (P2) holds. On the other hand, it is easy to construct an “inefficient” universal acceptor
U for the class NP in which each Ui takes exponential time. Intuitively, U is efficient for NP if for each i, Ui accepts
a language in NP in non-deterministic polynomial time. Unfortunately, NP is simply a merely class of languages,
and has no inherent notion of “non-deterministic polynomial time”. The later is a complexity characterization that
is used in its usual definition, but it might only be an accidental fact. We therefore proceed as follows: we explicitly
attach the complexity characterization χ =“non-deterministic polynomial time” to the class NP and call the pair
(NP , χ) a “characteristic class” based on NP . There are other characteristic classes based on NP . For instance,
if P = NP , then we would have another characteristic class (NP , χ′) based on NP , where χ′ =“deterministic
polynomial time”.

Definition 7. A resource bound is a pair β = (F, ρ) where F is a family of complexity functions and ρ is a
computational resource such as time or space. A complexity characteristic χ is a tuple of the form

(µ, β) or (µ, F, ρ)
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where µ is a computational mode, and β = (F, ρ) is a resource bound. Given χ, let M(χ) be the family of all
multitape Turing machines with complexity characteristic χ.

A characteristic class is a pair (K, χ) where K is a language class and χ a complexity characteristic such
that for each L ∈ K, there is some machine in M(χ) that accepts L. We say (K, χ) is based on K.

Note that the definition of characteristic class (K, χ) does not say that every machine in M(χ) must accept a
language in K. Thus, χ is only an upper bound. In particular, we can always base K on the χ = (µ, F∞, ρ) where
F∞ is the family of all complexity functions. We can also generalize complexity characteristics χ to allow several
resource bounds, χ = (µ, {β1, . . . , βk}), to discuss resource bounds β1, . . . , βk simultaneously. We may also vary
other parameters such as: the choice between running and acceptance complexity, the number of work-tapes, etc.

We usually write F -ρ instead of (F, ρ) for resource bounds. For instance,

nO(1)-time, logO(1) n-space

are resource bounds. This may be read as poly-time and polylog-space. This notation extends naturally. As further
examples, the complexity characteristics

(nondeterministic, log(n)-reversals), (deterministic, O(1)n-time).

are called nondeterministic log-reversals and deterministic exponential-time, respectively.

Example 3. The Canonical Characteristic Classes. For each of the classes in the canonical list, there is a
natural complexity characteristic associated with its definition. Thus the class DLOG of deterministic log-space
languages is associated with the characteristic

(deterministic, logn-space).

Indeed, the names for these classes explicitly refer to these characteristics. Henceforth, when we refer to a “char-
acteristic class” K in the canonical list, we assume the complexity characteristic of K used in its definition. As
another example, ‘the characteristic class NP ’ refers to

(NP , (nondeterministic, nO(1)-time)).

In general, for any characteristic class (K, χ), if χ is understood, we simply refer to K as the characteristic class
itself.

In the literature, the distinction between a characteristic class and its underlying abstract abstract class of
languages is often only implicit.

Example 4. The definition of characteristic classes allows considerable freedom in choosing the complexity char-
acteristic χ to be attached to any class K. Thus, Savitch’s theorem (chapter 2) tells us that the following are two
characteristic classes based on PSPACE :

(PSPACE , (deterministic, nO(1)-space)),

(PSPACE , (nondeterministic, nO(1)-space)).

Below we will prove a non-trivial fact about the following interesting characteristic class:

(NPC , (nondeterministic, nO(1)-time))

where NPC ⊆ NP is the class of NP -complete languages under (say) Karp reducibility. If P 6= NP then we see in
section 7 that there exist languages in NP that are not in NPC .

We come to our main definition.

Definition 8. Let (K, χ) be a characteristic class, K = K|Σ, and U a universal machine. We say U is an efficient
universal acceptor for (or is an efficient presentation of) the characteristic class (K, χ) if

(a) For each i, L(Ui) ∈ K.

(b) Each Ui has complexity characteristic χ. Here, reversals on the first input tape (containing i) are not
counted, and space on both input tapes is not counted.
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(c) U satisfies the efficient recurrence property (property (P2) ahove): for i ∈ N there exists infinitely many
j ∈ N such that L(Ui) = L(Uj), and for all complexity functions t, s, r, Ui accepts in simultaneous time-space-
reversal (t, s, r) iff Uj accepts in simultaneous Oj(t, s, r).

In general, when K is not necessarily of the form K = K|Σ, we say (K, χ) has efficient universal acceptors if
for each alphabet Σ, there is an efficient universal machine for (K|Σ, χ).

Example 5. (Efficient universal acceptors for P ) Fix an alphabet Σ. We will construct a universal acceptor UP

for the characteristic class (P |Σ, χ) where χ = (deterministic, nO(1)-time). In example 2, we described a universal
acceptor URE for RE |Σ. Recall that we may assume URE is deterministic. We obtain UP from URE as follows:
UP , upon input 〈i, x〉 simulates URE on input 〈i, x〉 for at most |x||i| steps (these are steps of URE

i ).5 If URE
i

does not accept x within |x||i| steps, then UP rejects. UP can keep track of the number of simulated steps since
f(n) = n|i| is time-constructible and UP can in parallel (i.e., on separate tapes) run for exactly f(n) steps while
simulating URE

i . Furthermore, we need the fact that the family of polynomials {nk : k = 1, 2, . . .} are uniformly
constructible, i.e., the two argument “universal-polynomial” function p(n, k) := nk is time-constructible (Exercise).
We call UP a ‘clocked’ version of URE .

We claim that UP is an efficient presentation of the characteristic class P |Σ. Clearly UP accepts only languages
in P |Σ. Each language L in P |Σ is accepted by some M in time O(nh) for some h ≥ 1. By a tape reduction
result in chapter 2, there is a 2-tape machine in M1 accepting L in time O(nh log n) = O(nh+1). Then property
(P1) in example 2 implies that there exists an i such that UP

i accepts L in time O(nh+1). Finally, we must show
the efficient recurrence property (P2). But this follows from our standard coding of machines.

We now show efficient universal machines for the characteristic classes in the canonical list. The technique
is simple and generally applicable; it involves attaching a ‘clock’ to each Turing machine defined by a suitable
universal machine. But this is precisely the technique illustrated in the last example.

Definition 9. A universal machine U is total if for all inputs 〈i, x〉, U eventually halts on that input. A class is
recursively presentable if it has a total universal machine.

Theorem 12. Each characteristic class in the canonical list is efficiently presentable by a total universal machine.

Proof. The construction for P in the above example can be generalized to all the other classes. Here we
use the fact that the families of complexity functions (nO(1), log n, etc) are all constructible in the corresponding
complexity resource (time or space). Q.E.D.

Universal Transducers and Universal Oracle Machines. We can extend the preceding definitions for accep-
tors to transducers and oracle machines. This can be done in a rather straightforward way. Hence we are contented
with a quick description. We define universal transducers and universal oracle machines, simply by giving
an ordinary transducer or oracle machine an extra read-only input tape, so that input is now a pair 〈i, x〉. Let Φ
and Ψ be families of transformations and oracle operators, respectively. Again we need the concept of character-
istic families of transducers or oracles, denoted (Φ, χ) and (Ψ, χ) where χ is a complexity characteristic. For each
alphabet Σ, we may define Φ|Σ (resp. Ψ|Σ) to be the subfamily of transformations (resp. oracle operators) whose
input and output alphabets are Σ.6 For characteristic families of transducers or oracles, there is a corresponding
notion of efficient presentation for the family. Using the idea of clocks, the reader may prove as an exercise:

Lemma 13.

(i) The characteristic families DLOG of log-space transformations and P of polynomial-time transformations
are each efficiently presentable.

(ii) The characteristic families DLOG of log-space oracle operators and P of polynomial-time oracle operators
are each efficiently presentable.

Definition 10. Two languages L, L′ ⊆ Σ∗ are said to be finite variants of each other if (L − L′) ∪ (L′ − L) is a
finite set.

We extend this definition by saying that two classes of languages K = K|Σ and K ′ = K ′|Σ are finite variants
of each other if for each L ∈ K, there is a finite variant of L in K ′ and vice-versa. An arbitrary class K is closed
under finite variations if for each Σ,

5More precisely, if URE

i
simulates the ith machine φi in the standard listing of M1, then each step of φi is simulated by O(|i|) = Oi(1)

steps of URE .
6We do not need the more general case where the input and output alphabets are different.
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(a) K contains the trivial languages ∅ and Σ∗ and

(b) for all L, L′ ⊆ Σ∗ that are finite variants of each other, L ∈ K if and only if L′ ∈ K.

It is easy to see that all the complexity classes defined in this book are closed under finite variation.
We next prove an interesting theorem by Landweber, Lipton and Robertson [11]. It concerns the characteristic

class NPC of example 4 and depends on the efficient presentability of the characteristic classes NP and P.

Theorem 14. The characteristic class NPC of NP-complete languages under Karp reducibility is efficiently pre-
sentable.

Proof. Let U = {Ui} be an efficient universal acceptor for the characteristic class NP and let T = {Ti} be an
efficient universal transducer for the polynomial time transformations. (The notation ≃ next refers to the pairing
function defined in the appendix.) We construct U ′ = {U ′

i} such that if i ≃ 〈j, k〉 then U ′
i accepts L(Uj) if SAT is

Karp reducible to L(Uj) via Tk; otherwise U ′
i accepts some finite variant of SAT. We prove that U ′ is indeed the

desired universal machine.
We show how U ′ operates: on input x of length n, U ′

i deterministically verifies for each y of length ≤ log log n
that

y ∈ SAT ⇐⇒ Tk(y) ∈ L(Uj). (4)

We say the verification for a given y succeeds if and only if (4) can be verified (using the procedure given below)
within n steps. We say that x is a success if and only if the verification succeeds for each y of length m ≤ log log n;
otherwise x is a failure. U ′ first marks out ⌈log log n⌉ tape-cells in O(n) time. (We leave the details for this to
the reader – it is similar to the proof in the appendix that log∗ n can be computed in linear time.) To verify a
particular y of length m, U ′ proceeds as follows:

(i) Determine if y ∈ SAT. Fix any nondeterministic acceptor for SAT that takes time mc on y, m = |y|, for
some constant c that does not depend on the input. By results in chapter 2, we can simulate this acceptor
deterministically in time O(1)m

c

.

(ii) Compute Tk(y), using time md for some constant d that depends only on k.

(iii) Determine if Tk(y) ∈ L(Uj). Suppose Uj on an input of length n takes nondeterministic time ne for some
e depending on j. Since |Tk(y)| ≤ md, a deterministic simulation of the nondeterministic Uj takes time

O(1)(m
d)e

= O(1)m
de

.

For n sufficiently large, we see that (i–iii) can be done in n steps. Thus deciding if x is a success or failure takes at
most n2 time since there are at most O(1)log log n ≤ n values of y to check. If x is a success then Ui next simulates
Uj on Tk(x); otherwise it simulates the fixed nondeterministic acceptor for SAT on input x. This completes our
description of U ′.

We now show that U ′ is an efficient universal acceptor for NPC . Suppose i ≃ 〈j, k〉. If SAT is Karp-reducible to
L(Uj) via Tk then we see that for all inputs, U ′

i behaves exactly like Uj . Conversely, if SAT is not Karp-reducible
to L(Uj) via Tk then for large enough inputs, U ′

i behaves like a particular acceptor for SAT. Since NPC is closed
under finite variation, the accepted language is still in NPC. For the efficient recurrence property, it is not hard to
show that for any L′ ∈ NPC , there are infinitely many i’s such that U ′

i accepts L′ using Oi(n
c) time, for some c.

Q.E.D.

The above proof is rather formal, but it is really quite simple in outline: On input x, U〈j,k〉 spends a small
amount of time, say f(|x|) steps, looking for a counter example to the assertion that SAT is reduced to L(Uj) via
Tk. If it fails within f(n) steps, it simulates an algorithm for SAT on input x; if it succeeds, it simulates Uj on input
x. For j, k fixed, U〈j,k〉 is NP provided f(n) is polynomial-bounded (but clearly any unbounded non-decreasing
function). It is easy to see that this machine accepts Uj or some finite variant of SAT. The point is that if the
assertion is false, we will find the counterexample in finite time.

In contrast, we have the result of Chew and Machtey [4] that if P 6= NP then NP − P has no recursive
presentation.

4.5 Truth-table Reducibilities

This section introduces a reducibility based on the idea of ‘truth-tables’; it is intermediate in strength compared
to Turing-reducibility and many-one reducibility. We may view many-one reducibility via a transformation t as a
special case of Turing reducibility where the query machine on input x asks only one question
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“Is t(x) in the oracle language?”

at the end of the computation, with the decision to accept identical to the answer from the oracle. In truth-table
reducibility, this is generalized to the asking more than one question with the decision to accept determined by
some fixed function of the answers to these questions. The difference between this and general Turing reducibility
is that the set of questions asked is solely a function of x, independent of the oracle. Thus a query machine can
be decomposed into two parts: a ‘query generator’ which formulates a sequence of questions based on the input
x, and a ‘query evaluator’ which evaluates a predicate on the sequence of answers. A simple example is a query
generator which on any input x produces two queries (strings) f(x) and g(x), where f and g are transformations;
the query evaluator accepts if f(x) but not g(x) is in the oracle.

For any language (Σ, L), define its indicator function as the function χL : Σ∗ → {0, 1} such that χL(x) = 1 iff
x ∈ L.

Definition 11. Let Σ and Γ be alphabets.
(a) A query generator is a transformation g : Σ∗ → (Γ ∪ {#})∗, where # is a symbol not in Γ. If g(x) =
y1#y2# · · ·#yk, we view the yi’s as queries to an oracle.
(b) A query evaluator is a language e ⊆ Σ∗#{0, 1}∗ (i.e., each word in e has the form w#x where w ∈ Σ∗ and
x ∈ {0, 1}∗).
(c) A truth-table is a pair (g, e) where g and e have the forms (a) and (b) respectively.
(d) Say (Σ, L) is truth-table reducible to (Γ, L′) via (g, e), written

L ≤tt L′ via (g, e),

if for all x in Σ∗ where g(x) = y1#y2# · · ·#yk, we have

x ∈ L ⇐⇒ x#χL(y1)χL(y2) · · ·χL(yk) ∈ e.

Definition 12. A (deterministic) truth-table machine is a pair (G, E) where G is a deterministic transducer
computing g and E is a deterministic acceptor for some language e, for some truth table (g, e). We say (g, e) is
polynomial-time if it is computed by some truth-table machine (G, E) where the generator G and the evaluator E
both compute in polynomial-time. In general, to say that a truth-table machine operates within some complexity
bounds means that both the generator and evaluator have the same complexity bounds.

We defer the definition of nondeterministic truth-table machines to section 9. Let ‘tt’ abbreviate ‘truth-table’,
as in ‘tt-machine’ or ‘tt-reducibility’. We now collect the various types of reducibilities obtained by restrictions on
the query generator g and evaluator e. Suppose (Σ, L) ≤tt (Γ, L′) via (g, e).

(i) The truth-table (g, e) is positive if e satisfies the restriction that for all x ∈ Γ∗ and bi, b
′
i ∈ {0, 1},

x#b1b2 · · · bk ∈ e and
k
∧

i=1

(bi ≤ b′i) implies x#b′1b
′
2 · · · b

′
k ∈ e.

The corresponding truth-table reducibility is described as positive and denoted ≤ptt.

(ii) The truth-table is conjunctive if e satisfies the restriction that for all x ∈ Γ∗ and bi ∈ {0, 1},

x#b1 · · · bk ∈ e ⇐⇒
k
∧

i=1

(bi = 1).

Similarly, disjunctive truth tables are defined by using disjuncts ‘
∨

’ instead of the conjuncts ‘
∧

’ above. The
corresponding truth-table reducibilities are denoted ≤ctt and ≤dtt, respectively.

(iii) Let k be a positive integer. If g makes k queries on every input x then (g, e) is called a k-truth-table. We then
say L is k-truth-table reducible to L′ via (g, e) and the corresponding notation is L ≤k-tt L′. Similarly, any
of the above restrictions on ≤Ptt can be modified by the parameter k:

≤k−ptt,≤k−ctt,≤k−dtt .
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(iv) A truth-table (g, e) is bounded if it is a k-truth-table for some k. We then say L is bounded truth-table
reducible to L′ via (g, e), denoted L ≤∗-tt L′. Similarly, the other restrictions on ≤Ptt can be modified:
≤∗−ptt,≤∗−ctt,≤∗−dtt.

Clearly a many-one reducibility is simultaneously a positive, conjunctive and a disjunctive truth-table as well
as a 1-truth-table.

Notations: If (g, e) is computed by a (deterministic) polynomial-time tt-machine and L is truth-table reducible
to L′ via (g, e) then we write L ≤Ptt L′; more generally, if (g, e) satisfies any of the restrictions in (i-iv) above, we
append a superscript P to the corresponding reducibility notation. Thus ≤Pk-tt denotes polynomial-time k-truth-
table reducibility. Similarly, if we restrict the space usage of the query generator and query evaluator to logarithmic
space, then we append the superscript L. Thus we have ≤Ltt,≤

L
ptt, etc.

Lemma 15. The following truth-table reducibilities are transitive:

≤Ptt,≤
P
∗-tt,≤

P
ptt,≤

P
ctt,≤

P
dtt,≤

P
1-tt .

Among the special tt-reducibilities we have introduced, the list in this lemma omits just the k-tt-reducibilities
where k > 1. We prove the lemma for the case of ≤P1-tt, leaving the rest as exercise.

Proof. Let A, B, C be languages. Suppose A ≤P1-tt B via (g, e) and B ≤P1-tt C via (g′, e′). We will show that
A ≤P1-tt C. Now, x ∈ A iff x#χB(g(x)) ∈ e and y ∈ B iff y#χC(g′(y)) ∈ e′. Substituting g(x) for y, we see that
x ∈ A holds iff either

x#1 ∈ e and g(x)#χC(g′(g(x))) ∈ e′.

or

x#0 ∈ e and g(x)#χC(g′(g(x))) 6∈ e′.

holds. That is, iff one of the following holds:

(a) x#1 ∈ e and g(x)#1 ∈ e′ and g′(g(x)) ∈ C.

(b) x#1 ∈ e and g(x)#0 ∈ e′ and g′(g(x)) 6∈ C.

(c) x#0 ∈ e and g(x)#1 ∈ e′ and g′(g(x)) 6∈ C.

(d) x#0 ∈ e and g(x)#0 ∈ e′ and g′(g(x)) ∈ C.

Now define the truth-table (g′′, e′′) where g′′(x) = g′(g(x)) and e′′ is given by the following two rules. A word x#1
is in e′′ iff either

x#1 ∈ e and g(x)#1 ∈ e′

or
x#0 ∈ e and g(x)#0 ∈ e′

holds. Again, a word x#0 is in e′′ iff either

x#1 ∈ e and g(x)#0 ∈ e′

or

x#0 ∈ e and g(x)#1 ∈ e′

holds.
The reader can verify that A ≤1-tt C via (g′′, e′′) and that (g′′, e′′) can be computed in polynomial time. Q.E.D.

It is also easy to show

Lemma 16. The following lists of reducibilities (modified by any given complexity bound β such as polynomial-time
or log-space) are in order of non-decreasing strength:

(i) ≤βm,≤βk-tt,≤
β

(k+1)-tt,≤
β
∗-tt,≤

β
tt,≤

β
T

(ii) ≤βm,≤βctt,≤
β
ptt,≤

β
tt
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In (ii), we could have substituted ≤βdtt for ≤βctt.

Alternative definition of tt-reducibilities. Often the truth-table (g, e) embodies ‘Boolean functions’ in the
sense that on any input x where g(x) = y1# · · ·#yk then there is a Boolean function fx on k variables such
that x#b1b2 · · · bk ∈ e if and only if fx(b1, . . . , bk) = 1. This leads to the following alternative definition of tt-
reducibilities. Fix a representation of Boolean functions as binary strings, and let fw denote the Boolean function
fw represented by the binary string w. With query generators g defined as before, we now define an evaluator e
as a transformation e : Σ∗ → {0, 1}∗; intuitively, e(x) represents the Boolean function fe(x) used to determine the
final answer. We say (Σ, A) is tt-reducible to (Γ, B) via (g, e) if for all x ∈ Σ∗ the following is satisfied: x ∈ A iff

fe(x)(χB(y1), χB(y2), . . . , χB(yk)) = 1

where g(x) = y1# · · ·#yk for some k ≥ 1. The particular method of representing Boolean functions could affect
the strength of the reducibility. We consider three increasingly more succinct representations:

(a) A k-variable function can be represented by a Boolean 2k-vector. In some literature, such a vector is also
called a ‘truth-table’ which in turn lends its name to the entire family of reducibilities in this section.

(b) By Boolean formulas over the basis {∧,∨,¬}.

(c) By Boolean circuits over the same basis.

In the Exercises, we see that with respect to polynomial-time bounds, these three alternative definitions of tt-
reducibilities do not lead to a different notion of tt-reducibility. We also give another definition of tt-reducibility in
the Exercises that is again equivalent to our standard choice. These results lend credibility to the claim that our
standard choice is robust. Unfortunately, with respect to log-space bounds, the situation seems to be different.

4.6 Strength of Reducibilities

Among the reducibilities, there are pairs (≤1,≤2) where it is obvious that ≤1 is as strong as ≤2. For instance,
(≤1,≤2) = (≤PT ,≤Pm). A natural question is whether ≤1 is, in fact, stronger than ≤2. In this section, we illustrate
some of these results. The notion of partial sets will be useful in our proofs:

Definition 13. A partial set (relative to a set X) is a partial function f from X to {0, 1}. The universe of f is X ,
and its domain, domain(f), consists of elements x ∈ X such that f is defined at x. If f ′ is also a partial set with
universe X , we say f ′ and f agrees if they are identical on domain(f) ∩ domain(f ′). Call f ′ a partial subset of f
(or, f extends f ′) if domain(f ′) ⊆ domain(f) and f ′ and f agrees. We write f ′ ⊆ f in this case. The complement of
f is the partial function f such that domain(f) = domain(f) and f(x) = 1 − f(x) whenever x ∈ domain(f). Note
that f ′ ⊆ f iff f ′ ⊆ f .

A basic diagonalization outline. The proofs in this section are based on the idea of ‘diagonalization’. The
reader will better understand these proofs if she keeps in mind the following outline: Suppose the result in question
follows from the existence of a language L that satisfies a countably infinite list of conditions

C0, C1, C2, . . .

These conditions are finite in the sense that each condition only refers to a finite subset of L and they are ‘existential’
in that if L is a partial set that satisfies any condition then any extension of L also satisfies that condition. The
proof involves constructing the language in stages where in the ith stage we have built a partial set Li with finite
domain such that each of the conditions C0, C1, . . . , Ci is satisfied by Li. Typically, domain(Li) ⊆ domain(Li+1).

There are many variations to this basic outline. Perhaps there are more than one infinite list of conditions to
satisfy. Perhaps we cannot guarantee satisfying a given condition C during any stage; so we may have to try to
satisfy the condition C for infinitely many stages, and prove that our attempts will succeed in some stage. Instead
using the conditions Ci to define the ith stage, we can use an “inverted diagonalization” by considering all strings
in the domain: fix some total ordering of the set of input words. Usually, we use7 the lexicographic ordering:

x0, x1, x2, x3, . . . (5)

7Despite the terminology, this is NOT the same as dictionary order which does not have strings listed in order of non-decreasing
length.
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That is, we list the strings in order of non-decreasing lengths, and among those of the same length we use the usual
dictionary order. We decide whether xj ought to belong to the language L in stage j. This is done by attempting
to use xj to satisfy some condition Ci in our infinite list. We may need to return a particular Ci in many stages
(but hopefully Ci will be satisfied in some finite state). The advantage of this approach is that our description of
the diagonalization process amounts to specifying an acceptor for the constructed language L.

We proceed with the first result that shows that 1-tt-reducibility is stronger than Karp reducibility. Note that
for any language L, we have L is 1-tt-reducible to co-L. Therefore our desired result is an immediate consequence
of the following from Ladner, Lynch and Selman [10]:

Theorem 17. There exists a non-trivial language L in DEXPT such that L is not Karp-reducible to co-L.

Before proving this theorem, it is instructive to give a simple proof of a similar result that does not require L
to be in DEXPT . The simpler proof will follow the basic diagonalization outline above: we construct L ⊆ {0, 1}∗

in stages. Let
T = {T0, T1, T2, . . .}

be an efficient universal transducer for the polynomial-time transducers used in Karp reducibility. The desired
result follows if L satisfies the following infinite list of conditions:

Ci : L is not many-one reducible to co-L via Ti

for i = 0, 1, 2, . . .. Note that condition Ci is equivalent to the existence of a word x satisfying

x ∈ L ⇐⇒ Ti(x) ∈ L.

Such an x is said to “cancel” Ti and x is also called a “witness” for condition Ci. Let x0, x1, . . ., be the lexicographic
ordering of all binary strings. At stage i, assume inductively that we have a partial set Li that has a finite domain;
Li is a partial subset of the language L that we are trying to construct. Furthermore, for each h < i, the condition
Ch is satisfied. We now wish to define Li+1 whose domain contains the domain of Li. Suppose xj is the next word
(in the lexicographical ordering) not in the domain of Li. Let y = Ti(xj) and we consider two possibilities: if y is
already decided, then put xj into the domain of Li+1 in such a way that xj cancels Ti; if y is not yet decided, let
us put both xi and y into L (again cancelling Ti). It is not hard to show that condition Ci is satisfied in stage i:
one only need to see that xj exists so that the plan to cancel Tj can be carried out. One should also verify that
our arguments is valid even if xj = y.

This simple proof tells us little about the complexity of L (although L is evidently recursive). We need a
technique due to Machtey and others to “slow down the diagonalization”. To do this, we use the slow growing
function log∗ n and its inverse Exp(n) defined in the appendix.

Proof of theorem 17. We will use the “inverted diagonalization outline” in which the ith stage examines the
ith word in a lexicographic listing of all words. We define a Turing acceptor M that accepts a language L over the
alphabet Σ = {0, 1} in DEXPT where L is not Karp-reducible to co-L. On input x ∈ {0, 1}∗ where |x| = n:

(a) If x is the empty word ǫ, accept.

(b) If x contains a ‘1’ or if n 6= Exp(m) for some m then reject. Note that this step takes linear time since we
can check if n = Exp(log∗ n) in linear time, as shown in the appendix.

(c) Hence assume x = 0n (a string of zeroes) such that n = Exp(log∗ n)). Let log∗ n = m ≃ 〈i, j〉 for some m, i, j.
The appendix shows how m, i, j can be extracted in polynomial time (actually, we will not need j). Simulate
the universal transducer T on input 〈i, x〉 for 2n steps of T . If Ti does not halt within 2n steps, reject.

(d) Hence assume that Ti produces the output y = Ti(x) within 2n steps. If |y| > Exp(m − 1) then reject. If
|y| ≤ Exp(m − 1) then accept iff y ∈ L (which we determine by a recursive call to M on y).

Thus step (d) uses x to explicitly8 cancel the condition Ci; the first three steps (a-c) ensure that x is used in
step (d) then x has the correct form: x = 0n where n = Exp(log∗ n). The construction of M is a ‘slow down’ of the
diagonalization process since condition Ci is (explicitly) cancelled at the Exp(i)th stage or later.

Correctness: We will show that L is non-trivial and is not Karp-reducible to co-L. To see non-triviality, L
contains the empty word ǫ and does not have words containing 1’s. Aiming for a contradiction, assume that L is
Karp-reducible to co-L via some Ti. We may assume that Ti takes |x|c time, for some c = c(i), on input 〈i, x〉.
Choose j large enough so that if m ≃ 〈i, j〉 and n = Exp(m) then

2n > nc.

8There may be “accidental” cancellation of some conditions.
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Then it is easy to see that on input x = 0n, the acceptor M will proceed to step (d) after obtaining an output
y = Ti(x). Hence, |y| ≤ nc < 2n = 2Exp(m) = Exp(m + 1). There are two cases:

|y| ≤ Exp(m − 1)

and

Exp(m − 1) < |y| < Exp(m + 1). (6)

In the first case, by the definition of M, x is in L iff y is in L. In the second case, x is rejected so we must show that
y is also rejected. In fact, (6) implies that unless y has the form 0Exp(m), y would be rejected. But if y = 0Exp(m)

then x = y, again showing that y is rejected. Thus the algorithm is correct.
Timing Analysis: We show that M runs in time O(2n) time. Steps (a-c) and the non-recursive part of step (d)

clearly takes O(2n) steps. The recursive call to M has argument y with length ≤ Exp(m−1) = log2 n. If t(n) is the
time required by M then we have t(n) ≤ t(log n) + O(2n). The solution to this recurrence gives t(n) = O(2n).

It should be clear that this proof works with any superpolynomial time bound f in place of 2n, provided that
both f and its ‘inverse’ are both easy to compute.

The fact that there is a language in DEXPT that distinguishes Karp- from tt-reducibility prompts the question:
does there exist a language in NP that distinguishes them? Of course, if we can prove an affirmative answer then
it is easy to see that NP 6= P . But even assuming that NP 6= P , this is an open question.

Suppose ≤1 is as strong as ≤2. To show that the former is in fact stronger, we have to show the existence of
languages A and B such that A ≤1 B but not A ≤2 B. This is usually quite simple to show, especially if we can
carry out the basic diagonalization outline above. But often we would like to impose side restrictions on A, B. For
instance, we may insist (as in the last theorem) that B does not have very high complexity.

Example 6. One reason for imposing side restrictions is that they yield more information about the relationships
between two reducibilities. Ladner, Lynch and Selman define the relation ‘stratifies’ where ≤1 is said to stratify
≤2 if there exists L, L′ such that L and L′ are of the same ≤2-degree but L and L′ are ≤1-incomparable. Clearly
≤1 stratifies ≤2 implies that ≤2 is stronger than ≤1, but intuitively, it is more than ‘just’ stronger: this is because
there is a pair of languages that are similar from the viewpoint of ≤2, while being very different from the viewpoint
of ≤1.

To illustrate another kind of side restriction, we make the following definition: let A be a language and let
≤1,≤2 be reducibilities where ≤1 is as strong as ≤2. Then ≤1 and ≤2 are said to be distinguishable over A if there
exists a language B such that

A ≤1 B but not A ≤2 B.

The next result is from I. Simon [18]:

Theorem 18. For all A 6∈ P , ≤P(k+1)-tt and ≤Pk-tt are distinguishable over A.

Before embarking on the proof, we need the notion of characteristic families of truth-tables, and efficient
universal truth-tables. By now, this can be done routinely as follows: Let Ω be any family of truth-tables, and
χ = (µ, F − ρ) any complexity characteristic. Then (Ω, χ) is a characteristic family provided that each truth-table
(g, e) ∈ Ω is computed by some tt-machine (G, E) where G and E both have complexity characteristic χ. A
universal tt-machine is a pair (T, U) where T = {Ti} and U = {Ui} are a universal transducer and a universal
acceptor, respectively. For any alphabet Σ, # 6∈ Σ, we again have the restriction Ω|Σ of Ω to Σ, consisting of
(g, e) ∈ Ω where g : Σ → Σ ∪ {#} and e ⊆ Σ ∪ {#, 0, 1}. The characteristic family (Ω, χ) is efficiently presentable
if for each Σ, there exists a universal (T, U) such that (i) for each i ≥ 0, (Ti, Ui) computes a truth-table in Ω|Σ, and
(ii) each truth-table in Ω|Σ is computed by (Ti, Ui) for infinitely many i ≥ 0 where each Ti and Ui has complexity
characteristic in χ. It is an easy exercise to show that the family ΩPtt (resp. ΩPk−tt, for each k) of truth-tables
computed by tt-machines with complexity characteristic

(deterministic, nO(1)-time)

is efficiently presentable.
Proof of theorem 18. Let A be any language not in P ; without loss of generality, assume A is over the alphabet

{0, 1}. The proof follows the basic diagonalization outline above. Let (T, U) be an efficient universal truth-table
with deterministic polynomial-time characteristic. We will construct a language B ⊆ {0, 1}∗ such that

x ∈ A ⇐⇒ |B ∩ Sk(x)| is odd (7)
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where
Sk(x) := {x0i1k−i : i = 0, 1, . . . , k}

Clearly A ≤P(k+1)-tt B; to show the theorem, we will show that A ≤Pk-tt B fails. We construct B in stages. Let Bs

(s ≥ 0) be the partial subset constructed at the end of the (s − 1)st stage. In stage s, we extend Bs to Bs+1 in
such a way that we ‘cancel’ the truth-table machine (Ts, Us), i.e., we include a word x in the domain of Bs+1 such
that x ∈ A if and only if

x#χB(y1) · · ·χB(yk) 6∈ Us (8)

where Ts(x) = y1# · · ·#yk (clearly we may assume that Ts always makes exactly k queries). We will maintain the
inductive hypothesis that the domain of Bs consists of all words of length ≤ h(s) for some h(s) ≥ 0, and such that
Bs satisfies (7) in the sense that for all x of length ≤ h(s) − k, we have x ∈ A iff Bs ∩ |Sk(x)| is odd. We describe
the construction of Bs+1 in four steps:

(a) Choose any x0 of length h(s)+1; note that x0 is not in the domain of Bs. Let Ts(x0) = y1# · · ·#yk. We first
ensure that each yi is in the domain of Bs+1: if yi is not in the domain of Bs then we put it in the domain
of Bs+1, arbitrarily (say yi 6∈ Bs+1).

(b) We next put x0 in the domain of Bs+1, making x0 ∈ Bs+1 or x0 6∈ Bs+1 so as to satisfy (8). The choices in
(a) completely determine this step.

(c) Next include into the domain of Bs+1 all the remaining words in Sk(x0) so as to ensure (7). Note that this is
always achievable because at least one word in Sk(x0) has not yet been put into the domain of Bs+1 by step
(a) (note that x0 6∈ Sk(x0)).

(d) To clean-up, set h(s + 1) = max{|x0|+ k, |y1|, . . . , |yk|}. Let w1, w2, . . . , wr order all the words not yet in the
domain of Bs+1 of length at most h(s+1). We put wi into the domain of Bs+1 to satisfy (7). To see that this
is achievable, we use two simple observations: first, for all words w 6= w′, the intersection Sk(w) ∩ Sk(w

′) is
empty. Second, setting Y = {x0, y1, . . . , yk} ∪ Sk(x0), we see that for each word w 6= x0 of length ≤ h(s + 1),
|Sk(w) ∩ Y | ≤ k. Note that Y includes all words of length > h(s) that have been put in the domain of Bs+1

by steps (a-c).

This completes the proof.

4.7 The Polynomial Analogue of Post’s Problem

Suppose that P 6= NP . Then we may ask if there exists a language in NP − P that is not NP-complete under
Cook reducibility. This question is analogous to a famous question posed by Post in 1944: Does there exist a
recursively enumerable language that is not recursive and not RE -complete under arbitrary9 Turing reducibility?
An affirmative answer was independently found in 1956 by Friedberg [5] and Muchnik [14]. In this section we show
Ladner’s result [8] that the polynomial analogue of Post’s problem also has an affirmative solution (provided, of
course, that P 6= NP). We remark that there are very few natural problems that are conjectured to be in NP −P
and not NP -complete. Perhaps the most well-known candidate10 is graph isomorphism.

Theorem 19 (Ladner). If P 6= NP then there exists a language in NP − P that is not NP-complete under Cook
reducibility.

This theorem is a consequence of the next result.

Theorem 20. Let K a class of languages over the alphabet Σ = {0, 1} and P denote as usual the class DTIME (nO(1)).
Suppose K has a total universal acceptor and is closed under finite variation. Let (Σ, L) be a recursive language
not in K ∪ P . Then there exists a language (Σ, L′) such that

(i) L′ is not in K,

(ii) L′ is Karp-reducible to L,

(iii) L is not Cook-reducible to L′.

9That is, Turing reducibility with no resource bounds on the query machines.
10Lesser-known candidates include Discrete Logarithm and Minimum Weight Triangulation. Famous former candidates include

Linear Programming and Primality. In each case, the candidate has been to be in P in ground breaking work. Khacian did this for
Linear Programming in 1979, and XXX for Primality in 2002.
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To see that theorem 20 implies Ladner’s theorem, let K = P |Σ and L ∈ (NP |Σ) \ P . Since K has a total
universal acceptor, it follows from theorem 20 that there exists an L′ such that L′ is not in P (by (i)), L′ is in NP
(by (ii)) and L′ is not NP -complete under Cook reducibility (by (iii)).

Proof of theorem 20. Let

U = {U0, U1, U2, . . .}.

and

Q = {Q
(·)
0 , Q

(·)
1 , Q

(·)
2 , . . .}.

denote (respectively) a universal acceptor for K and a universal query machine for the family of polynomial-time
oracle operators whose input and output alphabet is Σ. (Note: we do not require U or Q to be efficient.)

The requirement that L′ is not in K (respectively, L is not Cook-reducible to L′) is equivalent to the set of even
(resp. odd) numbered conditions in the following infinite list of conditions Ci (i = 0, 1, . . .) where

C2j : L′ 6= L(Uj)

C2j+1 : L 6= L(Q
(L′)
j )

Let

x0, x1, x2, . . . (9)

be the usual lexicographic enumeration of words in Σ∗. We shall construct a transducer T that runs in linear time
such that T : Σ∗ → {0}∗. Then define

L′ := {x : x ∈ L and |T(x)| is even}. (10)

This clearly shows that L′ is Karp-reducible to L.
To prove the theorem it remains to describe T such that the resulting L′ satisfies the list of conditions above.

We first explain in an intuitive way the operation of T on input x. We say that a word x is in stage i if |T(x)| = i.
T has the property that |T (xi+1)| is equal to either |T (xi)| or |T (xi)|+1. Hence the words in the ordering (9) have
non-decreasing stage numbers. We maintain the following invariant:

(*) If x is in stage i, then condition Ci is not yet satisfied but each condition Cj (j < i) is witnessed by
some word yj that precedes x in the lexicographical order (9).

The first thing that T does on input x is to try to determine the stage of x. It can only do this approximately in
the sense that it can determine an integer i such that x is either in stage i or stage i + 1. This uncertainty turns
out not to be crucial because T will try to satisfy condition Ci and if it succeeds, then |T(x)| is equal to i + 1
otherwise i. Given i, consider how T can try to satisfy Ci. There are 2 cases.

(i) Suppose that i = 2j. Then T systematically attempts to find a word w such that w ∈ L′ iff w 6∈ Uj . Such a
w is a ‘witness’ for the condition C2j . (Note the self-reference here: we are constructing L′ and we want to
check if w belongs to L′.) If T is successful in finding a witness, T outputs the word 0i+1; otherwise it outputs
the word 0i. The output 0i+1 serves a double purpose: to inform subsequent computations that condition Ci
is satisfied and to ensure that x is not in the set L′ (recall the definition (10) of L′). Likewise for an output
of 0i.

(ii) Suppose i = 2j + 1. T systematically attempts to find a witness for condition C2j+1, i.e., a word w such that

w ∈ L iff w 6∈ Q
(L′)
j . (Again note the self-reference.) If successful in finding the witness w, x is put in stage

i + 1 by the output T (x) = 0i+1; else it stays in stage i with the output T (x) = 0i.

Now we fill in the details. Let |x| = n. First, to determine the approximate stage of x as follows. T allocates a
total of n steps to compute (by simulating itself) the values T(01), T(02), . . . , T(0m) in succession, where m is such
that the allocated n steps are used up while in the middle of computing T(0m+1). Then x is in the approximate
stage i where i = |T(0m)|. We next attempt to find a witness for the ith condition Ci by testing successive words in
the ordering (9) until a total of n steps are used up. If a witness is found within n steps then output T (x) = 0i+1;
otherwise output T (x) = 0i. Consider how we test for the witness property:

(I) Suppose i = 2j. To test whether any word w is a witness, T checks (a) whether w ∈ Uj (by simulating the
universal acceptor U) and (b) whether w ∈ L′ (by checking if |T(w)| is even and if w ∈ L – the latter is
possible since L is recursive). Note that w is a witness if the outcomes for (a) and (b) differ.



4.8. THE STRUCTURE OF POLYNOMIAL DEGREES 19

(II) Suppose i = 2j + 1. To test whether w is a witness, we check (c) whether w ∈ L as before and (d) whether w

is accepted by Q
(·)
j using oracle L′. To do (d), we simulate the universal query machine Q using input 〈j, w〉,

and whenever a query “Is z in L′?” is made, we can check this as in (b) above.

Correctness: By construction T runs in linear time. It is also easy to see that our invariant (*) holds. In
particular, if T goes through stage i for all i then each condition would be satisfied and we are done. Therefore we
only need to ensure that T does not remain in some stage i forever. For the sake of contradiction, we assume that
for some i and some n0, we have |T(x)| = i for all |x| ≥ n0, In other words, suppose T never leaves stage i.

(I) Suppose i = 2j. Since we never leave stage 2j, by the definition of L′, L′ is equal to a finite variant of
L. Now L 6∈ K and K is closed under finite variation imply that L (and hence L′) must differ from Uj for
infinitely many inputs. Choose the first (with respect to the lexicographical ordering (9)) witness w0 to the
fact that Uj 6= L′. Now choose n large enough: precisely, n > n0 and n exceeds the number of steps needed
by T to compute T(01), . . . , T(0m), where |T(0m)| = 2j, and exceeds the number of steps to test if x is a
witness to condition C2j for all x preceding w0 in the ordering (9). Observe that the smallest such number n
is well-defined. Then clearly |T(0n)| = 2j + 1, a contradiction.

(II) Suppose i = 2j + 1. Then by definition of L′, L′ is a finite set. Now observe that L must differ from Q
(L′)
j

on infinitely many words, for otherwise L ∈ P which would be contrary to our assumption. Let w0 to be the

first (with respect to the ordering (9)) witness word to the fact that L 6= Q
(L′)
j . Again choose n > n0 such

that it exceeds the time to determine that 0n is in stage 2j + 1 and exceeds the time to test if x is a witness
to the condition C2j+1 for all x preceding w0. Then it is easy to see that |T(0n)| = i + 1.

This concludes our proof

An interesting observation from the proof is that L′ is the intersection of L with the polynomial time computable
set G = {x : |T(x)| is even}.

Corollary 21. If NP 6= P then for every NP-complete language L (under ≤PT ) there exists a language G ∈ P
such that G ∩ L is in NP − P but is not NP-complete.

There is another way to view Ladner’s proof: G is nothing but a ‘gappy’ set determined by some recursive
function r(n) such that x ∈ G iff r(2i) ≤ |x| < r(2i + 1). Here r(n) is the number of steps needed to find witnesses
for all the conditions up to Cn. The size of such gaps is studied in Lipton, Landweber and Robertson [11] and
Chew and Machtey [4]. Schöning [17], Schmidt [16] and Regan [15] have greatly simplified and generalized these
techniques. An interesting result [6] is the following: Assuming that P 6= NP , there is a language in NP −P that
is not P -hard under one-way log-space many-one reducibility ≤1L

m .

4.8 The Structure of Polynomial Degrees

The reducibilities ≤ in this section are assumed to be transitive, so that the term ≤-degrees is meaningful. For any
two languages (Σ0, L0) and (Σ1, L1), define their join L0 ⊕ L1 to be the language

{0x : x ∈ L0} ∪ {1x : x ∈ L1}.

over the alphabet Σ0 ∪ Σ1 ∪ {0, 1}. Note that L1 and L2 are each ≤Pm-reducible to L0 ⊕ L1. Furthermore, for
any L, if Li ≤Pm L holds for i = 0, 1 then it is easy to see that L0 ⊕ L1 ≤Pm L. In other words, the ≤Pm-degree of
L0 ⊕L1 is the least upper bound of the ≤Pm-degrees of L0 and of L1. The same holds for Cook-reducibility. In the
terminology of lattice theory11 we have just shown:

Theorem 22. The ≤Pm-degrees form an upper semi-lattice. The same holds for ≤PT -degrees.

Definition 14. Let K be a class of languages, and ≤ a transitive reducibility. We say that the ≤-degrees of K are
dense if the following holds. If L0 < L2 (L0, L2 ∈ K) then there exists L1 ∈ K such that

L0 < L1 < L2.

11A partial order (X,≤) is an upper semi-lattice if for all x, y ∈ X, there is a least upper bound denoted x∨y (the least upper bound
is unique if it exists).
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We now address questions about the density of the above semi-lattices. The theorem of Ladner shows that if
NP 6= P then the Karp-degrees in NP − P is dense. Similarly if P 6= NP then the Cook-degrees between P and
NP are dense. More generally, we have:

Theorem 23. If L <P
T L′ and L and L′ are recursive then there exist a recursive L′′ such that L <P

T L′′ <P
T L′.

There have been considerable developments in such questions (e.g., see [2]).

4.9 Nondeterministic reducibilities

In this section, we consider reducibilities defined by nondeterministic machines (acceptors, transducers, query
machines, tt-machines). Of these, nondeterministic tt-machines have not been defined. But first, we extend the
notion of many-one reducibility to multivalued transformations.

Definition 15. Let (Σ, A), (Γ, B) be languages and f be the multivalued transformation from Σ to Γ computed
by some transducer T. We say that A is many-one (nondeterministically) reducible to B via f (or via T) if for all
x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ∩ B 6= ∅.

A nondeterministic tt-machine (G, E) consists of a nondeterministic transducer G and a nondeterministic
evaluator E. It turns out that, at least for polynomial-time bounds, we can restrict E to be deterministic (see
Exercises). The corresponding pair (g, e) computed by a nondeterministic (G, E) is called a multivalued truth-table.

We say A is nondeterministically tt-reducible to B via (g, e) (or via (G, E)) if for all x ∈ Σ∗, there exists
y1# · · ·#yk ∈ g(x) such that

x ∈ A ⇐⇒ x#χB(y1) · · ·χB(yk) ∈ e.

Recall that χB(x) is the indicator function for the set B. For nondeterministic polynomial-time bounded

reducibilities, we use the superscript ‘NP ’ in the usual way. For instance, ≤NPT , ≤NP
tt and ≤NPm are the nonde-

terministic counterparts of ≤PT , ≤Ptt and ≤Pm. These new reducibilities have rather different properties from their
deterministic counterparts. The next result is by Ladner, Lynch and Selman.

Theorem 24. The following pairs of reducibilities form pairs of identical binary relations over the non-trivial
languages:

(i) ≤NP
T and ≤NP

tt

(ii) ≤NP
ptt and ≤NP

ctt

(iii) ≤NP
dtt and ≤NPm .

Proof. In each case, the first member of a pair is as strong as the second. Hence it is sufficient to show that
the second is as strong as the first.

(i) Suppose A ≤NPT B via a nondeterministic polynomial-time oracle machine M and we want to show A ≤NP
tt B.

Choose any x0 6∈ B and x1 ∈ B (this is possible since we assume non-trivial languages). We will construct a

nondeterministic tt-machine (G, E) such that A ≤NP
tt B via (G, E). On any input x, the query generator G

simulates M on input x. G also maintains on a special work-tape T a list of values, initially empty. If the ith
query (i ≥ 0) of M to the oracle is the word yi then G guesses the oracle’s answer. If the guessed answer is
yes, then G records in the tape T the pair (yi, x1); otherwise it records in T the pair (yi, x0). If M accepts,
then G outputs the contents of tape T :

y1#z1#y2#z2# · · ·#yk#zk

where zi ∈ {x0, x1}. If M rejects, G outputs x0#x1. We now have to describe the acceptor E. On input
x#b1c1 · · · bkck, (bi, ci ∈ {0, 1}), E accepts iff bi = ci for all i = 1, . . . , k. It is easy to see that A ≤tt B via
(G, E).
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(ii) Let A ≤NP
ptt B via (G, E). We will construct a nondeterministic tt-machine (G′, E′). G′, on input x, simulates

G on x. If G outputs y1# · · ·#yk, then G′ guesses a subset I ⊆ {1, 2, . . . , k} and checks if x#b1 · · · bk is
accepted by E, where bi = 1 iff i ∈ I. If it is accepted then G′ outputs yi1#yi2# · · ·#yim where I =
{i1, i2, . . . , im}; otherwise G′ outputs x0 where x0 is some fixed word not in B. The evaluator E′ is essentially

determined since we use conjunctive reducibility. The reader can easily verify that A ≤NP
ctt B via (G′, E′).

(iii) This follows the proof for (ii) closely.

This concludes the proof. Q.E.D.

We next show that some of the nondeterministic reducibilities are actually intransitive:

Theorem 25. (i) ≤NPm and ≤NP
ctt are transitive.

(ii) ≤NP
tt , ≤NP

∗-tt and ≤NP
k-tt (k ≥ 1) are intransitive.

Proof. The proof of (i) is straightforward, and is omitted. To show (ii), it is sufficient to construct non-trivial
languages A, B, C over {0, 1} satisfying

(a) A ≤NP
1-tt B ≤NP

1-tt C

(b) A 6≤NP
tt C.

Note that (a) follows from the following two conditions:

x ∈ A ⇐⇒ (∃y)[ |y| = |x| and y 6∈ B ] (11)

x ∈ B ⇐⇒ (∃y)[ |y| = |x| and y ∈ C ] (12)

Let Q = {Qi} be an efficient universal oracle machine for the characteristic family of nondeterministic polynomial-
time oracle machines (it is easy to see that Q exists). By definition each Qi runs in polynomial time; we may

further assume that each Qi uses less than 2n steps if n ≥ i. Since ≤NPT and ≤NP
tt are identical relations, (b)

corresponds to an infinite list of conditions where the ith condition states:

A is not Turing-reducible to C via Qi.

We proceed in stages where we satisfy the sth condition in stage s, s ≥ 0. Let that the partial sets As−1, Bs−1, Cs−1

have been defined at the end of the s − 1st stage. Also, inductively assume that each of the sets As−1, Bs−1, Cs−1

has a common domain. Moreover, for each n, all words of length n are in the common domain or all or not.
To initialize, each of the sets A0, B0, C0 has domain consisting of just the empty string ǫ where ǫ ∈ A0, ǫ 6∈ B0∪C0.

In stage s pick any word x of length n where n is the smallest integer such that no word of length n is in the current
common domain. We will make x a witness to condition s by considering two cases:

Case (1): x is accepted by Qs using oracle Cs (where queries on words not in the domain of Cs are given NO

answers). Let Y be the set of words queried in some arbitrary accepting computation path of Q
(Cs)
s on x. Then we

extend the domains of As, Bs and Cs by omitting all words of length |x| from As+1, including all words of length
|x| into Bs+1 and including exactly one string y 6∈ Y of length |x| into Cs+1. The existence of y follows from the
fact that |Y | < 2|x| since we assume that Qs runs in time < 2n for n ≥ s. Observe that condition s as well as (11)
and (12) are satisfied.

Case (2): x is not accepted by Q
(Cs)
s . Extend the respective domains by including all words of length |x| into

As+1 but omitting them all from Bs+1 and from Cs+1. Again, condition s as well as properties (11) and (12) are
satisfied.

We now clean-up for stage s. For each m such that some word of length m is queried in some computation path

of Q
(Cs)
s on input x, if such words are not already in the common domain of As+1, Bs+1, Cs+1, we put every word

w of length m domains of As+1, Bs+1, Cs+1 so as to satisfy properties (11) and (12): more precisely, we exclude w
from Cs+1 and from Bs+1 but include w in As+1. Note that omitting w from Cs+1 is consistent with the replies

that Q
(Cs)
s received on input x. This completes our description of stage s. Q.E.D.

Before concluding this section, we describe a weaker notion of nondeterministic reducibility investigated by
Long [12]:12

12Long qualifies these reducibilities as ‘strong’ because his notion of strength of reducibilities is opposite to ours.
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Definition 16. Let (Σ, A), (Γ, B) be languages and f a multivalued function from Σ∗ to Γ∗. We say A is unequivocal
many-one reducible to B via f if for all x ∈ Σ∗, we have

x ∈ A ⇒ f(x) ⊆ B,

x 6∈ A ⇒ f(x) ∩ B = ∅.

We write A ≤um B via f in this case.

Recall (chapter 2, section 9) that a nondeterministic acceptor is unequivocal if for all inputs, there is at least
one terminating computation path, and terminating computation paths are all accepting or all rejecting. We say
A is unequivocally Turing-reducible to B via a query machine M if A is Turing-reducible to B via M and M(B) is
unequivocal. We then write A ≤uT B via M.

Remark: All reducibilities seen until now in this book could equally have been made in terms of the ‘abstract’
concept of transformations, oracle operators or truth-tables as well as in terms of their ‘concrete’ counterparts
of transducers, oracle machines or tt-machines. In contrast, this last reducibility apparently cannot be defined
without explicit reference to the concrete concept of machines. There will be other examples.

In the usual way, we append superscripts P ,NP , etc to the various reducibilities to indicate complexity bounds.
Unequivocal many-one reducibility has proven to be useful in classifying the complexity of number-theoretic prob-
lems. The polynomial-time versions of these are called gamma-reducibilities (γ-reducibilities) by Adleman and
Manders who introduced them. Gamma reducibilities are valuable for studying closure under complements be-
cause of the following result: there are NP-complete languages under γ-reducibilities and furthermore if L is
NP -complete under γ-reducibilities then NP = co-NP iff L ∈ co-NP . In general, unequivocal reducibilities seem
to have nice properties, as seen in the following result by Long.

Lemma 26. Unequivocal many-one reducibilities and unequivocal Turing-reducibilities with polynomial-time bounds
are transitive reducibilities.

4.10 Conclusion

In this chapter we introduced the important reducibilities and their basic properties. Many other forms of re-
ducibility have been studied but here we are contented to give a few examples.

(1) Lynch has investigated the use of multiple oracles (by endowing machines with more than one oracle tape).

(2) Reductions based on logical constructs. For any complexity function f , Jones defines the f-bounded rudimentary
reducibility based on certain simple logical predicates and quantifications bounded by f . For instance, the
log n-bounded rudimentary reducibility is weaker than ≤Lm.

(3) An interesting concept due to J. Simon is similar to many-one reductions except for an extra ‘parsimony’
constraint. Roughly speaking, parsimony insists that the reducibility preserves the number of solutions. In
illustration of this idea, consider the reduction of Hamiltonian circuit problem to SAT. If we have a transfor-
mation t that takes any graph G to a corresponding CNF formula F such that the number of Hamiltonian
circuits in G is equal to the number of satisfying assignments to F , then t is parsimonious. To formalize this
notion, we must reformulate13 a ‘problem’ to be a binary relation over Σ∗ for some alphabet Σ: this would
allow us to count the number of solutions to a problem, and thus define parsimonious reductions among such
problems. Once this is done, it can be shown that all known transformations of NP-complete problems can
be modified to be parsimonious.

13Naturally this takes us outside the ‘standard’ complexity theory in the sense of departing from some basic decisions made in chapter
one.



Appendix A

Useful number-theoretic functions

Pairing functions. A pairing function is any bijection between N×N and N = {0, 1, 2, . . .}. We define a particular
pairing function 〈·, ·〉 : N × N → N in which the correspondence between (i, j) ∈ N × N and n ∈ N is given by the
relation

n = i +

(

i + j + 1

2

)

where
(

x
2

)

= x(x− 1)/2. Unless stated otherwise, by ‘the pairing function’ we refer to this definition. Using 〈·, ·〉 to
denote a pairing function is a deliberate confusion of notation since in general we use the same notation for ordered
pairs. This confusion is usually without harm. Whenever a distinction is necessary, we will write 〈i, j〉 ≃ n to say
that the value of the pairing function on the values i, j is n. The best way to see that this is a bijection is through
figure A.1.

The bijection induces a total ordering � of N × N defined as follows: the ordered pairs (i′, j′), (i, j) are related
as (i′, j′) � (i, j) iff n′ ≤ n where 〈i, j〉 ≃ n and 〈i′, j′〉 ≃ n′. If, in fact n < n′ holds, then we write 〈i′, j′〉 ≺ 〈i, j〉.
The (first and second) projection functions π1 and π2 are defined by

n ≃ 〈π1(n), π2(n)〉

for all n. A simple property of the pairing function is that it is increasing in each of its arguments.

Lemma 27. The function 〈·, ·〉, π1 and π2 are computable in polynomial time.

Proof. The fact that the pairing function is polynomial-time computable follows from the fact that multiplication
is polynomial-time computable. To see that π1 is polynomial time, note that on input n, in time polynomial in the
size of the input, we can determine the k such that k2 ≤ 2n ≤ (k + 1)2. (Use a binary search for k in the range
between 1 and n.) We want the m such that m(m − 1) ≤ 2n ≤ m(m + 1). Clearly k = m or m − 1, and we can
easily determine which is the case. Finally, π1(n) = n −

(

m+1
2

)

. It is similarly easy to compute π2(n). Q.E.D.
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〈1, 0〉 ≃ 2
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〈0, 3〉 ≃ 6

· · ·

Figure A.1: The pairing function 〈·, ·〉
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Suppose k ≥ 2 is fixed. We can use the pairing function to encode k-tuples as follows: a k-tuple (x1, . . . , xk),
where xi ∈ {0, 1}∗, is encoded by

〈x1, 〈x2, · · · , 〈xk−2, 〈xk−1, xk〉〉 · · · 〉〉.

The projection functions π1, . . . , πk are easily defined. This mapping from N
k to N is a bijection. If we are willing

(this is a matter of taste) to introduce extra symbols for encoding k-tuples, then it is easy to get an alternative
encoding: encode (x1, . . . , xk) as x1#x2# · · ·#xk where # is a new symbol. This poorman’s encoding has the
obvious simple linear-time decoding. However, it is not a bijection. But in all our applications, bijections were nice
but unessential.

Finally, we could use the pairing function to encode finite sequences 〈x1, . . . , xk〉 (of arbitrary length k) by
explicitly encoding the length of the sequence:

〈k, 〈x1, 〈x2, · · · , 〈xk−2, 〈xk−1, xk〉〉 · · · 〉〉〉.

Note that this encoding is no longer a bijection between N
∗ and N.

A fast growing function and its inverse.

Define the super-exponential function Exp : N × N → N by Exp(0) = 0 and Exp(n + 1) = 2Exp(n). So Exp(n)
consists of a stack of n two’s.1 In the remainder of this appendix, Exp will refer to the one argument function.

The log-star function log∗ n is defined to be the largest integer m such that Exp(m) ≤ n. This function is one
of the possible the ‘inverses’ of Exp(n).

Lemma 28.

(i) Exp can be computed in time linear in its output size |Exp(n)|

(ii) log∗ n can be computed in time linear in its input size |n|.

Proof. Note that |n| here refers to the length of the binary representation bin(n) of n, not the absolute value of
n. Note that for n > 0, |Exp(n)| is 1 + Exp(n− 1) since bin(Exp(n)) is ‘1’ followed by Exp(n− 1) 0’s. To show (i),
suppose bin(Exp(n − 1)) is available, and we want to compute bin(Exp(n)). This amounts to writing out exactly
Exp(n − 1) zeroes. To do this, we treat bin(Exp(n − 1)) as a binary counter and we want to decrement it to zero.
If m > 0 is the value of the binary counter and g(m) denote the maximal string of zeroes that form a suffix bin(m)
(i.e. the suffix of bin(m) has the form ‘· · · 10g(m)’), then a single decrement of the counter takes O(g(m)) steps.
Hence the time to decrement the counter from Exp(n − 1) to zero is order of

Exp(n−1)
∑

m=1

g(m) =

Exp(n−2)
∑

k=1

k · 2Exp(n−2)−k = O(2Exp(n−2)) = O(Exp(n − 1)).

Thus computing Exp(n) from Exp(n − 1) is linear in |Exp(n)|. Summing this work for m = 1, 2, . . . , n we get
∑n

m=1 |Exp(m)| which is O(|Exp(n)|), as required. To show (ii), we compute the increasing values

Exp(0), Exp(1), Exp(2), .

until for some m ≥ 0, Exp(m + 1) has length greater than |n|. Then log∗ n = m, and we can convert to binary if
desired. The linearity of this procedure is similarly shown as in (i). Q.E.D.

1Exp(n) is to be distinguished from the usual exponential function exp(n) := en, where e is the base of the natural logarithm.
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Exercises

[4.1] (i) What are the REC -complete languages under ≤RECm ?
(ii) Prove that HALT is RE -complete under ≤RECm .

[4.2] Suppose there is a language L0 that is complete for NP under Cook reducibility but not complete for NP
under Karp reducibility. What consequences can you draw from the existence of L0?

[4.3] Consider the following definition2 of NP-completeness: a language L is NP -complete if (a) L is in NP and
(b) if L is in P then NP = P . Clearly SAT is NP-complete under this definition. This definition appears
attractive because it is simpler than any of the usual definitions. What is unusual about it? Is the language
SAT NP -complete according to this definition? Is there a polynomial analogue of Post’s problem here?

[4.4] (Aho-Hopcroft-Ullman) Consider the following informal notion of K-hardness: say L is effectively K-hard
if there is an effective (i.e. recursive) procedure F such that for each L′ ∈ K, F (L′) is a transformation
such that L′ is many-one reducible to L via F (L′). Make this into a precise definition. Verify that SAT
is effectively NP-hard under your definition. Most notions of NP -hardness are based on a concept of
reducibility. Is there a corresponding reducibility here?

[4.5] (i) By modifying the proof in chapter 3, show that SAT is NP -complete under many-one log-space re-
ducibility.
(ii) In fact, show that all the NP -complete problems in chapter 3 are still NP-complete under the one-way
log-space ≤1L

m reducibility of Hartmanis.

[4.6] Show that LBA = NSPACE (n) is precisely the class of context sensitive languages.

[4.7] Prove that DLOG is not closed under ≤Pm-reducibility if DLOG 6= P .

[4.8] For any K and any family of transformations Ω, show that L is K-complete iff co-L is (co-K)-complete
under ≤Ω

m-reducibility. Conclude that if L is P -complete under Karp reducibility then co-L is also P -
complete.

[4.9] (Meyer) Show that NP = co-NP iff there exists an NP -complete language L in co-NP . The notion of
NP -completeness depends on the choice of a reducibility ≤. We want you to specify the needed property
of ≤ in order for this result to hold.

[4.10] (Jones, Lien, Laaser) Show that t is a deterministic log-space transformations iff the following language is
in DLOG:

{x#i#b : x, i ∈ {0, 1}∗ and b is the ith symbol of t(x)}

for some transformation |t(x)| = |x|O(1).

[4.11] Show that the familiar functions x+y, x−y, max(x, y) and x ·y are in DLOG (the family of deterministic
log-space transformations). It is not known if ⌊x/y⌋ is in DLOG; but obtain a small space complexity s
such that division can be computed by a transducer using space s.

[4.12] What is the flaw in the following proof that NP is closed under Cook reducibility: let L ∈ NP and L′

is accepted by some deterministic polynomial time oracle machine M(·) with oracle L. To show that L′ is
in NP we define a machine M′ which on input x simulates M(L) until M enters the QUERY state. Then
M′ temporarily suspends the simulation of M and begins simulating a nondeterministic polynomial time
acceptor N of L using the query word. If N accepts then M′ continues the simulation of M from the YES
state, otherwise it continues from the NO state. Clearly M′ computes in nondeterministic polynomial time.

[4.13] Let |Σ| ≥ 2. Show that P = NP iff P |Σ = NP |Σ

[4.14] Say the language (Σ, L) is a coded image of (Γ, L′) if there is a homomorphism h : Γ → Σ∗ such that h(a)
has the same length for all a in Γ and the natural extension of h, h∗ : Γ∗ → Σ∗, maps L′ isomorphically
into L. A class K is coded in K ′ if every language in K has a coded image in K ′. K and K ′ are codably
equivalent if they are each coded in the other. Show that P and P |Σ are codably equivalent iff |Σ| ≥ 2.
Show the same for the other standard classes. Conclude that with respect to the P = NP , DLOG = NLOG
and P = NLOG questions, our theory might as well be restricted to languages over {0, 1}.

2we call this the ‘student definition’ because it often appears in oral or written exams when students are asked for a definition. Of
course, teachers do it too. See discussion in [20].
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[4.15] (infinitely often reducibility) Let t be a transformation t : Σ∗ → Γ∗. A language (Σ, L) is infinitely
often (i.o.) many-one reducible to (Γ, L′) if for infinitely many x ∈ Σ∗, we have x ∈ L iff t(x) ∈ L′. We
extend this definition to incorporate complexity in the obvious way: e.g. ‘i.o. Karp reducibility’ refers to
i.o. many-one reducibility in polynomial time, denoted ≤Pi.o.m. Investigate the properties of such efficient
reducibilities.

[4.16] In this exercise we assume the two-way oracle model.
(i) Show that the relationship ≤LT is not reflexive (and hence it is not a reducibility). Hint: Consider any
in DLBA − DL.
(ii) Show that the reducibilities ≤DLBA

m and ≤DLBA

T are incomparable (here the superscript DLBA denotes
linear space bounds.) Hint: To show that ≤DLBA

T is not stronger than ≤DLBA
m pick any language L 6∈ DLBA

and show that L is not ≤DLBA

T -reducible to where L′ = {ww : w ∈ L}.

[4.17] * For any language L, define the language L′ = {bin(|x|) : x ∈ L} ⊆ {0, 1}∗ ⊆ {0, 1}∗. Give an efficient
reduction of L′ to L. If L is accepted in time-space-reversal (t, s, r), what are the obvious complexity
bounds on L′? Find non-trivial improvements on these bounds.

[4.18] Show that if f is space-constructible then DSPACE(f)|Σ (for any alphabet Σ) is efficiently presentable.

[4.19] * (i) Show that the two-argument universal-polynomial complexity function p(n, k) := nk is constructible,
for integer values of the inputs. Hint: First show that p′(n, k) = Θ(nk) is constructible. Actually, this is
sufficient for all purposes.
(ii) Fill in the details for the construction of an efficient universal acceptor for the characteristic class P .
(iii) More generally, show that if a family F of complexity functions has a time-constructible universal-
function F ∗(i, n), then NTIME(F ) is efficiently presentable. That is, for each fixed i, F ∗(i, n) ∈ F and
conversely each f(n) ∈ F is equal of F ∗(i, n) for some n.

[4.20] Define a super universal machine to be a Turing acceptor U with three input tapes. If the inputs are
〈i, j, x〉 then if i and j are fixed, we regard the machine as an ordinary Turing acceptor on input x, and

denote it by U
(i)
j . If i is fixed we regard the family

U (i) = {U
(i)
0 , U

(i)
1 , . . .}

as a universal machine. We say that U efficiently presents a characteristic class K if (a) for each i, U (i) is
an efficient presentation of K, and (b) for each efficient universal acceptor V of K, there exists an i such

that U (i) has the same enumeration of K as V : for each j sufficiently large, L(U
(i)
j ) = L(Vj). Does the

characteristic class NP have a super universal acceptor?

[4.21] Prove that for any reasonable resource bound β, say β = nO(1)-time, ≤βm and ≤β1-ptt are identical.

[4.22] (Ladner, Lynch and Selman) Prove that (i) ≤P1-tt stratifies ≤Pm, and (ii) ≤P(k+1)-tt stratifies ≤Pk-tt. (see

section 6 for definition of stratifies)

[4.23] Show that ≤Pk-tt for k > 1 is an intransitive reducibility.

[4.24] (Ladner, Lynch and Selman) Define the reducibility ≤0 thus: L ≤0 L′ if there is a query machine and
a polynomial-time transformation t : {0, 1} → {#{0, 1}∗}∗ such that M (L′) accept L and for input x,
M only asks questions from the list t(x) (ie. #x1#x2# · · ·#xk where xi ∈ {0, 1} is viewed as the list
(x1, x2, . . . , xk)). Show that ≤0 is the same as polynomial-time truth-table reducibility.

[4.25] Show that if A ≤PT B then A is tt-reducible to B in deterministic time 2n
k

for some k ≥ 1.

[4.26] (Ladner and Lynch) Let L, L′ be languages.
(i) Show that L ∪ L′ ≤Ltt L ⊕ L′. In fact, the ≤FST2−tt -reducibility is sufficient.
(ii) Show the existence of languages L, L′ such that L ∪ L′ 6≤Lm L ⊕ L′.

[4.27] (i) Prove theorem 9 (which contains the relativized Savitch’s theorem) under the two-way oracle model.
Why does the proof break down with the one-way oracle model?
(ii) Prove theorem 9 again, but under the tame one-way oracle model.

[4.28] Complete the proof of lemma 15.
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[4.29] (Ladner, Lynch and Selman) Show that L ≤NPm L′ iff there exists a polynomial p and a polynomial-time
transformation t such that x ∈ L iff

(∃y)[|y| ≤ p(|x|)∧t(x, y) ∈ L′]

[4.30] Show that if A is PSPACE -complete (under ≤Pm-reducibility) then P A = NPA.

[4.31] For any set A ⊆ Σ∗, define len(A) := {w ∈ Σ∗ : (∃x ∈ A)|x| = |w|}. Construct a language A ⊆ Σ∗ such
that len(A) 6∈ P A.

[4.32] Prove that if PSPACE 6= P then there exists L, L′ in PSPACE such that L is Cook-reducible, but not
Karp-reducible to L′. (Of course, if we can prove this result without the hypothesis that PSPACE 6= P
then we would have proven that PSPACE 6= P .)

[4.33] (Selman) A language (Σ, L) is P -selective if there is a polynomial time transformation f : Σ∗×Σ∗ → Σ∗

such that f(x, y) ∈ {x, y}, and furthermore, if either x or y is in L then f(x, y) ∈ L.
(i) Show that for all non-trivial languages L, L is in P iff co-L ≤Pm L and L is P -selective.
(ii) If L is P -selective and L′ ≤Pm L then L′ is P -selective.
(iii) If SAT is P -selective then NP = P .

[4.34] Show that the following function is a pairing function:

〈x, y〉 = a2 − 2(a − b) + δ(x < y)

where a = max(x, y), b = min(x, y) and δ(x < y) = 1 if x < y holds and 0 otherwise. Show that this, and
its associated projection functions π1, π2 are polynomial-time computable.

[4.35] Imitate Ladner’s proof technique to obtain a language in NEXPT −DEXPT (assuming this is non-empty)
that is not complete.

[4.36] (I. Simon) Show that for all A 6∈ P , ≤PT and ≤Ptt are distinguishable over A.

[4.37] (I. Simon) Let ≤1 be stronger than ≤2. We say that ≤1 and ≤2 are downward distinguishable over a
language L if there exists a language L′ such that L′ ≤1 L but not L′ ≤2 L. (Note that the definition of
distinguishable in the text may be qualified as ‘upward’.) Let ≤PST denote Turing reducibility where the
complexity bound is deterministic polynomial space. Show there exists a language L 6∈ P such that ≤PST
and ≤Pm are not downward distinguishable over L.

[4.38] (Ladner and Lynch) Show that ≤PT is stronger than ≤LT .

[4.39] (Ladner and Lynch, open) Is ≤Pm stronger than ≤Lm? Is ≤Ptt stronger than ≤Ltt?

[4.40] Consider the alternative definition of tt-reducibility described at the end of section 5. Compare the
relative strengths of the usual tt-reducibility with this definition, respect to each of the three choices of
representing Boolean functions: (a) ‘truth-tables’ in the original sense of the term, (b) Boolean formulas,
and (c) Boolean circuits.
(i) Show that with respect to polynomial-time bounds, there is no difference.
(ii) Show a difference (assuming DLOG 6= P ) with respect to log-space bounds. What is the significance
of the fact that the circuit value problem (CVP) is P -complete under log-space reducibility? (Note: the
CVP problem, described in chapter 5, is the problem of deciding if a distinguished output of a Boolean
circuit under a given input is 0 or 1.)

[4.41] Show that with respect to polynomial time, we could restrict nondeterministic tt-machines (G, E) such
that E is deterministic.

[4.42] Prove the last theorem of section 8 which generalizes the Ladner’s answer to the polynomial analogue of
Post’s problem.

[4.43] (Lind, Meyer) Show that the log-space transformations DLOG is closed under explicit transformation
(viz., substitution by constants, renaming and identification of variables) and two-sided recursion of con-
catenation. The latter is defined as follows: A transformation f : (Σ∗)n + 1 → ∆∗ on n + 1 variables is
defined by two-sided recursion of concatenation from g : (Σ∗)n → ∆∗ and h1, h2 : (Σ∗)n+2 → ∆∗ if

f(w̄, ǫ) = g(w̄)

f(w̄, xa) = h1(w̄, x, a) · f(w̄, x) · h2(w̄, x, a)
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for all w̄ ∈ (Σ∗)n, w ∈ Σ∗ and a ∈ Σ. Note that in this context, we can regard a multi-variable transfor-
mation such as f as an ordinary one variable transformation if we encode a sequence (w1, wn) of words as
one word w1# · · ·#wn where # is a new symbol.

[4.44] * Following the outline in the concluding section, formalize the notion of parsimony by defining problems
as binary relations over Σ∗. How much of standard complexity theory as used in this book carry over?

[4.45] (J. Simon) Show that SAT can be many-one reduced to Hamiltonian circuits using a parsimonious
polynomial-time transformation t, i.e., for any CNF F ∈ SAT, the number of satisfying assignments to F
is equal to the number of Hamiltonian circuits in t(F ).

[4.46] * Investigate the basic structure of the diagonalization proofs by formalizing the concept of ‘finite, exis-
tential conditions’. Refer to the basic diagonalization outline of section 6.
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Chapter 5

Complete Languages

April 13, 2009

5.1 Existence of complete languages

The class NP has a long list of complete problems derived from almost every area of the computational literature.
The theoretical unity that this fact provides for such diverse problems is one of the striking accomplishments of the
field. Naturally, one is led to ask if other complexity classes such as NLOG and PSPACE have complete languages.
The framework of the Basic Inclusion Lemma also motivates our search for complete languages. The answer is yes
for these and many other classes; moreover, there is a systematic way to show this (e.g., [14]). The method depends
on the existence of efficient universal machines; universal machines in turn depend on the existence of suitable
tape-reduction theorems. In this chapter, for simplicity, the reducibility is assumed to be ≤Lm unless otherwise
specified.

Convention: Let i denote a natural number. In contexts where a string is expected, we use the same symbol ‘i’
to denote the binary string representing the natural number i. The notation ‘|i|’ always denotes the length of the
binary representation of i, never the absolute value of i as a number. Also, if # is a symbol, then #i denotes a
string of i copies of #.

Theorem 1. Each complexity class in the canonical list, with the exception of PLOG, has complete languages
under log-space many-one reducibility, ≤Lm.

Proof. Here is the proof for the class P : Fix Σ = {0, 1}. We have shown in chapter 4 (example 5) that the
characteristic class P |Σ has an efficient universal acceptor UP = {UP

i : i = 0, 1, . . .} where each UP
i accepts in

time n|i|. Define over the alphabet {0, 1, #} the language

LP = {i#mx : i, x ∈ Σ∗, m = |i| · |x||i|, x ∈ L(UP

i )}.

We claim that LP is P -complete under ≤Lm. First we show that LP is in P . This is witnessed by the acceptor M
that, on input w, first checks that w has the form i#mx for some i, x, m. Next it checks that m = |i| · |x||i|, and
if so, simulates UP

i on x. The simulation takes time O(m) = O(|w|). To show that LP is P -hard, consider any
language (Γ, L) ∈ P . Let h be the homomorphism that encodes each symbol of Γ as a unique binary string in Σ∗

of length ⌈log |Γ|⌉. So h(L) is a language over Σ; furthermore, it is easy to see that

h(L) ∈ P ⇐⇒ L ∈ P .

So let h(L) be accepted by UP
i for some i. Consider the transducer T that on input x outputs i#mh(x) where

m = |i| · |h(x)||i|. It is not hard to make T use log(|x||i|) = Oi(log |x|) space to produce this output. Now x is in L

iff T(x) is in LP . Thus L ≤Lm LP . This shows that LP is P -hard.
Sketch of the other cases: The proof for the class NLOG uses the same technique as above: we use the existence

of an efficient universal acceptor UNLOG for NLOG|Σ such that for each i, UNLOG
i accepts in space |i| log n. The

complete language is
LNLOG = {i#mx : i, x ∈ Σ∗, m = |i| · |x||i|, x ∈ L(UNLOG

i )}.

The proof for the class DEXPT uses the existence of an efficient universal acceptor UDXT such that for each i,
UDXT
i accepts in time |i|n time. The complete language is

LDXT = {i#mx : i, x ∈ Σ∗, m = |i| · |x|, x ∈ L(UDXT
i )}.

205
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The proofs for the other classes are similar. Q.E.D.

We make two remarks. First, the method unfortunately does not extend to PLOG . No complete problems for
this class (under the usual reducibilities) are known. Second, the result is trivial for DLOG because unrestricted
log-space many-one reducibility is too powerful: it is easy to see that DLOG is ≤Lm-reducible to any non-trivial
language. Following Hartmanis, we consider the one-way log-space many-one reducibilities, ≤1L

m (see section 2,
chapter 4); the reader may verify that the construction for LNLOG in the above proof carries over to give us a

DLOG-complete language LDLOG under ≤1L
m -reducibility.

The next question we ask is whether classes such as

XTIME (nk),XSPACE (logk n),XSPACE (nk)

(X = D, N) for each k ≥ 1 have complete languages. The answer is yes, using a simple variation of the above
proof. In particular, the characteristic class XSPACE(logk n) has an efficient universal acceptor U ′ and hence it
is not surprising to find complete languages for it. More precisely, we may assume that the universal acceptor U ′

i

accepts in space at most |i| logk n for each i. Then a complete language for XSPACE(logk n) is given by

L′ = {i#mx : x ∈ L(U ′
i), m = |x||i|}.

We make the observation that the language LP in the proof of theorem 1 is actually in DTIME (O(n)), so it is
in fact DTIME (O(n))-complete. To see this as a more general phenomenon, we next state a definition and lemma.

Definition. Let (Σ, L) be a language, # a symbol not in Σ, and f a number-theoretic function. Then the f -padded
version (with padding symbol #) of L is the language L′ = {x#f(|x|) : x ∈ L} over Σ ∪ {#}.

Lemma 2. Let k ≥ 1 be any fixed integer. Under the ≤Lm-reducibility, we have:

(i) If a language L is DSPACE (nk)-complete then L is PSPACE-complete.

(ii) If L is PSPACE-complete then the f -padded version of L is DSPACE (nk)-complete, where f(n) = nh for
some h ≥ 1.

Proof.

(i) It is sufficient to show that every language L′ ∈ PSPACE can be reduced to L. Assume L′ is accepted by
some Ui in space f(n) = n|i|, where U is an efficient universal acceptor for the characteristic class PSPACE .
To reduce L′ to L, we construct the transducer that on input x outputs t(x) = i#x#f(|x|). Clearly the
language t(L′) = {t(x) : x ∈ L′} is in DSPACE (n) ⊆ DSPACE (nk). Since L is DSPACE (nk)-complete, we
have t(L′) is many-one reducible to L via some log-space transformation r. Hence L′ is many-one reducible
to L via the functional composition r ◦ t. Since the log-space transformations are closed under functional
composition (chapter 4), we conclude that r ◦ t is log-space computable.

(ii) Since L is PSPACE -complete, let L be accepted by some M in space nh for some h ≥ 1. Let L′ be the
nk-padded version of L for some k ≥ 1. Clearly L′ ∈ DSPACE (n) ⊆ DSPACE (nk). To show that L′ is
DSPACE(nk)-hard, let L′′ ∈ DSPACE(nk) be many-one reducible to L via some log-space transformation t.

The reader may verify that L′′ is many-one reducible to L′ via the transformation r where r(x) = t(x)#|t(x)|h .
Clearly r is log-space computable.

Q.E.D.

This tells us that the classes LBA, DSPACE (nk) and PSPACE have essentially the same complete languages
under log-space many-one reducibility.

The analog of the above lemma for DTIME (nk) can be proved in exactly the same way. Unfortunately,
DTIME (nk) is not closed under log-space many-one reducibility so that we cannot apply the Basic Inclusion Lemma
(chapter 4). The next result (from [4]) remedies this situation by considering the family 1FST of transformations
computed by 1-way finite state transducers (chapter 4, section 2):

Theorem 3. Let k ≥ 1, and X = D or N . Let K be the class XTIME (nk) or XSPACE (nk).

(i) K is closed under ≤1FST
m -reducibility.

(ii) There exists K-complete languages under ≤1FST
m reducibilities.
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Proof. (i) This is a simple exercise in machine construction. (ii) We just show the result for K = XTIME (nk).
Consider the language Lk consisting of all words of the form

w = x1#y#x2# · · ·#y#xn (1)

where xi, y ∈ {0, 1}∗, each xi has the fixed length k and y is the encoding of a Turing acceptor My that is clocked
to run for nk steps (with the appropriate mode X) and My accepts x1x2 · · ·xn. We first show that Lk is hard for
XTIME (nk). Let (Σ, L) be accepted by some Turing acceptor My in time nk. Let h : Σ → {0, 1}∗ be any encoding
of the symbols of Σ using binary strings with a fixed length, and define the transformation t, depending on h and
My, such that for any x = a1a2 · · · an, t(x) = h(a1)#y#h(a2)#y# · · ·#y#h(an) where y is an encoding of My that
is clocked to run for at most nk steps. Clearly t ∈ 1FST and L is many-one reducible to Lk via t. It remains to
show that Lk is in XTIME (nk). On input w, we can verify in linear time that w has the form given by (1). Then
we simulate My. Because there is a copy of the machine encoding y next to each ‘real input symbol’ h(ai) = xi, it
takes only O(|y| + |x1|) steps to simulate one step of My. This gives O((|y| + |x1|) · nk) = O(|w|k) steps overall.
By the linear speedup theorem, we can make this exactly |w|k steps. Q.E.D.

Similarly, we can show that reversal classes defined by polynomial or exponential complexity functions have
complete languages [7]:

Theorem 4. The classes DREVERSAL(nO(1)) and DREVERSAL(O(1)n) have complete languages under log-space
many-one reducibility.

Proof. We show this for the case of DREVERSAL(nO(1)). Using the existence of a efficient universal machine
{U1, U2, . . .} for this characteristic class, we see that the language

{i#mx : m = |x||i|, x ∈ L(Ui)}

is complete. Q.E.D.

Natural Complete Languages. The complete languages generated in the above manner are artificial and it is
of interest to obtain ‘natural’ complete problems. By natural problems we mean those arising in contexts that have
independent interest, not just concocted for the present purpose. (Of course, naturalness is a matter of degree.)
The advantage of natural complete problems is that they are an invaluable guide as to the inherent complexity of
related natural problems.1 We examine such languages in the remainder of this chapter. For each complexity
class K studied below, we first give a direct proof that a language L0 is complete for K under ≤Lm-reducibility.
Subsequently, we may show any other languages L to be K-complete by showing L0 ≤Lm L, using the fact that
≤Lm-reducibility is transitive.

Notation We will conveniently use [i..j] to denote the set {i, i + 1, . . . , j} where i ≤ j are integers.

5.2 Complete Problems for Logarithmic Space

5.2.1 Graph Accessibility

The first problem shown to be complete for NLOG is the following. It was originally introduced as ‘threadable
mazes’ by Savitch [29] but the present form is due to Jones [19].

Graph Accessibility Problem (GAP)

Given: A pair 〈n, G〉 where G is an n × n adjacency matrix of a directed graph
on the node set [1..n].

Property: There is a path from node 1 to node n.

To show that GAP is in NLOG, we describe a nondeterministic acceptor M that guesses a path through the
graph as follows: on input x, M first verifies that x has the correct format representing the pair 〈n, G〉. Then it
writes down ‘1’ on tape 1 and on tape 2 makes a nondeterministic guess of some j, 1 ≤ j ≤ n. In general, suppose
tapes 1 and 2 contain the integers i and j (respectively). Then it verifies that 〈i, j〉 is an edge of G. If not, it rejects
at once. It next checks if j = n. If so, it accepts; otherwise it copies j to tape 1 (overwriting the value i) and makes
another guess k on tape 2. Now we have the pair 〈j, k〉 represented on tapes 1 and 2, and we may repeat the above

1Cf. comments in footnote 18, in chapter 1.
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verification and guessing process. Clearly the input is in GAP iff some sequence of guesses will lead to acceptance.
The space required by M is log n where the input size is O(n2).

To show that GAP is NLOG-hard, let L be accepted by some nondeterministic machine N in space log n. We
reduce L to GAP using a transducer T that on input x computes the transformation t(x) as follows: let |x| = n and
we may assume that each configuration of N that uses at most log n space on input x. is represented by integers in
the range [2..nc− 1] for some integer c > 0. (Some integers in this range may not encode any configuration.) Then
t(x) is the encoding of 〈nc, G〉 where the entries Gi,j of the matrix G (representing a graph) is defined as follows:
Gi,j = 1 iff one of the following holds:

(1) i and j encode configurations Ci and Cj (respectively) of M and Ci⊢Cj .

(2) i = 1 and j represents the initial configuration.

(3) i represents an accepting configuration and j = nc.

It is not hard to see that T can output the successive rows of G using only space log n. Furthermore, x is
accepted by N iff t(x) is in GAP. This completes the proof.

5.2.2 Unsatisfiability of 2CNF formulas

For the next NLOG-complete problem, recall from chapter 3 that the kCNF formulas (k ∈ N) are those with
exactly k literals per clause.

Unsatisfiability of 2CNF Formulas (2UNSAT)

Given: A 2CNF formula F .

Property: F is unsatisfiable.

With respect to a 2CNF formula F , let us write u → v if {ū, v} ∈ F . Thus “→” here is just “logical implication”.

Clearly, u → v iff v̄ → ū. The reflexive, transitive closure of → is denoted
∗
→. Thus u

∗
→ v iff there is a sequence

u1, u2, . . . , uk (k ≥ 1) of literals such that u1 = u, uk = v and ui → ui+1 for i = 1, . . . , k − 1. The literals ui in the

sequence need not be distinct. We note that if I is a satisfying assignment for F and u
∗
→ v then I(u) = 1 implies

I(v) = 1. It follows that if u
∗
→ ū and I satisfies F then I(u) = 0. For any set of literals X , let the closure of X

be cl(X) = {v : (∃u ∈ X)u
∗
→ v}. Hence if I satisfies F and I(u) = 1 for all u ∈ X then I(v) = 1 for all v ∈ cl(X).

We begin with the following characterization:

Theorem 5. A 2CNF formula F is unsatisfiable iff there exists a literal u such that u
∗
→ ū and ū

∗
→ u.

Proof. If there is such a literal u. the above remarks makes it clear that F is unsatisfiable. Conversely, suppose
there are no such literal. We will show that F is satisfiable. A set of literals is consistent if it does not contain
both x and x̄ for any variable x. We claim that for each variable x, either the set cl({x}) is consistent or the set
cl({x̄}) is consistent: otherwise let y and z be variables such that

{y, ȳ} ⊆ cl({x}) and {z, z̄} ⊆ cl({x̄})

Thus x
∗
→ y and x

∗
→ ȳ. But x

∗
→ ȳ implies y

∗
→ x̄ so that transitivity implies x

∗
→ x̄. A similar argument using

z, z̄ shows that x̄
∗
→ x, contradicting our assumption that there are no such x.

We now define a sequence U0 ⊆ U1 ⊆ · · · ⊆ Um (for some m ≥ 1) of sets of literals: and U1 = cl(U0). Let
U0 = ∅ (the empty set). Supposed Ui (i ≥ 0) is defined. If for every variable x, either x or x̄ is in Ui then we stop
(i.e., set m to be i). Otherwise choose such a variable x and by the above observation, either cl({x}) or cl({x̄}) is
consistent. If cl({x}) is consistent, set Ui+1 := Ui ∪ cl({x}). Else, set Ui+1 := Ui ∪ cl({x̄}).

It is immediate that each Ui is closed, i.e., cl(Ui) = Ui. Suppose Um is consistent. Then the assignment that
makes each literal in Um true is a satisfying assignment for F . To see this, suppose {u, v} is a clause in F and u is

not in Um. This means ū is in Um. But ū
∗
→ v, so v is in Um. This shows that every clause is satisfied, as desired.

It remains to show the consistency of Um. We show inductively that each Ui, i = 0, . . . , m, is consistent. U0

is clearly consistent. Next assume that Ui (i ≥ 0) is consistent but Ui+1 = Ui ∪ cl({u}) is inconsistent. Say,

{v, v̄} ⊆ Ui+1. We may assume that v̄ ∈ Ui and v ∈ cl({u}). But v ∈ cl({u}) implies u
∗
→ v, or equivalently, v̄

∗
→ ū.

Then v̄ ∈ Ui implies ū ∈ Ui, contradicting our choice of u when defining Ui+1. Q.E.D.

From this lemma, we see that 2UNSAT is in NLOG: on input F , guess a literal u such that u
∗
→ u witnesses

the unsatisfiability of F . We then guess the sequence u → u1 → u2 → · · · → uk → u. We need not store the entire
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sequence, just the first literal u and a current literal ui. If we assume that each literal is encoded by a string of
length O(log n) when F has n distinct variables, the space used is clearly log n. We could impose this restriction
on the encoding. However, it is not hard to see that even if no such restrictions were made, logarithmic space is
sufficient. The idea is that any variable in F can be represented by a counter of size log n that points to some
occurrence of that variable in F . The details are left as an exercise.

We now prove that 2UNSAT is NLOG-hard by reducing GAP to it. Let 〈n, G〉 be the input to GAP. We can
construct the following CNF formula whose variables are denoted by the integers 1, . . . , n:

1∧n̄∧
∧

〈i,j〉

(̄i∨j)

where 〈i, j〉 range over edges in G. Note that this is not quite a 2CNF formula because the first two clauses have
only one literal each.2 To turn a one variable clause {u} to two variables, it is easy to introduce a new variable z

so that ū → z → u. If we interpret the variable i to mean “node i is reachable from node 1”, then this formula
says that node 1 but not node n is reachable, and if 〈i, j〉 is an edge and node i is reachable then so is node j.
Clearly, if there is a path from 1 to n then the formula is unsatisfiable. Conversely, if there are no paths from 1 to
n then (exercise) it is easy to see that the formula is satisfiable with this assignment: (a) assign to false all those
nodes that can reach node n, (b) assign to true all the remaining nodes. Finally, the fact that this formula can be
constructed from 〈n, G〉 in logarithmic space completes the proof.

Based on our intuition from the satisfiability problem SAT, it is perhaps curious that it is 2UNSAT rather than
2SAT that is NLOG-complete.3

5.2.3 Associative Generator Problem

The next problem concerns a simple algebraic system with one associative binary operation denoted ⊕. Without
loss of generality, the elements of the system are [1..n] and let the multiplication table of ⊕ be given by an n × n

matrix T = (Ti,j). Thus Ti,j = k means i ⊕ j = k. For any set S ⊆ [1..n], the ⊕-closure of S is the smallest set
containing S and closed under ⊕. We should keep in mind that the elements in [1..n] represents abstract elements,
not integers.

Associative Generator Problem (AGEN)

Given: 〈n, T, S, w〉 where T is a multiplication table for a binary operation ⊕ over
[1..n], S ⊆ [1..n] and w ∈ [1..n].

Property: The operation ⊕ is associative and w is in the ⊕-closure of S.

We sketch the proof. To show that AGEN is in NLOG, we note that it is easy to check in logarithmic space
that an input has the form 〈n, T, S, w〉 and that T is associative. Now w is in the ⊕-closure of S iff it can be
expressed as w = x1 ⊕ x2 ⊕ · · · ⊕ xk. It is not hard to see that the shortest such expression has length of k at most
n. Hence it is easy to nondeterministically accept AGEN by guessing successive values of xi, for i = 1, . . . , n, and
only keeping track of the partial sum x1 ⊕ x2 ⊕ · · · ⊕ xi.

Next, we show that GAP is reducible to AGEN. Let 〈n, G〉 be the input to GAP. We describe the AGEN
instance 〈m, T, S, w〉 as follows: Choose m = 1 + n + n2. Instead of describing the table T in terms of [1..m], it is
more intuitive to interpret the elements of [1..m] as the set

X = [1..n] ∪ ([1..n] × [1..n]) ∪ {∞}

where ∞ is a new symbol. Hence |X | = m. We can make a correspondence between X and [1..m] as follows: Each
i ∈ [1..n] corresponds to itself in [1..m]; the pair 〈i, j〉 ∈ [1..n]× [1..n] corresponds to i + jn in [1..m] and finally ∞
corresponds to m. The table T is now described by the following rules:

For all i, j, k, u, v ∈ [1 . . . n],

i ⊕ 〈j, k〉 =

{

k if i = j and 〈j, k〉 is an edge of G

∞ else.

〈i, j〉 ⊕ 〈u, v〉 =

{

〈i, v〉 if j = u

∞ else.

2Since we regard clauses as sets of literals, it is no good saying that the clause with one literal can be made into a 2-literal clause
by repeating the single literal.

3Nevertheless, this switch is typical when we change from a time class to space class.
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In all other cases, the value of x⊕y is ∞. It is easy to see that ⊕ is associative and there is a path (1, x1, . . . , xk, n)
from 1 to n in G iff 1 ⊕ 〈1, x1〉 ⊕ · · · ⊕ 〈xk, n〉 = n holds. The desired AGEN instance 〈m, T, S, w〉 is now evident:
m and T has been described; S is the set consisting of 1 and all pairs 〈i, j〉 representing edges of G; w is chosen to
be n. Finally, one verifies that this AGEN instance can be computed in logarithmic space from 〈n, G〉.

5.2.4 Deterministic Logarithmic Space and below

To get a meaningful complete language for DLOG, we weaken our reducibility as in section 1. We restrict the
input head on the transducers to be one-way. A natural restriction of GAP that is DLOG-complete is to make the
outdegree of each node at most 1. However, we must also be careful about the actual encoding of the problem. In
particular, we can no longer assume the adjacency matrix representation of graphs:

Deterministic Graph Accessibility Problem (1GAP)

Given: 〈n, G〉 as in GAP except that each vertex of G has outdegree at most 1
and G is encoded by a sequence of its edges.

Property: There is a path from node 1 to n.

It is easy to see that this problem is in DLOG. We leave it as an exercise to reduce an arbitrary language
in DLOG to 1GAP: essentially we cycle through all configurations C and for each C, we output the ‘edge’ pair
(C, C′) where C′ is the successor of C, C⊢C′. Indeed, this proof shows that the following variant of 1GAP remains
complete: where we insist that the inputs 〈n, G〉 satisfy the property that the list of edges of G be topologically
sorted (i.e., all edges entering a node must be listed before edges exiting from that node).

Let us briefly consider the power of one-way log-space many-one reducibility [17]. It turns out that many natural
problems which are complete for canonical classes (under ≤Lm) remain complete under ≤1L

m . This is fortuitous
because it is easily shown that there are languages that are complete for P (for instance) under ≤Lm but which are
not P -complete under ≤1L

m . See Exercises.
While there is less interest sublogarithmic space complexity, it should be noted that complete problems can be

defined for any nondeterministic space bound between log log n and log n space. Monien and Sudborough define
the so-called ‘bandwidth limited’ versions of the GAP problem [24]. To understand this, we say the bandwidth of a
graph G is the smallest m ≥ 0 such that each edge (i, j) satisfies |i − j| ≤ m. We must also be careful about how
to encode such graphs. Let us encode graphs on the vertices {1, 2, . . . , n} by a sequence of the adjacency lists of
each vertex. The adjacency list for vertex i has the form (i, m(i, 1), m(i, 2), . . . , m(i, di)) where di is the out-degree
and the edges exiting from i go to i + m(i, j) for each j. Thus m(i, j) is an incremental positive or negative value,
relative to i. Naturally the bandwidth of G is an upper bound on their absolute value. Now for any complexity
function f(n) ≤ log n define the language GAP (f) to encode the family of graphs G such that if the vertices are
{1, . . . , n} then the bandwith of G is at most f(n), and such that there is a path from node 1 to node n. Then
it can be shown that GAP (f) is complete for NSPACE(f) under ≤Lm-reducibility. We may further weaken the
reducibility so that the transducers use only f(n) space, provided we encode the languages even more compactly:
omit the first number i in the list (i, m(i, 1), . . . , m(i, di)), and so i is implicit from the order of occurrence of its
list.

5.3 Complete Problems for P

The P -complete problems are important because of an interpretation that such problems are “inherently sequen-
tial”. This terminology needs explanation: just as P is viewed as the feasible time class (in the fundamental
mode), the subset of P which can be solved in poly-logarithmic time by parallel computers are considered to be
“parallelizable”. Showing that a problem is P -hard is therefore evidence that the problem is not parallelization
(or, inherently sequential). For further information about P -complete problems, we refer to [13].

5.3.1 Unit Resolution

We begin by showing a problem based on the resolution proof system to be P -complete. This is actually part of a
theme started in the previous section where we show that 2UNSAT is NLOG-complete problem. That is, we will
show a family of related problems arising from theorem proving, each of which is complete for some class in our
canonical. The famous SAT problem (chapter 3) is part of this family.

The basic concept of resolution proofs is simple: Two clauses C and C′ are resolvable if there is a literal u such
that u ∈ C and ū ∈ C′. Their resolvent is the clause C′′ = (C ∪C′)−{u, ū}. This rule for obtaining the resolvent is
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called the resolution rule (also known as annihilation rule or cut rule), with the literals u and ū being annihilated.
A unit clause is a clause with one literal. If either C or C′ is a unit clause, we say their resolvent C′′ is a unit
resolvent of C and C′. Note that if both C and C′ are unit clauses then their resolvent is the empty clause which
we denote by (not to be confused with the blank symbol, but the context should make it clear). By definition,
the empty clause is unsatisfiable. Let F be a CNF formula in clause form. A deduction (resp. unit deduction) of a
clause Cm from F is a sequence of clauses C1, . . . , Cm where each Ci is either in F or is the resolvent (resp. unit
resolvent) of two previous clauses in the sequence. The fundamental result on resolution is the following:

Resolution Theorem. F is unsatisfiable iff there is a deduction of from F .

The proof is an exercise; we do not use the theorem in the following. The following P -complete problem was
introduced by Jones and Laaser [20]:

Unit Resolution for 3CNF formulas (3UNIT)

Given: A 3CNF formula F .

Property: can be deduced from F using unit deduction.

We first show that 3UNIT is in P . Consider the following algorithm that takes as input a CNF formula F . If
∈ F then we accept at once. So assume otherwise. The algorithm maintains three sets of clauses G, G′ and H .

Initially, G′ is empty, G consists of all the unit clauses in F and H is F −G. In general, the sets G, G′ will consist
of unit clauses only; hence we may sometimes conveniently regard them as a set of literals. Also G ∩ G′ = ∅. The
algorithm executes the following loop:

While G6=∅ do

1. Choose any u ∈ G. Let G := G − {u}; G′ := G′ ∪ {u}.

2. For each clause C in H : if {u} and C are resolvable, and their resolvent C′ = C − {ū} is not in
G ∪ G′ ∪ H then add C′ to G or to H according to whether C′ is a unit clause or not. If ∈ H ,
accept; else reject.

It is important to realize that in line 2, the clause C is not removed from H (the Exercises explain why this is
necessary for the correctness of resolution). Also, we could have accepted within the loop once the empty clause is
generated, but for the sake of the proof below, we do not do this.

Correctness: We must show that the algorithm accepts iff F ∈ 3UNIT. Note that new clauses are generated
only in line 3 using the unit resolution rule; also, all clauses in G′ ∪G∪H come from the original set F or are unit
deducible from F . Hence if the algorithm accepts in line 2 then F is in 3UNIT. To prove the converse, suppose

C0, C1, . . . , Cm (where Cm = ) (2)

is a unit deduction of . We will show that the algorithm accepts. It is crucial to note that step 3 is specified in
such a way that each literal u is put into G at most once. Thus the number of iterations in the while-loop is at
most the number of literals appearing in the formula F . Let Gi (i = 0, 1, . . .) denote the set of clauses in G at the
end of the ith iteration of the loop. G′

i and Hi are similarly defined, and let Ei := Gi∪G′
i∪Hi. Clearly, Ei ⊆ Ei+1.

CLAIM: each Cj in the unit deduction (2) belongs to some Ei. In particular Cm = appears in some Ei, so our
algorithm accepts.

Complexity: As noted above, the number iterations of the while-loop is linear in the size of F . It therefore
suffices to show that each iteration takes polynomial time. Note that if a clause of F has k literals, then the clause
can potentially spawn 2k subclauses. But since F is a 3CNF formula, the total number of new clauses is only
linear in the number of original clauses. This in turn bounds the time to do each iteration. Thus the time of the
algorithm for 3UNIT is polynomial.

We now show that 3UNIT is P -hard. The proof is similar to that for Cook’s theorem. Let M accepts in
deterministic time nk for some k. Again we may assume that M is a simple Turing acceptor. We may further
assume that M never moves left of its original head position (in cell 1) and that if it accepts at all then it returns
to cell 1 and writes a special symbol a0 there just before accepting. For any input x, we describe a 3CNF formula
f(x) such that x is accepted by M iff f(x) ∈ 3UNIT. Let

C0, C1, . . . , Cnk (3)

be the computation path of M on input x. As usual, if M halted before nk steps we assume the last configuration is
repeated in this path, and if M uses more than nk steps, we will prematurely truncate the sequence. It is convenient
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to encode a configuration as a word of length m := 1 + 2nk in Σ∗ · [Q × Σ] · Σ∗ where Σ are the tape symbols
(including ⊔) of M and Q are the states and [Q × Σ] a new set of symbols of the form [q, a] where q ∈ Q, a ∈ Σ.
Thus a word of the form w1[q, a]w2 (where wi ∈ Σ∗) represents the configuration whose tape contents (flanked
by blanks as needed) are w1aw2 with the machine scanning symbol a in state q. We next introduce the Boolean
variables P a

i,t that stands for the following proposition:

“symbol a is in the ith cell of configuration Ct”.

A similar meaning is accorded the Boolean variable P
[q,a]
i,t where [q, a] ∈ [Q × Σ]. Let x = a1a2 · · ·an where each

aj ∈ Σ. The formula f(x) is a conjunction of the form F0∧F1∧ · · · ∧Fm+1. The last formula Fm+1 is special and is
simply given by:

Fm+1 : ¬P
[qa,a0]
1,m

The formula Ft (t = 0, . . . , m) is a 3CNF formula asserting that conditions that the above variables must satisfy if
they encode the configuration Ct in (3). Thus the first configuration C0 is

F0 : P
[q0,a1]
1,0 ∧P a2

2,0∧ · · · ∧P an

n,0∧

(

m
∧

i=n+1

Pi,0

)

We indicate the form of the remaining formulas. Let

∂ : (Σ ∪ [Q × Σ])3 → Σ ∪ [Q × Σ]

be the function that encodes the transition table of M. Roughly, ∂(a, b, c) = b′ means that the symbol b in a cell
whose left and right neighbors are a and c respectively will turn to b′ in the next step (with understanding that
the ‘symbol’ in a cell could mean a pair of the form [q, a′]). For example, suppose the M has the instruction that
says “on scanning symbol b in state q, write the symbol b′, move the head to the right and enter the state q′”. We
would then have the following:

∂([q, b], a, c) = [q′, a], ∂(a, [q, b], c) = b′, ∂(a, c, [q, b]) = c.

Also, clearly ∂(a, b, c) = b for all a, b, c in Σ. Now it is easy to understand the following definition of Ft (t = 1, . . . , m):

Ft :
∧

i





∧

a,b,c

(¬P a
i−1,t−1∨¬P b

i,t−1∨¬P c
i+1,t−1∨P

∂(a,b,c)
i,t )



 .

We now claim:

(i) The unit clause P a
i,t is unit deducible from f(x) = F1∧ · · · ∧Fm iff a is the symbol or [state, symbol]-pair at

cell i of Ct.

(ii) Furthermore, no other unit clause can be deduced.

The claim is clearly true for initial configuration, t = 0. The result can be established by a straightforward
proof using induction on t; we leave this to the reader.

We now show that x is accepted by M iff is unit deducible from f(x). Claim (i) shows that x is accepted iff

P
[qa,a0]
1,m is deducible. But this clause can be unit resolved with Fm+1 to obtain . Next claim (ii) easily implies that

there are no other ways to deduce . This shows the correctness of the described formula. It is easy to construct
f(x) in logarithmic space.

Note that each of the clauses in the proof uses at most 4 literals. Using techniques similar to that in proving
3SAT NP-complete, we can replace these by clauses with exactly 3 literals per clause.

5.3.2 Path Systems

We now consider a problem that is the first one to be proved complete for P . It was invented by Cook [8] who
formulated it as an abstraction of the proof method of both Savitch’s theorem (chapter 2) as well as a well-known
theorem that context-free languages are in DSPACE(log2 n) (see Exercises for this connection.)

Definition. A path system is a quadruple 〈n, R, S, T 〉 where n > 0 is an integer, R ⊆ [1..n] × [1..n] × [1..n] is a
relation over [1..n], and S, T are subsets of [1..n]. Each integer u ∈ [1..n] represents a ‘node’ and node u is said to
be accessible if u ∈ T or if there exist accessible nodes v, w such that 〈u, v, w〉 is in R. The path system is solvable
if some node in S is accessible.

Path System Accessibility (PSA)



5.3. COMPLETE PROBLEMS FOR P 213

Given: A path system 〈n, R, S, T 〉.

Property: The system is solvable.

We first claim that PSA is in P : consider the Turing acceptor that begins by computing the sets T0, T1, . . .

of nodes in stages. In the initial stage, it computes T0 = T . In stage i ≥ 1, it computes Ti consisting of those
new nodes that are accessible from Ti−1. It stops when no more new nodes are accessible. Clearly there are
at most n stages and each stage takes time O(n3). So the whole algorithm is O(n4). Note that the size of the
input can be much smaller than n (in fact as small as O(log n)) if not all the integers in [1..n] occur in R, S, T .
Hence the algorithm could be exponential in the input size. However, with a more careful implementation (cf. the
demonstration that 2UNSAT is in NLOG), we can easily ensure that the time is O(m4) where m ≤ n is the number
of nodes that actually occur in the path system description. Hence our algorithm is polynomial time.

We now show that PSA is P -hard by reducing 3UNIT to it. Given a 3CNF formula F , let X be the set of all
clauses that are subsets of clauses of F . We describe the corresponding path system 〈n, R, S, T 〉. Let n = |X | and
let each integer i ∈ [1..n] represent a clause of X . R consists of those triples 〈i, j, k〉 of clauses in X such that i is
the unit resolvent of j and k. Let the set T be equal to F ; let S consist of just the empty clause . It is easy to
see that 〈n, R, S, T 〉 is solvable if and only if F is in 3UNIT. This completes our proof that PSA is P -complete.

5.3.3 Non-associative Generator Problem

The next problem is closely related to the NLOG-complete problem AGEN. Basically, the AGEN turns into a
P -complete problem when we remove the associative property. We now use ⊗ to denote the non-associative binary
operation.

Generator Problem (GEN)

Given: Given 〈n, T, S, w〉 as in AGEN with T representing the multiplication
table of a binary operation ⊗ over [1..n].

Property: w is in the ⊗-closure of S.

The proof that GEN is in P is straightforward. To show that it is P -hard we can reduce 3UNIT to it, using a
proof very similar to that for the PSA problem.

5.3.4 Other Problems

The following problem is due to Ladner [21]. Boolean circuits (which will be systematically treated in chapter 10)
are directed acyclic graphs such that each node has in-degree of zero or two. The nodes of indegree zero are called
input nodes and these are labeled by the integers 1, 2, . . . , n if there are n ≥ 0 input nodes. The other nodes, called
gates, are each labeled by some two-variable Boolean function. If these Boolean functions are logical-and’s (∧) and
logical-or’s (∨) only, then the circuit is monotone. An assignment I to C is a function I : [1..n] → {0, 1}. In a
natural way, for each node v of G, we can inductively define a Boolean value valC(v, I).

Monotone Circuit Value Problem (MCVP)

Given: A monotone Boolean circuit C with a distinguished node u, and an as-
signment I to the input variables of C.

Property: valC(u, I) = 1.

Ladner originally proved the P -completeness of the (general) circuit value problem (CVP) in which the circuit
is not restricted to be monotone; the refinement to monotone circuits is due to Goldschlager [11]. Goldschlager
also shows that CVP (not MCVP) remains P -complete when we restrict the underlying graph of the circuits to
be planar. Closely related to MCVP is this GAP-like problem:

AND-OR Graph Accessibility Problem (AND-OR-GAP)

Given: A directed acyclic graph G on vertices [1..n], where each vertex is labeled
by either ‘AND’ or ‘OR’.

Property: Node n is accessible from node 1. Here a node i is accessible from another
set S of nodes if either i ∈ S (basis case) or else i is an AND-node (resp.
OR-node) and all (resp. some) of the predecessors of i are accessible from
S (recursive case).
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Another P -complete problem is:

Rational Linear Programming problem (RLP)

Given: An m × n matrix A and an m-vector b where the entries of A,b are
rational numbers.

Property: There is a rational n-vector x such that Ax ≥ b.

The fact that RLP is in P is a result of Khachian as noted in chapter 3; that the problem is P -hard is due
to Dobkin, Reiss and Lipton[9]. The RLP problem has a famous history because of its connection to the simplex
method and because it was originally belonged to the few problems known to be in NP ∩ co-NP that is neither
known to be in P nor NP-complete.

Goldschlager, Shaw and Staples [12] have shown that a formulation of the well-known problem Maximum Flow
in graphs is P -complete.

Adachi, Iwata and Kasai [1] have defined natural problems that are complete for DTIME(nk) for each k ≥ 1.

5.4 Complete Problems for PSPACE

5.4.1 Word Problems

A rich source of natural problems with high complexity arises in the study of extended regular expressions. Meyer
and Stockmeyer [23, 33, 32] and Hunt [18] were among the first to exploit such results. Given an alphabet Σ, the
set of extended regular expressions over Σ is a recursively defined set of strings over the alphabet Σ together with
the following 9 additional symbols

λ, +, ·,∩, 2, ∗,¬, ), (

which we assume are not in Σ. Each symbol in Σ ∪ {λ} will be called an atom. An extended regular expression
(over Σ) is either an atom or recursively has one of the following forms:

(α + β), (α · β), (α ∩ β), (α)2, (α)∗,¬(α)

where α and β are extended regular expressions. Each expression α over Σ denotes a language (Σ, L(α)) defined
as follows: if α is the atom a ∈ Σ ∪ {λ} then L(α) is the language consisting of the single word4 a; otherwise

Union: L(α + β) = L(α) ∪ L(β)

Concatenation: L(α · β) = L(α) · L(β)

Intersection: L(α ∩ β) = L(α) ∩ L(β)

Squaring: L(α2) = L(α) · L(α)

Kleene-star: L(α∗) = L(α)∗ =
⋃

i≥0

L(α)i

Complement: L(¬α) = Σ∗ − L(α)

Note that if α is regarded as an expression over a different alphabet Γ (provided all the atoms appearing in the
expression α are in Γ) it would denote a different language; in practice, the context will make clear which alphabet
is meant or else the specific alphabet is irrelevant to the discussion.

Notations: We often omit the symbol for concatenation (writing ‘αβ’ for ‘α · β’). Noting that all our binary
operators are associative, and assuming some precedence of operators (unary operators precede binary ones and
concatenation precedes union and intersection) we can omit some of the parentheses that might otherwise be
needed. If S = {a1, . . . , am} is a set of atoms, we often use the meta-symbol S as a shorthand for the expression
a1 + a2 + · · ·+ am. If α is any expression and k ≥ 1 (k may be an integer expression), then we write αk as a short
hand for concatenating k copies of α (note the possible confusion of this notation with applications of the squaring
operator if k written as a power of 2; the context will clarify which is meant).

4We deliberately abuse notation here, by confusing the symbol ‘λ’ in extended regular expressions with the usual notation for the
empty word; of course it comes to no harm since λ just stands for itself in this sense. Also, we really ought to use ‘∪ ’ for union for
consistency with ‘∩’ for intersection; but it seems that the asymmetric choice has better visual aesthetics.
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The size |α| of an extended regular expression α is defined recursively as follows: if α is an atom then |α| = 1;
otherwise

|α + β| = |α · β| = |α ∩ β| = 1 + |α| + |β|;

and

|α2| = |α∗| = |¬α| = 1 + |α|.

Example 1. The following expression (of size 22) denotes the set of those words over Σ = {a, b, c} of length
between 4 and 8 beginning with a but not terminating with b:

a(a + b + c)2((a + b + c + λ)2)2(a + c)

Let Ω be a subset of the extended regular operators {+, ·,∩, 2, ∗,¬}. Then a Ω-expression is a extended regular
expression that uses only the operators in Ω. Then the following word problems are defined:

Inequality: INEQ(Σ, Ω) = {(α, β) :
α and β are Ω-expressions over Σ and L(α) 6= L(β}

Fullness: FULL(Σ, Ω) = {α : α is an Ω-expression and L(α) = Σ∗}

Emptiness: EMPTY(Σ, Ω) = {α : α is an Ω-expression and L(α) = ∅}

Membership: MEMBER(Σ, Ω) = {(x, α) : α is an Ω-expression and x ∈ L(α)}

In the presence of negation, ¬ ∈ Ω, it is evident that the fullness and emptiness problems are equivalent. Further-
more, the complement of the emptiness and fullness problems are special cases of the inequality problem whenever
there is an Ω-expression denoting ∅ or Σ∗ (resp.). We will mainly be showing the complexity of inequality and
fullness problems in this and the next section. If Σ is {0, 1} we just denote these problems by MEMBER(Ω),
INEQ(Ω), etc. If Ω = {ω1, . . . , ωk} then we also write INEQ(ω1, . . . , ωk), FULL(ω1, . . . , ωk), etc., instead of
INEQ({ω1, . . . , ωk}), FULL({ω1, . . . , ωk}), etc. . We begin by showing that the complexity of these problems does
not really depend on Σ provided |Σ| ≥ 2:

Lemma 6. Let Ω be any set of operators and |Σ| ≥ 2.

(i) If Ω contains the concatenation operator then INEQ(Σ, Ω) ≡1FST
m INEQ(Ω).

(ii) If Ω contains {+, ·, ∗} then FULL(Σ, Ω) ≡1FST
m FULL(Ω).

Proof. (i) Recall the ≤1FST
m -reducibility from chapter 4 (section 1). It is immediate that INEQ(Ω) ≤1FST

m

INEQ(Σ, Ω). Conversely, to show INEQ(Σ, Ω) ≤1FST
m INEQ(Ω), we use the usual coding h : Σ → {0, 1}∗ of a

general alphabet by binary strings over {0, 1} of fixed length k (for some k ≥ 2). Then each Ω-expression α

over Σ is systematically transformed to an Ω-expression H(α) over {0, 1} simply by replacing each occurrence in
α of the atom a ∈ Σ by (the {·}-expression denoting) h(a). It is also easy to see that (α, β) ∈ INEQ(Σ, Ω) iff
(H(α), H(β)) ∈ INEQ(Ω).

(ii) Again, one direction is trivial. To show FULL(Σ, g) ≤1FST
m FULL(Ω), let h be the coding in (i) and let

C = {h(a) : a ∈ Σ} ∪ {λ} ⊆ {0, 1}∗. Let α be an Ω-expression over Σ, and let H(α) be its transformation as in
(i). Clearly L(H(α)) ⊆ C∗, with equality iff L(α) = Σ∗. If we can write an Ω-expression β over {0, 1} such that
L(β) = Σ∗ − C∗ then we see that

L(α) = Σ∗ ⇐⇒ L(H(α) + β) = {0, 1}∗.

It is easy to construct such an expression:

β : ((0 + 1)k)∗ · ((0 + 1 + λ)k − C) · ((0 + 1)k)∗

where k is the length of the codes h(a), a ∈ Σ, and the subexpression ‘((0 + 1 + λ)k −C)’ is really a shorthand for
an explicit enumeration of the words in the indicated set. These expressions involve only {+, ·, ∗}. Q.E.D.

Although it is convenient when proving upper bounds to assume a binary alphabet, it is easier to use the general
alphabet Σ when proving lower bounds (i.e. hardness results). Below we shall switch between these two versions
of the problem without warning.
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5.4.2 Fullness Problem for Regular Expressions

Our first result is from Stockmeyer [32]:

Theorem 7. FULL(+, ·, ∗) is complete for the class LBA = NSPACE (n).

Note that the {+, ·, ∗}-expressions are just the standard regular expressions of finite automata theory. In the
following proof, we shall often exploit the fact that NSPACE (n) is closed under complementation. By lemma 2,
we conclude:

The fullness problem for regular languages is complete for PSPACE.

Recall that a finite automaton is a 0-tape Turing acceptor with a 1-way input tape that runs in real-time
(n + 1 steps); the size of the automaton is the number of tuples in its transition table. Clearly the size is at most
|Q|2(|Σ|+ 1) where Q is the set of states and Σ the input alphabet (the ‘+1’ comes from the need to consider rules
for the blank symbol). To show that the fullness problem for regular expressions is in NSPACE(n), we first show:

Lemma 8. For any regular expression α over Σ, we can construct in polynomial time and linear space a nonde-
terministic finite automaton that accepts the language (Σ, L(α)); furthermore the automaton has ≤ max{4, |α|}
states.

Proof. We construct the transition table δα corresponding to α. Denote the start and accepting states for δα

by qα0 and qαa . The transition table of a nondeterministic finite automaton can be represented as a set of triples of
the form 〈current-state, symbol, next-state〉. Furthermore, we assume that for any tuple 〈q, b, q′〉 in δα,

q′ = qαa =⇒ b = .

In other words, all transitions into the accept state occur after the first blank symbol is read. A state q is called
penultimate if there is a transition from q to the accept state qαa . The table δα is defined by induction on the size
of α:

(1) Suppose α is an atom b: if b = ǫ then the table δα consists of the single triple:

〈qα0 , , qαa 〉.

If b ∈ Σ then the table consists of two triples:

〈qα0 , b, q〉, 〈q, , qαa 〉

for some state q.

(2) If α is β + γ then first form the union δβ ∪ δγ . We then replace (in the triples) the start states of the original
automata for β and γ with the start state for α, and do the same for the accept states.

(3) If α is β · γ then we again form the union δβ ∪ δγ , and do the following: if q is a penultimate state of δβ and
δγ contains the triple 〈qγ0 , b, q′〉 then add the triple 〈q, b, q′〉 to δα. This ensures that after the automaton has
seen a word in L(β), it can continue to try to recognize a word in L(γ). Also replace the start state of δβ by
the start state qα0 and the accept state of δγ by the accept state qαa . Triples containing the accept state of δβ

and the start state of δγ are deleted.

(4) If α is β∗ then we first take the table for β and replace its start and accept states with that for α. If q is

a penultimate state of δβ and 〈qβ0 , b, q′〉 ∈ δβ then add the triple 〈q, b, q′〉 to δα (this ensures that that the
automaton accepts arbitrarily many copies of words in L(β)). Finally, add the new triple 〈qα0 , , qαa 〉 (this
allows the empty string to be accepted). Thus δα has the same number of states as δβ

The reader can easily show that the constructed transition table δα accepts L(α). The number of states is at
most |α| when |α| ≥ 4. A case analysis shows that when |α| ≤ 3, δα has at most 4 states. The automaton δα can
be constructed in linear space and polynomial time from α. Q.E.D.

We now show that FULL(+, ·, ∗) is in co-NSPACE (n). It is enough to show how to accept the complement of
the language FULL(+, ·, ∗) in nondeterministic linear space. On input a regular expression α, we want to accept iff
L(α) 6= {0, 1}∗. First we construct δα and then try to guess a word x 6∈ L(α): nondeterministically guess successive
symbols of x and simulate all computation paths of the automaton on the guessed symbol. More precise, we guess
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successive symbols of x and keep track of the set S of all the states that can be reached by the automaton δα after
reading the symbols guessed to this point. It is easy to see how to update S with each new guess, and since S has at
most 2|α| states, linear space suffices. When we are finished with guessing x, we make the next input symbol be the
blank symbol ⊔, and update S for the last time. We accept if and only if S does not contain the accept state. To
show the correctness of this construction, we see that (i) if there exists such an x then there exists an accepting path,
and (ii) if there does not exist such an x then no path is accepting. This proves FULL(+, ·, ∗) ∈ co-NSPACE (n).

To show that the fullness problem is co-NSPACE (n)-hard, let M be a nondeterministic simple Turing acceptor
accepting in space n. We may assume that M never moves left of the cell 1 and that M enters the accepting state
immediately after writing a special symbol a0 in cell 1. For each input x of M we will construct a regular expression
E(x) over some alphabet ∆ (see below) such that x 6∈ L(M) iff L(E(x)) = ∆∗. Let t(n) = OM(1)n be an upper
bound on the running time of M on inputs of length n = |x|. Let

C0 ⊢ C1 ⊢ · · · ⊢ Cm (m = t(n))

be a computation path on input x where as usual we assume that the last configuration is repeated as often as
necessary if M halts in less that m steps. Let I = {1, . . . , |δ(M)|} where δ(M) is the transition table of M. We
assume that each Ci is encoded as a word wi of length n + 2 in

Σ∗ · [Q × Σ × I] · Σ∗

where Σ and Q are the set of symbols and states (respectively) of M and [Q × Σ × I] is the set of symbols of the
form [q, a, i], q ∈ Q, a ∈ Σ, i ∈ I. Note that Ci uses use n + 2 rather than n symbols because we incorporate the
adjacent blank symbols on either side of the input into the initial configuration (and thereafter assume the machine
do not to exceed these squares). Intuitively, the symbol [q, a, i] says that the current tape head is scanning symbol
a in state q and the next instruction to be executed is the ith instruction from δ(M). Therefore computation path
can be encoded as a word

π(x) = #w0#w1# · · ·#wm#

where # is some new symbol not in Σ ∪ [Q × Σ × I].
Notation. In the following, let Γ = Σ ∪ [Q × Σ × I] and let ∆ = Γ ∪ {#}. Thus π(x) is a word over ∆.
The regular expression E(x) will represent a language over ∆. In fact E(x) will have the form E1 +E2+ · · ·+E6

where the Ei’s are next described.

(a) E1 denotes the set of words over ∆ that “does not begin with an #, does not end with a #, or has at most
one #”. Precisely,

E1 = Γ∗ + Γ∗ · # · Γ∗ + Γ · ∆∗ + ∆∗ · Γ.

Since + takes precedence over ·, this expression is unambiguous. As mentioned, we write Γ, ∆, etc., as in the
shorthand where a set of symbols X stands for the regular expression x1 + · · ·+ xk if the distinct symbols in
X are x1, . . . , xk. Thus, each occurrence of Γ∗ in E1 represents a subexpression of size 2|Γ|.

The remaining regular expressions in E(x) will consider strings that are not in L(E1). Such strings necessarily
have the form

y = #x1#x2# · · ·#xk# (4)

for some k ≥ 1 and xi ∈ Γ∗. In our informal description of the expressions below, we will be refering to (4).

(b) “Some xi in (4) does not have a unique symbol in [Q × Σ × I]”

E2 = ∆∗ · # · Σ∗ · # · ∆∗ + ∆∗ · # · Γ∗ · [Q × Σ × I] · Γ∗ · [Q × Σ × I] · Γ∗ · # · ∆∗.

(c) “Some xi has length different from n + 2”

E3 = ∆∗ · # · Γn+3 · Γ∗ · # · ∆∗ + ∆∗ · # · (Γ ∪ {λ})n+1 · # · ∆∗.

(d) “x1 does not represent the initial configuration on input x = a1 · · · an”
Note that the initial configuration is represented by one of the forms

⊔[q0, a1, i]a2 · · · an⊔

where i ∈ I. Let [q, a, I] denotes the set {[q, a, i] : i ∈ I}. For any subset S of ∆, we use the shorthand ‘S̄’
for the regular expression denoting the set ∆− S. If S = {a}, we simply write ā for ∆− {a}. We then have:

E4 = # · (⊔ + ([q0, a1, I] + [q0, a1, I](ā2 + a2(ā3 + · · · + an(⊔ + Γ∗) · · · )))) · ∆∗.
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(e) “There are no accepting configurations in y”
That is, none of the symbols of [qa, a0, I] appears in y. Here qa is the accepting state and a0 the special
symbol that is written when the machine halts. Here we assume that the transition table for M contains
trivial transitions from the accept state in which ‘nothing changes’ (the state, scanned symbol and head
position are unchanged).

E5 = (∆ − [qa, a0, I])∗.

(f) “Some transition, from xi to xi+1, is not legal”
Recall the function ∂ : Γ×Γ×Γ → Γ defined in the proof that 3UNIT is P -hard. There, the interpretation of
∂(a, b, c) = b′ is that a cell containing b with neighbors a and c will change its contents to b′ in the next step.
For the present proof, we can easily modify the function ∂ to account for the case where a or c might be the
new symbol # and where a, b, c could be an element of [Q×Σ× I]. Furthermore, since M is nondeterministic,
∂(a, b, c) is now a subset (possibly empty) of ∆.

For instance, if b has the form [q, b′, i], the ith instruction is indeed executable in state q scanning b′, and b′

is changed to b′′ and the tape head moves right. Then we put b′′ in ∂(a, b, c). Moreover, if the ith instruction
changes state q to q′, then ∂(b, c, d) (for any d) contains [q′, c, j] for each j ∈ I. Note that we are slightly
wasteful here in allowing all possible j’s to appear in the next head position, but it does not matter.

If the ith instruction is not executable, we simply set ∂(a, b, c) = ∅. Thus E6 has the form

E6 = F1 + F2 + · · ·

where each Fi corresponds to a triple of symbols in ∆3. If Fi corresponds to the triple (a, b, c) ∈ ∆3 then

Fi = ∆∗ · a · b · c · ∆n+1 · ∂(a, b, c) · ∆∗.

We have now completely described E(x). A moment’s reflection will convince the reader that L(E(x)) = ∆∗

iff x is rejected by M; thus E(x) is in FULL(∆, {+, ·, ∗}) iff x 6∈ L(M). (Exercise: why do we need the explicit
introduction of the variable i in [q, a, i]?) The size of E(x) is given by

|E1| + · · · + |E6| + 5 = O(1) + O(1) + O(n) + O(n) + O(1) + O(n)

which is O(n). It is easy to verify that E(x) can be computed from x in logarithmic space. Thus we have shown
that every language in co-NSPACE (n) is reducible to FULL(∆, {+, ·, ∗}) and hence (by lemma 6(ii)) reducible to
FULL(+, ·, ∗).

5.4.3 Complexity of Games

Another rich source of problems with high complexity is the area of combinatorial games. One type of game can
be defined as follows.

Definition. A two-person game is a quintuple

〈I0, I1, p0,R0,R1〉

where I0, I1 are disjoint sets of positions (for player 0 and player 1, respectively), p0 ∈ I0 is a distinguished start
position, R0 ⊆ I0 × I1 and R1 ⊆ I1 × I0.

A pair 〈p, p′〉 in R0 is called a move for player 0; we say that there is a move from p to p′. The analogous
definition holds for player 1. We call p an end position for player b (b = 0, 1) if p ∈ Ib and if there are no moves
from p. A match is a sequence µ = (p0, p1, p2, . . .) of positions beginning with the start position such that 〈pi, pi+1〉
is a move for all i ≥ 0 and either the sequence is finite with the last position an end position, or else the sequence
is infinite. For b = 0, 1, we say that player b loses a match µ if the sequence µ is finite and the last position in µ

is an end position for player b; in that case player 1 − b wins the match. In other words, the player whose turn it
is to play loses if he has no move. The match is a draw if it is infinite. A position p is a forced win for Player b if
(basis case) p is an end position for player 1 − b, or else (inductive case):

(a) either p ∈ Ib and there is a move from p to a forced win for player b

(b) or p ∈ I1−b and for every p′ ∈ Ib, if there is a move from p to p′ then p′ is a forced win for player b.
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An example of such a game is by given Even and Tarjan [10]: Let G be a given undirected graph on the vertex
set [1..n] for some n ≥ 2. One player (‘short’) tries to construct a path from node 1 to node n and the other player
(‘cut’) attempts to frustrate this goal by constructing an (1, n)-antipath (i.e. a set of nodes such that every path
from node 1 to n must pass through the set). The game proceeds by the players alternately picking nodes from the
set [1..n]: the first player to achieve his goal wins.

More formally: A position is a pair 〈S0, S1〉 where S0 and S1 are disjoint sets of vertices and S0 ∪ S1 ⊆
{2, 3, . . . , n − 1}. If |S0 ∪ S1| is even then it is a position of player 0, else of player 1. The start position is 〈∅, ∅〉.
An end position is 〈S0, S1〉 such that either

(a) it is a position for player 1 and there is a path in G from node 1 to node n passing only through the vertices
in S0, or

(b) it is a position for player 0 and S1 is an (1, n)-antipath.

Note that (a) and (b) represents, respectively, a winning position for player 0 (short) and player 1 (cut). Also
if S0 ∪ S1 = {2, 3, . . . , n − 1} then p must be an end position. Hence there are no draws in this game. Suppose
p = 〈S0, S1〉 is a position for player b but p is not an end position. Then there is a move from p to 〈S′

0, S
′
1〉 iff for

some v ∈ {2, 3, . . . , n − 1} − (S0 ∪ S1), such that S′
1−b = S1−b and S′

b = Sb ∪ {v}. Thus no node is picked twice.

Generalized Hex (HEX)

Given: An undirected graph G over [1..n], n ≥ 2.

Property: Does player 0 have a forced win from the start position?

Remark: This game is also called Shannon switching game on vertices. For the analogous game where moves
correspond to choosing edges the optimum strategy is considerably easier and can be determined in polynomial
time.

Theorem 9. HEX is PSPACE-complete.

The problem is in PSPACE : The start position p0 is a forced win for player 0 if and only if there exists some
tree T with ≤ n − 1 levels with the following properties:

(a) The root is p0 and counts as level 0. Nodes at even levels are positions of player 0 and nodes at odd levels
are positions of player 1.

(b) If there is an edge from a node p to a child node q then there is a move from p to q. If p is a position of
player 0 then p has exactly one child. If p is a position of player 1 then the set of children of p represents all
possible moves from position p.

The condition that positions for player 0 has exactly one child implies that such positions cannot be leaves of
the tree; thus all leaves are at odd levels. Some such tree T can be searched nondeterministically using a depth-first
algorithm. The search is fairly standard – basically, we need to keep a stack for the path from the root to the node
currently visited. This stack has depth n, so if each node of the path requires linear storage, we have an algorithm
using quadratic space. (It is not hard to see that linear space is sufficient.)

We postpone the proof that HEX is PSPACE -hard until chapter 9 since it is easy to reduce HEX to the problem
QBF (quantified Boolean formulas) that will be introduced there.

Schaefer [30] shows several other games that are complete for PSPACE . Orlin [25] and Papadimitriou [26] show
other methods of deriving natural PSPACE -complete problems.

5.5 Complete problems with exponential complexity

5.5.1 The power of squaring

The next two subsections prove two results of Meyer and Stockmeyer:

Theorem 10. FULL(+, ·, ∗, 2) is EXPS-complete.

Theorem 11. INEQ(+, ·, 2) is NEXPT-complete.
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Observe that the first result involves adding the squaring operator to the regular operators; in the second result
we replace the Kleene-star operator by the squaring operator. The hardness proofs in both cases come from making
simple modifications to the proof for FULL(+, ·, ∗) in the last section.5

In the proof for FULL(+, ·, ∗), the expression E(x) contains subexpressions of the form Sk where S is one of
Γ, (Γ ∪ {α}), ∆, and where k ∈ {n − 1, n, n + 1}. Sets of the form Sk are called rulers (of length k) because they
measure the distance between two corresponding (or neighboring) symbols in consecutive configurations. The crux
of the present proofs lies in the ability to replace such expressions by squaring expressions of exponentially smaller
size. The following lemma makes this precise:

Lemma 12. Let Σ be an alphabet and k a positive integer.

(i) Then there is an {+, ·, 2}-expression α such that L(α) = Σk and |α| = OΣ(log k). Let [Σk]sq denote such
an expression α.

(ii) There is a log-space transformation from the binary representation of integer k to [Σk]sq.

Proof. (i) The proof uses a well-known trick: using induction on k, we have [Σ1]sq = Σ, [Σ2k]sq = ([Σk]sq)
2 and

[Σ2k+1]sq = Σ · [Σ2k]sq. (ii) We leave this as an exercise. Q.E.D.

5.5.2 An exponential space complete problem

We prove theorem 10. To show that FULL(+, ·, ∗, 2) is in EXPS , we observe that any expression α with squaring
can be expanded to an equivalent expression β without squaring (just replace each expression S2 by S ·S). Clearly
|β| ≤ 2|α|. But β is a regular expression and by the results of the previous section it can be accepted in space
O(|β|).

To show that the problem is EXPS -hard, suppose that M is a 2n space-bounded deterministic acceptor (other
exponential bounds for EXPS machines can be treated in much the same way as shown here for 2n). Indeed, to make
the following notations less cluttered, we may assume that M accepts in space 2n−1 − 1 (use space compression).
For each input x of length n, let

π(x) = #w0#w1# · · ·#wm# (where m = 22O(n)

)

represent a computation path of M where each configuration wi has length 2n. We show how to construct in
logarithmic space an expression Ê(x) such that Ê(x) ∈ FULL(+, ·, ∗, 2) iff x 6∈ L(M). (This is sufficient since
EXPS is closed under complementation.)

We need rulers of length k where k = 2n − δ, δ ∈ {−1, 0, +1}. We exploit the previous lemma to express
these rulers using squaring expressions of size O(n). Recall the regular expression E(x) in the proof for regular
expressions in the previous section; the ruler subexpressions in E(x) are of the form Sn+δ where δ ∈ {−1, 0, +1}.
The expression Ê(x) is obtained from E(x) by replacing each ruler subexpression Sn+δ in E(x) by the squaring

expression [S2n+δ ]sq defined in the previous lemma. The reader can easily confirm that Ê(x) has linear size.

5.5.3 An exponential time complete problem

We prove theorem 11. It is easy to see that the {+, ·, 2}-expressions can only denote finite languages. We leave it
as an exercise to show that the inequality problem for {+, ·, 2}-expressions is in NEXPT .

To show that the problem is NEXPT -hard, suppose that M is a 2n−2 time-bounded nondeterministic acceptor
(again, other time bounds for NEXPT machines can be treated in the same way). For each input x of length n, let

π(x) = #w0#w1# · · ·#wm# (where m = 2n)

represent a computation path of length 2n where each configuration wi has length 2n. Note: we want the wi’s to
represent the contents in tape cells whose absolute index (i.e., address) is −2n + 1 to 2n − 1, so each symbol of wi
has as many tracks as the number of tapes of M, and each track encodes two tape symbols, etc. We will describe
two {+, ·, 2}-expressions E1(x) and E2(x) corresponding to the input word x such that L(E1(x))6=L(E2(x)) iff x

is accepted by M. The expression E1(x) is very similar to Ê(x) in the above proof for EXPS . In fact, E1(x) is
obtained in two steps:

5An interesting remark is that the role of Kleene-star in transforming a problem complete for a time-class to a corresponding
space-class is linked to the ability of forming ‘transitive closure’. (Cf. [5])
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(1) Since the Kleene-star operator is no longer allowed, we replace each subexpression of the form S∗ (where

S = ∆, Γ, etc) with (S ∪ {λ})2
2n+1

. The reason for the exponent ‘2n + 1’ is because the string π(x) has

length (2n + 1)2 < 22n+1 for n ≥ 2. We write S2k

here just as a shorthand for k applications of the squaring

operation. Thus the size of S2k

is O(k). Since the original expression Ê(x) has a fixed number of Kleene-star
operators, the replacements maintain the linear size of the original expression.

(2) Let Ê1(x) be the expression after the replacements of (a). The reader may verify that Ê1(x) satisfies:

(i) Each word w in L(Ê1(x)) has length ≤ 5 · 22n+1 +4. (This maximum length is achieved by the modified
subexpression E2 in E(x).)

(ii) A word w ∈ ∆∗ of length ≤ 22n+1 is in L(Ê1(x)) if and only if it does not represent an accepting
computation of M on input x.

We obtain E1(x) as Ê1(x)+F where L(F ) denotes all words w of length 22n+1 < |w| ≤ 5 · 22n+1 +4. Clearly
F can be written as

[∆22n+1+1]sq · [(∆ + λ)2
2n+3+3]sq.

Our description of E1(x) is complete. Let E2(x) express the set of words of length at most 5 · 22n+1 + 4.
Therefore L(E1(x))6=L(E2(x)) iff x is accepted by M. Clearly E1(x) and E2(x) have linear size by our remarks.
This concludes the proof that INEQ(+, ·, 2) is NEXPT -complete.

5.5.4 Other Problems

The following chart summarizes the complexity of some word problems. Most of these results are from Meyer and
Stockmeyer. In the chart, we say a class K is a ‘lower bound’ for a problem L to mean that L is K-hard. It is
intuitively clear why such a result is regarded as a ‘lower bound’; in the next chapter we show that such a result
can be translated into explicit lower bounds on the complexity of any Turing machine accepting L.

Problem Lower Bound Upper Bound

INEQ(+, ·,¬) DSPACE (exp(log n)) DSPACE (exp(n))
FULL(+, ·, 2, ∗) EXPS EXPS
INEQ(+, ·, 2) NEXPT NEXPT
FULL(+, ·, ∗) NSPACE (n) NSPACE(n)
INEQ(+, ·) NP NP
INEQ({0}, {+, ·, 2,¬}) PSPACE PSPACE
INEQ({0}, {+, ·, ∗}) NP NP
INEQ({0}, {+, ·,¬}) P P

Notes:

(i) In row 1 we refer to the super-exponential function exp(n) defined in the appendix of chapter 4. The next
section considers a closely related result.

(ii) We have so far assumed an alphabet Σ of size at least two; the last three rows of this table refers to unary
alphabets.

(iii) With the exception of row 1, all the upper and lower bounds agree. In other words, each language L above
is K-complete for its class K.

(iv) The lower bounds for the languages FULL(+, ·, 2, ∗), INEQ(+, ·, 2) and
FULL(+, ·, ∗) have just been given in sections 4 and 5. It is easily observed that the many-one reduc-
tions in these proofs all use transformations t that are linearly bounded i.e. |t(x)| = O(|x|) for all x. This
fact will be used in chapter 6.

Other problems based on games that are complete for exponential time or space can be found in [6].
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5.6 Elementary Problems

5.6.1 The power of negation

Recall the super-exponential function exp(n, m) given in the appendix of chapter 4.

Definition 1. A language is called elementary (or, elementary recursive) if it can be accepted in deterministic
space exp(k, n) for some some integer k ≥ 0. Let ELEMENTARY denote the class of elementary languages.

The class of ‘elementary functions’ was defined by Kalmar [27]; the characterization of the corresponding class
of languages in terms of its space complexity (as in the preceding definition) is due to Ritchie [28]. Our goal in
this section is to show that if we admit the negation operator, then the complexity of the word problems we study
is enormously increased. More precisely, we are concerned with Ω-expressions where Ω = {+, ·, ∗,¬}; call these
the regular expressions with negation. We show that the fullness problem for such expressions are as hard as any
elementary problem. The first natural problem shown to be ELEMENTARY-hard is the decision problem for the
so-called weak monadic second order theory of one successor (WS1S), due to Meyer [22].6 Meyer showed that the
emptiness problem for the so-called gamma expressions (γ-expressions) can be efficiently reduced to WS1S. We
shall define gamma expressions7 as those that use the operators

·, +, ∗,¬, γ

where only the last operator, γ, needs explanation. γ is a unary operator such that for any γ-expression α, the
γ-expression γ(α) denotes the set

L(γ(α)) = {w : (∃x)[x ∈ L(α) and |w| = |x|]}.

Recall from the last section that the set Σk is called a ruler of length k; if we can give very succinct γ-expressions
to denote very long rulers then the appropriate word problem for the γ-expressions is proportionally hard to decide.
We now describe the ideas of Meyer for describing very long rulers by exploiting negation and γ. We introduce a
special Turing machine just for the purposes of our proofs.

Definition 2. A counting machine is a deterministic simple Turing machine Mc with tape alphabet {0, 1, &}, such
that on input &x&, x a binary word of length n ≥ 1, the tape head will remain within the left and right boundary
markers ‘&’ and will loop while performing the following repeatedly: treating the contents between the markers as
a binary number between 0 and 2n − 1, the machine successively increments the binary number modulo 2n.

One realization of such a machine has three states q0, q1 and q2, with the following deterministic transition
table:

δ 0 1 &

q0 − − (q1, &, +1)
q1 (q1, 0, +1) (q1, 1, +1) (q2, &,−1)
q2 (q1, 1, +1) (q2, 0,−1) (q0, &, 0)

The table rows and columns are labeled by states q and symbols b, respectively. An entry (q′, b′, d) in the q-row
and b-column says if the machine is in state q scanning symbol b, it next enters state q′, changes symbol b to b′

and moves its head in the direction indicated by d. The first row of this table for state q0 (the start state) is only
defined for the input symbol ‘&’. We assume that the input string has the form &x& where x ∈ {0, 1}∗ and the
machine is started in state q0 scanning the leftmost symbol ‘&’. The behavior of this machine is easily described:

(i) The machine in state q1 will move its head to the right until it encounters the right marker ‘&’; during this
movement, it does not modify the contents of the tape. When it sees ‘&’, it enters state q2 and reverses
direction.

(ii) The machine only enters state q2 while at the right marker in the way indicated in (i); in state q2, the machine
will move its head leftward until it finds the first 0 or, if there are no 0’s, until the left marker ‘&’. During
the leftward motion, it changes the 0’s into 1’s. If it finally encounters the symbol 1, it changes it to a 0,
reverses direction and enters state q1. If it encounters the symbol & instead, it does not change the symbol
but enters state q0 while remaining stationary. Entering state q0 indicates the start of a new cycle.

6This is the problem of deciding the validity of second order formulas where the second order variables vary over finite sets and the
only non-logical symbol is the successor relation.

7Meyer’s construction does not require negation or Kleene-star. We use these to simplify our illustration.
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Notation and convention. From now on, when we say ‘the counting machine’ we refer to the particular
machine just described. Let Σc be the alphabet for encoding computations of the counting machine, consisting of
the thirteen symbols:

#, &, 0, 1, [qj, 0], [qj, 1], [qj , &]

where j = 0, 1, 2. (The symbol # will not be used until later.) If the non-blank portion of the tape of a simple
Turing machine is a string of the form w1bw2 (where w1, w2 ∈ {&, 0, 1}∗ and b is the currently scanned symbol)
and the machine is in state q, we encode this configuration as C = w1[q, b]w2. Also, whenever we write C⊢C′ we
assume the lengths of the encodings of the C and C′ are equal: |C| = |C′|. We will assume that the machine is
normally started with tape contents &0n& for some n ≥ 1. As usual, we assume that the head of the machine is
initially scanning the leftmost symbol of the input; the string encoding this initial configuration is denoted by

init(n) = [q0, &]0n&.

Using the ideas of the last two sections, we can easily construct a regular expression αn that denotes all strings
w that fail to satisfy at least one of the following:

(a) w has the form
w = C0C1 · · ·Cm (for some m ≥ 0)

where the first and last symbol of each Ci is & or [qi, &].

(b) C0 is the configuration init(n).

(c) Ci is the successor of configuration Ci−1 (i = 1, . . . , m), and C0 is the successor of Cm.

(d) All the Ci’s are distinct.

Note that each Ci marks its own boundaries with the symbol &. The size of αn, properly expressed, would be
O(n). Observe that a word w satisfying (a)-(d) has length at least n2n since the number of configurations m is at
least 2n (O(2n) is also an upper bound on m – see Exercises). Since Mc is deterministic, the complement of L(αn)
denotes a single word. The availability of the γ operator then gives us the expression γ(¬αn) which denotes a ruler
of length ≥ n2n.

In order to recursively apply this idea to get longer rulers, we can further show:

(γ) There is a constant c > 0 such that, given an γ-expression ρn denoting a ruler of length n, we can efficiently
construct a γ-expression ρm (for some m ≥ 2n) denoting a ruler of length m such that |ρm| ≤ c|ρn|.

Hence, after k applications of this result, we can get a γ-expression of size O(ckn) denoting a ruler of length at least
exp(k, n). Using such an expression, we can then describe Turing machine computations where each configuration
in the path uses space exp(k, n). If the γ operator is not allowed, then it is less clear that the recursive construction
can be carried out. The remainder of this section shows how this can be done, as shown by Stockmeyer [32].

For our result below, the concept of negation-depth is important. If we view an expression as a tree whose
internal nodes are operands and leaves are atoms, then the negation-depth is the maximum number of negations
encountered along any path of this tree. More precisely, the negation-depth (or ¬-depth) of an extended regular
expression is recursively defined as follows: the ¬-depth of an atom is zero; the ¬-depth of

(α + β), (α · β), (α ∩ β)

is the maximum of the ¬-depths of α and β; the ¬-depth of

α2, α∗

is equal to the ¬-depth of α; finally the ¬-depth of ¬α is one plus the ¬-depth of α.

5.6.2 Homomorphism, rotation, smearing and padding

In the remainder of this section, ‘expression’ shall mean ‘regular expression with negation’ over a suitable alphabet
Σ that varies with the context. The present subsection discusses technical tools to facilitate our rendition of
Stockmeyer’s construction. The reader should recall the notion of letter-homomorphisms (appendix in chapter 2)
since it is the basis of many constructions.
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Let Σ1, Σ2 be alphabets. In the following it is convenient to distinguish two ways to form composite alphabets:
horizontal composition

[Σ1 × Σ2] = {[a, b] : a ∈ Σ1, b ∈ Σ2}

and vertical composition
[

Σ1

Σ2

]

= {

[

a

b

]

: a ∈ Σ1, b ∈ Σ2}.

A string in

[

Σ1

Σ2

]∗

can be regarded as the contents of a two-tracked tape. Define the functions h1 and h2 that

respectively extract the first and second component of a horizontally composite symbol: hi([b1, b2]) = bi, i = 1, 2.
These functions then extend in the usual manner to the letter-homomorphisms (still denoted by hi):

hi : [Σ1 × Σ2]
∗ → Σ∗

i .

We shall also use the inverse map
h−1
i : Σ∗

i → 2[Σ1×Σ2]∗

where for any set X , we use 2X to denote the set of subsets of X , and h−1
i (w) is defined to be the set of x ∈ [Σ1×Σ2]

∗

such that hi(x) = w.
For any homomorphism h : Σ∗ → Γ∗, and any language L ⊆ Σ∗, we call h(L) the h-image of L. If L′ ⊆ Γ∗, and

h(L′) = L then we call L′ an h-preimage (or h-pre-image) of L. Note that in general, an h-preimage of L is only a
subset of h−1(L); we may call h−1(L) the full preimage of L.

Similarly, hU and hL extract the upper and lower components of a vertically composite symbol: hU (

[

a

b

]

) = a,

hL(

[

a

b

]

) = b. Again we have the corresponding letter homomorphisms and their inverses. Since horizontal and

vertical compositions have only pedagogical differences, we only need to state properties for just one of them. The
following simple lemma will be one of our basic tools:

Lemma 13. Suppose h : Γ∗ → Σ∗ is a letter-homomorphism. There is a log-space computable transformation t

such that for any expression α over the alphabet Σ, we can construct another expression t(α) over Γ such that
L(t(α)) = h−1(L(α)). Furthermore, the size of t(α) is at most c|α| for some c that only depends on the size of Γ.

Proof. Replace each atom b ∈ Σ occurring in α with the subexpression b1 + b2 + · · · + bt where h−1(b) =
{b1, . . . , bt}. Q.E.D.

We describe three operations on strings:

Definition 3. Let x = b1b2b3 · · · bm for some m ≥ 1, and each bj ∈ Σ for some alphabet Σ.

(1) Then rotate(x) denotes the set of strings over Σ of the form x1x2 (xi ∈ Σ∗) such that x2x1 = x.

(2) If m ≥ 3, then smear(x) denotes the string

[xm, x1, x2][x1, x2, x3][x2, x3, x4] · · · [xm−2, xm−1, xm][xm−1, xm, x1].

Note that smear(x) is over the alphabet [Σ × Σ × Σ] and |smear(x)| = |x|. Also, h2(smear(x)) = x where
h2 is the homomorphism on [Σ × Σ × Σ] that picks out the second component.

(3) Assume # 6∈ Σ, and k ≥ 0 is an integer. Then padk(x) denotes the set of strings

b1x1b2x2 · · ·xm−1bmxm,

where each xi is a string of #’s of length at least k. Note that the xi’s can all have the different lengths. The
function unpad, which simply deletes all occurrences of ‘#’ in its argument, acts as a partial inverse to padk:
if w contains no ‘#’ then unpad(padk(w)) = w.

The three operations extend in the natural way to sets of words: for instance, smear(L) = {smear(x) : x ∈
L and |x| ≥ 3}. The rotate and smear operations are seen to commute with each other, but they do not commute
with the padding operation. Let

Σ3c = [Σc × Σc × Σc]

Γc = Σ3c ∪ {#}.

Thus Σ3c (resp., Γc) is the alphabet for representing smeared computations (resp., padded smeared computations).
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5.6.3 Free computation and cyclic ruler

A key idea in Stockmeyer’s construction is to modify the notion of rulers that we have used until now.

Definition 4. Recall the alphabet Σc for encoding computations for the counting machine Mc. A free computation
(of order n) (n ≥ 1) is a string over Σc of the form

C̄ = C0C1 · · ·Cm (m ≥ 0)

such that

(1) Each Cj is (an encoding of) a configuration of the counting machine Mc, j = 0, . . . , m.

(2) C0 = [q0, &]0n& = init(n).

(3) Ci−1⊢Ci for i = 1, . . . , m, and Cm⊢C0.

Note that the boundary between consecutive configurations is naturally marked by ‘&&’ (or variants containing
state information). Observe that a free computation can be arbitrarily long since the configurations can repeat
indefinitely. A cycle (of order n) is defined to be a free computation C̄ = C0 · · ·Cm such that all the Ci’s are
distinct and C0 = init(n). It follows that for each n, the cycle of order n is unique. Define the number-theoretic
function g such that a cycle of order n is a string of length g(n). Clearly g(n) ≥ n2n and by earlier remarks, in
fact g(n) = Θ(n2n). Also the length of a free computation of order n is a multiple of g(n). We use the following
important notations:

free(n) =
⋃

{rotate(smear(x)) : x is a free computation of order n}
non-freek(n) = {x : x 6∈ padk(free(n))}
rulerk(n) = padk(rotate(smear(x))) where x is the cycle of order n.

We call a set of the form rulerk(n) a cyclic ruler. Clearly we intend to use cyclic rulers instead of the usual
rulers. Note that free(n) ⊆ (Σ3c)

∗ and non-freek(n) ∪ rulerk(n) ⊆ (Γc)
∗.

We now make a simple but important observation about our construction of the counting machine. Let u0 ∈ Σ3c

denote the special symbol
u0 := [&, [q0, &], 0].

Lemma 14. Let w = C0C1 · · ·Cm denote a free computation of order n ≥ 1, and C′
0C

′
1 · · ·C

′
m = smear(w) where

C′
i corresponds to Ci in the natural way, h2(C

′
i) = Ci. For each i, we have: C′

i contains the symbol u0 if and only
if Ci = init(n).

Thus it is sufficient to use local information (the presence of the symbol u0) to detect the initial configuration.
The next lemma shows that we can obtain expressions for cyclic rulers from expressions for non-freek(n) at the
cost of increasing the negation-depth by 1.

Lemma 15. Let Σ be any alphabet and h a letter homomorphism from Σ to Γc.

(i) There is a log-space transformation that, given any expression α where h(L(α)) = non-freek(n), constructs
an expression β where h(L(β)) = rulerk(n).

(ii) The length of β satisfies |β| = |α| + O(1), and the negation-depth of β is one greater than that of α.

Proof. A word w in padk(free(n)) fails to be in rulerk(n) precisely when w contains more than one occurrence
u0. Hence it is easy to satisfy (i) by letting β be

β = ¬(α + Σ∗ · h−1(u0) · Σ
∗ · h−1(u0) · Σ

∗)

Clearly (ii) holds. Q.E.D.

Thus, given an expression denoting an h-preimage of non-freek(n), this lemma shows us how to obtain another
expression denoting an h-preimage of rulerk(n). To get succinct expressions for h-preimage of non-freek(n), the
next lemma shows how to do this inductively.

Lemma 16. (Key Construction) Let Σ be any alphabet and h a letter homomorphism from Σ to Γc. Let ∆ =
[

Γc
Σ

]

with the usual homomorphisms hL, hR : ∆ → Σ selecting the upper and lower tracks. Let H be the letter

homomorphism from ∆ to Γc given by H(x) = h(hL(x)) for all x.
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(i) There is a log-space transformation t such that given any expression α where h(L(α)) = non-freek(n),
constructs the expression t(α) over the alphabet ∆ where H(L(t(α))) = non-freek+1(g(n)). Recall the function
g(n) ≥ n2n.

(ii) |t(α)| = O(|α| · |Σ|) and the negation-depth of t(α) is one greater than that of α.

Proof. We construct the expression t(α) to denote all those words w ∈ ∆∗ that are not of the following form:

b1 # #i1 b2 # #i2 b3 · · ·

h−1(#) h−1(a1) h−1(#i1) h−1(#) h−1(a2) h−1(#i2) h−1(#) · · ·

· · · # #im−1 bm # #im

· · · h−1(am−1) h−1(#im−1) h−1(#) h−1(am) h−1(#im )

for some m ≥ 4 where:

(a) aj, bj ∈ Σ3c, and ij ≥ k for all j = 1, . . . , m.

(b) the bottom track contains a word u such that

h(u) = #x

= #a1#
i1+1a2#

i2+1 · · ·#im−1+1am#im

where x 6∈ non-freek(n) (i.e. x ∈ padk(free(n))).

(c) the top track contains a word

v = b1#
i1+1b2#

i2+1 · · ·#im−1+1bm#im+1

where v 6∈ non-freek+1(g(n)) (i.e., v ∈ padk+1(free(n))).

Note that each bi in the upper track is immediately followed by ai in the lower track: we say bi and ai are

‘paired’. By definition, only non-# symbols can be paired.8 The expression t(α) is over the alphabet ∆ =

[

Γc
Σ

]

.

We shall write t(α) as the union E1 +E2 + · · ·+E8. We now begin the lengthy details of this construction. A word
w is in t(α) if it satisfies at least one of the following conditions.

(1) “The upper track of w is incoherent”
Say a string over Γc is coherent if it is of the form pad0(smear(x)) for some x ∈ Σ∗

c . Say a pair (b, b′)
of symbols in Σ3c is incoherent if they could not possibly be consecutive symbols in the smearing of some
word over Σc. More precisely, with hi : Σ3c → Σc (i = 1, 2, 3) the homomorphism that extracts the ith
component of its argument, we say (b, b′) is incoherent precisely when h2(b) 6= h1(b

′) or h3(b) 6= h2(b
′). Then

the following expression denotes those words whose upper track is incoherent because of a consecutive pair
of non-# symbols:

E′
1 = ∆∗ · h−1

U





∑

(b,b′)

b · #∗ · b′



 · ∆∗

where the summation (denoting set union) is over all incoherent pairs (b, b′). Note that here and subsequently,
for any expression σ over some Σ, and homomorphism f : Σ → Σ′, we write h−1(σ) as a short-hand for the
expression that denotes the set h−1(L(σ)), as shown in lemma 13. The upper track can also be incoherent if
the first and last non-# symbols do not agree:

E′′
1 =

∑

(b,b′)

(

h−1
U (#∗ · b′) · ∆∗ · h−1

U (b · #∗)
)

Our first subexpression is given by E1 = E′
1 + E′′

1 .

8It may appear preferable to pair ai with bi by placing ai directly above bi instead of the ‘staggered’ fashion used here; this is
possible though it causes some inconvenience elsewhere.
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(2) “the h-image of the lower track of w is not of the form #x where x ∈ padk(free(n))”

E2 = h−1
L (Σc) · ∆

∗ + h−1
L (#) · h−1

L (α)

The first summand of E2 captures those words w whose h-image of the lower track does not begin with a
#-symbol.

(3) “Some pairing of non-# symbols in the upper and lower tracks is violated”
That is, there is a consecutive pair of symbols · · · bb′ · · · occurring in w such that either hU (b) = # and
h(hL(b′)) 6= # or hU (b) 6= # and h(hL(b′)) = #.

E3 = ∆∗ ·
(

h−1
U (#) · h−1

L (h−1(Σ3c))) + h−1
U (Σ3c) · h

−1
L (h−1(#))

)

· ∆∗.

Note that we had to apply h−1 to symbols that are in the lower track by virtue of the homomorphism h.

(4) “Some right marker of configurations in the upper track is not aligned”
This condition corresponds to our intention that the upper track (before padding and rotation) represents a
smeared computation path C′

0C
′
1 · · ·C

′
h where each smeared configuration C′

i ∈ (Σ3c)
∗ is aligned in the sense

that the rightmost symbol in each C′
i is paired with some symbol in h−1(u0) in the lower track. Conversely,

each h−1(u0) in the lower track must pair with a rightmost symbol of some C′
i. Thus each C′

i, if they are all
aligned, has length g(n). To express this, we define the set of ‘right marker symbols’ of the upper track:

RM = {[b, &, &], [b, [q, &], &], [b, &, [q, &]] : b ∈ Σc, q ∈ {q0, q1, q2}}.

The expression becomes

E4 = ∆∗ ·
(

h−1
U (RM) · h−1

L (h−1(u0))) + h−1
U (RM) · h−1

L (h−1(u0))
)

· ∆∗.

Here, RM = Σ3c − RM and u0 = Σ3c − {u0}. Let us introduce the analogous set of ‘left marker symbols’:

LM = {[&, &, b], [&, [q, &], b], [[q, &], &, b] : b ∈ Σc, q ∈ {q0, q1, q2}}.

Let
NM = Γc − (LM ∪ RM)

be the set of ‘non-marker symbols’.

(5) “There is some stray &-symbol in the upper track”
This expresses our intent that between the &-symbols, the upper track contains only 0’s and 1’s, possibly
with state information. Define the set Z ⊆ Σ3c consisting of symbols of the form:

[b, &, b′], [b, [q, &], b′]

where b, b′ ∈ Σc and q ∈ {q0, q1, q2}. The desired condition is given by

E5 = ∆∗ · h−1
U (LM · NM∗ · Z · NM∗ · RM) · ∆∗.

Note that Z ⊆ NM , so E5 simply asserts that at least one &-symbol occurs between the left and right
markers.

Before continuing, let us observe that for any word w not in L(E1 + · · ·+ E5), the upper track of w must be of the
form

padk+1(rotate(smear(C0C1 · · ·Cm))) (5)

where each Ci (after removing the state information) encodes a binary string delimited by two &-symbols, with
|Ci| = g(n). We also write

C′
0C

′
1 · · ·C

′
m (6)

for smear(C0 · · ·Cm) where C′
i corresponds naturally to Ci. For the remaining subexpressions, we will refer to

these ‘configurations’ Ci and C′
i.

(6) “Some Ci does not have a unique state symbol”
We leave this to the reader.
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(7) “Some Ci+1 is not directly derived from Ci”
A pair (b, b′) in Σ3c is compatible if there are smeared configurations C, C′ such that C ⊢ C′, b occurs in C,
and b′ occurs in the corresponding position in C. For example, if b = [b1, [q, b2], b3] and b′ = [[q′, b′1], b

′
2, b

′
3]

then (b, b′) is compatible iff b1 = b′1, b3 = b′3, and 〈q, b2, q
′, b′2,−1〉 is in the transition table of the counting

machine. We come to the place where the recursive nature of our construction is seen. We make the following
observation:

Suppose w ∈ ∆∗
− L(E1 + · · · + E6) is a word whose upper track hU (w) has the form (5). If · · · bxb′ · · ·

occurs in hU (w) where hU (b′) is a non-# symbol. Then hL(x) is in rulerk(n) implies that (hU (b), hU (b′))
is a compatible pair of symbols.

Thus the cyclic ruler ‘measures’ the distance between corresponding symbols. By the previous lemma, we can
construct from α the expression β where h(L(β)) = rulerk(n). It is important to realize that this observation
depends on the way we pair non-# symbols in the tracks in a ‘staggered’ fashion. We define

E′
7 = ∆∗ ·





∑

(b,b′)

h−1
U (b) · h−1

L (β) · h−1
U (b′)



 · ∆∗.

where the summation ranges over all pairs (b, b′) that are not compatible. Because of the effect of rotation, a
pair of corresponding symbols that must be compared for compatibility may appear at the opposite ends of
the string w. To handle this wrap-around, we also observe:

Suppose w ∈ ∆∗
− L(E1 + · · · + E6) is a word whose upper track has the form (5). If in addition,

hU (w) ∈ NM
∗

· RM · LM · NM
∗

· b
′

· w
′

· b · NM
∗

where hU (b) and hU (b′) are non-# symbols. Then hU (w′) ∈ padk(free(n)) (rather than rulerk(n)!) implies
that (hU (b), hU (b′)) forms a compatible pair.

To understand this observation, let b, b′ be two corresponding symbols from a pair of successive configurations
C, C′ in the upper track of w. We need to check b and b′ for compatibility. Assume that the free computation
is rotated so that C splits into two parts forming a prefix and a suffix of w, respectively. If b is in the suffix
part, then b′ is left of b and the word w can be expressed as p · b′ · · ·w′ · b · s where p, w′, s are words in ∆∗.
Furthermore, w′ must be a rotated and padded free computation, and there must be exactly one [rightmarker,
leftmarker] pair in the upper track of p.

Depending on how the pair C, C′ is split by the wrap-around, we may get two other possibilities:

hU (w) ∈ NM∗ · b′ · w′ · b · NM∗ · RM · LM · NM∗

and
hU (w) ∈ LM · NM∗ · b′ · w′ · b · NM∗ · RM.

These lead to the expression

E′′
7 =

∑

(b,b′)

(F1(b, b
′) + F2(b, b

′) + F3(b, b
′))

where

F1(b, b
′) = h−1

U (NM∗ · RM · LM · NM∗ · b′) · h−1
L (¬α) · h−1

U (b · NM∗)

F2(b, b
′) = ·h−1

U (NM∗ · b′) · h−1
L (¬α)h−1

U (b · NM∗ · RM · LM · NM∗)

F3(b, b
′) = h−1

U (LM · NM∗ · b′) · h−1
L (¬α) · h−1

U (b · NM∗ · RM)

We finally let E7 = E′
7 + E′′

7 .

(8) “None of the Ci’s are equal to init(g(n))”
It is sufficient to assert that either the upper track of w does not contain the symbol u0 or else the symbol
‘1’ appears in the configuration containing the u0. This will ensure that no configuration Ci has the form
[&, [q0, &], &]0m&; of course, this includes the case m = g(n) which is all that we are interested in. Let
Y ⊆ Σ3c be the set of symbols that contain ‘1’ or ‘[q, 1]’ as its second component. Let E8 = E′

8 + E′′
8 where

E′
8 = ∆∗ · h−1

U (LM · (u0
∗) + NM∗ · Y · NM∗) · RM) · ∆∗

and E′′
8 is a similar expression to take care of wrap-around.
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This concludes our construction of α. To verify (ii), note that each Ei, with the exception of E7, has size
O(|∆|) = O(|Σ|). Also E7 has size O(|α| · |∆|). Similarly, the ¬-depth of each E7 is one more than that of α while
the other Ei has depth 0. Hence (ii) follows. This concludes our proof of lemma 16. Q.E.D.

Let us call our ruler construction a g(n)-construction, since we obtained a ruler of order g(n) from one of order
n. See Exercises for attempts to get a g′(n)-construction for faster growing functions g′(n). An elegant alternative
to cyclic rulers is given by Hunt [2]; however Hunt’s construction requires the use of the intersection operator ‘∩’.

5.6.4 The main result

Using the function g(n) in the last section we now define the function G(k, n) for k, n ≥ 0 as follows: G(0, n) = g(n)
and G(k, n) = g(G(k − 1, n)) for k ≥ 1. Clearly G(k, n) is the analog of the function exp(k, n) and G(k, n) ≥
exp(k, n) for all k, n. We can apply the last lemma k times to describe the complement of free-computations (and
hence, cyclic rulers) of order G(k, n):

Lemma 17. There is a constant c > 0 such that for all integers k ≥ 0, n ≥ 1, there is an expression αk,n over a
suitable alphabet ∆k and a homomorphism h : ∆k → Γc such that

(i) h(L(αk,n)) = non-freek(G(k, n)).

(ii) αk,n can be computed in space O(log |αk,n|)

(iii) |αk,n| = n · O(1)k
2

. The ¬-depth of αk,n is k and |∆k| = |Γc|k.

Proof. If k = 0 then we can easily construct α0,n, by modifying the proof that the fullness problem for regular
languages is complete for LBA. If k > 0 then the last lemma shows how to construct αk,n from αk−1,n. The

alphabet ∆k is

[

Γc
∆k−1

]

, so |∆k| = |∆k−1| · |Γc| = |Γc|k. The properties (ii) and (iii) easily follow from the

construction. Q.E.D.

We next apply the cyclic rulers of length G(k, n) to describe accepting computations of Turing acceptors that
accept in space G(k, n):

Lemma 18. Fix any nondeterministic acceptor M that accepts in space G(k, n). There is a suitable alphabet ΓM

such that for all input words x of length n, we can construct an expression αM(x) over ΓM such that

(i) x is accepted by M iff αM(x) 6= FULL(ΓM, {+, ·, ∗,¬}).

(ii) |αM(x)| = n · OM(1)k
2

and αM(x) can be constructed in space OM(log |αM(x)|).

(iii) The ¬-depth of αM(x) is k.

Proof. Let ∆k be the alphabet of the expression αk,n in the last lemma, and Σ be the alphabet to represent the
smeared computations of M. Also, let ∆k,# = ∆k ∪ {#} and Σ# = Σ ∪ {#}. The expression αM(x) shall denote
strings over the alphabet

ΓM :=

[

Σ#

∆k,#

]

.

A string w is in αM(x) iff it does not have the form:

b1 # #k b2 # #k b3 # #k
· · · bm−1 # #k bm # #k

# a1 #k # a2 #k # a3 #k
· · · # am−1 #k # am #k

where

(a) the lower track has the form #y where y is in padk(non-freek(G(k − 1, n))),

(b) the upper track encodes a padded, smeared (but not rotated) computation of M on input x,

(c) the left marker for each configuration on the upper track is paired with the u0 marker on the lower track,

(d) the last configuration on the upper track is accepting.
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Note that (c) ensures that the configurations in the upper track have length exactly G(k, n) since the lower track
is a free computation of order G(k − 1, n). The technique for writing down αM(x) should by now be routine. We
leave this as an exercise. Hence if x is accepted by M iff there is an accepting computation iff L(αM(x)) 6= (ΓM)∗.

Q.E.D.

In section 4, we show that for any regular expression α, we can construct a nondeterministic finite automaton
δα with ≤ |α| states, |α| ≥ 2. A well-known construction of Rabin and Scott can be applied to give a deterministic
finite automaton ∆α with ≤ 2|α| states and which accepts the same language as δα: the states of the deterministic
automaton are sets of states of δα, and transitions of ∆α are defined in a straightforward manner: if X is a set of
∆α (so X is a set of states of δα) then on input symbol b, the next state of ∆α is

X ′ = {q′ : (∃q ∈ X) q′ is the next state of q on input b}.

We use this construction to show:

Lemma 19. Let α be a regular expression with negation, |α| ≥ 3.

(i) If the negation-depth of α is k then there is a nondeterministic finite automaton δα with exp(k, |α|) states
that accepts L(α).

(ii) Furthermore, the transition table of the automaton can be constructed in exp(k, |α|) space.

Proof. (Basis) If the negation-depth k is 0 then the result follows from our construction in lemma 8.
(Inductively) Suppose k ≥ 1. First assume α = β + γ. Assuming |β| ≥ 3 and |γ| ≥ 3, then δβ and δγ can

be recursively constructed with at most exp(k, |β|) and exp(k, |γ|) states respectively. Then the construction in
section 4 applied to δβ and δγ gives δα with ≤ exp(k, |β|) + exp(k, |γ|) ≤ exp(k, |α|) states. If |β| ≤ 2 or |γ| ≤ 2,
the same bound holds as well.

If α = β · γ or α = (α)∗, the arguments are similar.
Finally, suppose α = ¬β. If |β| ≥ 3, then by induction, we may assume that δβ has been formed with

exp(k−1, |β|) states. We first carry out the Rabin-Scott construction to get a deterministic machine with exp(k, |β|)
states. To get δα, we can easily modify this deterministic acceptor by interchanging the roles of acceptance and
rejection. This modification does not change the number of states, and we are done. If |β| ≤ 2, then a direct
argument clinches the proof.

Part (ii) is routine once the constructions of part (i) is understood. Q.E.D.

We now state with our main result: For each k ≥ 0 and alphabet Σ, let FULLk(Σ, {+, ·, ∗,¬}) denote the set
of regular expressions with negation α where the negation-depth of α is ≤ k and L(α) = Σ∗. As usual, we let
FULLk(+, ·, ∗,¬) denote the case where Σ is {0, 1}. As usual, the problem FULLk(Σ, {+, ·, ∗,¬}) easily be reduces
to the case FULLk(+, ·, ∗,¬).

Theorem 20. For each k ≥ 0, the language FULLk(+, ·, ∗,¬) is complete for the class NSPACE(exp(k, n)).

Proof. In the following proof, we exploit the closure of space classes under complementation. Lemma 18
shows that FULLk(+, ·, ∗,¬) is co-NSPACE (G(k, n))-hard, and hence co-NSPACE(exp(k, n))-hard. To show that
FULLk(+, ·, ∗,¬) is in co-NSPACE(exp(k, n)), we use the previous lemma: given a regular expression with negation
α, it is easy to check whether it has negation depth at most k. We then construct the nondeterministic finite
automata δα that accepts L(α) in space exp(k, |α|). Using δα it is easy to nondeterministically decide (see the
proof for regular expressions) if there is a word not in L(α), i.e., if α 6∈ FULLk(+, ·, ∗,¬). Q.E.D.

Corollary 21. he problem FULL(+, ·, ∗,¬) is hard for the class ELEMENTARY.

Remarks: Of course, in the presence of negation, we could have posed these results in terms of the problem
EMPTY(+, ·, ∗,¬). Stockmeyer also shows that the use of Kleene-star in these results is not strictly necessary (see
Exercises).

5.7 Final Remarks

1. An interesting feature of many of the complete problems for the various canonical classes is that they can be
grouped together into natural families. For example, the following problems based on node accessibility in graphs,

1GAP, GAP, AND-OR-GAP, HEX
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are complete for DLOG,NLOG,P ,PSPACE , respectively. Similarly, the problems

2UNSAT, UNIT, SAT, QBF

form a family of complete problems for NLOG, P , NP , PSPACE (resp.) based on logical formulas. Alternatively,
the first two problems in the above sequence can be replaced by two problems in Boolean logic:

FVP, CVP, SAT, QBF

where FVP is the formula value problem. In section 3, CVP is explained; FVP is a similar problem except that
we replace Boolean circuits in the input by Boolean formulas. See the exercises which shows FVP to be NLOG-
complete. Schaeffer and Lieberherr have generalized the satisfiability problem in several other directions. Galil has
shown that various decision problems related to restrictions on Turing machines also form a family of problems
complete for various classes in the canonical list. Such examples can be multiplied. Such families are useful as
a guide to inherent complexity of problems in the ‘real’ world. This is because natural problems have families
resemblances and, given a problem L that resembles members of a family of complete languages, we can often
conjecture and confirm the complexity of L relative to the canonical ruler (see chapter 1, section 8).

2. In the family of problems involving graphs, we use directed graphs. A natural question to ask is what is
the complexity of undirected graph reachability (denoted UGAP)? It is intermediate in complexity between 1GAP
and GAP but is not known to be complete for NLOG. We shall return to this problem in a later chapter on
probabilistic computation.

3. It is important to emphasize that although we have shown complete languages for many important classes,
there is strong evidence that many other natural classes do not have complete languages (e.g., see [15, 31, 16]).

4. There have been interesting developments stemming from investigations about the isomorphism of complete
languages. If F is a family of transformations, we say that two languages L and L′ are isomorphic (modulo F ) if
there are transformations t, t′ ∈ F such that t(L) ⊆ L′, t′(L′) ⊆ L and t′◦t and t◦t′ are identities. An important case
is the Berman-Hartmanis conjecture concerning the isomorphism of all NP-complete languages. This conjecture
is confirmed for all known NP -complete languages; on the other hand, there is evidence against the truth of the
conjecture. For example, a positive result about isomorphism of complete languages is [3] which shows that all
complete languages for DEXPT are equivalent via 1-1 length increasing polynomial time transformations (see also
[35, 34]). We shall return to this topic in volume 2.

Exercises

[5.1] (i) Show complete languages for DTIME (22O(n)

) and DSPACE(2n2n

) under suitable reducibilities.
(ii) Let f be a complexity function. Under what conditions can we say that XSPACE (f),XTIME (f),XREVERSAL(f)
have complete languages under ≤Lm?
(This exercise suggests that the special place of ≤Lm is principally derived from the special emphasis we
have on the canonical list.)

[5.2] Why does the proof used for the other classes in the canonical list fail to produce a complete class for the
class PLOG?

[5.3] Consider the structure of the proof for P and some of the other cases in theorem 1. The outline of these
proofs could be described as follows: let (K, (µ, ρ, F )) be any characteristic class in the canonical list where
µ is a mode, ρ a resource and F a family of complexity functions. Suppose MACHINES (µ, ρ, F ) has an
efficient universal simulator U , where each Ui accepts in resource ρ bound Oi(fi) where fi ∈ F . Consider
the language

LK = {i#x#0m : m = fi(|x|)∧x ∈ Ui}.

State the other properties required in order for LK to be K-complete under ≤Lm (e.g., F must be ‘efficiently
presentable’ in some sense).

[5.4] Recall the definition of the language 1GAP consisting of all directed graphs (encoded by an edge list) with
outdegree 1 and where there is a path from the first node to the last node. Let 1GAP′ be the variant where
the graphs are encoded by adjacency matrix. Show that it is impossible to reduce the 1GAP′ to 1GAP
using ≤1L

m -reducibility.

[5.5] Show that UGAP (undirected graph accessibility problem, defined in the concluding remarks of the chapter)
is DLOG-hard under ≤1L

m -reducibility.
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[5.6] (Laaser) Show that the following connectivity problems on graphs are complete for NLOG: define CON
and SCON to be the set of inputs of the form 〈n, G〉 (as in GAP) satisfying (respectively):

∀m(m ∈ [1..n] ⇒ ∃path from node 1tom)

∀m, p(m, p ∈ [1..n] ⇒ ∃path from nodemtop)

[5.7] * Give a counter example to a ‘standard’ fallacy about resolution: Let C1 and C2 be clauses in a CNF
formula F and C is their resolvent. Then F is unsatisfiable iff (F − {C1, C2}) ∪ {C} is unsatisfiable. For
which direction is this true? Provide a counter example to the false direction.

[5.8] Prove the resolution theorem.

[5.9] Complete the proof that 3UNIT is in P by proving the correctness of the algorithm in the text.

[5.10] Complete the proof that 3UNIT is P -complete by replacing those clauses that do not have 3 literals by
clauses that have exactly 3.

[5.11] Let M be any nondeterministic acceptor that is s(n) space bounded. For each input x of length n, construct
a path system S(x) such that S(x) is solvable iff x is accepted by M. Hint: Imitate the proof of Savitch’s
theorem.

[5.12] (Ladner) Show that the Circuit Value Problem (CVP) is P -complete under log-space many-one reducibil-
ity. To show that the problem is P -hard, give a direct proof (i.e., instead of reducing a known P -hard
problem to CVP).

[5.13] Show the the Formula Value Problem (FVP) is NLOG-complete under log-space many-one reducibility.

[5.14] Show that AND-OR-GAP problem is P -complete.

[5.15] (Dobkin, Lipton, Reiss) Show that Rational Linear Programming (RLP) is P -hard under log-space many-
one reducibility.

[5.16] Show direct log-space reductions between AND-OR-GAP and MCVP (there are reductions in two direc-
tions to do).

[5.17] (Reif) Show that the following decision problem related to the depth-first search algorithm is P -complete
under log-space many-one reducibility. Given: 〈G, u, v〉 where G is a digraph over the vertices [1..n], u and
v are vertices. Property: Node u visited before v in a depth-first search of G that starts from node 1. It
is important for this problem to assume that the search always choose the smallest numbered vertex to
search next.

[5.18] Show that MEMBER(+, ·, 2, ∗,¬) is in P .

[5.19] (Meyer, Stockmeyer) There is a family of problems that resembles the word problems of section 4: an
integer expression involve the operators +, ·,∩,∪, built up recursively in the obvious way from the constants
0 and 1. For example, ((1+1+1) · (1∪ (1+1))+(0∪1). Each expression now denotes a set of non-negative
positive integers, with 0 and 1 denoting the integers zero and one, + denoting addition (not union, as in
extended regular expressions!), · denoting product, ∩ and ∪ denoting intersection and union of sets. Let
N-MEMBER(+,∪) be the membership problem for integer expression. More precisely, this is the problem
of recognizing all pairs of the form (x, α) where x is a binary number and α is an integer {+,∪}-expression
such that x is in L(α). Show that this problem is NP -complete.

[5.20] (Meyer, Stockmeyer) Prove that INEQ({0}, {+, ·, ∗}) is NP-complete.

[5.21] (Meyer, Stockmeyer) Prove that INEQ(+, ·) is NP -complete.

[5.22] Give a direct procedure for deciding if L(α) = Σ∗ in time O(1)|α|, avoiding the reduction to a nondeter-
ministic finite automaton as in the text.

[5.23] (Hunt, Hopcroft) Let NONEMPTY(Ω) denote those Ω-expressions α where L(α) 6= ∅. Note that if
Ω ⊆ {+, ·, ∗, 2} then L(α) 6= ∅ always holds. Show that NONEMPTY(+, ·, ∗,∩) is PSPACE -complete.

[5.24] Consider the equivalence problem EQUIV(Σ, Ω) that consists of all pairs (α, β) of Ω-expressions such that
L(α) = L(β). What is the relation between this and the inequivalence problem INEQ(Σ, Ω)?
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[5.25] Construct the γ-expressions ρm as claimed in (γ) of section 6.

[5.26] (Stockmeyer) Show that the problem of FULL(+, ·,¬) is ELEMENTARY-hard. In other words, you have
to eliminate the use of Kleene-star from the constructions of section 6.

[5.27] Show that the counting machine makes O(2n) moves. Hint: let cn be the number of counting machine
moves to count from 1 to 2n − 1. For example, we have

1 → 10 → 11 → 100 → 101 → 110 → 111

where the 6 transformations require 4+2+6+2+4+2=20 moves, so c3 = 20. (Here we assume that the
head scans the first symbol to the right of the low-order bit of the number, and returns to it after each
transformation.) Also c1 = 0, c2 = 12. Give a recurrence for cn.

[5.28] * The upper and lower bounds for the complexity of FULL(+, ·, ∗,¬) is not tight. Improve the reduction
of the elementary problems to this problem. One way to do this is to obtain a ‘ĝ(n)-construction’ corre-
sponding to the Key lemma where ĝ(n) grows faster than the g(n) = n2n. For instance, it is easy to modify
our counting machine to obtain a (n22n)-construction (how?). Such an improvement is inconsequential
since we could have used k-ary counting and obtained a kn-construction. What is the optimal choice of k?

[5.29] * Develop a theory of complete transformations. Let us say that a transformation t0 : Σ∗
0 → Γ∗

0 is hard for
a family T of transformations under log-space reducibilities if for all t ∈ T , t : Σ∗

1 → Γ∗
1, there are log-space

transformations s0 : Σ∗
1 → Σ∗

0 and s1 : Γ∗
0 → Γ∗

1 such that for all x ∈ Σ∗
1, s1(t0(s0(x))) = t(x). Let T

be the class of transformations computable by deterministic polynomial time transducer. Show complete
transformations for T .

[5.30] * Little is known about natural complete problems for reversal or simultaneous complexity classes.
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Chapter 6

Separation Results

April 13, 2009

6.1 Separation Results

Let K and K ′ be language classes. By a separation result for (K, K ′) we mean one showing the existence of a
language L ∈ K − K ′; L is said to separate K from K ′. If the answers to the inclusion questions “Is K included
in K ′?” of chapter 4 are mostly negative as generally conjectured, it follows that techniques for separating classes
are needed to resolve these open problems. The K-complete languages are the obvious candidates for languages L
that separate K from K ′. Unfortunately, given a specific L (such as a K-complete language) and a specific K ′, a
proof that L 6∈ K ′ typically appears to require powerful combinatorial methods quite beyond our present ability.
Separation results based on combinatorial methods are rare (but we will see them in a later chapter). Instead, it
is easier to construct a non-specific L in stages: for instance, in each stage we try to include in or exclude from L
some words so as to ensure that L is not equal to each language in K ′. While diagonalizing over K ′, we must ensure
that L remains in K. We are just diagonalizing over K ′, of course, and chapter 4 contains such constructions. In
any case, assuming that we manage to separate K from K ′, there are two typical consequences:

(a) We can infer that other pairs of classes must also be separated as follows. By a translation result we mean
one with the following structure:

K1 ⊆ K2 ⇒ K ′
1 ⊆ K ′

2

where Ki, K
′
i (i = 1, 2) are classes. Using this translation result, a separation result for (K ′

1, K
′
2) implies a

separation result for (K1, K2). This method is especially useful in separating nondeterministic classes which
tend to resist direct diagonalization.

(b) We can infer lower bounds on languages in K. In particular, any K-complete language (with respect to some
reducibility ≤) is not in K ′, provided K ′ is closed under the reducibility ≤. For instance, we can separate
PSPACE from NLOG using the diagonalization technique above. Since the fullness problem for regular
expressions (chapter 5) is PSPACE -complete, we conclude that the problem cannot be solved in logarithmic
space.

Most of the translational techniques are based on the idea of ‘padding’. The idea originated with Ruby and
Fischer [25] and was popularized by Ibarra [14]. We have already encountered padding in section 1 of the previous
chapter: for instance, padding can ‘translate’ a complete problem for NSPACE (nk+1) into a complete problem
for NSPACE (nk). Padding techniques typically translate an inclusion between two classes with lower complexity
into an inclusion between classes at higher complexity. For this reason, such results are sometimes called upward
translation results. For instance, the following will be shown:

If NLOG ⊆ DLOG then LBA ⊆ DLBA.

If NP ⊆ P then NEXPT ⊆ DEXPT .

Limited forms of ‘downward translation result’ are known. Translational techniques will treated in sections 3
and 4.
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Section 5 draws conclusions of type (b) above. The technique is based on efficient reducibilities; Meyer [20, 30]
first exploited such techniques. The efficient reductions shown in the previous chapter allow us to deduce lower
bounds on the various complete problems studied there.

Section 6 considers what may be described as weak separation results: these show that two classes K and K ′

must be distinct, K 6= K ′. Hence either K \ K ′ or K ′ \ K (or perhaps both) must be non-empty although the
proof does not indicate which is the case. For instance, we can show DLOG 6= NTIME (nk) for any k. Again the
padding technique is useful. It should be noted that these weak results cannot be strengthened too easily: this will
be clarified in the chapter on relativization where we show that these results can be relativized to force inclusion
in either direction.

Section 7 presents strong separation results. The idea is that the explicit lower bounds derived in section 5 are
of the ‘infinitely often’ type (e.g., every acceptor for such a language must, for some c > 0, take at least cn steps
for infinitely many n). We want to strengthen this to the ‘eventually’.

Section 8 shows the limitations to the separation results. For instance, we demonstrate that there are complexity
functions f, g such that f is ‘arbitrarily more complex’ than g and yet DSPACE (f) = DSPACE (g). In other words,
these two classes are inseparable.
On strong separation for characteristic classes. Let us make precise our above remarks about infinitely-often
versus eventually bounds. The terminology will be useful in other contexts as well.

Definition 1. Let D be a set, θ a binary relation over D, and let f, g : D → D be partial functions with domain
and range D.
(i) The relation θ is said to hold infinitely often between f and g if there are infinitely many x ∈ D such that both
f(x) and g(x) are defined, and the relation f(x)θg(x) holds. We write ‘fθg (i.o.)’ or ‘(∃∞x)f(x)θg(x)’ in this case.
(ii) The relation θ is said to hold eventually between f and g if for all but finitely many x ∈ D, whenever f(x) and
g(x) are defined then the relation f(x)θg(x) holds. We write ‘fθg (ev.)’ or ‘(∀∞x)f(x)θg(x)’ in this case.

As an example, if f and g are total complexity functions, then f dominates g if and only if f ≥ g (ev.). Note
that if fθg (i.o.) then there are infinitely many values of x ∈ D at which f and g are simultaneously defined.
However, it is possible that fθg (ev.) for the trivial reason that there are only finitely many of values of x ∈ D for
which both f and g are defined.

Suppose we have a language L that separates the pair of characteristic classes (DTIME (t),DTIME (t′)), i.e.,
L ∈ DTIME (t) − DTIME (t′). This implies that for any acceptor M for L, there exists a c > 0 such that there are
infinitely many values of n such that M requires more than t′(n) steps on inputs of length n:

AcceptTimeM(n) > ct′(n) (i.o.). (1)

Recall that AcceptTimeM(n) is undefined unless M accepts some word of length n. Note that (1) is equivalent to
AcceptTimeM(n) 6= O(t′(n)). We want to strengthen (1) to:

AcceptTimeM(n) > ct′(n) (ev.). (2)

for some c > 0. We could write this in the equivalent form: AcceptTimeM(n) = Ω(t′(n)).
We say that we have a strong separation result for the pair of characteristic classes (DTIME (t),DTIME (t′))

if we show the existence of an infinite1 language L in DTIME (t) − DTIME (t′) such that any acceptor M for L
satisfies (2). This notion of strong separation extends naturally to other characteristic classes.

6.2 The Basic Separation Results

Hartmanis and Stearns [12] began the study of time-based complexity theory and obtained the so-called determin-
istic time hierarchy theorem. Together with Lewis [11], they extended the result to space complexity. The main
goal of this section is to present these two separation theorems, together with a separation theorem for reversal
complexity. These theorems are considered basic because their proofs involve the simplest form of diagonalization
and also because most other separation results ultimately rely on them. We also see that the diagonalization
arguments here depend on the existence of tape reduction theorems (for space, time and reversal, respectively).

Our first hierarchy theorem is the following.2

Theorem 1 ([). Deterministic space hierarchy)] Let s1 and s2 be complexity functions where s2(n) = ω(s1(n)). If
s2 is space-constructible then

DSPACE (s2) − DSPACE (s1) 6= ∅.

1To avoid the trivial interpretation of ‘eventually’ explained earlier.
2The original result requires the qualification s2(n) > log n.
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Proof. Let Σ = {0, 1} and fix any encoding of all 1-tape Turing machines with input alphabet Σ. Let

φ0, φ1, . . .

be a listing of these machines in the order of their code. We may assume that the code for machine φi is the binary
string (still denoted) i. Note that each machine uses states and symbols from the universal sets Q∞ and Σ∞, so
our encoding assumes a fixed letter homomorphism h0 from Q∞ ∪ Σ∞ to binary strings.

We now describe an acceptor M that diagonalizes over each machine φi. On input x of length n, M does the
following: M marks off exactly s2(n) tape cells. Since s2(n) < ∞ (by definition of space-constructible), the marking
takes a finite number of steps. Treating x as the code of the machine φx, we would like M to “begin simulating
φx on x, accepting iff either φx does not accept or if φx tries to leave the area containing the marked cells”. The
problem is that φx may loop without ever leaving the marked cells, and a simplistic simulation would not detect
this. To overcome this difficulty, we apply Sipser’s technique as shown in section 9 of chapter 2: for each accepting
configuration C of φx that ‘can fit’ within the marked cells, M does a search of the tree T (C) rooted at C. If
it discovers the initial configuration C0(x) in T (C), M rejects. If for all such C’s, M fails to discover the initial
configuration then M accepts. M can do this search in space s2(n). We should clarify the qualification that C ‘can
fit’ within the marked cells: by this we mean that the work tapes of C can be represented using the marked cells,
but the input tape of C is directly represented as the input tape of the simulating machine.

We now show that the language L(M) separates DSPACE(s2) from DSPACE (s1). By construction, L(M) ∈
DSPACE (s2). It remains to show that L(M) is not in DSPACE (s1). Suppose L(M) is accepted by some deter-
ministic N in space s1. By the tape reduction theorem for space, we may assume that N is 1-tape and hence, by
properties of the usual coding of Turing machines, we get this property: there are infinitely many indices x such
that L(M) = L(φx) and φx accepts in space s1(n).

Using the said letter homomorphism h0 that encodes states and symbols from the universal sets as binary
strings, we may assume that each configuration of N that uses space s is encoded by a binary string of length
ON(s). Choose the length of x sufficiently large so that ON(s1(|x|)) ≤ s2(|x|). We now prove that M accepts
x iff φx rejects x. If φx accepts x then it accepts in a configuration C with space at most s1(|x|) and C can
be encoded in space ON(s1(|x|)) ≤ s2(|x|). Thus we will search the tree T (C) and find the initial configuration,
leading to rejecting. On the other hand, if φx does not accept x, then the search of the tree T (C) for each accepting
configuration C fails and by definition M accepts. This proves L(M) 6= L(φx). Q.E.D.

If we are interested in separating the running space class DSPACEr(s2) from DSPACE r(s1), then we can avoid
the assumption s2 be space-constructible (Exercise).

We now show the time analogue of the previous theorem. However the hierarchy is not as tight because the
tape reduction theorem for deterministic time (viz., the Hennie-Stearns theorem) incurs a logarithmic slow-down.

Theorem 2 ((Deterministic time hierarchy)). Let t1 and t2 be complexity functions with t1(n) log t1(n) = o(t2(n)).
If t2 is time-constructible and t1(n) > n then

DTIME (t2) − DTIME (t1) 6= ∅.

Proof. The proof is similar to the previous one, except that we now appeal to the existence of a universal
machine.3 Let U = {U0, U1, . . .} be a universal machine simulating all 2-tape deterministic machines over some
fixed input alphabet. Again we construct an acceptor M that diagonalizes over each Ui that happens to accept
in time o(t2). The machine M operates as follows: on input x of length n, M first copies the input x onto two of
its work-tapes. Next, M uses these two copies of x as input to simulate the universal machine Ux on input x for
at most t2(n) of steps (each step of M corresponds to a step of Ux). To ensure that at most t2(n) steps are used,
M will concurrently time-construct t2(n), using the original x as input. If Ux accepts within t2(n) steps then M
rejects; otherwise M accepts. Clearly L(M) is in DTIME (2n + t2(n)) = DTIME (t2).

It remains to show that L(M) 6∈ DTIME (t1). For the sake of a contradiction, assume that L(M) is accepted by
some acceptor in time t1. The Hennie-Stearns theorem then implies that L(M) is accepted by some 2-tape machine
N in time t1 log t1. From the recurrence property of universal machines, there are infinitely many indices x such
that L(N) = L(Ux) and Ux uses time ON(t1 log t1). Choosing x such that n = |x| is sufficiently large,

2n + ON(t1(n) log t1(n)) ≤ t2(n).

If Ux accepts x, then M needs 2n + ON(t1(n) log t1(n)) steps to simulate Ux on x until completion. Since this
number of steps is at most t2(n), M will discover that Ux accepts x and M so rejects x by our construction. If Ux

3We could, as in the previous proof, argue directly about the standard encoding of Turing machines, but the use of universal
machines is a slightly more general (abstract) approach. Our deterministic space hierarchy theorem, however, does not seem to yield
as easily to an argument by universal machines. Why?



260 CHAPTER 6. SEPARATION RESULTS

does not accept x, then we similarly see that M will accept x. This proves L(M) 6= L(Ux) = L(N), a contradiction.
Q.E.D.

The above result can be sharpened in two ways: if t1 is also time-constructible then Paul [22] shows that the
above separation of time classes can be achieved with t2(n) = o(t1(n) logǫ t1(n)) for any ǫ > 0. If we consider
classes defined by Turing machines with some fixed number of tapes, Fürer [10] has shown the above separation
can be achieved with t2 = o(t1) provided we restrict attention to Turing machines with a fixed number k of tapes,
k ≥ 2.

Using the space and time hierarchy theorems, we can infer separation for some of the inclusions on our canonical
list:

Corollary 3. (a) P ⊂ DEXPT ⊂ DEXPTIME

(b) NLOG ⊂ PSPACE ⊂ EXPS ⊂ EXPSPACE

Finally we present a hierarchy theorem for reversal complexity[5]. Although we can give a direct proof using
the tape reduction theorem for reversals, the following shorter proof follows from relationships between reversal
and space complexity shown in chapter 2.

Theorem 4 ((Deterministic reversal hierarchy)). Let r1(n) and r2(n) be complexity functions such that (r1(n))2 =
o(r2(n)), r1(n) = Ω(log n) and r2(n) is reversal-constructible. Then

DREVERSAL(r2(n)) − DREVERSAL(r1(n)) 6= ∅.

Proof. Since (r1(n))
2

= o(r2(n)), by the deterministic space hierarchy theorem, there exists a language L such
that

L ∈ DSPACE(r2(n)) − DSPACE ((r1(n))
2
).

Using the relation DSPACE (r2) ⊆ DREVERSAL(r2) and DREVERSAL(r1) ⊆ DSPACE (r2
1), we conclude

L ∈ DREVERSAL(r2(n)) − DREVERSAL(r1(n)).

Q.E.D.

Exercises

Exercise 0.1: Let s < ∞ be a complexity function. Prove a (DSPACE (s),RE )-separation. ♦

Exercise 0.2: Prove a (PLOG ,PSPACE )-separation. ♦

End Exercises

6.3 Padding Arguments and Translational Lemmas

The theme of the hierarchy theorems in the previous section is: given a complexity function f1(n) what is the
smallest complexity function f2(n) such that there is a language L accepted within complexity f2(n) but not
f1(n). In each case, f2(n) need not be more than quadratic in f1(n). The basic technique in these proofs requires
constructing a diagonalizing machine M that can “efficiently decide” whether a simulated machine N accepts in a
given amount of resource.

This approach becomes quite ineffectual when N is nondeterministic and we want to decide if N accepts within
time t. The best nondeterministic method known for deciding this question amounts to a naive deterministic
simulation of N, a procedure that takes time exponential in t. This implies that f2(n) is exponentially larger than
f1(n).

To separate nondeterministic space, we could use Savitch’s technique to deterministically simulate nondeter-
ministic space-bounded computations, using quadratically more space. The next two sections show more efficient
techniques to separate nondeterministic time and space.

We begin with a translational lemma under composition of complexity functions.
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Lemma 5 ((Function-composition translation for space)). Let s1(n) ≥ n, s2 ≥ n and f ≥ n be complexity functions,
and assume f is space-construcible. For X = D or N , XSPACE (s1) ⊆ XSPACE(s2) implies XSPACE(s1 ◦ f) ⊆
XSPACE (s2 ◦ f).

Proof. The structure of the proof is suggested by following the arrows in this “commutative diagram”:

XSPACE(s1) XSPACE(s2)

XSPACE(s2 ◦ f)XSPACE (s1 ◦ f)

6 6

-

-

Suppose that XSPACE (s1) ⊆ XSPACE (s2) and (Σ, L) is accepted by some M in space s1 ◦ f . We want to show
that L ∈ XSPACE (s2 ◦ f). First ‘translate’ L to XSPACE (s1) by padding. More precisely, the padded version of
L is

L′ = {x$i : x ∈ L, |x$i| = f(|x|)}

where $ is a new symbol not in Σ. First we demonstrate that L′ is in XSPACE (s1): on input x$i of length n we check
if |x$i| = f(|x|) using space at most n, since f is space-constructible. If not, reject; else we simulate M on input
x, and accept iff M accepts. Clearly the space used is at most max{n, s1(f(|x|))} = s1(n), as desired. Therefore,
by assumption, L′ is accepted by some M′ in space s2. Next we demonstrate that L is in space XSPACE (s2 ◦ f):
on input x of length n, construct x$i such that |x$i| = f(|x|) using space f(n). Now simulate M′ on x$i using
s2(|x$i|) = s2(f(n)) space. Q.E.D.

We illustrate the use of this lemma in the next result. In the proof, we use the fact that nr for any rational
number r ≥ 1 is space-constructible (see Exercises in chapter 2).

Lemma 6 ((Ibarra [14])). For all reals r > s ≥ 1, NSPACE (nr) − NSPACE (ns) 6= ∅.

Proof. Choose positive integers a, b such that

r >
a + 1

b
>

a

b
> s.

Note that a > b ≥ 1. For the sake of contradiction, assume that NSPACE (nr) = NSPACE (ns). Then

NSPACE(n(a+1)/b) ⊆ NSPACE(na/b).

From this inclusion, an application of the previous translation lemma with f(n) = n(a+1)b and also with f(n) = nab,
yields (respectively)

NSPACE (n(a+1)2) ⊆ NSPACE (na(a+1)),

NSPACE(na(a+1)) ⊆ NSPACE (na2

).

Hence
NSPACE (n(a+1)2) ⊆ NSPACE (na2

)

We now claim that for any k ≥ 2 that is a power of two, the inclusion

NSPACE (n(a+1)k

) ⊆ NSPACE (nak

)

holds. The basis case has just been shown. For the induction, assume the inclusion holds for k. Then we can
deduce

NSPACE (n(a+1)2k

) ⊆ NSPACE (na2k

)

by two applications of the translation lemma (the reader should verify this). If we choose k ≥ a, then (a + 1)k ≥
2ak + 1 for a > 1. Thus

DSPACE(n1+2ak

) ⊆ NSPACE (n1+2ak

)

⊆ NSPACE (n(a+1)k

)

⊆ NSPACE (nak

), (by what we had just shown)

⊆ DSPACE (n2ak

)
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where the last inclusion follows from Savitch’s theorem. But DSPACE (n1+2ak

) ⊆ DSPACE (n2ak

) contradicts the
deterministic space hierarchy theorem. Q.E.D.

This result will be improved in the next section. We now prove another translational lemma due to Savitch.

Definition 2. Let s(n) < ∞ be a complexity function that is defined for all sufficiently large n. We say s is a
moderately growing if it is unbounded, s(n) 6= O(1), and there is a constant c such that, eventually, s(n) ≤ c·s(n−1).

Observe that the functions in log n, logO(1) n, nO(1) and O(1)n are moderately growing. However functions such

as 22n

and 2nk

(k > 1) are not.

Theorem 7 ((Upward translation of space)). Let s, s′ be complexity functions. If s is moderately growing and
space-constructible, and if s(n) ≤ s′(n) < ∞ for all n, then

NSPACE (s) ⊆ DSPACE (s) =⇒ NSPACE (s′) ⊆ DSPACE (s′).

Proof. The proof is similar in structure to that for the translational lemma. Let (Σ, L) be accepted by some
nondeterministic M in space s′. We shall show that L is in DSPACE (s′). Again we translate L to a related problem
in NSPACE(s) as follows: let $ be a new symbol not in Σ and define the following padded version of L:

L′ = {x$i : M accepts x in space s(|x$i|), i ≥ 0}.

Clearly, L′ ∈ NSPACE (s).
Since NSPACE (s) ⊆ DSPACE (s), we infer that L′ is accepted by some halting deterministic M′ in space s.
We now construct a deterministic M′′ to accept L as follows: on input x ∈ Σ∗, simulate M′ on x$i for i =

0, 1, 2, . . . , until the first i such that M′ accepts x$i. At that point M′′ accepts. Otherwise M′′ runs forever.
Correctness of M′′: It is easy to show that M′′ accepts L. We next claim that M′′ accepts in space s′(n). To

see this, let x ∈ L. If s′(|x|) = s(|x|) then it is not hard to see that M′ accepts x in space s′(|x|) space. Otherwise,
s′(|x|) > s(|x|) and there is a smallest i > 0 such that

s(|x$i|) ≥ s′(|x|) > s(|x$i−1|).

Note that i is well-defined since s is unbounded and s′ is finite. Now for any j = 0, . . . , i − 1, s(|x$j |) < s′(|x|).
Hence if M′ accepts x$j , then M′′ accepts x in less than s′(|x|) space; otherwise, surely M′ accepts x$i. This is
because we see that M accepts x in space s(|x$i|), and by definition of L′, x$i ∈ L′ = L(M′). Hence M′′ accepts in
space at most s(|x$i|). But since s is moderately growing, there is some c ≥ 1 such that s(|x$i|) ≤ cs(|x$i−1|). This
proves that M′′ accepts in space cs(|x$i−1|). The claimed bound follows by space compression. This completes the
proof. Q.E.D.

Corollary 8. If NLOG ⊆ DLOG then LBA=DLBA.

Similarly, we can prove translational lemmas for time complexity (Exercise) and deduce:

If NP ⊆ P then NEXPT ⊆ DEXPT .

These upward translation results raises the possibility of some form of ‘downward translation’. Our next result
may be regarded as partial downward translation. It involves the so-called tally or contentless languages: these
are languages over a single letter alphabet, say {1}. In the remainder of this section, let Σ be any alphabet with
k ≥ 2 letters. We might as well assume Σ = {1, 2, . . . , k}. For any w ∈ Σ, let tally(w) ∈ {1}∗ denote the unary
representation of the integer w (regarded as a k-adic number). Then for any language (Σ, L), define the language
({1}, tally(L)) where

tally(L) = {tally(w) : w ∈ L}.

Conversely, define the function untally that takes any unary word w ∈ {1}∗ to its k-adic representation untally(w) ∈
Σ∗. For any tally language ({1}, L), define the language (Σ, untally(L)} where

untally(L) = {untally(w) : w ∈ L}.

Thus tally and untally are inverses of each other.

Lemma 9 ((Space translation for tally languages)). Let X = N or D, let L be a language and f a complexity
function with f(n) ≥ n. Then L ∈ XSPACE(f(O(n))) iff tally(L) ∈ XSPACE(f(O(log n))).
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Proof. If (Σ, L) is accepted in space f(O(n)) by some machine M then we can accept tally(L) as follows: on
input 1n, we first compute w ∈ Σ∗ such that ν(w) = n. This takes space |w| = O(log n). Now we simulate M on
w, taking space f(O(log n)). Conversely, if tally(L) is accepted by some N in space f(O(log n)) then we could try
to accept L as follows:

On input w ∈ Σ∗, compute tally(w) and then simulate N on tally(w) using space f(O(log(|tally(w)|))) =
f(O(|w|)).

The only problem is that untally(w) needs space O(1)|w|. To circumvent this, because untally(w) is ‘contentless’,
it suffices to keep track of the position of the input head of N on the virtual input tally(w). The space necessary
to keep track of the head position is O(|w|) which is order of f(O(|w|)) since f(n) ≥ n. Q.E.D.

We then obtain the following weak downward translation:

Corollary 10 ((Savitch)). If DLBA = LBA then DLOG|{1} = NLOG|{1}.

Proof. Let L be a tally language in NLOG = NSPACE (O(log n)). Then the above lemma implies that
untally(L) ∈ LBA = NSPACE (O(n)). So by assumption untally(L) ∈ DLBA. Another application of the lemma
shows that L = tally(untally(L)) ∈ DLOG. Q.E.D.

Combining the upward and weak downward translation results, we conclude that

DLBA = LBA ⇐⇒ DLOG|{1} = NLOG|{1}.

Similar results relating to time complexity of tally languages can be shown.

6.4 Separation for Nondeterministic Classes

The reader may verify that the proof of Ibarra in the last section fails for nondeterministic time. This situation
was first remedied by Cook [6] who showed the analogue of Ibarra’s result [14]: for all reals r > s ≥ 1,

NTIME (nr) − NTIME (ns) 6= ∅.

Cook’s technique was generalized to a very strong form by Seiferas, Fischer and Meyer [27, 28]. Unfortunately
their original proof is quite involved (using a form of recursion theorem for nondeterministic time – see Exercises).
Simpler (but still delicate) proofs have been found by Žák [32] and by Li [16]; both these proofs have the added
bonus of providing a tally language to separate the classes, answering an open question in [27]. Here we follow the
proof of Žák.

We require some preparatory results. First, we note a simple but important consequence of the nondeterministic
tape reduction theorem of Book, Greibach and Wegbreit (chapter 2):

Lemma 11. For any alphabet Σ, there is a 2-tape universal acceptor U = {U0, U1, . . .} for the class RE |Σ such
that for each nondeterministic acceptor M over the input alphabet Σ, and each complexity function t(n) > n, if M
accepts in time t(n) there exist infinitely many indices i such that Ui accepts L(M) in time OU,M(t(n)).

Proof. For any machine N accepting in time t(n) > n, it follows from the nondeterministic tape reduction
theorem that there is a 2-tape machine M accepting L(N). It is seen from our standard construction of a universal
machine U for RE |Σ that there are infinitely many indices i such that L(Ui) = L(M) and Ui accepts in time c · t(n)
for some c that depends on M (rather than on i) and U . Q.E.D.

So the point of this lemma is that we can efficiently simulate any multitape acceptor M by infinitely many
2-tape versions as given by a universal machine U .

Let us fix Σ = {0, 1} and U as in the above lemma. For any complexity function t and any Turing acceptor M,
define the t-cutoff language defined by M to be

Lt(M) = {x ∈ {0, 1}∗ : M accepts x in time t(|x|)}.

Note that Lt(M) ⊆ L(M) and Lt(M) is not necessarily in NTIME (t) unless t is time-constructible or if M accepts
in time t. Relative to the universal machine U we define:

NTIMEU (t) = {L(Ui) : Ui accepts in time t}

NTIME cut
U (t) = {Lt(Ui) : i = 0, 1, . . .}
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Discussion. We may call the classes NTIMEU (t) and NTIME cut
U (t) universal-time classes (relative to U) since

they refer to a ‘universal’ standard of time-keeping as defined by the steps of U . In contrast, the usual classes may
be called local-time classes since a time step as defined by a Turing machine φi is not quite comparable to that
defined by another φj when the tape alphabets and state sets of φi and φj are different. The connection between
universal and local time is as follows: for each i, there is a constant Oi(1) such that each step of φi is simulated
by Oi(1) steps of Ui. Note that the universal-time classes NSPACEU (t) do not in general enjoy the linear speedup
property: it is not clear that NTIMEU (t) is equal to NTIMEU (2t), for instance. However, by the linear speedup
theorem for local-time classes we can conclude that

NTIME (t) = NTIMEU (O(t)).

The crux of the diagonal process in our proof is captured in the following somewhat technical result. The
statement of the result is somewhat long but its proof is not much longer.

Lemma 12. Let K = K|Σ be a class and U be any universal acceptor for K. Suppose 1 ∈ Σ, and there exist
languages (Σ, L) and (Σ, D), and functions α : L → N = {0, 1, 2, . . .} and β : L → N with the following property:
For all x ∈ L and for all j (0 ≤ j ≤ β(x)),

x1j ∈ D ⇐⇒

{

x1j+1 ∈ Uα(x) if j < β(x)
x 6∈ Uα(x) if j = β(x).

(3)

If α is an onto function then D 6∈ K.

Let us call L the ‘unpadded’ set and D the ‘diagonal’ set. Intuitively, deciding if an unpadded word x is in D is
equivalent to the question whether Uα(x) accepts the padded strings x1j (for j = 0, . . . , β(x)). On the other hand,

Uα(x) accepts x1β(x) iff x is not in the diagonal set D. These two incompatible conditions imply D 6∈ K. Observe
the highly stylized nature of this translation.

Proof. Aiming towards a contradiction, assume D = L(Ui) for some i ≥ 0. Since α : L → N is onto, let
x ∈ L such that α(x) = i. If β(x) = 0 then we have that x ∈ D iff x 6∈ Uα(x), contradicting our assumption that
D = L(Uα(x)). Observe that if β(x) ≥ 1 then x ∈ D iff x1 ∈ L(Uα(x)) iff x1 ∈ D. If β(x) ≥ 2 then x1 ∈ D

iff x12 ∈ L(Uα(x)) iff x12 ∈ D. Repeating this, we see that x, x1, x12, . . . , x1β(x) are all in D or none are in D.

However, x ∈ D iff x1β(x) 6∈ L(Uα(x)) = D, contradiction. Q.E.D.

Theorem 13. If t(n) > n+1 is time-constructible then there is a tally language D in NTIME (t(n))−NTIME cut
U (t(n−

1)).

Proof. We use the universal machine U for RE|Σ of lemma 11. Let Σ be the unary alphabet {1}. Let U ′ be an
‘efficient’ universal acceptor for the class NTIME cut

U (t(n − 1))|Σ obtained by simulating exactly t(n − 1) steps of
U , accepting if and only if U accepts within t(n − 1) steps. Note that U ′ can simulate U in realtime (i.e. step for
step). However, U ′ needs an extra n steps to initially write onto another tape the word 1n−1 which then serves as
input for the ‘parallel’ process to time-construct t(n−1). Hence, U ′ on inputs of length n runs in time n+ t(n−1).

We inductively define an increasing sequence of integers

n0 < n1 < · · · < ni < · · ·

as follows: n0 = 1 and
ni+1 = 1 + ni + ci

where ci is the number of steps sufficient (for some fixed Turing machine) to deterministically simulate the behaviour
of U ′

i on input 1ni . Observe that ci is well-defined because U ′
i accepts in at most t(n− 1) steps on inputs of length

n. (In general we expect ci to be exponential in t(ni − 1), but no matter.) To apply the previous lemma, we define
the ‘unpadded set’ L to be {1ni : i = 0, 1, . . .} and the functions α, β : L → N are given by:

α(1ni) = i,

β(1ni) = 1 + ci

for i ≥ 0. Finally, we define the diagonal language D ⊆ {1}∗ by constructing a machine MD to accept D:

(A) On input 1n, MD computes in phases where in phase i (i = 0, 1, . . .) MD simulates U ′
i on input 1ni . MD stops

in the middle of phase k + 1 where k is defined by the inequality

nk+1 < n ≤ nk+2.
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It is easy to organize the computation of MD so that at the end of each phase, when MD has just finished
simulating U ′

i on input 1ni , MD has a copy of 1ni+1 on a separate tape, ready to be used as input for the
next phase. Furthermore, the time to carry out each phase is O(ni+1) steps (actually, O(ni) steps suffice) for
i = 0, . . . , k, and the partial phase k + 1 uses only O(n) time. The total time to do phases 0 to k, including
the partial (k + 1)st phase, is

k
∑

i=0

O(ni+1) + O(n) =

k
∑

i=0

O(
n

2i
) + O(n) = O(n).

Here we use the fact that ci ≥ ni and so ni+1 > 2ni.

(B) If n = nk+1 − 1 then MD can in O(n) steps discover whether 1nk ∈ U ′
k. This is because nk+1 − 1 > ck and

MD can deterministically simulate U ′
k on 1nk in at most ck steps. MD rejects iff U ′

k accepts 1nk . Note that
in this case, with x = 1nk ,

1n = x1β(x) = x11+ck ∈ L(MD) ⇐⇒ x 6∈ L(U ′
α(x)).

(C) If n < nk+1 − 1 then MD simulates U ′
k on 1n+1, accepting if and only if U ′

k accepts. Thus with x = 1nk and
j = n − nk < nk+1 − nk − 1 ≤ ck,

x1j ∈ L(MD) ⇐⇒ x1j+1 ∈ L(U ′
α(x))

We observe that steps (A) and (B) take O(n) time; step (C) takes 1 + n + t(n) since U ′ takes 1 + n + t(n) steps on
inputs of length n + 1. This implies D = L(MD) ∈ NTIME (t + O(n)) = NTIME (t), by the speedup theorem for
nondeterministic time. An application of the previous lemma shows D 6∈ NTIME cut

U (t(n − 1)). Q.E.D.

Note that step (C) is where the padding takes place: it reduces the query about x1j to one above xj+1. Our
main result of this section follows immediately.

Theorem 14 ((Nondeterministic time hierarchy)). If t(n) > n + 1 is time-constructible then there exists a tally
language in

NTIME (t(n)) − NTIME (o(t(n − 1))

Proof. For any function t′(n), if t′(n) = o(t(n − 1)) then

NTIME (t′) ⊆ NTIME cut
U (t(n − 1)).

An application of the previous theorem yields the desired separation. Q.E.D.

In the statement of this theorem, we need the ‘−1’ in defining one of the complexity classes because we need
to pad at least one symbol for the induction to go through. It is not known if this ‘−1’ can be removed or if it is
essential.

Now we can infer Cook’s result that NTIME (nr)−NTIME(ns) 6= ∅ (r > s ≥ 1): first choose a rational number
b such that r > b > s. The function nb is “approximately” time-constructible in this sense: there exists a time-
constructible function t such that t(n) = Θ(nb) (Exercise). Clearly (n + 1)s = o(t(n)), so the preceding theorem
implies NTIME (t) − NTIME (ns) (and hence NTIME (nr) − NTIME (ns)) is non-empty.

As another application of this theorem, we infer that NTIME(n2n) − NTIME (2n) is non-empty. On the other
hand, the theorem fails to decide whether NTIME (n22n

)−NTIME (22n

) is empty. This remains an open problem.
We now show a corresponding separation result for nondeterministic space [27]. The proof below employs the

technique used in showing that nondeterministic space is closed under complementation.4

Theorem 15. Let s2 be space-constructible, s2(n) ≥ log n. If s1(n) = o(s2(n)) then NSPACE(s2)−NSPACE (s1) 6=
∅.

Proof. Let U be a universal acceptor for all nondeterministic 1-tape Turing acceptors. We describe an acceptor
M to diagonalize over each Ui: on input x of length n, we mark out s2(n) cells. For each accepting configuration
C that fits inside these marked cells, we call a subroutine that uses Immerman’s technique to unequivocally check
if C can be reached from the initial configuration. (Recall that this means that there is at least one terminating
computation path and further all terminating computation paths accept or all reject.) If any subroutine call loops,
then we loop; if any accepts, then we reject; if all reject, then we accept.

By now, it is a simple exercise to show that L(M) separates NSPACE (s2) from NSPACE (s1). Q.E.D.

4The original proof of Seiferas-Fischer-Meyer is more involved. Immerman [15] attributes the idea of the present proof to M. Fischer.
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6.5 Applications to Lower Bounds

Informally, if L ≤ L′ where ≤ denotes some efficient reducibility then the complexity of L is at most the complexity
of L′ plus the complexity of the reducibility ≤. For a simple illustration of such results, we consider many-one
reducibilities. First, a definition.

Definition 3. For any transformation t : Σ∗ → Γ∗, and f a complexity function, we say that t is f -bounded if for
all x, |t(x)| ≤ f(|x|).

Lemma 16. Let L be many-one reducible to L′ via a transformation g and L′ ∈ X-TIME-SPACE(t, s) where X = N
or D, and let t, s be non-decreasing complexity functions. If g can be computed in time u(n) and is f(n)-bounded
then

(i) L ∈ XTIME (t(f(n)) + u(n)) and

(ii) L ∈ X-TIME-SPACE(u(n)t(f(n)), s(f(n)) + log f(n)).

Proof. Let M accept L′ in time t and space s, and let T be the log-space transducer that transforms L to L′. It
is straightforward to show (i) by constructing an acceptor N for L: on input x, N simulates T on x to obtain T(x);
then it simulates M on T(x), accepting if and only if M accepts. Since |T(x)| ≤ f(|x|) and t is non-decreasing, the
desired time bound of t(f(n)) + u(n) on N follows immediately. Note that if M is deterministic then so is N.

We show (ii). To achieve a space bound of s(f(n)))+ log f(n), we modify the above construction of M by using
the technique from chapter 4 (section 2): simulate the acceptor M on input T(x) without keeping the entire input
string in storage, but use T as a subroutine to (re)compute each symbol of T(x) as needed by M. To do this, we
need O(log f(n)) space to represent the position of the input head of M on T(x). The space bound of (ii) follows
from this ‘O(log f(n))’ plus the s(f(n)) space used by M on T(x). Q.E.D.

The reader can find analogous results for other types of reducibilities.
It is desirable in applying the lemma to have a small bounding function f . As seen in the transformations

in chapter 5, f is typically linear, f(n) = O(n); this simply means that t belongs to the class Llin of log-linear
transformations defined in chapter 4 (section 2).

The principal application of such a lemma is to obtain lower bounds on specific languages. Meyer and Stockmeyer
[21, 30, 19] and Hunt [13] were the first to infer such lower bounds on natural computational problems. The basic
structure of such proofs is outlined next. Assume that we want to prove a lower bound of s(n) on the deterministic
space-complexity of a language L0.

(a) Show that L0 is hard for some complexity class. Choose a suitable class K of languages such that each L ∈ K
is efficiently reducible to L0. For instance, suppose there is a k ≥ 1 such that each L ∈ K is many-one
reducible to L0 via a nk-bounded log-space transformation.

(b) Infer the lower bound by appeal to a separation result. Assume that we want to show a space lower bound.
Suppose that s(n) ≥ log n is non-decreasing and there is a separation result for (K,DSPACE (s)). Then we
claim that s′(n) = s(n1/k) is an i.o. lower bound on the space-complexity of L0. For the sake of contradiction,
assume otherwise that L0 ∈ DSPACE(s′). By our choice of K, there exists a language L1 ∈ K−DSPACE(s).
But the above lemma implies that L1 can be accepted in space O(s′(nk) + log n) = O(s(n)), contradiction.

Note that in this outline, we normally only have to show step (a) since step (b) is usually routine5. Since step
(a) involves showing L0 to be K-hard, this explains why showing a problem to be hard for a class is often called a
‘lower bound proof’.

The remainder of this section illustrates such applications.

Lower bound on the fullness problem for regular languages. Recall the problem FULL = FULL(+, ·, ∗) of
checking if a given regular expression α denotes the set {0, 1}∗. In chapter 5 we showed that the problem FULL is
hard for NSPACE(n) under log-linear transformations. It easily follows from the outline (a) and (b), by appealing
to the nondeterministic space hierarchy theorem, that

FULL 6∈ NSPACE (o(n)).

Hence every nondeterministic acceptor for FULL must use more than linear space infinitely often. Stated in
isolation, this statement should be appreciated for its depth since, as remarked in chapter 1, it is a statement

5Or rather, radically new separation results do not seem to be easy to derive – and so step (b) is typically an appeal to one of the
separation theorems we have shown here.
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about all imaginable (but mostly unimaginable) Turing machines that accept FULL. Yet, because of the long
development leading up to this point, this statement may seem rather easy.

Similarly, using the log-linear reductions in section 5 of chapter 5, we conclude that any deterministic acceptor
M for the problem FULL(+, ·, ∗, 2) uses space more than cn infinitely often, for some c ≥ 0.6

Nondeterministic time lower bounds for complements of languages. It follows from the log-linear trans-
formation shown in chapter 5 that any nondeterministic acceptor M for the problem INEQ = INEQ(+, ·, 2) uses
time more than cn infinitely often, c > 0. Now consider what is essentially7 the complementary problem: let
EQUIV = EQUIV(+, ·, 2) denote the set of pairs (α, β) of {+, ·, 2}-expressions encoded over the binary alphabet
such that L(α) = L(β). We would like a lower bound on EQUIV based on a lower bound on INEQ. Towards this
end, we use a nice separation result attributed to Young [29].

Lemma 17. If t is time-constructible then

NTIME (n · t(n)) − co-NTIME (t(n)) 6= ∅.

Proof. Let U be an efficient universal acceptor for the characteristic class NTIME (t)|Σ where Σ = {0, 1}. So
for any (Σ, L) ∈ NTIME (t) there are infinitely many indices i such that Ui accepts L in time OL(t(n)). Using the
usual encodings, we may assume that Ui accepts in time c · |i| · t(n) for some constant c = c(U) > 0 that does not
depend on i or n. Let L0 consist of those words x such that Ux accepts x. Then it follows that L0 can be accepted
in n · t(n) using a direct simulation of U . To prove the lemma, it remains to show that L0 6∈ co-NTIME (t(n)).
Suppose otherwise, L0 ∈ co-NTIME (t(n)). Then let co-L0 be accepted by Ux for some x; this means that x ∈ co-L0

iff Ux accepts x. On the other hand, by definition of L0, we have x ∈ co-L0 iff Ux does not accept x. Contradiction.
Q.E.D.

Lemma 18. The problem EQUIV requires nondeterministic time greater than cn i.o., for some c > 0.

Proof. The above lemma shows the existence of an L in NTIME (n2n)− co-NTIME (2n). Since L is in NEXPT ,
chapter 5 shows that L is many-one reducible to INEQ via some log-linear transformation t. Furthermore, t has the
property that for all x, t(x) represents a well-formed pair of {+, ·, 2}-expressions. This implies co-L is many-one
reducible to EQUIV via t. Choose c = 21/b where t is bn-bounded, b > 0. Assume for the sake of contradiction that
EQUIV ∈ NTIME (cn). Then lemma 16 (i), implies that co-L ∈ NTIME (cbn) = NTIME(2n). This contradicts our
assumption L 6∈ co-NTIME (2n). Q.E.D.

6.6 Weak Separation

The following result of Book [2] is useful in distinguishing between two classes:

Theorem 19. Let J, K be classes and ≤ a reducibility. Suppose K has a complete language under ≤-reducibility.
If J is the limit of the some strictly increasing sequence

J1 ⊂ J2 ⊂ J3 ⊂ · · ·

where each Ji is closed under ≤-reducibility, then J 6= K.

Proof. Let L be K-complete under ≤-reducibility. If J = K then L ∈ Ji for some i. By the basic inclusion
lemma, chapter 4, K ⊆ Ji. This contradicts the fact that J properly contains Ji. Q.E.D.

Of course, this theorem achieves only a weak separation between J and K, since it does not tell us if J −K 6= ∅
or K − J 6= ∅ (although one of these must hold true). We illustrate an application of the lemma:

Theorem 20. PLOG is distinct from NP and from P .

Proof. We know that NP has complete languages under ≤L
m. The technique (in chapter 4) for showing that

DLOG is closed under log-space reducibility easily shows that DSPACE (logk n) is closed under ≤L
m reducibility.

PLOG is the limit of the increasing sequence

DSPACE(log n) ⊆ DSPACE(log2 n) ⊆ DSPACE(log3 n) ⊆ · · · .

6One is tempted to say, this problem is not in NSPACE(o(O(1)n)). But notice that we have not defined the meaning of o(E) where
E is a big-Oh expression.

7EQUIV only differs from the complement of INEQ by being restricted to words that represent pairs of well-formed expressions.
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By the deterministic space hierarchy theorem, we know that this sequence is strictly increasing. Hence the previous
theorem applies showing that NP 6= PLOG . Similarly, since P also has complete languages under ≤L

m, we also
conclude P 6= PLOG . Q.E.D.

Consider the following attempt to show DLOG 6= P : we can define the strictly increasing sequence

DTIME (n) ⊆ DTIME (n2) ⊆ DTIME(n3) ⊆ · · ·

and using ≤L
m as our reducibility, etc., we find that one of the conditions of the lemma fails (where?).

The following chart from Book[2]: shows some of the known distinctions between the various classes.

PLOG (a) DLOG NP (b) (c) P (d)

PLOG

(a) = DSPACE (logk
n) 6=

DLOG 6= 6=

NP 6= ? ?

(b) = NTIME(nk) 6= 6= 6= 6=

(c) = NTIME(n + 1) 6= 6= 6= 6= 6=

P 6= ? ? ? 6= 6=

(d) = DTIME(nk) 6= 6= 6= 6= ? ? 6=

DTIME(n + 1) 6= 6= 6= 6= 6= 6= 6= 6=

Notes: k is any integer greater than 1. An entry “?” indicates that it is not known if the two classes are equal
or not.

6.7 Strong Separation

In section 5 we show the ‘infinitely often’ (i.o.) type of lower bound on the complexity of languages. In this section
we consider the ‘almost every’ (a.e.) version. It is important to realize that strong separation results only make
sense for characteristic classes. Geske and Huynh have proved strong hierarchy theorems in this sense.

Observe that most natural problems do not seem to possess non-trivial a.e. lower bounds. For instance, the
reader can easily be convinced after checking some cases that all known NP-complete problems have infinite subsets
that are easily recognizable in polynomial time. It is unknown whether there are NP-complete problems without
this property. One of the few examples of a natural problem that may possess a non-trivial a.e. lower bound
is primality testing: it is unknown if there is an infinite subset of the prime numbers that can be recognized in
deterministic polynomial time. More precisely8, is there a language L ∈ P such that L ∩ Primes is infinite?

Meyer and McCreight [20] shows that for any space-constructible complexity function s(n) ≥ n, there exists a
language whose running space complexity is lower bounded by s(n) (a.e.). The following theorem adapts the proof
for accepting space complexity and avoids the assumption s(n) ≥ n.

Theorem 21. Let s be an non-decreasing, unbounded space-constructible function. Then there exists an infinite
language L0 in DSPACE(s) such that if N is any acceptor for L0,

AcceptSpaceN (n) = Ω(s(n)).

This result can be regarded as a strong version of the deterministic space hierarchy theorem for characteristic
classes. Similar results have been obtained in [4, 31]. These proofs use ideas from the earlier work of Rabin [23]
and Blum [1].

Proof. The language L0 will be defined by describing an acceptor M for it. Let U = {U0, U1, . . .} be a universal
machine for the class RE |{0, 1}. The basic idea is for M to diagonalize over each Ui that accepts in space cs(n)
for some c > 0. More precisely, suppose the input to M is the binary string i (regarded as an integer when
convenient). First we mark out exactly s(|i|) tape squares on each of its work-tape. In the subsequent simulation,
the computation will never exceed these marked squares. Hence L(M) clearly is in DSPACE(s).

In the following description, we see that M on input i will compute an index δ(i) ≥ 0 such that

8Recently Goldwasser and Killian show that there is an infinite subset that can be recognized in expected polynomial time. Expected
complexity classes will be considered in a later chapter.



6.7. STRONG SEPARATION 269

δ(i) = odd ⇒ M accepts i and U⌊δ(i)/2⌋ rejects i.

δ(i) = even ⇒ M rejects i and U⌊δ(i)/2⌋ accepts i.

We say that the index j ≥ 0 is ‘cancelled’ by input i if j = ⌊δ(i)/2⌋; thus if j is cancelled, then L(Uj) 6= L(M).
Note that we try to cancel each j twice but of course, this is impossible if L(Uj) is a trivial language. The binary
string δ(i) will be written on a tape reserved for this purpose (say tape 1) at the end of the computation on i. So
the machine M is doing double duty: as an acceptor as well as some kind of transducer (but only on the side).

Define ŝ(n) = max{n, s(n)} and let Ci denote the set

Ci = {δ(j) : 0 ≤ j ≤ ŝ(|i|)}

Note that Ci ⊆ Ci+1 and we define C∞ to be the union over all Ci.

Let the input to M be i. Our goal is to cancel some k 6∈ Ci. To do this, we successively submit each
k = 0, . . . , ŝ(|i|) to the following ‘test’: we say k passes the test if it satisfies the following three conditions.

(i) First k 6∈ Ci.
(ii) If k = odd then U⌊k/2⌋ does not accept i in space s(|i|). This covers three possibilities: the machine
either tries to use more than s(|i|) space, or rejects within s(|i|) space, or loops within s(|i|) space.
(iii) If k = even then U⌊k/2⌋ accepts i in space s(|i|).

We claim that this test can be done in s(|i|) space for each k = 0, . . . , ŝ(|i|). To do part (i) of the test, we check
if k = δ(j) for each j = 0, . . . , ŝ(|i|). For each j, we determine δ(j) by recursively calling M on input j. (Note that
the restriction that j ≤ ŝ(|i|) means that j ≤ |i| < i and hence there is no problem of self-reference; this is the
reason we use ŝ(n) instead of s(n) in defining Ci.) Since s(n) is non-decreasing, we do not use more than s(|i|)
space. For part (ii) and (iii) of the test, we see that M can decide whether U⌊k/2⌋ accepts i within space s(|i|): in
particular, we must be able to detect when U⌊k/2⌋ loops within space s(|i|) (which we know how to do from chapter
2, section 9). Thus the test can indeed be carried out within the marked space.

If any of these k passes the test, we write this k on tape 1 (so δ(i) = k) and we accept iff k is odd. Otherwise,
every such value of k fails the test and we write 0 on tape 1 and reject the input i. (We may assume that the index
0 corresponds to a machine that accepts all its inputs.)

This completes the description of M. Now we must prove that our construction is correct. First we claim that
M accepts infinitely many inputs because for each index k corresponding to a machine Uk that rejects all its inputs
in constant space, there is some input x = x(k) such that M on input x accepts and outputs δ(x) = 2k + 1. This
claim amounts to showing that 2k + 1 ∈ C∞. Choose the smallest x such that Cx contains each j < 2k + 1 that
will eventually be cancelled, i.e., Cx contains C∞ ∩ {0, . . . , 2k}, and ŝ(|x|) ≥ 2k + 1. (Such a choice can be found.)
Then M on input x will eventually test 2k + 1, and by choice of k, it will detect that Uk does not accept x within
the space s(|x|). Hence M accepts with output 2k + 1 as desired.

Let N be any acceptor satisfying

AcceptSpaceN(n) ≤ c · s(n) (i.o.) (4)

for each choice of c > 0. It remains show that N cannot accept the same language as M.

Since we have shown that M accepts infinitely many inputs, we may assume that AcceptSpaceN(n) is defined for
infinitely many values of n. Now there is some h ≥ 0 such that N accepts the language L(Uh). By usual properties
of universal machines,

AcceptSpaceUh
(n) ≤ c0 · AcceptSpaceN(n) (5)

for some constant c0 > 0. Choosing c = 1/c0, inequalities (4) and (5) imply that AcceptSpaceUh
(|x|) ≤ c · c0s(|x|) =

s(|x|). So it suffices to show that h is cancelled (since ⌊δ(x)/2⌋ = h implies that M on input x will accept iff Uh

does not accept x in space s(|x|) iff x 6∈ L(Uh) = L(N).)

Since s is unbounded and non-decreasing, we may choose the smallest input x such that

(a) ŝ(|x|) ≥ 2h,

(b) Cx contains all indices k < 2h that are eventually cancelled, C∞ ∩ {0, . . . , 2h − 1} ⊆ Cx.

(c) x ∈ L(Uh).
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Consider the action of M on such an input x: M will test each k = 0, 1, . . . , 2h − 1 and, by choice of x, each
such k will fail the test. Thus M on input x will eventually test 2h. If 2h ∈ Cx then h is cancelled already, and
we are done. If 2h 6∈ Cx then our test calls for M to simulate Uh running on input x. But we just showed that Uh

on |x| uses at most s(|x|) space. Since x ∈ L(Uh), the test succeeds with M rejecting x and outputting δ(x) = 2h.
Thus h is cancelled after all. Q.E.D.

The preceding theorem shows a language L0 that is hard (a.e.) for the characteristic class DSPACE (s). In
order to infer that problems reducible to L0 are also hard (a.e.), we need some converse of lemma 16. First, we
define a language (Σ, L) to be invariant under padding if there is a symbol # ∈ Σ such that for all x ∈ Σ∗, x ∈ L
iff x# ∈ L. The following is due to Stockmeyer [29]. The present proof applies to running space only:

Theorem 22. Suppose L is reducible to L′ via some log-linear transformation and L′ is invariant under padding.
If s(n) ≥ log n is non-decreasing and the running space for L is at least s(n) (a.e.) then for some c > 0, the
running space for L′ at least s(cn) (a.e.).

Proof. Suppose to the contrary that there is an acceptor N for L′ such that for all c > 0, N uses running space
less than s(cn) (i.o.). Let L ≤Llin

m L′ via some log-linear transformation t where |t(x)| ≤ b|x| for integer b ≥ 1. We
obtain an acceptor M for L from any acceptor N for L′ as follows. On input x:

For i = 0, 1, 2, . . . do:
For j = 0, 1, 2, . . . , b|x|, do:

If |t(x)#j | > b|x|
then exit current for-loop (i.e. go to i + 1);

Simulate N on input t(x) · #j using only i space;
If N attempts to use more than i space,

then continue current for-loop (i.e. go to j + 1);
If N halts, then accept if N accepts, else reject;

End

End

The outer for-loop is potentially infinite since i can grow arbitrarily large, but the inner for-loop is bounded by
b|x|. It should be clear that M accepts L. Let reduce(x) denote the set

{t(x) · #j : |t(x)#j | ≤ b|x|, j ≥ 0}.

The basic idea of M is to reduce the decision on x to deciding a member of reduce(x) for which N requires the
least space. Because of padding, we see that x ∈ L implies reduce(x) ⊆ L′ and x 6∈ L implies reduce(x) ∩ L′ = ∅.
To see the space usage of M, suppose y ∈ reduce(x) requires the least space to compute. In the above simulation
of N on y = t(x) · #j , we assume that M does not explicitly store the word y, but uses counters to store the value
j and the input head position on y. Then

RunSpaceM(x) ≤ RunSpaceN(y) + O1(log |y|) (6)

where the term O1(log |y|) comes from storing the counters for j and the head position on y.
Choose c = 1/b. To derive our contradiction, we show that if N runs in less than s(cn) (i.o.) then M will also

use less than s(n) space (i.o.), contradicting our assumption on L. Let E be an infinite set of ‘easy lengths’ for
N. More precisely, for each input y with length |y| in E, RunSpaceN(y) < s(cn). Let E′ be the set of lengths of
inputs for M that can be reduced to those with length is in E, i.e. for each input x with |x| ∈ E′ there is some
y ∈ reduce(x) with |y| ∈ E. Then (6) shows that for such x,

RunSpaceM(x) < s(c|y|) + O1(log |y|)

= O2(s(cb|x|)) = O2(s(|x|)).

Using linear compression of space, M can be modified to ensure that for all n in E′,

RunSpaceM(n) < s(n).

We also see that E′ is infinite: for each n ∈ E, we have ⌈cn⌉ ∈ E′ since if |x| = ⌈cn⌉ then some member of reduce(x)
has length n. This contradicts the assumption that the running space for L is ≥ s(n) (a.e.). Q.E.D.

The requirement that L′ is invariant under padding cannot be omitted in the above theorem. To see this,
suppose the language (Σ, L) requires running space ≥ s(n) (a.e.). Define the language

L′ = {xx : x ∈ L} ∪ {x ∈ Σ∗ : |x| = odd}.
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Clearly L ≤Llin
m L′ but it is easy to design an acceptor for L′ that uses no space for all inputs of odd length.

Lynch [17] shows that if a problem L is not in P then L contains a subset whose running time complexity is
lower bounded by nk (a.e.) for every k ≥ 1; see Even, Selman and Yacobi [9] for a generalization of such results.
Schnorr and Klupp [26] obtains a result similar to Lynch within a natural context: there is a subset of the language
SAT that is a.e. hard. These results should remind the reader of the result of Ladner in chapter 4.

6.8 Inseparability Results

To complement the separation results, we now show some results that reveal limits to our attempts to separate
complexity classes. These results are somewhat surprising because they only rely on certain rather simple properties
that are seen to hold for typical complexity measures such as time and space. Blum [1] first formalized such
properties of complexity measures.

Let Σ = {0, 1} and let U = {Ui} be a universal machine for some class K = K|Σ, and R be any language over
the alphabet Σ ∪ {#}. We say that the pair (U, R) is a Blum measure for K if:

(B1) x ∈ L(Ui) iff there is an m such that i#x#m ∈ R.

(B2) R is recursive and defines a partial function r(i, x) in the sense that if r(i, x) ↓ (i.e. r(i, x) is defined) then
there is a unique m ∈ Σ∗ such that i#x#m ∈ R and if r(i, x) ↑ (i.e. is undefined) then for all m ∈ Σ∗,
i#x#m 6∈ R.

We also write Ri(x) for r(i, x). Intuitively, Ri(x) = m implies that Ui on input x accepts using m units of
some abstract resource. Note that if x 6∈ L(Ui) then, consistent with our use of acceptance complexity, Ri(x) ↑.
The reader may verify that we may interpret this abstract resource to be time, space, reversal or some other
combinations (e.g. products) of these. One caveat is that for space resource, we must now say that the space usage
is infinite or undefined whenever the machine loops (even if it loops in finite space).

The hierarchy theorems suggests a general theorem of this form: there is total recursive function g(n) there
exists for all total recursive functions t(n), the pair

(DTIME (g ◦ t),DTIME (t))

can be separated: DTIME (g(t(n)) − DTIME (t(n)) 6= ∅. Unfortunately, we now show that such a theorem is
impossible without restrictions on t(n). This is implied by the following theorem of Borodin [3, 18, page 148].

Theorem 23 ((Gap lemma)). Let (U, R) be a fixed Blum measure for all recursively enumerable languages. For
any total recursive function g(n) > n there exists a total recursive function t(n) such for all i, there are only finitely
many n such that t(n) < Ri(n) < g(t(n)).

Proof. We define t(n) to be the smallest value m satisfying predicate

P (n, m) ≡ (∀i)[m < Ri(n) < g(m) ⇒ n ≤ i]

As usual, when an integer n appears in a position (e.g. Ri(n)) that expects a string, we regard it as its binary
representation. Note that this definition of t(n), if total and recursive, would have the desired properties for our
theorem. First we show that the predicate P (n, m) is partial recursive. P (n, m) can be rewritten as (∀i)[n ≤
i or ¬(m < Ri(n) < g(m))], or

(∀i < n)[m ≥ Ri(n) or Ri(n) ≥ g(m)].

It is now clear that P (n, m) is decidable, and so, by searching for successive values of m, we get a partial recursive
procedure for t(n). To show that this procedure is total recursive, we show that for any n, there is at least one value of
m satisfying P (n, m). Define m0 = 0 and for each i = 1, 2, ., define mi = g(mi−1). Hence m0 < m1 < · · · . Consider
the gaps between m0, m1, . . . , mn+1: there are n + 1 gaps so that at least one of them [mj , mj+1] (j = 0, . . . , n)
does not contain a value of the form Ri(n), i = 0, . . . , n − 1. Then P (n, mj) holds. Q.E.D.

For instance it easily follows that there exist complexity functions ti (i = 1, 2, 3) such that the following holds:

DTIME (t1) = DTIME (2t1)

DTIME (t2) = NTIME (t2)

DSPACE(t3) = NSPACE(t3)
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Thus such pairs of classes are inseparable. Such results, like the union theorem mentioned in section 6, employ
complexity functions that are highly non-constructible. Such inseparability results are instructive: it tells us that
the constructibility conditions in our separation results cannot be removed with impunity. There are many other
results of this nature (e.g., [24, 8]).

6.9 Conclusion

This chapter shows some basic separation results and uses translational methods to obtain further separations. We
also illustrate techniques for stronger or weaker notions of separation. These results mostly apply to space and
time classes: it would be satisfying to round up our knowledge in this ‘classical’ area by extending the results here
to encompass reversal or simultaneous complexity classes. We also show that there are limits to such separations
if we do not restrict ourselves to nice complexity functions.

Exercises

[6.1] Let t be any total time-constructible function. Show that there is time-constructible function t′ such that
NTIME (t′) − NTIME (t)6=∅.

[6.2] Reprove the deterministic space hierarchy theorem for running complexity. The statement of the theorem
is as before except that we do not assume s2 to be space constructible.

[6.3] Prove a hierarchy theorem for classes of the form D-TIME-SPACE(t, log n) (for various t).

[6.4] (A distributed decrementing counter) Reconstruct Fürer’s result stated in section 2. We want to simulate
each t1(n)-bounded machines in t2(n) steps. On input w, we want to simulate the machine Mw for t2(|w|)
steps. To do this, we a construct a “decrementing-counter” initialized to the value of t2(|w|), and try to
decrement this counter for each step of the simulation. The problem is that since we are restricted to k ≥ 2
(which is fixed in Fürer’s version of the theorem) tapes. So the counter must reside on one of the tracks
of a work tape (which has to be used for the actual simulation of Mw. The idea is to use a ”distributed
representation of numbers” such that there are low order bits scattered throughout the representation (note
that to decrement, it is easy to work on low order bits, and propagate the borrow to a higher order bit
if necessary). So we form a balanced binary with nodes labeled by a digit between 0 and B − 1 (B is a
fixed base of the representation, and B = 4 suffices for us). A node at height h ≥ 0 (the leaves are height
0) with a digit d represents a value of dBh. The number represented is the sum of values at all nodes.
Clearly there are lots of redundancy and all the leaves are low-order bits. We store the labels of the nodes
in an in-order fashion so the root label is in the middle of the representation. We want to decrement at
ANY leaf position. If necessary, borrows are taken from the parent of a node. When the path from any
leaf to the root has only zero labels, then this representation is exhausted and we must redistribute values.
Show that if we do a total of m decrements (as long as the tree is not exhausted) then the time is O(m)
on a Turing machine. Apply this to our stated theorem (we have to show that the tree is not too quickly
exhausted and we must show how to reconstruct exhausted trees)

[6.5] (a) (Hong) Show that the transformation w 7→ tally(w) (where w ∈ {1, . . . , k}∗ and tally(w) ∈ {1}∗) can
be computed in space-reversals O(n, log n) and also in space-reversals O(log n, n).
(b) Generalize this result by giving tradeoffs between space and reversals.

[6.6] Show that for t any total time-constructible function then there exists a deterministic 1-tape acceptor M
that time-constructs some t′ such that

L(M) ∈ DTIME (t′) −
∞
⋃

j=0

NTIME(t(n + j)).

[6.7] Separate the following pairs of classes:
(a) DTIME (2n) and DTIME (3n)
(b) NSPACE (2n) and NSPACE (3n)
(c) NSPACE (22n

) and DSPACE (23n

).

[6.8] Show the translational lemma for time resource analogous to lemma 5. Conclude that if NP ⊆ P then
NEXPT ⊆ DEXPT .
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[6.9] (I. Simon) Assume the one-way oracle machines (section 3, chapter 4) for this question. Show that Savitch’s
upward space translation result can be relativized to any oracle. More precisely, for any oracle A, and space-
constructible and moderately growing function s, NSPACEA(s) ⊆ DSPACEA(s) implies that that for all
s′(n) ≥ s(n), NSPACEA(s′) ⊆ DSPACEA(s).

[6.10] Where does the proof of Ibarra’s theorem break down for nondeterministic time complexity?

[6.11] Complete the proof of Cook’s result that NTIME (nr) − NTIME (ns)6=∅ from section 4: It is enough to
show that for any b = k2−m ≥ 1 where k, m are positive integers, there exists a time-constructible function
t(n) = Θ(nb). Hint: Show that in linear time, you can mark out Θ(n1/2) cells. Extend this to Θ(n2−m

),
and use the time-constructibility of the function nk for any integer k ≥ 1 and an exercise in chapter 2.

[6.12] (Recursion theorem for nondeterministic time) Let Σ = {0, 1, $} and let U = {Ui} be a universal machine
for the class RE |Σ. For all indices i, if Ui accepts in time t0 then there exists an index j such that Uj

accepts the language
{x : j$x ∈ L(Ui)}

in time Oi(1)+ t0(|j$|+n). Remark. This lemma is used the Seiferas-Fisher-Meyer proof of the hierarchy
theorem for nondeterministic time. This lemma is analogous to the second recursion theorem (also called
the fixed point theorem) in recursive function theory.9

[6.13] (Žák) If t is time-constructible and t(n+1) = O(t(n)) then for each c > 0, NTIME (t)−NTIME cut
U (ct) 6= ∅.

Hint: use Žák’s theorem 13.

[6.14] (Book) Show the time analogue of the space translation lemma for tally languages: Let f(n) ≥ 2n, X = D
or N . Then

L ∈ XTIME(f(O(n))) ⇐⇒ tally(L) ∈ XTIME(f(O(log n))).

[6.15] (Wilson) Show that if every tally language in NP ∩ co-NP belongs to P then NEXPT ∩ co-NEXPT ⊆
DEXPT . Hint: You may use the result of the previous exercise.

[6.16] (Book) Let Φ ⊆ DLOG (the logarithmic space computable transformations), X = D or N . Show that if

L is XTIME (O(n))-complete under ≤Φ
m then L is XTIME (nO(1))-complete under ≤DLOG

m .

[6.17] Provide the proofs for the rest of the entries in the chart at the end of section 5.

[6.18] (Book) Show that if NP ⊆ P then NEXPT ⊆ DEXPT .

[6.19] (Book) Show that NP |{1}6=DSPACE(logO(1) n))|{1}.

[6.20] Consider the family Φ of transformations computed in deterministic log-space and in linear time. So Φ is
a subfamily of Llin in Chapter 4.
(i) Show if L ∈ D-TIME-SPACE (ni, log n) and L′ ≤Φ

m L then L′ ∈ D-TIME-SPACE(ni+1, log n).
(ii) Show that NTIME (n2) has a complete language under ≤Φ

m.
(iii) Show that NTIME (n2) 6= DLOG. HINT: use the hierarchy theorem in Exercise 6.3.

[6.21] (Loui) Try to imitate the proof of theorem 20 to attempt to show that P 6= PSPACE . Where does the
proof break down?

[6.22] (open) Separate NTIME (22n

) from NTIME (n22n

).

[6.23] (open) Improve the nondeterministic time hierarchy theorem of Seiferas-Fischer-Meyer by changing the
theorem statement from ‘o(t(n − 1))’ to ‘o(t(n))’.

[6.24] Suppose that the outline (a) and (b) in section 5 were stated for the class DSPACE (F ) in place of K,
where F is a set of complexity functions. State the conditions on F for the same conclusion to hold.

[6.25] (Stockmeyer) Say a language (Σ, L) is naturally padded if there is a symbol # 6∈ Σ, some integer j0, and
a logspace transformation t : Σ∗#∗ → Σ∗ such that (a) L · #∗ ≤L

m L via t, and (b) |t(x#j)| = |x| + j for
all x ∈ Σ∗ and j ≥ j0. Prove theorem 22 using this “ natural padding” instead of the “invariance under
padding” assumption.

9The second recursion theorem is as follows: let U be a universal machine for RE |{0, 1}. Then for every total recursive function f

there exists an index i such that Ui(x) = Uf(i)(x) for all x. As pointed out in the excellent exposition in [7, chapter 11], this theorem
is the quintessence of diagonal arguments; it can be used (perhaps as an overkill) to give short proofs for many diagonalization results.
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[6.26] (Stockmeyer) Suppose L is Karp-reducible to L′ via a polynomial time transformation t that is linearly
bounded. If L has an t(n) (a.e.) lower bound on its acceptance time, show a corresponding a.e. lower
bound on L′.

[6.27] Define an even stronger notion of separation: the characteristic classes DTIME (t′) and DTIME (t) are
said to be very strongly separated if there exists an infinite language L in DTIME (t′)−DTIME(t) such that
for any acceptor M for L, AcceptT imeM(x) > t(|x|) for almost every input x ∈ L(M). (In other words, we
use ‘a.e. x’ rather than ‘a.e. n’.) Extend the proof of theorem 21 to this setting of very strong separation.

[6.28] (Even, Long, Yacobi) Say L is easier than L′ if for all N accepting L′ there is an M accepting L such that

1. AcceptT imeM(x) = |x|O(1) + AcceptT imeN(x) for all input x.

2. For some k > 0, (AcceptT imeM(x))k ≤ AcceptT imeN(x) for infinitely many x.

If only (1) is satisfied then we say that L is not harder than L′. Show that if there exists a language
L0 ∈ NP − co-NP then:
(a) There exists a recursive language L1 6∈ NP ∪ co-NP such that L0 is not harder than L1 and L1 is not
harder than L0.
(b) There exists a recursive language L2 6∈ NP ∪ co-NP such that L1 is easier than L0.

[6.29] (Ming Li) Show that for all j > 1, NTIME(nj) − D-TIME-SPACE(nj , o(n)) is non-empty.

[6.30] (Ming Li) Show that there is a language in NTIME (n) that cannot be accepted by any deterministic
simple Turing machine in time O(n1.366).
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Chapter 7

Alternating Choices

April 13, 2009

In this chapter, we introduce the general concept of computational choices. The general mechanism for ascribing
“acceptance” to such a computation is based on the theory of valuation. Values are viewed as probability intervals
[u, v] ⊆ [0, 1]. Computational complexity can also be based on this theory. After some general results about
valuations, the rest of the chapter focuses on a simple form of choice, called alternation.

7.1 Introducing Computation with Choice

The choice-mode of computation comes in two main flavors. The first is based on probability and briefly discussed
in Chapter 1 (Section 6.2). The second is a generalization of nondeterministism called alternation. Let us briefly
see what an alternating computation looks like. Let δ be the usual Turing transition table that has choice and
let C0(w) denote the initial configuration of δ on input w. For this illustration, assume that every computation
path is finite; in particular, this implies that no configuration is repeated in a computation path. The computation
tree T (w) = Tδ(w) is defined in the obvious way: the nodes of T (w) are configurations, with C0(w) as the root; if
configuration C is a node of T (w) and C ⊢ C′ then C′ is a child of C in T (w). Thus the leaves of T (w) are terminal
configurations. The description of an alternating machine M amounts to specifying a transition table δ together
with an assignment γ of a Boolean function γ(q) ∈ {∧,∨¬} to each state q in δ. This induces a Boolean value on
each node of T (w) as follows: the leaves are assigned 1 or 0 depending on whether the configuration is accepting
or not. If C is not a leaf, and q is the state in C, then we require that the number of children of C is equal to the
arity of γ(q). For instance, if C has two children whose assigned values are x and y then C is assigend the value
γ(q)(x, y). Finally we say M accepts w if the root C0(w) is assigned value 1.

The reader will see that nondeterministic computation corresponds to the case where γ(q) = ∨ for all q. Since
the introduction of alternating machines by Chandra, Kozen and Stockmeyer[3] in 1978, the concept has proven to
be an extremely useful tool in Complexity Theory.

The model of probabilistic machines we study was introduced by Gill[7]. Let us rephrase the description of
probabilistic computation in Chapter 1 in terms of assigning values to nodes of a computation tree. A probabilistic
machine is formally a transition table δ where each configuration spawns either zero or two children. For any
input w, we again have the usual computation tree T (w). The leaves of T (w) are given a value of 0 or 1 as in the
alternating case. However, an internal node u of T (w) is assigned the average (x + y)/2 of the values x, y of the
two children of u. The input w is accepted if the root is assigned a value greater than 1/2. (The reader should be
verify that this description is equivalent to the one given in Chapter 1.) The function f(x, y) = (x + y)/2 is called
the toss function because in probabilistic computations, making choices is interpreted as branching according to
the outcomes of tossing a fair coin.

Hence, a common feature of probabilistic and alternating modes is their systematic bottom-up method of
assigning values to nodes of computation trees. One difference is that, whereas probabilistic nodes are given
(rational) values between 0 and 1, the alternating nodes are assigned Boolean values. We modify this view of
alternating machines by regarding the Boolean values as the real numbers 0 and 1, and generalizing the Boolean
functions ∧, ∨ and ¬ to the real functions min, max and f(x) = 1 − x (respectively).

With this shift of perspective, we have almost accomplished the transition to a new syncretistic model that we
call probabilistic-alternating machines. This model was first studied in [23]. A probabilistic-alternating machine M
is specified by giving a transition table δ and each state is associated with one of the four real functions

1
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min(x, y), max(x, y), 1 − x,
x + y

2
. (1)

We require c onfiguration in state q to spawn m children where m is the arity of the function associated with
q. This can be enforced by synthetic restrictions on the transition table δ. Given an input w, we construct the tree
T (w) and assign values to its nodes in the usual bottom-up fashion (again, assuming T (w) is a finite tree). We say
M accepts the input w if the value at the root of T (w) is > 1/2.

Probabilistic and alternating machines in the literature are usually studied independently. In combining these
two modes, we extend results known for only one of the modes, or unify distinct results for the separate modes.
More importantly, it paves the way towards a general class of machines that we call choice machines. Computations
by choice machines are characterized by the systematic assignment of ‘values’ to nodes of computation trees, relative
to the functions γ(q) which the machine associates to each state q. These functions are similar to those in (1),
although an immediate question is what properties should these functions satisfy? This will be answered when the
theory is developed. We call any assignment of “values” to the nodes of a computation tree a valuation.1 Intuitively,
these values represent probabilities and lies in the unit interval [0, 1]. But because of infinite computation trees, we
are forced to take as “values” any subinterval [a, b] of the unit interval [0, 1]. Such intervals represent uncertainty
ranges in the probabilities. This leads to the use of a simple interval algebra. The present chapter develops the
valuation mechanism needed for our theory of choice machines. We will specifically focus on alternation machines,
leaving stochastic machines to the next chapter.

Other choice modes. Other authors independently proposed a variety of computational modes that turn out to
be special cases of our probabilistic-alternating mode: interactive proof systems (Goldwasser, Micali and Rackoff
[8]), Arthur-Merlin games (Babai [2]), stochastic Turing machines (Papadimitriou [16]), probabilistic-

nondeterministic machines (Goldwasser and Sipser [9]). In general, communication protocols and game playing
models can be translated as choice machines. In particular, this holds for the probabilistic game automata

(Condon and Ladner [4]) which generalize interactive proof systems and stochastic machines2. Alternating machines
are generalized to logical type machines (Hong [11]) where machine states can now be associated with any of the
16 Boolean functions on two variables. Some modes bearing little resemblance to choice machines can nevertheless be
viewed as choice machines: for example, in Chapter 9 we describe a choice mode that generalizes nondeterminism
in a different direction than alternation. (This gives rise to the so-called Boolean Hierarchy.) These examples
suggests that the theory of valuation gives a proper foundation for choice modes of computation. The literature
can avoid our systematic development only by restrictions such as requiring constructible time-bounds.

7.2 Interval Algebra

The above introduction to probabilistic-alternating machines explicitly avoided infinite computation trees T (x).
Infinite trees cannot be avoided in general; such is the case with space-bounded computations or with probabilistic
choices. In particular, a computation using finite amount of space may have infinite computation paths. To see
why infinite trees are problematic, recall that we want to systematically assign a value in [0, 1] to each node of
T (x), in a bottom-up fashion. But if a node u of T (x) lies on an infinite path, it is not obvious what value to assign
to u.

Our solution [23] lies in assigning to u the smallest ‘confidence’ interval I(u) ⊆ [0, 1] guaranteed to contain the
‘true’ value of u. This leads us to the following development of an interval algebra3.

In the following, u, v, x, y, etc., denote real numbers in the unit interval [0, 1]. Let

INT := {[u, v] : 0 ≤ u ≤ v ≤ 1}

denote the set of closed subintervals of [0, 1]. An interval [u, v] is exact if u = v, and we identify the exact interval
[u, u] with the real number u. We call u and v (respectively) the upper and lower bounds of the interval [u, v]. The
unit interval [0, 1] is also called bottom and denoted ⊥.

1The term ‘valuation’ in algebra refers to a real function on a ring that satisfies certain axioms. Despite some concern, we will
expropriate this terminology, seeing little danger of a context in which both senses of the term might be gainfully employed.

2This game model incorporates ‘partially-hidden information’. It will be clear that we could add partially-hidden information to
choice machines too.

3Interval arithmetic, a subject in numerical analysis, is related to our algebra but serves a rather different purpose. We refer the
reader to, for example, Moore [15].
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By an interval function we mean a function f : INTn → INT, where n ≥ 0 denotes the arity of the function.
We are interested in six interval functions. The first is the unary function of negation (¬), defined as follows:

¬[x, y] = [1 − y, 1 − x].

The remaining five are binary functions:

minimum (∧), maximum (∨),
toss ( f),
probabilistic-and (⊗), probabilistic-or (⊕).

It is convenient to first define them as real functions. The real functions of minimum and maximum are obvious.
The toss function is defined by

x fy :=
x + y

2
.

We saw in our introduction how this function arises from probabilistic (coin-tossing) algorithms. The last two
functions are defined as follows:

x ⊗ y := xy

x ⊕ y := x + y − xy

Thus ⊗ is ordinary multiplication of numbers but we give it a new name to signify the interpretation of the numbers
as probabilities. If E is the event that both E1 and E2 occur, then the probability Pr(E) of E occurring is given by

Pr(E) = Pr(E1) ⊗ Pr(E2).

We assume that E1, E2 are independent events. Similarly ⊕ has a probabilistic interpretation: if E is the event
that either E1 or E2 occurs, then

Pr(E) = Pr(E1) ⊕ Pr(E2).

To see this, simply note that x ⊕ y can also be expressed as 1 − (1 − x)(1 − y). For brevity, we suggest reading ⊗
and ⊕ as ‘prand’ and ‘pror’, respectively.

We note that these 5 real functions can also be regarded as functions on [0, 1] (i.e., if their arguments are in
[0, 1] then their values remain in [0, 1]). We may then extend them to the subintervals INT of the unit interval as
follows. If ◦ is any of these 5 functions, then we define

[x, y] ◦ [u, v] := [(x ◦ u), (y ◦ v)].

For instance, [x, y] ⊗ [u, v] = [xu, yv] and [x, y] ∧ [u, v] = [min(x, u), min(y, v)]. Alternatively, for any continuous
function f : [0, 1] → [0, 1], we extend the range and domain of f from [0, 1] to INT by the definition f(I) = {f(x) :
x ∈ I}. If f is also monotonic, this is equivalent to the above.

One easily verifies:

Lemma 1. All five binary functions are commutative. With the exception of f, they are also associative.

The set INT forms a lattice with ∧ and ∨ as the join and meet functions, respectively4. It is well-known that
we can define a partial order ≤ in any lattice by:

[x, y] ≤ [u, v] ⇐⇒ ([x, y] ∧ [u, v]) = [x, y]. (2)

Note that (2) is equivalent to:
[x, y] ≤ [u, v] ⇐⇒ x ≤ u and y ≤ v.

When we restrict this partial ordering to exact intervals, we get the usual ordering of real numbers. For reference,
we will call ≤ the lattice-theoretic ordering on INT.

The negation function is not a complementation function (in the sense of Boolean algebra [5]) since neither
I∧¬I = 0 nor5 I∨¬I = 1 holds for all I ∈ INT. However it is idempotent, ¬¬I = I. Probabilistic-and and
probabilistic-or can be recovered from each other in the presence of negation. For example,

I ⊗ J = ¬(¬I ⊕ ¬J).

It easy to verify the following forms of de Morgan’s law:

4A lattice X has two binary functions, join and meet, satisfying certain axioms (essentially all the properties we expect from max
and min). Lattice-theoretic notations can be found, for instance, in [5]. The lattice-theoretic properties are not essential for the
development of our results.

5We assume that ¬ has higher precedence than the binary operators so we may omit parenthesis when convenient.
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Lemma 2.

¬(I ∧ J) = ¬I ∨ ¬J

¬(I ∨ J) = ¬I ∧ ¬J

¬(I f J) = ¬I f ¬J

¬(I ⊗ J) = ¬I ⊕ ¬J

¬(I ⊕ J) = ¬I ⊗ ¬J

where I, J ∈ INT.

In view of these laws, we say that the functions ∧ and ∨ are duals of each other (with respect to negation);
similarly for the pair ⊗ and ⊕. However, f is self-dual.

We verify the distributivity of ∧ and ∨ with respect to each other:

I ∨ (J1 ∧ J2) = (I ∨ J1) ∧ (I ∨ J2)

I ∧ (J1 ∨ J2) = (I ∧ J1) ∨ (I ∧ J2).

Furthermore, f, ⊗ and ⊕ each distributes over both ∧ and ∨:

I f(J1 ∧ J2) = (I f J1) ∧ (I f J2), I f(J1 ∨ J2) = (I f J1) ∨ (I f J2)

I ⊗ (J1 ∧ J2) = (I ⊗ J1) ∧ (I ⊗ J2), I ⊗ (J1 ∨ J2) = (I ⊗ J1) ∨ (I ⊗ J2)

I ⊕ (J1 ∧ J2) = (I ⊕ J1) ∧ (I ⊕ J2), I ⊕ (J1 ∨ J2) = (I ⊕ J1) ∨ (I ⊕ J2)

However ⊗ and ⊕ do not distribute with respect to each other (we only have x ⊗ (y ⊕ z) ≤ (x ⊗ y) ⊕ (x ⊗ z)).
And neither ∧ nor ∨ distributes over f, ⊗ or ⊕.

Another Partial Order. For our applications, it turns out that a more useful partial order on INT is ⊑ ,
defined by:

[x, y] ⊑ [u, v] ⇐⇒ x ≤ u and v ≤ y.

Clearly ⊑ is the reverse of the set inclusion relation between intervals: I ⊑ J ⇐⇒ J ⊇ I as sets. With respect
to the ⊑ -ordering, all exact intervals are maximal and pairwise incomparable6. In view of our interpretation of
intervals as ‘intervals of confidence’, if I ⊑ J then we say J has ‘at least as much information’ as I. For this
reason, we call ⊑ the information-ordering. In contrast to the lattice-theoretic ≤-ordering, ⊑ only gives rise to
a lower semi-lattice with the meet function ⊓ defined by

[x, y] ⊓ [u, v] = [min(x, u), max(y, v)].

(The following suggestion for defining the join ⊔ fails: [x, y] ⊔ [u, v] = [max(x, u), min(y, v)].) Note that bottom ⊥
is the least element (“no information”) in the information-ordering.

Example 1. The strong 3-valued algebra described7 by Chandra, Kozen and Stockmeyer [3] is a subalgebra of
our interval algebra, obtained by restricting values to {0, 1,⊥}. See figure 7.1 for its operation tables. They only

∧ 0 1 ⊥

0

1

⊥

0

0

0

0

1

⊥

0

⊥

⊥

∨ 0 1 ⊥

0

1

⊥

0

1

⊥

1

1

1

⊥

1

⊥

Figure 7.1: The strong 3-valued algebra.

6I and J are ⊑ -comparable if I ⊑ J or J ⊑ I, otherwise they are ⊑ -incomparable.
7Attributed to Kleene.
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were interested in the functions ∧, ∨, ¬. Thus our interval algebra gives a model (interpretation) for this 3-valued
algebra.

The contrast between ≤ and ⊑ is best exemplified by the respective partial orders restricted to this 3-valued
algebra, put graphically:

��
��

0

��
��
⊥

��
��

1

≤

≤

��
��
⊥

��
��

0 ��
��

1

S
S

SS �
�

��
⊑⊑

This information ordering gives rise to some important properties of interval functions. Given a sequence of
⊑ -increasing intervals

I1 ⊑ I2 ⊑ · · · ,

we define its limit in the natural way: limj≥1 Ij is just ∩j≥1Ij . Note that we only define this operation for increasing
sequences, even though ∩j≥1Ij is defined without restrictions.

Definition 1.

(i) An n-ary function

f : INTn → INT

is monotonic if for all intervals J1, . . . , Jn, J ′
1, . . . , J

′
n:

J1 ⊑ J ′
1, . . . , Jn ⊑ J ′

n ⇒ f(J1, . . . , Jn) ⊑ f(J ′
1, . . . , J

′
n).

(ii) f is continuous if it is monotonic and for all non-decreasing sequences

J
(1)
i ⊑ J

(2)
i ⊑ J

(3)
i ⊑ · · ·

(i = 1, . . . , n), we have that

f(lim
j
{J (j)

1 }, . . . , lim
j
{J (j)

n }) = lim
j

f(J
(j)
1 , . . . , J (j)

n ). (3)

Note that continuous functions are assumed monotonic. This ensures that the limit on the right-hand side of
(3) is meaningful because monotonicity of f implies

f(J
(1)
1 , . . . , J (1)

n ) ⊑ f(J
(2)
1 , . . . , J (2)

n ) ⊑ f(J
(3)
1 , . . . , J (3)

n ) ⊑ · · · .

Lemma 3. The six functions ∧, ∨, f, ⊗, ⊕ and ¬ are continuous.

We leave the proof as an exercise. Continuity of these functions comes from continuity of their real counterpart.

Example 2. The cut-off function δ 1
2
(x) is defined to be 1 if x > 1

2 and 0 otherwise. We extend this function to

intervals in the natural way: δ 1
2
([u, v]) = [δ 1

2
(u), δ 1

2
(v)]. This function is monotonic but not continuous. To see

this, let Ii = [0, 1
2 + 1

i ]. Then limi Ii = [0, 1
2 ] but

0 = δ 1
2
([0,

1

2
]) 6= lim

i
δ 1

2
(Ii) = ⊥.

The following simple observation is useful for obtaining monotonic and continuous functions.
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Lemma 4.
(i) Any composition of monotonic functions is monotonic.
(ii) Any composition of continuous functions is continuous.

Exercises

Exercise 0.1: Verify the above identities of interval algebra. ♦

Exercise 0.2: Some additional properties of the lattice INT:
(a) Show that the two orderings ≤ and ⊑ are “complementary” in the following sense: for all I and J , either
I and J are ≤-comparable or they are ⊑ -comparable.
(b) Show that I and J are both ≤ -comparable and ⊑ -comparable iff I ≈ J where we write [x, y] ≈ [x, v] if
x = u or y = v.
(c) Extend ∧ and ∨ to arbitrary sets S ⊆ INT of intervals: denote the meet and join of S by ∧S and ∨S.
Show that INT forms a complete lattice with least element 0 and greatest element 1. ♦

Exercise 0.3: Consider the 2-ary Boolean function inequivalence (also known as exclusive-or) denoted 6≡. We
want to extend this function to intervals in INT. One way to do this is to use the equation

x 6≡ y = (x∧¬y)∨(¬x∧y)

valid for Boolean values, but now interpreting the ∧,∨ and ¬ as interval functions. For instance,

[0.2, 0.5] 6≡ [0.6, 0.7] = ([0.2, 0.5]∧[0.3, 0.4])∨([0.5, 0.8]∧[0.6, 0.7])

= [0.2, 0.4]∨[0.5, 0.7] = [0.5, 0.7].

Can you find other equations for 6≡ that are valid in the Boolean case such that the extension to intervals are
not the same function? ♦

End Exercises

7.3 Theory of Valuations

To give a precise definition for the choice mode of computation, and its associated complexity measures, we introduce
the theory of valuations. We also signal a new emphasis through a terminology change:

• Global Decisions. In Chapter 0, a non-accepting computation is classified as either rejecting or looping.
Now, the disposition of an acceptor with respect to any input is one of the following: acceptance, rejection
or indecision. These three dispositions are called “global decisions” because they are based on the entire
computation tree, using the notion of valuations. Intuitively, looping is now replaced by indecision but the
two concepts are not identical.

• Local Answers. Each computation path leads to a “local answer”. If the path is finite, the local answer
resides in the terminal configuration C of the path. Previously, the local answers are either accept or not-
accept. We now have three local answers from C: YES, NO or YO. If the path is infinite, the local answer
is YO. These answers are analogues of the three global decisions. In particular “YO” is neither Yes or No,
i.e., indecision.

To implement the local answers, we introduce two distinguished states,

qY , qN ∈ Q∞.

called the YES-state and NO-state, respectively, These are replacements for the previous accept (qa) and reject
(qr) states. We can further arrange transition tables so configurations with these states are terminal. A terminal
configuration C is called a YES-configuration, NO-configuration or a YO-configuration, depending on whether its
state is qY , qN or some other state. A computation path is called a YES-path, NO-path or YO-path, depending on
whether it terminates in a YES, NO or otherwise. Thus a YO-path either terminates in a YO-configuration or is
non-terminating.
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Name Basis B Mode Symbol

deterministic {ι} D
nondeterministic {∨} N
probabilistic { f} Pr
alternating {∧,∨,¬} A
interactive proofs { f,∨} Ip
probabilistic-alternating { f,∧,∨,¬} PrA
stochastic { f,⊗,⊕,¬} St
stochastic-alternating { f,⊗,⊕,∧,∨,¬} StA

Figure 7.2: Some Choice Modes and their Symbols.

Naturally, the global decision is some generalized average of the local answers. This global/local terminology
anticipates the quantitative study of errors in a computation (see Chapter 8). For now, it suffices to say that all
error concepts are based on the discrepancies between global decisions and local answers. The seemingly innocuous
introduction of YO-answers8 is actually critical in our treatment of errors.

Let f be interval function, i.e.,
f : INTn → INT.

where n ∈ N is the arity of f . The 0-ary functions are constant functions, and the identity function ι(I) = I has
arity 1. The constant functions are automatically continuous.

Definition 2. A set B of functions on INT is called a basis set if the functions in B are continuous. For any basis

set B, a B-acceptor is a triple M = (δ, γ,
M
<) where δ is a Turing transition table whose state set QM is ordered by

a total ordering
M
<, and γ associates a basis function γ(q) to each state q ∈ QM ,

γ : Q → B.

Moreover, δ has the property that if C is a configuration of δ in state q and γ(q) has arity n, then C either is a
terminal configuration or has exactly n immediate successors C1, . . . , Cn such that the Ci’s have distinct states.

The size of a basis set B can be finite or infinite. For example, if B1 = {ι}, then a B1-machine is just
deterministic Turing machine. In all the basis sets that arise naturally, the identity function ι is easily simulated,
and so we might as well explicitly put them in. As another example, suppose B contains, among other things, each
of the constant function f(I) = c, for 0 ≤ c ≤ 1. Then a B-machine can assign an arbitrary value c to each leaf.
However, since a B-machine has a finite number of states, only a finite number of such values c is used.

Operations of a B-machine. If the immediate successors of a configuration C are C1, . . . , Cn such that the

state of Ci is less than the state of Ci+1 (under the ordering
M
<) for each i = 1, . . . , n− 1, then we indicate this by

writing9

C ⊢ (C1, . . . , Cn).

If q is the state of C, we also write γ(C) or γC instead of γ(q). We require that C1, . . . , Cn be distinct states
because the value of the node (labeled by) C in the computation tree is given by γC(v1, . . . , vn) where vi is the

value of the node (labeled by) Ci. Without an ordering such as
M
< on the children of C, we have no definite way to

assign the vi’s as arguments to the function γC . But for basis sets that we study, the functions are symmetric in

their arguments and so we will not bother to mention the ordering
M
<.

The table in Figure 7.3 collects some common classes of B-choice machines. Each basis set B gives rise to a new
computational mode. The symbols for these modes are in the third column of this table. We shall say a B-machine
makes B-choices. Thus, nondeterministic machines makes nondeterministic choices and alternating machines makes
alternating choices. MIN- and MAX-choices are also called universal choices and existential choices; Coin-tossing
choices are also called random choices or probabilistic choices.

8We owe the YO-terminology to the unknown street comedian in Washington Square Park whose response to an ongoing public
campaign called “Just say NO to drugs” was: “we say YO to drugs”. Needless to say, this local answer is in grave error.

9This notation could cause some confusion because we do not want to abandon the original meaning of “C ⊢ C′”, that C′ is a
successor of C. Hence “C ⊢ C′” does not mean that C has only one successor; to indicate this, we must write “C ⊢ (C′)”.
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From Figure 7.3, it is evident that we differentiate between the words ‘probabilistic’ and ‘stochastic’: the
adjective ‘probabilistic’ applies only to coin-tossing concepts – a usage that conforms to the literature. The adjective
‘stochastic’ is more general and includes coin-tossing concepts. We abbreviate a probabilistic-alternating machine
to ‘PAM’, and a stochastic-alternating machine to ‘SAM’.

If γ(q) = ∧ (respectively, ∨, f,⊗,⊕,¬) then q is called an MIN-state (respectively, MAX-, TOSS-, PrAND-,
PrOR-, NOT-state). If the state of C is an MIN-state (MAX-state, etc.), then C is an MIN-configuration (MAX-
configuration, etc.).

Example 3. This is an instructive exercise to gain som some facility with alternating machines. We show that an
alternating machine M which accepts the palindrome language

Lpal = {w : w ∈ {0, 1}∗, w = wR}
in linear time, using only logarithmic space. To understand what this tells us about the power of alternation, it
was shown in Chapter 2 that

Lpal ∈ D-TIME-SPACE(O(n), O(n)),

Lpal ∈ D-TIME-SPACE(O(n2), log n),

and further, if
Lpal ∈ N-TIME-SPACE(t(n), s(n))

then s(n) · t(n) = Ω(n2). Hence this example shows that the alternating mode is strictly more powerful than
nondeterminism. Of course, the formal definition of what it means for a choice machine to accept a word, and the
notion of space and time complexity is yet to come. But if our machine halts on all paths, then these concepts
are intuitively obvious: we rely on such intuitions for the reader to understand the example. The idea of the
construction is that M accepts an input w iff for all i = 1, . . . , n = |w|, w[i] = w[n + 1 − i].

We describe the operations of M in two phases. Let the input be w. All the states of M are either deterministic
or universal. Phase 1: The machine M deterministically marks out m = ⌈lg n⌉ cells where n = |w|. This takes
O(n) time, using a well-known fact that we can successively increment a binary counter from 0 to n in O(n) steps
of a Turing machine. Phase 2: First, it guesses a bit for each of the marked cells. This yields a binary number i
between 0 and 2n − 1. Now, make a duplicate copy of the number i. Using one copy of i, M determines the bit
w[i + 1]. Using the other copy of i, it determines the bit w[n − i]. The reason we need two copies of i is that M
“uses i” by successively decrementing i until it reaches 0; thus the original value of i is destroyed in the process.
For each decrement, M moves its head position to the next bit of w (the direction of head motion depends on
whether we want to look for w[i+1] or w[n− i]). As in Phase 1, we use the fact that the successive decrementing of
a binary number i to 0 takes O(i) steps of M . Finally, M answers YES if “w[i +1] = w[n− i]”, and NO otherwise.
If i ≥ n− 1, then M can detect this while trying looking for w[i + 1], and in this case M always answer YES. This
completes our description of M .

First, note that M accepts Lpal: only any input w, if w ∈ Lpal, then M answers YES for value of i. Thus M
accepts. If w 6∈ Lpal, there is at least one NO answer. Since the states of M are universal, the overall value of the
computation tree is a 0, i.e., M rejects. To see that M accepts in time-space O(n, log n), note that the height of
the computation tree is O(n) and each configuration uses space O(log n).

We now want to define acceptance by choice machines. Basically we need to assign intervals [u, v] ∈ INT to
nodes in computation trees. The technical tool we employ is the concept of a ‘valuation’.

Definition 3. Let M= (δ, γ) be a choice machine. The set of configurations of δ is denoted ∆(M). A valuation

of M is a function
V : ∆(M) → INT.

A partial ordering on valuations is induced from the ⊑ -ordering on INT as follows: for valuations V1 and V2,
define V1 ⊑ V2 if

V1(C) ⊑ V2(C)

for all C ∈ ∆(M). The bottom valuation, denoted V⊥, is the valuation that always yield ⊥. Clearly V⊥ ⊑ V for
any valuation V .

Definition 4. Let ∆ ⊆ ∆(M). We define the following operator τ∆ on valuations. If V is a valuation, then τ∆(V )
is the valuation V ′ defined by:

V ′(C) =






⊥ if C 6∈ ∆ or C is YO-configuration,
1 else if C is a YES-configuration,
0 else if C is a NO-configuration,
γC(V (C1), . . . , V (Cn)) else if C ⊢ (C1, . . . , Cn).
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For instance, we may choose ∆ to be the set of all configurations of M that uses at most space h (for some h).

Lemma 5 (Monotonicity). ∆1 ⊆ ∆2 and V1 ⊑ V2 implies τ∆1
(V1) ⊑ τ∆2

(V2).

Proof. We must show τ∆1
(V1)(C) ⊑ τ∆2

(V2)(C) for all C ∈ ∆(M). If C 6∈ ∆1, then this is true since the
left-hand side is equal to ⊥. So assume C ∈ ∆1. If C is terminal, then τ∆1

(V1)(C) = τ∆2
(V2)(C) (= 0, 1 or ⊥).

Otherwise, C ⊢ (C1, . . . , Cn) where n is the arity of γC . Then

τ∆1
(V1)(C) = γC(V1(C1), . . . , V1(Cn))

⊑ γC(V2(C1), . . . , V2(Cn))

= τ∆2
(V2)(C).

where the ⊑ follows from the monotonicity of γC . Q.E.D.

For any ∆ ⊆ ∆(M) and i ≥ 0, let τ i
∆ denote operator obtained by the i-fold application of τ∆, i.e.,

τ0
∆(V ) = V, τ i+1

∆ (V ) = τ∆(τ i
∆(V )).

As corollary, we get

τ i
∆(V⊥) ⊑ τ i+1

∆ (V⊥)

for all i ≥ 0. To see this, use induction on i and the monotonicity lemma.

Definition 5. From the compactness of the interval [0, 1], we see that there exists a unique least upper bound
Val∆ defined by

Val∆(C) = lim{τ i
∆(V⊥)(C) : i ≥ 0},

for all C ∈ ∆. If ∆ = ∆(M), then we denote the operator τ∆ by τM , and the valuation Val∆ by ValM .

A simple consequence of the monotonicity lemma is the following:

∆1 ⊆ ∆2 ⇒ Val∆1
⊑ Val∆2

.

To see this, it is enough to note that for all i ≥ 0, τ i
∆1

(V⊥) ⊑ τ i
∆2

(V⊥).
For any operator τ and valuation V , we say V is a fixed point of τ if τ(V ) = V .

Lemma 6. Val∆ is the least fixed point of τ∆, i.e.,

(i) It is a fixed point: τ∆(Val∆) = Val∆

(ii) It is the least such: for all valuations V , if τ∆(V ) = V then Val∆ ⊑ V .

Proof.

(i) If C is terminal then it is easy to see that τ∆(Val∆)(C) = Val∆(C). For non-terminal C, if C ⊢ (C1, . . . , Cn)
then

τ∆(Val∆)(C) = γC(Val∆(C1), . . . ,Val∆(Cn))

= γC(lim
i
{τ i

∆(V⊥)(C1)}, . . . , lim
i
{τ i

∆(V⊥)(Cn)})

= lim
i
{γC(τ i

∆(V⊥)(C1), . . . , τ
i
∆(V⊥)(Cn))} (by continuity)

= lim
i
{τ i+1

∆ (V⊥)(C)}
= Val∆(C).

(ii) V⊥ ⊑ V , so τ i
∆(V⊥) ⊑ τ i

∆(V ) = V for all i ≥ 0. Hence Val∆ ⊑ V .

Q.E.D.
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Example 4. To see that a fixed point of τ∆ need not be unique, consider a binary computation tree in which all
paths, with a single exception, terminate at accepting configurations. The exception is the infinite path π that
always branches to the right. We could make sure that each node in this tree has a distinct configuration. Assuming
that all nodes are MIN-configurations, a fixed point valuation V1 of the computation tree is where all nodes have
value 1. Another fixed point valuation V2 assigns each nodes in π to 0 but the rest has value 1. But the least fixed
point valuation V0 assigns to the value ⊥ to each node on the path π and the value 1 to the rest.

Definition 6. An interval I ⊆ [0, 1] is a accepting if I ⊆ (1
2 , 1]. It is rejecting if I ⊆ [0, 1

2 ); it is undecided if it is
neither accepting nor rejecting.

Note that I is accepting/rejecting iff each v ∈ I is greater/less than 1
2 . Similarly I is undecided iff 1

2 ∈ I.

Definition 7. (Acceptance rule for choice machines)
(i) Let w be a word in the input alphabet of a choice acceptor M , and ∆ a set of configurations of M . The ∆-value
of w, denoted Val∆(w), refers to Val∆(C0(w)) where C0(w) is the initial configuration of M on w. If ∆ = ∆(M),
the set of all configurations of M , we write ValM (w) instead of Val∆(M)(w).
(ii) We say M accepts, rejects or is undecided on w according as ValM (w) is accepting, rejecting or undecided.
(iii) A machine is said to be decisive if every input word is either accepted or rejected; otherwise it is indecisive
(iv) The language accepted by M is denoted L(M). The language rejected by M is denote L(M). Thus, M is
decisive iff L(M) = co-L(M).

Convention. In the course of this section, we will introduce other types of fixed point valuations. It is helpful
to realize that we use ‘Val ’ (with various subscripts) only to denote valuations that are least fixed points of the
appropriate operators.

Exercises

Exercise 0.4: Note that the constant functions 0, 1 and ⊥ can be added to any basis B without changing the
class of languages accepted by B-machines (under any complexity bounds). What happens if B contains all
constant functions f(I) = c for all c ∈ [0, 1]? ♦

Exercise 0.5: Our definition of B-machines attaches a basis function γ(q) ⊆ B to each state q. A more general
definition is to attache a basis function γ(q, a0, . . . , ak) to each combination (q, a0, . . . , ak) where ai are tape
symbols valid for tape i. Under what conditions is it possible for our (official) choice machines to simulate
the behavior of these generalized choice machines. ♦

Exercise 0.6: Generalize choice machines by allowing values from any ⊑ -partially ordered set F that has a
⊑ -mimimal element ⊥ ∈ F and such that any ⊑ -monotonic non-decreasing sequence has a least upper
bound in F . Thus, F is meant to be a replacement for INT. For instance, let F be the Borel sets (obtain
from INT under the operation of intersection, difference and countable unions. ♦

End Exercises

7.4 Complexity and Tree Valuations

To discuss complexity in general, we need an alternative approach to valuations, called tree valuations. The
previous notion of valuation is also called configuration valuations. In some sense, we are re-developing the
previous section all over again. Hence some treatment will be brief.

Configuration valuations allows us to define the notion of acceptance or rejection. They can also define space
complexity: thus, we say that M accepts input w in space h if Val∆(w) is accepting with ∆ comprising all
those configurations of M that uses space ≤ h, Unfortunately, configuration valuations are not suited for time
complexity. This is because configuration valuations are unable to distinguish between different occurrences of
the same configuration C in computation trees. Suppose C occurs at two nodes (say, u1 and u2) of a computation
tree. Assume the depth of u1 is less than the depth of u2. In a time-limited computation, we are interested in
computation trees with bounded depths. and want “valuations” V of such trees which may distinguish between
u1 and u2. For instance, if u2 is a descendent of u1 then u1 typically have “more information” than u2, and we
want V (u2) ⊑ V (u1).

The following treatment is abbreviated since it imitates the preceding development.
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Definition 8. Fix a choice machine M and any input w.
(i) The complete computation tree TM (w) of M on w is an ordered tree whose nodes are labeled by configurations
from ∆M such that the root is labeled with the initial configuration C0(w), and whenever a node u is labeled by
some C and C ⊢ (C1, . . . , Cn) then u has n children u1, . . . , un which are ordered so that ui is labeled by Ci. We
write u ⊢ (u1, . . . , un) in this case. By abuse of terminology, we sometimes identify a node u with its label C.
(ii) A tree T ′ is a prefix of another tree T if T ′ is obtained from T by pruning10 some subset of nodes of T . In
particular, if T ′ is non-empty then the root of T ′ is the root of T . If T is labeled, then T ′ has the induced labeling.
(iii) A computation tree T of w is a prefix of the complete computation tree TM (w); also, TM (w) is the completion
of T .
(iv) A (tree) valuation on a computation tree T is a function V that assigns a value V (u) ∈ INT for each node u in
the completion TM (w) of T , with the property that nodes not in T are assigned ⊥. We also call V a tree valuation
of w. If V, V ′ are valuations of w then we define

V ⊑ V ′

if V (u) ⊑ V ′(u) for all u ∈ TM (w).
(v) The bottom valuation, denoted V⊥, assigns each node of TM (w) to ⊥. Clearly V⊥ is the ⊑ -minimum tree
valuation, for any given w.
(vi) The operator τT transforms a valuation V on T to a new valuation τT (V ) on T as follows: for each node
u ∈ TM (w),

τT (V )(u) =






⊥ if u is a YO-node, or u 6∈ T,
1 else if u is a YES-node,
0 else if u is a NO-node,
γu(V (u1), . . . , V (un)) else if u ⊢ (u1, . . . , un).

Let the least fixed point of τT be denoted by ValT . In fact, τ i
T (V⊥) ⊑ τ i+1

T (V⊥) for all i ≥ 0 and we have

ValT = lim{τ i
T (V⊥) : i ≥ 0}.

(vii) A computation tree T is accepting/rejecting/undecided if ValT (u0) is accepting/rejecting/undecided where u0

is the root of T .

We claim that ValT is the least fixed point without proof because it is proved exactly as for configuration
valuations; furthermore, the next section gives another approach.

Let us say a word w is accepted or rejected by M in the ‘new sense’ if there is an accepting/rejecting tree for
w. We next show the new sense is the same as the old. First we introduce a notation: if ∆ ⊆ ∆(M) then let

T∆(w)

denote the largest computation tree T of w all of whose nodes are labeled by elements of ∆. It is not hard to see that
this tree is uniquely defined, and is non-empty if and only if the initial configuration C0(w) is in ∆. Equivalence of
the two senses of acceptance amounts to the following.

Lemma 7. Fix M and input w.
(a) If T is an accepting/rejecting computation tree of w then Val∆(w) is also accepting/rejecting, where ∆ is the
set of labels in T .
(b) Conversely, for any ∆ ⊆ ∆(M), if Val∆(w) is accepting/rejecting then T∆(w) is also accepting/rejecting.

Its proof is left as an exercise. It follows that a word cannot be both accepted and rejected in the tree sense.
For, if T is accepting/rejecting tree for w, and ∆ are the labels of T , then Val∆(w) is accepting/rejecting. Hence
ValM (w) is accepting/rejecting.

Definition 9. (Acceptance Complexity) Let r be any extended real number.
(i) We say that M accepts x in time r if there is an accepting tree T on input x whose nodes are at level at most r
(the root is level 0).
(ii) We say M accepts x in space r if there is an accepting tree T on input x whose nodes each uses space at most
r.
(iii) We say M accepts x in reversal r if there is an accepting tree T on input x such that each path in the tree

10To prune a node u from T means to remove from T the node u and all the descendents of u. Thus, if we prune the root of T , we
an empty tree.
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makes at most r reversals.
(iv) A computation path C1⊢C2⊢ · · · ⊢Cm makes (at least) r alternations if there are k = ⌊r⌋ + 1 configurations

Ci(1), Ci(2), . . . , Ci(k)

1 ≤ i(1) < i(2) < · · · < i(k) ≤ m such that each Ci(j) (j = 1, . . . , k) is either a MIN- or a MAX-configuration,
and if k(j) < i(j) is the largest index such that Ck(j) is either a MIN- or MAX-configuration then Ck(j) and Ci(j)

makes different choices (one makes a MIN- and the other a MAX-choice) if and only if there is an even number of
NOT-configurations between them along the path. We say M accepts x in r alternations if there is an accepting
tree T on input x such that no path in the tree makes 1 + r alternations.
(v) Let r1, r2, r3 be extended real numbers. We say M accepts x in simultaneous time-space-reversal (r1, r2, r3) if
there is an accepting tree T that satisfies the requirements associated with each of the bounds ri (i = 1, . . . , 3) for
the respective resources.
(vi) For complexity functions f1, f2, f3, we say that M accepts in simultaneous time-space-reversal (f1, f2, f3) if for
each x ∈ L(M), M accepts x in simultaneous time-space-reversal (f1(|x|), f2(|x|), f3(|x|)). This definition extends
to other simultaneous bounds.

We have just introduced a new resource ‘alternation’. Unlike time, space and reversals, this resource is mode-
dependent. For example, the machine in the palindrome example above has one alternation and nondeterministic
machines has no alternations. We have a similar monotonicity property for tree valuations: if T is a prefix of T ′

then

ValT ⊑ ValT ′ .

In consequence, we have:

Corollary 8. If M accepts an input in time r then it accepts the same input in time r′ for any r′ > r. Similarly
for the other resources.

Our definition of accepting in time r is phrased so that the accepting tree T need not include all nodes at levels
up to ⌊r⌋. Because of monotonicity, it may be more convenient to include all nodes up to level ⌊r⌋. But when other
resource bounds are also being considered, we may no longer be free to do this.

The following result is fundamental:

Theorem 9 (Compactness). If a choice machine M accepts a word x then it has a finite accepting tree on input
x. Similarly, if M rejects a word, then there is a finite rejecting tree.

The proof will be deferred to the next section. Thus, if an input is accepted, then it is accepted in finite amounts
of time, space, etc. This result implies that the complexity measures such as time, space, reversals or alternation
are Blum measures (Chapter 6, Section 8).

On rejection and running complexity. The above definitions of complexity is concerned with accepted
inputs only, and no assumptions on the computation of M are made if w 6∈ L(M). In other words, we have been
discussing acceptance complexity. We now introduce running complexity whose general idea is that complexity
bounds apply to rejected as well as accepted words. Should running complexity allow indecision on any input? Our
definition disallows this.

Definition 10. (Running time complexity) Fix a choice machine M .
(i) We say M rejects an input w in k steps if there is a rejecting tree of M on w whose nodes have level at most k.
(ii) For any complexity function t(n), we say M rejects in time t(n) if for all rejected inputs w, M rejects w in time
t(|w|).
(iii) M runs in time (t, t′) if each input of length n is either accepted in time t(n) or rejected in time t′(n). If t = t′,
we simply say M runs in time t.

This definition extends naturally to other resources. Note that if M has a running time that is finite, i.e.,
t(n) < ∞ for all n, then it is decisive. Thus, we can alternatively say that M is halting if it is decisive.

Complexity classes. We are ready to define complexity classes for choice modes. Our previous convention
for naming complexity classes extends in a natural way: First note that our notation for complexity classes such
as NTIME (F ) or D-TIME-REVERSAL(F, F ′) has the general format

Mode-Resources ( Bounds )
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where Mode is either N or D, Resources is a sublist of time, space, reversal and Bounds is a list of (families
of) complexity functions. The complexity class defined by choice machines can be named using the same format:
we only have to add symbols for the new modes and resources. The new mode symbols (see the last column of
Figure 7.3) are

Pr, A, Ip, PrA, St, StA

denoting (respectively) the probabilistic, alternating, interactive proof, probabilistic-alternating, stochastic, stochastic-
alternating modes. We have one new resource, with symbols11

ALTERNATION or ALT .

Example 5.

(i) Thus PrTIME (nO(1)) denotes the class of languages accepted in polynomial time by probabilistic machines.
This class is usually denoted P.
(ii) The class IpTIME (nO(1)) contains the class usually denoted IP in the literature. If we introduce (see next
chapter) the notion of bounded-error decision, indicated by the subscript ‘b’, then we have

IP = IpTIME b(n
O(1)).

(iii) If F, F ′ are families of complexity functions, PrA-TIME-SPACE (F, F ′) denotes the class of languages that
can be accepted by PAMs in simultaneous time-space (t, s) for some t ∈ F, s ∈ F ′.
(iv) We will write A-TIME -ALT(nO(1), O(1)) for the class of languages accepted by alternating machines in poly-
nomial time in some arbitrary but constant number of alternations. This class is denoted PH and contains precisely
the languages in the polynomial-time hierarchy (chapter 9).

Example 6. Note that {⊗}-machines (respectively, {⊕}-machines) are equivalent to {∧}-machines ({∨}-machines).
A more interesting observation is that the probabilistic mode is at least as powerful as nondeterministic mode:

N-TIME-SPACE-REVERSAL(t, s, r) ⊆ Pr-TIME-SPACE-REVERSAL(t + 1, s, r)

for any complexity functions t, s, r. To see this, let N be any nondeterministic machine that accepts in time-space
(t, s). Let M be the following probabilistic machine: on input w, first toss a coin. If tail, answer YES; otherwise
simulate N and answer YES iff N answers YES. The jargon “toss a coin and if tail then do X , else do Y ” formally
means that the machine enters a TOSS-state from which there are two next configurations: in one configuration
it does X and in the other choice it does Y . The reader may verify that M accepts L(N) in time-space-reversal
(t + 1, s, r).

Exercises

Exercise 0.7: (Hong) Consider basis sets B that are subsets of the 16 Boolean functions on 2 variables. As usual,
we assume that the identity, 0 and 1 constant functions are not explicitly mentioned when we display B. For
two bases B, B′, say that B linearly simulates B′ if for every B′-choice machine M′, there is a B-machine M
accepting the same language such that if M′ accepts in time t(n) then M accepts in time OB,B′(t). Say B
and B′ are linearly equivalent if they can linearly simulate each other.
(a) Prove that every such basis set B is linearly equivalent to one of the following 5 bases:

B0 := ∅, B1 := {∨}, B2 := {∧}, B3 := {⊕}, B4 := {∨,∧}

where ⊕ is the exclusive-or function.
(b) By simple set inclusions, it is clear that B0 can be linearly simulated by the others and B4 can linearly
simulate B1 and B2. Show that B4 can also linearly simulate B3. Hint: Use the same idea as the proof for
elimination of negation.
(c)** Show that these 5 classes are distinct up to linear equivalence. (Note: it is known that B1 is distinct
from B0.) ♦

Exercise 0.8*: A very natural function that we would like to add to basis sets is the cut-off function δ 1
2

defined
in Section 2. It gives us a model of oracle calls in which the complexity of the oracle machine is taken
into account. Since this function is not continuous, we ask you to extend the theory of valuations to allow
monotonic, piece-wise continuous functions. (A functions is piece-wise continuous if it has a finite number of
discontinuities.)

11Since “alternation” is the name of a mode as well as of a resource, awkward notations such as A-ALT(f(n)) arise.
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Exercise 0.9: Suppose the basis set B comprise the rational, linear convex combinations of their arguments: more
precisely, the valuation functions f have the form

f(x1, . . . , xn) =

n∑

i=1

aixi

where the ai’s are positive rational numbers depending on f and
∑

i ai = 1. How do these machines compare
to SAMs? ♦

Exercise 0.10*: Extend valuation theory for acceptors to transducers. NOTE: The question is how to assign a
unique output in case different computation paths gives a different answer. Gill has addressed this problem
in the case of probabilistic machines.

End Exercises

7.5 Basic Results

In the last section, the least fixed point tree valuation ValT for a computation tree T is obtained by repeated
application of the operator τT to the bottom valuation Val⊥. We now obtain ValT in an alternative, top-down
way.

For each integer m ≥ 0, let Tm denote the prefix of T obtained by pruning away all nodes at level m + 1. Thus
T0 consists of just the root of T . By monotonicity,

ValTm
⊑ ValTm+1

.

Lemma 10.
(i) For any finite computation tree T , the fixed point of τT is unique (and, a fortiori, equal to the least fixed point
ValT ). Moreover, this fixed point is easily computed “bottom-up” (say, by a postorder traversal of T ).
(ii) For any computation tree T (finite or not), the valuation

V ∗
T := lim{ValTm

: m ≥ 0}
is a fixed point of τT .
(iii) V ∗

T is equal to the least fixed point, ValT .
(iv) A computation tree T is accepting/rejecting if and only if it has a finite prefix that is accepting/rejecting.

Proof. (i) This is seen by a bottom-up examination of the fixed point values at each node.
(ii) If u is a leaf then clearly τT (V ∗

T )(u) = V ∗
T (u). Otherwise, let u ⊢ (u1, . . . , un).

τT (V ∗
T )(u) = γu(V ∗

T (u1), . . . , V
∗
T (un))

= γu( lim
m≥0

{ValTm
(u1)}, . . . , lim

m≥0
{ValTm

(un)})

= lim
m≥0

{γu(ValTm
(u1), . . . ,ValTm

(un))}

= lim
m≥0

{ValTm
(u)}

= V ∗
T (u)

This proves that V ∗
T is a fixed point of τT .

(iii) Since ValT is the least fixed point, it suffices to show that V ∗
T ⊑ ValT . This easily follows from the fact that

VTm
⊑ ValT .

(iv) If a prefix of T is accepting/rejecting then by monotonicity, T is accepting/rejecting. Conversely, suppose
T is accepting/rejecting. Then the lower bound of ValT (u0) is greater/less than 1

2 , where u0 is the root of T .
By the characterization of ValT in part (iii), we know that the lower/upper bound of ValTm

(u0) is monotonically
non-decreasing/non-increasing and is greater/less than 1

2 in the limit as m goes to infinity. Then there must be a
first value of m when this lower/upper bound is greater/less than 1

2 . This m gives us the desired finite prefix Tm

of T . Q.E.D.

This lemma has a two-fold significance: First, part (iv) proves the compactness theorem in the last section.
Second, part (iii) shows a constructive way to compute ValT , by approximating it from below with ValTm

, for
increasing m. This method is constructive (in contrast to the τm

T (V⊥) approximation) because Tm is finite for each
m, and the proof of part (i) tells us how to compute ValTm

.
The following lemma is useful for stochastic-alternating computations:
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Lemma 11. Let T be a computation tree of a choice machine M on w, and i ≥ 0.
(i) If M is a probabilistic-alternating machine then τ i+1

T (V⊥)(u) = [x, y] implies 2ix and 2iy are integers.

(ii) If M is a stochastic-alternating machine then 22i

x and 22i

y are integers.

We leave the proof as an exercise.

We now have the machinery to show that the language accepted by a B-choice machine M is recursively
enumerable provided each function in B is computable. To be precise, let X be a subset of [0, 1]. We say X is
acceptable if (i) 0, 1 ∈ X , (ii) X is dense in [0, 1], and (iii) there is an encoding of X , e : X → {0, 1}∗ such that
for all u, v ∈ X , the predicate e(u) ≤ e(v) is decidable.

For example, X can be the set of rational numbers or the set of “binary rationals” which are rationals with
finite binary expansion. A suitable encoding e : X → {0, 1}∗ is easily defined in each case. Now fix an acceptable
X . An interval I = [u, v] ∈ INT is representable (in X) if u, v ∈ X . The encoding of I is just a pair e(I) =
[e(u), e(v)] ∈ ({0, 1}∗)2. We say an m-ary function f ∈ B is X-computable if the following holds:
(1) If I1, . . . , Im ∈ INT are representable, then f(I1, . . . , Im) is representable.
(2) There is a partial computable function F : ({0, 1}∗)2m → ({0, 1}∗)2 such that for all representable I1, . . . , Im,
we have F (e(I1), . . . , e(Im)) = e(f(I1, . . . , Im)). Finally, call B a computable basis if there is some X such that
each f ∈ B is X-computable.

Theorem 12. Let B be a computable basis set.
a) The class of languages accepted by B-machines is precisely the class RE of recursively enumerable languages.
b) The class of languages accepted by decisive B-machines is precisely the class REC.

Proof. a) Languages in RE are accepted by B-choice machines since B-choice machines are generalizations of
ordinary Turing machines. Conversely, let M be a B-choice machine and w an input word. To show that L(M) is
in RE , it is sufficient to give a deterministic procedure for checking if w ∈ L(M), where the procedure is required
to halt only if w is in L(M). The procedure computes, for successive values of m ≥ 0, the value ValTm

(u0) where
Tm is the truncation of TM (w) below level m and u0 the root. If Tm is accepting for any m, the procedure answers
YES. If Tm is non-accepting for all m, the procedure loops. Lemma 10 not only justifies this procedure, but it also
shows how to carry it out: the values ValTm

(u) of each node u ∈ Tm is computed in a bottom-up fashion. The
computability of the basis functions B ensures this is possible.

b) We leave this as an exercise. Q.E.D.

One can view the theorem as yet another confirmation of Church’s thesis. Our next result shows that negation ¬
can be avoided in stochastic-alternating machines at the cost of an increase in the number of states. The following
generalizes a result for alternation machines in [3].

Theorem 13. For any stochastic-alternating acceptor M, there is a stochastic-
alternating acceptor N such that N has no NOT-states, L(M) = L(N), and for all w and t, s, r, a ≥ 0: M ac-
cepts w in (time, space, reversal, alternation) (t, s, r, a) iff N accepts w in (time, space, reversal, alternation)
(t, s, r, a).

Proof. The idea is to use de Morgan’s law to move negation to the leaves of the computation tree. Let M be
any SAM. We construct a SAM N satisfying the requirements of the theorem. For each state q of M, there are two
states q+ and q− for N. For any configuration C of M, let C+ (resp., C−) denote the corresponding configuration
of N where q+ (resp., q−) is substituted for q. In N, we regard q+

0 , q+
Y and q+

N (respectively) as the initial, YES and
NO states. However, we identify q−Y , q−N (respectively) with the NO, YES states (note the role reversal). Of course,
the technical restriction does not permit two YES- or two NO-states, so we will identify them (q+

Y = q−N , q+
N = q−Y ).

The functions γ(q+), γ(q−) assigned to the states in N are defined from γ(q) in M as follows:

γ(q+) =

{
γ(q) if γ(q) 6= ¬
ι if γ(q) = ¬

γ(q−) =






ι if γ(q) = ¬
∧ if γ(q) = ∨
∨ if γ(q) = ∧f if γ(q) = f
⊕ if γ(q) = ⊗
⊗ if γ(q) = ⊕
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Hence N has no NOT-states. We now state the requirements on transitions of N (this easily translates into an
explicit description of the transition table of N). Suppose that C1⊢C2. If C1 is not a NOT-configuration then

C+
1 ⊢ C+

2 and C−
1 ⊢ C−

2 .

If C1 is a NOT-configuration then

C+
1 ⊢ C−

2 and C−
1 ⊢ C+

2 .

Our description of N is complete: there are no transitions besides those listed above.

Let T be an accepting computation tree of N for an input word w; it is easy to see that there is a corresponding
computation tree T̂ for N with exactly the same time, space, reversal and alternation complexity. In fact there is
a bijection between the nodes of T and T̂ such a node labeled C in T corresponds to one labeled C+ or C− in T̂ .
The fact that T and T̂ have identical alternating complexity comes from the carefully-crafted definition of N .

Our theorem is proved if we show that T̂ is accepting. Let Tm be the truncation of the tree T at levels below
m ≥ 0; T̂m is similarly defined with respect to T̂ . For h ≥ 0, let V h

m denote the valuations on Tm given by h-fold
applications of the operator τTm

to ⊥:

V h
m = τh

Tm
(V⊥)

and similarly define V̂ h
m = τh

bTm

(V⊥). We now claim that for all m, h and C ∈ Tm,

V h
m(C) =

{
V̂ h

m(C+) if C+ ∈ T̂

¬V̂ h
m(C−) if C− ∈ T̂

Here, we have abused notation by identifying the configuration C with the node of Tm that it labels. But this
should be harmless except for making the proof more transparent. If h = 0 then our claim is true

⊥ = V h
m(C) = V̂ h

m(C+) = ¬V̂ h
m(C−)

since ¬⊥ = ⊥. So assume h > 0. If C is a leaf of T , it is also easy to verify our claim. Hence assume C is not a
leaf. Suppose C− ⊢ (C−

1 , C−
2 ) occurs in T̂ . Then

V h
m(C) = γ(C)(V h−1

m (C1), V
h−1
m (C2))

= γ(C)(¬V̂ h−1
m (C−

1 ),¬V̂ h−1
m (C−

2 )) (by induction)

= ¬γ(C−)(V̂ h−1
m (C−

1 ), V̂ h−1
m (C−

2 )) (de Morgan’s law for γ(C))

= ¬V̂ h
m(C−).

Similarly, we can show V h
m(C) = V̂ h

m(C+) if C+ ⊢ (C+
1 , C+

2 ) occurs in T̂ . We omit the demonstration in case C is

a NOT-configuration. Finally, noting that V m+1
m = ValTm

and V̂ m+1
m = Val bTm

, we conclude that ValTm
= Val bTm

.

It follows T̂ is accepting. Q.E.D.

Consequence of eliminating negation. This proof also shows that negation can be eliminated in alternating
machines and in PAMs. With respect to SAMs without negation, the use of intervals in valuations can be replaced
by ordinary numbers in [0, 1] provided we restrict attention to acceptance complexity. A valuation is now a mapping
from ∆ ⊆ ∆(M) into [0, 1]. Likewise, a tree valuation assigns a real value in [0, 1] to each node in a complete
computation tree. We now let V⊥ denote the valuation that assigns the value 0 to each configuration or node, as
the case may be. The operator τ∆ or τT on valuations is defined as before. Their least fixed point is denoted Val∆
or ValT as before. The connection between the old valuation V and the new valuation V ′ is simply that V ′(C)
or V ′(u) (for any configuration C or node u) is equal to the lower bound of the interval V (C) or V (u). When we
discuss running complexity, we need to consider the upper bounds of intervals in order to reject an input; so we
are back to intervals.

Convention for this chapter. In this chapter, we only consider alternating machines, PAMs and SAMs with
no NOT-states. We are mainly interested in acceptance complexity. In this case, we may restrict valuations take
values in [0, 1] instead of in INT (we call these real values probabilities). With this convention, the acceptance rule
becomes:

M accepts a word w iff the probability ValM (w) is greater than 1
2 .
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It is sometimes convenient to construct SAMs with NOT-states, knowing that they can be removed by an
application of the preceding theorem.

Suppose we generalize SAMs by allowing the k-ary versions of the alternating-stochastic functions:

Bk := {max
k

, min
k

, f
k
,⊗k,⊕k},

for each k ≥ 2. For example,

f
3
(x, y, z) = (x + y + z)/3,

⊕3(x, y, z) = 1 − (1 − x)(1 − y)(1 − z).

Consider generalized SAMs whose basis set is ∪k≥2Bk. Note that even though the basis set is infinite, each
generalized SAM uses only a finite subset of these functions. It is easily seen that with this generalization for the
alternating choices (maxk, mink and ⊗k), the time complexity is reduced by at most a constant factor. It is a little
harder (Exercise) to show the same for the stochastic choices ( f

k,⊕k,⊗k).
A useful technical result is tape reduction for alternating machines. The following is from Paul, Praus and

Reischuk [18].

Theorem 14. For any k-tape alternating machine accepting in time-alternation (t(n), a(n)), there is a simple
alternating machine accepting the same language and time-alternation (O(t(n)), a(n)+O(1)). Like a simple Turing
machine, a simple alternating machine has only one work-tape and no input tape.

This leads, in the usual fashion, to a hierarchy theorem for alternating time:

Theorem 15. Let t(n) be constructible and t′(n) = o(t(n)). Then

ATIME(t) − ATIME (t′) 6= ∅.

We leave both proofs as exercises.

Theorem 16 (Space compression). Let B be any basis set. Then the B-choice machines have the space compression
property. More precisely, if M is a B-choice machine accepting in space s(n) then there is another N which accepts
the same language in space s(n)/2. Furthermore, N has only one work-tape.

Proof. We only sketch the proof, emphasizing those aspects that are not present in the proof of original space
compression theorem in chapter 2. As before, we compress 2 symbols from each of the k work-tapes of M into one
composite symbol (with k tracks) of N . We show how N simulates one step of M : suppose M is in some configuration
C and C ⊢ (C1, . . . , Cm). Assume that the tape head of N is positioned at the leftmost non-blank cell of its tape.
By deterministically making a rightward sweep across the non-blank part of its work-tape, N can remember in its
finite state control the two composite symbols adjacent to the currently scanned cell in each track: the cells of M
corresponding to these remembered symbols constitute the current neighborhood. In the original proof, N makes
a leftward sweep back to its starting position, updating the contents of the current neighborhood. The new twist
is that there are now m ways to do the updating. N can use choice to ensure that each of these possibilities are
covered. More precisely, before making the return sweep, N enters a state q such that γ(q) = γ(C) and then N
branches into m different states, each corresponding to a distinct way to update the current neighborhood. Then
N can make a deterministic return sweep on each of the m branches. By making some adjustments in the finite
state of N , we may ensure that N uses space s(n)/2. Further, N is also a B-machine by construction. Q.E.D.

For any family of functions B over INT, let B∗ denote the closure of B (under function composition): B∗ is
the smallest class of functions containing B and closed under function composition.12 For example, the function
h(x, y, z) = x f(y fz) = x/2 + y/4 + z/4 is in the closure of the basis { f}. The closure of a basis set is also a
basis set (in fact, an infinite set).

Theorem 17 (Linear Speedup). Let B be an admissible family which is closed under function composition, B = B∗.
Then the B-choice machines have the linear speedup property. More precisely, if M is a B-choice machine accepting
in time t(n) > n then there is another N which accepts the same language in time n + t(n)/2.

12More precisely, if f ∈ B∗ is a function of arity k and gi (i = 1, . . . , k) are functions of arity mi in B∗ then f(g1(x̄1), . . . , gk(x̄2)) is

a function in B∗ of arity p ≤
Pk

i=1
mi where x̄i is a sequence of mi variables and p is the number of distinct variables in x̄1x̄2 · · · x̄k.
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Proof. The proof is similar to that for ordinary Turing machines in chapter 2, so we only emphasize the new
aspects. The new machine N has k + 1 work-tapes if M has k. Each tape cell of N encodes up to d > 1 (for some
d to be determined) of the original symbols. N spends the first n steps making a compressed copy of the input.
Thereafter, N uses 8 steps to simulates d steps of M . In general, suppose that M is in some configuration C and
d moves after C, there are m successor configurations C1, . . . , Cm (clearly m is bounded by a function of M and d
only). Suppose that the complete computation tree in question is T . The value ValT (C) is given by

f(ValT (C1), . . . ,ValT (Cm))

where f ∈ B since B is closed under function composition. We show how N can determine this f : first N takes
4 steps to determine the contents of the ‘current neighborhood’ (defined as in the original proof). From its finite
state constrol, N now knows f and each Ci (i = 1, . . . , m). So at the end of the fourth step, N could enters a state
q where γ(q) = f and such that q has m successors, corresponding to the Ci’s. In 4 more steps, N deterministically
updates its current neighborhood according to each Ci. It is clear that by choosing d = 16, N accepts in time
n + t(n)/2. One minor difference from the original proof: previously the updated tapes represent the configuration
at the first time some tape head leaves the current neighborhood, representing at least d steps of M . Now we
simply simulate exactly d steps and so it is possible that a tape head remain in the current neighborhood after
updating. Q.E.D.

As corollary, if we generalize alternating machines by replacing the usual basis set B = {∧,∨,¬} by its closure
B∗, then the generalized alternating time classes enjoy the time speedup property. A similar remark holds for the
other modes.

Exercises

Exercise 0.11: Prove Theorem 14. ♦

Exercise 0.12: Prove Theorem 15. ♦

Exercise 0.13: Show that if t(n) is time constructible then co-ATIME(t(n)) ⊆ ATIME (n + t(n)). Hint: why do
you need the “n+” term? ♦

Exercise 0.14: Let B = {∨, f,¬}. Can negation be eliminated from B-machines operating in polynomial time?
♦

Exercise 0.15: (i) Consider generalized probabilistic machines in which we allow k-ary versions of the coin-tossing
function, f

k for all k ≥ 2. Show that these can be simulated by ordinary probabilistic machines with at most
a constant factor slow-down in time.
(ii) Show the same result for stochastic machines where we now allow f

k,⊕k,⊗k for all k. ♦

Exercise 0.16: (Paul, Praus, Reischuk) A simple alternating machine is an alternating machine with one
work-tape but no input tape. It is thus physically identical to simple Turing machines (STM’s). As for STM,
the input is presented on the sole work-tape.
(a) Construct a simple alternating machine that accepts palindromes in linear time and a constant number of
alternation. Hint: Guess the positions (in binary) of about log n equally spaced-out input symbols, writing
these directly under the corresponding symbols. The positions of all the other symbols can be determined
relative to these guessed positions.
(b) Show that if a language can be accepted by an alternating Turing machine in time t(n) then it can
be accepted by a simple alternating Turing machine in time O(t(n)). Hint: For a computation path
C1⊢C2⊢, . . . ,⊢Cm, let its trace be τ1, τ2, . . . , τm where τi contains the state, the symbols scanned on each
of the tapes (including the input tape) and the direction of each tape head in the transition Ci⊢Ci+1. The
head directions are undefined for τm. (Note: this definition of trace does not include head positions, in
contrast to a similar definition in chapter 2.) Begin by guessing the trace of the paths in an accepting com-
putation tree – you must use universal and existential guessing corresponding to the state in τi. To verify
correctness of the guess, the technique in part (a) is useful. ♦

Exercise 0.17: (Paterson, Paul, Praus, Reischuk) For all t(n), if a language is accepted by a nondeterministic
simple Turing machine in time t(n) then it can be accepted by an alternating machine in time n + t1/2(n).

♦

End Exercises
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7.6 Alternating Time versus Deterministic Space

We begin the study of alternating machines. This section points out strong similarities between alternating time
and deterministic space. This motivates a variation of choice machines called the addressable-input model.

The class PH . The alternating class ATIME (nO(1)) is an obvious class of interest. However, most interest
attaches to a subclass PH ⊆ ATIME(nO(1) comprising the languages accepted by alternating machines in polyno-
mial time and making only a constant number of alternations. Clearly NP ∪ co-NP ⊆ PH . Here is an interesting
problem in PH . The MIN-FORMULA problem is to recognize if a given Boolean formula F is minimal. That
is, for all F ′, if |F ′| < |F | then F ′ 6≡ F . It is not obvious that this problem is in NP ∪ co-NP . To show that
MIN-FORMULA∈ PH : on input F (x1, . . . , xn), we universally guess another formula F ′(x1, . . . , xn) such that
|F ′| < |F | and then existentially guess an assignment ai 7→ xi and accepts if F ′(a1, . . . , an) 6= F (a1, . . . , an).

We first prove the following result of Chandra, Kozen and Stockmeyer:

Theorem 18. For all t, ATIME(t) ⊆ DSPACE(t).

Proof. Let M be an alternating machine accepting in time t. We describe a deterministic N that simulates M
in space t. Let w be the input and N computes in successive stages. In the mth stage (m = 1, 2, 3, . . .), N computes
ValTm

where Tm is the truncation of the complete computation tree TM (w) at levels below m. For brevity, write
Valm for ValTm

. If Tm is accepting then N accepts, otherwise it proceeds to the next stage. So if w is not in L(M)
then N will not halt.

To complete the proof, we show that the mth stage can be carried out using O(m) space. We describe a
procedure to compute the values Valm(C) of the nodes C in Tm in a post-order manner. The structure of this
search is standard. We inductively assume that the first four work tapes of N contain the following pieces of
information when we first visit a configuration C:

(a) Tape 1 contains the configuration C. This requires O(m) space. In particular, the input head position can
be recorded in O(log m) space (rather than O(log |w|) space).

(b) Tape 2 contains the values m and the depth d of C in Tm. These can be represented by the string 0m−d1d.

(c) Tape 3 contains a list (I1, I2, . . . , Id) of d instructions of M . If π(C) = (C0, C1, . . . , Cd) is the computation
sequence from the root of Tm to C = Cd, then the transition Ci ⊢ Ci+1 is a result of executing the instruction
Ii. The space for storing these instructions is O(d) = O(m). Using instructions, we can “backup” from C to
any of its ancestors C′ on the path.

(d) Tape 4 contains a list (v0, v1, . . . , vd−1) where vi ∈ {−1, 0, 1}. Without loss of generality, assume that each
non-terminal configuration of M has exactly two children. One child of Ci is Ci+1; let the other child be
C′

i. Then vi is the value Valm(C′
i), it is has been computed. Otherwise vi is −1. The space used is again

O(d) = O(m). Note that the value Valm(C) is not known in this representation.

We maintain this information at each “step”. A step (at current configuration C) either involves descending
to a child of C or backing up from C to its parent. We descending to a child of C provided C is not a leaf and
it has a child that is not yet been visited. Maintaining the contents of tapes 1-4 is easy in this case. So suppose
we want to backup from C to its parent C′. We claim that Valm(C) can be determined at this moment. This is
true if C is a leaf of Tm. Otherwise, the reason we are backing up to C′ is because we had visited all the children
C1, C2 of C. But this meant we had just backed up from (say) C2 to C, and inductively by our claim, we have
determined Valm(C2). From (c), we also know Valm(C1). Thus we know Valm(C). Then when we back up to the
parent of C, we could either replace C by the sibling of C or record Valm(C) on tape 4, and continue the induction.
Eventually we determine the value of Valm at the root. If this value is 1, we accept. Otherwise, we go to state
m + 1. Q.E.D.

Discussion. The preceding theorem motivates several research questions in alternation complexity.
(A) The theorem says that deterministic space is at least as powerful as alternating time. It suggests a search

for the followin kinds of results: take a known simulation by deterministic space and ask if it can be improved to
an alternating time simulation. This methodology has proven fruitful and has resulted in a deeper understanding
of the space resource. Thus, in section 8, a known inclusion DTIME(t) ⊆ DSPACE (t/ log t) was sharped to
DTIME (t) ⊆ ATIME (t/ log t). This strengthening lead to a simplification (!) of the original proof. This paradox is
explained by the fact that the control mechanism in alternating computation is “in-built”; an alternating simulation
(unlike the original space simulation) need not explicitly describe this mechanism.
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(B) There is evidence to suggest that alternating time and deterministic space are very similar. For instance,
we prove (§7.7) a generalization of Savitch’s result, which yields the corollary

NSPACE (s) ⊆ ATIME (s2).

This motivates another class of new results: given a known result about deterministic space, try to prove the
analogue for alternating time, or vice-versa. For instance, the last section shows a tape-reduction and a hierarchy
theorem for alternating-time; the motivation for these results is that we have similar results for deterministic space.
We now give another illustration. In chapter 2, we show that DSPACE r(s) is closed under complementation for
all s finite (i.e., s(x) < ∞ whenever defined). We ask for a corresponding result for ATIME r(t). (Note that the
subscript ‘r’ indicates running complexity.) As it turns out, this result13 is rather easy for alternating time:

Theorem 19. For all complexity function t(n),

ATIME r(t) = co-ATIME r(t).

Similarly, the following time classes are closed under complementation

PrTIME r(t),StTIME r(t),PrA-TIME r(t),StA-TIME r(t).

Proof. Recall the construction in theorem 13 of a machine N without negation from another machine M that
may have negation. Now let M be an alternating machine. Suppose that we make q−0 (instead of q+

0 ) the start
state of N but q+

Y = q−N remains the YES state. On re-examination of the proof of theorem 13, we see that this N
accepts co-L(M). The proof for the other time classes are similar. Q.E.D.

(C) By now it should be realized that the fundamental technique for space simulation is to ‘reuse space’. This
usually amounts to cycling through an exponential number of possibile configurations using the same space s. In
alternating time, the corresponding technique is to visit exponentially many configurations using a tree of depth
s, by making universal or existential choices. While a deterministic space search proceeds from what is known to
what is unknown, alternating time search works in reverse: it first guesses the unknown and then try to to reduce
it to the known. This remark may be clearer by the end of this chapter.

(D) We should caution that the research programs (A) and (B) have limitations: although the deterministic
space and alternating time are similar, it is unlikely that they are identical. Another fundamental difficulty is that
whereas sublinear deterministic space classes are important, it is easy to see that alternating machines do not allow
meaningful sublinear time computations. This prompted Chandra, Kozen and Stockmeyer to suggest14 a variation
of alternating machines which we now extend to choice machines:

Definition 11. (Addressable-input Machine Model) An addressable-input choice machine M is one that is equipped
with an extra address tape and two distinguished states called the READ and ERROR states. The address tape
has a binary alphabet whose content is interpreted as an integer. Whenever M enters the READ state, the input
head is instantaneously placed at the (absolute) position indicated by the address tape. If this position lies outside
the input word, the ERROR state will be entered and no input head movement occurs. In addition to this special
way of moving the input head, our machine machine can still move and use the input head in the standard fashion.

We assume the address tape is one-way (and hence is write-only). Hence for complexity purposes, space on the
address tape is not counted. We also assume that after exiting from the READ state, the contents of the address
tape is erased, in an instant.

The addressable-input model is defined so that such machines are at least as powerful as ordinary choice
machines. However, it is not excessively more powerful; for instance the preceding theorem theorem 18 holds even
with this model of alternation (Exercise). This addressable-input model now admits interesting alternating time
classes with complexity as small as log n (not log log n, unfortunately). We will be explicit whenever we use this
version of choice machines instead of the ordinary ones.

Exercises

Exercise 0.18: (i) Consider the language comprising (D, k) where D is the distance matrix as in the travelling
salesman problem (TSP) in Chapter 3, and k is the length of the shortest tour. Show that this language is
in PH .
(ii) Construct a “natural” language that apparently needs 4 alternations. ♦

13Paul and Reischuk show that if t is time-constructible then ATIME(t) = co-ATIME(t).
14In this suggestion, they are in good company: historically, the read-only input tape of Turing machines was invented for a similar

purpose.
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Exercise 0.19: Give a sufficient condition on a family F of complexity functions such that ATIME (F ) = PrA-TIME (F ) =
DSPACE(F ). Hint: Consider the case F = nO(1). ♦

Exercise 0.20: Show the tight complexity relationships between the ordinary SAM’s and the addressable-input
version of SAM’s. More precisely, give efficient time/space/reversal simulations of the addressable-input
machines by ordinary machines. ♦

Exercise 0.21: Rederive the various simulation of SAM’s in this chapter in the case where the SAMs is the
addressable-input model. In particular, show that ATIME(t) ⊆ DSPACE (t). ♦

End Exercises

7.7 Simulations by Alternating Time

We present efficient simulations of other complexity resources by alternating time. We begin with an alternating
time simulation of deterministic space and reversals. The results here are new, motivated by I. Simon’s simulation
in Chapter 2.

Theorem 20. Let t, r be complexity functions such that t(n) ≥ 1 + n. Under the addressable-input model,

D-TIME-REVERSAL(t, r) ⊆ ATIME (O(r log2 t)).

If r(n) log2 t(n) ≥ n, then this result holds under the ordinary model.

Proof. Given a deterministic M accepting in time-reversal (t, r), we show an alternating machine N accepting
the same language L(M) in time O(r log2 t).

Recall the concept of a (full) trace15 in the proof of chapter 2. On any input w, N existentially chooses some
integer r ≥ 1 and writes r full traces

τ1, τ2, . . . , τr,

on tape 1. These are intended to be the traces at the beginning of each of the r phases. On tape 2, N existentially
chooses the time ti (in binary) of each τi,

t1 < t2 < · · · < tr.

We may assume τr is the trace when the machine accepts. Note that τ1 (which we may assume correct) is simply
the trace of the initial configuration and so t1 = 0. Relative to this sequence, we say that an integer t ≥ 0 belongs
to phase j if tj ≤ t < tj+1.

Then N proceeds to verify τr. To do this, it writes on tape 3 the pairs (τr−1, tr−1) and (τr, tr) and invokes a
procedure TRACE. N accepts if and only if this invocation is successful (i.e., the procedure accepts). In general,
the arguments to TRACE are placed on tape 3, and they have the form

(σ, s0), (τ, t0)

where s0 < t0 are binary integers lying in the range

ti ≤ s0 < t0 ≤ ti+1

for some i = 1, . . . , r − 1, and σ, τ are traces such that the head tendencies in σ and in τi agree, and similarly
the head tendencies in τ and in τi agree (with the possible exception of t0 = ti+1 and τ = τi+1). Intuitively,
TRACE(σ, s0, τ, t0) accepts if σ is the trace at time s0, τ is the trace at time t0, and there is a (trace of a) path
from σ to τ . TRACE does one of two things:

(i) Suppose s0 + 1 < t0. Let t′ = ⌊(s0 + t0)/2⌋. Now TRACE existentially chooses a trace τ ′ where the head
tendencies in τ ′ agree with those of σ. Then it universally chooses to recursively call TRACE(σ, s0, τ

′, t′) and
TRACE(τ ′, t′, τ, t0).

15Briefly, the trace of a configuration in a computation path records its state and for each tape, the scanned symbol, the absolute
head position and the head tendencies.
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(ii) Suppose s0 + 1 = t0. TRACE verifies τ can be derived from σ in one step of M , and any head motion is
consistent with the head tendencies in σ. Of course, we allow the head tendencies to be different but only
when σ is the last trace in a phase (it is easy to determine if this is the case). Any head motion in the σ to τ
transition causes the corresponding tape cell in τ to be ‘marked’. Note that the marked cells were written in
some previous phase (unless they are blanks), and our goal is to verify their contents. Suppose that the tape
symbols and head positions in the k + 1 tapes of τ are given by

b0, . . . , bk, n0, . . . , nk.

Then TRACE universally chooses to call another procedure SYMBOL with arguments (i, bi, ni, t0) for each
cell ni in tape i that is marked. Intuitively, SYMBOL(i, bi, ni, t0) verifies that just before time t0, the tape
symbol in cell ni of tape i is bi.

We now implement SYMBOL(i′, b′, n′, t0). If i′ = 0 then we want to check that the input symbol at position n′

is b′. This can be done in O(log n) steps, using the input addressing ability of our alternating machines (note that
r log2 t > log n). Otherwise, suppose that t0 belongs to phase j0. We then existentially choose some j,

j = 0, . . . , j0 − 1,

some t′ and a trace σ′. Intuitively, this means that cell n′ in tape i′ was last visited by σ′ which occurs at time t′

in phase j. We want the following to hold:
(a) tj ≤ t′ < tj+1 ≤ t0.
(b) The head tendencies σ′ and in τj agree.
(c) The head i′ is in position n′ scanning symbol b′ in σ′.
(d) On each tape, the head position in σ′ lies in the range of possible cell positions for that phase j.
(e) On tape i′, cell n′ is not visited in any of phases j + 1, j + 2, . . . , j0.
Conditions (a)-(e) can be directly verified using the information on tapes 1 and 2. Armed with σ′ and t′, we then
universally choose one of two actions: either call TRACE(τj , tj , σ

′, t′) or TRACE(σ′, t′, τj+1, tj+1). If tj = t′ then
the first call is omitted.

Correctness. Let us show that TRACE and SYMBOL are correct. Suppose input w is accepted by M . Then
it is not hard to see that N accepts. To show the converse, suppose N accepts w relative to some choice of traces
τ1, . . . , τr in tape 1 and times t1, . . . , tr on tape 2. Suppose the call TRACE(σ, s0, τ, t0) is successful and t0 belongs
to phase j. Then this call generates a trace-path

(σ0, . . . , σm) (4)

from σ0 = σ to σm = τ (where m = t0 − s0) with the following properties:

1. σi−1 derives σi for i = 1, . . . , m according to the rules of M .

2. Each pair (σi−1, σi) in turn generates at most k + 1 calls to SYMBOL, one call for each “marked” cell in σi.
Each of these calls to SYMBOL leads to acceptance. For this reason we call (4) a ‘successful’ trace-path for
this call to TRACE.

3. Some of these calls to SYMBOL in turn calls TRACE with arguments belonging some phase ℓ (1 ≤ ℓ < j).
We call any such phase ℓ a supporting phase of TRACE(σ, s0, τ, t0).

Notice that if phase ℓ is a supporting phase for some accepting call to TRACE then there must be two successful
calls of the form

TRACE(τℓ, tℓ, σ
′, t′) and TRACE(σ′, t′, τℓ+1, tℓ+1) (5)

for some σ′, t′. We claim:

(a) If TRACE(σ, s0, τ, t0) accepts and phase ℓ is a supporting phase of TRACE(σ, s0, τ, t0), then the
traces τ1, . . . , τℓ+1 on tape 1 and times t1, . . . , tℓ+1 on tape 2 are correct (i.e., τi is the trace at the
beginning of the ith phase at time ti for i = 1, . . . , ℓ + 1.)
(b) If, in addition, we have that σ = τj and s0 = tj for some j = 1, . . . , r, then τ is indeed the trace of
the t0th configuration in the computation path of M on input w. (Note that (b) implies the correctness
of SYMBOL.)
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We use induction on ℓ. Case ℓ = 1: τ1 is always correct and t1 = 0. By (5), we see directly that there must be
two successful calls of the form TRACE(τ1, t1, σ

′, t′) and TRACE(σ′, t′, τ2, t2). One immediately checks that this
implies τ2, t2 are correct. This proves (a). Part (b) is immediate.

Case ℓ > 1: for part (a), again we know that there are two successful calls of the form (5). But notice that phase
ℓ − 1 is a supporting phase for the first of these two calls: this is because in τℓ, some tape head made a reversal
that this means that this head scans some symbol last visited in phase ℓ − 1. Hence by induction hypothesis, the
traces τ1, . . . , τℓ and times t1, . . . , tℓ are correct. Furthermore, as in (4), we have a successful trace-path from τℓ to
τℓ+1. Each trace (except for τℓ) in the trace-path in turn generates a successful call to SYMBOL with arguments
belonging to some phase less than ℓ, and by induction (b), these are correct. Thus τℓ+1 and tℓ+1 are correct. For
part (b), we simply note that j − 1 is a support phase for such a call to TRACE by the preceding arguments. So
by part (a), τj and tj are correct. Then we see that there is a trace-path starting from τj as in (4) that is correct.
Part (b) simply asserts that the last trace in (4) is correct. This completes our correctness proof.

Complexity. The guessing of the traces τi and times ti on tapes 1 and 2 takes alternating time O(r log t). If
the arguments of TRACE belongs to phase j, then TRACE may recursively call itself with arguments belonging
to phase j for O(log t) times along on a computation path of N. Then TRACE calls SYMBOL which in turn calls
TRACE but with arguments belonging to phase < j. Now each call to TRACE takes O(log t) alternating steps just
to set up its arguments (just to write down the head positions). Thus it takes O(log2 t) alternating steps between
successive calls to SYMBOL. In the complete computation tree, we make at most r calls to SYMBOL along any
path. This gives an alternating time bound of O(r log2 t). Q.E.D.

Corollary 21. DREVERSAL(r) ⊆ ATIME (r3)

We next show that alternating time is at least as powerful as probabilistic time. The proof is based on the
following idea: suppose a probabilistic machine accepts an input x in m ≥ 0 steps and T is the computation tree.
If T is finite and all its leaves happen to lie a fixed level m ≥ 0 (m = 0 is the level of the root) then it is easily seen
that T is accepting iff the number of accepting leaves is more than half of the total (i.e. more than 2m−1 out of
2m). In general, T is neither finite nor will all the leaves lie in one level. But we see that if Tm is the truncation of
T to level m, then Tm if accepting iff the sum of the “weights” of accepting leaves in Tm is more than 2m−1. Here
we define a leaf at level i (0 ≤ i ≤ m) to have a weight of 2m−i. It is now easy to simulate a probabilistic machine
M that uses time t(n) by a deterministic machine N using space t(n), by a post-order traversal of the tree Tt(n).
But we now show that instead of deterministic space t(n), alternating time t(n) suffices.

Theorem 22. For all complexity functions t, PrTIME (t) ⊆ ATIME (t).

Proof. Let M be a probabilistic machine that accepts in time t. We describe an alternating machine N that
accepts in time t. Let x be an input and Tm be the computation tree of M on x restricted to configurations at
level at most m. For any configuration C in Tm, define

VALm(C) = 2m−level(C)ValTm
(C)

where ValTm
is, as usual, the least fixed point valuation of Tm. We abuse notation with the usual identification of

the nodes of Tm with the configurations labeling them. Thus if C is the root then VALm(C) = 2mVal∆(C). If C
is not a leaf, let CL and CR denote the two children of C. Observe that

VALm(C) = VALm(CL) + VALm(CR).

Regarding VALm(C) as a binary string of length m + 1, we define for i = 0, . . . , m,

BITm(C, i) := ith bit of VALm(C)

CARm(C, i) := ith carry bit of the summation VALm(CL) + VALm(CR)

where we assume that i = 0 corresponds to the lowest order bit. It is easy to see that the following pair of mutually
recursive formulas hold:

BITm(C, i) = BITm(CL, i)⊕BITm(CR, i)⊕CARm(C, i − 1)

CARm(C, i) = ⌊BITm(CL, i)) + BITm(CR, i) + CARm(C, i − 1)

2
⌋

Here, ⊕ denotes16 the exclusive-or Boolean operation: b⊕b′ = 1 iff b 6= b′. If i = 0, CARm(C, i − 1) is taken to be
zero.

16Normally, ⊕ denotes exclusive-or. We put a bar over ⊕ to distinguish it from the probabilistic-or operator.
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If C is a leaf, we need not define CARm(C, i) but

BITm(C, i) =

{
1 if i = m − level(C) and C answers YES;
0 otherwise.

To simulate M on input x, N first guesses the value m = t(|x|) in unary in tapes 1, 2 and 3. Note that M
accepts iff VALm(x) > 2m−1, iff there exists an i, 0 ≤ i < m − 1, such that

Either BITm(C0(x), m) = 1 (6)

or BITm(C0(x), m − 1) = BITm(C0(x), i) = 1. (7)

N checks for either condition (6) or (7) by an existential choice. In the latter case, N makes a universal branch
to check that BITm(C0(x), m − 1) = 1 and, for some existentially guessed unary integer 0 < i < m − 1,
BITm(C0(x), i) = 1.

It remains to describe the subroutine to verify BITm(C, i) = b for any arguments C, i, b. It is assumed that just
before calling this subroutine the following setup holds. N has the first m cells on tapes 1,2 and 3 marked out. Head
1,2 and 3 are respectively keeping track of the integers i, level(C) and i + level(C), in unary. Moreover, because
of the marked cells, it is possible to detect when these values equals 0 or m. The configuration C is represented by
the contents and head positions of tapes 4 to k + 3 (k is the number of work-tapes of M) and the input tape. This
setup is also assumed when calling the subroutine to verify CARm(C, i) = b.

With this setup, in constant time, N can decide if C is a leaf of Tm (i.e. either C is terminal or level(C) = m)
and whether i = m− level(C). Hence, in case C is a leaf, the subroutine can determine the value of BITm(C, i) in
constant time. If C is not a leaf, say C ⊢ (CL, CR), then N guesses three bits, b1, b2 and c such that

b = b1⊕b2⊕c.

It then universally branches to verify

BITm(CL, i) = b1, BITm(CR, i) = b2, CARm(C, i − 1) = c.

It is important to see that N can set up the arguments for these recursive calls in constant time. A similar
subroutine for CARm can be obtained.

It remains to analyze the time complexity of N. Define the function tm to capture the complexity of BITm and
CARm:

tm(d, i) =






1 if d = m
1 + tm(d + 1, 0) if (d < m) ∧ (i = 0)
1 + max{tm(d + 1, i), tm(d, i − 1)} else.

The last case corresponds to the recursive calls for BITm and CARm when i > 0. An examination of the recursive
equations for BITm and CARm reveals that the times to compute BITm(C, i) and CARm(C, i) are each bounded
by O(tm(d, i)) where d = level(C). On the other hand, it is easily checked that from the recursive equations that
tm satisfy

tm(d, i) = m − d + i + 1 = O(m)

since i and d lie in the range [0..m]. This proves that the time taken by N is O(m) = O(t(|x|)). Q.E.D.

This theorem, together with that in section 5, imply that deterministic space is at least as powerful as proba-
bilistic or alternating time separately:

PrTIME (t) ∪ ATIME (t) ⊆ DSPACE (t)

It is not clear if this can be improved to showing that deterministic space is at least as powerful as probabilistic-
alternating time. If this proves impossible, then the combination of probabilism and alternation is more powerful
than either one separately. This would not be surprising since probabilism and alternation seems to be rather
different computing concepts. Our current best bound on simulating probabilistic-alternating time is given next.

Theorem 23. For all complexity functions t, PrA-TIME (t) ⊆ ATIME (t log t).

Proof. We use the same notations as the proof of the previous theorem. Let M be a PAM that accepts in time
t. Fix any input x and let Tm be the complete computation tree of M on x restricted to levels at most m, and
define VALm, BITm and CARm as before. There is one interesting difference: previously, the values m and i in
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calls to the subroutines to verify BITm(C, i) = b and CARm(C, i) = b were encoded in unary. We now store these
values in binary (the reader is asked to see why we no longer use unary).

Consider the verification of BITm(C, i) = b for any inputs C, i, b, using alternating time. If C is a leaf this is
easy. Suppose C is a TOSS-configuration. Then we must guess three bits b1, b2, c and verify that BITm(CL, i) = b1,
BITm(CR, i) = b1 and CARm(C, i − 1) = c. Here we use an idea from the design of logic circuits: in circuits for
adding two binary numbers, the carry-bits can be rapidly generated using what is known as the ‘carry-look-ahead’
computation. In our context, this amounts to the following condition:

CARm(C, i) = 1 ⇐⇒ if there is a j (j = 0, . . . , i) such that BITm(CL, j) =
BITm(CR, j) = 1 and for all k = j + 1, . . . , i, either
BITm(CL, k) = 1 or BITm(CL, k) = 1.

In O(log m) alternating steps, we can easily reduce these conditions to checking BITm(C′, j) = b′ for some j, b′

and C′ a child of C. (We leave this detail as exercise.)
Finally, suppose C is a MIN-configuration (a MAX-configuration is handled similarly). By definition BITm(C, i) =

BITm(CL, i) iff VALm(CL) < VALm(CR), otherwise BITm(C, i) = BITm(CR, i). Now VALm(CL) < VALm(CR)
iff there exists a j (0 ≤ j ≤ m) such that

BITm(CL, h) = BITm(CR, h), (for h = j + 1, j + 2, . . . , m),

BITm(CL, j) = 0,

BITm(CR, j) = 1.

Again, in O(log m) time, we reduce this predicate to checking bits of VALm(C′), C′ a child of C.
To complete the argument, since each call to check a bit of VALm(C) is reduced in O(log m) steps to determining

the bits of VALm(C′) where level(C′) = level(C)+1, there are at most m such calls on any computation path. To
generate a call to C′, we use O(log m) time, so that the length of each path is O(m log m). Q.E.D.

Exercises

Exercise 0.22: Obtain the tight bound of Θ(log n) on the alternating time complexity for the multiplication
problem define as follows:

Lmult = {x#y#z# : x, y, z ∈ {0, 1}∗, x · y = z}.
Use the addressable-input model of machine. ♦

Exercise 0.23*: Can the above alternating simulation of deterministic reversals be improved? In particular, is it
true that DREVERSAL(r) ⊆ ATIME(r3)?

Exercise 0.24: What is the number of alternations in the proof of DTIME (t) ⊆ ATIME (t/ log t)? Can this be
improved? ♦

End Exercises

7.8 Further Generalization of Savitch’s Theorem

Savitch’s theorem says that for all s(n) ≥ log n, NSPACE (s) ⊆ DSPACE(s2). Chapter 2 gives a generalization of
Savitch’s theorem. In this section, we further improve this along three directions: (i) by using alternating time,
(ii) by allowing small space bounds s(n), i.e., s(n) < log n, and (iii) by extending the class of simulated machines
from nondeterministic to alternating machines.

Consider what happens when s(n) < log n. Savitch’s proof method gives only the uninteresting result NSPACE (s) ⊆
DSPACE (log2 n). Monien and Sudborough [14] improved this so that for s(n) < log n,

NSPACE (s) ⊆ DSPACE(s(n) log n).

Using addressable-input alternating machines, Tompa [21] improved the Monien-Sudborough construction to obtain:

NSPACE (s) ⊆ ATIME (s(n)[s(n) + log n])

for all s(n). Incorporating both ideas into the generalized Savitch’s theorem of chapter 2, we prove the following
new result:
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Theorem 24. For all complexity functions t(n) > n,

N-TIME-SPACE(t, s) ⊆ ATIME(s(n) log
n · t(n)

s(n)
)

where the alternating machine here is the addressable-input variety.

Proof. Let M be a nondeterministic machine accepting in time-space (t, s). We describe a addressable-input
alternating machine N to accept L(M). Let x be any input, |x| = n. M begins by existentially guessing t = t(n)
and s = s(n) and marking out s cells on each work tape.

We number the n cells of the input tape containing x as 0, 1, . . . , n− 1 (rather than the conventional 1, . . . , n).
We will divide the cells 0, 1, . . . , n−1 of the input tape into intervals Iw (subscripted by words w ∈ {L, R}∗) defined
as follows:

i ∈ Iw ⇐⇒ the most significant |w| bits in the binary representation
of i corresponds to w

where the correspondence between words in {L, R}∗ and binary strings is given by L ↔ 0 and R ↔ 1. It is also
assumed here that the binary representation of i is expanded to exactly ⌈log n⌉ bits. Clearly Iw is an interval of
consecutive integers. For example: with n = 6,

Iǫ = [0..5], IL = [0..3], IR = [4..5], IRR = ∅.

Observe that
Iw = IwL ∪ IwR and |IwL| ≥ |IwR| ≥ 0.

The L-end (resp., R-end) cell of a non-empty interval is the leftmost cell (resp., rightmost) cell in that interval.
A storage configuration is a configuration in which the contents as well as head position of the input tape

are omitted. Let S, S′ be storage configurations of M, d, d′ ∈ {L, R}, w ∈ {L, R}∗. Let conf (S, d, w) denote
the configuration in which the contents and head positions in the work-tapes are specified by S, with input tape
containing the fixed x and the input head scanning the d-end cell of interval Iw. In the course of computation, N
will evaluate the two predicates REACH and CROSS defined next. The predicate

REACH(S, S′, d, d′, w, m)

holds if there is a computation path π of length at most m from conf (S, d, w) to conf (S′, d′, w) where the input
head is restricted to the interval Iw throughout the computation, and the space used is at most s. Recall that s is
the guessed value of the maximum space usage s(|x|). Let L denote R and R denote L. Then the predicate

CROSS(S, S′, d, d′, w, m)

holds if there is a computation path of length at most m from conf (S, d, wd) to conf (S′, d′, wd′) where the input
head is restricted to the interval Iw throughout the computation, and the space used is at most s. Observe that
the intervals Iwd and Iwd′ used in this definition are adjacent and Iwd ∪ Iwd′ ⊆ Iw (if d = d′ then this inclusion is
proper). We assume in this definition IwR is non-empty; this automatically implies IwL is non-empty. For instance:
CROSS(S, S′, L, R, RLR, m) holds means there is a path from conf (S, R, RLRL) to conf (S′, L, RLRR) of length
at most m, as illustrated in the following figure.

#
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Figure 7.1 The input head positions implied by CROSS(S, S′, L, R, RLR, m)
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We may assume that when M halts, its input head returns to cell 0. The simulation of M amounts to the
evaluation of REACH(S0, Sf , L, L, ǫ, t) where S0 is the (trivial) initial storage configuration (independent of x) and
Sf is some existentially guessed accepting storage configuration that uses at most s space, λ being the empty string.

We describe the recursive evaluation of REACH(S, S′, d, d′, w, m). It is assumed that the following setup holds
at the time of calling the procedure: S and S′ are represented by the contents and head positions on designated
tapes of N (if M has k work-tapes, N uses 2k tapes for S and S′). The argument w is on the address tape of the
N. The value m is written in binary on another tape. One of the following three cases hold:

(i) |w| = ⌈log n⌉: this condition can be checked in constant time (for instance, by keeping a tally of the length
of w) provided that before the simulation begins, the unary representation of ⌈log n⌉ is guessed and verified
once and for all. In this case |Iw | = 1 and N enters the read state to read the input symbol x[w] indexed by
w. From the definition of REACH, from now on N can ignore its input tape and call the predicate

REACHABLE(conf (S, d, w), conf (S′, d′, w), m)

where REACHABLE is the predicate in the original proof of the generalized Savitch’s theorem (chapter 2,
section 7). Recall that the predicate REACHABLE(C, C′, m) holds if there is a computation path from
configuration C to configuration C′ of at most m steps using at most s space. The original simulation in
chapter 2 uses O(s log m

s ) = O(s log t
s) space, but this is easily modified to give us alternating time O(s log t

s )
(Exercise). Another slight modification is to make REACHABLEreject at once if input head ever moves at
any time during the simulation.

(ii) |IwR| = 0: then call REACH(S, S′, d, d′, wL, m). Note that |IwR| = 0 iff the binary number corresponding to
wR is greater than n − 1. This is easily checked, for instance, by entering the READ state and seeing if we
next enter the ERROR state.

(iii) |IwR| ≥ 1 (so |w| < ⌈log n⌉): N existentially guesses whether there is a computation path π from conf (S, d, w)
to conf (S′, d′, w) with the input head restricted to Iwd. If it guesses ‘no’ (and it will not make this guess
unless d = d′) then it next calls

REACH(S, S′, d, d, wd, m)

If it guesses ‘yes’ (it could make this guess even if d = d′) then it chooses existentially two storage configura-
tions S′′, S′′′ in the computation path π and then chooses universally to check one of the following:

REACH(S, S′′, d, d, wd, m),

CROSS(S′′, S′′′, d, d′, w, m),

REACH(S′′′, S′, d′, d′, wd′, m).

N existentially guesses one of the cases (i)-(iii), and then universally checks that its guess is correct as well as
performs the respective actions described under (i)-(iii). This completes the description of REACH.

The subroutine for CROSS(S, S′, d, d′, w, m) has two cases:

(i)’ m ≤ s: in this case, N can check the truth of the predicate in time s (since a nondeterministic machine is
just a special case of alternation).

(ii)’ m > s: N guesses two storage configurations S′′, S′′′ and a value d′′ ∈ {L, R} and universally branches to
check

CROSS(S, S′′, d, d′′, w, m/2),

REACH(S′′, S′′′, d′′, d′′, wd′′, m)and

CROSS(S′′′, S′, d′′, d′, w, m/2).

We should explain this choice of S′′, S′′′, d′′: if there is a computation path from conf (S, d, wd) to conf (S′, d′, wd′)
that makes CROSS(S, S′, d, d′, w, m) true then this path can be broken up into several disjoint portions where
the input head is confined to IwL or to IwR in each portion. Consider the portion π of the path that con-
tains the configuration at time m/2: let π be confined to the interval Iwd′′ for some d′′, and let the storage
configurations at the beginning and end of π be S′′ and S′′′, respectively. With this choice of d′′, S′′, S′′′, it
is clear that the recursion above is correct.
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Note that it is unnecessary to check for m ≤ s in REACH (since REACH does not reduce m in making recursive
calls); likewise it is unnecessary to check for |Iw | = 1 in CROSS (since it is called by REACH only with |Iw| ≥ 2).
Observe that every two successive calls to REACH or CROSS result in either |w| increasing by at least one or m
decreasing to at most m/2. Hence in 2(⌈log n⌉ + log(t/s)) = O(log(nt/s)) recursive calls, we reduce the input to
the ‘basis’ cases where either m ≤ s or |Iw| = 1. Each recursive call of REACH or CROSS requires us to guess the
intermediate storage configurations S′′, S′′′ in time O(s). Hence in O(s log(nt/s)]) steps we reach the basis cases.
In these basis cases, the time used is either O(s) time or that to compute REACHABLE(C, C′, m). The latter is
O(s log(t/s)) as noted before. The total time is the sum of the time to reache the basis cases plus the time for basis
cases. This is O(s log(nt/s)]). Q.E.D.

The structure of the preceding proof involves dividing at least one of two quantities in half until the basis case.
An immediate consequence of the above results is this:

Corollary 25.
(i) NSPACE (s) ⊆ ATIME(s2).
(ii) PrTIME (nO(1)) ⊆ ATIME(nO(1)) = PrA-TIME(nO(1)) = PSPACE.

Borodin [3] observed that Savitch’s theorem is capable of generalization in another direction. Incorporating
Borodin’s idea to the previous theorem yields the following “super” Savitch’s theorem. Recall the definition of
alternating complexity in section 3.

Theorem 26. Let t(n) > n, s(n) and a(n) be any complexity functions. Then

A-TIME-SPACE-ALTERNATION (t, s, a) ⊆ ATIME(s(n)[a(n) + log
n · t(n)

s(n)
])

where alternating machines are the addressable-input variety.

Proof. Suppose an alternating machine M accepts in time, space and alternating complexity of t(n), s(n) and
a(n). On input x, the machine N begins by guessing the values t0 = t(|x|) and s0 = s(|x|). Let T (x) = Tt0,s0

(x)
be the computation tree on x restricted to nodes at level ≤ t0 and using space ≤ s0. There are two procedures
involved: The main procedure evaluates a predicate ACCEPT (C) that (for any configuration C as argument)
evaluates to true if C ∈ T (x) and the least fixed point value ValT (C) of C is equal to 1. The other procedure we
need is a variation of the predicate REACH(S, S′, d, d′, w, m) in the proof of theorem 24. Define the new predicate

REACH′(S, S′, v, v′, w, m)

where S, S′ are storage configurations, v, v′, w ∈ {L, R}∗ and m ≥ 1 such that |wv| = |wv′| = ⌈log n⌉. Let
conf (S, w) where |w| = ⌈log n⌉ denote the configuration whose storage configuration is S and input tape contains
x and the input head is at position indicated by w. The predicate REACH′ evaluates to true provided there is a
computation path π of length ≤ m from conf (S, wv) to conf (S′, wv′) such that all the intermediate configurations
C use space ≤ s and has input head restricted to the interval Iw. We further require that

(a) C and conf (S, wv) have opposite types, i.e., C is a MIN-configuration if and only if conf (S, wv) is a MAX-
configuration. Note that we assume M has no NOT-configurations.

(b) The computation path π we seek must have only configurations of the same type as C with the sole exception
of its last configuration (which is equal to conf (S, wv), naturally).

It is clear that we can compute REACH′ in alternating time O(s log t/s) as in the case of REACH.

The procedure ACCEPT (C) proceeds as follows: suppose C is an MAX-configuration (resp., MIN-configuration).
Then the algorithm existentially (resp., universally) chooses in time O(s) a configuration C′ with opposite type
than C. Let C = conf (S, v) and C′ = conf (S′, v′). Regardless of the type of C, the algorithm existentially chooses
to call the following subroutines:

(1) ACCEPT (C′)

(2) ¬REACH′(S, S′, v, v′, ǫ, t0) where the values S, S′, v, v′ are related to C, C′ as above. Of course, by ¬REACH′

we mean that the procedure first enters a NOT-state and then calls REACH′. (Here is an occasion where it
is convenient to re-introduce NOT-states.) The reader should easily see that the procedure is correct.
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We now analyze the complexity of the procedure ACCEPT. For any configuration C let TC be the subtree of
configurations reachable from C. Define depth(C) to be the minimum k such that there is prefix T ′ of TC such
that T ′ is accepting and each path in T ′ has at most k alternation. In particular, observe that if x is accepted by
M then depth(C0(x)) is at most a(|x|), with C0(x) the initial configuration. Let W (k) be the (alternating) time
required by the procedure for ACCEPT (C) on input C with depth k. Then we have

W (k) = O(s) + max{s log
t

s
, W (k − 1)}.

To see this, suppose C is an MAX- (resp., MIN-) configuration. Then O(s) is the time to existentially (resp.,
universally) choose the configurations C′ reachable from C; s log t/s is the time to decide the predicate REACH′;
and W (k − 1) is the time to recursively call ACCEPT (C′). It is easy to deduce that W (k) has solution given by:

W (k) = O(s · [k + log t/s]).

The theorem follows immediately. Q.E.D.

This is still not the last word on extensions of Savitch’s theorem! We return to this in the next chapter.

7.9 Alternating Time is More Powerful than Deterministic Time

This section proves the following important result:

Theorem 27. For all t, DTIME (t) ⊆ ATIME( t
log t ).

Tompa and Dymond [6] obtained this result by adapting the result of Hopcroft, Paul and Valiant [12] showing
DTIME (t) ⊆ DSPACE (t/ log t). Adleman and Loui [1] gave an interesting alternative proof of the Hopcroft-Paul-
Valiant result. The Hopcroft, Paul and Valiant achievement showed for the first time that space is a more powerful
resource than time in a general model of computation (namely, multitape Turing machines). For restricted models
of computation, Paterson [17] already established that space is more powerful than time for simple Turing machines.
Theorem 27 is also an improvement of the result of Paul and Reischuk who simulated deterministic time t using
alternating time O(t log log t/ log t). In the following, we shall assume the addressable-input model of alternation
in case t/ log t = o(n) in the theorem, but otherwise, the regular model suffices.

As an interesting corollary, in conjunction with the alternating time hierarchy theorem at the end of section 4,
is that there are languages in DLBA that cannot be accepted in deterministic linear time.

7.9.1 Reduction of Simulation to a Game on Graphs.

First consider the simpler problem of simulating a deterministic Turing machine using as little deterministic space as
possible. A key step is the reduction of this problem to a combinatorial question on graphs. Suppose a deterministic
k-tape machine M accepts an input in t > 0 steps. Our goal is to describe a deterministic machine N that simulates
M using as little space as possible.

Let B = B(t) > 0 be the blocking factor, left unspecified for now. For i = 0, 1, . . . , ⌈t/B⌉, let

τi := iB

be time samples, and let the cells of each work-tape be grouped into blocks consisting of B consecutive cells. For
each block b, let neighborhood (b) denote the set of 3 blocks consisting of b and the two adjacent blocks on either
side of b. We construct a directed acyclic graph G = (V, E) with node set

V = {0, 1, . . . , ⌈t/B⌉}

and labels for each node. The label for a node i consists of the following two pieces of information:

(i) positions h0, . . . , hk of the k + 1 tape heads and

(ii) a state q.

We say that this label of node i is correct if at time sample τi, the machine is in state q and the heads are at
positions given by h0, . . . , hk. We may say that block b is visited in time sample τj if the label of node j says that
there is a tape head somewhere in b. Note that this definition is relative to the labeling, regardless of its correctness.
Once the labels are given, we can define an edge set E as follows. The edges in E are those (i, j) satisfying one of
two requirements:
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(a) There is a tape block b visited at time sample τj , another tape block b′ visited time sample τi such that
neighborhood (b)∩neighborhood(b′) is non-empty and, previous to sample time τj , b′ is last visited in time sample
τi.
(b) There is a tape block b visited in time sample τj such that neighborhood (b) contains a block that has never
been visited in time samples before τj , and i = 0.

If (i, j) ∈ E then necessarily i < j, and if the labeling is correct then (i, i + 1) must be in E. Let neighborhood (j)
denote the union of the blocks in neighborhood (b) where b range over all blocks visited in time sample τj . Clearly
neighborhood (j) has exactly 3k blocks. Let b be visited in time sample τj . Then there ≤ 5 blocks b′ such that
neighborhood (b′) ∩ neighborhood (b) is non-empty. Each such b′ contributes an edge of the form (i, j) ∈ E for some
i. This implies that the indegree of each node in G is ≤ 5k. The outdegree of G (with the exception of node 0) is
similarly bounded by 5k.

A description of G together with its labels can be written down using at most

t log t

B

space. This space is less than t if B is larger than log t. We attempt to find such a graph G by testing successively
larger values of t, and for each t, cycling through all ways of assigning labels. It remains to show how to verify a
proposed labelling. The idea is that each node in G can be ‘expanded’ in the following sense: the expansion of a
node i ∈ G consists of the contents of the blocks in neighborhood (i) in time sample τi. Note that the expansion of
i can be encoded using O(B) space. The edges of G define a predecessor-successor relationship: (i, j) is an edge
mean that i is a predecessor of j, and j the successor of i. Next we make an important but elementary observation:

(*) If we already have the expansions of all the predecessors of node i ≥ 1 then we may expand node i simply
by simulating the machine starting from time τi−1 = (i − 1)B.

To do this, we first reconstruct the contents of blocks in neighborhood (i − 1) ∪ neighborhood (i), using the
expansions of the predecessors of i. (There could be overlap among the predecessor expansions, but it is easy to
only use the contents of the most recent version of a block.) Now simulate M starting from time sample τi−1 to
time sample τi. At the end of the simulation, we may assume that the expansion of node i is now available, in
addition to the previous expansions. Details can be filled in by the reader. Let us say that a node i is verified if
we confirm that its label (i.e., head positions and state) is correct.

(**) If the predecessors of node i are expanded and verified then we can also expand and verify node i.

This is because we can compare the state and head positions in the expansion of i with the labels of node i.
Now we can give a nondeterministic procedure to verify G: nondeterministically expand nodes, one at a time.

At any moment, the tapes of the simulator contain some number of expanded nodes. Those nodes whose only
predecessor is node 0 can be expanded at any moment; for any other node i, we can only expanded i if all its
predecessors are expanded. At the end of expanding node i, we verify the label of i. We may nondeterministically
contract any previous expansion if we wish; contraction is just the inverse of expansion. Of course we may contract a
node only to re-expand it later. The space used by this procedure is O(B) times the maximum number of expanded
nodes at any moment. So to minimize space usage, we should contract nodes “at suitable moments”. The graph
G is said to be verified if its final node ⌈t/B⌉ is verified in this process; we might as well assume that the label of
⌈t/B⌉ always contains the accept state.

It is not hard to see that M accepts its input x iff there is a graph G that is verified by this procedure. We can
make this procedure deterministic by cycling through all nondeterministic choices used in the expansion/contraction
above. For a space-efficient method of verifying G, Hopcroft, Paul and Valiant showed a general strategy that
never store more than t

B log t expanded nodes at any moment during the verification process. This means that the

strategy never use more than t
log t space since each expanded node uses O(B) space. This proves that DTIME (t) ⊆

DSPACE (t/ log t). The details of this will not be explicitly described since it is essentially subsumed in the Tompa-
Dymond alternating time implementation of the strategy, shown next.

7.9.2 A Pebble Game.

Now we transcribe the previous expansion and contraction process for verifying G into a combinatorial game on
graphs. We are given a directed acyclic graph G = (V, E) together with a goal node i0 ∈ V . There is only one player
in this game. There is an infinite supply of indistinguishable pebbles and each node of G can hold a single pebble.
A node is said to be pebbled if there is a pebble in it; it is empty otherwise. Initially, all the nodes are empty. A
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pebbling step consists of placing a pebble on an empty node u, provided all predecessors of u are already pebbled.
In particular, we can always pebble an empty source node (i.e., a node with no predecessors). An unpebbling step
consists of removing a pebble from a pebbled node. A play is simply a sequence of pebbling or unpebbling steps,
with the last step being the pebbling of the goal node i0. At any moment during the play, there is some number
of pebbles on the graph, and our aim (as the player) is to choose the steps in a play in order to minimize the
maximum number k of pebbled nodes at any time during the play. This number k is called the pebble cost of the
play.

The reader will have no difficulty making the connection between this pebble game and the simulation described
earlier: pebbling (unpebbling) a node corresponds to expansion (contraction) of nodes.

A game strategy is a rule to play the game for any graph. A trivial game strategy is to pebble the nodes in
topological order and never to unpebble any nodes. On an n node graph, the pebble cost is n with this strategy.
Can we do better in general? The key result here says: for any directed acyclic graph G on n nodes with in- and
out-degree at most d, the strategy yields a play with pebble cost Od(n/ logn).

We want an ‘alternating version’ of playing this pebbling game. As usual, alternation turns the problem inside-
out (or rather, bottom-up): instead of proceeding from the source nodes to the goal node i0, we first ask what is
required to pebble the goal node. This is viewed as a “challenge” at node i0. The challenge at a node u in turn
spawns challenges at other nodes (which must include all predecessors of u). This is roughly the idea for our key
definition:

Definition 12. A pebbling tree for a directed acyclic graph G with goal node i0 is a finite tree T satisfying the
following.17 Each vertex u of T is associated with a triple [i, X, Y ] where X and Y are subsets of nodes of G, and
i is a node of G. We called i the challenged node, X the pebbling set, Y the unpebbling set (at vertex u). At each
vertex u, define the current set C(u) of (currently) pebbled nodes at u by induction on the level of u: if u is the
root then C(u) is simply the pebbling set at u; otherwise if u is a child of u′ then C(u) = (C(u′) − Y ) ∪ X where
X (resp., Y ) is the pebbling (resp., unpebbling) set at u. We require these properties:

(i) The challenged node at the root is the goal node i0.

(ii) At each vertex u associated with [i, X, Y ], either i ∈ X or else all the predecessors of i are contained in
the current set C(u).

(iii) If the pebbling set at vertex u is X , then u has |X | children, and the set comprising the challenged nodes
at these children is precisely X .

Remarks Note that (iii) implies that the pebbling set at a leaf must be empty; (ii) further implies that the
predecessors of a challenged node at a leaf u is in C(u). The concept of “pebble” in pebbling trees is distinct
from the pebbles in the original pebbling game: in the literature, this distinction is made by giving colors (black
and white) to the different concepts of pebbles. We may call the “pebbles” in pebbling trees “challenge pebbles”,
because they are targets to be achieved in the original pebbling game.

Interpretation: This tree is an abstract description of an alternating computation tree that verifies the labels
of a graph G in the sense of the Hopcroft-Paul-Valiant simulation of a deterministic time t machine M . To make
this precise, we first describe an alternating machine N that on input a labeled graph G with goal node i0 behaves
as follows: initially, N existentially guesses some expansion of node i0 and writes this onto tape 1; tape 2 is empty.
In general, N is in the following ‘inductive stage’:

Tape 1 contains the expansion e(i′) some node i′,
Tape 2 holds some number of expansions of nodes in G.

Then N existentially deletes some expansions in tape 2 and existentially writes some (possibly zero) new expansions
in tape 3. If no expansion of node i′ is found in tapes 2 and 3 then N tries to produce one: first N checks that all
the predecessors of i′ are in tapes 2 and 3 (otherwise it rejects) and then simulate M from sample time τi′−1 to
sample time τi′ and, as usual, assume that we now have an expansion d(i′) of i′. N can now verify if the expansion
e(i′) agrees with the found or newly constructed d(i′) (if not, N rejects). To continue, either tape 3 is empty (in
which case N accepts) or else N universally chooses to copy one of the expanded nodes from tape 3 to tape 1 and
the rest onto tape 2. This completes the ‘inductive stage’.

17To avoid confusing the nodes of T with those of G, we will refer to the nodes of T as ‘vertices’.
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We claim that N accepts iff there is a pebbling tree T . Suppose T exists. To show that N accepts, we describe
an accepting computation tree T ′ of N that is modeled after T : each inductive stage of N corresponds to a vertex u
of T . If u is associated with the triple [i, X, Y ] then tape 1 contains the expansion of node i and tape 2 contains the
expansions of the set C(u) of pebbled nodes at u. Then the sets Y, X corresponds (respectively) to the expansions
that are deleted from tape 2 or existentially guessed in tape 3. If we choose T ′ in such a way that the guessed
expansions in tape 3 are always correct, then T ′ would be an accepting computation tree. Conversely, if N accepts,
then we can construct the pebbling tree by reversing the above arguments.

With this interpretation, it is easy to understand the following definition of complexity. The pebbling time at
any vertex with label [i, X, Y ] is given by 1 + |X | + |Y |. The pebbling time of a path of T is the sum of the
pebbling times of nodes along the path. The pebbling time of T is the maximum pebbling time over all paths in T .
The pebbling space of T is the maximum of |C(u)| over all vertices u. These corresponds to alternating time and
alternative space, respectively. Since we do not care about minimizing alternating space in the following proof, we
may assume each unpebbling set Y is empty. We leave the following as an exercise:

Lemma 28. Let G be any directed acyclic graph and i0 be a node in G. If there is a pebbling tree for (G, i0) with
pebbling time t, then we can pebble (G, i0) using t pebbles.

We come to the main lemma:

Lemma 29. Let G be any directed acyclic graph with m edges, and whose indegree and outdegree is at most d. For
any goal node i0 in G, there exists a pebbling tree for (G, i0) with pebbling time of Od(m/ log m)

Proof. Let G be any graph described by the lemma and i0 is any node in G, We describe a pebbling tree for
(G, i0) whose pebbling time is at most P (m), where P (m) = Od(m/ log m). We may suppose m is sufficiently large.
First partition the nodes V of G into two disjoint sets, V = Va ∪ Vb such that

(i) There are no edges from Vb (‘nodes below’) to Va (‘nodes above’). So edges of G that cross between Va and
Vb must descend from above to below. Let Ga, Gb be the induced subgraphs with nodes Va, Vb, respectively.

(ii) The number of edges mb in Vb satisfies

m

2
− m

log m
≤ mb <

m

2
− m

log m
+ d.

To see that such a partition exists, we offer a construction. Starting with Vb as the empty set, keep adding nodes
into Vb in topological order until the number of edges of Gb satisfies the above inequalities (this is possible because
additional node in Vb increases the number of edges by at most d).

Let B ⊆ Vb comprise those nodes with at least one predecessor in Va. Consider three cases.

CASE 1 Suppose the goal node i0 is in Va. Then a pebbling tree for (Ga, i0) is also a pebbling tree for (G, i0).
This tree has a pebbling time at most

P (m − mb) ≤ P (
m

2
+

m

log m
).

Assume i0 ∈ Vb in the remaining cases.

CASE 2 Suppose |B| < 2m/ logm. Then we construct the following pebbling tree T for (G, i0). The pebbling set
at the root of T is B ∪ {i0}. At each child u of the root, we consider two possibilities. If the challenged node
at u is i ∈ B, then inductively construct a pebbling tree for (Ga, i) with pebbling time P (m/2 + m/ log m).
Otherwise the challenged node is i0 and we inductively construct a pebbling tree for (Gb, i0) with pebbling
time P (m/2 − m/ logm + d). The result is a pebbling tree for (G, i0) with pebbling time at most

2m

log m
+ P (

m

2
+

m

log m
).

CASE 3 Suppose |B| ≥ 2m/ logm. Consider a pebbling tree Tb for (Gb, i0) with pebbling time ≤ P (m/2 −
m/logm + d). We convert Tb into a pebbling tree for (G, i0): let u be any leaf of Tb with challenged node i.
The predecessors of i in Gb are contained in C(u), by definition of Tb. But i may bave predecessors in G but
not in Gb: let X(i) be this set of predecessors. We make X(i) the pebbling set at u and create |X(i)| ≤ d
children for u. Each child v of u has a challenged node j ∈ Va. We can attach to v a pebbling tree Tj for
(Ga, j). Notice Ga has at most m− mb − |B| ≤ (m/2)− (m/ logm) edges since are at least |B| ≥ 2m/ logm
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edges from Va to Vb are not counted in Ga or Gb. Hence the pebbling time for Tj is at most P (m/2−m/ logm).
This completes our description of the pebbling tree for (G, i0). The pebbling time of this tree is equal to the
pebbling time of Tb plus the pebbling time of any Tj’s plus at most d. This is at most

2P (
m

2
− m

log m
) + d.

Taking the worst of these three cases, we obtain

P (m) ≤ max{P (
m

2
+

m

log m
) +

2m

log m
, 2P (

m

2
− m

log m
) + d}

We want to show that there is a constant c = c(d) ≥ 5 such that for m′, P (m′) ≤ cm′/ logm′. By making c
sufficiently large, we may assume that the truth has been established for m large enough. Inductively, we have the
the following derivation:

P (
m

2
+

m

log m
) +

2m

log m
= P (αm) +

2m

log m
(where α = 1

2 + 1
log m )

≤ cαm

log(αm)
+

2m

log m

≤ cm

log m

(
α log m

log(αm)
+

2

c

)

≤ cm

log m
.

We also have

2P (m
2 − m

log m ) + d ≤
2c

(
m
2 − m

log m

)

log
(

m
2 − m

log m

) + d

≤
cm

(
1 − 2

log m

)

log m + log
(

1
2 − 1

log m

) + d

≤
cm

(
1 − 2

log m

)

log m − 1.1
+ d

≤ cm

log m

(
log m − 2

log m − 1.1

)
+ d

≤ cm

log m
.

Q.E.D.

We may now complete the proof of the main result showing a deterministic M that accepts in time t can be
simulated in alternating time O(t/ log t). In applying the above lemma, we may recall that the graph G obtained
from a computation of M by using some blocking factor B has bounded in- and out-degrees except for node 0. To
fix this, we can simply place a pebble at node 0 and the rest of the graph is now effectively bounded degree.

(1) Reserve tapes 1, 2 and 3 for later use. First we existentially choose the time t (tape 4) and blocking factor
B (tape 5). Then we existentially choose a labeling of the graph G with nodes V = {0, . . . , t/B} (tape 6),
and an edge set E (tape 7). Since each label uses O(log t) space, all this (when choice is correct) takes time
O( t log t

B ).

(2) Universally choose to verify that E is correct relative to node labels, and to verify that the label of node t/B
is correct. It takes time O( t log t

B ) to verify E. Verification of the label at node t/B is recursive as shown next.

(3) The verification of node ⌈t/B⌉ amounts to simulating a pebbling tree T for (G, ⌈t/B⌉) (i.e., with ⌈t/B⌉ as the
goal node of G). We do this along the lines given by the “Interpretation” above. As before, each ‘inductive
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stage’ of our simulation of T corresponds to a vertex u of T : if [i, X, Y ] is associated with u then an expansion
of the challenged node i is available on tape 1. The set of nodes previously expanded are available on tape
2. Since the pebbling time of T can be assumed to be t/(B log(t/B)), we may assume that tape 2 has at
most t/(B log(t/B)) nodes. Since each expansion uses O(B) space, tape 2 uses O(t/ log(t/B)) space. We
existentially choose the pebbling set X at u and also their expansions, writing down these guesses on tape 3.
(As noted before, we may assume Y is empty.) We then verify the challenged node i (it must either appear
in tapes 2 or 3 or has all its predecessors expanded so that it can be simulated directly). This non-recursive
verification of node i takes time O(t/ log(t/B)). To get to the next inductive stage, we universally choose to
transfer one of the expanded nodes on tape 3 to tape 2, which is now the challenged node.

We have seen that the non-recursive parts of step (3) takes alternating time O(t/ log(t/B)). This time must be
added to the total alternating time in the recursive parts of the computation. The recursive part of the computation,
we claim is O(B) times the pebbling time P . This is because each unit of pebbling time P can be associated with
the guessing of an expanded node. But each expansion, when correct, takes space O(B). It follows that the
recursive part of the computation takes time O(t/ log(t/B)) since the pebbling time for the optimal tree is at most
O(t/[B log(t/B)]) (by preceding lemma, with n = t/B). Finally, if B is chosen to be log2 t, we get a time bound of
O(t/ log t) for steps (1),(2) and (3). (We could choose B as large as tǫ for any constant ǫ > 0.) This concludes the
proof of our main theorem.

Finally, we note that the space bound just obtained is the best possible in the sense that Ω(t/ log t) is a lower
bound on the worst case pebbling time for the class bounded in-degree graphs [19].

Exercises

Exercise 0.25: Recall the graph G = (V, E) that attempts to represent the time-sampled computation of a
deterministic TM on a fixed input. The vertex set is V = {0, 1, . . . , ⌈t/B⌉}. An alternative definition of the
edge set E is this: “(j, i) ∈ E iff j < i and there is some block b visited in the ith time interval and last visited
in the jth time interval.” What modifications are needed in the rest of the proof which uses G to show that
DTIME(t) ⊆ DSPACE(t/ log t)? ♦

Exercise 0.26: In the graph G, we say node v is an ancestor of node w if there is a path from v to w (so “ancestor”
is the reflexive transitive closure of the “predecessor” relation).
(i) Show that in any pebbling tree T for (G, i0), it is possible to restrict the pebbling sets at each vertex to
the ancestors of i0.
(ii) Prove lemma 28. Hint: Suppose u1, . . . , uk are the children of the root of T and xi is the challenged node
at ui. Let Tj be the subtree of T rooted at uj. Renumber the indices so that if xi is an ancestor of xj then
i < j. You strategy need to take into account this topologically sorted sequence on x1, . . . , xk. Is it true that
Tj is a pebbling tree of (G, xj)? ♦

Exercise 0.27: Show that if a graph with goal node (G, i0) has a pebbling tree with pebbling time t then it can
be pebbled with t pebbles. Is the converse true? ♦

Exercise 0.28: (Paul, Tarjan, Celoni, Cook)
(a) A level graph is a directed acyclic graph with bounded in-degree such that the vertices can be partitioned
into ‘levels’ and edges only go from level i to level i + 1. Show that every level graph on n vertices can be
pebbled using O(

√
n) pebbles.

(b) Show an infinite family of graphs with indegree 2 that requires Ω(
√

n) pebbles to pebble certain vertices.
♦

End Exercises

7.10 Alternating Space

We show two results from Chandra, Kozen and Stockmeyer that relate alternating space and deterministic time.
Note that for a nondeterministic machine M , if there is an accepting path then there is one in which no

configuration is repeated. The next lemma shows an analogous result for alternating machines.

Lemma 30.
(a) Let M be any choice machine. If T is an accepting computation tree for an input w then there is an accepting
computation tree T ′ for w with the following properties:
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• each computation path in T ′ is a (prefix of a) computation path in T

• if u, v ∈ T ′ are vertices such that u is a proper ancestor of v and both u and v are labeled by the same configuration,
then ValT ′(v) ⊏ ValT ′(u) (strict ordering).

(b) If, in addition, M is an alternating machine then we can assume that v is a leaf of T ′.

Proof. (a) The result follows if we show another accepting computation tree T ′ with fewer vertices. Let Tv

denote the subtree of T rooted at v consisting of all descendents of v. There are two cases: if ValT (u) ⊑ ValT (v)
then we can form T ′ from T by replacing Tu with Tv. By monotonicity, T ′ is still accepting.
(b) This simply follows from part (a) since for alternating machines, ValT (v) ⊏ ValT (u) implies that ValT (v) = ⊥.
In that case, we might as well prune away all proper descendents of v from T .

Q.E.D.

Theorem 31. For all complexity functions s,

ASPACE (s) ⊆ DTIME (n2 log nO(1)s).

Proof. Let M be an ordinary alternating machine accepting in space s. Later we indicate how to modify the
proof if M has the addressable-input capability. We will construct a deterministic N that accepts L(M) in the
indicated time. On an arbitrary input w, N proceeds in stages: in the mth stage, N enumerates (in tape 1) the
set ∆m defined to be all the configurations C of M on input w where C uses at most m space. Note that each
configuration can be stored in m + log n space, and there are nO(1)m configurations, so we use

(m + log n)nO(1)m = n log nO(1)m

space on tape 1. Then N enumerates (in tape 2) the edges of the computation tree Tm whose nodes have labels
from ∆m and where no node u ∈ Tm repeats a configuration that lie on the path from the root to u, except when
u is a leaf. Clearly this latter property comes from the previous lemma. Using the information in tape 1, it is not
hard to do this enumeration of edges in a ‘top-down’ fashion (we leave the details to the reader). Furthermore
each edge can be produced in some constant number of scans of tape 1, using time n log nO(1)m. Thus the overall
time to produce all nO(1)m edges is n2 log nO(1)m. Now we can compute the least fixed point ValTm

(u) value at
each node u ∈ Tm in a bottom-up fashion, again O(n log nO(1)m) per node for a total time of n2 log nO(1)m. This
completes our description of the mth stage.

The previous lemma shows that if M accepts w then at some mth stage, m ≤ s(|x|), Tm is accepting. Since the
time for the mth stage is n2 log nO1(1)m, the overall time over all stages is

s(n)∑

m=1

n2 log nO1(1)m = n2 log nO2(1)s(n).

It remains to consider the case where M has the addressable-input capability. We first note that we never have
to use more than O(log n) space to model the address tape (if M writes more than log n bits, we ignore the tape from
that point onwards since it will lead to error when a READ is attempted). Hence the above space bounds for storing
a configuration holds. Furthermore, the time to generate the contents of tapes 1 and 2 remains asymptotically
unchanged. Similarly for computing the least fixed point ValTm

. This concludes the proof. Q.E.D.

Theorem 32. For all t(n) > n, DTIME (t) ⊆ ASPACE (log t).

Proof. Let M accept in deterministic time t. We describe an alternating machine N to accept L(M) in space
log t. For this simulation, N can be the ordinary variety of alternating machine. We may assume that M is a simple
Turing machine and M never moves its tape head to the left of its initial position throughout the computation.
(Otherwise, we first convert M into a simple Turing machine accepting in time t(n)2 with these properties. How?)
Let x be any word accepted by M . Let C0, C1, . . . , Cm, m = t(|x|), be the unique accepting computation path of
M on x. We assume that the final accepting configuration is repeated as many times as needed in this path. Let
each Ci be encoded as a string of length m + 2 over the alphabet

Γ = Σ ∪ [Q × Σ] ∪ {⊔}

where Σ is the tape alphabet of M , Q the state set of M , and [Q×Σ] is the usual composite alphabet. Furthermore,
we may assume the the first and last symbol of the string is the blank symbol ⊔. Let αi,j denote the jth symbol
in configuration Ci (i = 0, . . . , m; j = 1, . . . , m + 2).
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N will be calling a subroutine CHECK(i, j, b) that verifies whether αi,j = b where b ∈ Γ. N begins its overall
computation by existentially choosing the integer m, the head position h (1 ≤ h ≤ m + 2) and a symbol b′ = [qa, c]
and then it calls CHECK(m, h, b′). The subroutine is thus verifying that that M is scanning the symbol c at
position h when M enters the accept state qa. All integer arguments are in binary notation.

In general, the subroutine to verify if αi,j = b (for any i, j, b) operates as follows: if i = 0 or j = 1 or j = m,
N can directly do the checking and accept or reject accordingly. Otherwise, it existentially chooses the symbols
b−1, b0, b+1 such that whenever b−1, b0, b+1 are consecutive symbols in some configuration of M then in the next
instant, b0 becomes b. Now N universally chooses to call

CHECK(i − 1, j − 1, b−1),CHECK(i − 1, j, b0),CHECK(i − 1, j + 1, b+1).

It is important to realize that even if b does not contain the tape head (i.e., b 6∈ [Q × Σ × I]), it is possible for b−1

or b+1 to contain the tape head. The space used by N is O(log m).
Correctness. If M accepts then it is clear that N accepts. The converse is not obvious. To illustrate

the subtlety, suppose CHECK(i, j, b) accepts because CHECK(i − 1, j − ǫ, bǫ) accepts for ǫ = −1, 0, 1. In turn,
CHECK(i− 1, j− 1, b−1) accepts because CHECK(i− 2, j− 1, b′) (among other calls) accepts for some b′; similarly
CHECK(i− 1, j, b0) accepts because CHECK(i− 2, j − 1, b′′) (among other calls) accepts for some b′′. But there is
no guarantee that b′ = b′′ since these two calls occur on different branches of the computation tree. Another source
of inconsistency is that the existential guessing of the bj ’s may cause more than one tape head to appear during one
configuration. Nevertheless, we have a correctness proof that goes as follows. First observe that if CHECK(i, j, b)
is correct if i = 0. Moreover, given j there is a unique b that makes CHECK(0, j, b) accept. Inductively, assume
CHECK(i, j, b) is correct for all j, b and that CHECK(i, j, b) and CHECK(i, j, b′) accept implies b = b′. Then it is
easy to see that CHECK(i+1, j, b) must be correct for all j, b; moreover, because of determinism, CHECK(i+1, j, b)
and CHECK(i + 1, j, b′) accept implies b = b′. [This is why CHECK must universally call itself three times: for
instance, if CHECK only makes two of the three calls, then the correctness of these two calls does not imply the
correctness of the parent.] So we have shown that the symbols αi,j are uniquely determined. In particular αm,h = b′

in the initial guess is correct when the machine accepts. Q.E.D.

The reader should see that this proof breaks down if we attempt to simulate nondeterministic machines instead
of deterministic ones.

Combining the two theorems yields the somewhat surprising result:

Corollary 33. For s(n) ≥ log n, ASPACE(s) = DTIME (O(1)s).

Exercises

Exercise 0.29: Obtain a lower bound on the space-time product of alternating Turing machines which accepts
the palindrome language Lpal. ♦

End Exercises

7.11 Final Remarks

This chapter introduced valuations as a mathematical framework to study most of the known choice models of
computation. We can extend the basic framework to other value sets S (analogous to the role of INT) provided S
is equipped with a partial order ⊑ such that limits of ⊑ -monotonic chains are in S and S has a ⊑ -least element
(such an S is called a complete partial order). The reader familiar with Scott’s theory of semantics will see many
similarities. For relevant material, see [22].

We have a precise relationship between alternating space and determistic time: for s(n) ≥ log n,

ASPACE (s) = DTIME (O(1)s). (8)

What is the precise relationship between alternating time and deterministic space? Although we have tried to
emphasize that alternating time and deterministic space are intimately related, they are not identical. We know
that

ATIME (s) ⊆ DSPACE(s) ⊆ NSPACE(s) ⊆ ATIME(s2). (9)

for s(n) ≥ log n. How ‘tight’ is this sequence? It is unlikely that that the first two inclusions could be improved in
the near future.
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From (8) and (9), we get find new characterizations of some classes in the canonical list:

P = ASPACE (log n)

PSPACE = ATIME (nO(1))

DEXPT = ASPACE (n)

EXPS = ATIME (O(1)n).

What is the relationship of alternating reversal with deterministic complexity? Of course, for alternating
machines, we must take care to simultaneously bound reversal with either time or space in order to get meaningful
results. Other complexity measures for alternating machines have been studied. Ruzzo [20] studied the size (i.e.,
the number of nodes) of computation trees. In particular, he shows

A-SPACE-SIZE(s(n), z(n)) ⊆ ATIME(s(n) log z(n)).

King [13] introduced other measures on computation trees: branching (i.e., the number of leaves), width (below),
visit (the maximum number of nodes at any level). Width is not so easy to motivate but in the special case of
binary trees (which is all we need for alternating machines), it is the minimum number of pebbles necessary to
pebble the root of the tree. Among the results, he shows (for s(n) ≥ log n),

A-SPACE-WIDTH(s(n), w(n)) = NSPACE (s(n)w(n)),

A-SPACE-VISIT(s(n), v(n)) ⊆ ATIME (s2(n)v(n)).

Exercises

Exercise 0.30: A probabilistic-alternating finite automaton (pafa) is a PAM with no work-tape and whose
input tape is restricted so that in each step, the input head must move to the right. Moreover, the machine
must halt upon reading the first blank symbol after the input word. The special cases of alternating finite
automaton (afa) or probabilistic finite automaton (pfa) is defined analogously.
(i) (Chandra-Kozen-Stockmeyer) Prove that an afa accepts only regular languages.
(ii) (Starke) Show the following language (well-known to be non-regular) L = {0m1n : m ≥ n} can be accepted
by a pfa. ♦

Exercise 0.31: Recall an alternating finite automaton (afa) defined in the previous question. Let us define a
generalized afa (gafa) to be an afa in which each state q has an arity k(q) ≥ 0 and is assigned a generalized

Boolean function

γ(q) : {0, 1,⊥}k(q) → {0, 1,⊥}.

(i) Let M be an alternating Turing acceptor with no work-tapes and whose input head cannot move right.
For the purposes of this question, assume that M has only ∧- and ∨-states. So M looks very similar to an
afa, except that it can make “ǫ-moves”: this is a terminology from automata theory: an ǫ-move is one where
the automaton can change state without moving its input head, and this is performed non-deterministically.
Show that such moves can be eliminated in the sense that there is a generalized afa that accepts the same
language as M.
(ii) (Open) Characterize the kinds of generalized Boolean functions that can arise in the generalized afa in
part (i).

♦

Exercise 0.32: (Freivalds) Show a probabilistic finite automata to recognize the language {0n1n : n ≥ 1} with
bounded error. Hint: We are basically trying to check that the number of 1’s and number of 0’s are equal.
Show that the following procedure works:
a. Choose a coin with probability p << 1

2 of getting a head.
b. Toss coin for each 0 in input and each 1 in input. If we get all heads for 0’s and at least one tail for the 1’s
then we say we have a 0-win. If we get at least one tail for the 0’s and all heads for the 1’s, we have a 1-win.
All other outcomes result in a tie.
c. Repeat this experiment until we have at least k 0-wins or k 1-wins. We accept if and only if there is at
least one 1-win and at least one 0-win.
(For more information, see [10].) ♦
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Exercise 0.33: (Ruzzo, King) Show the following simulations among measures for alternating computation, as
stated in the concluding section: for s(n) ≥ log n,

A-SPACE-SIZE(s(n), z(n)) ⊆ ATIME (s(n) log z(n)),

A-SPACE-WIDTH(s(n), w(n)) = NSPACE (s(n)w(n)),

A-SPACE-VISIT(s(n), v(n)) ⊆ ATIME (s2(n)v(n)).

♦

Exercise 0.34: (King) Recall the definitions of branching and width resource for alternating machines in the
concluding section. Show that the branching resource (simultaneously bounded with space) has the linear
complexity reduction property: for s(n) ≥ log n,

A-SPACE-BRANCH(s(n), b(n)) = A-SPACE-BRANCH(s(n), b(n)/2).

Show the same result for width resource: for s(n) ≥ log n,

A-SPACE-WIDTH(s(n), w(n)) = A-SPACE-WIDTH(s(n), w(n)/2).

♦

End Exercises
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Chapter 8

Stochastic Choices

April 13, 2009
We continue investigating the choice-mode of computation. This chapter focuses on the stochastic choices, viz.,

coin-tossing f, probabilistic-and ⊗ and probabilistic-or ⊕. In contrast to alternation, we see that a rich theory
arises when we restrict computational errors in stochastic computation.

In this chapter, it is essential to revert to the use of intervals when discussing valuations. For convenience, an
appendix on basic probabilistic vocabulary is included.

8.1 Errors in Stochastic Computation

Two new phenomena arise with stochastic choices:

• Infinite loops in stochastic computation is an essential feature, rather than one we seek to eliminate (cf. al-
ternation). This will be evident when we study space-bounded computations in section 3.

• An extremely rich theory arises from quantifying the forms of computational error. We think of error as a
new computational resource.

Forms of computational error. Let M be a choice machine and suppose ValM (w) = [b, c] where w is
an input word. If M accepts w (i.e., b > 1

2 ) then both 1 − b and 1 − c are useful measures of error. Since
1
2 > 1−b ≥ 1−c ≥ 0, we may call 1−b and 1−c (respectively) the pessimistic acceptance error and optimistic
acceptance error. Similarly, if M rejects w, then b and c are (respectively) the optimistic rejection error and
pessimistic rejection error. We have two basic paradigms for classifing errors: for optimistic errors, we say M
has “zero error” if for all inputs, its optimistic error is 0. For pessimistic errors, we say M has “bounded-error” if
its pessimistic errors are bounded away from 1

2 by a positive constant.

0 1
2 1

b cb c

Rejection Acceptance

O.E. O.E.

P.E. = Pessimistic Error
O.E.= Optimistic Error

P.E. P.E.

Figure 8.1: Forms of Error.

Stochastic computation has been studied since the early days of automata theory [9]. One original motivation1

is the fundamental question of synthesizing reliable components from unreliable ones [22]. Stochastic computation
in complexity theory started with the work of Gill [12].

Example 1. Gill was in turn motivated by some surprising probabilistic algorithms for primality testing algorithms
due to Rabin [23] and Solovay-Strassen [33]. These primality testing algorithms share a common property: every
computation path terminates and at each terminal configuration C,

1Modern computer hardware is remarkably reliable (compared to software). In the early days of computing, this reliability could
not be taken for granted.

1
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1) if C answers YES (i.e., claims that the input is prime) then there is a “small probability” that it made an error;

2) if C answers NO (i.e., claims that the input is composite) then it is surely correct.

The algorithm does not have YO-answers. It is not so easy to quantify the “small probability” of the YES
answers. But we may rephrase this property, taking the viewpoint of the inputs:

1′) if the input is prime then all local answers are YES;

2′) if the input is composite then the local answer is NO with “high probability”.

The reader should verify that 1′) and 2′) (the global perspective) are just reformulations of 1) and 2) (the local
perspective). We elaborate on this because it is easy to become confused by a mixture of these two perspectives.
The global formulation is more useful because we can explicitly quantify the “high probability” in it: it means with
probability more than 3/4. We see that these primality algorithms make no errors whenever they (globally) accept.

To remember which way the primality algorithms may have errors, it is helpful to know this: the algorithms
answers NO (i.e., claims that an input is composite) only if it finds a “witness” of compositeness. Hence
NO-answers are never wrong by virtue of such witnesses. In contrast, the algorithm answers YES (i.e., claims
an input is prime) based on its failure to find a witness – such a YES answer could be wrong because an
individual path does not exhaustively search for witnesses. In fact the algorithm looks for witnesses by randomly
picking candidate witnesses and then checking each for the witness property. An example of a witness of the
compositeness of a number n is a factor m (1 < m < n) of n. It is easy to check if any proposed witness m

is a factor. Unfortunately, there may be as few as two witnesses for some composite numbers; in this case,
the method of randomly selecting candidate witnesses for testing is unreliable. The algorithms of Rabin and
of Solovay-Strassen solve this by using more sophisticated concepts of “witnesses” where it can be shown that
each composite number has a positive fraction of witnesses among the candidates, and a prime number has no
witness.

This example will be used again to illustrate error concepts.

We now classify Turing machines according to their error properties.

Definition 1.
(i) A non-empty interval g containing the value 1

2 is called an error gap. Thus g has one of the forms

[a, b], (a, b], [a, b), (a, b)

where 0 ≤ a ≤ 1
2 ≤ b ≤ 1. We call a and b (respectively) the lower and upper bounds of g.

(ii) A choice machine M accepts with error gap g if for all accepted inputs w,

ValM (w) ∩ g = ∅.

Nothing is assumed if w is rejected or undecided. Similarly, we define rejection with error gap g. Finally, M
has error gap g if for all input w, it accepts w or rejects with error gap g. Thus M is decisive.
(iii) We say M accepts with bounded-error if there exists e (0 < e ≤ 1

2 such that for all accepted inputs w,
ValM (w) ∩ [ 12 − e, 1

2 + e] = ∅. Similarly, M rejects with bounded-error if for all rejected inputs w, ValM (w) ∩
[12 − e, 1

2 + e] = ∅. Also, M has bounded-error if for all inputs, ValM (w) ∩ [ 12 − e, 1
2 + e] = ∅. Say M has

unbounded-error if it does not have have bounded-error.

While bounded error focuses on pessimistic errors, the next set of definitions focus on optimistic errors.

Definition 2. (Continued)
(iv) We say M accepts with zero-error if for all accepted w, the upper bound of ValM (w) is 1. Similarly, M
rejects with zero-error if for all rejected w, the lower bound of ValM (w) is 0. We say 2 M has zero-error if it
is decisive, and it has zero-error acceptance and zero-error rejection.
(v) We combine bounded-error and zero-error: M has bounded zero-error rejection if it has bounded-error
and zero-error rejection. Bounded zero-error rejection is also called one-sided error. By symmetry, we say M
has bounded zero-error acceptance it has bounded-error and zero-error acceptance. Finally, M has bounded
zero-error if it has bounded-error and zero-error.

2We emphasize that “zero-error” does not imply the absence of all errors: it only refers to the optimistic errors. It also seems that
“errorless” would be preferable to “zero-error” in this set of terminology.
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Let us briefly discuss the significance of these forms of error and their motivations. Although our error concepts
treat acceptance and rejection with an even hand, we still favor acceptance when it comes to defining languages
and complexity classes: for any machine M , the notation

L(M)

continues to refer to the language accepted by M . So a word w 6∈ L(M) is either rejected or undecided by M .

Bounded Errors. Note that undecided intervals in INT are error gaps. Clearly a machine has error gap if and
only it has the minimal error gap [12 , 1

2 ], if and only if it is decisive. In this sense, bounded-error is a strengthening of
halting deterministic computations (which are decisive). Students sometimes confuse the definition of “decisiveness”
(a global condition) with the local condition that every path gives a YES or NO answer (and hence each path is
finite). For instance, a decisive Turing machine could have infinite computation trees on each of its inputs.

To understand the significance of bounded-error, note that in general, acceptance and rejection errors can get
arbitrarily close to 1

2 . This behavior is forbidden by bounded-error. The next section shows that with bounded-
error we can modify a machine to yield error gaps of the form [ǫ, 1 − ǫ] for any desired constant 0 < ǫ < 1

2 , at
a cost of increasing the computational time by a constant factor depending on ǫ. This yields a very important
conclusion: assuming we can tolerate constant factor slowdowns, bounded-error algorithms are practically as good as
deterministic algorithms. This is because any physical realization of a deterministic algorithm will still be subject
to a small ǫ∗ > 0 probability of error, from quantum effects, manufacturing imperfections, etc. Thus, all real
computer programs are bounded error algorithms.

Nondeterministic vs. probabilistic machines. Let N be a nondeterministic machine. The valuation function
ValN has values in {0, 1,⊥}. It follows that N accepts with no pessimistic error. Next, let us see what happens
when N is converted into a probabilistic machine M , simply by declaring each state a toss-state. If N does not
accept an input, M also does not accept. Hence we have

L(M) ⊆ L(N).

A further modification to M yields a probabilistic machine M ′ that accepts the same language as N : let M ′ begin
by tossing a coin in the start state, and on one outcome it immediately answers YES, and with the other outcome
it simulates N . So M ′ is undecided on input w 6∈ L(N), since the lower bound of ValM ′(w) is exactly 1

2 . This
shows

NTIME (t) ⊆ PrTIME (t + 1). (1)

A simple modification to M ′ will ensure that it has zero-error acceptance: simply make all terminal which answer
NO to answer YO instead. Notice that N , M and M ′ are not decisive in general.

Zero-error computation. The primality testing algorithms above accept with zero-error. The concept of zero-
error is best understood in terms of stochastic machines with no negation states: in this case acceptance with zero-
error means that if an input is accepted then no computation path leads to a NO-configuration. Similarly, “rejecting
with zero-error” means that if an input is rejected, then no computation path leads to a YES-configuration. In
either case, YO-configuration (or looping) is not precluded. Because of monotonicity properties, if a complete
computation tree TM (w) accepts with zero-error then any prefix T ′ of TM (w) also accepts with zero-error, if T ′

accepts at all.

One-sided error. One-sided error is also motivated by the primality algorithms. These algorithms have no
pessimistic errors on prime inputs, by virtue of property 1′), and have bounded error on composite inputs, by
property 2′). Thus such an algorithm has bounded zero-error acceptance. Now with a trivial change, we can regard
the same algorithm as a recognizer of composite numbers: it answers YES iff it finds a witness of compositeness.
This new algorithm has bounded zero-error rejection, i.e., it has one-sided error.

This begs the question as to why we define one-sided error in favor of “zero-error rejection” over “zero-error
acceptance”. We suggest that the (non-mathematical) reason has to do with our bias towards nondeterministic
machines: a probabilistic machine M with one-sided error can be regarded as a nondeterministic machine N . Let
us clarify this remark. For, if M accepts w then some terminal configuration gives a YES-answer, and so N accepts
w. Conversely, if M does not accept w, there is no YES-configuration because M has zero-error rejection. Hence,
N does not accept w. We conclude that L(M) = L(N). This proves

PrTIME 1(t) ⊆ NTIME (t). (2)
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The subscript “1” in “PrTIME 1(t)” refers to one-sided error (the general convention is described below).
The literature often discuss errors in the context of probabilistic machines that run in time t(n) for some time-

constructible t (e.g., t is a polynomial). In this case, we can simplify. For instance, we need not deal with intervals:
if a stochastic machine does not terminate within t steps, we simply answer NO. This avoids the value ⊥ and
the pessimistic and optimistic errors coincide. This approach does not work in space-bounded computations, for
instance.

Error-Restricted Complexity. Since error is viewed as another computational resource, we combine error
bounds with other resource bounds. The number of logical possibilities is large, but happily, only a few forms are
important. For instance, we exclusively use constant gap functions in complexity characteristics.

The following illustrates the combination of acceptance time with bounded-error or with zero-error:

Definition 3. Let t be a complexity function. A choice machine M accepts in time t with bounded-error if
there is an error gap g = [a, b], a < 1

2 < b such that for all accepted inputs w, there is an accepting computation
tree T such that ValT (w) ∩ g = ∅ and each path in T has length at most t(|w|).

Note that the time bound and error gap are simultaneously achieved in a single computation tree T . To
appreciate this, suppose another computation tree T ′ of height t′ < t is a prefix of T . Because of monotonicity,
we have ValT ′(w) ⊑ ValT (w). So it is possible that ValT ′(w) ∩ g is non-empty and yet T ′ is accepting. So M
accepts in time t′ but not necessary with the same gap g. In general, all complexity characteristics we specify for
a machine are assume to be simultaneous unless otherwise stated.

We can add any of the error restrictions (bounded-error, zero-error, one-sided error, etc) to any of the usual
complexity resource (time, space, reversal, simultaneous time-space, etc) bounds. Thus we can speak of M accepting
in polynomial space with one-sided error.

We can also extend acceptance complexity to “rejection complexity” and to “running complexity”. For rejection
complexity, just replace acceptance by rejection. For running complexity, we make decisiveness a pre-requisite. Then
a running complexity bound is simply a common bound on both accepting complexity and rejecting complexity.

Notation for error-restricted complexity classes. For simplity, we assume that the machines used in defining
error-restricted classes must be decisive and that running complexity is used. However, we do not assume our
machines to be halting (i.e., halts on all computation paths). A machine can be decisive without being halting;
conversely, it can be halting without being decisive. Indeed, in space bounded computation, halting is not necessarily
desirable. To refer to such classes, it is sufficient to augment our previous convention for complexity classes, simply
by introducing new subscripts. Until now, we have only one kind of subscript, ‘r’, denoting running complexity.
We now introduce three new subscript z,

z ∈ {b, 0, 1},
to indicate the following restrictions: bounded-error (z = b) or one-sided error (z = 1) or bounded zero-error (z = 0).
Note a linear hierarchy in these subscripts: for instance, for most complexity functions t, we have

PrTIME 0(t) ⊆ PrTIME 1(t) ⊆1 PrTIME b(t + 2) ⊆ PrTIME r(t + 2) ⊆ PrTIME (t + 2).

The only case in the above inclusions where t must be restricted is PrTIME 1(t) ⊆1 PrTIME b(t + 2) where we
require t be to time-constructible. This inclusion follows from the following general result:

We could replace PrTIME here by other suitable mode-resource pairs. These notations are illustrated in the
last column of the following table.

The table below lists some important time-feasible (i.e., polynomial time) complexity classes, under the various
choice and error modes:

Some Polynomial Time Stochastic Classes
Error Mode Choice Mode Common Symbol Generic Notation

Unbounded error { f} P PrTIME (nO(1))

Bounded error { f} BPP PrTIME b(n
O(1))

One-sided error { f} RP (also denoted VPP or R) PrTIME 1(n
O(1))

Bounded zero-error { f} ZPP PrTIME 0(n
O(1))

Bounded error { f,∨} IP , IpTIME b(n
O(1))

Bounded error { f,∨} AM IpTIME -(n
O(1), O(1))

Remark: P is the only class in this table that is not error-restricted. Hence P-machines are not á priori required
to be decisive, and such machines have polynomial acceptance (not running) time.
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Relationships Among Feasible Time Stochastic Classes. Let us show some known inclusions among these
classes and the connection to canonical classes such P and NP . The following are trivial relationships.

P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ P ⊆ PSPACE ,

BPP ⊆ IP ∩ P.

We also have
RP ⊆1 NP ⊆2 P.

The inclusion (⊆2) follows from equation (1) while inclusion (⊆1) follows from equation (2).
From the previous chapter (corollary 25), we have:

P ⊆ IP ⊆ PSPACE .

However, we shall see that IP = PSPACE . Recall that Primes ∈ co-RP .
We now show the following, attributed to Rabin:

ZPP = RP ∩ co-RP . (3)

Some preliminary remarks are in order: recall that f-operator (see Section 7.1) satisfies De Morgan’s law: (1 −
x) f(1− y) = 1− (x fy). This means that if M is a halting probabilistic machine, and we negate its local answers
(interchanging YES and NO), then we obtain a machine M such that L(M) ∩ L(M) = ∅. If M is decisive, then
L(M) = co-L(M). Moreover, if M has 1-sided error, then M has bounded zero-error acceptance.

One direction of (3) is clear: ZPP ⊆ RP ∩ co-RP . Conversely, suppose L ∈ RP ∩ co-RP . By the preceding
remarks, L is accepted by bounded error polynomial-time probabilistic machines M and N where M has 1-sided
error and N has bounded zero-error acceptance. We may assume that M and N are halting. We then construct a
probabilistic machine that dovetails the computation of M and N in a step-for-step fashion until one of the following
two events: (a) if N answers YES, we answer YES; (b) if M answers NO, we answer NO. If N answers NO or M
answers YES, we simply continue simulation of the other machine. If both machines halt without events (a) or
(b) occurring, we loop. This dovetail process essentially gives us a computation tree whose paths can be made to
correspond in a bijective fashion with the set of all pairs of paths (p, p′) where p comes from M and p′ from N.
Then it is not hard to see that the simulation runs in polynomial time with zero-error (Exercise).

Figure 8.2 summarizes the relationship of the main feasible-time classes based on stochastic choices with the
canonical classes:

NP ∩ co-NP

IP = PSPACE

P

ZPP

P

NP co-NPBPP

RP co-RP

Figure 8.2: Feasible classes in the stochastic mode

Remark: The “error” terminology can be confusing but it is unfortunately well-established in the literature.
We have attempted to systematize these concepts in the light of interval values. Our classification of errors into
pessimistic versus optimistic may be helpful: thus, “error gap” and “bounded-error” always refers to pessimistic
errors, and “zero-error” always refers to optimistic errors. Since pessimistic and optimistic errors are independent
constraints on a computation, the two concepts can be distinguished in our terminology: the word “error” is always
accompanied by key words such as “bounded”, “gap” or “zero” which unambiguously indicate the form of error.
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Most of the literature do not discuss these concepts in the generality given here, mostly focusing on polynomial-time
classes. Indeed, while BPP is standard notation, there is no standard notation for classes such as PrTIME b(t(n)).

Exercises

Exercise 0.1: Consider an alternative approach that distinguishes YO-answers from looping: assign the value 1
2

to YO-configurations. (Thus, basis sets B for choice machines are required to the new constant function,
1
2 in addition to the others. Also, the function 1

2 adds nothing new if the toss-function f is already in B.)
In the standard treatment of YO-configurations, it is not hard to see that a {⊗,⊕}-machine amounts to an
alternating machine. In what sense does the alternative treatment of YO-configurations apparently increase
the power of such machines? Is this apparent increase real? ♦

Exercise 0.2: Suppose a stochastic machine is not decisive. Prove that if it accepts in time bound t(n) where t is
time-constructible, then we can convert it into one accepting in time O(t) with the minimal error gap [12 , 1

2 ].
Prove the same for space bounded acceptance.

♦

Exercise 0.3: Let t(n) be any complexity function and K1 = PrTIME 1(t(n)). Also let K2 be the class of languages
accepted by probabilistic choice machines with bounded error and zero-error acceptance, running in time t(n).
Under what conditions on t would we obtain K1 = co-K2? ♦

Exercise 0.4: Complete the arguments showing ZPP = RP ∩ co-RP . ♦

Exercise 0.5: (Gill)
(i) Show that P and BPP are closed under complementation.
(ii) Show that BPP and RP are closed under union and intersection.

♦

Exercise 0.6: (Gill)

We consider probabilistic transducers. For any probabilistic transducer M and input w, we may talk of
the probability that M on w produces x as output. Let this (least fixed point) probability be denoted
Pr{M(w) = x}. Let tM be the partial transformation such that for all w, tM (w) = x if Pr{M(w) = x} > 1/2;
and tM (w) ↑ if there is no such x. Clearly tM is uniquely determined by M and is called the transformation
computed by M. Show that if M is s(n)-space bounded then x = tM (w) implies |x| ≤ f(s(|w|)) where f(n) is
the number of configurations of M using space at most n.

♦

End Exercises

8.2 How to Amplify Error Gaps

In this section, we seek techniques to convert a machine with error gap G into one with a strictly larger error gap
G′, G ⊂ G′. We now describe three such techniques, depending on the form of error and type of machine. The
importance of such techniques is clear: if we can make such error gaps approach (0, 1) (while keeping the running
time feasible) then probabilistic algorithms may become indistinguishable from deterministic ones. For instance, a
“theoretical” algorithm with a error probability of less than 2−1000 is much more reliable than any implemented
algorithm will ever be, since implemented algorithms will contain many other (non-mathematical) sources of error
such as the unreliability of hardware, not to speak of software.

(I) Halting Zero-error Rejection Machines. Let M be a halting probabilistic machine with zero-error re-
jection. Suppose M accepts3 if with error gap [0, b]. We can boost the error gap very easily as follows. Fix some
k ≥ 1. Let N be the following machine:

On any input w, simulate M on w for k times. This yields k answers, since M is halting. If any of the
simulation answers YES, N answers YES. If all the k answers are NO or YO, N answers NO.

3By definition, b ≥ 1/2. But in some sense, this technique works as long as b > 0.
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If w is rejected by M , then N always answer NO (this is because N has zero-error rejection). If w is accepted by
M , the probability of a YES-computation path of M is at least b. Hence the probability that N accepts is at least
1− (1− b)k. So N accepts with error gap

[0, 1− (1− b)k]

which strictly includes [0, b]. Thus, halting zero-error rejection implies bounded-error acceptance. The technique
will not work if M can have pessimistic errors in rejection.

(II) Bounded-error Probabilistic Machines. For bounded-error machines, we can use the “majority voting”
scheme: repeat for an odd number of times an experiment with binary outcome; we take the majority outcome
(i.e., the outcome occurring more than half the time) as output. We justify this procedure with a lemma [29]:

Lemma 1. (a) Consider an experiment in which an event E occurs with probability

p ≥ 1

2
+ e

for some 0 < e < 1
2 . Then in 2t + 1 independent trials of the experiment, the probability that E is the majority

outcome is greater than

1− 1

2
(1− 4e2)t.

(b) Similarly, if E occurs with probability

p ≤ 1

2
− e

then the probability that E is the majority outcome is less than

1

2
(1− 4e2)t.

Proof. (a) Let q = 1− p and i = 0, . . . , t. Then the probability pi that E occurs exactly i times out of 2t + 1 is
given by the binomial distribution,

pi =

(
2t + 1

i

)
piq2t+1−i

=

(
2t + 1

i

)
(
1

2
+ e)i(

1

2
− e)2t+1−i

[
p

1
2 + e

]i [
q

1
2 − e

]2t+1−i

=

(
2t + 1

i

)
(
1

2
+ e)i(

1

2
− e)2t+1−i

[
pq

(1
2 + e)(1

2 − e)

]i [
q

1
2 − e

]2t+1−2i

∗
≤

(
2t + 1

i

)
(
1

2
+ e)i(

1

2
− e)2t+1−i

≤
(

2t + 1

i

)
(
1

2
+ e)i(

1

2
− e)2t+1−i

[ 1
2 + e
1
2 − e

]t−i

=

(
2t + 1

i

)
(
1

2
+ e)t(

1

2
− e)t+1

<

(
2t + 1

i

)
(
1

4
− e2)t 1

2
.

Note that our derivation is careful to justify the transition (
∗
≤) from p to 1

2 + e. Therefore the probability that E
occurs in more than t trials is at least

1−
t∑

i=0

pi > 1−
t∑

i=0

(
2t + 1

i

)
(
1

4
− e2)t 1

2

= 1− 22t(
1

4
− e2)t 1

2

= 1− 1

2
(1− 4e2)t.
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(b) Similarly, if p ≤ 1
2 − e then for i ≥ t + 1 we have

pi ≤
(

2t + 1

i

)
(
1

4
− e2)t 1

2

and hence the probability that E occurs in more than t trials will be at most

2t+1∑

i=t+1

pi ≤ 22t(
1

4
− e2)t 1

2
(4)

=
1

2
(1− 4e2)t. (5)

Q.E.D.

Using this, we can boost an error gap Ge = [12 − e, 1
2 + e] (0 < 1

2 < e) to [12 − e′, 1
2 + e′] where

e′ =
1

2
(1− 4e2)t

if we do the majority vote for 2t + 1 trials. For instance, with e = 1/4 and t = 8, we have e′ = 1
2 (3/4)t < 0.051.

An error gap function G assigns an error gap G(n) to each n ∈ N. A machine M has error gap G if for all
inputs w, ValM (w) ∩G(|w|) = ∅. Let G0 be the error gap function given by

G0(n) = [2−n, 1− 2−n].

We have the following useful lemma:

Lemma 2. Each language in BPP is accepted by a probabilistic acceptor that runs in polynomial time with error
gap G0.

Proof. We may assume that the language is accepted by some M that runs in time nd with error gap G =
[12 − e, 1

2 + e] for some d ≥ 1 and 0 < e < 1
2 . Applying the lemma, we want to choose t satisfying

2−n ≥ (1 − 4e2)t

2

2n−1 ≤ 1

(1 − 4e2)t

n− 1 ≤ t log

(
1

1− 4e2

)

t ≥ n− 1

log(1/(1− 4e2))
.

The desired machine N, on each computation path, simulates M for at most 2t + 1 = O(n) times and outputs the
majority outcome. Clearly N runs in time Oe(n

d+1) with error gap G0. Q.E.D.

Let us give an application of this lemma:

Theorem 3. (Ko, 1982) If NP ⊆ BPP then NP = RP.

Proof. Since RP ⊆ NP , it suffices to show inclusion in the other direction. It is easy to see that RP is closed
under polynomial-time many-one reducibility, and hence we only have to show that the NP -complete language SAT
belongs to RP . Suppose we want to check if a given CNF formula F = F (x1, . . . , xn) on n variables is satisfiable.
For any sequence of Boolean values b1, . . . , bk (k ≤ n), let Fb1b2···bk

denote the formula F with xi replaced by bi,
for i = 1, . . . , k. We show how to construct a sequence b1, . . . , bn such that if F is satisfiable then Fb1···bn

is true
with very high probability. By our assumption that NP ⊆ BPP , there is a bounded-error probabilistic machine
M accepting SAT in polynomial time. Moreover, by the preceding lemma, we may assume that M has error gap
function G0 and that M halts on every path in polynomial time.

We shall operate in n stages. At the start of stage k (k = 1, . . . , n), inductively assume that we have computed
a sequence of Boolean values b1, . . . , bk−1. It will be shown that Fb1,...,bk−1

is probably satisfiable. In stage k, we
compute bk:
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1. Call M on input Fb1···bk−10.
2. If M answers YES, then set bk = 0 and go to DONE.
3. Else call M on input Fb1···bk−11.
4. If M answers NO again, we answer NO and return.
5. Else set bk = 1.
6. DONE: If k < n we go to stage k + 1.
7. Else answer YES if Fb1,...,bn

= 1, otherwise answer NO.

Let us analyze this procedure. It is clearly polynomial time.
If k < n, we either terminate in stage k with a NO answer, or we proceed to stage k +1. If k = n, we will surely

terminate in stage k with answer YES or NO, and this answer is never in error. Thus our YES answers are never
wrong. So if F is unsatisfiable, we answer NO on every path. Thus we have zero-error rejection.

Finally, let us prove that if F is satisfiable, then our procedure answer YES with probability > 1/2. Write Fk

for Fb1,...,bk
, assuming that b1, . . . , bk are defined. Let the event Ak correspond to “ no mistakes up to stage k”, i.e.,

Fk is defined and satisfiable. Similarly, let event Ek correspond to “first mistake at stage k”, i.e., Ek = Ak−1 ∩Ak.
CLAIM: Pr(Ek) ≤ 2 · 2−|F |+1).

Proof: Note that Pr(Ek) ≤ Pr(Ek|Ak−1). We will bound Pr(Ek|Ak−1). Assuming Ak−1, we consider 2 cases: (A)
CASE Fb1···bk−10 is not satisfiable. Then Fb1···bk−11 is satisfiable. With probability ≥ (1−2−|F |), M will (correctly)

answer NO the first time we invoke M . Then with probability ≥ (1 − 2−|F |), M will (correctly) answer YES the
second time. So Pr(Ak|Ak−1) ≥ (1− 2−|F |)2 and

Pr(Ek|Ak−1) ≤ 1− (1− 2−|F |)2 ≤ 2−|F |+1).

(B) CASE Fb1···bk−10 is satisfiable. This case is even easier, and yields Pr(Ek|Ak−1) ≤ 2−|F |. This proves the claim.
To conclude the theorem, the probability of making mistake at any stage is at most

n∑

k=1

Pr(Ek) ≤ 2n · 2−|F | ≤ 2n · 2−2n.

This is less than 1/2 for n large enough. Hence F will be accepted. Q.E.D.

See Exercise for another proof.

(III) Stochastic machines. We now introduce a third technique that is applicable to stochastic machines.
Motivated by a paper of Valiant, we introduce the following probability functions:

• P (x) := x⊗ x = x2

• Q(x) := x⊕ x = x(2 − x).

• A(x) := Q(P (x)) fP (Q(x)).

xxx x

⊗

⊕ ⊕ ⊗ ⊗

xx

f

⊕

xx

QP

PQ Q P

A(x)

Figure 8.3: The operator A(x)

Thus,

A(x) =
x2(2− x2) + x2(2 − x)2

2
= x2(3− 2x).

These operators are extended to INT in the usual way: thus, A([u, v]) = [A(u), A(v)]. The exercises show other
properties of these functions. We show that A(x) has the following “amplification property”:
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Lemma 4. If 0 ≤ e ≤ 1
2 , then

x 6∈ [
1

2
− e,

1

2
+ e] ⇒ A(x) 6∈ [

1

2
− e′,

1

2
+ e′]

where

e′ = e(
3

2
− 2e2) ≥ e.

Proof. Since dA
dx = 6x(1 − x), A(x) is monotone increasing for 0 ≤ x ≤ 1. The lemma then follows from a

calculation,

A(
1

2
+ e) =

1

2
+ e[

3

2
− 2e2]

A(
1

2
− e) =

1

2
− e[

3

2
− 2e2].

Q.E.D.

Note that the error gap has an “amplification factor” α(e) = 3
2 − 2e2 which decreases monotonically from 3/2

to 1 as e increases from 0 to 1/2. Note that

α(1/4) =
11

8
.

So if the error bound e for a value x is less than 1/4, then the error bound for A(x) is at least 11e/8. We conclude:

Theorem 5.
Let t(n) be a time-constructible function. Then

PrTIME (t) ⊆ StTIME b(O(t)).

In particular,
P ⊆ StTIME b(n

O(1)).

Proof. Suppose M is a probabilistic machine that decides its inputs in running time t. Since t is time-
constructible, we can modify it always halt in time O(t) and have error gap

G(n) = [
1

2
− 2−t,

1

2
+ 2−t].

Let s = t
log(11/8) . We construct a stochastic machine N that, on input w, operates by first “computing the iterated

function As(x)” (the meaning should be clear) and then simulating M on w. One checks that N has gap at least
[14 , 3

4 ]. Note that N still runs in time O(t). Q.E.D.

Exercises

Exercise 0.7: This is a slight variation on boosting error gaps for machines with zero-error rejection. Let M be
a machine with error gap G = (0, b]. We construct the following machine N to boost the error gap G:

1. Simulate M on input from beginning until it halts.
(If M loops then we loop)

2. If M answers YES then answer YES; else toss a coin.
3. If coin-toss is heads then answer NO; else go to 1.

(i) Show that N has error gap G′ = (0, b′] where b′ = 2b
1+b .

(ii) For any ǫ > 0, show how to modify step 3 so that 1− b′ ≤ ǫ.

♦
Exercise 0.8: Let M be a bounded-error halting probabilistic machine. We construct a probabilistic machine N

that keeps simulating M on its input until the “running score” reaches +2 or −2. The running score (at any
moment) is defined to be the number of YES answers minus the number of NO answers up to that moment.
If we reach +2, we answer YES, and if we reach −2, we answer NO.
(i) What is the language accepted by N?
(ii) Analyze the complexity and errors of N.

♦
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Exercise 0.9: Give another proof of Ko’s theorem that NP ⊆ BPP implies NP = RP in §2. Recall the event Ak

in the first proof.
(i) Show that Pr(An) ≥ (1− 2−2n)2n.
(ii) Show that (1− 2−n)n ≥ 1

2 for large enough n. HINT: you may use the following facts:

• et ≥ 1 + t for all t ∈ R with equality iff t = 0.

•
(
1 + t

n

)n ≥ et
(
1− t2

n

)
for all t, n ∈ R, n ≥ 1 and |t| ≤ n.

♦

Exercise 0.10:
(i) Redraw the class inclusion diagram in Figure 8.2 assuming that NP ⊆ BPP .
(ii) What consequences for the diagram of Figure 8.2 can you draw if we assume that BPP ⊆ NP?

♦

Exercise 0.11: Let g = [1/3− e, 1/3+ e] for some 0 < e < 1/3. Give an analog of majority voting to amplify this
gap.

♦

Exercise 0.12: Let P (x) and Q(x) be as defined for boosting error gaps in stochastic machines. For all n =
0, 1, 2, . . ., let

Pn(x) :=





x if n = 0
P (Pn−1(x)) if n = odd
Q(Pn−1(x)) if n = even

Qn(x) :=





x if n = 0
Q(Qn−1(x)) if n = odd
P (Qn−1(x)) if n = even

For example, P2(x) = Q(P (x)) = x2(2 − x2), and Q2(x) = P (Q(x)) = x2(2 − x)2. The function Q2(x)
was used by Valiant to give a non-constructive proof that the majority function for Boolean functions has a
monotone formula of size O(n log n). The amplification function in the text is just A(x) = P2(x) fQ2(x).
Now write p+

n (e) for Pn(1
2 +e), p−n (e) for Pn(1

2−e), and similarly for q+
n (e), q−n (e) relative to Qn. For example,

p+
1 (e) =

1

4
+ e + e2

q+
1 (e) =

3

4
+ e− e2

p−1 (e) =
1

4
− e + e2

q−1 (e) =
3

4
− e− e2

p+
2 (e) =

7

16
+

3e

2
+

e2

2
− 2e3 − e4

q+
2 (e) =

9

16
+

3e

2
− e2

2
− 2e3 + e4

p−2 (e) =
7

16
− 3e

2
+

e2

2
+ 2e3 − e4

q−2 (e) =
9

16
− 3e

2
− e2

2
+ 2e3 + e4

p+
3 (e) =

49

256
+

21e

16
+

43e2

16
− e3

4
− 53e4

8
− 5e5 + 3e6 + 4e7 + e8

q+
3 (e) =

207

256
+

21e

16
− 43e2

16
− e3

4
+

53e4

8
− 5e5 − 3e6 + 4e7 − e8

Show
(i) p+

n (e) + q−n (e) = 1
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(ii) p−n (e) + q+
n (e) = 1

(iii) p+
n (e)− p−n (e) = q+

n (e)− q−n (e)
(iv) x = 1

2 is a fixed point of An(x) = Pn(x) fQn(x), i.e., An(1
2 ) = 1

2 . Are there other fixed points?
(v) The exact relationships between the coefficients of p+

n (e), q+
n (e), p−n (e) and q−n (e).

♦

Exercise 0.13: Show that RP = NP iff some NP-complete language is in RP . ♦

Exercise 0.14: Another proof that NP ⊆ BPP implies NP = RP . Recall the event Ak in the first proof.
(i) Show that Pr(An) ≥ (1− 2−2n)2n.
(ii) Show that (1− 2−n)n ≥ 1

2 for large enough n. HINT: you may use the following facts:

• et ≥ 1 + t for all t ∈ R with equality iff t = 0.

•
(
1 + t

n

)n ≥ et
(
1− t2

n

)
for all t, n ∈ R, n ≥ 1 and |t| ≤ n.

♦

End Exercises

8.3 Probabilistic Feasible Time

Feasible time simply means polynomial time, of course. Here we consider two versions of feasible time, depending
on the error concept: unbounded error (the class P) and bounded error (the class BPP).

8.3.1 Unbounded Error Polynomial Time

We derive some basic properties of the class P.

Lemma 6. For any P-machine M , there exists another P-machine N such that L(N) = L(M) where N is halting,
decisive, and always answers YES or NO.

Proof. (Sketch) The machine N simulates M . To make N halting, we clock the machine M for a polynomial
number of steps and answer NO if M does not answer YES by the time the clock runs out. This means an YO
answer is also turned into a NO answer. To ensure that N is decisive, we “shift” the gap (1

2 , 1
2 + e) to some error

gap (1
2 −e′, 1

2 +e′). Here e = e(n) depends on the length n of the input, and can be assumed to be a binary rational
which is polynomial time computable. Q.E.D.

The class P satisfies the following remarkable closure property:

Lemma 7. If A, B ∈ P then the symmetric difference A⊕B ∈ P.

Proof. Let MA, MB be P-machines that accept A and B (resp.). By the previous lemma, assume MA and MB

are halting and decisive and always answer YES or NO. Consider the machine N that, on any input x, simulates
MA on x and then MB on x. N will answer YES if exactly one of MA and MB answers YES, otherwise N answers
NO. We note that

• If both MA and MB answered correctly (answers YES iff the global answer is ACCEPT), then N ’s answer is
correct.

• If both MA and MB answered incorrectly then N ’s answer is (still) correct.

• If exactly one of MA or MB answered incorrectly, then N ’s answer is incorrect.

Assume that the probability of MA (resp., MB) being correct on any input x is exactly (1/2) + εA (resp.,
(1/2) + εB). Notice that εA > 0 and εB > 0 exists since the machines are decisive. Moreover εA and εB does not
depend on x. Then the probability of N being correct on input x is exactly

(
1

2
+ εA)(

1

2
+ εB) + (

1

2
− εA)(

1

2
− εB) =

1

2
+ 2εAεB.

Q.E.D.
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An alternative argument is as follows: if probability of MA (MB) answering YES is a (b), then the probability
of N answering YES is c = a(1− b)+(1−a)b. Note that we can add a(1− b) and (1−a)b because these correspond
to disjoint events. We see that

1

2
− c =

1

2

(
1

4
− a + b

2
+ ab

)

=
1

2
(
1

2
− a)(

1

2
− b).

Since the machines are decisive, a 6= 1/2 and b 6= 1/2, and so 1/2− c 6= 0. Moreover, 1/2− c < 0 iff exactly one of
the inequalities, a < 1/2 and b < 1/2, hold. This is exactly what we want to show.

The following is left as an exercise.

Lemma 8. P is closed under complementation.

The next result is from Beigel, Reingold and Spielman [3].

Theorem 9. P is closed under intersection.

The proof uses an interesting property of polynomials, omitted here.
We now investigate complete languages for P. It should be noted that among the stochastic feasible classes

(ZPP ,RP ,BPP , P), only P has known complete languages. For any Boolean formula F , let #(F ) denote the
number of satisfying assignments to variables that occur in F . Consider three related languages (we include the
standard SAT in this table for comparision):

MAJ := {〈F 〉 : #(F ) > 2m−1 where m is the number of variables in F}
#SAT := {〈F, k〉 : F is 3CNF and #(F ) ≥ k}

#SAT0 := {〈F, k〉 : F is 3CNF and #(F ) = k}
SAT := {〈F 〉 : F is 3CNF and #(F ) ≥ 1}

Here 〈F 〉 and 〈F, k〉 denote any reasonable encoding of F and (F, k) as binary strings.

Lemma 10. MAJ and #SAT are both P-hard under Karp reducibility.

Proof. (a) It is easy to see that MAJ ∈ P: construct a P machine which accepts a Boolean formula F with
probability equal to #(F )/2m (if F has m variables. Thus the machine accepts precisely the formulas of MAJ.
(b) We show that MAJ is P-hard. If M is a P-machine and x is an input, we want a 3CNF formula F such that
#(F ) is equal to the number of YES-paths in the computation tree for x. But we note that the proof of the
NP -hardness of SAT (Cook’s Theorem in Chapter 3) produces such a formula. See Exercise.
(c) Clearly #SAT is P-hard since we can reduce MAJ to #SAT.
(d) Finally, to show #SAT ∈ P it is sufficient to construct a transformation t : 〈F, k〉 7→ t(F, k) such that 〈F, k〉 ∈
#SAT iff t(F, k) ∈ MAJ. Suppose F has m + 1 free variables. If k = 0, then clearly 〈F, k〉 ∈ #SAT1. Hence we
may assume 1 ≤ k ≤ 2m+1. We construct a CNF forumula Ck with these m + 1 variables of F such that exactly
2m+1 + 1− k assignments satisfy Ck. Let z be a new variable. Then

t(〈F, k〉) = (z ∧ F ) ∨ (z ∧ Ck).

It is easy to see that 〈F, k〉 ∈ #SAT iff t(〈F, k〉) ∈ SAT0. The result is not quite CNF yet. Assuming F and Ck are
CNF, then z ∧ F and z ∧ Ck are each CNF. In general, to create a CNF formula G from the disjunction G1 ∨G1

of two CNF formulas G1, G2, we let each clause of G be written as the disjunct of a clause of G1 with a clause of
G2. Of course, G need not be 3-CNF (it is a bit more work to achieve this, while ensuring that G ∈ SAT0).

If k = 1, then Ck can be taken to be 1 (always true). Otherwise k ≥ 2 and we consider the binary expansion of
2m+1 + 1− k =

∑m
j=0 bj2

j (bj = 0 or 1). We leave the details to the reader. Q.E.D.

The above techniques do not work with #SAT0, and we also do not know any complete languages for any
error-limited complexity classes such as RP or BPP .

Exercises

Exercise 0.15: Prove lemma 8. ♦
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Exercise 0.16: The proof of Cook’s theorem in Chapter 3 reduces any language A ∈ NP to SAT. If M is an
NP-machine for A, for any input w, the proof constructs a 3CNF formula Fw such that Fw is satisfiable iff
w ∈ A. We claim that something stronger is true: #Fw is equal to the number of accepting computations of
M on input w. Actually, this claim needs a mild condition on M . What is it? Prove this claim under this
mild condition. Hint: if you do not see what this condition might be, we suggest the strategy of ignoring it
at first, and trying to prove the claim unconditionally. ♦

Exercise 0.17*: Does ZPP , RP or BPP have complete languages under any reasonable reducibilities?

End Exercises

8.3.2 Bounded Error Polynomial Time

See Balcazar’ book.
This should go to Constructive Hierarchies Chapter:
(1) BPP is in Σ2 ∩Π2.
(I think the current results here are not the most general... see the proof)
(2) Approximate Counting
(3) NTIME (n) 6= DTIME (n).
(4) BPP has polynomial size circuits
We use the following fact:

Lemma 11. Let M be a choice machine with only binary choices, L(M) ⊆ B∗, and M runs in time t(n). Then
there is a polynomial p(n) such that for all n, there is a Boolean circuit Cn on n + t(n) inputs such that
(1) Cn has size p(t(n)), and
(2) for all x ∈ Bn and all y ∈ Bt(n), Cn(x, y) = 1 iff M on input x and making the choices specified by y leads to a
YES answer.

Proof. Sketch proof: There is a fixed size circuit that computes the “local transition” function, as given in
Papadimitriou’s book (theorem 8.1, p.168). Note: this function does not depend on M having only one worktape.

Q.E.D.

Theorem 12. Every binary language in BPP has a polynomial size circuit.

Proof. [As in Papadimitriou] Let L ⊆ B∗ be accepted by a BPP -machine M . We will construct for each n, a
Boolean circuit C∗

n of polynomial size such that x ∈ L iff C∗
n(x) = 1.

We may assume that for any input x, Pr{M(x) = error} ≤ 1/4. As in the previous lemma, assume M runs
in time t(n) and there are circuits Cn of size p(t(n)) which simulates M on any input x ∈ Bn and any path
choice y ∈ Bt(n). Let Tn = B12(n+1)t(n). We consider a string Y ∈ Tn as a (12(n + 1)-tuple (y1, . . . , y12(n+1) of
choices for a computation on an input of length n. We say that Y is “good” for x ∈ Bn if more than half of the
{Cn(x, yi) : i = 1, . . . , 12(n + 1)} is correct. Here, Cn(x, y) is correct if Cn(x, y) = 1 iff x ∈ L. For any x, and for a
random choice of Y , the probability that y ∈ Bt(n) is incorrect for x is ≤ 1/4. Hence the probability that Y ∈ Tn

is not good for x is, by Chernoff’s bound at most e−(n+1).
[See Papadimitriou, or my lecture notes]
Now the probability that Y is bad for more any x ∈ Bn is therefore at more 2ne−(n+1) < 1/2. Hence, there

exists Y ∗ ∈ Tn that is good for all x ∈ Bn. We now construct a circuit C∗
n(x) to be simply 12(n + 1) copies of

Cn in which each Cn has the form Cn(x, y∗
i ) where Y ∗ = (y∗

1 , . . . , y∗
12(n+1)). Finally, the output of C∗

n is just the
majority output of all the Cn’s. Q.E.D.

Note: a random construction of C∗
n will succeed with probability more than 1/2. So there is a BPP algorithm

for this construction? Not yet: you need to check if a given choice of Y is good for all x.

8.4 Average Time for Probabilistic Machines

So far, we have not discussed the very natural concept of “average time” for probabilistic machines. We sys-
tematically develop the concept as follows (the appendix contains the probabilistic terms used here). Let M be
a probabilistic machine and TM (w) denotes the usual complete computation tree on input w. Without loss of
generality, assume TM (w) is a full binary tree, i.e., a binary tree in which every internal node has two children.
Let T any prefix of TM (w).
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We construct associate with T a probability space

(ΩT , ΣT , PrT )

in which the sample space ΩT comprises all complete paths of T . A subset of ΩT is a basic set if it is the collection
of complete paths of T all sharing some common initial prefix π; denote this set by BT (π). In particular, ΩT is the
basic set BT (ǫ) where π = ǫ is the empty path. Any singleton set consisting of a complete path is also a basic set.
Let Σ0

T comprise all finite union and complement of basic sets: clearly Σ0
T forms a field. Let ΣT be the Borel field

generated by Σ0
T . The probability measure PrT assigns to each basic set BT (π) the probability PrT (BT (π)) = 2−|π|

where |π| is the length of the path π. E.g., PrT (ΩT ) = 20 = 1, as expected. Notice that every element of Σ0
T is

a finite union of disjoint basic sets. Extend the definition of PrT to sets in Σ0
T so as to preserve finite additivity

of pairwise disjoint unions. One checks that the extension does not depend on how we partition sets in Σ0
T into a

countable union of basic sets. Finally, a theorem of Carathéodory (appendix) gives us a unique extension of PrT

to all of ΣT .

Definition 4. (i) We introduce three random variables for ΩT . For any complete paths of T ,

TimeT (π) = |π| possibly infinite,

AcceptT (π) = 1 iff π ends in a YES-node in T,

HaltT (π) = 1 iff π is a finite path.

When T is the complete computation tree for input w, we write

Timew, Acceptw, Haltw, Ωw, etc,

for TimeT , AcceptT , etc.

(ii) The average time of T is the expected value of TimeT . A machine M accepts/rejects in average time
t(n) if for all accepted/rejects inputs w of length n,

Pr{Timew ≤ t(n), Acceptw = 1} >
1

2
.

It runs in average time t(n) if it is decisive and accepts and also rejects in average time t(n).

An equivalent definition of average time is this: the average time of a computation tree T is equal to the sum
over the weights of each edge in T where an edge from level ℓ − 1 to level ℓ (the root is level 0) has weight 2−ℓ.
Naturally, the probability that M halts on w is the expected value of the random variable Haltw. If M is
halting (i.e., there are no infinite computation paths) then it halts with probability 1; the converse is false. When
we use running complexity for probabilistic machines, they are sometimes designated ‘Monte Carlo algorithms’;
when average complexity is used, they are designated ‘Las Vegas algorithms’.

We first note an observation of Gill: Every recursively enumerable language can be accepted by a probabilistic
machine with constant average time. In proof, suppose M is a deterministic Turing machine. Without loss of
generality assume that M accepts whenever it halts. We construct N to simulate M as follows:

repeat

Simulate one step of M ;
if the simulated step halts, we answer YES or NO following M ;

until head = cointoss();
if head = cointoss() then answer YES else answer NO.

Here cointoss() is a random function that returns head or tail and there are two separate invocations of this
function above. We note that if the input word is not accepted by M then N can only reject (since the probability
of N saying YES is equal to the probability of saying NO). Hence N has zero-error rejection. If an input word is
accepted by M , then we see that the probability of its acceptance by N is more than 1

2 since each NO path can be
uniquely paired with an YES path of the same length, but there is one YES path that is not paired with any NO
path. These remarks are easy to see once we unroll the computation tree of N as shown in Figure 8.4.
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= YES

= NO

= YES or NO

Figure 8.4: Computation Tree of N , simulating a deterministic Turing acceptor M .

The average time t̄ spent in the repeat-loop satisfy the inequality

t̄ ≤ 2 +
t̄

2

where the term ‘2+’ comes from simulating a step of M and tossing a coin to decide on continuing inside the loop
(it takes no time to decide to say YES if M says YES). Thus t̄ ≤ 4. The average time of N is at most 1 + t̄ ≤ 5
(where the ‘1’ for the final cointoss).

Gill notes that such pathological behaviour does not happen with bounded-error machines:

Lemma 13. Let M be a probabilistic machine accepting/rejecting with bounded-error. There is a constant c > 0
such that if M accepts/rejects in average time t̄(n) and accepts/rejects in time t(n) then

t̄(n) ≥ t(n)

c
.

Proof. Suppose M accepts with probability at least 1
2 + e for some 0 < e < 1

2 . (The proof if M rejects with
probability at most 1

2 − e is similar.) Fix any input of length n and let t̄ = t̄(n). If t̄ =∞ there is nothing to prove.
Otherwise, let T be the complete computation tree. Since TimeT is non-negative, Markov’s inequality yields

Pr{TimeT ≥ ct̄} ≤ 1

c

for any c > 0. Choosing c = 2
e ,

Pr{TimeT < ct̄, AcceptT = 1} ≥ Pr{TimeT < ct̄} − Pr{AcceptT = 0}

≥ (1− 1

c
)− (

1

2
− e)

≥ 1

2
+

e

2
.

This proves that T , truncated below ct̄, accepts with bounded error. Q.E.D.

In view of this lemma, let
AvgTIME (t(n))

denote the class of languages accepted by probabilistic machines M where M has bounded-error and M runs in
average time t(n). Note that both properties here are independently defined for the entire computation tree. We
have thus proved:

Corollary 14. For any t(n),
AvgTIME (t) ⊆ PrTIME b(O(t)). (6)
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As further example, we provide deterministic time upper bounds for languages accepted in average time t(n)
with bounded-error.

Corollary 15. If a bounded-error probabilistic machine M accepts with average time t̄(n) then L(M) ∈ DTIME (O(1)t̄(n)).

Proof. We can simulate M by computing the least fixed point of a computation tree of depth O(t̄(n)). Q.E.D.

Lemma 16. Let s(n) ≥ log n be space constructible. Let M be any nondeterministic machine that accepts in space
s. Then there is a probabilistic machine N with zero-error that accepts L(M) in space s.

Proof. Choose c > 0 such that there are at most cs(n) configurations using space at most s(n). Fix any input
of length n and let s = s(n). First we mark out exactly s cells. The probabilistic machine N proceeds as follows:

repeat forever

1. Initialize M to its initial configuration.
2. Simulate M for cs steps. Nondeterministic choices of M

become coin-tossing choices of N .
3. If M answers YES in this simulation, we answer YES.

(If M answers NO or YO or does not
halt in cs steps, then we go to back to 1.)

end

Clearly N loops if M does not accept. If M accepts then the probability of N answering YES is easily seen to
be 1. Q.E.D.

This lemma implies that probabilistic space-bounds with zero-error is as powerful as nondeterministic space:

Theorem 17. For any space-constructible s(n) ≥ log n,

NSPACE (s) = PrSPACE0(s) = PrSPACE1(s).

Proof. The above lemma shows that NSPACE (s) ⊆ PrSPACE 0(s). The converse is easy since for any proba-
bilistic machine M with zero error, when viewed as a nondeterministic machine N, accepts the same language with
the same space bound. We check that the same construction applied to probabilistic one-sided error machines in
place of nondeterministic machines show PrSPACE1(s) ⊆ PrSPACE0(s), and hence they are equal. Q.E.D.

This result can be generalized to log-space alternating machines, but we now have two-sided error [28].
The simulation in the above proofs can be modified so that the simulating machine N halts with probability 1.

However, N is no longer zero-error. The technique will be introduced in section 6.

Probabilistic Simulating of Alternation. Consider how a probabilistic machine can simulate an alternating
machine M . We want our probabilistic machine to have bounded error. Suppose C is a configuration of M and
C ⊢ (A, B). Let TC , TA, TC denote the subtree at these nodes.

Inductively, assume that our recursive construction gives us probabilistic computation trees TA′ and TB′ (rooted
at A′ and B′) which emulates TA and TB (respectively) with error gap

g0 = [1/4, 3/4].

This means that if A accepts, then the value of A′ is at least 3/4 and if A rejects, the value of A′ is at most 1/4.
Similarly for B and B′. Let us see how to carry the induction through.

CASE: C is a ∧-configuration. Let C0 be a f-configuration such that C0 ⊢ (A′, B′) (see figure 8.5). Then the
value at C0 has an error gap of

[5/8, 3/4].

This is because, if at least one of A′ or B′ rejects, then value of C0 is at most (1/4) f1 = 5/8. And if both A′ and
B′ accepts, the value is at least 3/4. Then, we ‘shift’ the gap so that it is centered, by averaging it with the value
5/16. This gives us a new gap (of half the size!)

g0 = [15/32, 17/32].
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∧

f

f

C0

A′ B′

C

A B

5/16

C1

repeat

repeat

Figure 8.5: Simulating a ∧-configuration C.

We now use majority voting to boost this gap back to at least [1/4, 3/4]. We need to take the majority of 2k + 1
votes, where k is a constant that can be computed.

CASE: C is a ∨-configuration. In this case, C0 has error gap of

[1/4, 3/8].

Now we shift this gap by averaging it with 11/16, yielding the gap g0 above. We again boost it back to [1/4, 3/4].
Note that if the original tree has height h and this procedure produces a tree of height τ(h), then

τ(h) = k(τ(h− 1) + 2) ≤ (2k)h.

Of course, we need to make this recursive transformation something that can be carried out by a suitable proba-
bilistic machine. This is left as an exercise. We have thus shown:

Theorem 18.

ATIME(t) ⊆ PrTIME b(2
O(t)).

Exercises

Exercise 0.18: Let t(n) be time-constructible. Determine the smallest function t′(n) as a function of t(n) such
that

co-NTIME (t(n)) ⊆ PrTIME b(t
′(n)).

Hint: Simulate each step of a universal machine, but at each step, ensure bounded-error by using majority
votes. ♦

Exercise 0.19: Let M be a probabilistic machine that runs in time t(n) and which uses ≤ log t(n) coin tosses
along each computation path. Give an upper bound for the function t′(n) such that L(M) ∈ PrTIME b(t

′(n)).
♦

End Exercises

8.5 Interactive Proofs

This section introduces interactive proofs [13] and Arthur-Merlin games [2]. The class of languages recognized in
polynomial time by such machines is denoted IP . We show that IP contains two languages NONISO and #SAT.
This gives some indication of the power of IP because NONISO is not known to be in NP , and #SAT is complete
for P. The main result is IP = PSPACE , which provides yet another characterizaiton of PSPACE .
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Graph Non-Isomorphism. A motivating example is the graph isomorphism problem: given a pair 〈G0, G1〉 of
graphs, decide if they are isomorphic,

G0 ∼ G1. (7)

We could use digraphs or bigraphs in the following. To be specific assume bigraphs (undirected graphs). Let Gn

denote the set of bigraphs on the vertex set {1, 2, . . . , n}. Formally define the languages

ISO = {〈G0, G1〉 ∈ G2
n : n ≥ 1, G0 ∼ G1},

NONISO = {〈G0, G1〉 ∈ G2 : n ≥ 1, G0 6∼ G1}.

These are basically complementary languages. Let Sn denote the set of n-permutation (i.e., permutations of
{1, . . . , n}). For π ∈ Sn, let π(G0) denote the graph G0 when its vertices are renamed according to π: (i, j) is an
edge of G0 iff (π(i), π(j)) is an edge of π(G0). Then (7) holds iff there exists π such that π(G0) = G1. Call π a
certificate for 〈G0, G1〉 in this case. Thus 〈G0, G1〉 ∈ ISO iff 〈G0, G1〉 has a certificate. This concept of certificate
has two important properties:
• (Succinctness) The certicate π has size polynomial in n.
• (Verifiability) There is a deterministic polynomial-time algorithm V to decide if a given π is a certificate for
〈G0, G1〉.

These two properties characterize languages in NP . Hence, ISO ∈ NP . We can next try to improve our upper
bound on ISO (is it in P ?) or prove a lower bound (is it NP-hard?). Both of these questions are open. Another
related upper bound question (is it in co-NP) is also open.

It easily follows NONISO ∈ co-NP . Unfortunately, co-NP does not have a characterization by certificates.
Although certificates are not necessarily easy to find, they are easy to verify. In this sense, they have practical
utility. We next introduce a generalization of certificates verifiability, and eventually show that NONISO is verifiable
in this more general sense.

Concept of Interactive Proofs. We generalize certificate verifiability in two ways: first, we allows the verifying
algorithm V to be probabilistic, and second, we allow interaction between the verifying algorithm with another
algorithm called the “prover”, denoted P . Thus there are two communicating processes (sometimes called protocols),
an interactive prover P and an interactive verifier V which are Turing machines that send each other messages,

m0, m1, m2, . . . .

Message mi is written by V if i is even, and by P if i is odd, and these are written on a common worktape. We
assume some convention for each process to indicate that it is done writing its message (say, by entering a special
state) and for some external agent to prompt the other process to continue. The computation ends when V answers
YES or NO. The input is originally on V ’s input tape. We place complexity bounds on V alone. Thus the time
and space in a (V, P )-computation refer solely to the time and space incurred by V alone. We place no restriction
on P (which need not even have to be computable), except that P must respond to each message of V in finite
time. For instance, suppose if we say that V accepts in polynomial time, and P turns out to write exponentially
long messages, then V will not be able to read the long messages of P . Intuitively, V is sceptical about what
the process P is communicating to it, and needs to be “convinced” (with high probability). For any input w, let
Pr(V, P, w) be the probability that V accept. We will assume that V halt on every computation path, thus avoiding
any discussion of probability intervals. Languages will be defined with respect to V alone: writing

Pr(V, w) := sup
P

Pr(V, P, w),

then the language accepted by V is

L(V ) := {w : Pr(V, w) > 1/2}.

Say V has bounded-error if, in addition to the preceding requirements, we have Pr(V, w) ≥ 2/3 or Pr(V, w) ≤ 1/3
for all input w, The class IP comprises those languages that are accepted by bounded-error polynomial-time verifiers.

Interactive Verifier for Graph Non-Isomorphism. We want to describe an interactive verifer V such that
L(V ) = NONISO. Here is a well-known V0 from the literature:
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Input: string w
1. Reject unless w = 〈G0, G1〉 ∈ G2

n, n ≥ 1.
2. Randomly generate an n-permutation π and a binary bit b.
3. Let H ← π(Gb).
4. Send message m0 = 〈H, G0, G1〉. This message

asks P whether H ∼ G0 or H ∼ G1.
5. (Pause for P to reply with message m1)
6. If b = m1 answer YES, else answer NO.

Note that V0 concludes in two message rounds (sends and receives a message). Assume w = 〈G0, G1〉. There are
two cases to consider.
• w ∈ NONISO: We claim Pr(V0, w) = 1. To see this, suppose P0 is the prover who sends the message m1 = c

such that H ∼ Gc. Since c is unique, V0 always answer YES, so Pr(V0, P0, w) = 1.
• w 6∈ NONISO: We wish to claim Pr(V0, w) = 1/2. Intuitively, an “honest prover” P0 cannot distinguish

whether the answer should be H ∼ G0 or H ∼ G1. It is reasonable for P0 to flip a coin and answer m1 = 0
and m1 = 1 with equal probability. This will establish our claim. But suppose we have a “dishonest prover”
P1 whose goal is to mislead V0 into accepting w. P1 knows something about about π and b it may be able
to mislead V0. For instance, if P1 knows the value of b, then it will always fool V0. How can we be sure that
such information has not leaked in our definition of message m0? This justification is non-trivial (see [20,
p. 175]) and may be based on the so-called Principle of Deferred Decisions.

This example points out that informal descriptions of interactive proofs (with suggestive language such as “V
is convinced”, “P knows”, etc) can be tricky to formalize. For this reason, we prefer to view interactive proofs as
choice computations. The idea is this: we can combine V and P into one choice machine denoted, loosely,

M = “V + P”,

where the states of M is the disjoint union of the states of V and P (so each state of M may be classified as a
P -state or a V -state). We will let the choice function at each V -state q be γ(q) = f. But what about P? We need
to simulate all possible behavior for P (recall that we define Pr(V, w) as the maximization of Pr(V, P, w)). This is
not hard (we can essentially make all possible choices for the message). Furthermore, we let the choice function at
each P -state q be γ(q) = ∨. Thus M is a { f,∨}-machine. Unfortunately, there are two issues.

One issue is that, although P is powerful, it seems that we do not want it to know about the coin tosses of
V . Such a verifier is said to use “private coins”. The formulation “M = V + P” apparently use “public coins”.
As noted, the use of public coins in V0 above would be disastrous for the NONISO protocol above. Verifiers with
private coins seems more powerful. It turns out, for polynomial-time computations, a verifier with private coins
can be simulated by one with public coins, at the cost of of two extra rounds [14]:

IP [k] ⊆ AM [k + 2]. (8)

The parameters k and k + 2 bound the number of message rounds; the full explanation for this notation is given
below,

The second issue is this: the 0/1-message m1 returned by the prover is not easily modeled by f- and ∨-choices
alone. The ability to pass a 0/1-message from P to V seems more powerful than simply allowing V to ask P
question and receiving a YES/NO answer. For instance, V upon receipt of the Boolean message m1, can trivially
compute the negation of m1. But a { f,∨}-computation cannot trivially negate the value at a node. Thus it seems
we need a { f,∨,¬}-machine (equivalently, a { f,∨,∧}-machine) to efficiently simulate an interactive proof. But
this would make the interactive prover for NONISO uninteresting (NONISO is trivially accepted by a ∧-machine
in polynomial-time.) It turns out ¬ can be avoided, but this is a non-trivial result. We can avoid all these
complications of interactive proofs by using the Arthur-Merlin formulation of Babai and Moran. The advantage,
besides its simplicity, is the direct connection to choice computation.

Arthur-Merlin Games. Let M be an { f,∨}-machine, and π = (C0, C1, . . . , Cm) be a computation path of M.
A computation sequence

π′ = (Ci, Ci+1, . . . , Cj), (1 ≤ i ≤ j ≤ m)

is called a f-round (or Arthur round) if it contains at least one f-configuration but no ∨-configurations. Notice
that π′ could contain deterministic configurations. Similarly, π′ is called a ∨-round (or Merlin round) if we
interchange fand ∨. We say π has k rounds if π can be divided into k subpaths,

π = π1; π2; · · · ; πk (k ≥ 1)
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where “;’ denotes concatenation of subpaths such that πi is an Arthur round iff πi+1 is a Merlin round. Note that
k is uniquely determined by π. The definition generalizes in a natural way to k = 0 and k = ∞. We say M is a
k-round Arthur-Merlin game if

• M has bounded error and runs in polynomial time

• every computation path of M has at most k rounds in which the first round (if any) is an Arthur round

A k-round Merlin-Arthur game is similarly defined, with the roles of Arthur and Merlin interchanged. Let

AM [k] = {L(M) : M is an Arthur-Merlin game with at most k rounds}

The class MA[k] is similarly defined using Merlin-Arthur games instead. Of course, we can generalize this to
AM [t(n)] and MA[t(n)] where t(n) is a complexity function.

We can identify4 Arthur with the verifier V , and Merlin with the prover P , of interactive proofs. We can similar
define the classes IP [k] and IP [t(n)] accepted by interactive proofs in k or t(n) rounds. This is the notation used
in (8).

So it turns out that the apparent gap between interactive provers (V, P ) and choice machines is non-existent.
But this result is non-trivial since the pair (V, P ) can communicate as in true parallelism. As discussed in Chapter
1, the choice mechanism is, in general, weaker than true parallelism.

8.5.1 Arthur-Merlin Game for Graph Non-Isomorphism.

The new idea for checking non-isomorphism is as follows. Let G0, G1 ∈ Gn. Consider the set

ALIKE1(G0, G1) = {H : H ∼ G0 or H ∼ G1}.

Intuitively, |ALIKE1(G0, G1)| is either n! or 2(n!), depending on whether G0 ∼ G1 or not. Unfortunately, this is not
always true and relates to the notion of an automorphism: we call π ∈ Sn an automorphism of G if π(G) = G.
Of course, the identity 1 permutation is always an automorphism, but this is the trivial case. We initially assume
that Gi (i = 0, 1) has only the trivial automorphism, so that |ALIKE1(G0, G1)| = n! or 2(n!),

Example: Let n = 3 and G0 has the single edge (1, 2) and G1 has the single edge (2, 3). Thus the transposition
(1, 2) is an automorphism of G0. We see that the set ALIKE1(G0, G1) = {G0, G1, G2} where G2 has the single edge
(1, 3). So |ALIKE1(G0, G1)| = 3 < 3!. Thus, our assumption that the Gi’s have only the trivial automorphism is
essential.

Continuing, suppose we randomly pick H ∈ Gn, then there is some constant c such that Pr{H ∈ ALIKE1(G0, G1)}
is c or 2c, depending on whether G0 ∼ G1 or not. This probabilistic gap is the basis for recognizing NONISO.

However, the constant c is exponentially small in n since |Gn| = 2(n
2) n!. We need to modify this gap by a hashing

trick: the idea is to map Gn into a smaller set of size Θ(n!).
Let us understand the problem more generally: we have a set C whose size is either n! or 2(n!). You want to

computationally determine whether it is n! or 2(n!). We cannot count explicitly since n! is too large. Without loss
of generality, let C ⊆ Bm (bit strings of length m). Here B = {0, 1} is the Boolean field of two elements. If n! is
comparable to |Bm| = 2m, say 3(n!) < 2m < 4(n!), then we can randomly sample elements x ∈ Bm and test if x ∈ C
(we assume testing membership in C is easy). If |C| = 2(n!), probability that x ∈ C is greater than 1/2. If |C| = n!,
then the probability is less than 1/3. This gap implies that our problem is in BPP . In our application, n! is not
comparable to 2m but exponentially smaller. So we define a hash function h : Bm → Bk where n! is comparable to
|Bk| = 2k. If h is 1−1 when restricted to C, then the previous BPP -algorithm will work. Unfortunately, we do not
know how to find such an h efficiently. The next lemma say that if h is a random hash function, we can achieve
much the same result.

Lemma 19 (Boppana). Let B be a k ×m Boolean matrix, and let

hB : Bm → Bk

be defined by hB(x) = B ·x where all arithmetic is in B. Fix C ⊆ Bm and write hB(C) = {hB(x) : x ∈ C}. Assume
c = |C|/2k and k ≥ 2. If z ∈ Bk and B ∈ Bm×k are both random then

Pr{z ∈ hB(C)} > c− c2

2
= c

(
1− c

2

)
.

4As in the legend of King Arthur, the magician Merlin is more powerful than Arthur. Merlin, as the ∨-player, can use existential
guesses (which is magically correct). Arthur, all too human, can only roll his dice and take his chances.
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Proof. We will show that for all x 6= y,
(a) Pr{z = hB(x)} = 1/2k, and
(b) Pr{z = hB(x) = hB(y)} ≤ 1/4k.
The lemma then follows by the inclusion-exclusion principle,

Pr{z ∈ hB(C)} ≥
∑

x∈C

Pr{z = hB(x)} −
∑

{x,y}∈(C

2)

Pr{z = hB(x) = hB(y)}.

(a) There are two cases for showing Pr{z = hB(x)} = 1/2k: fix x = (x1, . . . , xm). If x = 0m (an m-vector of 0’s)
then Pr{z = hB(x)} = Pr{z = 0k} = 1/2k. Otherwise, we may assume x1 6= 0. Let Bi denote the ith column of
B. First fix z′ ∈ Bk; then for any choices of B2, . . . , Bm there is a unique choice of B1 such that Bx = z′. Thus

Pr{Bx = z′} =
∑

B2,...,Bm

2−mk = 2(m−1)k2−mk = 2−k. (9)

If z is also random, then Pr{Bx = z} =
∑

z′ 2−k Pr{Bx = z′} = 2−k. This proves (a).
(b) There are also two cases in showing Pr{z = Bx = By} ≤ 1/4k. First, suppose x = 0m. Then

Pr{z = Bx = By} = Pr{z = 0k, By = 0k}
= Pr{z = 0k}Pr{By = 0k}
= 2−k2−k,

where the last equality uses part (a). Next suppose x 6= 0m and, by symmetry, y 6= 0m. In this case, since x 6= y,
there is some 1 ≤ i < j ≤ m such that

M =

[
xi yi

xj yj

]

is non-singular. To see this, without loss of generality, assume i = 1, j = 2 and xi = 1, yi = 0. Then we can choose
y2 = 1, and it does not matter what x2 is. For any fixed z′ ∈ Bk and any choice of columns B3, . . . , Bm, there is a
constant k × 2 matrix C such that the equation z′ = Bx = By can be rewritten as

[B1|B2]M = C.

Since M is invertible, this uniquely determines B1, B2. There are 2(m−2)k choices for B3, . . . , Bm and hence
Pr{z′ = Bx = By} = 4−k. Again, when z is randomly chosen, this leads to Pr{z = Bx = By} = 4−k. This proves
(b). Q.E.D.

The next idea is to get rid of the assumption that Gi has only the trivial automorphism. We use elementary
facts of group theory. For any digraph G, let aut(G) denote the automorphism group of G. It is standard to look
at the cosets of aut(G): these are sets of the form

π ◦ aut(G) = {π ◦ σ : σ ∈ aut(G)}
for each π ∈ Sn. These cosets form a partition of Sn. Here is the standard argument: (1) It is clear that Sn is
the union of these cosets since 1 ∈ aut(G). (2) π ◦ aut(G) and π′ ◦ aut(G) are either disjoint or equal: for, if
π◦σ = π′ ◦σ′ for some σ, σ′ ∈ aut(G), then π = π′ ◦σ′ ◦σ−1 so that π ∈ π′ ◦aut(G). Then π◦aut(G) ⊆ π′◦aut(G);
reversing the argument implies π ◦ aut(G) = π′ ◦ aut(G).

We also note that each coset C has size |aut(G)| since π−1C = aut(G) for some π. It follows that the number
d of distinct cosets must divide |Sn| = n!. In fact, d = n!/|aut(G)|. If the distinct cosets are Ci (i = 1, . . . , d),
choose a representative πi ∈ Sn for each i such that πiaut(G) = Ci. Now consider the

iso(G) = {πi(G) : i = 1, . . . , d}
It is clear that iso(G) is a complete list of all the graphs isomorphic to G. Moreover, it is not hard to check that
aut(πi(G)) = πiaut(G)π−1

i [pf: σ(πi(G)) = πi(G) iff π−1
i σπi(G) = G].

It follows that the set
|iso(G)× aut(G)| = n! (10)

So if we count each graph H ∈ iso(G) with multiplicity equal to |aut(G)|, the size of the multiset iso(G)
would be n!. Equivalently, we “tag” each H with one of its automorphisms π, and count the corresponding set
iso(G)× aut(G) set instead of iso(G). This tagging idea will provide a suitable replacement for ALIKE1(G0, G1):
define ALIKE(G0, G1) to be

ALIKE(G0, G1) := {〈H, π〉 : π(H) = H and H ∼ G0 or H ∼ G1}.
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Lemma 20.

|ALIKE(G0, G1)| =
{

n! if G0 ∼ G1,
2 · n! if G0 6∼ G1.

(11)

Proof. If G0 ∼ G1, then this is just a restatement of (10). If G0 6∼ G1, then the ALIKE(G0, G1) is the disjoint
union of iso(G0)× aut(G0) and iso(G1)× aut(G1). Q.E.D.

We are ready to prove that NONISO belongs to AM .

Theorem 21. NONISO ∈ AM [2].

Proof. Assume each element of Gn is given by a string in B(n
2). Hence each element of ALIKE(G0, G1) can be

represented by a string in Bm where m =
(
n
2

)
+⌈n lg n⌉. Choose k = ⌈lg(n!)⌉+2. As in Boppana’s lemma, let z ∈ Bk

and B ∈ Bm×k be randomly chosen. Let us define c := 2(n!)/2k. Note that if G0 ∼ G1, then |ALIKE(G0, G1)| ≤ n!
and

Pr{z ∈ hB(ALIKE(G0, G1))} ≤
n!

2k
= c/2.

On the other hand, if G0 6∼ G1 and applying lemma 19 with C = ALIKE(G0, G1) yields

Pr{z ∈ hB(ALIKE(G0, G1))} ≥ c
(
1− c

2

)

where |C|/2k = c. Since c ≤ 1
2 , we have

Pr{z ∈ hB(ALIKE(G0, G1))} ≥ 3c/4.

This gives rise to the following { f,∨}-machine M0:

Input: 〈G0, G1〉 ∈ G2
n.

1. Randomly choose B and z, as above.
2. Existentially choose a bit b, H ∈ Gn and two n-permutations π, σ.
3. Answer YES if π(H) = H and σ(H) = Gb and z = hB(H); else Answer NO.

This machine has probability gap (c/2, 3c/4). It does not accept NONISO yet because the gap is not an error gap
(which would contain 1

2 ). We need to “shift” this gap by modifying M0 as follows: begin by tossing a coin to spawn
2 branches. On one branch, perform the computations of M0. On the other, perform a probabilistic computation
whose valuation is exactly 1−(5c/8). Let us see how the second branch can be accomplished. First, we can compute
the binary representation of c in polynomial time in a straightforward manner (in fact, O(n3 log2 n) time suffices).
Next, compute the binary representation of 1− (5c/8). Once this is available, we can make a series of coin tosses
to achieve a valuation of exactly p = 1− (5c/8). In general, let the binary representation of a fraction 0 ≤ p ≤ 1 is
0.p1p2 . . . pk for some k. Note that 1 − (5c/8) is of this form. Then following randomized algorithm accepts with
probability exactly equal to p:

L0 : for i=1 to k
Randomly choose labels L0 or L1

L1 : if pi = 1 then Answer YES else Answer NO.

Note that the modified machine M1 has the error gap

(
c

2
,
3c

4

) f[1− 5c

8
, 1− 5c

8

]
=

(
1

2
− c

16
,
1

2
+

c

16

)
.

In fact, c/16 ≥ 2−6. Thus M1 is an AM [2]-game. Q.E.D.

Note that using (8) and the original interactive verifier V0, we only infer NONISO ∈ AM [4]. Hence this direct
proof yields a sharper result.
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8.5.2 Arithmetization of Quantified Boolean Formulas

The next two subsections uses a technique called “arithmetization” of quantified Boolean formulas. We recall the
notion of a quantified Boolen formula F : In the base case, F is a Boolean variable x or the constants 0 or 1.
Inductively, if F1, F2 are quantified Boolean formulas, then F has the form in the left column of the following table,

F |F |
x, 0, 1 1
¬F1 1 + |F1|
(F1 ∨ F2) |F1 + |F2||
(F1 ∧ F2) |F1|+ |F2|
(∃x)[F1] 1 + |F1|
(∀x)[F1] 1 + |F1|

F1, F2 are quantified Boolean formulas. The length |F | of F is given in the right column of the preceding table.
In the following, we simply say “formulas” for quantified Boolean formulas. Parenthesis or brackets may be

dropped from formulas if this does not lead to ambiguity. Any occurence of the variable x in F1 is said to be bound
in (∃x)F1 and (∀x)F1. An occurence of the variable x is free if it is not bound. When we write F = F (x1, . . . , xn),
this means that any variable that occurs free in F is among x1, . . . , xn (but it does not mean that each xi actually
occurs free in F ). In this case, when we write F (a1, . . . , an), it means we replace each free occurence of xi in F
by ai. When F has no free variables, it is called a quantified Boolean sentence (or simply, “sentence”). We
assume that the reader knows what it means for sentence to be true. If F (x1, . . . , xn), then F is valid if for every
choice of Boolean values ai ∈ B, F (a1, . . . , an) (which is a sentence) is true. A formula is quantifier-free when it
does not have any quantifiers (∀ or ∃). We say F is in prenex form if it has the form

(Q1x1)(Q2x2) · · · (Qmxm)[φ]

where Qi ∈ {∀, ∃} and φ is quantifier-free.

Arithmetization. Suppose F = F (x1, . . . , xn) is a formula. Its “arithmetization” is an integer polynomial

F̃ (x1, . . . , xn) ∈ Z[x1, . . . , xn] defined as follows:

• (Base Case) If F ∈ {0, 1, x1, . . . , xn}, then F̃ = F .

• (Induction) If F1, F2 be quantified Boolean formulas, and F (x1, . . . , xn) has the form in the left column, then

F̃ has the form on the right column:

F F̃

¬F1 1− F̃1

(F1 ∧ F2) F̃1 ⊗ F̃2 = F̃1F̃2

(F1 ∨ F2) F̃1 ⊕ F̃2 = 1− (1− F̃1)(1− F̃2)

(∀x)[F1] F̃1(x1, . . . , xn−1, 0)⊗ F̃1(x1, . . . , xn−1, 1)

(∃x)[F1] F̃1(x1, . . . , xn−1, 0)⊕ F̃1(x1, . . . , xn−1, 1)

For example, if F = (¬x)(x ∨ y) then

F̃ = (1 − x)(x ⊕ y) = x + y − x2 − 2xy + x2y. (12)

Here we use a common convention where x1, x2, x3 are synonymous with x, y, z. Recall that B = {0, 1}. Our
polynomials have two simple properties:
(i) If each ai ⊆ B value then F̃ (a1, . . . , an) ∈ B.

(ii) F̃ (a1, . . . , an) = 1 iff the sentence F (a1, . . . , an) is true.

Define Pn to be the set of polynomials P̃ that arise from formulas F over the variables x1, . . . , xn. Alternatively,
Pn is the smallest set of integer polynomials such that (1) {0, 1, x1, . . . , xn} ⊆ Pn, and (2) if p, q ∈ Pn then
1− p ∈ Pn and pq ∈ Pn. Viewing a polynomial p as a sum of terms (or monomials) where each term has the form
t = c

∏n
i=1 xei

i (c 6= 0). Let e = (e1, . . . , en) and |e| := ∑n
i=1 ei. Then we call e = (e1, . . . , en) the exponent, |e|

the degree, c ∈ Z is the coefficient and
∏n

i=1 xei

i (ei ≥ 0) is a power product of the term t. We also write xe

for the power product xe1

1 xe2

2 · · ·xen
n . The degree of p, denoted deg(p), is defined as the maximum of the degrees

of its terms.
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Let degi(p) be the largest exponent d ≥ 0 such that xd
i divides a term in p Then the maximum degree of p

is the vector

MaxDeg(p) = (e1, . . . , en)

where ei = degi(p) for each i. We say p is principal when xMaxDeg(p) occurs in p; then the coefficient of xdeg(p)

in p is called the leading coefficient of p. Define5

M(e) :=
|e|!
e!

where e! := e1!e2! · · · en! and |e| = ∑n
i=1 ei as above. For instance if e = (0, 2, 1, 2) then M(e) = 5!

0!2!1!2! = 30. We
note a basic identity of multinomials:

Lemma 22. Let g ∈ Nn and |g| = a + b (a, b ∈ N). Let I = I(g, a, b) be the set of all pairs of the form (e, f) such
that e, f ∈ Nk, |e| = a, |f | = b and e + f = g.

M(g) =
∑

(e,f)∈I

M(e)M(f). (13)

Proof. This proof exploits a counting interpretation of M(g): M(g) is the number of ways to color a set of |g|
elements with k colors. Let A, B be disjoint sets of a and b elements, respectively. The number of ways to color
A ∪B with k colors is therefore M(g). But for each (e, f) ∈ I, there are M(e) ways to k-color A and M(f) ways
to k-color B. Combining them, this gives rise to M(e)M(f) ways to k-color A ∪B. Let C(e, f) be the k-colorings
of A ∪B that is associated in this way with (e, f). Note that C(e, f) ∩C(e′, f ′) = ∅ for (e, f) 6= (e′, f ′), and hence

M(g) ≥
∑

(e,f)∈I

M(e)M(f).

It is also easy to see that every k-coloring of A ∪B is a member of C(e, f) for some (e, f). Hence the inequality is
in fact an equality. Q.E.D.

A homogeneous polynomial is one in which every term has the same degree. For any polynomial p which
does not involve x0, id d = deg(p), we define its homogeneous version p̂ to be the result of replacing each term

cex
e in p by the term cex

ex
d−|e|
0 . For instance, if p(x, y) = p(x1, x2) is the polynomial in (12), then

p̃ = (x0 − x1)(x0x1 + x0x2 − x1x2) = x2
0x1 + x2

0x2 − x0x
2
1 − 2x0x1x2 + x2

1x2.

If e = (e1, . . . , en) and |e| ≤ d, define

Md(e) =
d!

(d− |e|)!e1! · · · en!

For each term with exponent e in a polynomial p of degree d, the corresponding term in p̃ has exponent e′ =
(d− |e|, e1, . . . , en). Then Md(e) is just M(e′). It is easy to see that

M(e) ≤Md(e). (14)

Lemma 23. Let p ∈ Pn.
(i) p is principal.
(ii) The leading coefficient of p is ±1, and its constant term is either 0 or 1.
(iii) If cex

e is a term in p, then |ce| ≤Md(e) where d = deg(p).

(iv) For any formula F , the coefficients of F̃ has bit size O(|F | log |F |).

Proof. (i) and (ii) are immediate.
(iii) (Basis) If |e| = 0, then Md(e) = 1, and so the result holds when p = 0 or p = 1. If |e| = 1, then Md(e) ≥ 1, and
thus it holds when p = xi or p = 1− xi. (Induction) Suppose p, q ∈ Pn. By induction, the result is true for 1− p,
and we want to verify the result for pq. Consider their homogeneous versions p̂, q̂. For e = (e0, . . . , en) ∈ Nn+1 let
Xe = xe0

0 xe1
1 , . . . , xen

n and αe be the coefficient of Xe in p̂q. Similarly, let βe and γe be the coefficients of Xe in p̂

5M(e) is also known as a multinomial, but this is terminology should be distinguished from the “monomial” terminology.
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and in q, respectively. Then for any e ∈ Nn+1,

αe =
∑

f+g=e

βfγg,

|αe| ≤
∑

(f,g)∈I

|βf | · |γg|

≤
∑

(f,g)∈I

M(f)M(g)

= M(e),

by the previous lemma. But if e = (e0, e1, . . . , en) and e′ = (e1, . . . , en) then M(e) is just Md(e
′), as desired.

(iv) Let F be a formula and d ≤ deg(F̃ ). If e ∈ Nn then from (iii), the coefficient of xe in F̃ has bit size at most
log Md(e) ≤ log(d!). The lemma follows since d = O(|F |). Q.E.D.

8.5.3 IP contains P.

In order to prove P ⊆ IP , it is enough to show that a P-complete problem (under many-one polynomial-time
reducibility, say) is in IP . The same approach is used in the next section to show that PSPACE ⊆ IP , so this
proof serves as warm-up. Our main result here is.

Theorem 24. #SATis in IP.

Let F be a quantifier-free formua over x1, . . . , xn. From the definition of #F as the number of satisfying
assignments to the formula F , we see that

#F =

1∑

a1=0

1∑

a2=0

· · ·
1∑

an=0

F̃ (a1, . . . , an).

We define the following polynomials for i = 0, . . . , n:

Fi(x1, . . . , xi) :=
∑

ai+1∈B

∑

ai+2∈B

· · ·
∑

an∈B

F̃ (x1, . . . , xi, ai+1, ai+2, . . . , an). (15)

Notice that

• Fn(x1, . . . , xn) = F̃ (x1, . . . , xn).

• For i = 1, 2, . . . , n, Fi−1(x1, . . . , xi−1) = Fi(x1, . . . , xi−1, 0) + Fi(x1, . . . , xi−1, 1).

• F0 = #F .

Clearly, each Fi ∈ Pn and deg(Fi) ≤ deg Fn. In particular, the coefficients of Fi has bit size O(|F | log |F |). The
idea of the algorithm is to reduce the search for Fi to Fi+1, and hence reducing the search for #F = F0 to Fn

(which we know). Moreover, since Fi is a i-variate polynomial, by random substitution for i− 1 of these variables,
we can reduce the checking to a univariate problem.

An IP-Algorithm for #SAT. Let the input for #SAT be 〈F, k〉 where F is a Boolean formula. The following

algorithm is to accept iff #F ≥ k. Assume the polynomial F̃ has n variables and degree ≤ d = |F |.

1. Construct the polynomial

Fn = F̃ (x1, . . . , xn) ∈ Z[x1, . . . , xn].

We represent Fn as an expression using the inductive rules in the definition of F̃ . Note that we do not expand
Fn into an explicit sum of terms, which would be prohibitive. In the following, we refer to Fi(x1, . . . , xi)
(i = 0, . . . , n− 1), defined as in (15). Note that these Fi’s will are never computed.

Let S ⊆ Z be any finite set of size at least 8dn. For instance, we may let S = {0, 1, . . . , 2⌈lg(8dn)⌉ − 1}. In the
following, whenever we choose a random number r, it will be taken from S.
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2. Stage 0: Existentially guess some k0 where k ≤ k0 ≤ 2n. Our main task is to verify F0 = k0 (recall
F0 = #F ). How can we do this, seeing that we do not have F0? We this indirectly, by guessing the
coefficients of a polynomial G1(x) ∈ Z[x] of degree ≤ d = |F |. We intend6 G1(x) to be equal to F1(x).
Unlike the multivariate Fn, we can afford to represent the univariate G1 as a sum of its terms. We then
check if G1(0) + G1(1) = k0. If this fails, we answer NO (our guess is wrong). If our guess were correct, then
G1(0) + G1(1) = F0 and our main task is next reduced to to verifying G1(x) = F1(x), which is addressed in
stage 1.

3. Stage i = 1, . . . , n− 1: Inductively assume that, at the beginning of stage i, we have a univariate polynomial
Gi(x) and a sequence of elements r1, . . . , ri−1 ∈ Z. Each rj is randomly chosen a previous stage (in fact,
stage j). The task for this stage is to verify that

Gi(x) = Fi(r1, . . . , ri−1, x). (16)

Here, Gi(x) is explicitly represented by its sequence of coefficients, but Fi(r1, . . . , ri−1, x) is implicitly repre-
sented by Fn(x1, . . . , xn) (from step 2) and the values r1, . . . , ri−1.

To verify (16), we existentially guess (the coefficients of) a polynomial Gi+1(x) ∈ Z[x] of degree ≤ d. Then we
randomly choose ri ∈ S. Notice that the modes for choosing Gi+1(x) and for choosing ri are different. Again,
Gi+1(x) is intended to be Fi+1(r1, . . . , ri, x). Since Fi(r1, . . . , ri) = Fi+1(r1, . . . , ri, 0) + Fi+1(r1, . . . , ri, 1),
instead of (16), we verify that

Gi(ri) = Gi+1(0) + Gi+1(1). (17)

If this fails, we answer NO. Otherwise, we proceed to the next stage.

4. Stage n: from stage n − 1, we have inherited Gn(x) and r1, . . . , rn−1. We now need to verify Gn(x) =
Fn(r1, . . . , rn−1, x) (cf. equation (16)). We randomly7 guess rn ∈ S, and answer YES if Gn(rn) = Fn(r1, . . . , rn−1, rn),
otherwise answer NO. This final check is possible because we can easily evaluate Fn(r1, . . . , rn−1, rn) from
our representation of Fn(x1, . . . , xn) and r1, . . . , rn.

Correctness. We prove that this procedure accepts #SAT. One direction is easy: suppose 〈F, k〉 ∈ #SAT. We
may assume that all our existential guesses are correct. In particular, k0 is correctly chosen to be #F , and at each
stage, the guessed polynomial Gi(x) is indeed equal to Fi(r1, . . . , ri−1, x). Under these assumptions, regardless of
the choice of the ri’s, we always answer YES in stage n. In fact, this shows that we accept 〈F, k〉 with no pessimistic
acceptance error. Moreover, there is a computation tree of polynomial height, since each Gi has degree at most
d = |F | and its coefficients are O(|F | log |F |) bits.

In the harder direction, where 〈F, k〉 6∈ #SAT, we have #F 6= k0 for all choices of k0 ≥ k. Fix any k0. We will
show that Pr(En) ≥ 3/4 where En be the event that we answer NO in stage n. For i = 0, . . . , n− 1, define Ei to
be the event that we enter stage i + 1 with

Gi+1(x) 6= Fi+1(r1, . . . , ri, x). (18)

For events A and B, we have Pr(A) ≥ Pr(A|B) Pr(B). Iterating this,

Pr(En) ≥ Pr(En|En−1) Pr(En−1)

≥ Pr(En|En−1) Pr(En−1|En−2) Pr(En−2)

≥ · · ·
≥ Pr(En|En−1) Pr(En−1|En−2) · · ·Pr(E1|E0) Pr(E0)

= Pr(E0)

n∏

i=1

Pr(Ei|Ei−1). (19)

In stage 0, the fact that G1(0) + G1(1) = k0 and #F = F1(0) + F1(1) 6= k0 implies that G1(x) 6= F1(x). Hence
Pr(E0) = 1.

In stage 1, we ∃-guessed G2(x) of degree ≤ d, and randomly choose a number r1 such that G1(r1) = G2(0) +
G2(1). Since the total degrees of G1, F1 are ≤ d, the fact that G1(x) 6= F1(x) implies follows that there are at most
d choices of r ∈ Z such that G1(r) = F1(r). This follows from a simple fact of algebra that a non-zero polynomial
p(x) ∈ Z[x] of degree d has at most d zeros. Here, p(x) = G1(x) − F1(x). Thus Pr(E1|E0) ≥ 1− (d/p).

6Mnemonic: think of the G’s as “guesses” for the F ’s.
7We could actually perform this step in deterministic polynomial time.
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The same argument works for stage i+1 (i = 1, . . . , n−2): assuming (18), Pr{Gi+1(ri+1) 6= Fi+1(r1, . . . , ri, ri+1)} ≤
d/p. Thus Pr(Ei+1|Ei) ≥ 1− (d/p). It is also true that Pr(En|En−1) ≥ 1− (d/p). From (19), we conclude that

Pr(En) ≥
(

1− d

p

)n

>1 (e−2d/p)n

>2 1− 2nd

p

> 3/4 (since p > 8dn).

See the Appendix for the inqualities >1 and >2. This proves the correctness of our IP-algorithm. Since #SAT is
P-complete (say, under Karp-reducibility) and IP is clearly closed under Karp-reducibility, we have shown:

Theorem 25.
P ⊆ IP .

Neither of the inclusions NP ⊆ IP , and co-NP ⊆ IP are obvious because of the requirement of bounded error
in IP . But as 3SAT is trivially Karp-reducible to #SAT, it follows that NP ⊆ IP . Since IP is closed under
complementation, this also means that co-NP ⊆ IP .

Corollary 26.
NP ∪ co-NP ⊆ IP .

Remark: In the above proof, the equality of polynomials is always taken in the abstract mathematical sense,
not in terms of their representations. Thus F (a1, . . . , an) is equal to 0 or 1 when the ai ∈ B. On the other hand, we
need to address the issue of representation when we construct explicit polynomials (e.g., Fn or the guessed Gi’s).

8.5.4 IP = PSPACE

In Chapter 7, we proved PrA-TIME (t) ⊆ ATIME(t log t). Thus,

IP ⊆ PrA-TIME (n0(1)) ⊆ ATIME (nO(1)) = PSPACE .

We now prove the converse, PSPACE ⊆ IP , a result of Shamir [30]. The algebraic technique for showing P ⊆ IP .
in the previous section will be extended. In particular, we now show that a particular PSPACE -complete language
belongs to IP . Define the set of valid quantified Boolean formulas to be

QBF = {F : F is a valid formula}.
This can be viewed as a language, after choosing some standard encoding of formulas. We may assume F ∈ QBF
are in prenex form.

Lemma 27. QBF is PSPACE-complete.

The proof is left as an Exercise. Hence our desired result amounts to showing an IP -algorithm for QBF. We
initially try to imitate the previous proof, as this helps to locate the new difficulties. Let F be a formula. Unlike
the previous proof, F may now have quantifiers. We may assume that

F = (Q1x1Q2x2 · · ·Qnxn)[φ] (20)

where φ = φ(x1, . . . , xn) is quantifier-free. Define formulas Fi for i = 0, . . . , n as follows:

Fn(x1, . . . , xn) = φ

Fn−1(x1, . . . , xn−1) = (Qnxn)[Fn]

...

Fi−1(x1, . . . , xi−1) = (Qixi · · ·Qnxn)[φ] = (Qixi)[Fi]

...

F1(x1, x2) = (Q3x3Q4x4 · · ·Qnxn)[φ]

F1(x1) = (Q2x2Q3x3 · · ·Qnxn)[φ]

F0() = F
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If F̃i is the arithmetization of Fi, then we have

F̃i(x1, . . . , xi) =

{
F̃i+1(x1, . . . , xi, 0)⊗ F̃i+1(x1, . . . , xi, 1) if Qi = ∀
F̃i+1(x1, . . . , xi, 0)⊕ F̃i+1(x1, . . . , xi, 1) if Qi = ∃

The problem is that the degree of F̃i is double that of F̃i+1. Hence the degree of F̃ may be exponential in |F |.

A Linearization Quantifier. To solve this problem, we introduce a new kind of quantifier denote L. The class
of quantified Boolean formulas are now enlarged to include this new quantifier. In particular, for any formula
φ(x1, . . . , xn, x) and variable x, the following is also a formula,

F = Lx[φ].

Furthermore, its arithmetization is defined via

F̃ := (1− x)φ̃(x1, . . . , xn, 0) + xφ̃(x1, . . . , xn, 1).

Note the following properties:

• If a ∈ B, then F̃ (x1, . . . , xn, a) = φ̃(x1, . . . , xn, a).

• F̃ has the same set of free variables as φ̃ (namely, x1, . . . , xn, x).

• F̃ is linear in x.

The last two properties are quite unlike the arithmetization of the other two quantifiers. Indeed, the name of the
L-quantifier is taken from the last property. An Exercise below shows that the linearlization transformation

φ(x1, . . . , xn, x) 7→ (1 − x)φ(x1, . . . , xn, 0) + xφ(x1, . . . , xn, 1)

amounts to replacing any power of x by a plain x in every term of the polynomial φ(x1, . . . , xn, x). We now
transform the formula F in (20) to a new formula H ,

H := (Q1x1)(Lx1Q2x2)(Lx1Lx2Q3x3) · · · (Lx1Lx2 · · ·Lxn−1Qnxn)[φ]

= (Q1y1Q2y2 · · ·Qmym)[φ]

where Qi ∈ {L, ∀, ∃} and yi ∈ {x1, . . . , xn}. Here m =
(

n+1
2

)
is the number of quantifiers in H . These m quantifiers

are placed into n groups, as indicated by the matched pairs of parentheses. In each group (reading from right to
left), a normal quantifier Qi is followed by i− 1 linearization operators to ensure that the degrees of the remaining
variables are linear. As usual, let

Hm(x1, . . . , xm) = φ

Hm−1(x1, . . . , xm) = (Qmym)[Hm]

Hm−2(x1, . . . , xm) = (Qm−1ym)[Hm−1] = (Qm−1ym−1Qmym)[Hm]

· · ·
H1(x1) = (Q2y2)[H2]

H0() = (Q1y1)[H1] = H

Note that Hi = Hi(x1, . . . , xn(i)) for some n(i). The Hi’s are formulas, but in our algorithm, we will simulate their

arithmetized8 versions H̃i. In particular, we will make ∃-guesses of Gi = Gi(x1, . . . , xn(i)) which are intended to

be equal to H̃i. The critical fact is that
deg(H̃i) ≤ |F |2.

To see this, let di = deg(H̃i). Then we have dm ≤ |F |. However, dm−1 could be as large as (dm)2. However,
the next n− 1 linearization quantifiers reduces this degree back to at most |F |. This pattern is repeated for each
group of linearization quantifiers that follows the next ∀ or ∃ quantifier (Qm−1). We now see why the linearization
quantifier is an antidote to the exponential degree of Fi’s.

Here now is the IP-algorithm for QBF. The description will be abbreviated where similarities to the previous
IP -algorithm for #SAT is clear.

8We really ought to write “fHi”. But this is uglier than the “ eHi” which we will use.
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1. The input is a quantified Boolean formula F . Let H be the corresponding linearized version, and the formulas
H0, . . . , Hm is defined as above. Again, we assume a finite set S of size |S| ≥???. Whenever we choose a
random number, it will be taken from S.

2. Stage 0: We guess G1(x), intended to be equal to H̃1(x). Now H = H0 = (Q1x1)[H1] and Q1 = ∀ or ∃. If
Q1 = ∀, then we check if G1(0) = G1(1) = 1. If Q1 = ∃, then we check if G1(0) = 1 or G1(1) = 1. If the
check fails, we answer NO; else we go to Stage 1.

3. Stage i (i = 1, . . . , m− 1). Inductively, we have random values r1, . . . , rn(i)−1 and Gi(x). Intuitively, Gi(x)

is meant to be Hi(r1, . . . , rn(i)−1, x). Now Hi = (Qi+1yi+1)[Hi+1(x1, . . . , xn(i+1))].

Note that if Qi+1 = L then n(i + 1) = n(i); otherwise Qi+1 = ∀ or ∃ and n(i + 1) = n(i) + 1. Existentially

guess Gi+1(x). If Qi+1 6= L then we randomly choose rn(i+1)−1 = rn(i). Regardless of Qi+1, the intention is
that Gi+1(x) is Hi(r1, . . . , rn(i+1)−1, x).

We consider three cases:
(i) If Qi = ∀, we check if Gi(rn(i)) = Gi+1(0)⊗Gi+1(1)

(ii) If Qi = ∃, we check if Gi(rn(i)) = Gi+1(0)⊕Gi+1(1)

(iii) If Qi = ∃, we check if Gi(rn(i)) = Gi+1(rn(i))

4.

Notes. Our approach to interactive proofs via choice computation is unconventional, but it provides a more
satisfactory and general foundation than the customary treatment. This allows interactive proofs to seen to be a
natural part of a wide spectrum of computational choices. A survey on interactive proofs may be found in [24]. The
place of ISO in the complexity landscape is explored in the monograph of Köbler, Schöning and Torán [17]. Another
closely related question is GRAPH AUTOMORPHISM: Given G, does it have a non-trivial automorphism?

Exercises

Exercise 0.20: Show that IP is closed under Karp- and Cook-reducibility. ♦

Exercise 0.21: This exercise helps you gain some facility with the group theoretic ideas in the NONISO ∈ IP
proof. Let V = Vn = {1, . . . , n} and Sn be the set of permutations on Vn. The trivial permutation is denoted
1n (or simply 1). Write the composition of σ, σ′ ∈ Sn in the form of a product σσ′, instead of σ ◦ σ′.
(i) Let 2 ≤ k ≤ n. If {a1, . . . , ak} ⊆

(
V
k

)
, then (a1, . . . , ak) ∈ Sn denotes the permutation which takes each ai

to a(i+1 mod k), called a cyclic permutation. Two special cases are k = 2 or k = n. Then (a1, . . . , ak) is
transpose or a Hamiltonian permutation, respectively. Two cyclic permutations (a1, . . . , ak), (b1, . . . , bℓ)
are disjoint if ai 6= bj for all i, j. For instance, (132)(45) = (45)(132) is a product of two disjoint cycles. The
order of writing disjoint products does not matter. Show that every non-trivial permutation is a product of
disjoint permutations.
(ii) Let G0 be the digraph shown in Figure 8.6.

(a) G0 (a) G1

1

34

5 2

1

25

34

Figure 8.6: Two labeled digraphs G0, G1.

Determine iso(G0) and iso(G1). What the sizes of these two sets?
(iii) Determine aut(G0) and aut(G1). What the sizes of these two sets? ♦
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Exercise 0.22: If p ∈ Pn has degree d, then there is a constant C > 0 such that the magnitude of each coefficient
of p is at most

C

(
d

exp(1)

)n+(1/2)(
n + 1

d

)n+1

.

This sharpens the d! bound used in the text. ♦

Exercise 0.23: Prove that QBF is PSPACE -complete. Since this proof can be found in the literature, we will
enforce some originality in your solution by asking you to use the same framework as the proof of Cook’s
theorem in Chapter 3. Hint: The additional idea you need is found in the proof of Savage’s theorem: if
C ⊢2m C′ (i.e., there is an 2m-step path from C to C′ then C ⊢m C′′ and C′′ ⊢m C′ for some C′′. ♦

Exercise 0.24: Show that for any polynomial φ(x1, . . . , xn, x), the linearization transformation

φ(x1, . . . , xn, x) 7→ (1− x)φ(x1 , . . . , xn, 0) + xφ(x1, . . . , xn, 1)

amounts to replacing any power of x by a plain x in every term of the polynomial φ(x1, . . . , xn, x). ♦

Exercise 0.25: Are there reasons to believe that co-NP ⊆ AM , based on NONISO ⊆ AM [2]? Derive nontrivial
consequences under the assumption co-NP ⊆ AM . ♦

Exercise 0.26: If L ∈ AM [k] then L is accepted by an Arthur-Merlin game in k + 1 rounds with zero-error
acceptance. ♦

Exercise 0.27: How does one amplify error gaps for languages in AM [k]? ♦

End Exercises

8.6 Markov Chains and Space-bounded Computation

We want to study computations by space-bounded probabilistic machines. The behavior of such computations
can be analyzed in terms of finite9 Markov chains. We develop the needed results on Markov chains (see also the
appendix in this chapter). For further reference on Markov chains, see [16, 10].

The main result of this section is

Theorem 28. For all s(n) ≥ log n,

PrSPACE (s) ⊆ DSPACE (s2)

Notice that this result is yet another strengthening of Savitch’s theorem! We follow the proof of Borodin,
Cook and Pippenger [6]; Jung [15] independently obtained the same result using different techniques10. This result
improves earlier simulations by Gill [12] (which uses exponential space) and by J. Simon [31] (which uses s(n)6

space).
A sequence of non-negative real numbers (p1, p2, . . . , pi, . . .) is stochastic if the sum

∑
i≥1 pi = 1; it is substochas-

tic if
∑

i≥1 pi ≤ 1. A matrix is stochastic (resp., substochastic) if each row is stochastic (substochatic). In general,
stochastic sequences and stochastic matrices may be denumerably infinite although we will only consider finite ma-
trices. An n-state Markov process (or Markov chain) is characterized by an n×n stochastic matrix A = (pi,j)

n
i,j=1.

Call A the transition matrix. The states of A will be called Markov states, as distinguished from machine states.
We interpret this chain as an n-state finite automaton where pi,j is the probability of going from state i to state

j. For any integer k ≥ 0, the kth power Ak = (p
(k)
i,j )n

i,j of A is defined inductively: A0 is the identity matrix and

Ak+1 = A · Ak. It is easy to check the product of stochastic matrices is stochastic; hence each Ak is stochastic.

Clearly p
(k)
i,j denotes the probability of a transition from state i to state j in exactly k steps.

Markov states admit a straight forward combinatorial classification. From the transition matrix A = (pi,j)
n
i,j=1

of the Markov chain, construct the Boolean matrix B = (bi,j)
n
i,j=1 where bi,j = 1 iff pi,j > 0. We view B as the

9i.e., discrete time, homogeneous Markov processes, with finitely many states.
10Borodin, Cook and Pippenger uses redundant arithmetic techniques while Jung uses modular arithmetic techniques. Borodin, Cook

and Pippenger states the result in a stronger form (in terms of circuit depth, see chapter 10), but it has essentially the proof to be
presented here.
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adjacency matrix of a directed graph GA, called the underlying graph of the matrix A. We may form the transitive
closure B∗ = (b∗i,j)

n
i,j=1 of B (see chapter 2, section 6). As usual, define states i and j to be strongly connected if

b∗i,j = b∗j,i = 1.

This is easily seen to be an equivalence relationship and the equivalence classes form the (strongly connected)
components of GA. These strongly connected components in turn are related by the reachability relation: if C and
C′ are components, we say C can reach C′ if there are states i ∈ C and j ∈ C′ such that b∗i,j = 1. It is easy to
see that this definition does not depend on the choice of i and j. Furthermore, if C can reach C′ and C′ can reach
C then C = C′. Thus the reachability relation induces an acyclic graph F on the components where F has an
edge from C to C′ iff C can reach C′. Those components C that cannot reach any other components are called
essential components and the states in them known as essential states. The other components are called inessential
components and their members known as inessential states.11 We say state i is absorbing if pi,i = 1. Such a state is
clearly essential and forms a component by itself. A Markov chain is absorbing if all essential states are absorbing.

The above classification depends only on the underlying graph GA. Let us now classify states by their stochastic
properties. These notions properly belong to a subarea of probability theory called renewal theory. We introduce

an important concept in renewal theory: let f
(n)
i,j denote the probability that, starting from state i, we enter state

j for the first time after n steps. We call these f
(n)
i,j the first entrance probabilities. Write f

(n)
i for f

(n)
i,i . It is not

hard to see that for n = 1, 2, . . .,

f
(n)
i,j = p

(n)
i,j −

n−1∑

k=1

f
(k)
i,j p

(n−k)
j,j

or,

p
(n)
i,j =

n∑

k=0

f
(k)
i,j p

(n−k)
j,j (21)

where we conventionally take

f
(0)
i,j = 0, p

(0)
i,j = δi,j .

Here δi,j is Kronecker’s delta function that assumes a value of 1 or 0 depending on whether i = j or not. The sum

f∗
i,j =

∞∑

n=1

f
(n)
i,j

clearly denotes the probability of ever reaching state j from i. Let f∗
i abbreviate f∗

i,i. We now define a state to be
recurrent if f∗

i = 1 and nonrecurrent if f∗
i < 1.

Lemma 29. An inessential state is nonrecurrent.

Proof. By definition, if state i is inessential, there is a finite path from i to some state outside the component
of i. Then f∗

i ≤ 1− c where c > 0 is the probability of taking this path.
Q.E.D.

The converse does not hold in general (Appendix and Exercise). But in the case of finite Markov chains, essential

states are recurrent. To show this result, we proceed as follows: let g
(n)
i,j denote the probability of the event G

(n)
i,j

that starting from state i we will visit state j at least n times. Note that G
(n+1)
i,j ⊆ G

(n)
i,j and so we may define the

limit

gi,j := lim
n→∞

g
(n)
i,j = Pr(

∞⋂

n=0

G
(n)
i,j ).

It is not hard to see that gi,j is the probability that starting from state i we visit state j infinitely often. Again,
let gi,i be abbreviated to gi.

Lemma 30.
(i) gi = 1 or 0 according as i is recurrent or not.
(ii) In a finite Markov chain, essential states are recurrent.

11The reader should be aware that the classification of Markov states are not all consistent in the literature. The essential/inessential
distinction is due to Chung [8]. His terminology is justified in the sense that every chain has at least one essential component; but it
also seems to reflect an attitude in probabilistic theory that the most interesting phenomena occur in the essential components. This
is unfortunate because we will see that the inessential components are more interesting for us!
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Proof. (i) Note that

g
(n+1)
i = f∗

i g
(n)
i .

Since g
(1)
i = f∗

i , we get inductively

g
(n+1)
i = (f∗

i )n.

Taking limits as n→∞, we see that gi = 1 if f∗
i = 1 and gi = 0 if f∗

i < 1.

(ii) Let E
(n)
i be the event that starting from state i, there are no returns to state i after n steps. Clearly

E
(1)
i ⊆ E

(2)
i ⊆ · · ·

and Ei :=
⋃

n≥0 E
(n)
i is the event that there are only finitely many returns. But

Pr(E
(n)
i ) ≤ 1− e

where e > 0 is the minimum probability that any state in the component of i can get to state i. (To see this,

Pr(E
(n)
i ) =

∑

j

p
(n)
i,j (1− f∗

j,i) ≤ (1 − e)
∑

j

p
(n)
i,j

which is at most 1 − e.) Hence Pr(Ei) ≤ 1 − e < 1. But gi = 1 − Pr(Ei). Hence gi > 0 and by part (i), gi = 1.
This means state i is recurrent. Q.E.D.

We now see that for finite Markov chains, the combinatorial classification of essential/inessential states co-
incides with the stochastic classification of recurrent/nonrecurrent states. The appendix describe some refined
classifications.

The stochastic completion of A = (pi,j)
n
i,j=1 is the matrix A∗ = (p∗i,j)

n
i,j=1 where

p∗i,j =

∞∑

k=0

p
(k)
i,j

with the understanding that the sum is ∞ when it diverges. The completion operation is defined even if A is not
a stochastic matrix.12

The entries of A∗ has this natural interpretation:

Lemma 31.
(i) p∗i,j is the expected number of steps that the automaton spends in state j if it started out in state i.
(ii) Furthermore, if j cannot return to itself in one or more steps then p∗i,j is the probability that the automaton
ever enters state j.

Proof. Interpretation (i) follows when we note p
(n)
i,j is the expected fraction of time that the automaton spends

in state j during nth unit time period, assuming that it started out in state i. For (ii), under the stated assumptions

on state j, we see that p
(n)
i,j = f

(n)
i,j and hence p∗i,j = f∗

i,j . Q.E.D.

Let us introduce the following generating functions (see appendix) for state i:

Fi(s) :=

∞∑

n=0

f
(n)
i sn

Gi(s) :=

∞∑

n=0

p
(n)
i sn

Using the relation (21), we see that
Gi(s)− 1 = Fi(s)Gi(s)

or,

Gi(s) =
1

1− Fi(s)

Now if we take the limit as s → 1−, the left hand side approaches p∗j,j and the right hand side approaches 1
1−f∗

j

.

This proves

12The terminology is from in [6]. The notation p∗i,j is not to be confused with the limiting value of p
(k)
i,j as k → ∞. Unfortunately, a

stochastic completion is no longer a stochastic matrix. This is obvious from the interpretation of p∗i,j as the expected number of steps
in state j.
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Lemma 32.
p∗j,j <∞ ⇐⇒ f∗

j < 1.

To relate this to other values of p∗i,j , we have

Lemma 33.
p∗i,j = δi,j + f∗

i,jp
∗
j,j.

Proof.

p∗i,j =
∞∑

n=0

p
(n)
i,j

= δi,j +

∞∑

n=1

n∑

k=1

f
(k)
i,j p

(n−k)
j,j

= δi,j +
∞∑

k=1

f
(k)
i,j

∞∑

n=k

p
(n−k)
j,j

= δi,j +

∞∑

k=1

f
(k)
i,j

∞∑

n=0

p
(n)
j,j

= δi,j + f∗
i,jp

∗
j,j

Q.E.D.

Corollary 34. For all i, j, if f∗
i,j > 0 then

p∗i,j <∞ ⇐⇒ p∗j,j <∞.

We need one more basic fact [16].

Lemma 35. Let A be a square matrix such that An → 0 as n→ 0, i.e., each entry of the nth power of A approaches
zero as n approaches infinity. Then the matrix I − A is nonsingular where I is the square matrix with the same
dimensions as A. Moreover the infinite sum

∞∑

n=0

An

converges, and this sum is given by

(I −A)−1 =
∞∑

n=0

An.

Proof. We begin with the identity

(I −A)(I + A + A2 + · · ·+ An) = I −An+1.

Now the right hand side approaches I for large n. So for sufficiently large n, det(I − An+1) 6= 0. This means
det(I −A) det(I +A+ · · ·+An) 6= 0. Thus I −A is nonsingular, as asserted. So we may multiply both sides of the
identity on the left with (I −A)−1, giving a new identity

(I + A + A2 + · · ·+ An) = (I −A)−1(I −An+1).

Now as n → ∞, the left hand side approaches the infinite sum of the lemma and the right hand side approaches
(I − A)−1. Since the right hand side approaches a definite limit, so the left hand side approaches the same limit.

Q.E.D.

For any transition matrix A, let B be obtained by deleting the rows and columns of A corresponding to essential
states. Following Kemeny and Snell, we call B the fundamental part of A. Note that B is a substochastic matrix.
Then after permuting the rows and columns of A, we have

A =

(
B T
0 C

)
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where ‘0’ denotes a matrix of zeroes of the appropriate dimensions. Moreover, the nth power of A is

An =

(
Bn Tn

0 Cn

)

where Bn, Cn are the nth powers of B, C (respectively) and Tn is some matrix whose form need not concern us.
Hence, the stochastic completion

A∗ =

(
B∗ T∗

0 C∗

)

where B∗, C∗ are the stochastic completions of B, C (respectively). In our applications, we only need B∗. Note
that the entries in C∗, T∗ are 0 or ∞, by what we have proved.

From the above development, the entries p
(n)
i,j in Bn satisfy the property

∑∞
n=0 p

(n)
i,j <∞. This means p

(n)
i,j → 0

as n → ∞. Hence Bn → 0 as n → ∞ and the preceding lemma shows that B∗ converges to (B − I)−1. Hence
computing B∗ is reduced to the following:

Theorem 36. Let A be the transition matrix of an absorbing chain. The stochastic completion of the fundamental
part B of A can be computed in deterministic space log2 n where B is n by n and each entry of B are rational
numbers represented by a pair of n-bit binary number.

The proof of this theorem requires several preparatory results that are interesting in their own right. Therefore
we defer it to the next section. We are now ready to prove the main result (theorem 28) of this section. Although
we only compute the fundamental part B∗, with a bit more work, one can compute all the remaining entries of the
stochastic closure in the same complexity bounds (see [6]).

Proof of main result (theorem 28). Basically the proof amounts to reducing a space-bounded probabilistic
computation to computing the stochastic closure of the fundamental part of an absorbing Markov chain.

Let M be a probabilistic machine accepting in space s(n). We analyze the probability of M accepting an input
w by considering the Markov chain whose (Markov) states correspond to those configurations of M on w using
space at most s(|w|). We introduce an extra Markov state. Number these Markov states from 1 to r, where we
may assume that Markov state 1 is the initial configuration on input w, and r is the extra Markov state (viewed
as a NO-configuration of M). The corresponding transition matrix is A = (pi,j)

r
i,j=1 where

pi,j =





1
2 if configuration i non-uniquely derives configuration j

(i.e., i ⊢ (j, k) for some k 6= j)

1 if either configuration i uniquely derives j, i.e., i ⊢ (j, j)
or if i = j and i is terminal

0 else.

This is not quite all: how shall we treat state i if i ⊢ (j, k) where j and/or k uses more than s(|w|) space? Now
assign for such an i, pi,r = 1

2 or 1, depending on whether one or both of j, k use more than s(|w|) space.
We derive from A an absorbing Markov chain with transition matrix B as follows: say a Markov state in A is

useful if it is has a path to a YES-state. Clearly useful states are inessential, but some inessential states may not
be useful. In B, we retain all the useful states of A and also their transition probabilities among themselves. We
renumber the useful Markov states from 1 to some m− 1 (m < r). In addition to the m− 1 useful states inherited
from A, B has two essential states, m and m + 1. Basically, we collapse all essential YES-states into m and the
remaining states in A (essential or not) are collapsed into m + 1. States m and m + 1 are both absorbing. More
precisely, for each useful state i = 1, . . . , m− 1, if the sum of the transition probabilities into the YES-states is p
then we set the (i, m +1)th entry [B]i,m := p. If the sum of the transition probabilities from i to the non-YES and
non-useful states is q then we make [B]i,m+1 = q. Also, we have

[B]m,m = [B]m+1,m+1 = 1

We do one more small transformation: let now C be the matrix that is identical to B except that

[C]m,m = 0, [C]m,m+1 = 1.

So state m is now a transient state. For future reference, call C the reduced transition matrix (for input w). If
D is the fundamental part of C (obtained by deleting the last row and last column of C) then by theorem 36, we
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can compute the stochastic completion D∗ in O(log2 m) space. Now m is O(1)s(|w|) and hence O(log2 m) = O(s2)
space suffices.

Our ‘interpretation’ (lemma 31) of the entries of a stochastic completion suggests that the entry [D∗]1,m is the
probability that starting out in state 1 we reach m (since state m cannot return to itself in 1 or more steps, by
construction). It is instructive to carry out the proof that [D∗]1,m is indeed the least fixed point value Val∆(w)
where ∆ is the set {1, . . . , r} of configurations that uses space at most s(|w|). A valuation V on ∆ amounts to
an r-vector V = (v1, . . . , vr) where vi is the value of configuration i. (We may assume here that the values vi are
real numbers in [0, 1] rather than intervals.) The valuation operator τ∆ is the linear transformation given by the
transition matrix A, and τ∆(V ) is equal to A · V T (V T is the column vector obtained by transposing V ). Let
V0 = τ∆(V⊥) be the row vector that assigns a 1 to the YES state and a zero to the NO state. (Note that V0 is
not stochastic in general.) The valuation τn

∆(V0) is given by Vn = An · V T
0 . We conclude: Val∆(w) is the limiting

value of the first component of An ·V T
0 , as n→∞. Alternatively, if the set of YES-configurations are S ⊆ ∆, then

Val∆(w) is the limiting value of
∑

i∈S [An]1,i.
It is not hard to see that our transformation of A to B does no harm and we have a slightly simpler picture:

Val∆(w) is given by the limiting value of [Bn]1,m (Exercise).
The transformation from B to C is less obvious. Let us compare their nth powers, Bn and Cn, for each n ≥ 0.

The first m− 1 columns of both powers are seen to be identical. We claim that the first m− 1 entries in the mth
column of Bn is equal to the corresponding entry in the sum

∑n
i=1 Ci: for each j = 1, . . . , m−1, and for all n ≥ 0,

[Bn]j,m =
∑n

ℓ=1[C
ℓ]j,m. In proof, this is clearly true for n = 1. For n ≥ 1, we have

[Bn+1]j,m =

m∑

k=1

[Bn]j,k[B]k,m

= [Bn]j,m[B]m,m +

m−1∑

k=1

[Bn]j,k[B]k,m

= [Bn]j,m +

m−1∑

k=1

[Cn]j,k[C]k,m

= [Bn]j,m + [Cn+1]j,m

=

n+1∑

ℓ=1

[Cℓ]j,m

This essentially gives us the theorem.
There are several other details that we must defer to the next section: in particular we cannot afford to explicitly

store the matrices A or C. Instead, they are represented ‘procedurally’ in the sense that each entry of such matrices
can be obtained by invoking suitable subroutines. For instance, this means that our ‘application’ of theorem 36 is
really not in the form as stated. We need to show that the techniques implicit in that theorem can be modified
to accomodate the implicit representation of C. Another clarification is needed: to form matrix C, we need to
determine the useful states in A (one efficient way to detect such states uses the the original Savitch’s theorem
technique). Modulo these details, we are done with the proof.

Exercises

Exercise 0.28: (1-dimensional random walk)

Analyze the 1-dimensional random walk with parameter 0 < p < 1.

(i) Show that the generating functions G(s) for the probability p
(n)
0,0 (n = 0, 1, . . .) of returning to the origin

in n steps is given by G(s) = (1 − 4pqs2)1/2 where q = 1− p.
(ii) Conclude that each Markov state is recurrent if and only if p = 1

2 .
(iii) In case p = 1

2 , show that the mean recurrence time is infinite. Hint: Use the relation that the generating

function F (s) for first re-entrance probability f
(n)
0,0 is related to G(s) by G(s) − 1 = F (s)G(s) and the mean

recurrence time is given by lims→1−1
dF (s)

ds . ♦

Exercise 0.29: (Erdös, Feller, Pollard)

Let (f0, f1, . . .) be a stochastic vector with f0 = 0 and period is equal to 1. (The period is the largest d such
that fn > 0 implies d divides n.) Now define p0 = 1 and pn =

∑n
k=0 fkpn−k. Prove that limn→∞ pn = 1

µ

where µ =
∑∞

n=0 nfn. Hint: Note that the relation between pair of sequences {fn} and {pn} is identical with
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the relation between the first entrance probabilities f
(n)
i and n-step transition probabilities p

(n)
i,i for a fixed

state i in section 3. ♦

Exercise 0.30: Define a transition matrix A = (pi,j)i,j≥0 to be doubly stochastic if the row sums as well as column
sums are equal to 1. Show that each space-bounded computation of a reversible probabilistic Turing machine
gives rise to such a matrix. Study the properties of such machines.

♦

End Exercises

8.7 Efficient Circuits for Ring Operations

By an algebraic structure we means a set A together with a finite set of partial functions fi (i = 1, . . . , k) of the
form

fi : Aα(i) → A

where α(i) ≥ 0 are integers called the arity of fi. We call fi a constant if α(i) = 0 and in this case, fi is identified
with an element of A. We write (A; f1, . . . , fk) for the algebraic structure. This is abbreviated to ‘A’ when the
functions fi are understood. In general, by an operation f over an algebraic structure A we mean a partial function
f : Am → A for some m ≥ 0, where m is called the arity of f .

Example 2. a) Of course, for any set A, there is the trivial algebraic structure on A which no functions at all.
b) The integers Z = {0,±1,±2, . . .} with the usual operations (+, −, × and 0, 1) is an algebraic structure. It is, in
fact, a unitary commutative ring (see below).
c) The rational numbers Q, with the operations of Z but also including the division ÷ operation, is an algebraic
structure called a commutative field. Here division is a partial function since division by zero is not defined.
d) The set of all n-square matrices with entries from Q forms a matrix ring with the usual matrix operations of +,
− and ×.
e) Consider the Boolean algebra on two elements ({0, 1};∨,∧,¬, 0, 1) where ∨,∧,¬ are interpreted as the usual
Boolean operations.
f) A class of finite rings is Zn = {0, 1, . . . , n− 1} with usual arithmetic operations modulo n. In case n is a prime,
Zn is a field, also called GF (p). The case GF (2) has special interest.

We are mainly interested in computing over various unitary commutative rings R, henceforth simply called
‘rings’13. Our goal is to show how operations in common rings can be implemented efficiently. A computational
model that is appropriate for algebraic structures is circuits.

The following definitions gather most of our notations and terminology related to circuits in one place. It will
serve as reference beyond just the immediate concern of this section.

Definition 5. Let (A; f1, . . . , fk) be an algebraic structure.

(i) Any set Ω of operations over A obtained by functional composition from f1, . . . , fk is called a basis of A. In
general Ω may have infinite cardinality.

(ii) A circuit C for A over the basis Ω a finite directed acyclic graph (called the underlying graph of C) with the
following properties: A node with indegree 0 is called an input node, and if there are n input nodes, we label
each with a distinct integer between 1 and n. The remaining nodes are called gates and are each labeled by a
basis function f ∈ Ω. If a gate is labeled by f , we say its type is f or, equivalently, it is called an f -gate. Each
f -gate u has indegree exactly equal to the arity α(f) of f . Furthermore the incoming edges to u are labeled
with distinct integers between 1 and α(f). So we may speak of the jth incoming edge of u for j = 1, . . . , α(f).

13Commutative rings are simply algebraic structures satisfying certain axioms. The student unfamiliar with rings simply need
remember two main examples of such structures given above: the integers Z and the set of n-square matrices with rational number
entries. So a ring comes with the five total operation +,−,×, 0, 1 with the usual properties (inverse relation between plus and minus,
associativity, commutativity, distributivity, and properties of 0 and 1) are satisfied. If one writes down these properties, they would
constitute an axiomatization of unitary commutative rings (it is a good exercise to try this and compare your results with a standard
algebra book). Here ‘unitary’ serves to to warn that, in general, rings are defined without assuming the existence of element 1.
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(iii) Each node u of a circuit C is said to compute the function

resC(u) : An → A

defined as follows: an input node u labeled by i computes the projection function resC(u)(x1, . . . , xn) = xi.
An f -gate u computes the function

resC(u)(x) = f(resC(u1)(x), . . . , resC(um)(x))

where x = (x1, . . . , xn) and the ith incoming edge of u leads from node uj (j = 1, . . . , m), m is the arity of f .

(iv) A circuit family (over the basis Ω) is an infinite sequence of circuits C = (Cn)∞n=0 such that each Cn is an
n-input circuit over Ω.

(v) A problem instance of size n (over A) is a set Pn of functions g : An → A (so each g ∈ Pn has arity n). An
aggregate problem P = (Pn)∞n=0 over A is an infinite sequence of problem instances Pn, each Pn of size n.
When no confusion arises, we may omit the qualification ‘aggregate’. Often, Pn = {fn} is a singleton set, in
which case we simply write P = (fn)n≥0.

(vi) Let Pn be a problem instance of size n over A. A circuit C over A is said to solve or realize Pn if if C has n
inputs and for each g ∈ Pn, there is a node u ∈ C such that resC(u) = g. A circuit family C = (Cn)∞n=0 is
said to solve a problem P = (Pn)∞n=0 if Cn solves Pn for each n.

(vii) The size of a circuit C is the number of gates in the circuit14. The size of a circuit family C = (Cn)∞n=0 is
the function SIZEC where SIZEC(n) is the size of Cn.

(viii) Two other complexity measures for circuits are as follows: the depth of C is the length of the longest path
in C. The width of C is the maximum cardinality of an edge anti-chain15 in C. As for the size-measure, we
let DEPTH C(n) and WIDTH C(n) denote the depth and width of Cn, where C = (Cn)n≥0.

(ix) For any problem instance Pn, let SIZE (Pn) denote the smallest sized circuit that realizes Pn. If P = (Pn)n≥0

is an aggregate problem, the size function SIZEP is the function given by SIZEP (n) = SIZE (Pn). Similarly
for

DEPTH (Pn),WIDTH (Pn),DEPTH P ,WIDTH P .

(x) For any complexity function f(n), let SIZE (f) denote the family of aggregate problems {P : ∀n,SIZEP (n) ≤
f(n)}. Similarly for DEPTH (f),WIDTH (f). We can extend this to simultaneous measures, for instance
SIZE −DEPTH − width(f1, f2, f3).

(xi) For any non-negative integer k, a circuit family C is said to be NC k if SIZEC(n) = nO(1) and DEPTH C(n) =

O(logk n). An aggregate problem is said to be NC k if it can be realized by an NC k circuit family.

Remark: We are often interested in problems for which there is really no problem instances of size n for certain
values of n (e.g., multiplying square Boolean matrices only has interesting input sizes of the form 2n2). In these
cases, we artificially create the trivial problem instance of size n, such as the identically zero function of arity n.
Also, the above definition of circuits do not allow constant values as inputs. The definition can trivially be changed
to accommodate this.

We are mainly interested in circuits for two types of algebraic structures: (a) where A is a ring and (b) where
A = {0, 1} is the Boolean algebra in the above example. We call a circuit for A an arithmetic circuit or a Boolean
circuit in cases (a) or (b), respectively.

14It is unfortunate that we have to use the word ‘size’ for problem instances as well as for circuits, both of which appear in the same
context. Since the usage is well accepted and there seems to be no better alternative, we will continue this usage. But for emphasis,
we could say ‘circuit size’ or ‘problem size’.

15An edge anti-chain in a directed acyclic graph is a set of edges such that no two edge in the set belongs to a common path. Of
course, one can define node anti-chain as well.
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8.7.1 The Parallel Prefix Problem.

We begin with a basic but important technique from Ladner and Fischer [19] for the so-called parallel prefix problem.
In this problem, we assume that we are given an algebraic structure (A; ◦) where the only operation ◦ is a binary
associative operation (which we will call ‘multiplication’ or ‘product’). As is usual with multiplicative notations,
when convenient, we may write xy and

∏n
i=1 xi (respectively) instead of x◦y and x1 ◦x2 ◦ · · · ◦xn. We call a circuit

over such an A a product circuit. The parallel prefix problem instance (of size n ≥ 0) amounts to computing the
set of n functions

fi(x1, . . . , xn) := x1 ◦ x2 ◦ · · · ◦ xi, for each i = 1, . . . , n.

We may call these fi’s the set ‘iterative-◦ functions’ (on n variables). We shall apply this in two cases: where ◦ is
addition and where ◦ is multiplication in a ring. Then, we call parallel prefix the iterative addition and iterative
multiplication problems, respectively.

Lemma 37. There is a recursive construction of a family of product circuits (Cn)∞n=0 of linear size and logarithmic
depth that solves the parallel prefix problem.

Proof. We may assume that n is a power of 2. C1 is trivial, consisting of just an input node for x1. So let
n > 1. The following figures shows the recursive construction of Cn from Cn/2:

· · ·

1 2 3 4 5 6 n−2 n−1 n· · ·
s s s s s@@ @@ @@ HHH HHH

s s s@@ @@ @@
HHH

Cn/2

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

· · ·

· · ·

Figure 8.1 Construction of Cn (‘•’ indicates a gate)

In this figure, the edges of the circuit are implicitly directed downwards. It is easy to see that the size s(n) of
a circuit Cn satisfies the relation s(1) = 1 and s(n) = s(n/2) + n− 1. The solution is s(n) = 2n− log n − 2. The
depth of Cn is also easily seen to be 2 logn. Q.E.D.

8.7.2 Detecting Useless Markov States.

Recall in the previous section, in the context of a Markov chain whose nodes are machine configurations, we define
a Markov state to be useless if it cannot reach a YES-configuration. To detect such useless states, we can formulate
the following general problem: given the adjacency matrix of a digraph G, we want to determine its “useless nodes”,
defined to mean that those nodes that cannot reach a distinguished node in G.

Lemma 38. There is an NC 2 Boolean circuit family which computes, on any input n by n matrix An which
represents the adjacency matrix of directed graph, the set of 0/1-functions {fi : i = 1, . . . , n} where fi(An) = 1 iff
i cannot reach node n.

Proof. This is rather straight forward: we can compute the products of Boolean matrices in NC 1. The transitive
closure of An is given by (An)m for any m ≥ n. By the usual doubling method, the transitive closure is obtained by
log n matrix multiplications, hence by NC 2 circuits. Finally a node i can reach node n if and only if A∗(i, n) = 1.

Q.E.D.
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8.7.3 Computing the characteristic polynomial.

The determinant of an n× n matrix A = (ai,j) can be expanded by its ith row (for any i) in the standard fashion:

det(A) = ai,1Di,1 + ai,2Di,2 + · · ·+ ai,nDi,n

where (−1)i+jDi,j is the determinant16 of the (n− 1)-square matrix obtained by deleting the ith row and the jth
column of A. Di,j is called the (i, j)-cofactor (or (i, j)-complement) of A. Let the adjoint adj(A) of A be the n×n
matrix whose (i, j)th element [adj(A)]i,j is the (j, i)-cofactor of A (notice the transposition of subscripts i and j).
It is not hard to see that17 that the following is valid for all A:

A · adj(A) = adj(A) · A = det(A) · I

(We only have to see that the off-diagonal elements of A · adj(A) are of the form

ai,1Dj,1 + ai,2Dj,2 + · · ·+ ai,nDj,n

where i 6= j. But this sum is also seen to be zero since it is the determinant of the singular matrix obtained by
replacing the jth row of A with the ith row. On the other hand, the diagonal entries are equal to det(A), which
may be zero if A is singular.) The characteristic polynomial PA(x) of A is the determinant

PA(x) := det(xIn −A)

= xn + λ1x
n−1 + · · ·+ λn−1x + λn

where In is the n×n identity matrix. (We will omit the subscript in In when convenient.) A fundamental identity
is the Cayley-Hamilton theorem (Exercise) that states that A is a root of the polynomial PA(x)

PA(A) = An + λ1A
n−1 + · · ·+ λn−1A + λnI = 0.

Our goal is to develop a space-efficient algorithm for computing the characteristic polynomial. To compute the
characteristic polynomial of A means to determine the above coefficients λ1, . . . , λn. Note that this computation
is a generalization of the problem of computing determinant since the constant term in PA is (up to sign) equal to
det(A). We present an efficient parallel implementation of Samuelson’s method18 by Berkowitz [4]. For this, we
use the notation red(A) (‘reduction’ of A) which is the (n− 1)-square matrix obtained from A by deleting the first
row and first column. Define the column (n− 1)-vector col(A) and row (n− 1)-vector row(A) so that

A =




a1,1 row(A)

col(A) red(A)




Lemma 39. The characteristic polynomial of A is related to the matrix red(A) as follows:

PA(x) = (x− a1,1) det(xIn−1 − red(A)) − row(A) · adj(xIn−1 − red(A)) · col(A). (22)

Proof.

PA(x) = det(xIn −A)

= (x− a1,1) det(xIn−1 −A) +

n∑

j=2

a1,jD1,j

where D1,j is the (1, j)-cofactor of xIn −A. Write

D[i1, i2, . . . ; j1, j2, . . .]

16This determinant is called the (i, j)-minor of A
17See [11] for most basic results on matrices.
18The importance of this method (as opposed to an earlier method of Csanky that has comparable complexity) is that it uses no

divisions, so it is applicable to any unitary commutative ring.
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for the determinant of the square matrix obtained by deleting rows i1, i2, . . . and columns j1, j2, . . .. The lemma
follows from the following identity

n∑

j=2

a1,jD1,j =

n∑

j=2

a1,j(−1)1+jD[1; j]

=

n∑

j=2

a1,j(−1)1+j
n∑

i=2

ai,1(−1)iD[1, i; 1, j]

= −
n∑

j=2

n∑

i=2

a1,jai,1(−1)i+jD[1, i; 1, j]

= −
n∑

j=2

n∑

i=2

a1,jai,1D
′
i,j

where D′
i,j is the (i− 1, j − 1)-cofactor of red(xIn −A) = xIn−1 − red(A). Since D′

i,j is the (j − 1, i− 1)th entry
of adj(xIn−1 − red(A)), the lemma follows. Q.E.D.

The adjoint of xI −A can be expressed with the help of the the next lemma.

Lemma 40.

adj(xI −A) =

n−1∑

i=0

Bix
n−1−i (23)

where
Bi = Ai + λ1A

i−1 + · · ·+ λi−1A + λiI

and λi are the coefficients of the characteristic polynomial

PA(x) = xn + λ1x
n−1 + · · ·+ λn−1x + λn.

Proof. We observe that B0 = In and for i = 1, . . . , n,

Bi = ABi−1 + λiI.

Hence

det(xI −A) · I
= [xn + λ1x

n−1 + · · ·+ λn−1x + λn] · I
= [xn−1B0](xI −A) + xn−1AB0 + [λ1x

n−1 + λ2x
n−2 + · · ·+ λn−1x + λn] · I

= [xn−1B0 + xn−2B1](xI −A) + xn−2AB1 + [λ2x
n−2 + λ3x

n−3 + · · ·+ λn] · I
= · · ·

=

[
n−1∑

i=0

xn−1−iBi

]
(xI −A) + x0ABn−1 + λnI

=

[
n−1∑

i=0

xn−1−iBi

]
(xI −A)

where the last equality follows from

x0ABn−1 + λnI = Bn = PA(A) = 0

by the Cayley-Hamilton theorem. On the other hand det(xI −A) · I can also be expressed as

det(xI −A) · I = adj(xI −A) · (xI −A).

Since xI − A is nonsingular (x is a indeterminate), we can cancel xI − A as a factor from the two expressions for
det(xI −A) · I, giving the desired equality for the lemma. Q.E.D.

The last two lemmas show that the characteristic polynomial PA(x) of A can be computed from the characteristic
polynomial Pred(A)(x) of red(A) and the matrix products red(A)i (for i = 1, . . . , n−1). Let us derive this precisely.
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Let the coefficients of Pred(A)(x) be given by µi (i = 0, . . . , n− 1) where Pred(A)(x) =
∑n−1

i=0 µn−1−ix
i. Then we

see that

PA(x) = (x− a1,1)Pred(A)(x) − row(A) ·
(

n−1∑

i=0

Bix
n−1−i

)
· col(A)

= (x− a1,1)

n−1∑

i=0

µix
n−1−i +

n−1∑

i=0

xn−1−irow(A) ·




i∑

j=0

(red(A))jµi−j


 · col(A)

=

n−1∑

i=0

µix
n−i +

n−1∑

i=0

xn−1−i


−a1,1µi +

i∑

j=0

βjµi−j




(where βj = row · (A)(red(A))j · col(A))

=

n∑

j=0

λn−jx
j

where

λj =





µ0 if j = 0

µj − a1,1µj−1 +
∑j−1

k=0 βkµj−1−k if j = 1, . . . , n− 1

−a1,1µn−1 +
∑n−1

k=0 βkµn−1−k if j = n

We can write this in matrix form. Let C0 be the following (n + 1)× n matrix:

C0 :=




1
β0 − a1,1 1

β1 β0 − a1,1 1
β2 β1 β0 − a1,1

...
. . .

βn−2 · · · β0 − a1,1 1
βn−1 βn−2 · · · β0 − a1,1 1

0 βn−1 βn−2 · · · β1 β0 − a1,1




Then we have
(λ0, . . . , λn−1, λn)T = C0 · (µ0, . . . , µn−1)

T

where (· · · )T indicates matrix transpose. We repeat this procedure to express the µi’s in terms of the characteristic
polynomial of red(red(A)) = red2(A), etc. In general, let Ci be the (n + 1 − i) × (n − i) matrix that reduces
the characteristic polynomial of redi(A) to that of redi+1(A). The entries19 of Ci consists of 0, 1, the diagonal
elements ai+1,i+1 of the matrix A, and elements that can be constructed from

row(redi(A)) · redi+1(A) · col(redi(A)).

Putting these together, we get
(λ0, . . . , λn)T = C0C1 · · ·Cn−1

Lemma 41. Given an n× n matrix A we can construct in deterministic log-space an arithmetic circuit C of depth
O(log2 n) and size nO(1) such that C computes (the coefficients of) PA(x).

Proof. We proceed as follows:

1. We first construct a circuit to compute the set of polynomials

{(redi(A))j : i = 1, . . . , n− 1 and j = 1, . . . , i}.

Note that to compute a matrix means to compute each of its entries and to compute a polynomial means to
compute each of its coefficients. It suffices to show that for each i, we can compute {(redi(A))j : j = 1, . . . , i}

19In fact Ci has the property that each (j, k)th entry is equal to the (j +1, k +1)th entry provided, of course, that the (j +1, k +1)th
entry is defined. This property is the defining characteristic of Toeplitz matrices and it is known that the multiplication of Toeplitz
matrices can be done more efficiently than we care to exploit here (Exercise).
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with a circuit of polynomial size and depth O(log2 n). But this amounts to the parallel prefix computation
on i copies of the matrix redi(A). Parallel prefix, we saw, uses an O(log n) depth product circuit. Each gate
of the product circuit is replaced by an arithmetic circuit of depth O(log n) since we can multiply two n× n
matrices in this depth (straightforward). Hence the overall depth is O(log2 n).

2. Next, we compute the elements

{row(redi−1(A) · (redi(A))j · col(redi−1(A) : i = 1, . . . , n− 1 and j = 1, . . . , i}.
This takes O(log n) depth. We have now essentially computed the entries of the matrices C0, . . . , Cn−1.

3. We can compute the product
∏n−1

i=0 Ci using a balanced binary tree of depth O(log n) to organize the com-
putation. Each level of this binary tree corresponds to the multiplication (in parallel) of pairs of matrices.
Since each matrix can be multiplied in O(log n) depth, the overall circuit depth is O(log2 n).

One can easily verify that the circuit is polynomial in size. Q.E.D.

8.7.4 Computing the Matrix Inverse

We want to compute the inverse of a matrix A. As before, let

PA(x) = xn + λ1x
n−1 + · · ·+ λn−1x + λn

be the characteristic polynomial. Since PA(x) = det(xI −A) we see that

λn = PA(0) = det(−A) = (−1)n det(A).

Next, by lemma 40, we have that

adj(−A) = Bn−1

= An−1 + λ1A
n−2 + · · ·+ λn−2A + λn−1.

Note that adj(−A) = (−1)n−1adj(A). Putting these together, we get

A−1 =
1

det(A)
adj(A)

= − 1

λn
(An−1 + λ1A

n−2 + · · ·+ λn−2A + λn−1).

It should now be easy to deduce:

Lemma 42. We can detect if an n-square matrix A is nonsingular using an NC 2 arithmetic circuit. Moreover, in
case A is nonsingular, we can compute its inverse A−1 with another NC 2 arithmetic circuit.

8.7.5 Balanced p-ary Notations

In applying the preceding results, we will use matrices A whose entries are rational numbers. Assuming the usual
binary representation of integers, if the integers involved in the computation are k-bits long, then an O(log2 n)
depth arithmetic circuits translate into Boolean circuits of depth Ω(log2 n log k), at least (and in our applications
k = Ω(n)). To obtain a depth of O(log2 n) on Boolean circuits for computing characteristic polynomials, we need
one new idea: by a suitable choice of representing integers, we can implement the operations of addition with
constant depth (i.e., NC 0) circuits. This in turn yields an improved depth for several other problems. Circuits in
this subsection shall mean Boolean circuits unless otherwise stated.

Definition 6.
(i) A representation r of a algebraic structure A is an onto function

r : {0, 1}∗ → A.

We say u ∈ {0, 1}∗ is an r-representative of r(u).
(ii) We say an operation f : An → A is in NC k with respect to r if there is an NC k Boolean circuit family
C = (Cm)m≥0 such that for each m, Cm computes f in the sense that for all u1, . . . , un ∈ {0, 1}m,

r(Cm(u1, . . . , un)) = f(r(u1), . . . , r(un))
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We usually like to ensure that each element can be represented by arbitrarily large binary strings. For instance,
as in the binary representation of numbers, we may have the property r(0u) = r(u) for all u ∈ {0, 1}∗. In other
words, we can left pad an representation by 0’s. In practice, ring elements have some natural notion of “size” and
we may insist that the representation r ‘respect’ this size function within some bounds (e.g., |r(x)| ≥ size(x)). We
shall not concern ourselves with such considerations but the interested reader may consult [6].

Our goal is to find a representation of integers so that addition and negation is in NC 0, multiplication and
iterated addition is in NC 1 and iterated multiplication is in NC 2. We resort to the balanced p-ary representation
of integers of Avizienis [1]. Here p ≥ 2 is an integer and a balanced p-ary number is a finite string

u1u2 · · ·un

where ui is an integer with |ui| ≤ p− 1. This string represents the integer (u1, . . . , un)p given by

(u1, . . . , un)p :=

n−1∑

i=0

ui+1p
i.

So u1 is the least significant digit. Clearly, the usual p-ary representation of a number is a balanced p-ary represen-
tation of the same number. This representation is redundant in a rather strong sense. We will implicitly assume
that strings such as u1, . . . , un are ultimately encoded as binary strings, so that they fit our formal definition of
representations.

Lemma 43. With respect to the balanced p-ary representation of integers, for any p ≥ 3:
(i) Addition and negation of integers are in NC 0.
(ii) Iterated addition and multiplication of integers are in NC 1.
(iii) Iterated multiplication is in NC 2.

Proof. (i) Suppose we want to add (u1, . . . , un)p to (v1, . . . , vn)p. Note that for each i = 1, . . . , n, we can express
the sum ui + vi as

ui + vi = pxi + yi

with |xi| ≤ 1 and |yi| ≤ p − 2. To see this, note that |ui + vi| ≤ 2p − 2 and if |ui + vi| ≤ p − 2 or |ui + vi| ≥ p
then it is clear that the desired xi, yi can be found. The remaining possibility is |ui + vi| = p− 1. In that case we
could let xi = 1 and yi = ±1, but note that this is possible only because p ≥ 3 (we would violate the constraint
|yi| ≤ p− 2 if p = 2). Now the sum of the two numbers is given by (w1, . . . , wnwn+1)p where

wi = xi−1 + yi

for i = 1, . . . , n + 1 (taking x0 = yn+1 = 0). Clearly this can be implemented by an NC 0 circuit.
(ii) To show iterated addition is in NC 1 we simply use part (i) and the technique for parallel prefix.

Now consider multiplication of integers. Suppose we want to form the product of the numbers (u1, . . . , un)p

and (v1, . . . , vn)p. For each i, j = 1, . . . , n, we form the product uivj and we can express this in the form

uivj = pxi,j + yi,j

where |xi,j | ≤ p− 1 and |yi,j | ≤ p− 1 (since |uivj | ≤ (p− 1)2 ≤ p(p− 1) + (p− 1)). For each i = 1, . . . , n, form the
number

Xi = (00 · · · 00xi,1xi,2 · · ·xi,n−1xi,n)p

where Xi has a prefix of i zeroes. Similarly, form the number

Yi = (00 · · · 00yi,1yi,2 · · · yi,n−1yi,n)p

where Yi has a prefix of i− 1 zeroes. It is then easy to see that the product is given by the sum

n∑

i=1

(Xi + Yi).

But each summand has at most 2n digits and there are 2n summands. We can form a balanced binary tree T on
2n leaves to organize this summation process: each leaf is labeled with one of these summands and each interior
node is labeled with the sum of the labels at the leaves below. Clearly the root of T has the desired product. This
tree converts into a Boolean circuit of depth O(log n). This shows multiplication is in NC 1.
(iii) We leave this as exercise. Q.E.D.

Next we extend the lemma to matrix rings. By the balanced p-ary representation of matrices with integer
entries we mean that each entry is encoded by balanced p-ary notation, and matrices are stored (to be specific) in
row-major order.
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Lemma 44. With respect to the balanced p-ary representation (p ≥ 3) of integer matrices:
(i) Addition and negation are in NC 0.
(ii) Multiplication is in NC 1.
(iii) Interated multiplication is in NC 2.

Proof. It is clear addition and negation of integer matrices can be implemented efficiently by the previous
lemma. For multiplication, suppose we want to compute the product of two n × n matrices A and B, and each
entry has at most n bits. We note that each entry of AB is the sum of at most n products of pairs of entries.
These individual products can be viewed at the sum of at most 2n numbers of n bits, as revealed in the proof of
the previous lemma. So for each entry, we need to sum O(n2) numbers, each of n bits. Again, we can arrange these
as a balanced binary tree of depth O(log n). This gives us the efficient NC 1 circuit we seek.

To get an NC 2 circuit family for iterated multiplication of integer matrices we simply apply parallel prefix to
the previous part. Q.E.D.

Finally we consider matrices whose entries are rational numbers. A rational number is represented by a pair
of balanced p-ary representation, extended to matrices as before. Unfortunately, we no longer know how to do
addition of rational numbers in NC 0. Nevertheless, we have the following:

Lemma 45. With respect to the balanced p-ary (p ≥ 3) representation of matrices with rational number entries:
(i) Iterated multiplication is in NC 2.
(ii) Characteristic polynomial computation is in NC 2.

Proof. (i) Suppose we want to compute the iterated product

A1, A1A2, . . . , A1A2 · · ·An

where each Ai is a n × n matrix with rational number entries, and each entry is represented by pairs of n-bit
integers. We first convert each Ai to integer matrices Bi and compute an integer Di such that Ai = 1

Di
Bi. To do

this, first form the product Di,j of the denominators in the jth row of Ai; then multiply each entry in the jth row
of Ai by Di,j . Doing this for all rows, we get Bi; of course Di is just the product of all the Di,j ’s. It is clear that
we can obtain each of the Di,j and Di by iterated multiplication in NC 2. Notice that Di,j and Di are O(n3)-bit
integers and so we can compute Bi from Ai and Di,j ’s in NC 1.

Next, we compute the iterated integer products {D1, D1D2, . . . , D1D2 · · ·Dn} in NC 2. Similarly, we compute
the iterated matrix product {B1, B1B2, . . . , B1B2 · · ·Bn} in NC 2. It is clear that

A1A2 · · ·Ai =
1

D1D2 · · ·Di
B1B2 · · ·Bi

for each i = 1, . . . , n. This can be computed in NC 1 since each of the integer involved in polynomial in size.
(ii) We imitate the proof of lemma 41. Details are left as exercise. Q.E.D.

One more computational problem: we need to be able to check the sign of a balanced p-ary number. (In our
application, we want to compare such a number with 1

2 , which is easily reduced to checking if a number is positive.)

But after the preceding development, the reader should have no trouble devising an NC 1 solution (Exercise).
Putting it all together. We must tidy up the loose bits in the proof of the main theorem in the last section.

In particular, we must address the issue of how to implicitly construct and represent the reduced transition matrices
C described in the last section. Let A be the transition matrix from which we derive C. Since we want to do all
this using O(s2) space, we cannot afford to write A or C explicitly. Then we must see how the techniques given
in this section can be adapted to some implicit representation. All this is tedious but it is crucial that the reader
understands how this can be done. So let us assume a given probabilistic machine M accepting in space s(n), and
w is an input. Let us begin by constructing matrix C: the proof of lemma 38 shows a transitive closure circuit
of depth O(log2 n) applied to the underlying graph GA of the transition matrix A to determine the inessential
states. But note that the transitive closure circuit is relatively systematic that we can assume some numbering of
its gates such that given any gate number g, we can determine the gates at the other end of incoming as well as
outgoing edges at g, and given g, we also know the Boolean function labeling g. The gate numbers can be stored
in O(s) space and we can determine these information also in O(s) space. It is now not hard to see that we can
determine the output of any gate in O(s) space, given that we know the input graph GA. This is not hard to do
(we basically store one Boolean value at each gate along the path from the output gate to the current position –
a similar proof using this technique is shown in chapter 10.) In this way, in O(s) space, we can determine if any
given i is inessential.
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The basis of the preceding argument is the observation that the transitive closure circuit is quite systematic
and hence in space O(s) we can answer basic questions such as connections between gates, etc. Similarly for all
the other circuits in this section. The student should carefully work out some other cases. With this, we conclude.

Remark: In Chapter 10, we will study the property stated above, that all the circuits in this section are ‘sys-
tematically constructed’ so that we can essentially determine gates and their interconnections in circuits efficiently.
(These are called uniformity conditions.) For this reason we are contented with a somewhat sketchy outline here.

Exercises

Exercise 0.31:
(i) (Generalized Bezout’s theorem) Let

F (x) = F0x
m + F1x

m−1 + · · ·+ Fm (F0 6= 0)

be a matrix polynomial where each Fi is an n× n matrix. The right value of F (x) at an n× n matrix A is
given by

F (A) = F0A
m + F1A

m−1 + · · ·+ Fm.

(The left value F̂ (A) is similarly obtained except that A is multiplied from the left.) Show that if F (x) is
divided by xI − A from the left, the remainder is the right value F (A). Hint: the proof is a direct long
division of F (x).
(ii) Let B(x) be the adjoint of xI −A. Conclude that (xI −A)B(x) = PA(x)I.
(iii) Infer the Cayley-Hamilton theorem from the Generalized Bezout’s theorem. ♦

Exercise 0.32: (Fisher-Ladner) Improve the 2 logn depth for the parallel prefix circuit Cn in the text. Hint:
consider a recursive construction of a circuit C′

n as illustrated in the following figure where, with the proper
wires added, we have

DEPTH (C′
n) = 1 + max{DEPTH (Cn/2),DEPTH (C′

n/2)}.

Cn/2

· · ·

· · ·

1 2 n
2

C′
n/2

· · ·

· · ·

1 + n
2
2 + n

2

n

s s s

Figure 8.2 Construction of C′
n (the connections between C′

n/2 and Cn/2 not shown)

Note that the original Cn is used in this construction.
(a) Give exact expressions for the size and depth of C′

n. (Hint: the exact size of C′
n involves the Fibonacci

numbers.)
(b) Compare the fan-out degree of Cn and C′

n. ♦

Exercise 0.33: (Balanced p-ary representation)
(a) Suppose we have a fixed finite state automaton M that reads an input sequence of symbols a1 · · · an in real
time. Let qi be the state of M after reading ai, starting from the start state q0. Show an NC 1 Boolean circuit
for the problem of computing {q1, . . . , qn} for any input sequence a1 · · · an. Hint: Apply parallel prefix.
(b) Apply the above to determine the sign of a balanced p-ary number in NC 1 (p ≥ 3).
(c) Show how to convert a balanced p-ary number to a p-ary number in NC 1 (assume part (b)). ♦
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Exercise 0.34: (General representation)
Let us fix b ≥ 1, p ≥ 0, q ≥ 1. We say a word u ∈ {−p,−p + 1, . . . , q − 1, q}⋆ represents the integer

n∑

i=0

uib
i (24)

in the (b, p, q)-notation. Note that b-ary notations are (b, 0, b − 1)-notations; b-adic notations are simply
(b, 1, b)-notations; balanced p-ary numbers are (p,−p, p)-notations. Show that for (3, 0, 3)-notations, addition
and multiplication of natural numbers (since we cannot represent negative numbers) is in NC 0 and NC 1,
respectively. For what values of (b, p, q)-notations are these results true? ♦

End Exercises

8.8 Complement of Probabilistic Space

This section proves that probabilistic space is closed under complementation. We begin with a useful result:

Lemma 46. Let B be the fundamental part of the transition matrix of a Markov chain. If B is m × m and the
entries of B are taken from {0, 1

2 , 1}, then the stochastic closure B∗ has the property that dB∗ is an integer matrix
for some integer d < m!2m.

Proof. We know that B∗ = (I −B)−1. Thus B∗ = 1
det(I−B)adj(I −B). Clearly each entry of 2m−1adj(I −B)

is an integer. Also, c
det(I−B) is an integer for some c ≤ m!. The result follows. Q.E.D.

Theorem 47. Let M be any probabilistic machine that accepts in space s(n) ≥ log n. Then there is a c > 0 such
that every accepted input of length n is accepted with probability more than

1

2
+ 2−cs(n)

.

Proof. At the end of section 3, we showed that the probability of accepting any input is given by a suitable
entry of D∗, where D is the fundamental part of a reduced transition matrix C. D is m×m with m = nO(1)s(n) =
O(1)s(n). We then apply the previous lemma. Q.E.D.

Lemma 48. Let s(n) ≥ log n. For any probabilistic machine that runs in space s(n), there is a probabilistic machine
N accepting L(M) and runs in space s with error gap (0, 1

2 ]. Morever, N halts with probability 1 and has average

time 22O(s)

.

Proof. Let c = max{c1, c2} where c1 is chosen so that there are at most cs
1 configurations using space at most

s, and c2 is chosen so that (by the previous theorem) if M accepts an input w then M accepts with probability

greater than 1
2 + 2−c

s(|w|)
2 . Now N is obtained by modifying the proof of lemma 16 in the last section:

repeat forever

1. Simulate M for another cs steps. Nondeterministic choices of M
become coin-tossing choices of N.

2. If M answers YES then we answer YES.
If M answers NO, we rewind our tapes to prepare
for a restarted simulation.

3. Toss 2cs coins and answer NO if all tosses turn up heads.
end

(Notice that unlike in lemma 16, each iteration of the loop continues the simulation from where the last iteration
left off, provided the last iteration did not halt.) Now we see that N halts with probability 1. The average time t̄
is seen to satisfy the bound

t̄ ≤ 3cs + (1− 2−2cs

)t̄

which gives us t̄ = 22O(s)

as desired.
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If M rejects then clearly N rejects. So assume that M acccepts. Let us call a configuration C of M live if there
is a computation path starting from C into a YES configuration. Similarly, a configuration C of N is live if there
is a computation path from C into one in which the simulated M answers YES. If a configuration is not alive, we
say it is dead.

For k ≥ 1, define the following events for the probabilistic spaces ΩN
w and ΩM

w :

RN

k = {N answers NO in the kth iteration}
DN

k = {N became dead during the kth iteration}
DM

k = {M became dead between the (k − 1)csth and the kcsth step}
AN

k = {N is alive at the end of the kth iteration}
AM

k = {M is alive at the end of the kcs step}

Then the rejection event of N corresponds to

⋃

k≥1

{RN

k} =
⋃

k≥1


{RN

k , AN

k} ∪
k⋃

j=1

{RN

k , DN

j }




= (
⋃

k≥1

{RN

k , AN

k}) ∪ (
⋃

j≥1

⋃

k≥j

{RN

k , DN

j })

Clearly the probability that M remains alive after cs steps is at most 1− e where

e := 2−cs

.

Since the probability of getting 2cs heads in a row is e2, the probability that N remains alive through one iteration
is at most (1 − e)(1− e2). We claim that

Pr{RN

k , AN

k} = (1 − e)k(1 − e2)k−1e2.

(In this proof, it is instructive to set up the connection between the probabilistic spaces ΩN
w and ΩM

w for input w.)
Hence

Pr(
⋃

k≥1

{RN

k , AN

k}) =
∑

k≥1

Pr{RN

k , AN

k}

≤ e2
∑

k≥1

(1− e)k(1− e2)k−1

< e2
∑

k≥1

(1− e)k−1

= e.

Next,

Pr(
⋃

j≥1

⋃

k≥j

{RN

k , DN

j }) ≤ Pr(
⋃

j≥1

{DN

j })

=
∑

j≥1

Pr{DN

j }

≤
∑

j≥1

Pr{DM
j }

= Pr{M rejects}

≤ 1

2
− e

by our choice of the constant c ≥ c2. Above we have used the inequality Pr{DN

j } ≤ Pr{DM
j } relating across two

different probability spaces. Hence the probability that N rejects is less than the sum of e + (1
2 − e). We conclude

that N accepts with probability greater than 1
2 . Q.E.D.

The technique in this lemma can be viewed as using m = cs coin tosses to control a loop so that the expected
number of iterations is 2m. Since we need only log m space to control this loop, we are able to probabilistically
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achieve a number of iterations that is double exponential in the space used. This technique, due to Gill, demonstrates
one of the fundamental capabilities of coin-tossing that distinguishes space-bounded probabilism from, say, space-
bounded alternating computations. The expected number of iterations is achieved in the worst case: if M is a

machine that does not halt, then N has expected time 22Ω(s(n))

.
We are ready to show that probabilistic space is closed under complementation.

Theorem 49. If s(n) ≥ log n is space-constructible then

PrSPACE (s) = co-PrSPACE (s).

This result was shown by Simon [32]; the proof here is essentially from [28]. This result is almost an immediate
consequence of lemma 48.

Proof. Given any probabilistic machine accepting in space s(n), lemma 48 gives us another probabilistic machine
accepting the same language in the same space bound with error gap (0, 1

2 ]; moreover, M halts with probability 1.
Then let N be the complement of M: i.e., N answers YES iff M answers NO. For any input w, the probability that
N accepts w plus the probability that M accepts w is equal to the probability of halting, i.e., 1. Hence, N has the
error gap [12 , 1). It follows that N accepts if and only if M rejects. Q.E.D.

8.9 Stochastic Time and Space

In this section, we give upper bounds on the complexity of time and space-bounded stochastic computations.
Stochastic space is especially interesting in view of the tremendous computational power that seems inherent in it.
Also, instead of Markov chains we now turn to the study of discrete time dynamical systems.

Theorem 50. For all t, StA-TIME(t) ⊆ ATIME(t3).

The basic idea for this result is the bit-counting technique that was used quite effectively for simulating proba-
bilistic alternating machines (chapter 7, section 6). It turns out that several new technical problems arises.

Let M be a stochastic alternating machine that accepts in time t(n). We construct an alternating machine N to
simulate M. For the rest of this proof, we fix an input w that is accepted by M and let t = t(|w|). We may assume
that N has guessed t correctly and let T0 be the accepting computation tree of M on w obtained by truncating the
complete computation tree TM(w) at levels below t (as usual, root is level 0). To demonstrate the essential ideas,
we assume that M has f- and ⊗-states only. As in chapter 7 we ‘normalize’ the least fixed point values ValT0(C)
for each configuration in T0:

VAL0(C) := 22t−ℓ

ValT0(C)

where ℓ = level(C). Thus T0 is accepting if and only if VAL0(C0) > 22t−1 where C0 is the root of T0. It is easy to

see that VAL0(C) is an integer between 0 and 22t

. We shall think of VAL0(C) as a 2t digit number in the balanced
4-ary notation. Although the balanced 4-ary notation is highly redundant, we will want to refer to the ‘ith digit of
VAL0(C)’ in an unambiguous manner. We will show how to uniquely choose a balanced 4-ary representation for
each VAL0(C).

Let us note that in fact VAL0(C) can be explicitly defined as follows: if ℓ = level(C) and C ⊢ (CL, CR) (provided
C is not a leaf) then

VAL0(C) =





0 if C is a non-YES leaf

22t−ℓ

if C is a YES leaf

22t−ℓ−1−1(VAL0(CL) + VAL0(CR)) if C is an f-configuration
VAL0(CL) · VAL0(CR) if C is an ⊗-configuration

It follows that each VAL0(C) has at most 2t−ℓ digits of significance.
The alternating simulation of N effectively constructs a tree T1 that is an ‘expansion’ of T0. To describe T1, we

need to define a certain product of trees:

Definition 7. Let T, T ′ be any two trees. For nodes i, j ∈ T , write i→ j to mean that i is the parent of j. Their
product T × T ′ consists of nodes (i, i′) where i ∈ T and i′ ∈ T ′ such that (i, i′)→ (j, j′) if and only if either
(a) i = j and i′ → j′, or
(b) i→ j, i′ is the root of T ′ and j′ is a leaf of T ′.
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Clearly,
T × T ′ = T ′ × T ⇐⇒ T = T ′,

SIZE (T × T ′) = SIZE (T ′ × T ) = SIZE (T ) · SIZE (T ′),

and

DEPTH (T × T ′) = DEPTH (T ′ × T ) = DEPTH (T ) + DEPTH (T ′).

Define tree T1 to be T0 × T t where T t is defined as the binary tree in which every internal node has 2 children
and every path from the root to a leaf has length exactly t + 1. Hence T t has exactly 2t+1 leaves. Let us assume
the nodes in T t are strings s ∈ {L, R}∗ such that the root of T t is the empty string ǫ, and each internal node s ∈ T t

has two children, sL and sR.
We want an assignment function VAL1 on T1 in analogy to VAL0. Write VAL1(C, s) (instead of VAL1((C, s)),

which is correct but pedantic) for the value assigned to the node (C, s) ∈ T1, C ∈ T0, s ∈ T t. Instead of integers,
VAL1(C, s) is a balanced 4-ary number.

First, we need one more definition: recall that in section 5, we compute the product of two balanced p-ary
numbers u = u1 · · ·un, v = v1 · · · vn as the sum of 2n balanced p-ary numbers Xi, Yi (i = 1, . . . , n). Let us call Xi

and Yi the ith and (n + i)th summand of the product of u and v. Clearly the summands depend on the particular
representation of the numbers (u)p and (v)p. These 2n summands can be regarded as 2n digits numbers although
they each have at most 2n− 1 digits of significance.

Suppose C is a leaf in T0, level(C) = ℓ. Then for any s ∈ T t, VAL1(C, s) is defined to be the (ordinary) 4-ary
representation of

22t−ℓ

or 0

depending on whether C is YES or not. Next assume C ⊢ (CL, CR). There are two cases:

(1) C is a ⊗-configuration.

(1.1) If s is a leaf of T t. Then s is a string in {L, R}∗ of length t + 1. Then VAL1(C, s) is the sth summand of the
product of VAL1(CL, ǫ) and VAL1(CR, ǫ). Here s is interpreted as the 2-adic number (see chapter 1, section
4.2) where the symbols L, R in s are (respectively) interpreted as 1,2. Note that s ranges from 0 to 2t+1 and
by definition the 0th summand is 0.

(1.2) If s is not a leaf of T t then VAL1(C, s) = VAL1(C, sL) + VAL1(C, sR).

(2) C is a f-configuration.

(2.1) If s is a leaf of T t then let

VAL1(C, s) = 22t−ℓ−1−1[VAL1(CL, ǫ) + VAL1(CR, ǫ)].

Note that we are multiplying by a power of 2 and this is relatively trivial in balanced 4-ary notation. Basically
we must reexpress each balanced 4-ary digit as a pair of balanced 2-ary digit, shift these to the right by
2t−ℓ−1 − 1 positions. Then we recombine into balanced 4-ary digits.

(2.2) If s is not a leaf then VAL1(C, s) = VAL1(C, sL)(= VAL1(C, sR)).

It is not hard to show that for all C ∈ T0,

VAL0(C) = VAL1(C, ǫ).

We note that VAL1 is uniquely defined since the balanced p-ary representation at the leaves are uniquely specified,
and this propagates to all other nodes using the above rules.

Now it should be easy for the reader to use the technique of chapter 7 to provide an alternating machine that
guesses the tree T1 in order to determine the predicate

DIGIT(C, s, i, b)

that is true if the ith digit of VAL1(C, s) is equal to b, for |b| ≤ 3 and i = 1, . . . , 2t. To invoke this procedure, we
may assume the work tapes of N contains the following information:

1. i in binary
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2. C

3. s

4. level(C) in unary

5. t− level(C) + |s| in unary

Note that each of these uses O(t) space. Moreover, from the above information, we can generate the arguments for
the recursive calls in O(t) steps. So the total work spend along any path in T1 is O(t3) since T1 has O(t2) levels.
It is now clear that DIGIT can be solved in O(t2) alternating time.

The final work to be done is to compare VAL1(C0, ǫ) to 1
2 where C0 is the root of T0. Basically, our goal is to

convert the balanced 4-ary number

VAL1(C0, ǫ) = u1u2 · · ·um (m = 2t)

to an ordinary 4-ary number
v1v2 · · · vm.

We begin with a simple remark: since each of the digits vi must be non-negative, if ui is negative, we must borrow
one unit from the next digit ui+1. Let bi = 1 or 0 depending on whether we need to borrow from ui+1 or not in
order to make vi non-negative. Of course, we must also take into account the borrow bi−1 from ui. This gives us
the equation

bi =

{
1 if ui − bi−1 < 0
0 if ui − bi−1 ≥ 0

.

We set b0 = 0. Note that this method is correct because we know that apriori that the number (u1 · · ·um)4 is
non-negative: so the most significant non-zero digit is positive. It is not hard to reduce the above to: bi = 1 iff
for some j (1 ≤ j ≤ i), uj < 0 and for all k = j + 1, . . . , i, uk = 0. Hence we can in O(t2) alternating time
check the value of any bi for i = 1, . . . , 2t: we simply guess j and then universally check that uj < 0 and uk = 0
for k = j + 1, . . . , i. Of course, checking if uk = b is nothing but the subroutine DIGIT(C0, ǫ, k, b) which can be
determined in O(t2) time.

Since we can check for the value of borrow bits bi, we can check the digits vi in the 4-ary representation of
VAL1(C0, ǫ) via vi = ui − bi−1 + 4bi. Now it is easy to determine if VAL1(C0, ǫ) is greater than 22t−1.

We must address one more detail. The above construction did not consider the other basis functions of a
stochastic alternating machine: ⊕,∧,∨. However, it should be evident that since we know how to add and to
multiply, we can also compute the value

VAL0(C) = 22t−ℓ−1−1(VAL0(CL) + VAL0(CR))−VAL0(CL)VAL0(CR)

where ℓ = level(C), C is a ⊕-configuration and C ⊢ (CL, CR). The remaining MIN- and MAX-configurations are
also easy. This completes our proof of theorem 50.

Space-bounded Stochastic computation. We consider an s(n) space-bounded stochastic machine M. In
analogy with Markov chains, we set up a finite number of dynamical states, each corresponding to a configuration
of the machine M using space at most s. If the set of states is taken to be {1, . . . , n}, a valuation V can be viewed
as an n-vector

V = (v1, . . . , vn) ∈ [0, 1]n.

Let V0 denote the vector of zero elements. We have the usual operator τ = τ∆ where ∆ = {1, . . . , n}. Thus

τ(V ) = (τ1(V ), τ2(V ), . . . , τn(V ))

where τi(V ) = 0, 1 or vj ◦ vk for some j, k depending on i, ◦ ∈ { f,⊗,⊕}. In chapter 7, we showed that the limit
of the sequence

τ(V0), τ
2(V0), τ

3(V0), . . .

is the least fixed point of our system. Let
V ∗

τ = (v∗1 , . . . , v∗n)

denote this limit. Clearly any fixed point V = (v1, . . . , vn) of τ satisfies the following set of equations: each
i = 1, . . . , n,

vi = fi(vj(i), vk(i)) (25)
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where fi(x, y) is one of the stochastic functions 0, 1, x fy, x⊗ y, x⊕ y. Let Σ(V ) denote the set of equations (25).
We can then characterize the least fixed point property V ∗

τ as follows:

LFP (V ∗
τ ) ≡ Σ(V ∗

τ ) ∧ (∀V )[Σ(V ).⇒ .V ∗
τ ≤ V ].

We are now ready to prove the following, by appeal to some results on the complexity of real closed fields.
(cf. Renegar [25, 26, 27]).

Theorem 51. For all s(n),

StSPACE(s) ⊆ DTIME(22O(s)

).

Proof. Suppose M is a stochastic machine that accepts in space s(n). We show how to decide if M accepts any
input w in space s(|w|). As usual, we can assume s = s(|w|) is known, and let there be n configurations of M that
uses space at most s. Without loss of generality, let these configurations be identified with the integers 1, 2, . . . , n
and 1 denotes the initial configuration on input w. Let τ be the operator corresponding of these configurations.
Hence we want to accept iff the least fixed point V ∗

τ of τ has the property that its first component [V ∗
τ ]1 greater

than 1
2 . This amounts to checking the validity of the following sentence:

(∃V ∗
τ )(∀V )[Σ(V ∗

τ ) ∧ [V ∗
τ ]1 >

1

2
∧ (Σ(V ).⇒ .V ∗

τ ≤ V )].

This sentence can be decided in time 2O(n4) = 22O(s)

, using the above results of Renegar. Q.E.D.



Appendix A

Probabilistic Background

The original axiomatic treatment of probability theory due to Kolmogorov [18] is still an excellent rapid introduction
to the subject. We refer to [5, 34] for more advance techniques useful for complexity applications. This appendix
is a miscellany of quick reviews and useful facts.

Basic Vocabulary. A Borel field (or sigma-field) is a set system (Ω, Σ) where Ω is a set and Σ is a collection
of subsets of Ω with three properties (i) Ω ∈ Σ, (ii) E ∈ Σ implies Ω − E ∈ Σ and (iii) {Ei}i≥0 is a countable
collection of sets in Σ then the countable union ∪i≥0Ei is in Σ. If (iii) is replaced by the weaker condition that
E1, E2 ∈ Σ imples E1 ∪E2 ∈ Σ then we get a field. For any collection S of subsets of Ω, there is a unique smallest
Borel field that contains S, called the Borel field generated by S. The most important example is the Euclidean
Borel field (R1, B1) where R1 = R is the real line and B1 is the Borel field generated by the collection of intervals
(−∞, c] for each real c, −∞ < c < +∞. Members in B1 are called Euclidean Borel sets.

A probability measure on a Borel field (Ω, Σ) is a function Pr : Σ→ [0, 1] such that (a) Pr(Ω) = 1, (b) if {Ei} is
a countable collection of pairwise disjoint sets in Σ then Pr(∪i≥0Ei) =

∑
i≥0 Pr(Ei). A probability space is a triple

(Ω, Σ, Pr) where (Ω, Σ) is a Borel field and Pr is a probability measure on (Ω, Σ).
The elements in Ω are often called elementary events or sample points. Elements of Σ are called events or

measurable sets. Thus Ω and Σ are called (respectively) the sample space and event space. Pr(E) is the probability
or measure of the event E. A simple example of probabilistic space is the case Ω = {H, T } with two elements and
Σ consists of all subsets of Ω (there are only 4 subsets), and Pr is defined by Pr({H}) = p for some 0 ≤ p ≤ 1.

A random variable (abbreviation: r.v.) X of a probability space (Ω, Σ, Pr) is a real (possibly taking on the
values ±∞) function with domain Ω such that for each real number c, the set

X−1((−∞, c]) = {ω ∈ Ω : X(ω) ≤ c}

belongs to Σ. We may simply write
{X ≤ c}

for this event. In general, we write1

{. . .X . . .}
for the event {ω : . . .X(ω) . . .}. It is also convenient to write Pr{X ∈ S} instead of Pr({X ∈ S}). The intersection
of several events is denoted by writing the defining conditions in any order, separated by commas: {X1 ∈ S1, X2 ∈
S2, . . .}. If f(x, y) is a real function and X, Y are random variables, then f(X, Y ) is a new function on Ω given by
f(X, Y )(ω) := f(X(ω), Y (ω). If f(x, y) is “nice”, then f(X, Y ) will be a new random variable. In particular, the
following are random variables:

max(X, Y ), min(X, Y ), X + Y, X − Y, XY, XY , X/Y.

The last case assumes Y is non-vanishing. Similarly, if Xi’s are random variables, then so are

inf
i

Xi, sup
i

Xi, lim inf
i

Xi, lim sup
i

Xi.

Each X induces a probability measure PrX on the Euclidean Borel field determined uniquely by the condition
PrX((−∞, c]) = Pr{X ≤ c}. We call PrX the probability measure of X . The distribution function of X is the real

1This ‘{· · · }’ notation for events reflects the habit of probabilists to keep the event space implicit. Notice that while probability
measures are defined on Σ, random variables are defined on Ω.
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function given by FX(c) := PrX((−∞, c]). Note that FX(−∞) = 0, FX(∞) = 1, FX is non-decreasing and right
continuous. In general, any F with these properties is called a distribution function, and determines a random
variable. A set of random variables is identically distributed if all members shares a common distribution function F .
A finite set of random variables {Xi : i = 1, . . . , n} is independent if for any Euclidean Borel sets Bi (i = 1, . . . , n),

Pr(∩n
i=1{Xi ∈ Bi}) =

n∏

i=1

Pr{Xi ∈ Bi}.

An infinite set of random variables is independent if every finite subset is independent. An important setting for
probabilistic studies is a set of independent and identically distributed random variables, abbreviated as i.i.d..

Let (Ω, Σ) be a field, and we are given m : Σ→ [0, 1] such that for any countable collection of pairwise disjoint
sets {Ei ∈ Σ : i ∈ I},

E = ∪i∈IEi ∈ Σ implies m(E) =
∑

i∈I

m(Ei).

Then a standard theorem of Carathéodory says that m can be uniquely extended to a probability measure on
(Ω, Σ∗), the Borel field generated Σ.

A standard construction shows that for any countable set of probability measures {mi : i ≥ 0} on the Euclidean
Borel field, we can construct a probability space (Ω, Σ, Pr) and a collection of random variables {Xi : i ≥ 0} such
that for each i, mi is the probability measure of Xi. Sketch: We let Ω be the product of countably many copies of
the real line R1 = R, so a sample point is (w0, w1, . . .) where wi ∈ R1. A basic set of Ω is the product of countably
many Euclidean Borel sets

∏
i≥0 Ei where all but a finite number of these Ei are equal to R1. Let Σ0 consists of

finite unions of basic sets and then our desired Borel field Σ is the smallest Borel field containing Σ0. It remains to
define Pr. For each basic set, define Pr(

∏
i≥0 Ei) :=

∏
i≥0 Pr(Ei) where only a finite number of the factors Pr(Ei)

are not equal to 1. We then extend this measure to Σ0 since each member of Σ0 is a finite union of disjoint basic
sets. This measure can be shown to be a probability measure on Σ0. The said theorem of Carathéodory tells us
that it can be uniquely extended to Σ. This concludes our sketch.

A random variable is discrete if it takes on a countable set of distinct values. In this case, we may define its
expectation of X to be E[X ] :=

∑
i ai Pr{X = ai} where i range over all the distinct values ai assumed by X . Note

that E[X ] may be infinite. The variance of X is defined to be V ar[X ] := E[(X − E[X ])2]. This is seen to give
V ar[X ] = E[X2]− (E[X ])2.

A fundamental fact is that E[X + Y ] = E[X ] + E[Y ] where X, Y are arbitrary random variables. Using
this simple fact, one often derive surprisingly consequences. In contrast, V ar[X + Y ] = V ar[X ] + V ar[Y ] and
E[XY ] = E[X ]E[Y ] are valid provided X, Y are independent random variables.

A random variable X that is 0/1-valued is called a Bernoulli random variable. The distribution function of
such an X is denoted B(1, p) if Pr{X = 1} is p. If X1, . . . , Xn is a set of i.i.d. random variables with common
distribution B(1, p) then the random variable X = X1 + · · ·+Xn has the binomial distribution denoted by B(n, p).
It is straightforward to calculate that E[X ] = np and V ar[X ] = np(1− p) if X has distribution B(n, p). Note that
Bernoulli random variables is just another way of specifying events, and when used in this manner, we call the
random variable the indicator function of the event in question. Furthermore, the probability of an event is just
the expectation of its indicator function.

Estimations. Estimating probabilities is a fine art. There are some tools and inequalities that the student
must become familiar with.
(a) One of these, Stirling’s formula in the form due to Robbins (1955), should be committed to memory:

n! =
(n

e

)n

eαn
√

2πn

where
1

12n + 1
< αn <

1

12n
.

Sometimes, the alternative bound αn > (12n)−1 − (360n3)−1 is useful [10]. Using these bounds, it is not hard to
show [21] that for 0 < p < 1 and q = 1− p,

G(p, n)e−
1

12pn
− 1

12qn <

(
n

pn

)
< G(p, n) (1)

where

G(p, n) =
1√

2πpqn
p−pnq−qn.
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(b) The ‘tail of the binomial distribution’ is the following sum

n∑

i=λn

(
n

i

)
piqn−i.

We have the following upper bound [10]:

n∑

i=λn

(
n

i

)
piqn−i <

λq

λ− p

(
n

λn

)
pλnq(1−λ)n

where λ > p and q = 1− p. This specializes to

n∑

i=λn

(
n

i

)
<

λ

2λ− 1

(
n

λn

)
2−n

where λ > p = q = 1/2.
(c) A useful fact is this: for all real x,

e−x ≥ 1− x

with equality only if x = 0. If x ≥ 1 then this is trivial. Otherwise, by the usual series for the exponential function,
we have that for all real x

e−x =

∞∑

i=0

(−x)i

i!
= (1− x) +

x2

2!
(1− x

3
) +

x4

4!
(1− x

5
) + · · · .

The desired bound follows since x < 1. Similarly, we have

e−x = (1− x + x2/2)− x3

3!
(1− x

4
)− x5

5!
(1− x

6
)− · · · .

Then

e−x < 1− x + x2/2 = 1− x(1 − x/2)

provided 0 ≤ x ≥ 4. If 0 ≤ x ≤ 1 then we conclude e−x < 1 − x/2. (d) Jensen’s inequality. Let f(x) be a convex
real function. Convexity of f(x) means f(

∑
i pixi) ≤

∑
i pf(xi) where

∑
i pi = 1, pi ≥ 0 for all i, and i ranges over

a finite set. If X and f(X) are random variables then f(E[X ]) ≤ E[f(X)]. Let us prove this when X has takes on
finitely many values xi with probability pi: so E[X ] =

∑
i pixi and

f(E[X ]) = f(
∑

i

pixi) ≤
∑

i

pif(xi) = E[f(X)].

For instance, if r > 1 then E[|X |r] ≥ (E[|X |])r.
(e) Markov’s inequality. Let X be a non-negative random variable, e > 0. Then we have the trivial inequality

H(X − e) ≤ X
e where H(x) (the Heaviside function) is the 0-1 function given by H(x) = 1 if and only if x > 0.

Taking expections on both sides, we get

Pr{X > e} ≤ E[X ]

e
.

(f) Chebyshev’s inequality. Let X be a discrete random variable, Pr{X = ai} = pi for all i ≥ 1, with finite
second moment and e > 0. Then

Pr{|X | ≥ e} ≤ E[X2]

e2
.

We say this gives an upper bound on tail probability of X . In proof,

E[X2] =
∑

i≥1

pia
2
i

≥ e2
∑

|ai|≥e

pi

= e2 Pr{|X | ≥ e}
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Another form of this inequality is

Pr{|X − E[X ]| > e} ≤ V ar(X)

e2

where |X−E[X ]| measures the deviation from the mean. We could prove this as for Markov’s inequality, by taking
expectations on both sides of the inequality

H(|X − E[X ]| − e) ≤
(

X − E[X ]

e

)2

.

(g) Chernoff’s bound [7] is concerned a set of i.i.d. random variables X1, . . . , Xn. Let X = X1 + · · · + Xn and
assume E[X ] is finite. Define

M(t) := E[etX1 ]

and
m(a) = inf

t
E[et(X1−a)] = inf

t
e−atM(t).

Then Chernoff showed that
E[X ] ≥ a⇒ Pr{X ≤ na} ≤ [m(a)]n

and
E[X ] ≤ a⇒ Pr{X ≥ na} ≤ [m(a)]n.

In particular, if X has distribution B(n, p) then it is not hard to compute that

m(a) =
(p

a

)a
(

1− p

1− a

)1−a

.

Since it is well-known that E[X ] = np, we obtain for 0 < e < 1:

Pr{X ≤ (1− e)np} ≤
(

1

1− e

)(1−e)np (
1− p

1− (1− e)p

)n−(1+e)np

.

Markov Chains. We continue the discussion of Markov chains from section 3. The period of a state i in a
chain A is defined in a combinatorial way: it is the largest positive integer d such that every cycle in the underlying
graph GA that contains i has length divisible by d. A state is periodic or aperiodic depending on whether its period
is greater than 1 or not. It is left as an exercise to show that the period is a property of a component.

Recall that state i is recurrent if f∗
i = 1. In this case, there is certainty in returning to state i, and under this

condition, we may speak of the mean recurrence time for state i µi, defined as follows:

µi =

∞∑

n=0

nf
(n)
i

Using the mean recurrence time, we may introduce new classification of states: state i is null if µi = ∞, and
non-null otherwise.

To illustrate the classification of states, we consider the (1-dimensional) random walk with parameter p0 (0 <
p0 < 1): this is the Markov chain whose states are the integers, and the transition probability is given by pi,i+1 = p0

and pi,i−1 = 1 − p0, for all i. It is clear that every state is essential. It can be shown that each Markov state if
recurrent or transient depending on whether p0 = 1

2 or not (Exercise). So state 0 is recurrent iff p = 1
2 . Thus

p0 6= 1
2 provide examples of essential but transient states. In the recurrent situation, the mean recurrence time is

infinite (Exercise). So this illustrates recurrent but null states.
Generating functions. A (real) formal power series is an infinite expression G(s) =

∑∞
n=0 ansn in some

indeterminate s, where a0, a1, . . . are given real numbers. We say that G(s) is the (ordinary) generating function
for the seqence a0, a1, . . .. We can manipulate G(s) algebraically: we may add, multiply or (formally) differentiate
power series in the obvious way. One should think of G(s) as a convenient way to simultanueously manipulate all the
elements of a sequence; hence the terms sn are just ‘place-holders’. These operations reflect various combinatorial
operations on the original series. Using well-known identities we can deduce many properties of such series rather
transparently. Although we have emphasized that the manipulations are purely formal, we occasionally try to
sum the series for actual values of s; then one must be more careful with the analytic properties of these series.
Most elementary identities involving infinite series reduces (via the above manipulations) to the following most
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fundamental identity (1− x)−1 =
∑

i≥1 xi. For example, the student observes that all the results from sections 3
and 4 involving limits is basically an exploitation of this identity.

Rate of Convergence of Substochastic matrices. In section 3, we showed that the entries of the nth
power of the fundamental matrix of an absorbing chain approaches 0. We now give a more precise bound on the
rate of convergence. For any matrix B, let δ∗(B) and δ∗(B) denote the smallest and largest entries in B. Let
δ(B) = δ∗(B)− δ∗(B). We have the following simple lemma (cf. [16]):

Lemma 52. Let A = (ai,j) be a stochastic matrix each of whose entries are at least e for some 0 < e < 1. For any
n×m non-negative matrix B = (bi,j), we have

δ(AB) ≤ (1− 2e)δ(B).

Proof. Consider the (i, j)th entry
∑n

k=1 ai,kbk,j of AB. Without loss of generality, assume that ai,1 ≤ ai,2.
To obtain a lower bound on the (i, j)th entry, assume wlog that δ∗(B) = max{b1,j, b2,j}. Then

n∑

k=1

ai,kbk,j ≥ ai,1b1,j + ai,2b2,j + (

n∑

k=3

ai,k)δ∗(B)

≥ ai,1δ
∗(B) + ai,2δ∗(B) + (

n∑

k=3

ai,k)δ∗(B)

where the last inequality must be justified in two separate cases (in one case, we use the simple fact that a ≥ b and
a′ ≥ b′ implies aa′ + bb′ ≥ b′ + a′b). Thus

n∑

k=1

ai,kbk,j ≥ ai,1δ
∗(B) + (

n∑

k=2

ai,k)δ∗(B)

= eδ∗(B) + (

n∑

k=2

ai,k)δ∗(B) + (ai,1 − e)δ∗(B)

≥ eδ∗(B) + (1− e)δ∗(B)

To obtain an upper bound on the (i, j)th entry, Assuming wlog that δ∗(B) = min{b1,j, b2,j}, we have

n∑

k=1

ai,kbk,j ≤ ai,1b1,j + ai,2b2,j + (
n∑

k=3

ai,k)δ∗(B)

≤ ai,1δ∗(B) + ai,2δ
∗(B) + (

n∑

k=3

ai,k)δ∗(B)

≤ ai,1δ∗(B) + (

n∑

k=2

ai,k)δ∗(B)

= eδ∗(B) + (

n∑

k=2

ai,k)δ∗(B) + (ai,1 − e)δ∗(B)

≤ eδ∗(B) + (1 − e)δ∗(B).

The lemma follows since the difference between the largest and smallest entry of AB is at most

(eδ∗(B) + (1− e)δ∗(B))− (eδ∗(B) + (1 − e)δ∗(B)) ≤ (1 − 2e)δ(B).

Q.E.D.

In the exercises, we show how to extend this to substochastic matrix B, i.e., each row sum in B is at most 1.

Exercises

Exercise 0.35: Show the following inequalities ((i)-(iv) from [Kazarinoff]):
(i) (1 + 1

n )n < (1 + 1
n+1 )n+1.

(ii) (1 + 1
n )n <

∑n
k=0

1
k! < (1 + 1

n )n+1.
(iii) n! < (n+1

2 )n for n = 2, 3, . . ..
(iv) (

∑n
i=1 xi)(

∑n
i=1

1
xi

) ≥ n2 where xi’s are positive. Moreover equality holds only if the xi’s are all equal.

(v) n! <
(

12n
12n−1

)
(2πn)1/2e−nnn. (Use Robbin’s form of Stirling’s formula.) ♦



58 APPENDIX A. PROBABILISTIC BACKGROUND

Exercise 0.36:
(i) (Hölder’s Inequality) If X and Y are random variables, and 1 < p <∞, 1

p + 1
q = 1 then

E[XY ] ≤ E[|XY |] ≤ E[|X |p]1/pE[|Y |q]1/q.

When p = 2, this is the Cauchy-Schwartz inequality. (In case Y ≡ 1 we have E[|X |] ≤ E[|X |p]1/p, which
implies the Liapounov inequality: E[|X |r]1/r ≤ E[|X |s]1/s for 1 < r < s <∞.)
(ii) (Minkowski’s Inequality)

E[|X + Y |p]1/p ≤ E[|X |p]1/p + E[|Y |p]1/p.

(iii) (Jensen’s inequality) If f is a convex real function, and suppose X and f(X) are integrable random
variables. Then f(E[X ]) ≤ E[f(X)]. (Note that convexity means that if

∑n
i=1 ci = 1, ci > 0, then

f(
∑

i = 1ncixi) ≤
∑n

i=1 cif(xi).) ♦

Exercise 0.37: Construct the probability space implicitly associated with a Markov chain. ♦

Exercise 0.38: For any positive integer k, construct a finite Markov chain with states 0, 1, . . . , n such that states
0 has the value k ≤ p∗0,0 < k + 1. Try to minimize n = n(k). ♦

Exercise 0.39: In this exercise, we do not assume the Markov chain is finite. Show that the following are prop-
erties, though defined for individual states, are characteristics of components:
(i) Period of a Markov state.
(ii) Nullity of a Markov state. ♦

Exercise 0.40: Show that gi,j = f∗
i,jgj,j. (From this, conclude that gi,j > 0 if and only if gi,j = f∗

i,j.) Hint:

Write gi,j =
∑∞

n=0 Pr(AnBnCn|D) where D is the event that the state at time 0 is i, An is the event that
the states at times 1, . . . , n − 1 are not equal to j, Bn is the event that the state at time n is equal to j,
Cn is the event that the state at time s is equal to j for infinitely many s > n. Then Pr(AnBnCn|D) =
Pr(Cn|AnBnD) Pr(AnBn|D) But the Markov property implies Pr(Cn|AnBnD) = Pr(Cn|D). ♦

Exercise 0.41: Above, we proved a bound on the rate of convergence of stochastic matrices. Extend it to sub-
stochastic matrices. ♦

Exercise 0.42:
(a) Prove equation (1) in the appendix.
(b) Say f(n) ∼ g(n) if f(n)/g(n) approaches 1 as n → ∞. Conclude that for k = 1, . . . , n/2, p = k/n and
q = 1 − p, then as k →∞ and n− k →∞:

(
n

k

)
∼ 1√

2πpqn(ppqq)n

(c) Let 0 < p < 1 and q = 1 − p. Show that the probability that a Bernoulli random variable with mean p
attains k successes in n trials is (

n

k

)
pkqn−k ∼ 1√

2πpqn

♦

Exercise 0.43: Show
(a) (

1− p

1− δp

)1−δp

≤ eδ−1

for 0 < δ < 2.
(b) (

1

1 + e

)1+e

≤ e−e−(e2/3)

for 0 < e ≤ 1.
(c) (

1

1− e

)1−e

≤ ee−(e2/2)
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for 0 < e ≤ 1.
(d) Conclude that in the binomial case of Chernoff’s inequality,

Pr{X ≥ (1 + e)np} ≤ e−(e2/3)np

and
Pr{X ≤ (1− e)np} ≤ e−(e2/2)np.

♦

Exercise 0.44: Deduce from Chernoff’s bound the following estimate on the tail of binomial distribution:

t∑

i=⌊t/2⌋

(
t

i

)
piqt−i ≤ (4pq)t/2.

♦

End Exercises
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Lecture XXII

QUANTUM COMPLEXITY

§1. Introduction

Quantum computation is an exciting area of current research. It is fundamentally different from classical
computation because different laws of physics are used. The idea of quantum computing was first suggested in the
early 1980’s by Paul Benioff [3, 4, 5], a physicist from Argonne National Laboratory. Feynman [18] showed how
to build a classical computer based on quantum principles. Deutsch [15, 16] introduced the universal quantum
computer and quantum circuits. A comprehensive and accessible treatment of quantum computation including
quantum information theory is Nielsen and Chuang [22].

Related questions about the physics of information and computing date back earlier: since information is
physically represented, what does the laws of physics say about fundamental limits of computation? Rolf Landauer
(1927-1999) was interested in minimum energy computation. He noted (1961) that erasure of information is
necessarily a dissipative process – heat is lost from the computer into the environment. Thus, if we erase one bit
of information, the overall entropy increases by k ln 2. At temperature T , the work expended is kT ln 2. The
converse to this so-called “Landauer Principle” is that if we compute reversibly (with no erasure of information)
then no dissipation or power consumption is needed. In 1973, Bennett [7] showed that such computation is always
possible in theory (but it would be a very slow computation!). Reversible computation was further investigated by
Tofolli and Fredkin [25, 19]. Although reversible computing is based on classical laws of physics, it can be viewed
as a precursor to quantum computation. For a history of reversible computing, see [8].

Two developments in the early 1990s help to push quantum computing out of the curiosity stage. One was the
discovery of quantum algorithms that have major implications for cryptography. In 1994, Peter Shor at AT&T
Labs showed that the problems of integer factorization and discrete logarithm can be solved by quantum computers
with high probability in polynomial time [24]. As it is widely believed that both these problems are non-polynomial
time on classical computers, and the security of many cryptographic protocols depend on these assumptions, this
suggests a “killer app” for quantum computing. As a result, the subject holds real interest for agencies such as
DARPA and the National Security Agency. The other development is the experimental demonstration of techniques
that could be used to build quantum computers. A major challenge here is to isolate the quantum bits (qubits)
from environment (to keep the system “coherent”). Several competing technologies are being investigated. Seth
Lloyd (1993) showed that a quantum computer could be built from an array of coupled two-state quantum systems.
An implementation proposed by Chuan and Gershenfeld, and independently by Cory, Fahmy and Havel, is based
on spins in the nucleus of atoms. Such nuclear qubits are naturally isolated from the external world by its clouds
of electrons, and they may be assembled naturally as molecules. The technology for manipulating nuclear spins
is NMR (nuclear magnetic resonance), a well-developed technology routinely used in medicine. In August of
2000, a 5-qubit computer was announced by IBM corporation. The ion trap approach of Ignacio Cirac and Peter
Zoller [13] is based on confining cold ions along a line (“linear Paul trap”). The quantum state of each ion is a
superposition of its ground state |0〉 and some relatively long-lived excited state |1〉, representing the qubits (see
below). Laser beams directed at the individual ions can achieve the transitions within each ion but how can the
qubits interact in the quantum mechanical sense? Cirac and Zoller showed with proper tuning of the lasers, the
controlled XOR gate (see below) can be implemented with 5 laser pulses. Such devices have been constructed
[23, 21]. The speed of such a device depends on the frequency of the fundamental vibrational modes of the ions;
current technology can perhaps achieve 104 steps/second (see [2]). Even if current approaches do not lead realistic
quantum computers, they are nevertheless useful for demonstrating the principles of quantum computation [2].

Quantum computing also has implications for the fields of information theory, coding theory and cryptography.
See the survey [11]. It calls for new foundations for each of these areas. Among other things, one goal in this
chapter is to present Shor’s algorithm for factoring.

§2. Quantum Bits

¶1. The basic unit of information in a classical computers is the bit, an entity that can assume exactly one
of two distinct values, denoted 0 and 1. The analogous quantum bit (or “qubit”) also has two values which we
identify with the classical values 0 and 1. These are called eigenvectors or eigenstates. Following a standard
notation1 in physics these eigenstates are denoted |0〉 and |1〉. In general, if Ψ is the “name” of a quantum state, we

1This is the ket notation; there is a corresponding bra notation which has the form 〈y|. The pair |x〉 and 〈y| can be composed as
〈y||x〉, viewed as the inner product of two vectors (in this inner product, y must first be conjugated before forming the scalar product
with x). The “bra-ket notation” is from the physicist Dirac.

Chee-Keng Yap Page 1 April 13, 2009
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write |Ψ〉 to denote the state. What we choose for the name is not important. For instance, we may use suggestive
symbols such as ↑, ↓,+,−, or more readable names such as up, down, left, right. However, the value of a qubit is a
quantum state of the form

c0|0〉 + c1|1〉 (1)

where c0, c1 ∈ C (complex numbers) satisfying |c0|2 + |c1|2 = 1. For instance, if c0 = 0, c1 = 1, then the quantum
state is just |1〉, a eigenstate. We say that the quantum state is a superposition of the eigenstates.

Mathematically, an eigenstate is just a basis vector in some chosen basis. Thus the states of a qubit lives in the
complex two-dimensional vector space in which all the vectors have unit length. We could discuss all our results
using only this mathematical model, but in the following we will suggest some physical intuitions and possible
interpretations of the mathematics.

The qubit can be realized by a variety of physical quantum systems. Any of these systems, in principle, can
be the basis for constructing quantum computers. For instance, an electron or other spin- 1

2 particle can have one
of two distinct spins, called spin-up and spin-down. Thus the state of a qubit can be encoded by the state of
an electron spin. Alternatively, the photon (light particle) is a massless, spin-1 particle that can have one of two
independent polarizations. Using a photon as a qubit, we can manipulate its state by rotating the polarization of
the photon.

¶2. Quantum states as probability distributions. So far, we identified an eigenstate with a classical value
(0 or 1). But what is the classical analogue of the quantum state (1)? To answer this, we introduce the concept
of a measurement. This is an operation that is applicable to quantum states. When the quantum state (1) is
measured, it “collapses” to the eigenstate |i〉 with probability |ci|2 where i = 0, 1. Note that, unlike classical bits
which can be measured without affecting its value, any measurement of qubits is destructive. In any case, we can
now view quantum states as the generalization of another classical computational concept: the notion of random
bit. A random bit is just a (discrete) probability distribution (p0, p1) where p0 + p1 = 1 and 0 ≤ pi ≤ 1. This
random bit assumes the value i with probability pi where i = 0, 1. Thus the quantum state (1) may be associated
with a probability distribution (p0, p1) = (|c0|2, |c1|2). But infinitely many different quantum states are associated
to a given probability distribution. For instance, if c0 = c1 = 1√

2
then the quantum states c0|0〉 + c1|1〉 and

c0|0〉 − c1|1〉 are both associated to the probability distribution (1
2 ,

1
2 ).

¶3. Stern-Gerlach Experiment (1922) We describe some physical experiments which elucidate the nature of
quantum states. In particular, we want to see why quantum states are not simply probability distributions.

y

x

N
up detector

down detector
S

magnet

electron path

magnet

Figure 1: Stern-Gerlach measuring device

The physical interpretation of measurement in spin models is illustrated in an apparatus known as a Stern-
Gerlach device. See Figure 1 for a 2-dimensional rendition. The apparatus comprises a pair of magnets (N, S)
that surrounds the path of an electron, together with two detector plates at the exit paths of the electron. When
an electron passes through the Stern-Gerlach device, the path of the electron will deflect up or down with certain
probability (depending on the source of the electrons). For a fixed electron source, this probability is empirically
well-defined. (The original experimental particle was silver atoms, but later hydrogen atoms.) We assume that
the electrons deflect up or down with equal probability. To explain this, we postulate that an electron has two
spin states, called up-spin or down-spin. To explain the deflection, we could say the electron state is in some
superposition of these spin states, or we could say that the electron state is a probability distribution over the spin
states. The experiment so far has no preference for either explanation.

The Stern-Gerlach device illustrates the idea that measurements are relative to a choice of basis: the magnetic
flux is conventionally said to flow perpendicularly to the plane defined by the magnets (i.e., perpendicularly out of
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the page). In Figure 1, the electron deflects up (positive y direction) or down (negative y direction) with suitable
probability. If we rotate the device by 90◦ about the axis of the electron path, so that the magnet N (S) lies above
(below) the page, resulting measurement would be different: the same electron would now deflect left or right with
suitable probability. In Figure 1, left/right means into/out of the page. This amounts to a new measurement basis.
We normally have the freedom to choose a basis that is most convenient for the application.

We now extend the previous experiment in two ways. First, suppose we pass the up-spin electrons from the first
Stern-Gerlach device into another identical Stern-Gerlach device. What do we expect to see? Well, the electrons
will only deflect up. This is fully expected.

Let us do a different experiment, by passing the up-spin electrons through a second Stern-Gerlach device whose
magnets have been rotated by 90◦, to cause a left-right deflection. We will see that the electrons will deflect to the
left and right with equal probability. This might be surprising, if we had expected the up-spin electrons to have
no left- or right-spin components. So perhaps electrons have independent spin components for up/down as well
as left/right spins. If we continue by passing the left-spin electrons through a third Stern-Gerlach device with the
up-down orientation as the first device, we again see an equal probability of the electrons deflecting up or down.
This would be a surprise if we had expected to see up-spins only, as only up-spin electrons were sent through the
second device.

To explain all this, we postulate that the eigenstates in the basis of the up/down measurement device are |up〉
and |down〉, respectively. But relative to the left/right measurement, the eigenstates are |left〉 = (|up〉+|down〉)/

√
2

and |right〉 = (|up〉 − |down〉)/
√

2. Thus the electrons sent into the second device are in state |up〉, but in the
measurement basis, this appears as (|left〉+ |right〉)/

√
2, and thus they have equal probability of going left or right.

The electrons sent into the third device are in the state |left〉, but relative to the measurement basis of up/down,
they have equal probabilities of going up or down.

¶4. Mach-Zehnder Interferometer. The preceding discussion of measure basis already suggests that super-
position of eigenstates is different from a probability distribution over eigenstates. Another series of experiments2

based on the Mach-Zehnder interferometer confirms this. Refer to Figure 2. In experiment A, we reflect a
photon off a half-silvered mirror M1, we will detect the photon at detector 1 or 2 with 50% probability each (we
choose a photon source with this property). The classical explanation is that the photon has equal probability of
taking either path. The quantum mechanical explanation is that both paths are taken at once (superposition), but
the detectors cause a collapse of the state. But so far, we have no basis to prefer one explanation over the other (in
fact, the classical one should be preferred for its simplicity). Incidentally, note that this experiment uses photons
(instead of the electrons of Stern-Gerlach) to demonstrate quantum effects. The two eigenstates of photons are
called polarizations instead of spins.

In experiment B, we place two fully silvered mirror at the positions of detectors 1 and 2, but arranged so that
the two photon paths (P1, P2) recombine. We place a second half-silvered mirror M2 at the point of recombination.
We also place the detectors 3 and 4 to measure the reflection or non-reflection from M2. It turns out, the photon
reaches detector 3 with 100% probability and never reach detector 4. This is impossible to explain classically. The
quantum mechanical view accounts for this: the photon must have travelled both paths P1 and P2, and when
recombined, it is able to distinguish the two choices at M2 and only chose (by way of interference) the “correct
path”. In experiment C, we confirm this explanation by placing a barrier (K) in path P2 of the previous experiment.
Now, we have 50% probability of detecting the photon at detectors 3 and 4.

§3. Quantum Words

¶5. Real world computers operate on fixed length sequence of bits, called a word. A word in modern computers
is typically 32 bits or 64 bits long (circa 2000). Similarly, a finite sequence of qubits will be called a quantum
word (“quword” for short). In the literature, a quword is also known as a “quantum register”. An array of n
qubits is called a n-quword.

Classically, transition from bits to words is trivial. But quantum words introduce new situations with no
classical analogue. This is the phenomenon of quantum interference and phase information. This is already evident
for n = 2. Let A and B be the qubits in a 2-quword. If A is in the eigenstate |0〉 and B in |1〉, then the state
of the quword is written |0〉 ⊗ |1〉 (tensor product), or more compactly, |01〉 and sometimes |0〉|1〉. This looks like
Cartesian product, but tensor product is more than this. The hint that something else is going on is the following
basic property of tensors which we will use often: for any scalar α,

α(u1 ⊗ u2) = (αu1) ⊗ u2 = u1 ⊗ (αu2). (2)

2See “Un saut d’echelle pour les calculateurs”, by A. Barenco, A.Ekert, A. Sanpera and C.Machiavello, in La Recherche, Nov 1996.
Adapted article by Barenco may be found in http://www.qubit.org/intros/comp/comp.html. See also [14].
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M1
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Detector 4

Figure 2: Experiments A, B, C.

If A,B are in the superposition of eigenstates x = 1√
2
(|0〉+ |1〉) and y = 1√

2
(|0〉− |1〉), respectively, then their joint

state is given by

|x〉 ⊗ |y〉 =
1

2
(|00〉 − |01〉 + |10〉 − |11〉).

Next supposed that the quword is in the state |ψ〉 = 1√
2
(|00〉+|11〉) (“Bell State”). These two qubits are “entangled”:

when you measure one of the qubits, then the other qubit would also collapse to the same value. Intuitively,
they are maximally entangled (or correlated); quantum information theory is the subject that shed light on this
phenomenon.

¶6. Eigenstates. In general, an n-quword has 2n eigenstates of the form |b1 · · · bn〉 where bi ∈ {0, 1}. For
instance, if n = 2, then the possible eigenstates are |00〉, |01〉, |10〉, |11〉. Interpreting b1 · · · bn as a binary represen-
tation of a natural number, the eigenstates can be denoted {|i〉 : i = 0, 1, . . . , 2n − 1}. A quantum state (or3 pure
state) is again a superposition of these eigenstates, and can be represented by a unit length vector in c ∈ C2n

. Unit

length means that
∑2n−1

i=0 |ci|2 = 1 where c = (c0, . . . , c2n−1). The quantum state corresponding to c is
∑2n−1

i=0 ci|i〉.

¶7. Bit Notation and Indexing Notation. We have just established 2 conventions for writing eigenstates:
|x〉 where x is either a binary string or a natural number. The first convention of using binary strings is called the
bit notation and the second convention of using natural numbers is called the indexing notation.

In practice, these two conventions are used interchangeably, whichever is more convenient. The indexing notation
is convenient when we treat each eigenstate wholistically, and is used for writing superposition as a summation:∑2n−1

x=0 cx|x〉. The bit notation is useful for describing composite eigenstates: if x, y representing two disjoint
quwords, the ket-notation admits the operation |x〉 ⊗ |y〉 = |xy〉. When x, y are superposition of states for two
disjoint quwords, |x〉 ⊗ |y〉 is obtained as a Cartesian product of the separate eigenstates.

¶8. Measurement. Quwords offer a twist to the concept of measurement. Naturally, if |x〉 =
∑2n−1

i=0 ci|i〉 and it
is measured, then the state collapses to |i〉 with probability |ci|2 for each i. But we can also measure any individual
qubit, or more generally, any subset Y of qubits. If the set of n qubits is X , let Z = X \ Y be the complementary

3This curious terminology will become clearer when we discuss ensembles of quantum states.
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set of qubits. Each eigenstate |i〉 of X can be written as |y〉⊗ |z〉 where |y〉, |z〉 are eigenstates of Y and Z. Denote
the Y -projection of |i〉 by πY (|i〉), and thus

|i〉 = πY (|i〉) ⊗ πZ(|i〉).

Let PY (y) = {i = 0, . . . , 2n − 1 : πY (|i〉) = |y〉}. When we measure the Y -bits of a state |x〉, we will see each
eigenstate |y〉 of Y with probability px(y) :=

∑
i∈PY (y) |ci|2. After a measurement of |x〉 which revealed a particular

state |y〉 in Y -qubits, the state of the quword becomes

∑
i∈PY (y) ci|i〉∑
i∈PY (y) |ci|2

.

Let us illustrate this for a 3-quword whose eigenstates are labeled |0〉, . . . , |7〉 as usual. If Y refer to the middle

bit, then PY (0) = {0, 1, 4, 5} and PY (1) = {2, 3, 6, 7}. Upon measuring the y-bit of state |x〉 =
∑7

i=0 ci|i〉,
we see the value of |0〉 with probability px(0) = |c0|2 + |c1|2 + |c4|2 + |c5|2. The new state of the quword is
(c0|0〉 + c1|1〉 + c4|4〉 + c5|5〉)/px(0). There is an analogous case where we see the value |1〉 for the Y -bit.

¶9. Observables. The general treatment of measurements is in terms of an observable, M = {Mi : i ∈ I}
where I is the set of possible outcomes of the observable M , and Mi is an measurement operator corresponding
to outcome i. The operators (i.e., matrices in concrete representation) satisfy the equation

∑

i∈I
M∗
iMi = I (3)

where I is the identity operator. We can measure any state |x〉 using an observable M . This measurement changes
|x〉 to one of |I| possible new states called collapsed states, as follows. The probability of outcome i ∈ I is4 given
by

pi(x) := 〈x|M∗
iMi|x〉

(pi(x) = ‖Mi|x〉‖2, see below). The corresponding collapsed state is

Mi|x〉√
〈x|M∗

iMi|x〉
=

Mi|x〉√
pi(x)

.

The Equation (3) ensures that ∑

i∈I
pi(x) =

∑

i∈I
〈x|M∗

iMi|x〉 = 1.

If we are not interested in describing collapsed states, only the probability of various outcomes, then it is enough to
specify the matrices Ei = M∗

iMi (i ∈ I). The Ei’s are called positive operator-valued measure (POVM) operators.

¶10. Example. Let us reformulate our discussion about measuring a subset of qubits of a quword in the
framework of observable. Say we want to “observe” the last qubit (least significant bit) in a 2-quword. So there
are only two outcomes, I = {0, 1} and M = {M0,M1}.

M0 =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 , M1 =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 .

Clearly, M0 + M1 = I. For instance, if |y〉 = (|0〉 + |1〉) ⊗ |0〉/
√

2, then 〈y|M∗
0M0|y〉 = 〈y|M0|y〉 = 1. Thus the

probability of observing a zero in the last qubit in |y〉 is 1, as we would expect. Moreover, the outcome of the
observation M0 is |y〉. As expected, 〈y|M∗

1M1|y〉 = 0.
Each measurement operator Mi is represented by a n× n Hermitian matrix. Using the spectral representation

theorem, Mi =
∑n

j=1 λjPj where Pj are projection operators.

Exercises

4Note that we could parse the expression 〈x|M∗

i Mi|x〉 in several equivalent ways: (〈x|M∗

i )(Mi|x〉) = 〈x|(M∗

i (Mi|x〉)) =
〈x|((M∗

i Mi)|x〉). Also, (Mi|x〉)∗ = 〈x|M∗

i .
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Exercise 3.1: Suppose |y〉 = eiθ|x〉. Show that there is no observable difference between |x〉 and |y〉. ♦

Exercise 3.2: Suppose X = (x2x1x0) be three qubits whose eigenstates represents the binary numbers between
0 and 7. Describe an observable with two outcomes M = {M0,M1} such that for eigenstate |x〉, we have
pi(x) = 1 iff the |x〉 corresponds to a prime number (i.e, 2, 3, 5 or 7). ♦

End Exercises

§4. Axiomatic Quantum Mechanics

¶11. The simplest approach to quantum mechanics is an axiomatic one. We postulate the basic entities,
operators and their properties, and investigate them mathematically. It is the physical interpretation that validates
the mathematical model, but after the model has been accepted, it can be studied fully on its own merits. This
often lead to consequences that are so surprising that we need physical experiments to confirm the model prediction.

As seen above, quantum states are some kind of complex vectors. Following von Neumann, we postulate the
space of quantum states as a suitable complex vector space S. Elements ϕ, ψ ∈ S of S are called states. In the
Dirac notation, we would use “|ϕ〉” instead of a plain ϕ. Each ϕ defines a dual vector (see below) which in the
Dirac notation is written “〈ϕ|” (the bra-notation). We emphasize that these are stylistic conventions. We saw that
those complex numbers α ∈ C with absolute value |α| ≤ 1 are very important: such α’s are called probability
amplitudes (or, complex probabilities).

¶12. Hilbert Space. We outline some main properties we will need; refer to the appendix for additional
mathematical background. Let S be a complex vector space, endowed with an inner product 〈·, ·〉 : S × S → C.
Consistent with the Dirac bra-ket notation, the inner product of ψ, ϕ ∈ S will be written as “〈ψ|ϕ〉” instead of the
conventional notation for scalar product, 〈ψ, ϕ〉. This suggests that we view the inner product as the application
of a dual vector 〈ψ| to the state |ϕ〉. The inner product satisfies three axioms:

1. (Positivity) 〈ψ|ψ〉 is real and non-negative for all ψ. Furthermore, it is strictly positive iff ψ 6= 0.

2. (Linearity) 〈ψ|aϕ1 + bϕ2〉 = a〈ψ|ϕ1〉 + b〈ψ|ϕ2〉.

3. (Skew Symmetry) 〈ψ|ϕ〉 = 〈ϕ|ψ〉∗.

Define the norm of ϕ ∈ S by ‖ϕ‖ :=
√
〈ϕ|ϕ〉. Two vectors ϕ, ψ are orthogonal if 〈ϕ|ψ〉 = 0. A set of vectors

{|ei〉 : i ∈ B} is called a basis if every |ϕ〉 ∈ S can be uniquely written as a linear combination
∑

i∈B ci|ei〉.
Uniqueness implies that the |ei〉’s are linearly independent. If each |ei〉 has unit norm, and they are mutually
orthogonal, the basis is orthonormal. A basic fact about vector spaces is that the cardinality of B is a property
of S, and is called the dimension of S. Dimension can be finite or infinite. Relative to the norm ‖ · ‖, a sequence
{x0, x1, . . .} in S is Cauchy if for every ε > 0 there exists n such that ‖xi − xj‖ < ε whenever i, j > n. We say S
is complete relative to this norm if every Cauchy sequence {x0, x1, . . .} in S with respect to the norm converges
to an element of S.

A Hilbert space is a complex vector space S with an inner product (x, y) ∈ S2 7→ 〈x|y〉 ∈ S that is complete.
Hilbert spaces has a natural topology induced by the metric d(x, y) = ‖x − y‖. So the notion of continuity of a
function f : S → C, etc, is meaningful.

¶13. Examples. Let S = ℓ2(n) denote the vector space Cn where x, y ∈ Cn has inner product 〈x|y〉 =
∑n
i=1 x

∗
i yi,

xi, yi being the components of x, y, respectively. We can extend this to the infinite dimensional space S = ℓ2(∞)
comprising vectors (xi)

∞
i=0 with

∑∞
i=1 |xi|2 < ∞. Another infinite dimensional space is L2(a, b) for reals a, b with

−∞ ≤ a < b ≤ ∞. This space comprises all f : (a, b) → C such that
∫ b
a
|f(t)|2dt is defined and < ∞. The inner

product is defined by 〈f |g〉 =
∫ b
a f

∗(t)g(t)dt. The elements in L2(a, b) are equivalence classes of functions where
f ≡ g if ‖f − g‖ = 0.
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¶14. Linear operators and functionals. A linear functional over S is a continuous linear function L : S →
C. Linearity means L(ax + by) = aL(x) + bL(y) for all x, y ∈ S and a, b ∈ C. For any x ∈ S, we can obtain a
linear functional Lx : S 7→ C where Lx(y) = 〈x|y〉. A basic result about Hilbert space is that all linear functionals
are of this form. Let S∗ be the space of all linear functionals over S. We make S∗ a vector space by defining
aLx + bLy = Lax+by for all x, y ∈ S and a, b ∈ C. This S∗ is also called the dual space of S, and elements of S∗

are dual vectors. If a state y is written |y〉, its dual vector is denoted 〈y|. Applying a linear functional Lx to y
yields 〈x|y〉.

A linear operator of S is a linear function A : S → S. Linearity means A(ax + by) = aA(x) + bA(y). When
S is finite dimensional, A can be represented by an n × n matrix with complex entries. The identity operator I
is represented by the identity matrix. The operator A is invertible iff its matrix has non-zero determinant. When
invertible, the inverse operator A−1 is represented by its matrix inverse. An important class of operators are the
unitary ones: an operator U is unitary if it has an inverse which given by its conjugate transpose U−1 = U∗.
Equivalently, unitary means U∗U = I.

See the appendix for more information. All our functionals and operators are linear, and hence we normally
drop the “linear” adjective.

Let |x〉 ∈ S and |y〉 ∈ T are vectors in two Hilbert spaces. Consider the map L : S → T that maps any |v〉 ∈ S
to 〈x|v〉|y〉. We verify that L is a linear operator. A convenient notation for L is |x〉〈y|, called the outer product
of |x〉 and 〈y|. Applying L to |v〉 is then written as

(|x〉〈y|)(|v〉) = |x〉〈y|v〉 = 〈y|v〉|y〉.

¶15. Quantum Mechanical System Postulates. Each quantum mechanical system (QMS) lives in some
Hilbert space S. At each moment in time, the QMS has a definite state. These states can change in one of two
ways: by transformation or measurement. The mathematical properties of these concepts are given in three
postulates:

I. State Postulate: The (quantum) states of the quantum mechanical system (QMS) are elements |x〉 of a Hilbert
space S with unit norm.

II. Transformation Postulate: Transformations of states correspond to applying a unitary operator U , taking
|x〉 to U |x〉.

III. Measurement Postulate: Measurement of states correspond applying an observable M = {Mi : i ∈ I} (see
¶8). When we measure a state |x〉 using M , this collapses the state to a new state Mi|x〉/

√
pi(x) with

probability pi(x) (for each i ∈ I). Here, pi(x) = 〈x|M∗
iMi|x〉. (Check: Mi|x〉/

√
pi(x) is a state.)

IV. Composition of Quantum States: If S and T are the state space of two QMS’s. Then their combined state
space is the tensor product S ⊗ T , another Hilbert space.

Remarks:
1. Where is time in these postulates? It is implicit in our postulates that U and M are fixed operators and they
act “instantaneosuly”. Time is just a totally ordered sequence of states that results from a transformation or a
measurement. Thus time is discrete rather than continuous, and is implicitly recorded by the sequence of states.
This is the computer science view. In physics it is more common to assume that a unitary operator U is a function
of a continuous time variable t, written U = Ut. See [22, p. 83] to see how continuous time can be reduced to
discrete time.
2. Postulates II and III concern change of states. While the change by unitary transformations is reversible (since
U−1 is also unitary), the change by measurement is not. One way to describe the former is that U corresponds to
transformations in a closed system.
3. For our purposes, it is sufficient to focus on the finite dimensional Hilbert spaces S. Henceforth, we identify S
with Cm for some m. Relative to some basis set e1, . . . , em for S, states of S have the form ψ =

∑m
i=1 ciei where∑m

i=1 |ci|2 = 1.
4. The observable M corresponds to physical concepts such as linear momentum, energy or mass.
5. The fourth postulate introduces the tensor structure into quantum states – this leads to the wonderful strange
world of quantum phenomenon, such as the Bell states. In particular, it rejects the classical method of combining
states based on Cartesian product.
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¶16. Structure of quantum states: tensor products. The states of complex QMS are obtained by combining
simpler QMS’s. The simplest example is the state of a quword, made up of the states of its qubits. The mathematical
description of such combinations is the tensor product.

Given two finite dimensional Hilbert spaces S, T , we define a new Hilbert space S ⊗ T called their tensor
product. The basic intuition of tensors is understood in the concrete setting of n-vectors: if x ∈ C

m and y ∈ C
n,

then their tensor product is x⊗ y = (xiyj : i = 1, . . . ,m, j = 1, . . . , n) ∈ Cmn. Note that when we write out x⊗ y
as a mn-vector, z = (z1, . . . , zmn), we must have some fixed convention for identifying each component zk with
some xiyj . That is, we need a bijection b : {1, . . . ,m} × {1, . . . , n} → {1, . . . ,mn} so that zk = xiyj if b(i, j) = k.
A standard bijection is b(i, j) = (i− 1)n+ j.

Thus, the property (2) above is easily verified. Also, we have

(x+ y) ⊗ z = xz ⊗ yz, z ⊗ (x+ y) = zx⊗ zy

Associativity of tensor products is clear. In terms of the state notation, we tend to write |xy〉 instead of |x〉 ⊗ |y〉.
If Hi (i = 1, . . . , k) are Hilbert spaces, so is H = H1 ⊗H2 ⊗ · · · ⊗Hk. Moreover, if Bi is an orthonormal basis for
Hi, then B1 ⊗B2 ⊗ · · · ⊗Bk is an orthonormal basis for H .

In the Exercise, we see that tensor products S ⊗ T can be viewed as the space of bilinear forms on S × T .
Let A,B be linear transformations on S and T respectively. We can also define their tensor produce A ⊗ B

which would be a linear transformation on S ⊗ T . In the concrete setting of n-vectors, A is an m × m matrix,
and B B is an n × n matrix. Their tensor product A ⊗ B is then given a mn×mn matrix which is called the
Kronecker product of A and B. If A = (aij)

m
i,j=1 and B = (bkℓ)

n
k,ℓ=1 then A ⊗ B is the block matrix given by

(aijB)mi,j=1 (or (bkℓA)nk,ℓ=1). It is easily verified that A⊗B is a linear transformation of S⊗T . We also write A⊗n

for A ⊗ A ⊗ · · · ⊗ A (n-fold tensor product of A). See below for an example, where Hn = H⊗n where H is the
Hadamard matrix.

Exercises

Exercise 4.1: (i) Determine the eigenvalues λ1, λ2 of H . Then determine the corresponding unit eigenvectors ui
for λi (i = 1, 2).
(ii) Give the spectral representation of H .
(iii) Suppose you are given the qubit |0〉. Using the observable H = {H0, H1}, what are the possible outcomes
and their probabilities? ♦

Exercise 4.2: (i) Prove that if A,B are linear transformations on S = Cm and T = Cn then A ⊗ B is a linear
transformation on S ⊗ T .
(ii) Prove the same result when the vectors in S, T are restricted to unit length. ♦

Exercise 4.3: An (S, T )-bilinear form is a function f(x, y) taking (x, y) ∈ S × T to a complex number and
satisfying the equation

f(ax+ a′x′, by + b′y′) = abf(x, y) + ab′f(x, y′) + a′bf(x′, y) + a′b′f(x′, y′).

(i) Show the set B(S, T ) of all bilinear forms is a Hilbert space.
(ii) Show that S ⊗ T is isomorphic to B(S, T ). ♦

End Exercises

§5. Reversible Circuits

¶17. We know that quantum computation amounts to “unitary transformation of states in Hilbert spaces”.
But to organize such transformations into useful algorithms, we need computational structures. Computer science
provides many of these structures; perhaps the lowest level structure here is at the circuit level. A circuit is basically
a directed acyclic graph whose nodes represent the unitary transformations (called unitary gates). But before we
study unitary gates, we propose to treat the special case of reversible gates.

As noted in the introduction, the study of reversible computation actually predates quantum computing. An-
other rational for introducing reversible logic in quantum computing is based on the fact that any reversible
computation can be simulated on a quantum computer with essentially the same complexity. So an upper bound on
the reversible complexity of a problem yields an upper bound of its quantum complexity. This is useful because
reversible computation, being classical, is easier to understand.
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¶18. Functions realizable by circuits. Let B = {0, 1}. A Boolean function has the form f : Bm → Bn.
A (classical) circuit is a directed, ordered5 acyclic graph whose nodes are partitioned into three sets: the input
nodes (those with indegree 0), the output nodes (those with outdegree 0), and the rest, called internal nodes.
At each internal node with indegree k and outdegree ℓ, we associate it with Boolean function g : Bk → Bℓ. We
call g a gate of the circuit. We further require the input nodes to have outdegree 1, and the output nodes to have
indegree 1.

The graph edges are called wires. Each input or output node in incident to a unique wire; thus we may refer to
these as the input and output wires. Given an assignment a of Boolean values to the input wires, we can inductively
associate a Boolean value w(a) to each wire w of the graph: call w(a) the value computed at w.

A circuit C is said to realize a function f : Bm → Bn if the input nodes can be partitioned into two sets,
x = (x1, . . . , xm) and x′ = (x′1, . . . , x

′
k), and the output nodes can be partitioned into two sets, z = (z1, . . . , zn)

and z′ = (z′1, . . . , z
′
ℓ), and there exists an assignment of values c ∈ Bk to x′ such that, for all assignment of values

a ∈ B
m to x, the values computed at y is given by f(a).

In this definition, the input nodes x′ are called control nodes and the output nodes y′ are called junk nodes.
The value c that we assign to the control nodes is the preparation. Intuitively, C realizes f means that, with
suitable preparation of the control nodes, we can compute f . We say that C strongly realizes f if we can use an
arbitrary preparation c.

A basis B is just any set of Boolean functions. A circuit over a basis B is one whose gates are taken from B.
The basis is universal if every Boolean function can be realized by a circuit over B.

A well-known universal basis is the set of Boolean functions {ANDm,n, ORm,n, NOT : m,n ∈ N}. Here
ANDm,n is the m input, n output function where each output line is 1 iff all the input lines are 1. The ORm,n
function is similarly defined. These functions may also be denoted by the symbols

∧m,n, ∨m,n, ¬.
Remark: Our definition of circuits is slightly unconventional because of the need to handle control inputs and

junk outputs, and because of its adaptation to reversible circuits.

¶19. Reversible functions. A Boolean function f : Bm → Bn is reversible if it is a 1 − 1 function. Thus
m ≤ n. In particular, if m = n, then the reversible function is actually a permutation.

If f, g are Boolean functions, we shall say that f is reducible to g (denoted f ≤ g) if for all circuits C, if C
realizes g then C realizes f . Intuitively, f is reducible to g means that, by setting some inputs of g as control, and
some outputs of g as junk, we obtain a realization of f .

Lemma 1. Every Boolean function f : Bm → Bn is reducible to some permutation.

Proof. If f is not reversible, we can reduce to a reversible function f ′. The idea is to just reproduce the input
in the output: define the function f ′

f ′ : B
m → B

m+n

where f ′(x) = (x, f(x)). Clearly, f ≤ f ′.
Next, we reduce a reversible f ′ into some permutation f ′′ where

f ′′ : B
m+n → B

m+n

where f ′′(x, 0n) = f ′(x) = (x, f(x)). Note that f ′′ is under-specified at this point, since we have left unspecified
the values f ′′(x, y) for y 6= 0n. But it is clear that such f ′′ exists. Again, we see that f ′ ≤ f ′′. Q.E.D.

¶20. Reversible XOR gate. The classical XOR gate is defined as follows: XOR(x, y) = 0 iff x = y. In infix
notation, we write x ⊕ y for XOR(x, y). It may be easier to understand XOR as addition modulo 2 (the symbol
⊕ is highly suggestive of this). This gate is clearly non-reversible. A simple variation gives us the reversible
exclusive-or (denoted T2(x, y)) with 2-inputs and 2-outputs where

T2(x, y) = (x, x ⊕ y).

This is also called the controlled-NOT gate as we can think of the first bit as a “control bit”, and the second bit
as “data bit”, which is negated or not, depending on the control bit. The diagramatic representation6 of this gate
is seen in Figure 3(a).

5The graph is ordered if, at each internal node u, the set of incoming edges at u has a total ordering, and likewise the set outgoing
edges at u has a total ordering. This ordering is needed for a correct definition of computation at the gates.

6Feynman [18] introduced this notation, but with the ⊕ node is written as an “X”. The X-gate is a common alternative notation
for the controlled-not gate.
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y x ⊕ y

(a) Reversible XOR(x, y)

x

y

z

x

y

z ⊕ xy

(b) Toffoli gate T (x, y, z)

x1

x2

u

x3

y

x1

x2

u

x3

y ⊕ x1x2x3

(d) T ′

4(x1, x2, x3, y;u)

x3

y

x3

y ⊕ x1x2x3

(c) T4(x1, x2, x3, y; 0)

x x

x1

x2

0

x1

x2

0

Figure 3: (a) Controlled XOR, T2(x, y), (b) Toffoli Gate, T (x, y, z), (c) Circuit for T4, (d) Alternative circuit for
T4

There are three simple uses of T2-gate. First, it can perform negation: T2(1, x) = (1,¬x). Second, it can
function as a “copier” of values. If the second wire of T2 is prepared as 0, then the both output wires will contain
the value of the first wire:

(x, 0) 7→ T2(x, 0) = (x, x). (4)

A third application is for exchanging any two values. This is done7 by arranging three of these gates in series, as

x

y
x⊕ y

x y

x⊕ y

y

x

x

y

y

x

≡

Figure 4: Exchange of x and y-bits, and corresponding gate symbol

in Figure 4 with the middle gate exchanging the roles of the control bit and data bit:

(x, y) 7→ (x, x ⊕ y) 7→ (y, x⊕ y) 7→ (y, x). (5)

It follows that any permutation of the input bits can be achieved using this gate, as any permutation can be
obtained as a product of transpositions (pairwise exchanges). Note that being able to permute bits does not mean
the T2-gate is universal: there are n! bit functions that permute bits of Bn but there are (2n)! permutations of the
set B

n. Indeed, it can be shown that the set of all 1-bit and 2-bit reversible gates is not universal (see Exercise).

¶21. Scheme for drawing reversible circuits. We shall work mainly with bases B in which each gate g ∈ B
has input arity and output arity that are equal, g : Bk → Bℓ where k = ℓ. A circuit over such bases will have the
same number of input wires as output wires. Such circuits can be systematically diagramed as in Figure 3:

• If there are m input wires, we draw m horizontal lines. These lines can be given a useful interpretation –
they represent a unit of storage space.

• Each gate is represented by a vertical bar: when the bar crosses a horizontal wire that is used by the gate,
we mark this intersection with a suitable “intersection symbol”. For the gates in Figure 3, note that we need

7Matt Johnson points out a programming analogy: in the C programming language, the instruction x ∧ = y ∧ = x ∧ = y will
exchange the values of the Boolean variables x, y.
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only two kinds of intersection symbols – a small black circle and somewhat larger ⊕ symbol. Each of the
small black circle could be replaced by a white circle, indicating that the control line is activated iff the line
contains the state |1〉. Also Figure 4 shows that an exchange gate can be indicated with two “x” symbols.

• Thus, the wires in such a diagram are represented by the horizontal segments between two consecutive
intersection symbols.

• We conventionally think of values in the wires as flowing in the left-to-right direction. Call this the “forward”
direction. So the input (output) wires are on the left (right) end of the lines. When the gates are reversible,
we could equally have the values flow in the “backward” direction.

¶22. Toffoli gate. We now consider a 3-bit input gate called the Toffoli gate defined by

T (x, y, z) = (x, y, z ⊕ xy).

It is clearly a generalization of the controlled-NOT gate; in turn we can generalize this to the n-input Toffoli gate,

Tn(x1, x2, . . . , xn−1, y) = (x1, x2, . . . , xn−1, y
′)

where y′ = y ⊕ (x1x2 · · ·xn−1). In other words, the last bit is complemented provided the first n − 1 bits are 1.
Thus the Toffoli gate may also be denoted T3.

It is easy to see that Tn ≤ Tn+1 for n ≥ 2. This reduction is achieved by setting one of inputs of Tn to 1:
Tn(1, x2, . . . , xn) = (1, Tn1

(x2, . . . , xn)). In particular, it means that Tn can negate bits, copy bits and exchange
any two bits, just as T2. Also, Tn(Tn(x1, . . . , xn)) = (x1, . . . , xn), i.e., Tn is its own inverse.

Figure 3(c) shows a circuit over T3 that realizes T4. Note that there is a control line and a junk line: the control
line is prepared with 0, and this value is preserved in the junk line. The role of the third T -gate is to preserve this
0 bit. In Figure 3(d), we use another realization of T4, using an extra Toffoli gate. In this case, the control line can
be arbitrary (i.e., T4 is strongly realized by this circuit). It is easy to generalize these constructions to obtain Tn.

Theorem 2. The basis {T } comprising only the Toffoli gate is universal.

Proof. Since every function can be realized by a reversible function, it is sufficient to prove that every reversible
f : Bm → Bn (m ≤ n) can be realized by toffoli gates. For m = 0, this is trivial: we do not need any gates, just n
control wires and n output wires. The control wires are set to exactly the desired outputs.

Let i = 0, 1. For m > 0, let fi : Bm−1 → Bn be the functions given by fi(x) = f(0,x) for all x ∈ Bm−1. By
induction, let Fi(x2, . . . , xm) be a circuit over T realizing fi.

We construct an “controlled exchange circuit” E(c, a, b) that is analogous to the circuit in Figure 4, except that
we replace the T2 gates by Toffoli gates. Thus, an exchange occurs iff the first bit is 1, i.e.,

E(c, a, b) =

{
(1, b, a) if c = 1,
(0, a, b) if c = 0.

We use m such exchange circuits to select among the outputs of C0 or C1. More precisely, we construct a circuit
F (x1, . . . , xm) = (y1, . . . , yn) for f : Bm → Bn as follows. Assume we have two circuits F0(x2, . . . , xm) and
F1(x2, . . . , xm) realizing f0 and f1, as described above. For each j = 1, . . . , n, let Fi[j] = Fi(x2, . . . , xm)[j] denote
the jth output wire of Fi(x2, . . . , xm). We put these wires into the exchange circuit as follows:

E(x1, F0[j], F1[j]) (6)

The jth output of F (x1, . . . , xm) is defined to be the second output of (6), i.e.,

yj = E(x1, F0[j], F1[j])[2].

Thus, if x1 = 0, then yj = F0[j], and if x1 = 1, then yj = F1[j]. Q.E.D.

Suppose f is invertible. Then we would like the realizing circuit to have control wires which can be prepared
with 0’s, and whose junk wires only carry 0’s. This is left as an exercise.

Exercises

Exercise 5.1: Prove the following extension of the universality theorem: suppose f is an invertible Boolean
function. Then f is realized by a circuit over the basis B = {¬, T3} in which all control wires are prepared
with 0’s and all junk bits are 0’s. ♦
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Exercise 5.2: Consider the function Cn with two n-quwords x = (x1, . . . , xn) and y = (y1, . . . , yn) as inputs. The
output is given by Cn(x,y) = (min{x,y},max{x,y}). The comparison is lexicographic (or you may interpret
it as comparison of binary numbers). This function is not reversible.
(i) Construct a reversible circuit that realizes C1. HINT: Be sure that you use only reversible gates in your
construction (it is not enough to just ensure that the overall circuit computes a reversible function).
(ii) Generalize your solution in (i) to Cn. ♦

End Exercises

§6. Bennett’s Scheme for Reversible Computation

¶23. Bennett [7] shows that any algorithm for computing a function F (x) = y can be converted into a reversible

algorithm for computing the related F̃ (x) = (x, y). Moreover, if F is computing in time T then F̃ can be computed
in time O(T ). Bennett’s proof uses the same ideas as the above proof on the universality of Toffoli gates, except
that it is now expressed as a result on general computation. But we shall see that Bennett’s computation scheme
achieves an extra property.

As before, the basic idea is to keep a history of the computational steps in performing F . Begin with any
machine M that computes some function

M(inputm) = (outputn).

The subscript m,n tells us how many bits are in the input and output arguments. We may think of M as a Turing
machine. As is well-known in complexity theory, the computation of M can be encoded by a Boolean circuit

We first replace the circuit by a reversible circuit M1. For instance, if C uses only AND and OR gates only, we
can make them reversible by adding extra (control or junk) wires. This reversible circuit can be further realized
using Toffoli gates. Also, each original input wire must be duplicated, as many times as it is used in the Boolean
circuit. Although we intend to ignore the junk wires, we can think of the junk as a record of the computation.
Hence, denote these junk wires by recordk (there are k wires). We may denote the transformation of M1 by

M1 : (inputm, zeron+k+ℓ) 7→ (outputn, recordk, zerom+ℓ). (7)

Here we assume that ℓ ≥ 0 extra lines are needed to realize the original computation reversibly. This representation
is completely general because in the circuits realized by Toffoli gates, we may assume that extra control wires is
prepared with 0’s, and the junk wires eventually contain zero.

In some sense, we are done. But let us impose an additional requirement: we want to reset all junk wires to zero.
This property will be useful later: if we want to implement our scheme using quantum computers, then resetting
recordk to 0 is needed to to avoid interference when we read the desired outputn.

In (7), the values in recordk are considered junk, and they are not necessarily zero. Hence, to satisfy our extra
requirement, we add another n control wires, prepared to 0 – call these extra inputs zerosn. They will hold our
eventual output (recall the interpretation of “lines” in ¶21). We describe the overall scheme in three stages:

• First, we call M1, but we re-interprete this transformation as

(inputm, zerosk, zerosn) 7→ (inputm, zerosk, outputn).

M1 : (inputm, zeron, zeron+k+ℓ) 7→ (outputn, zeron, recordk , zerom+ℓ), (8)

i.e., adding zeron as new control wires.

• Next, we make an extra copy of outputn in the control wires zerosn. This copying of values can be done
using8 T2 gates, as in (4). So Stage B produces the transformation

M2 : (outputn, zeron, recordk, zerom+ℓ) 7→ (outputn, outputn, recordk, zerom+ℓ). (9)

• Finally, we run the reversible circuit M1 backwards, with (outputn, recorkk , zerom+ℓ) as input! This produces
(inputm, zeron, zerok+ℓ). With suitable reordering, we write this transformation as

M3 : (outputn, outputn, recordk , zerom+ℓ) 7→ (inputm, outputn, zeron+k+ℓ). (10)

8Note that T2 requires no control lines. But if we use T3 instead of T2, we need an extra control line.
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• Composing these three stages, we have the transformation

(inputm, zeron, zeron+k+ℓ) 7→ (inputm, outputn, zeron+k+ℓ).

By viewing the scratch space zerosn+k+ℓ as internal to the machine, we have shown the reversible computation
of the desired function

F̃ : (inputm, zerosn) 7→ (inputm, outputn).

Shor noted that Lecerf [20] obtained a result similar to Bennett’s. Note that although time is not asymptotically
increased by this scheme, space (i.e., extra wires) may be as bad as Ω(T ). It is possible to improve the space
utilization by trading it for increased time [9].

Exercises

Exercise 6.1: Consider reversible circuits to compute the following transformation: f : B2n → B2n where f(x, y) =
(x, y2) where 0 ≤ x, y < 2n are n-bit binary numbers and y2 is taken modulo 2n. Construct the circuit
explicitly for the case n = 3 using the family of Tn gates. ♦

Exercise 6.2: Design a full adder using T2 and T3 gates. This circuit has 4 wires a, b, c, d where a, b, c are the two
input bits plus a carry-in bit, and d is set to 0. The output wires are a′, b′, c′, d′ where c′ is the sum and d′

the carry-out. Consider a′, b′ to be junk wires. Note: 4 gates suffices. ♦

Exercise 6.3: Show by a direct argument that T3 cannot be constructed out of circuits involving T2 and other
two-input gates. ♦

Exercise 6.4: We will be computing in Z2 (modulo 2) in the following.
(i) Enumerate the 6 invertible 2 × 2 matrices.
(ii) Show that all invertible 2-input functions are linear: (x, y) 7→ (x, y)M + (a, b) where M is an invertible
matrix from (i) and a, b are constants.
(iii) Show that any circuit composed of linear gates is linear.
(iv) Conclude that the set of reversible 2-inputs and 1-input gates is not universal.
(v) Give an nonlinear invertible function f : B3 → B3. Show that it is nonlinear as well as give an implemen-
tation of f by Toffoli gates. ♦

Exercise 6.5:
(i) Show the recursive construction of Tn from T in which we use only one extra bit of scratch space. What
is the number of T -gates used? (ii) Show that with 3 scratch bits, initiallized to 0, we can construct Tn with
2n− 5 T -gates. ♦

Exercise 6.6: Show that any 4-input circuit composed from T (x, y, z) must compute an even permutation of B4.
Conclude that such a circuit cannot compute T4. ♦

End Exercises

§7. Quantum Circuits

¶24. Unlike classical circuits, a quantum circuit has qubits instead of bits on each wire. It also uses quantum
gates, which are a generalization of reversible gates. Each quantum gate is a unitary transformation on a fixed
number of qubits. These unitary transformations are chosen from some finite basis. At the end of the computation,
a measurement is made of some of the qubits. This “measurement at the end” is a canonical choice; in practice,
one may wish to make measurements throughout the computation. Quantum circuits were introduced by David
Deutsch in 1981.

A gate or function that manipulates n qubits is represented by a 2n × 2n unitary matrix. The following
Hadamard matrix corresponds to the Hadamard gate which operates on 1 qubit:

H :=

[
1√
2

1√
2

1√
2

− 1√
2

]
=

1√
2

[
1 1
1 −1

]
. (11)
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It is easy to check that the matrix9 H is unitary: H∗H = I. This gate transforms the eigenstates |0〉 and |1〉 as
follows:

H : |0〉 7→ 1√
2
|0〉 +

1√
2
|1〉

|1〉 7→ 1√
2
|0〉 − 1√

2
|1〉,

The transformed states H |0〉 and H |1〉 are sometimes denoted |+〉 and |−〉, respectively. By viewing |0〉 and |1〉
as the column vectors e0 = (1, 0)T and e1 = (0, 1)T , respectively, then transformations by H is just matrix-vector
multiplication.

Recall that in the Stern-Gerlach device figure 1, we could change the basis of the measurement by just rotating
the apparatus along the axis of the electron path. Rotating the device by 90◦ amounts to using the basis H |0〉 and
H |1〉.

We can generalize H to
Hn := H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸

n

which is a 2n × 2n matrix. This is now a unitary operator on n-quwords. For instance,

H2 =
1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 . (12)

Transformation Hn will be used in various quantum algorithms to create a superposition of all possible 2n states
for subsequent computation. The gate representation of Hn amounts to placing a H-gate on each of the n wires,
in parallel, in an n-quword circuit.

¶25. Convention: The operations of a 2n×2n unitary matrixM on states of n-quwords uses a natural convention
which may be worth spelling out. The eigenstates are ordered lexicographically, in the order |0n〉, |0n−11〉, . . . , |1n〉
or equivalently,

|0〉, |1〉, |2〉, . . . , |2n − 1〉.
This ordering is used to label the rows and columns of M . For i = 0, . . . , 2n− 1, the elementary 2n-vector ei which
has 1 in the ith position and 0 elsewhere represents the eigenstate |i〉. The state x of the quword is just a 2n-vector
of length 1. The transformation M operates on state x by matrix-vector multiplication, Mx. For instance,

Hn| 00 · · ·0︸ ︷︷ ︸
n

〉 =
1

2n/2

2n−1∑

i=0

|i〉.

More generally:

Lemma 3.

Hn(|j1j2 · · · jn〉) =
1

2n/2

2n−1∑

i=0

(−1)〈i,j〉|i〉.

where 〈i, j〉 =
∑n

k=1 ikjk denotes scalar product of two n-vectors.

We leave this demonstration to an Exercise.

¶26. Unitary Matrices of Reversible Circuits. We said that reversible circuits are special cases of quantum
circuits. It is instructive to see10 what this means.

Lemma 4. Reversible gates are quantum gates.

9Hadamard matrices are often defined as non-singular matrices whose entries are ±1. But to get unitary matrices here, we scale the
±1 entries by the factor 1/

√
2. Another name for Hadamard transformations is “Hadamard-Walsh transforms”.

10There is also the converse statement “quantum gates are reversible”, which is also true. Taken together, this might yield the
wrong conclusion that quantum gates and reversible gates are identical concepts! The reason for this is, of course, is the quirk in our
terminology: “g is a reversible gate” has a special meaning and means more than just saying “gate g is reversible”.
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Proof. Formally, a reversible gate computes a classical function f : Bn → Bn. This gives rise to a permutation
matrix Uf of size 2n × 2n. Permutation matrices, by definition, have exactly one 1 on each row and each column,
and has 0’s everywhere else. This lemma amounts to the claim that U = Uf is unitary, i.e., UU∗ = I. This means
(UU∗)ij = 1 if i = j and 0 otherwise. If i = j then the ith row of U and the jth column of U∗ are the same and
hence their scalar product is 1. If i 6= j, then the unique 1 on the ith row will not be matched up with the unique
1 on the jth column, and so their scalar product is 0. Q.E.D.

Another way to interprete the lemma is to say that a classical reversible gate specifies transformation on
eigenstates, and this becomes a quantum gate if we extend the transformation to superposition of eigenstates,
using linearity.

In illustration, consider the Toffoli gate T (x, y, z) = T3(x, y, z). The corresponding unitary 8 × 8 matrix U3

operating on linear combinations of the eigenstates |xyz〉 = |x〉 ⊗ |y〉 ⊗ |z〉. We have

U3(|x〉 ⊗ |y〉 ⊗ |z〉) = U3(|xyz〉) =






|xyz〉 if x = 0 or y = 0,
|111〉 if x = y = 1, z = 0,
|110〉 if x = y = z = 1.

With the usual labeling conventions, U3 becomes the following matrix

U3 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




(13)

When we compose gates into circuits, we are building unitary matrices from the unitary matrices represented by
the individual gates in a natural way. For instance, if |x〉 = |x1x2x3〉 is the state of 3 qubits that are being operated
on by T3, and |y〉 = |x4 · · ·xn〉 is the state of the rest of the qubits, then the overall unitary matrix corresponding
to this transformation is the tensor product

V3 = U3 ⊗ I

where I is a 2n−3 × 2n−3 identity matrix. We note: permutation matrices are closed under tensor products. The
universality of T3 implies that every permutation matrix can written as a product of matrices such as V3 (which
are extensions of U3 to perform transformations on n qubits).

Deutsch shows the existence of a universal quantum gate D(x, y, z). It is a generalization of Toffoli’s gate: if
x, y, z ∈ B then D(|x, y, z〉) = |x, y, z〉 if both x ∧ y 6= 1; otherwise D(x, y, z) = |x, y, U(z)〉 where U is a 2 × 2
unitary transformation.

Exercises

Exercise 7.1: A 2n × 2n unitary matrix U represents a classical gate iff it is a permutation matrix. ♦

End Exercises

§8. Structure of 2 × 2 Unitary Matrices.

¶27. Bloch Sphere. This is a scheme for visualizing the states of a qubit as a point on the sphere unit 2-sphere
S2. Let

|x〉 = c0|0〉 + c1|1〉

where |c0|2 + |c1|2 = 1. Then we can write c0 = eiγ cos(θ/2) and c1 = ei(γ+φ) sin(θ/2) for some γ, φ, θ. Hence

|x〉 = eiγ
(
cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉

)
. (14)

Note that we use “θ/2” instead of “θ” in this formula. This expression is unique unless c0 = 0. Call γ the phase
angle of |x〉. The state |x〉 is normalized by removing this phase angle; wwo states as equivalent if they are
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equal upon normalization. Define the map µ : |x〉 7→ (φ, θ) which acts on equivalence classes of states. The map
is uniquely well-defined except when |x〉 ≡ |0〉 or |x〉 ≡ |1〉: in these exceptional cases, µ is multivalued, with
µ(|1〉) = (φ, π), and µ(|0〉) = (φ, 0) for any φ.

Figure 5 shows the unit 2-sphere, S2. Let us first establist an (x, y, z)-coordinate system. Pick two distinguished
points on the sphere: N (North Pole) and E (“East Pole”) where the distance between N and E along a great
arc is π/2. We may introduce points S (South Pole) and W , diametrically opposite N and E (respectively). The
North Pole N points in the positive z direction, and E with the positive y direction. The positive x direction must
be orthogonal to the y and z directions; this is uniquely determined by requiring (x, y, z) to be right-hand system
(see Figure 5).

N = |0〉

S = |1〉

E

z

x

y
φ

W

(sin θ cos φ, sin θ sin φ, cos θ)

θ

Figure 5: Bloch sphere. [MUST FIX: replace φ by its 90 deg-complement, label (cosφ, sinφ, 0) on the Equator, and
(sin θ cosφ, sin θ sinφ, cos θ) corresponds to (φ, θ) ]

Like the surface of the earth, S2 can be given a coordinate system based on two angles. This is the (φ, θ)
coordinate system. We may identify φ with longitude lines and θ with latitude lines as in conventional earth
maps. The longitude φ = 0 corresponds to the half-circle from N to S passing through the x-axis. This is the
Greenwich meridian. The longitude φ = π/2 passes through the point E. However, we measure latitude θ somewhat
unconventionally, with the Equator (the great circle passing through E and W ) corresponding to θ = π/2; also
θ = 0, π corresponding to N and S. Without loss of generality, assume φ ∈ [0, 2π) and θ ∈ [0, π].

So each qubit state |x〉 corresponds to a point µ(|x〉) on S2; call S2 the Bloch sphere under this correspondence.
In particular, observe that the states |0〉 and |1〉 correspond to the North and South Poles, respectively.

In the (x, y, z)-coordinate system, the point (φ, θ) becomes (sin θ cosφ, sin θ sinφ, cos θ).

¶28. Decomposition of qubit gates. Recall that a quantum gate for a single qubit corresponds to a 2 × 2
unitary matrix. An example is the Hadamard gate H . We now derive a decomposition of such matrices Barenco
et al [1]. In particular, each unitary 2 × 2 matrices will be written as a product of three simpler unitary matrices

Let U = [x|y] where x, y ∈ C2 are column vectors. Suppose x = (reiθ, r′eiθ
′

)T where r, θ, r′, θ′ are real and
i =

√
−1. Now U is unitary implies |x|2 = |y|2 = 1 and x∗y = 0. From |x|2 = 1, we obtain r2 + r′2 = 1 and hence

x = (cosαeiθ, sinαeiθ
′

)T for some real α. Similarly, let y = (sinβeiψ, cosβeiψ
′

)T for some real β, ψ, ψ′. Next,

x∗y = 0 implies cosαe−iθ sinβeiψ + sinαe−iθ′ cosβeiψ
′

= 0, or in matrix notation,
[

cos(ψ − θ) cos(ψ′ − θ′)
sin(ψ − θ) sin(ψ′ − θ′)

](
cosα sinβ
sinα cosβ

)
=

(
0
0

)
.

Thus the determinant of the 2 × 2 matrix vanishes,

cos(ψ − θ) sin(ψ′ − θ′) − sin(ψ − θ) cos(ψ′ − θ′) = 0.

Writing 2δ = θ′ − θ and 2δ′ = ψ′ − ψ, this gives sin(2δ′ − 2δ) = 0. Thus δ = δ′ and we have

x = ei(θ+δ)(cosαe−iδ, sinαeiδ)T , y = ei(ψ+δ)(sin βe−iδ, cosβeiδ)T .

The matrix U = [x|y] may be written as a product U = ABC where A,B,C are the matrices

A =

[
e−iδ 0

0 eiδ

]
, B =

[
cosα sinβ
sinα cosβ

]
, C =

[
ei(θ+δ) 0

0 ei(ψ+δ)

]
.
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Since A,C are unitary, it follows from I = U∗U = C∗B∗A∗ABC = C∗B∗BC that B must be also be unitary. Thus
cosα sinα+ cosβ sinβ = 0. This implies α = −β.

B =

[
cosα − sinα
sinα cosα

]
.

Note that det(U) = ±1. But if we further assume that U is special, i.e., det(U) = 1. Since det(A) = det(B) = 1,

we have det(C) = 1. This means ei(θ+ψ+2δ) = 1 or θ + δ = −(ψ + δ). By renaming θ + δ to θ and ψ + δ to ψ, we
obtain the result of Bloch:

Theorem 5. Every unitary matrix U ∈ C2×2 has the form

U =

[
e−iδ 0

0 eiδ

][
cosα − sinα
sinα cosα

] [
eiθ 0

0 eiψ

]
.

If U is special, then ψ = −θ.

¶29. Transformations of the Bloch sphere. We can now visualize each qubit gate or 2×2 unitary matrix: it
corresponds to a transformation of the Bloch sphere. For instance, the Hadamard gate H corresponds to rotating
S2 through 90◦ about the y-axis, and then reflecting across the xy-plane. But without some tools, it is non-trivial
to verify such a remark, not to speak of discovering such an intepretation of H or any given unitary matrix.

The tool to help us is the exponential map: we define the exponentiation of a square matrix A as

eA = exp(A) :=

∞∑

n=0

An

n!
= I +A+

A2

2
+
A3

3!
+ · · · ,

where I is the identity matrix. This is a direct analogy with the exponential function ez =
∑∞

n=0
zn

n! for any complez
number z. In case A2 = I and x is any real number, we may verify that

exp(iAx) = cos(x)I + i sin(x)A. (15)

Note that if A is Hermitian (A∗ = A) and unitary (A∗A = I), then A2 = I.
The following three unitary matrices are called the Pauli matrices:

σx = X =

[
0 1
1 0

]
, σy = Y =

[
0 −i
i 0

]
, σz = Z =

[
1 0
0 −1

]
. (16)

Sometimes they are also denoted σ1, σ2, σ3, respectively. Also, σ0 can be taken as the identity matrix.
Observe that the Pauli matrices are Hermitian as well as unitary. Hence, if we define

Rj(θ) = e−iσjθ/2

where j = x, y, z, then we have

Rx(θ) = cos(θ/2)I − iX sin(θ/2) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]

Ry(θ) = cos(θ/2)I − iY sin(θ/2) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

Rz(θ) = cos(θ/2)I − iZ sin(θ/2) =

[
e−iθ/2 0

0 eiθ/2

]





(17)

The matrix Rj(θ) corresponds to rotation about the j-axis by angle θ.
Example: let v = (x, y)T ∈ C2 be a unit vector representing the quantum state x|0〉 + y|1〉. and let µ(x, y) =

(φ, θ). Consider the matrix Rx(π) =



x x
y
y


. Then Rxv =??.

We can now re-interpret Theorem 5 using such rotation matrices:
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Theorem 6 (Y Z-Decomposition). Every unitary matrix U ∈ C2×2 can be written as the product

U = eiβRz(2δ)Ry(2α)Rz(2γ) (18)

where α, β, γ, δ are real numbers. In other words, U is the composition (in suitable order) of a phase shift, two
rotations about the Z-axis and a rotation about the Y -axis.

Proof. By comparing Ry(θ) and Rz(θ) in (17) with the decomposition U = ABC of Theorem 5, we see that

A = Rz(2δ) and B = Ry(2α). What about C? First, we choose β := θ+ψ
2 and γ := ψ−θ

2 . Hence β − γ = θ and
β + γ = ψ and we may rewrite C as

C =

[
eiθ 0

0 eiψ

]
= eiβ

[
e−iγ 0

0 eiγ

]
= eiβRz(2γ).

Q.E.D.

Remark: multiplying by eiβ is called a phase shift by β.

¶30. Quantum Toffoli gates. Let U =

[
a0 b0
a1 b1

]
be any unitary matrix. Following [1], for any n ≥ 1, we

define the 2n × 2n matrix

Tn−1(U) =




1
1

. . .

1
a0 b0
a1 b1




.

This is clearly unitary. This generalizes the Tofolli gate Tn = Tn(x1, . . . , xn−1, y) above. Indeed, Tn is just Tn−1(X)

where X =

[
0 1
1 0

]
is a Pauli matrix. We can similarly describe the action of Tn−1(U) on an eigenstate |x1 · · ·xn〉

as follows: Tn(U)(|x1 · · ·xn−1, y〉) = |x1 · · ·xn−1, y
′〉 where

y′ =

{
xn if xi = 0 for some i = 1, . . . , n− 1
ayn |0〉 + byn |1〉 if xi = 1 for all i = 1, . . . , n− 1

Thus the last qubit is transformed according to U iff the first n− 1 qubits are 1. The diagramatic representation
of such gates is shown in figure 6(a).

y′

x1

x2

x1

x2

...
...

xn−1

y

xn−1

C B A

S(β)

(b) T1(U)(a) Tn−1(U)

U

Figure 6: Quantum Toffoli gate: (a) Tn(U), (b) realization of T1(U).

¶31. Implementation of the Control-U gate. Given a unitary U matrix, how can we realize the gate Tn(U)?
It is an easy exercise to realize Tn(U) using a T1(U) gate and some control-NOT’s. The following theorem shows
how to realize T1(U) assuming we have gates corresponding Y - and Z-rotations associated with U :
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Theorem 7. If U ∈ C2×2 is unitary, then there exists unitary matrices A,B,C and a real β > 0 such that ABC = I
and

U = eiβAXBXC

where X = σx. Moreover, there are real numbers α, γ, δ such that

A = Rz(2δ)Ry(α), (19)

B = Ry(−α)Rz(−γ − δ), (20)

C = Rz(γ − δ). (21)

Proof. We use the decomposition (18) of Theorem 6. Let α, β, γ, δ be chosen as in that theorem. It is easily

checked that ABC = I. It remains to show that U = eiβAXBXC.
We exploit the ability of the X matrix to reverse the angle of rotation. Note that Y X exchanges the columns

of Y , and X(Y X) exchanges the rows of Y X . Hence we see that XYX = −Y . Similarly, XZX = −Z. Then

XRy(θ)X = X (cos(θ/2)I − i sin(θ/2)Y )X

= cos(θ/2)I + i sin(θ/2)Y

= Ry(−θ).

Similarly, XRz(θ)X = Rz(−θ).
From these elementary properties, we see that XBX = Ry(α)Rz(γ + δ). This yields our desired conclusion

AXBXC = A(XBX)C = [Rz(2δ)Ry(α)] · [Ry(α)Rz(γ + δ)] · [Rz(γ − δ)] = Rz(2δ)Ry(2α)Rz(2γ).

Q.E.D.

We can now realize the T1(U) gate using gates for A,B,C and some control-NOT (i.e., control-X) gates. But
we also need a phase shift gate,

S(β) =

[
1 0

0 eiβ

]

This is seen in Figure 6(b).
In the Exercise, we show that T2(U) is universal for almost all U . In contrast, there are no 2-input reversible

gates that are universal for reversible circuits. Also, no work-bits are needed in quantum circuits, in contrast to
some reversible circuits.

Exercises

Exercise 8.1: Give the Bloch decomposition (theorem 5) of the Hadamard matrix H and also the Pauli matrices
σx, σy, σz . ♦

Exercise 8.2: Verify that the matrix Rj(θ) (j = x, y, z) corresponds to rotation about the j-axis by angle θ. ♦

Exercise 8.3: Consider the Pauli matrices σi (i = x, y, z or i = 1, 2, 3). Show
(i) The eigenvalues of σi are ±1.
(ii) σi−1σi = iσi+1, where subscript addition is modulo 3. ♦

Exercise 8.4: Give the following variation on Theorem 5, where U is written as a product of Rx and Ry matrices.
♦

Exercise 8.5: (i) What points on the Bloch sphere correspond to the following states:

|+〉 = H |0〉 =
1√
2
(|0〉 + |1〉)

|−〉 = H |1〉 =
1√
2
(|0〉 − |1〉)

|a〉 =

√
3

4
|0〉 +

√
1

4
|1〉

|b〉 =

√
3

4
|0〉
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(ii) Prove that the action of the Hadamard gate H on the Bloch sphere has the description (rotation followed
by a reflection) given in the text.
(iii) Similarly, describe the actions of the Dirac matrices σx, σy, σz on the Bloch sphere. ♦

Exercise 8.6: Prove that T2(U) is universal for “most” unitary 2 × 2 U . ♦

End Exercises

§9. No Cloning Theorem

Before we leave this topic of quantum circuits, we prove a simple but fundamental result about unitary trans-
formations from Wootters and Zurek (1982). This result says that we cannot copy an unknown quantum state
perfectly. But first, recall the controlled XOR gate, T2(x, y). We have

T2(x, 0) = (x, x).

Thus, the bit x has been copied or cloned. The next result shows that this is impossible with a quantum gate.

Theorem 8 (No Cloning). Let S = S1 ⊗ S1 be a Hilbert space where S1 is of dimension at least 2. There does not
exist a unitary transformation U such that for all x ∈ S1,

U(|x, 0〉) = |x, x〉

Proof. By way of contradiction, suppose U exists. Let |x〉, |y〉 be two linearly independent vectors of S1. Then
U(|x, 0〉) = |x, x〉 and U(|y, 0〉) = |y, y〉. If z = 1√

2
(|x〉 + |y〉), then

U(|z, 0〉) =
1√
2
(|x, x〉 + |y, y〉)

by linearity of U . However, we note that

|z, z〉 = |z〉 ⊗ |z〉 =
1

2
(|x〉 + |y〉) × (|x〉 + |y〉) =

1

2
(|x, x〉 + |y, x〉 + |y, x〉 + |y, y〉).

But the vectors |x, x〉, |y, x〉, |y, x〉, |y, y〉 are linearly independent in S means that any two linear combinations of
these vectors are equal if and only if their coefficients are identical. Thus, U(|z, 0〉) 6= |z, z〉. Q.E.D.

This result seems to conflict with our previous result that says reversible gates such as T2 can be viewed as
quantum gates. Yet, we said T2 can copy the first bit. The resolution of this apparent paradox is again linguistic:
when viewed as a classical gate T2 can copy the first bit. This breaks down when T2 is viewed as a quantum gate.
Thus T2(|x, 0〉) 6= |x, x〉 when x is no longer a classical bit.

One consequence of this theorem is in quantum cryptography: it implies that secure quantum key generation
is possible. However, the no-cloning theorem says nothing about the possibility of good but imperfect copying.
Indeed such “weak copying” techniques have been proposed.

Exercises

Exercise 9.1: Fill in a detail in the No Cloning theorem: if |x〉, |y〉 are linearly independent in S1 then |xx〉, |xy〉, |yx〉, |yy〉
are linearly independent in S. ♦

End Exercises

§10. Superdense Coding and Teleportation

We give two surprising applications of Bell states or EPR pairs.11 These two applications are converses of each
other, so it is instructive to see them together. First, we must distinguish two kinds of channels for transmitting
information: a channel is classical if it transmits classical bits, and quantum if it transmits quantum states.
We have many examples of classical channels, from radio, emails to telephones. Quantum channels have been

11Named after John S. Bell (1964) and A. Einstein, N. Rosen and B. Podolsky (1935).
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demonstrated in experimental setups. The two applications concern this question: if we have one kind of channel,
how can we use it to effectively transmit data of the other kind?

In both applications, there is a preliminary setup. There is a 2-quword that is in the Bell state

|β00〉 =
1√
2
(|00〉 + |11〉).

Alice holds the first qubit (named a), and Bob holds the second qubit (named b). It does not matter how Alice
and Bob come into possession of these two bits. Perhaps they met before to get their respective bits entangled in
this way. Or, we could imagine a third party preparing this ab pair, and sending a to Alice and b to Bob. It also
does not matter how far apart are Alice and Bob; perhaps they are in different galaxies.

One way to produce this Bell state is to begin with the ab-quword in state |00〉, subject a to the H-gate and
then subject b to the control-NOT (i.e., T2) gate (using a as control wire). See figure 7 (a).

aX

H

b : |0〉

(a)

a : |0〉 H

c

(b)

b

c : |x〉 = α|0〉 + β|1〉

Figure 7: (a) Producing a Bell State, (b) Teleporting state |x〉.

The important thing to remember is that as long as the two qubits remain isolated from the outside world, they
remain “entangled” regardless of physical distance. For instance if Bob measures his b-qubit and sees a 0, then
Alice’s a-qubit will instantaneously turn into a 0. In some sense, this information has been transmitted faster than
the speed of light. This, by itself, does not seem to do anything useful in real life.

¶32. Transporting One Quantum Bit. Let us begin with the easier problem: suppose Alice and Bob shares a
quantum channel, and Alice wants to transmit two classical bits to Bob. We show Alice only need to transmit one
qubit. This scheme is from Bennett and Wiesner (1992), is called superdense coding. Experiments by Mattle,
Weinfurter, Kwiat, Zeilinger (1996) have partially verified a form of this concept.

Suppose Alice wants to transmit to Bob the two classical bits x, y ∈ {0, 1}. She subjects her a qubit to the
following transformation: If x = 1, then phase flip her bit. Next, if y = 1, then negate her bit.

[Draw Circuit here]

x y Results of Alice’s Operations

0 0 1√
2
(|00〉 + |11〉)

0 1 1√
2
(|10〉 + |01〉)

1 0 1√
2
(|00〉 − |11〉)

1 1 1√
2
(|10〉 − |01〉)

Now she sends her qubit a to Bob. Upon receiving a, Bob subjects the ab quword in his possession to the
following transformation

B =




1√
2

1√
2

1√
2

1√
2

1√
2

− 1√
2

− 1√
2

1√
2


 .

We omitted the 0 entries of the matrix. Check that B is unitary and Bob’s quword ends up in the state |xy〉. He
can now observe each qubit in turn, to recover x and y.
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¶33. Transporting Two Classical Bits. Conversely, suppose Alice and Bob has a classical channel, and Bob
wishes to send a qubit to Alice. This application is called teleportation, and comes from Bennett, Brassard,
Crépeau, Jozsa, Peres and Wootters (1993), and various experiments have verified this.

As before, Alice and Bob holds one half of an ab quword in the Bell state |β00〉 = (|00〉 + |11〉)/
√

2. Bob wants
to send Alice a quantum state |x〉 of a brand new qubit named c. We could assume that Bob knows nothing about
this state. Is there any way for Bob to convey this state to Alice by using a classical channel? We show that it is
enough for Bob to send two classical bits to Alice.

Here is the outline of the protocol. First, Bob entangles the b and c qubits, then performs a measurement of
b and c, and finally sends the results of this measurement to Alice. Based on this information, Alice performs a
suitable transformation of her a-qubit and behold, the state of the a qubit would be the unknown |x〉.

Here are the details. Refer to the illustration in Figure 7(b). Let |x〉 = α|0〉+ β|1〉 for unknown α, β ∈ C. Then
the state of the abc-quword is initially

|x0〉 :=
1√
2
(|00〉 + |11〉) ⊗ (α|0〉 + β|1〉)

=
1√
2
{α(|000〉 + |110〉) + β(|001〉 + |111〉)} .

• Bob first performs a control-NOT to the b-qubit (using the c-qubit as control). This produces the state

|x1〉 :=
1√
2
{α(|000〉 + |110〉) + β(|011〉 + |101〉)} .

• Then Bob subjects c to an H-gate, to produce the state

|x2〉 :=
1

2
{α(|00〉 + |11〉) ⊗ (|0〉 + |1〉) + β(|01〉 + |10〉) ⊗ (|0〉 − |1〉)}

=
1

2
{(α|0〉 + β|1〉) ⊗ |00〉 + (α|0〉 − β|1〉) ⊗ |01〉 + (α|1〉 + β|0〉) ⊗ |10〉 + (α|1〉 − β|0〉) ⊗ |11〉}

where we have grouped the a-states by each possibe outcome for the bc-qubits.

• Now Bob measures the bc-qubits (in Figure 7(b), this is indicated by the meter). This yields the bits
b1c1 ∈ {00, 01, 10, 11}, each choice occurring with probability 1/4. The a-qubit simultaneously collapses to
the corresponding state, which is (respectively)

(α|0〉 + β|1〉)/
√

2, (α|0〉 − β|1〉)/
√

2, (α|1〉 + β|0〉)/
√

2, (α|1〉 − β|0〉)/
√

2

• Bob sends the two classical bits b1c1 to Alice using radio waves.

• Based on the received b1c1, Alice can apply a simple unitary transformation X = Xb1c1 to her a-qubit to
recover the state |x〉. For instance, if b1c1 = 00, then the a-qubit is already in the required state (so X is the
identity matrix in this case).

Note that the requirement of a classical channel guarantees that this protocol has not violated any fundamental
laws such as transmitting information faster than the speed of light.

Summary: the deep strangeness of both phenomenon comes from the fact that entanglement acts across space
– the two entangled bits in the Bell state are not required to be in the same locality. But it seems that a physical
realization of entanglement requires the two bits to be in the same locality, at least initially.

Exercises

Exercise 10.1: Describe the unitary matrices Xb1c1 that Alice must use to recover the state |x〉 in the quantum
teleportation protocol. ♦

Exercise 10.2: Show how to produce the following Bell states: 1
2
√

2
(|000〉 + |111〉) starting from |000〉. What if

you start from |111〉? ♦

End Exercises

§11. Quantum Algorithms
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¶34. There is a basic intuition that “quantum computers are inherently more powerful than classical computers”.
This can be formalized as questions about inclusions among complexity classes. Unfortunately, we are unlikely to
resolve such questions directly because it would imply the resolution of some deep conjectures in classical complexity
theory. A more modest goal is to demonstrate individual problems that could be solved more efficiently using
quantum computers than with classical computers. Even here, most positive results must be qualified in the sense
that a quantum computer can solve a problem more efficiently than any known classical algorithm. We should
also remember that quantum algorithms are inherently probabilistic, and hence we should only compare them to
classical randomized algorithms.

But what kinds of problems can exploit the special capabilities of quantum computers? There is an obvious
candidate task where quantum computers can do more efficiently than classical computers: the simulation of
quantum systems! This was noted by Feynman. But what else? Let us note that the apparent advantage of
quantum computers is the ability to simultaneously maintain (exponentially) many possible states. Hence the
obvious way to exploit this is to evolve these states simultaneously. On the other hand, if we measure the quantum
system, we only get one of these states (possibly with exponentially small probability). So in order for useful
computation to be carried out, we need to have these states interfere in some controlled manner, to bias the
probabilities towards the desirable states. One view of quantum computation (see Cleve et al [14]) is that it is
basically an application of interferometry to multiparticle systems. This is so different from classical computers
that completely new computational techniques must be developed before we can exploit its power.

¶35. Deutsch’s Problem. Deutsch [15] gave a simple demonstration of the power of quantum computers over
classical computers. Assume we have a quantum black box B that computes the 2-qubit transformation

B : (x, y) 7→ B(x, y) = (x, y ⊕ f(x))

for some unknown function f : B1 → B1. There are only 4 possibilities for f : constant 0 function (f(0) = f(1) = 0),
constant 1 function (f(0) = f(1) = 1), identity function (f(x) = x), or negation function (f(x) = 1−x). Deutsch’s
problem is to determine whether f(0) = f(1) (f is constant) or f(0) 6= f(1) (f is balanced). If this were a classical
tranformation, we would need to access the black box twice, with x = 0 and x = 1. But being quantum, we now
show a one-access solution.

Consider the Hadamard matrix H in (11). If we first prepare our input to be |0〉 ⊗ |1〉, then subject it to the
transformation H2 = H ⊗H (see (12)), we obtain

|x〉 ⊗ |y〉 :=
1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 − |1〉).

If we pass this through our black box, the overall state becomes

B(|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f(x)〉

= |x〉 ⊗ 1√
2
(|0 ⊕ f(x)〉 − |1 ⊕ f(x)〉)

= |x〉 ⊗ 1√
2
(−1)f(x)(|0〉 − |1〉)

= (−1)f(x)|x〉 ⊗ 1√
2
(|0〉 − |1〉)

= (−1)f(x)|x〉 ⊗ |y〉

The first qubit is quite interesting:

(−1)f(x)|x〉 =
1√
2
(−1)f(x)(|0〉 + |1〉)

=
1√
2
((−1)f(0)|0〉 + (−1)f(1)|1〉)

= (−1)f(0) 1√
2
(|0〉 + (−1)f(1)+f(0)|1〉)

=

{
(−1)f(0) 1√

2
(|0〉 + |1〉) if f(x) is constant

(−1)f(0) 1√
2
(|0〉 − |1〉) if f(x) is balanced

=

{
(−1)f(0)|x〉 if f(x) is constant

(−1)f(0)|y〉 if f(x) is balanced
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Thus, if we measure this qubit using the basis (|x〉, |y〉), we obtain |x〉 with probability 1 if f(x) is constant, and
|y〉 with probability 1 if f(x) is balanced. Note that the (−1)f(0) is just phase information which does not affect
the probability. Alternatively, we can apply H to the first qubit again (recall that H−1 = H), the possible states
are |0〉 or |1〉 depending on the nature of f . Now we measure in the original basis. The quantum circuit to perform
this computation is shown in figure 8(a). We have just described the improved solution of Cleve et al [14].

H

|x〉

|y〉

B

measure
|x〉 |0〉 or |1〉

H

|x〉 |x〉

(a) Simple

(b) General case

|1〉

|0n〉 Hn

H
|y〉

B

measureHn

|1〉

|0〉 H

|0n〉 or never |0n〉

Figure 8: Deutsch’s Problem: (a) simple case, (b) general case

¶36. Generalization. Deutsch and Jozsa [17] extended the above example to allow arbitrarily large input sizes.
This Deutsch-Jozsa problem is as follows. Suppose f : Bn → B is an unknown function, but it is either a constant
function (f(x) is always 0 or always 1) or it is balanced (the number of times f(x) = 0 is to 2n−1). We need to
decide whether f is constant or balanced. We are given a quantum blackbox Bn which takes a (n+ 1)-quword as
input and which applies the function f as follows:

Bn(|x1, . . . , xny〉) = |x1, . . . , xn〉 ⊗ |y ⊕ f(x1, . . . , xn)〉.

Using a deterministic algorithm, it seems that we need to make at least 2n−1 + 1 evaluations of Bn, in the worst
case. A randomized procedure can do better (Exercise). But we now show that a single call to the black-box is
sufficient using a quantum transformation.

The method is a straightforward generalization of the original solution. We prepare the input to be |0n1〉 and
apply Hn+1 = H ⊗ · · · ⊗H to this input. This produces the state

(
1

2n/2

2n−1∑

x=0

|x〉
)

⊗ 1√
2
(|0〉 − |1〉). (22)

Then we pass this state through Bn. Suppose y = 1√
2
(|0〉 − |1〉) and x = x1, . . . , xn is a eigenstate of the first n

bits. Then

Bn(|x1, . . . , xny〉) = |x〉 ⊗ 1√
2
(|f(x) ⊕ 0〉 − |f(x) ⊕ 1〉) = |x〉 ⊗ 1√

2
(−1)f(x)(|0〉 − |1〉).

Hence the overall state of the quword, after applying Bn to the state (22), is

(
1

2n/2

2n−1∑

x=0

(−1)f(x)|x〉
)

⊗ |y〉.
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Finally, apply Hn to the first n qubits to get


 1

2n/2

2n−1∑

x=0


 1

2n/2

2n−1∑

j=0

((−1)f(x)(−1)x·j|j〉)




⊗ |y〉,

using Lemma 3 (where x · j denotes scalar product of two n-vectors). Reordering the two summations, we obtain



 1

2n

2n−1∑

j=0

|j〉
(

2n−1∑

x=0

((−1)f(x)+x·j)

)

⊗ |y〉,

Note that the state |j〉 = |0n〉 of the first n qubits has amplitude 1
2n

∑2n−1
x=0 (−1)f(x). If f(x) is constant, then this

amplitude is 1 or −1 (depending on whether f(x) = 0 or 1). If f(x) is balanced, this amplitude is 0. Therefore,
if we measure the first n qubits, we either observe the state |0n〉 with probability 1 (if f is constant) or we never
observe the state |0n〉 (if f is balanced). This concludes our proof.

Exercises

Exercise 11.1: Let 0 < ε < 1. Give an randomized classical algorithm to solve the Deutsch-Jozsa problem with
probability of success of 1 − ε using O(log(1/ε)) calls to the blackbox. HINT: Let Ei (i = 0, 1) be the event
that f(x1, . . . , xn, 1) = i where x1, . . . , xn are random. What is the probability that E0 occurs in k trials?

♦

End Exercises

§12. Quantum Discrete Fourier Transform

We introduce the quantum analogue of the well-known Discrete Fourier Transform (DFT). The quantum version
of this (QFT) is obtained as a natural adaptation. We derive a quantum circuit for computing QFT. This algorithm
will be used later for integer factorization.

¶37. Discrete Fourier Transform. Let N ∈ N, and x = (x0, . . . , xN−1)
T ∈ CN . The classic discrete Fourier

transform of x is DFT (x) = Fx (a matrix vector product), where F is the following N ×N matrix

F = FN =
1√
N




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2




(23)

and ω = ωN := ei2π/N . Note that F is symmetric.
Let ej denote the jth elementary vector ej (with the jth component equal to 1 and everywhere else 0). Then

DFT (ej) =
1√
N

N−1∑

k=0

ωjkek. (24)

We now prove that F = FN is unitary. Two preliminary remarks are useful: In general, the conjugate of eiθ is

eiθ = e−iθ, and thus ω = e−i2π/N . Second, note that ω is an Nth root of unity meaning that ωN = 1. But more
is true: ω is actually a primitive root of unity, meaning that if ωm = 1 then m is a multiple of N .

Lemma 9. F is unitary: F ∗F = I.
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Proof. We must show that the (i, j)th entry of F ∗F is 1 iff i = j:

(F ∗F )ij =
1

N

N−1∑

k=0

ωkiωkj

=
1

N

N−1∑

k=0

ω−kiωkj

=
1

N

N−1∑

k=0

ωk(j−i)

=

{
1 if i = j
0 else

The last equation is clearly true when i = j, since the sum is N in this case. When i 6= j, the sum
∑N−1

k=0 ωk(j−i)

vanishes because of the simple identity

(1 − x)
N−1∑

k=0

xk = 1 − xN . (25)

Plugging x = ωj−i, we conclude that the righthand side is 0 (since ω is aN -th root of unity). But 1−x = 1−ωj−i 6= 0

(since ω is a primitive N -th root of unity). This implies that the sum
∑N−1

k=0 xk must vanish. Q.E.D.

This lemma also shows that we may define inverse discrete Fourier transform IDFT (x) by the equation
IDFT (x) = F ∗x.

¶38. Omega notation. We now choose N = 2n. Previously, we wrote ω = ei2π/N . Now we shift to some more
permanent notations, fixed for the rest of the chapter.

Let ωℓ := ei2π/2
ℓ

for all ℓ ∈ N. For instance, ω0 = ei2π = 1 and ω1 = eiπ = −1. Note that we often write “ωjkℓ ”

for j, k, ℓ ∈ N. This should be parsed as (ωℓ)
jk = ei2πjk/2

ℓ

. We use another convention involving “ω” without any

subscripts: for any complex number φ, we write “ωφ” as12 a short hand for ei2πφ. When φ is real, then note that

ωφ = ω(φmod 1) where φmod 1 is the fractional part of φ, 0 ≤ (φmod 1) < 1. When E is a complex expression,
we may write exp(E) instead of eE.

¶39. Quantum Fourier Transform. The quantum analogue of DFT is just the above DFT, couched in the
special setting of quantum circuits. Indeed, sinceDFT (x) is a unitary transformation, we should be able to compute
it with a quantum circuit. The circuit turns out to be fairly simple, but to verify its correctness, we need some
preparation.

To define the quantum Fourier transform (QFT), it is enough to define its action on an eigenstate |x〉 = |j〉
where j = 0, . . . , N − 1:

QFT (|j〉) =
1√
N

N−1∑

k=0

ωjkn |k〉. (26)

12This notation must be properly understood as a textual substitution: “ωφ” should become expanded into “ei2πφ” before the usual

interpretation of these mathematical symbols take place. For instance, it is not the same as “(ω)φ”, since ω = ei2π evaluates to 1 and
so (ω)φ = 1φ, which is not officially defined.
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In general, suppose |x〉 =
∑N−1
j=0 xj |j〉. Then, by linearity of QFT , we obtain

|y〉 = QFT (|x〉) =

N−1∑

j=0

xjQFT (|j〉)

=

N−1∑

j=0

xj

(
1√
N

N−1∑

k=0

ωjkn |k〉
)

=

N−1∑

k=0


 1√

N

N−1∑

j=0

xjω
jk
n


 |k〉

=
N−1∑

k=0

yk|k〉

where

yk =
1√
N

N−1∑

j=0

xjω
jk
n . (27)

The following important lemma expands the right-hand side of (26) as a tensor product.

Lemma 10.

QFT (|j1 · · · jn〉) =
1√
N

n⊗

ℓ=1

(|0〉 + ωjℓ |1〉) (28)

=
1√
N

(|0〉 + ωj1|1〉) ⊗ (|0〉 + ωj2|1〉) ⊗ · · · ⊗ (|0〉 + ωjn|1〉) (29)

Proof. Write |j〉 = |j1, . . . , jn〉 = |j1〉 ⊗ · · · ⊗ |jn〉.

QFT (|j〉) = 1√
N

∑N−1
k=0 ωjkn |k〉, (from (26))

= 1√
N

∑1
k1=0

∑1
k2=0 · · ·

∑1
kn=0 ω

j(
Pn

ℓ=1
kℓ2

n−ℓ)
n |k1 · · · kn〉, (rewriting the sum over k)

= 1√
N

∑1
k1=0

∑1
k2=0 · · ·

∑1
kn=0

⊗n
ℓ=1 ω

jkℓ2
n−ℓ

n |kℓ〉, (rewriting a tensor)

= 1√
N

∑1
k1=0

∑1
k2=0 · · ·

∑1
kn=0

⊗n
ℓ=1 ω

jkℓ

ℓ |kℓ〉, (by definition of ωℓ)

= 1√
N

(|0〉 + ωj1|1〉) ⊗ (|0〉 + ωj2|1〉) ⊗ · · · ⊗ (|0〉 + ωjn|1〉), as desired.

Q.E.D.

¶40. The notation in (28), although essentially equivalent to (29), can be ambiguous unless we understand the
convention that a tensor product of the form ⊗nℓ=1 has to be taken in order of increasing ℓ. This remark may
become clearer when we describe the quantum circuit to compute QFT.

¶41. The coefficient ωjℓ in this lemma needs to be decoded:

ωjℓ = ei2π2−ℓ(
Pn

i=1
ji2

n−i)

= ei2π(
Pℓ

i=1
jn+i−ℓ2

−i), (keeping only the fractional part of the exponent of ei2π.

= ei2π(0.jn+1−ℓjn+2−ℓ···jn)

where the (0.jn+1−ℓjn+2−ℓ · · · jn) is a binary rational. In other words, the notation “ωjℓ” is meant to suggest that
this coefficient only depends on the last ℓ bits of j1, j2, . . . , jn. In the following, we shall write

ω(0.j1j2···jℓ) (30)

for ei2π(0.j1j2···jℓ). For example, we have

ωj1 = ei2π(0.jn) =

{
1 if jn = 0

eiπ if jn = 1
= ωjn1 .
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¶42. Inverse QFT. We also need to compute the inverse QFT (or IQFT). This simply amounts to using the

complex conjugate of ωn in place of ωn: Note that the complex conjugate is ωn = ei2π2−n = e−i2π2−n

. We may
write ωn for this complex conjugate.

Lemma 11. For all states |x〉 IQFT (QFT (|x〉)) = QFT (IQFT (|x〉)).

Note that we only need to verify this lemma for the case where |x〉 is an eigenstate. We leave this verification
as an exercise.

¶43. One Stage of QFT Circuit. The QFT circuit will consist of n stages. It is sufficient to understand a
single stage of this process. In fact the first stage is representative of all the other stages, and is illustrated in
Figure 9.

...

|j1〉

|j2〉

|j3〉

|jn−1〉

|jn〉

|jn−1〉

|j3〉

|j2〉

|jn〉

(|0〉 + ωj
n|1〉)/

√
N

Sn

RnH R2 Rn−1R3

Figure 9: Sn: Stage One of the QFT circuit

The first gate is represented by the standard H-matrix. This H-gate transforms a qubit eigenstate |j1〉 as
follows: H(|0〉) = (|0〉 + |1〉)/

√
2 if j1 = 0 and H(|1〉) = (|0〉 − |1〉)/

√
2 if j1 = 1. We summarize this by writing

H(|j1〉) =
1√
2
(|0〉 + ωj11 |1〉). (31)

Viewing the first H-gate as a transformation of all the qubits of |j〉, we obtain

H(|j〉) =
1√
2
(|0〉 + ωj11 |1〉) ⊗ |j2 · · · jn〉.

If n = 1, we are done. If n ≥ 2, we introduce n − 1 transformations of the following type. For ℓ ≥ 2, the
transformation Rℓ is a 2-qubit gate that achieves a “controlled rotation”, and is given by the matrix

Rℓ :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ωℓ


 (32)

In Figure 9, R2 is applied to the first and second qubits of |j1 · · · jn〉. Note that in the figure, we write R2 as a box
is applied to line 1 (prepared in state |j1〉), using line 2 (prepared as |j2〉) as the control line. But from the matrix
(32), we see that the roles of the two input lines are completely symmetric (so we could view line 1 as the control
line if we wish). Thus

R2(|00〉) = |00〉
R2(|01〉) = |01〉
R2(|10〉) = |10〉
R2(|11〉) = ω2|11〉
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The output of H on lines 1 and 2 is 1√
2
(|0〉+ ωj11 |1〉) ⊗ |j2〉. Considering the case j2 = 0 and j2 = 1 separately, R2

yields:

R2(
1√
2
(|0〉 + ω1|1〉) ⊗ |0〉) =

1√
2
(|0〉 + ω1|1〉) ⊗ |0〉,

=
1√
2
(|0〉 + ω(0.10)|1〉) ⊗ |0〉,

R2(
1√
2
(|0〉 + ω1|1〉) ⊗ |1〉) =

1√
2
(|0〉 + ω2ω1|1〉) ⊗ |1〉,

=
1√
2
(|0〉 + ω(0.11)|1〉) ⊗ |1〉,

This proves that

R2(H(|j1j2〉)) =
1√
2
(|0〉 + ω(0.j1j2)|1〉) ⊗ |j2〉)

=
1√
2
(|0〉 + ωj1j22 |1〉) ⊗ |j2〉).

Continuing the same way, eachRℓ-gate simply transforms the factor (|0〉+ω0.j1j2···jℓ−1 |1〉) into (|0〉+ω0.j1j2···jℓ−1jℓ |1〉)
(by appending jℓ to the the binary fraction in the exponent). The final result is that line 1 has the value,

1√
2
(|0〉 + ω(0.j1j2···jn)|1〉).

By comparing this result to Lemma 10, we see that this result should really appear in line n in the QFT circuit.
But we may postpone this transposition until the end. Lines 2 to n have their original values unchanged.

¶44. Putting together the stages. Let Sn be the circuit represented by stage 1. It is now clear that we can
continue this process on lines 2 to line n, but applying the circuit Sn−1 instead. as a result, line 2 will have the value
(|0〉+ωjn−1|1〉)/

√
2, Finally, line n is transformed by S1 which is just a single H-gate, yielding (|0〉+ωj1|1〉)/

√
2 on

this line. The resulting circuit is seen in Figure 10.

(|0〉 + ωj
n−1

|1〉)/
√

2

(|0〉 + ωj
n−2

|1〉)/
√

2

(|0〉 + ωj
2
|1〉)/

√
2

(|0〉 + ωj
1
|1〉)/

√
2

|j1〉

|j2〉

|j3〉

|jn−1〉

|jn〉

..

.
..
.

(|0〉 + ωj
n|1〉)/

√
2

Sn Sn−1 Sn−2 S2 S1

Figure 10: Quantum circuit for Reverse Fourier transform

We are almost done, except the values in the output lines of Figure 10 are in reverse order (compare Lemma 10).
But we know that transposing any two bits (quantum or classical) can be achieved by three T2 gates. We can
therefore introduce ⌊n/2⌋ such gates to exchange the outputs of line i and line n − i + 1. This completes the
description of the QFT circuit.

¶45. Complexity Analysis. Since each stage uses Θ(n) gates, the overall number of gates is Θ(n2).
At this point, we should pause and consider what has been accomplished: we can compute QFT using O(n2)

quantum gates. This is exponentially smaller than any classical construction which surely need Ω(N) = Ω(2n)
gates. But exploiting this result is hardly obvious. First, we need to physically prepare an arbitrary quantum state
|x〉. Further, we need to extract the resulting values stored in |y〉 = QFT (|x〉). These issues will come up as we
seek to exploit QFT.
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Exercises

Exercise 12.1: Explain why QFT is really the quantum analogue of DFT . ♦
Exercise 12.2: Prove Lemma 11. ♦
Exercise 12.3: Give a simple upper bound on the number of classical gates to compute DFT (assuming each gate

can perform a single complexity arithmetic operation in constant time). ♦

End Exercises

§13. Phase Estimation Problem

¶46. The phase estimation problem is another basic task in quantum algorithms. Suppose U is a unitary
operator U , given as blackbox. This simply means that we can use it as a primitive gate in our quantum circuits.

Furthermore, we are given an eigenvector |v〉 of U . If the associated eigenvalue is ωφ = ei2πφ, then

U |v〉 = ωφ|v〉.
Call φ the phase angle, and we may assume 0 ≤ φ < 1. The problem of Phase Estimation is, given U and
|v〉 and also n ∈ N and ε > 0, to compute an approximation of φ to n bits of precision, with probability of failure

≤ ε. The approximation φ̃ has n bits of precision if |φ̃ − φ| ≤ 2−n. However note that this does not mean that φ̃
is represented by a binary rational number with n-bits after the mantissa; below, we will use about log(1 + ε−1)
more bits.

|0〉

|v〉|v〉

..

.

(|0〉 + ωφ
−1

|1〉)/
√

2

|0〉
..
.

|0〉

|0〉

|0〉 (|0〉 + ωφ
−2

|1〉)/
√

2

(|0〉 + ωφ
−t+1

|1〉)/
√

2

(|0〉 + ωφ
−t+2

|1〉)/
√

2

(|0〉 + ωφ
0
|1〉)/

√
2

R
eg

is
te

r
1

R
eg

is
te

r
2

H

U2
0

H

H

U2
1

U2
2

H

U2
t−2

U2
t−1

H

Figure 11: Stage 1 of Phase Estimation

¶47. Stage One of phase estimation. There are two stages in phase estimation. The first stage is illustrated
in Figure 11. Note that there are two registers (quwords) in the circuit:
(1) Register 1 comprises t qubits that are used to readout the final estimate of φ. At the end, we will measure this
register 1, and this value, interpreted as a binary rational 0.j1j2 · · · jt is regarded as the estimate of φ. The value
of t will be determined later, as it depends on the input parameters n and ε.
(2) Register 2 is used to carry the eigenvector |v〉.

Note that Uk is just k-fold application of U . Thus Uk(|v〉) = U(U(· · ·U(|v〉) · · · )) = ωkφ|v〉. In the following,
we actually use the control-U gate, which has an extra control line to turn turn on or off the actual actions of the

U -gate. However, we continue to use “U” to denote the control-U gate. Consider the result of applying control-U2ℓ

(ℓ ≥ 0) to the output of H :

U2ℓ

(|0〉 ⊗ |v〉) = |0〉 ⊗ |v〉
U2ℓ

(|1〉 ⊗ |v〉) = ω2ℓφ|1〉 ⊗ |v〉
U2ℓ

((|0〉 + |1〉) ⊗ |v〉) = (|0〉 + ω2ℓφ|1〉) ⊗ |v〉
= (|0〉 + ωφ−ℓ|1〉) ⊗ |v〉
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This justifies the output on Register 1 as specified in the lines of Figure 11.

¶48. Phase Two. We motivate the construction of the second phase. Suppose

φ = 0.φ1φ2 · · ·φt, φi ∈ {0, 1}.

Then we observe the output lines of Register 1 in Figure 11 is simply the outputs specified by Lemma 10. For
instance, line one’s output in Figure 11 is (|0〉 + ωφ−t+1|1〉)/

√
2, which is equal to (|0〉 + ω0.φt |1〉)/

√
2. Line one of

Lemma 10 has output (|0〉 + ωj1|1〉)/
√

2, which is equal to (|0〉 + ω0.jn |1〉)/
√

2. So the two outputs are the same
once we identify n with t and j1, . . . , jn with φ1, . . . , φt.

This means, if we apply the inverse QFT circuit of the previous section as our second phase, we would obtain
as output the eigenstate |φ1 · · ·φt〉. This inverse QFT is indeed our second phase, even when φ is not a binary
rational. But the proof that it yields a good estimate of φ in general is more subtle and will be taken up next.

Finally, the estimate of φ is obtained by measuring Register 1. This yields t bits which is interpreted as a binary
rational 0.b1b2 · · · bt (bi ∈ {0, 1}) and taken as the estimate of φ.

¶49. Error Analysis. Let φ < 1 be an arbitrary real. Suppose φ̃ = 0.φ1 · · ·φt is a binary rational such that

δ := |φ− φ̃| ≤ 2−t. (33)

Remark that if φ is not a binary rational, then φ̃ is uniquely determined by t. Ideally, we would like our final
measurement to yield |φ1 · · ·φt〉 = |2tφ̃〉 in Register 1. But short of this, our current goal is to obtain eigenstate
|j〉 = |j1 · · · jt〉 such that

Pr{|φ− 0.j1 · · · jt| < 2−n} ≥ 1 − ε. (34)

where n and ε are user specified parameters. We show how to choose t > n so that we obtain the guarantee (34).
The output of Phase 1 is

1

2t/2
(|0〉 + ωφ−t+1|1〉) ⊗ (|0〉 + ωφ−t+2|1〉) ⊗ · · · ⊗ (|0〉 + ωφ0 |1〉) =

1

2t/2

2t−1∑

ℓ=0

ωφℓ|ℓ〉

The inverse QFT is basically the same as QFT, except that we replace ωt (taking N = 2t) by its conjugate ωt.
When we apply the inverse QFT, we get

QFT−1
(

1
2t/2

∑2t−1
ℓ=0 ωφℓ|ℓ〉

)
= 1

2t/2

∑2t−1
ℓ=0 ωφℓ 1

2t/2

(∑2t−1
k=0 ω−ℓk

t |k〉
)

(by (26))

= 1
2t

∑2t−1
ℓ=0

∑2t−1
k=0 (ωφ−k2

−t

)ℓ|k〉.

The amplitude of |k〉 is therefore

αk :=
1

2t

2t−1∑

ℓ=0

(ωφ−k2
−t

)ℓ

=
1

2t
1 − (ωφ−k2

−t

)2
t

1 − ωφ−k2−t (sum of geometric series).

We use the following simple upper and lower bound on |1 − eiθ|, where |θ| ≤ π:

2 ≥
∣∣∣1 − eiθ

∣∣∣ ≥ 2 sin |θ/2| ≥ |θ|. (35)

This bound is illustrated in Figure 12.

Thus |1 − ωx| = |1 − ei2πx| ≥ 2π|x| when |x| ≤ 1/2. Hence

|αk| ≤
1

2t
2

2π |φ− k2−t| =
1

2tπ |φ− k2−t| .

Writing βk for αk+2t eφ, we have

|βk| ≤
1

2tπ
∣∣∣φ− φ̃− k2−t

∣∣∣
≤ 1

2tπ |δ − k2−t| . (36)
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1 − eiθ

θ/2

1 + eiθ

1 2

Figure 12: Bounds on
∣∣∣1 − eiθ

∣∣∣

At the end of Phase 2, we measure Register 1 and suppose we obtain the state |j〉 = |j1 · · · jt〉. We declare j2−t as
our estimate for φ. Since j is a random variable, we now want to upper bound the probability that |φ−j2−t| > 2−n

(this is the error probability because we want an n-bit approximation to φ). We will let ∆ = 2t−n − 1 in the
following derivation. We now bound the probability Pr{|φ− j2−t| > 2−n}, which is equal to:

Pr{|2tφ− j| > 2t−n} ≤ Pr{|2tφ̃− j| > 2t−n − 1} (since |2tφ− 2tφ̃| ≤ 1)
=

∑

k:|k−2t eφ|>∆

|αk|2 (∆ = 2t−n − 1)

=
∑

k′:|k′|>∆

|βk′ |2 (put k′ = k − 2tφ̃)

≤ ∑
k:|k|>∆

1
22tπ2|δ−k2−t|2 (by (36))

= 1
π2

∑
k:|k|≥∆

1
|2tδ−k|2

≤ 1
π2

∑
k:k>∆

1
(k−1)2 , (2tδ ≤ 1)

< 1
π2

∑
k:k>∆

1
(k−1)(k−2)

= 1
π2

∑
k:k>∆

(
1

(k−1) − 1
(k−2)

)

< 1
π2∆ (by telescoping).

We are almost there: recall that we want the probability of error to be at most ε. Hence it is enough that
ε ≥ 1/(π2∆). It suffices if ε ≥ 1/(2t−n). Hence we may choose t to be

t = n− ⌊lg(ε)⌋ . (37)

We are done with phase estimation.

¶50. In summary: given a blackbox U and an eigenvector |v〉, and a precision bound of n and error bound
of ε > 0, if we construct the above 2-phase quantum circuit using the parameter t in Equation (37), then the
measured value 0.j1 · · · jn in Register 1, is an n-bit approximation of φ with probability 1 − ε. Here, φ is given by
U |v〉 = ωφ|v〉.

REMARKS:
1. There is an important caveat in actual applications: notice that our circuit requires the control-U2i

circuts. If
we only assume the availability of the control-U blackboxes, then the only way to construct the control-U2i

circuits
is to cascade a sequence of 2i control-U gates. This is not efficient enough in our applications below, because it
requires exponentially (as a function of i) many gates. It turns out that, in fact, we will be able to construct the

control-U2i

circuits using a polynomial number of gates.
2. We can extend this technique to the case where an eigenvector |v〉 is not directly available, but we have a fixed
state |x〉 =

∑
i ci|vi〉 that is a superposition of eigenvectors |vi〉, each with a phase φi. When we measure Register

1, for each i, we obtain an estimate of φi with probability |ci|2 (and on measuring Register 2, we find out the |vi〉
whose phase we measured).
3. The Exercise develops another approach to phase estimation, based on estimating the bias of a coin tossing.

Exercises
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Exercise 13.1: We want to estimate the phase φ1 of an eigenvector |v1〉 of a blackbox unitary operator U . We
outlined a method to estimate φ1 when we can only prepare a state |x〉 that contains |v1〉 as one of its
components. Compute the probability of correct measurements of φ1, and discuss its impact on complexity.

♦

Exercise 13.2: Let U be a unitary transformation such that U |v〉 = ωφ|v〉, and we want to estimate 0 ≤ φ < 1,
in the usual phase estimation sense. Consider the circuit in Figure 13.

H

U

|0〉

|v〉 |v〉

|?〉H

Figure 13: Alternative primitive for phase estimation

(i) Show that the probability of measuring a 0 on the control line is p0 = (1+cos 2πφ)/2; and, the probability
of measuring a 1 is p1 = (1 − cos 2πφ).
(ii) Suppose you repeat this measurement k times, and get the outcome |i〉 in ki (i = 0, 1) of the time. Let
p̃i = ki/(k0 + k1) = ki/k. What is the probability that |p0 − p̃0| > 1/4?
(iii) Show how to generalize this to estimate p0 to higher order accuracy. HINT: think of (ii) as measuring
the first bit of p0. ♦

End Exercises

§14. Integer Factoring Problem

Our main goal is integer factorization. So far, we have developed some tools from quantum algorithms: QFT
and Phase Estimation. We now address the number theoretic background for integer factorization.

The factorization problem is easy to state: given an integer N > 2, to find distinct primes pi and exponents
ei ≥ 1 (i = 1, . . . ,m) such that

N =

m∏

i=1

pie
i, (38)

as guaranteed by the Fundamental Theorem of Arithmetic (see below). This problem can easily be solved in time
polynomial in N (see Exercise), but this is not considered a polynomial-time algorithm because the size of the input
is only n = ⌊lg(1 +N)⌋ (tbe number of bits in the binary representation of N). The current record for integer
factorization takes time Θ((N log2N)1/3) using sophisticated number field sieve methods. Our goal is to describe
a quantum factoring algorithm that takes time Θ(log4N) = Θ(n4).

¶51. Some Number Theory. When we say “numbers” in Number Theory, it means a natural number n ∈ N.
The starting point of Number Theory is the divisibility relation on integers: we say m divides n, and write
m|n, if ma = n for some a ∈ Z. Also, let m 6 |n denote the negation of divisibility. We say n ∈ Z is prime if
it is divisible by exactly two numbers. This definition excludes the numbers 0 (being divisible by all numbers)
and 1 (being divisible by one number). Hence 2 is the smallest prime number, and it also has the distinction of
being the only even prime. The Fundamental Theorem of Arithmetic says that every number n ≥ 2 has a unique
representation of the form

n =

m∏

i=1

pei

i , m ≥ 1 (39)

where p1 < p2 < · · · pm are distinct primes, and ei ≥ 1. We write “x ≡ y (modn)” if n|(x − y). We assume
that students are familiar with the concept of modulo n arithmetic: we may add and multiply modulo n. E.g.,
5 + 6 = 2 (mod 9). Thus, the set Zn = {0, 1, . . . , n − 1} is a ring under modulo n arithmetic. We shall write
“xmodn” for the unique value in Zn that is equivalent to x modulo n. Thus mod is a notation for an infix
operator. E.g., 11mod9 = 2.
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The greatest common divisor (GCD) of m,n is denoted GCD(m,n), and is the largest number that divides both
m and n. When m = n = 0, we define GCD(m,n) = 0; otherwise, it is clear that GCD(m,n) ≥ 1. If GCD(m,n) = 1,
we say m,n are coprime (or, m is coprime to n). We can compute GCD(m,n) in polynomial time, for instance,
using Euclid’s algorithm. Euclid’s algorithm is simple to describe: if n0 > n1 ≥ 1 are numbers, then we compute
GCD(n0, n1) be generating the following “Euclidean sequence”

(n0, n1, n2, . . . , nk−1, nk), k =≥ 1, (40)

where
ni+1 = ni−1 modni, i = 1, . . . , k − 1. (41)

The termination condition for the sequence is given by

nk−1 modnk = 0. (42)

It is easily seen from (41) that the following holds:

GCD(ni, ni+1) = GCD(ni−1, ni).

But nk = GCD(nk−1, nk), by the termination condition (42) Hence nk is equal to GCD(n0, n1). This proves the
correctness of Euclid’s algorithm. E.g., GCD(22, 15) = 1 follows from the Euclidean sequence

22, 15, 7, 1.

Again, GCD(22, 18) = 2 because (22, 14, 8, 6, 2) is an Euclidean sequence. We can extract a valuable piece of
information from the Euclidean algorithm: it is easy to verify by induction that in the Euclidean sequence (40),
there exists integers si, ti such that

ni+1 = sin0 + tin1, i = 1, . . . , k − 1.

In particular, there exists s, t ∈ Z such that GCD(m,n) = sm + tn. Thus sm ≡ GCD(m,n) (modn). When m,n
are coprime, we conclude that sm ≡ 1 (modn) and tn ≡ 1 (modm). Thus s is the (multiplicative) inverse of
m modulo n, and similarly t is the inverse of n modulo n. We sometimes write s = m−1 (modn). Summarizing:
every element m that is coprime to n has an inverse modulo n. It is easy to modify the Euclidean algorithm to
compute sk, tk as well (Exercise). This is usually called the Extended Euclidean algorithm. Thus we can compute
multiplicative inverses.

For n ∈ N, let
Z
∗
n = {i ∈ Zn : GCD(i, n) = 1}.

Since every element in Z∗
n has an inverse modulo n, and 1 is clearly the identity of multiplication modulo n, we

conclude: Z∗
n is a group under multiplication modulo n. The size of this group is |Z∗

n| = φ(n) where φ(n) is Euler’s
totient function. Thus φ(n) is the number of distinct values in Zn that are coprime to n. For instance, if p is prime,
φ(p) = p− 1 since Z∗

p = {1, 2, . . . , p− 1}. We can easily generalize this to φ(pe) = pe−1(p− 1) because the elements
in Zpe \ Z∗

pe are precisely the multiples of p and there are pe−1 of these. [In proof: each i ∈ Zpe−1 gives rise to
a unique multiple pi ∈ Zpe .] Thus φ(pe) = pe − pe−1 = pe−1(p − 1). Further, if m,n are coprime, we can show
(Exercise) that {xx′ : x ∈ Z∗

n, x
′ ∈ Z∗

m} = Z∗
mn. Hence φ(mn) = φ(m)φ(n). This gives us a formula for φ(n) when

we know the complete factorization of n, similar to (39). For instance, φ(24) = φ(23)φ(3) = 8. The Fermat-Euler
theorem says that for all x ∈ Z∗

n, xφ(n) = 1 (modn). A power is a number of the form me for some m, e ∈ N.
When m is prime, then me is called a prime power.

¶52. Reductions of the Factoring Problem. Henceforth, we simply say “factorization” for “integer factoriza-
tion”. We reduce the factorization problem to its computational “core”. Here, we say a problem P is reducible to
another problem Q if we can construct a polynomial time algorithm AP for P from any polynomial time algorithm
AQ for Q. Moreover, this reduction is randomized if AP is randomized (regardless of whether AQ is randomized
or not). In general we need randomized algorithms.

1. Reduction to Simple Factoring: First we may reduce the problem to finding any non-trivial factor M of
N . That is, either declare N a prime or find an M such that M |N and 1 < M < N . Call this the simple
factoring problem, as opposed to the original version which we call the complete factoring problem,
represented by (39). The complete factoring problem is reduced to at most lgN simple factoring problem.
This is because in (39), we have N =

∏m
i=1 p

ei

i ≥∏m
i=1 2ei ≥ 2e where e =

∑m
i=1 ei. Hence e ≤ lgN .

Chee-Keng Yap Page 34 April 13, 2009



§14. Integer Factoring Problem Lecture XXII Page 35

2. Reduction to an Odd Non-power: Given an N , we want to detect if it is a power, and if so, completely
factor it, N = M e. This can easily be done in polynomial time (Exercise).

We can further assume N is odd. This is trivial, but the reader will rightfully wonder if this is a just an
adhoc decision: why only exclude multiples of 2? We could likewise exclude any multiples of 3 or 5, or any
number we like. The reason this decision is not adhoc is related to the next reduction.

3. Reduction to Finding a Squareroot of Unity modulo N . Call x a squareroot of unity (i.e., 1) modulo
N if x2 ≡ 1 (modN). Clearly, x = 1 and x = N − 1 (usually denoted −1) are squareroots of 1 modulo N .
But these are the trivial squareroots of 1; we want nontrivial squareroots where 1 < x < N − 1. Armed
with such an x, we see that x2 − 1 = (x − 1)(x + 1) must be divisible by N . Hence, a prime factor p of N
must divide either x − 1 or x + 1. This means p divides either GCD(N, x − 1) or GCD(N, x + 1), i.e., either
GCD(N, x − 1) or GCD(N, x + 1) is a nontrivial factor of N .

In other words, if we could find nontrivial squareroots of unity modulo N , then we can factor N . Part of
what we need to establish is that when N is composite, there will be plenty of such squareroots of unity!

4. Reduction to Order Finding. We can reduce finding non-trivial squareroots of unity to order finding.
For x ∈ Z∗

n, the order of x modulo n (or, the n-order of x, or ordn(x)) is the smallest r ≥ 0 such that
xr = 1 (modn). The order finding problem is13 to find r, given x, n. By the Euler Fermat theorem,
xφ(n) ≡ 1 (modn) and hence r ≤ φ(n). Indeed, r|φ(n) because if φ(n) = ar + b where 0 ≤ b < r, then
xb ≡ xb+ar = xφ(n) ≡ 1 (modn), which is a contradiction unless b = 0. The order finding problem is not
known to be solvable in polynomial time. The reduction to order finding is nontrivial and will be taken up
next.

¶53. Squareroots of unity: cyclic case The above reduction prompts a closer examination of the squareroots
of 1. Let x be a squareroot of 1 modulo n. An obvious question is: when is x nontrivial? To answer this question,
we must look into the group structure of Z∗

n.

1. The simplest groups are the cyclic ones. By definition, a group G is cyclic if there exists g ∈ G (called a
generator) that generate the entire group by repeated multiplication: G = {gi : i ∈ N}. It is known that Z∗

n

is cyclic if and only if n = 2, 4 or n = pm or 2pm where p is an odd prime and m ≥ 1. E.g., Z∗
8 = {1, 3, 5, 7}

is not cyclic since 32 ≡ 52 ≡ 72 ≡ 1 (mod 8).

2. If Z∗
n is cyclic then the only squareroots of 1 modulo n are the trivial ones. In proof, let g ∈ Z∗

n be a generator
of the cyclic group and let x = ge for some e (0 < e < φ(n)). Since g2e ≡ x2 ≡ 1 (modn), we have φ(n)|2e
and so φ(n)/2 ≤ e. But φ(n)/2 < e is not possible because it yields the contradiction that g2e−φ(n) ≡ 1 and
1 ≤ 2e− φ(n) < φ(n). This proves our claim.

As corollary,if n is an odd prime power, there are no nontrivial squareroots of unity.

3. The number of generators in a cyclic group G of size n is φ(n). This fact is not used below, and may be
skipped. In proof, let g be any generator of G. We claim that ge is also a generator iff GCD(e, n) = 1. If
GCD(e, n) = m > 1 then (ge)n/m = 1 and so ge cannot generate G. If GCD(e, n) = 1 and if r is the order of ge,
then gre = 1. Since G is cyclic, this implies n|re. As e and n are coprime, we conclude that n|r. Since n ≥ r,
we conclude that r = n. As there are φ(n) choices for e, we have shown that G has exactly φ(n) generators.

As corollary, the number of generators of Z∗
pe is φ(φ(pe)) = φ(pe−1(p−1)). If e ≥ 2, this is pe−2(p−1)φ(p−1).

Example. Suppose n = 45 = 9 × 5. Then φ(n) = φ(9)φ(5) = 6 × 4 = 24. Now, φ2(9) = φ2(5) = 2 and so Z
∗
9

and Z∗
9 each has 2 generators each. We may check that 2 and 5 are the generators of Z∗

9 = {1, 2, 4, 5, 7, 8}, and 2
and 3 are generators of Z∗

5 = {1, 2, 3, 4}.

¶54. Group structure of Z
∗
n for odd nonpowers. We now assume that n is an odd nonpower. Then

n =
∏m
i=1 qi (m ≥ 2) where each qi is a prime power and the qi’s are coprime.

1. The group Z∗
n is thus isomorphic to

G∗ := Z
∗
q1 × · · · × Z

∗
qm

(43)

because of the Chinese Remainder Theorem (Exercise). Indeed the isomorphism is the natural one, h∗ : Z∗
n →

G∗ where h∗(x) = (x1, . . . , xn) and xi ≡ x (mod qi).

13Since orders are also known as “periods”, it is also known as the “period finding problem”.
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2. The group operation ◦ in G∗ is componentwise multiplication, modulo qi in the ith component. Thus,
h∗(ab) = h∗(a) ◦ h∗(b). Let us note that

h∗(1) = (1, 1, . . . , 1), h∗(−1) = (−1,−1, . . . ,−1).

Note that there are 2m squareroots of 1 corresponding to elements of the form (±1,±1, . . . ,±1) ∈ G∗.

3. In the following, write h∗(x) = (x1, . . . , xm), and fix gi to be any generator of Z∗
qi

. Then xi = gei

i for some

ei ∈ Zφ(qi). Hence there is an isomorphism h from the multiplicative group G∗ to the additive group

G := Zφ(q1) × Zφ(q2) × · · · × Zφ(qm), (44)

where h(x1, . . . , xm) = (e1, . . . , em). The group operation in G is componentwise addition, modulo φ(qi) in the
ith component. Remark that this is essentially the discrete logarithm map, since we may write ei = loggi

(xi).

4. If ordn(x) = r and ordn(xi) = ri, then r is equal to ℓ := LCM(r1, . . . , rm). In proof, note that xri ≡ 1 (modn)
implies xri ≡ 1 (mod qi) and so ri|r. Thus r ≥ ℓ (by definition of LCM). But for each i, xℓ ≡ (xri)ℓ/ri ≡
1 (mod qi) and so h∗(xℓ) = (1, 1, . . . , 1). Thus xℓ ≡ 1 (modn). This implies r ≤ ℓ (by definition of order).
This proves that r = ℓ.

5. The fraction of elements in Z∗
n of odd order modulo n is at most 2−m. From xr ≡ 1 (modn), we conclude

that geir
i ≡ 1 (mod qi) and so φ(qi)|eir. But φ(qi) is even. If ei is odd, then r must be even. Therefore,

a necessary condition for r to be odd is that every ei be even. The fraction of elements x in Z∗
n such that

x 7→ (e1, . . . , em) with all ei even is exactly 1/2m.

¶55. Probability of finding nontrivial squareroots of unity. We introduce a useful notation: for n ∈ N,
let v(n) be the largest d ≥ 0 such that 2d|n. This function is not defined for n = 0. We can generalize this to any
nonzero rational number n/m: v(n/m) := v(n) − v(m), which can be negative or positive.

¶56. Now let Z
k
n := {i ∈ Zn : i > 0, v(i) = k} and fn(k) = |Zkn|/n. For instance, f16(k) = 1

2 ,
1
4 ,

1
8 ,

1
16 , 0 for

k = 0, 1, 2, 3, 4. We may verify (Exercise) that for all k ≥ 0:

fn(0) ≤ 1/2, with equality iff n even, (45)
∑

ℓ≥1

fn(ℓ) ≤ 1/2, with equality iff n odd. (46)

fn(k + 1) ≤ fn(k) (47)

fn(k) ≤ 1

2k + 1
(48)

fn(k) ≥ 1

3 · 2k , provided fn(k) > 0. (49)

It should be remarked that in our application, n will be the φ(qi)’s in (44).

¶57. The elements of Z∗
n with even order is particularly interesting to us: for if ord(x) = r is even, then xr/2 is a

squareroot of unity. Let us define E = En := {x ∈ Z∗
n : ordn(x) = even} and for x ∈ E, let s(x) := xord(x)/2 modn.

From the preceding, we know that |E| ≥ φ(n)(1 − 2−m) ≥ 3
4φ(n).

¶58. CLAIM. At most φ(n)/2 of the elements in E give rise to trivial squareroots of unity. Let us call x ∈ E a
“bad element” if s(x) = −1. Hence, if s(x) is a trivial squareroot of unity, then x must be a bad element since we
already know that s(x) 6= 1. Let ord(x) = r and h(x) = (ge11 , . . . , g

em
m ). Then x is bad implies that

g
eir/2
i ≡ −1 (mod qi)

for all i = 1, . . . ,m. Clearly, eir > 0 so that v(eir) is defined. Now geir
i ≡ 1 (mod qi) implies φ(qi)|eir, and so

v(φ(qi)) ≤ v(eir). (50)

If g
eir/2
i ≡ −1 (mod qi) then φ(qi) 6 | eir

2 , and so from (50), we conclude that

v(φ(qi)) = v(eir). (51)
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Comparing this equation for i = 1 and i = 2, we obtain

v(e1/e2) = v(φ(q1)/φ(q2)). (52)

The righthand side is a constant k. Without loss of generality, assume k ≥ 0 (otherwise, consider v(e2/e1)).
But for each choice of ℓ = 0, 1, . . ., the number of (e1, e2) ∈ Zφ(q1) × Zφ(q2) such that v(e2) = ℓ and v(e1) =

v(e2) + k = ℓ+ k is at most fφ(q2)(ℓ)φ(q1)/2, using the bounds (45) and (46). Summing over all ℓ, the number of
(e1, e2) ∈ Zφ(q1) × Zφ(q2) such that (52) holds is at most

∑
ℓ≥0 fφ(q1)(ℓ)φ(q2)/2 = φ(q1)φ(q2)/2.

Under the isomorphism that maps x ∈ Z∗
n to h∗(h(x)) = (e1, . . . , em), we see that the bad elements of E maps

to a set of size at most 1
2

∏m
i=1 φ(qi) = φ(n)/2. This proves our claim that there are at most φ(n)/2 bad elements.

¶59. Finally, the following result is the essence of the assertion that integer factorization is reducible to order
finding:

Lemma 12. The probability p that a random element x ∈ Z
∗
n has even order and s(x) is a nontrivial squareroot of

unity modulo n is at least p ≥ 1/4.

Proof. We have |E| ≥ 3φ(n)/4 since at most 1/2m ≤ 1/4 of the elements in Z∗
n have even order. At most φ(n)/2

of the elements in E are bad, so at least |E| − φ(n)/2 ≥ φ(n)/4 are not bad. Q.E.D.

¶60. Reducing factorization to order finding. Here is the algorithm to do simple factorization via order
finding: given N to be factored, we may assume N is a non-power odd number. First we choose a random value
x ∈ ZN . We must check if x ∈ Z∗

N , by computing GCD(x,N). If this GCD is not 1, we have in fact found a factor!
Hence we may assume x ∈ Z∗

N and proceed to find its N -order r. If N is composite, with probability p ≥ 1/4, r
would be even and s(x) = xr/2 a non-trivial squareroot of 1 modulo N . Thus with probability p ≥ 1/4 we can
factor N . In the contrary case, we can repeat this test k ≥ 2 times. If we fail to factor N for k times, we declare
N to be prime.

What is the probability of error? Error can only occur if N is composite and we declare it prime. But this
happens only if we fail the test for k times. This probability is at most (1 − p)k ≤ (3/4)k, which can be as small
as we like by making k large enough. For instance k = 3, the probability of error would already be less that 50
percent. With k = 17, the error probability is less than 1 percent.

But what happens when the order finding algorithm itself is randomized? That is, given N, x, ε > 0, the
algorithm returns an r such that Pr{r 6= ordN (x)} ≤ ε. We leave as an exercise to show the following:

Theorem 13. If there is a randomized polynomial time algorithm for order finding, then there is a randomized
polynomial time algorithm for integer factorization.

Example (contd). Continue with n = 45 = 9 × 5. Let r = LCM(φ(9), φ(5)) = 12. Consider x such that
h(x) = (2, 2). We have 26 ≡ 56 ≡ 1 (mod 9) and also 26 ≡ 36 ≡ −1 (mod 5). Hence h(x6) = (1,−1). But
what is x6? Well, x6 ≡ 1 (mod 9) means (x6 mod 45) ∈ {1, 10, 19, 28, 37}. Similarly, x6 ≡ −1 (mod 5) implies
(x6 mod 45) ∈ {4, 9, 14, 19, 24, 29, 34, 39, 44}. This means x6 = 19. Check: Modulo 45, we have 192 = (20 − 1)2 =
400 − 40 + 1 ≡ −50 + 5 + 1 ≡ 1. Thus y = 19 is a nontrivial square root of unity. Our reduction tells us that
GCD(45, y − 1) or GCD(45, y + 1) must be nontrivial. Indeed, GCD(45, y − 1) = 9 and GCD(45, 20) = 5.

The preceding development shows why assuming n is odd in our reduction of the factorization problem is not
an arbitrary decision: it ensures that each Z∗

qi
is cyclic.

¶61. Improved Estimate. Let the number of bad elements in E be αφ(n). Above we show that α ≤ 1/2. Let
us improve this to

α ≤ 3

7
. (53)

For m,n, k ∈ N, define Z
k
m,n := {(d, e) ∈ Zm × Zn : d > 0, e > 0, v(d) − v(e) = k}, and fm,n(k) = |Zkm,n|/mn. It is

easy to verify the following:

fm,n(k) =
∑

ℓ≥0

fm(k + ℓ)fn(ℓ)

fm,n(k + 1) ≤ fm,n(k)
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Clearly, (53) follows from the following bound:

fm,n(k) <
1518

3600
<

3

7
. (54)

It is enough to show that fm,n(0) ≤ 1518
3600 . From (48), we have

fm(0) ≤ 1/2, fm(1) ≤ 1/3, fm(2) ≤ 1/5, fm(ℓ) < 2−ℓ.

Then

fm,n(0) =
∑

ℓ≥0

fm(ℓ)fn(ℓ)

< fm(0)fn(0) + fm(1)fn(1) + fm(2)fn(2) +
∑

ℓ≥3

(2−ℓ)2

≤ 1

4
+

1

9
+

1

25
+

1

48

=
1518

3600
.

Exercises

Exercise 14.1: Prove that the function h∗ : Z∗
n → G∗ in (43) is an isomorphism. ♦

Exercise 14.2: Consider n = 1991 = 11×181. What is the probability that if you pick a random number x ∈ Zn,
you can factor n using x, using our reduction to order finding? ♦

Exercise 14.3: Carry out the steps of the factorization algorithm outlined in the text for the input 225. ♦

Exercise 14.4: Show that integer factorization and order finding are polynomially equivalent problems: we have
shown that integer factorization is polynomial time reducible to order finding. Show the converse reduction.

♦

Exercise 14.5: Give an estimate of the complexity of factoring prime powers (the second reduction). ♦

Exercise 14.6: Give an upper bound T (L) on the overall complexity of factorization of integers, where L = lgN
in the bit size of the input integer N . You are to use the four reductions described in the text, and to express
T (L) relative to the complexity, t(L), of finding orders of odd non-powers. ♦

Exercise 14.7: Prove Theorem 13. ♦

Exercise 14.8: Improve the improved estimate. ♦

End Exercises

§15. Quantum Order Finding

With our preparation in basic techniques of quantum algorithms, and in number theoretic tools, we are ready
for the final assault on factorization. Now Theorem 13 assures us that polynomial-time integer factorization can
be reduced to polynomial-time order finding. This reduction (as worked out in the previous section) is best done
on a classical computer: we only use quantum power for the finding orders.

¶62. To see concretely what is needed, let N = 2n be fixed. Given 3 ≤ m < N and x ∈ Z∗
m, we want to find

the m-order of x. For instance, N = 16 = 24, m = 15 and x = 7. Then the 15-order of x is r = 4. But how can
we produce r from m,x using a quantum algorithm? Note that the order problem on m is embedded in N . The
trick is to define a unitary operator Um,x and an eigenvector |v〉 such that Um,x(|v〉) = ωf(r)|v〉 where f(r) is some
easily inverted function of r. Then by phase estimation, we can approximate f(r) and then invert f(r) to get r.
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¶63. The operator Um,x. The unitary operator Um,x will act on the usual state space of n qubits, with the
eigenstates |0〉, . . . , |N − 1〉. This operator is completely described by its actions on the eigenstates:

Um,x(|j〉) :=

{
|jxmodm〉 if j ∈ Zm,
|j〉 else.

(55)

Since x has an inverse modulo m, jx ≡ j′x (modm) implies j ≡ jxx−1 ≡ j′xx−1 ≡ j′ (modm). Thus Um,x is a
permutation matrix, and a fortiori, a unitary matrix.

¶64. Eigenvectors of Um,x. We next find eigenvectors of Um,x. For each s ∈ Zr, let

|vs〉 :=
1√
r

r−1∑

ℓ=0

ω−sℓ/r|xℓmodm〉, (56)

where the “ω” notation of ¶38 is used. Then

Um,x(|vs〉) =
1√
r

r−1∑

ℓ=0

ω−sℓ/r|x1+ℓmodm〉

=
1√
r
ωs/r

r−1∑

ℓ=0

ω−s(1+ℓ)/r|x1+ℓ modm〉

= ωs/r|vs〉.

The last equality follows from the fact that xr ≡ 1 (modm) and ω−s = 1 since s is an integer. Thus, |vs〉 is an
eigenvector of Um,x with phase φ = s/r. If we can estimate φ, and assuming we know s, we can trivially recover
r, provided s 6= 0. Unfortunately, we do not know how to prepare the state |vs〉 for a single s. To circumvent this
problem, we use another observation: for any k,

1√
r

r−1∑

s=0

ωsk/r |vs〉 =
1√
r

r−1∑

s=0

ωsk/r
1√
r

r−1∑

ℓ=0

ω−sℓ/r|xℓmodm〉

=
1

r

r−1∑

ℓ=0

r−1∑

s=0

ω(k−ℓ)s/r|xℓmodm〉

= |xk modm〉 (57)

where the last equation follows from the fact that (see (25))
∑r−1

s=0 ω
(k−ℓ)s/r vanishes for ℓ 6= k, and otherwise

equals r. A special case of this identity is when k = 0,

|1〉 =
1√
r

r−1∑

s=0

|vs〉. (58)

¶65. Exponentiation circuit. To apply the result of (57), we need to produce the state |xk modm〉 for each
k. Hence, we want to construct the exponentiation transformation,

|k〉 ⊗ |y〉 7→ |k〉 ⊗ |xkymodm〉.

The circuit V is shown in Figure 14, and it uses as subcircuits denoted U = Um,x (to be more precise, control-Um,x).
Also, U i denotes i-fold application of U .

Note that this circuit is similar to the first stage of phase estimation (¶47, see Figure 11). What we must

remember, however, is that the U2i

-gates must be implemented efficiently (polynomial in i, not in 2i). This uses
the well-known successive squaring trick of classical exponentiation. We leave this as an Exercise. As in Figure 11,
we actually use an control-U gates, and the justification is also similar: the control-U2i

, on input |ki〉⊗|yx(k1···ki−1)2〉,
produces the output |ki〉 ⊗ |yx(k1···ki−1ki)2〉.
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|yxk
modm〉|y〉
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t−2
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0
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Figure 14: Exponentiation Circuit for V = Vm,x : |k〉 ⊗ |y〉 7→ |k〉 ⊗ |xkymodm〉.

¶66. Combining. We combine the previous two ideas. Let us start with two quwords, each with n bits. Call
these the first and second registers, respectively. In bit notation ¶7, we prepare them as follows:

|0n〉 ⊗ |0n−11〉.

These state can also be written as |0〉 ⊗ |1〉 in the indexing notation ¶7. Applying the Hadamard transformation
Hn on the first register, we obtain

1√
N

N−1∑

k=0

|k〉 ⊗ |1〉. (59)

Note that |0n−11〉 = |1〉 where we intepret 0n−11 as the binary number 1. Next apply the exponentiation operator
V = Vm,x above to the two registers to yield

1√
N

N−1∑

k=0

|k〉 ⊗ |xk modm〉.

From (57), this last result can be expressed as

1√
N

N−1∑

k=0

(
|k〉 ⊗ 1√

r

r−1∑

s=0

ωsk/r |vs〉
)

=
1√
rN

r−1∑

s=0

(
N−1∑

k=0

|k〉 ⊗ ωsk/r|vs〉
)
. (60)

The expression in the final pair of parentheses is similar to a Fourier transform (¶39), but with phase ωs/r. We
next need to estimate the phase angle s/r.

¶67. Phase Estimation. Let V = Vm,x denote the exponentiation circuit of Figure 14. This circuit transforms
the input (59) to (60). To see more clearly the actions of V , let us rewrite

V (|k〉 ⊗ |1〉) = V

(
|k〉 ⊗ 1√

r

r−1∑

s=0

|vs〉
)
, (by (58))

=
1√
r

r−1∑

s=0

|k〉 ⊗ ωsk/r|vs〉

=
1√
r
|k〉 ⊗

r−1∑

s=0

ωsk/r|vs〉

Even more simply,
V (|k〉 ⊗ |vs〉) = ωsk/r |k〉 ⊗ |vs〉 (61)

Thus |k〉 ⊗ |vs〉 is an eigenvector of V with phase ωsk/r. Now view V as a blackbox, illustrated in Figure 15(a). To
estimate the phase angle sk/r, we use our previous phase estimation technique, by introducing the third register
with t qubits, prepared as |0t〉. Putting all these together, we have the circuit given in Figure 15(b).
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(a)

(b)

Register 2: |1n〉 V 2
t−1

|1〉

MeasureRegister 3: |0t〉

V 2
1

Register 1: |0n〉 Hn|0n〉

|k〉

|vs〉 ωks/r|vs〉

V

|k〉

V 2
0 · · ·

Hn

P

k |k〉
P

s |vs〉

Phase Estimation Circuit

Figure 15: (a) Blackbox V . (b) Circuit for Order Finding.

¶68. Measurement. Suppose we perform the measurement on register three, as shown in Figure 15(b). Since

the input to each control-V 2i

gate is a linear superposition of the eigenstates |k〉 ⊗ |vs〉 for all k = 0, . . . , N − 1 and
s = 0, . . . , r − 1, the result of this measurement an approximate value of |sk/r〉 for some k and s.

We can recover k by measuring register one. This gives an estimate for s/r unless k = 0. Furthermore, if
s = 0 or GCD(s, r) > 1, the estimate is also useless. Otherwise, we are indifferent as to which s or k was measured.
Since at least Cr/ ln(r) numbers less r are prime, the probability of obtaining an s that is coprime to r is at least
C/ ln(r). So if we repeat at least 2C/ ln(r) times, we have a strong chance of obtaining a good s. The reader may
device other ways to correctly estimate r despite the presense of bad choices of s.

¶69. Final Recovery. We did not specify t above because it depends on the accuracy we desire for estimating
s/r. Here is where we use a well-known fact about rational approximation: if |w − s/r| ≤ 1/(2r2), then we can
recover s/r uniquely from w, using the simple continued fraction algorithm. Of course, we do not know r, but only
need at upper bound on r (e.g., N will do). So we just make sure that, with high probability, our estimate has at
least lg(2N2) bits of precision. The continued fraction algorithm does not need any quantum power.

This concludes our description of Shor’s algorithm for order finding.

Exercises

Exercise 15.1: Describe an algorithm for the complete factorization of an integer N ∈ N that runs in time
polynomial in N . ♦

Exercise 15.2: Describe a polynomial time algorithm which, given N ∈ N, either detects that N is not a power
or else completely factorize N , i.e., finds M, e ∈ N such that N = M e. HINT: how would you detect if N is
a square, N = M2? ♦

Exercise 15.3: (Extended Euclidean Algorithm) Modify the Euclidean algorithm to compute s, t, d for any input
numbers m,n, such that d = GCD(m,n) and d = sm+ tn. ♦

Exercise 15.4: If n is an odd non-power, then Z∗
n is non-cyclic. ♦

Exercise 15.5: Verify the bounds in (45)-(49). ♦
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Exercise 15.6: Improve the lower bound on α in Equation (53). HINT: We can just expand more terms in the
proof of (54). ♦

Exercise 15.7: Let x ∈ Z∗
n and n = q1 · · · qm (m ≥ 2) where the qi’s are prime powers, and coprime to each

other. Assume h(x) = (g1, . . . , gm) where each gi is a generator of Z∗
qi

. Characterize the conditions where

xℓ ≡ −1 (modn) where 2ℓ = LCM(φ(q1), . . . , φ(qm)). ♦

Exercise 15.8: Recently, it was announced that a quantum computer was able to factor the number 15. Infer
what probably happened – what was, and what was not done by the quantum computer. ♦

Exercise 15.9: Let q be a prime power and d = v(φ(q)). Then exactly half of the elements in Z∗
q has q-order that

is divisible by 2d. ♦

Exercise 15.10: Let U be a unitary transformation and |v〉 an eigenvector such that U |v〉 = ωφ|v〉 where 0 ≤ φ < 1

and, as usual, we write ω for ei2π . See Figure 13.

(i) Consider the circuit in Figure 13 that has two Hadamard gates and a control-U gate. What is the output
of this circuit on input |0〉 ⊗ |v〉?
(ii) Show that the probability of |0〉 on the control line is p0 = (1 + cos 2πφ)/2.
(iii) Suppose X is the number of heads in n tosses of a coin. If the coin has probability p (0 < p < 1) of
showing up heads, then

Pr{|p− (X/n)| > ε} ≤ 2 exp(−2nε2).

This is known as the “Hoeffding bound”. Suppose cos 2πφ = ±0.b1b2b3 · · · in binary notation. Using the
Hoeffding bound as well as the quantum circuit, describe an experimental procedure to estimate the sign
σ ∈ {±1} and first two bits b1, b2 so that

Pr{| cos 2πφ− σ0.b1b2| > 1/8} ≤ δ (62)

where 0 < δ < 1 is given.
(iv) Outline a generalization of (iii), so that we efficiently estimate the first m bits of cos 2πφ with error

probability δ. That is, Pr{| cos 2πφ− 0.b1b2 · · · bm| > 2m+1} ≤ δ. HINT: use the control-U2i

circuits (i ≥ 1)
to estimate the bits in parallel. ♦

End Exercises

§16. Grover’s Search Algorithm

¶70. We consider another application where quantum power has a provable advantage over classical computation.
This is the problem of searching a set B for an item. Assume there are n items in B, and we are looking for a
particular element x0. To do this, assume we have an oracle which, given any x ∈ B, can tell us whether or not
x = x0. Clearly, this requires n comparisons in the worst case. On average, we still need n/2 comparisons. Grover
(1996) showed that a quantum algorithm can do this in

√
n queries with high probability.

¶71. Oracle operators. Let f : Bn → B be any function. By an f-oracle we mean the unitary operator
Of : B⊗n ⊗ B → B⊗n ⊗ B where

Of (|x〉 ⊗ |b〉) = |x〉 ⊗ |f(x) ⊕ b〉.
That is, the n+ 1st qubit b is flipped iff f(x) = 1. Setting |b〉 = 1√

2
(|0〉 − |1〉), then as in Deutsch’s problem,

Of (|x〉 ⊗ |b〉) = |x〉 ⊗ 1√
2
(|f(x) ⊕ 0〉 − |f(x) ⊕ 1〉)

= (−1)f(x)|x〉 ⊗ 1√
2
(|0〉 − |1〉)

= (−1)f(x)|x〉 ⊗ |b〉.

In other words, |x〉 ⊗ |b〉 is an eigenvector of Of with eigenvalue (−1)f(x).
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¶72. Example. Fix 1 < m < 2n, and let f : Bn → B be the function f(j) = 1 iff j|m (where j ∈ Bn is
interpreted as a binary number). Thus, the oracle Of amounts to searching for a factor of m. We leave it as an
exercise to construct a quantum circuit for Of .

¶73. The Search Problem. Let N = 2n and f : Bn → B. Viewing Bn as the set Z2n = {0, 1, . . . , 2n − 1}, we
define the sets

P := {j ∈ B
n : f(j) = 1} , Q := {j ∈ B

n : f(j) = 0} .
Also, p := |P | and q := |Q|. We want to construct a quantum circuit using the oracles Of so that, if we measure
the first n output lines, we obtain some value j ∈ P with high probability.

This is interpreted as the problem of searching for an element of j ∈ Bn with property P .
The idea is easy to see geometrically: consider the states |P 〉 := 1√

p

∑
j∈P |j〉 and |Q〉 := 1√

q

∑
j∈Q |j〉. Clearly,

|P 〉 and |Q〉 are orthogonal states:
〈P |Q〉 = 0.

Let the initial state of the system be

|φ〉 =
1√
N

2n−1∑

j=0

|j〉.

We know that |φ〉 can be prepared as

H⊗n|0〉 :=
1√
N

2n−1∑

j=0

|j〉.

We may verify that

|φ〉 =

√
q

N
|P 〉 +

√
p

N
|Q〉.

This shows that |φ〉 lies in the plane spanned by |P 〉 and |Q〉.
We next consider the effect of Of on |φ〉: this amounts to a reflection of |φ〉 about the |Q〉:

Of (|φ〉) = −
√

q

N
|P 〉 +

√
p

N
|Q〉.

§17. Quantum Turing Machines

¶74. A circuit computes a finite function. We now address general computational models that takes inputs of
arbitrarily large size. In complexity theory, we can take one of two paths. One way is to define a general computing
model such as Turing machines. Another way is to start from circuits, and to define14 a “uniform circuit family”.
These two approaches can also be taken to define a more general computational model for quantum computing.
A basic result here is the existence of a universal Turing machine. Deutsch [15] proved the analogous result for
quantum computers. Bernstein and Vazirani [12] describes a similar model, usually known as the quantum Turing
machine (QTM). Benioff [6] has argued for a different basis for such models.

Need to give the results of Yao??

§A. APPENDIX: Review of Linear Algebra

We review of some facts from linear algebra needed in quantum computing. We work exclusively with finite-
dimensional linear spaces over the complex field C.

14There is a bit of circularity in the conventional definition of “uniformity” via some Turing machine (say). We can avoid this problem
by using some logical circuit description language, say.
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¶75. Basic notations. The (complex) conjugate z of a complex number z ∈ C is denoted z = x − iy where
z = x+ iy with x, y ∈ R and i =

√
−1. We will shortly see that the complex conjugate of z can also be denoted z∗,

and this form is common in quantum physics. The absolute value |z| of z is equal to
√
zz =

√
x2 + y2. Complex

numbers with absolute value 1 are called complex signs, a generalization of the real signs ±1. A complex sign

z can be written in the form eiθ for some real θ. The value θ is also called the phase. If |z| ≤ 1, we call z a
(probability) amplitude.

A matrix A ∈ Cm×n is viewed as a transformation tA : Cn → Cm, where tA(x) = Ax (a matrix-vector
multiplication). Thus, range(A) is simply {Ax : x ∈ Cn} ⊆ Cm. Let us assume m = n unless otherwise noted.
The (i, j)-th entry of a matrix A is denoted (A)ij . The transpose AT and conjugate A of a matrix A is given by

(AT )ij = (A)ji and (A)ij = (A)ij , respectively. Then the conjugate transpose A∗ is given by A∗ = AT = A
T
.

Note that (AB)T = BTAT and (AB)∗ = B∗A∗. A matrix A ∈ Cn×n is Hermitian if A∗ = A, unitary if A∗A = I
(identity), and orthogonal if ATA = I. So if A is unitary then A−1 = A∗, A∗A = AA∗. Hermitian matrices are
also known as “self-adjoint” matrices (as A∗ is sometimes called the “adjoint” of A). In case A is a 1×1 matrix, A∗

is just another way of writing complex conjugation, since A∗ = A. Unitary matrices are fundamental in quantum
computing. For a unitary U , it is clear that det(U) = 1 and hence its eigenvalues λi are complex signs, |λi| = 1.

Define the scalar product for two n-vectors x, y such that 〈x, y〉 :=
∑n

i=1 x
∗
i yi. Thus, 〈x, x〉 is real and

nonnegative. Moreover, 〈x, x〉 = 0 iff x = 0. Define ‖x‖ :=
√
〈x, x〉, called the (Euclidean) norm of x. Two vectors

x, y are orthogonal if 〈x, y〉 = 0.
A matrix A is normal if A∗A = AA∗. Note that unitary matrices, Hermitian matrices, skew-Hermitian matrices

(A∗ = −A) are all normal. In quantum mechanics, Hermitian and unitary matrices are of paramount importance.

¶76. Orthogonalization and QR-Factorization. A useful tool for investigating the structure of linear spaces
is based on a certain factorization of matrices. Let A = [a1|a2| · · · |am] ∈ Cn×m where ai is the ith column. Let
Si ⊆ Cn be the subspace spanned by the first i columns.

Assume A has rank m (so m ≤ n). Let the sequence (q1, . . . , qm) of vectors form an orthonormal basis for
Sm ⊆ Cn. If we form the matrix

Q := [q1|q2| · · · |qm],

then there is some m×m matrix R such that
A = QR. (63)

To see this, note that the ith column ri of R represents the vector ai relative to the basis (q1, . . . , qm). Let us call
(q1, . . . , qm) (or Q) a Gram-Schmidt basis for A if for each i = 1, . . . ,m, the prefix (q1, . . . , qi) forms an ordered
basis for Si. An ordered basis is just a basis whose elements are linearly ordered. In this case, the matrix R is
upper triangular in (63). The well-known Gram-Schmid orthogonalization procedure that compute such a basis Q
from any A.

The factorization (63) of A is known as a reduced QR-factorization when Q is an Gram-Schmidt basis of
A. Each vector qi in this basis is unique up to some scalar multiple of modulus 1. Equivalently, we say qi is
determined up to “complex signs”. To make the factorization unique, we choose the complex signs to make the
diagonal elements of R real and non-negative. The full QR-factorization of A is the following variant,

A = Q̂R̂ (64)

where Q̂ is n× n and R̂ is n×m. It is obtained from (63) by augmenting Q and R: the matrix Q̂ is obtained by

appending n−m additional columns so that the columns of Q̂ form an orthonormal basis for Cn; the matrix R̂ is
obtained by appending n−m additional rows of 0’s. Note that when m = n, the full QR-factorization is just the
reduced QR-factorization. Since Q̂∗Q̂ = I, the matrix Q is unitary in the full QR-factorization.

So far, we have assumed that A has rankm. Supposem,n are arbitrary and A has has rank k (so k ≤ min{m,n}.
We first apply a permutation P to the columns of A so that the first k columns are linearly independent. Then we
have AP = QR where Q ∈ Cn×n is unitary, R ∈ Cn×m is upper triangular, and the first k columns of Q forms a
orthonormal basis for Sm,

¶77. Eigenvalues and Eigenvectors. A non-zero vector x ∈ Cn is called an eigenvector of A if Ax = λx for
some λ ∈ C. In this case, we call λ an eigenvalue of A that is associated with the eigenvector x. Note that while
eigenvectors must be non-zero, we have no such restriction on eigenvalues. In particular, A is singular iff λ = 0
is an eigenvalue: Ax = 0x = 0 (x 6= 0) iff A is singular. The set of eigenvalues of A, denoted Λ(A), is called the
spectrum of A. The characteristic polynomial of A is pA(z) = det(zI −A).
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For example, if A =

[
a b
c d

]
then pA(z) = det

[
z − a b
c z − d

]
= (z−a)(z−d)− bc = z2− (a+d)z+ad− bc.

If

A =




0 1
0 1

. . .

0 1
−a0 −a1 · · · −an−2 −an−1




then pA(z) = zn +
∑n−1

i=0 aiz
i.

In general, it is easily seen that p(z) is monic of degree n with the constant term equal to det(A) and the
coefficient of zn−1 equal to −trace(A) = −∑n

i=1 aii. Also, λ ∈ Λ(A) iff λ is a zero of pA(z). [In proof, Ax = λx
iff (λI − A)x = 0 iff λI − A is singular iff det(λI − A) = 0.] The multiplicity of λ as a root of pA(z) is called the
algebraic multiplicity of λ. It follows that the cardinality of Λ(A) is between 1 and n.

Example. If A1 =

[
4 3
3 4

]
then pA1

(z) = z2 − 8z + 7 and so Λ(A1) = {1, 7}. To compute the eigenvectors

associated with a given eigenvalue λ ∈ Λ(A), we find a basis for the nullspace of the matrix λI − A (or A − λI).
Recall that the null space of a matrix B is the set of vectors x such that Bx = 0. We compute the LU decomposition
of B, B = LU and then solve for U by backward substitution. For instance, the eigenvectors associated with λ = 1

for A1 above is the nullspace of A1 − I =

[
3 3
3 3

]
. Clearly the nullspace in this case is spanned by x1 =

[
1
−1

]
.

So x1 is associated with λ = 1. Similarly, the nullspace of A− 7I =

[
−3 3
3 −3

]
is spanned by x2 =

[
1
1

]
.

Lemma 14. If A can be written as a block matrix of the form

A =

[
B C
0 D

]

where B and D are square blocks, then
pA(z) = pB(z)pD(z). (65)

Proof. The lemma is equivalent to det(zI − A) = det(zI − B) det(zI −D). We only have to show that any of
the n! terms of the determinant det(zI −A) that involves an entry of C is zero. Suppose B is k × k and the term
t =

∏n
i=1 ai,j(i) contains an entry ai0,j(i0) of C. Then the i0th row of B does not contribute to t. If B contributes ℓ

entries to t, this implies ℓ ≤ k− 1. So for some 1 ≤ c ≤ k, the c-th column of B does not contribute to t. Consider
the index i1 where j(i1) = c: clearly, the factor ai1,j(i1) of t is 0 and so t = 0, concluding our proof. Q.E.D.

As corollary, we have Λ(A) = Λ(B) ∪ Λ(D).

¶78. Invariant subspaces. A subspace E ⊆ Cn is A-invariant if AE = {Ax : x ∈ E} is contained in E. If
E = {0} then it is clearly A-invariant. We call this the trivial case. If λ ∈ Λ(A), the set Eλ = {x ∈ Cn : Ax = λx} is
easily seen to be a non-trivialA-invariant subspace; we call Eλ the eigenspace of A associated with λ. In particular,
the eigenspace of A associated with λ = 0 is the nullspace of A. If λ 6= λ′ then clearly Eλ ∩ Eλ′ = {0}. Further,
x ∈ Eλ and y ∈ Eλ′ are linearly dependent: for, if c = ax + by = 0 for some a, b ∈ C then Ac = λax + λ′by = 0,
which easily implies a = b = 0. In Eλ, transformation by A amounts to scaling by a factor of λ. The dimension of
Eλ is called the geometric multiplicity of λ. We will show below that the geometric multiplicity of λ is at most
the algebraic multiplicity.

¶79. Similarity. Invariant subspaces are intimately connected to the notion of “similarity”. Two matrices
A,B ∈ Cn×n are similar if

A = XBX−1

for some non-singular matrix X . Intuitively, A,B are similar means that the transformation (represented by) A in
one coordinate system S is the same as transformation of B in another coordinate system S′. To see this, suppose
X : S′ → S is the coordinate transformation from S′ to S, and let A : S → S. Then the map x 7→ Ax is the same
as first transforming x 7→ X−1x ∈ S′, then applying B to get BX−1x ∈ S′, and finally transforming the result
back to XBX−1x ∈ S. Thus, similarity classifies transformations of isomorphic space S.
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In case X is unitary, X∗X = I, we say A and B are unitarily similar: A = XBX∗. Similar matrices A,B
have the same characteristic polynomial since

det(zI −X−1BX) = det(X−1(zI −B)X) = det(X−1) det(zI −B) det(X) = det(zI −B).

Thus similar matrices have the same spectrum,

Λ(A) = Λ(B), (66)

with the same algebraic multiplicities. Next,

Ax = λx⇔ X−1BXx = λx⇔ B(Xx) = λ(Xx). (67)

This shows that the eigenspace Eλ of A with λ and the eigenspace E′
λ of B are related as follows: Eλ = XE′

λ. It
follows that λ has the same geometric multiplicity relative to A and B.

¶80. Defective Matrices. Geometric multiplicity can be different from algebraic multiplicity. An eigenvalue λ
is defective if its geometric multiplicity is different from its algebraic multiplicity. A matrix is defective if any of
its eigenvalue is defective. For instance, if

A =

[
λ 0
0 λ

]
, A′ =

[
λ 1
0 λ

]
, (λ 6= 0) (68)

then Λ(A) = Λ(A′) = {λ} and the algebraic multiplicity of λ is 2 for both A and A′. Let Eλ and E′
λ be the

eigenspaces associated with λ for A and A′, respectively. Clearly, Eλ = C2 so that the geometric multiplicity of λ
relative to A is 2. But if x = (a, b)T ∈ E′

λ then A′x = λx. This means λx = (λa+ b, λb)T , and thus b = 0. So E′
λ

has dimension 1, not 2. Hence λ is defective for A′.

Lemma 15. For all A, the geometric multiplicity of any λ ∈ Λ(A) is at most the algebraic multiplicity of λ.

Proof. To see this, suppose λ has geometric multiplicitym and x1, . . . , xm arem linearly independent eigenvectors
all associated with λ. We may assume that the xi’s are unit vectors (x∗i xi = 1). Let X = [x1|x2| · · · |xm| · · · |xn]
where the columns xm+1, . . . , xn are additional unit vectors that span the complement of the eigenspaceEλ. ThusX
is unitary (X∗X = I) and X−1 = X∗. So AX = [λx1| · · · |λxm|x′m+1| · · · |x′n], where x′j = Axj for j = m+1, . . . , n.
Then a simple calculation shows

B = X∗AX =

[
λI C
0 D

]

for some C and D. This shows that the characteristic polynomial of B is divisible by (z−λ)m, and so the algebraic
multiplicity of B is at least m. Since A and B are similar, the algebraic multiplicities λ in A and B are equal.

Q.E.D.

¶81. Diagonalizability. The diagonal matrix whose (i, i)th element is di (for i = 1, . . . , n) is denoted D =
diag(d1, . . . , dn). A matrix is diagonalizable if it is similar to a diagonal matrix. To see why this concept is
useful, suppose A is diagonalizable:

A = XDX−1, D = diag(d1, . . . , dn) (69)

for some X . Then observe that the columns of X are eigenvectors for A. To see this, (69) implies AX = XD and
hence Axi = dixi where xi is the ith column of X . Furthermore, this set of eigenvectors is complete, i.e., they
span the whole space.

We restate this observation as a theorem. Let ei denote the ith elementary vector, with 1 in the ith position
and 0 elsewhere. Thus xi = Xei. and di = Dei.

Theorem 16. If A = XDX−1 where D = diag(d1, . . . , dn) is a n×n diagonal matrix, then the set {Xe1, . . . , Xen}
is a complete set of eigenvectors of A. Moreover, di is the associated eigenvalue of Xei.

It follows that a diagonal matrix D = diag(d1, . . . , dn) is always non-defective. To see this, note that the
characteristic polynomial of D is

∏n
i=1(x − di) and so each λ ∈ {d1, . . . , dn} is an eigenvalue of D and it appears

in D as many times as its algebraic multiplicity. Since similarity transformations preserve eigenvalues and their
multiplicities, we conclude:

Theorem 17. A matrix A is diagonalizable iff it is non-defective.

For instance, the matrix A′ in (68) is not diagonalizable.
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¶82. Unitary Similarity and Schur Form. Canonical form for matrices that are equivalent under various
notions of equivalence is an extremely powerful tool in linear algebra. We will consider matrices that are equivalent
under unitary similarity transformations: A ≡ B iff A = UBU∗ for some unitary U . Unitary operators are basically
isomorphisms of the inner product space: if y = Ux then y∗y = (Ux)∗(Ux) = x∗(U∗U)x = x∗x.

The invariant subspace relationship can be captured by a matrix equation: let X be a n×m matrix whose m
columns span some A-invariant subspace E. Then there exists some B ∈ Cm×m such that

AX = XB. (70)

Conversely, every such equation (70) shows that the space spanned by the columns of X is A-invariant.
Next, assume that E ⊆ Eλ for some eigenvalue λ. Then B has the form λI in (70). Let X = QR be a full

QR-factorization of X (see (64)) where

R =

[
T
0

]

for some upper triangular T ∈ Cm×m. To say that a matrix A is upper triangular means that (A)ij = 0 for j > i.
Thus (70) becomes AQR = QRB, or Q∗AQR = RB. Since RB = λR, we have

(Q∗AQ)R = λR. (71)

Let us write

Q∗AQ =

[
C D
E F

]

where C ∈ C
m×m and F ∈ C

(n−m)×(n−m). Then the block version of (71) implies ET = 0. Since T is non-singular,
this means E = 0:

Q∗AQ =

[
C D
0 F

]
. (72)

By repeated application of this transformation of A, we obtain the Schur Decomposition of a matrix:

Theorem 18 (Schur Decomposition). Every matrix A is unitarily similar to a upper diagonal matrix T .

Proof. We use induction on n where A ∈ C
n×n. The result is trivial for n = 1. So assume n =≥ 2 and let

Ax = λx for some eigenvector x 6= 0. Then using (72) with m = 1, there is a unitary Q such that

Q∗AQ =

[
c yT

0 F

]

for some c ∈ C, some vector y and square matrix F . By induction, there is unitary V such that V ∗FV is upper
triangular. If

U =

[
1 0
0 V

]

then T = U∗(Q∗AQ)U is upper triangular. As QU is unitary, this shows that A is unitarily similar to T . Q.E.D.

¶83. Unitary Diagonalizability. We have introduced two concepts: unitary similarity and diagonalizability.
Combining them, we say a matrix A is unitarily diagonalizable iff it has the form

A = UΛU∗

for some unitary U and Λ = diag(λ1, . . . , λn).
Clearly, unitarily diagonalizability implies diagonalizability. We show the converse as well: let A be diagonaliz-

able, so A = XΛX−1 for some X . Here X is not necessarily unitary. By theorem 16, the columns {Xe1, . . . , Xen}
of X forms a complete set of eigenvectors for A. In order for X to be unitary, we need the eigenvectors to be
normalized, i.e., (Xei)

∗(Xei) = 1. Let wi :=
√

(Xei)∗(Xei) and ui := (Xei)/wi. Next define the matrices U and
W via

X = U ·W = [u1|u2| · · · |un] · diag(w1, . . . , wn).

Clearly, U is unitary and we have X−1 = W−1U−1 = W−1U∗. Of course, W−1 = diag(1/w1, . . . , 1/wn). We then
have A = (UW )ΛW−1U∗ = UΛU∗. So A is unitarily diagonalizable. So we have proved:
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Lemma 19. A matrix is diagonalizable iff it is unitarily diagonalizable.

Recall that a matrix A is normal if A∗A = AA∗. We note a useful lemma.

Lemma 20. If A is upper diagonal, then A is normal iff A is diagonal.

Proof. One direction is easy: if A is diagonal, then clearly A∗A = AA∗. Conversely, suppose A∗A = AA∗. We
claim that A must be diagonal. Let c be the first column of A and r be the first row of A. Then top-left corner
entry of A∗A is c∗c, and the corresponding entry of AA∗ is r∗r. Thus A is normal implies c∗c = r∗r. But the first
entry in c and in r are equal to some α ∈ C, and c∗c = |α|2. Hence r∗r = |α|2, which implies that all the remaining
entries in r are zero. Continuing in this fashion, we argue that all the off-diagonal entries in the ith row must be
zero. Q.E.D.

Theorem 21. A matrix is normal iff it is diagonalizable.

Proof. Let A = UTU∗ be the Schur decomposition of A given by the previous theorem. Since AA∗ =
(UT )(T ∗U∗) and A∗A = (UT ∗)(TU∗), we have

AA∗ = A∗A⇔ T ∗T = TT ∗.

Thus A is normal iff T is normal. But we had just shown that T is normal iff T is diagonal. Thus A is normal iff
T is diagonal. But T is diagonal means A is diagonalizable. Q.E.D.

As a corollary, we have

• Unitary and Hermitian matrices are diagonalizable. This is because such matrices are normal. It follows that
such matrices have complete sets of eigenvectors.

• A matrix is non-defective iff it is normal. This follows from theorems 21 and 17.

¶84. Projection and spectral decomposition. A projection operator P is a matrix satisfying the equation
P 2 = P . Note that the operator I − P is orthogonal to P since (I − P )P = 0. It is easy to find projections:
for any unit length vector x, the matrix xx∗ is a projection operator since (xx∗)(xx∗) = x(x∗x)x∗ = xx∗. Note
that xx∗ is Hermitian, since (xx∗)∗ = xx∗. For any y, (xx∗)y = (x∗y)x = αx where α = x∗y is a scalar. Thus the
range of the projection (xx∗) is the linear subspace spanned by x. Generalizing this, if {xi : i = 1, . . . , k} is a set

of orthonormal vectors, then P =
∑k
i=1 xix

T
i is a projection operator.

Theorem 22. If A is normal, then it has a spectral decomposition, i.e., an expression of the form

A =

n∑

i=1

λiPi (73)

where each Pi is a projection operator. Moreover, the λ1, . . . , λn are the eigenvalues of A, and there is a unitary
matrix U = [u1|u2| · · · |un] such that each Pi has the form Pi = uiu

∗
i .

Proof. Since A is normal, we may write A = UΛU∗ for some unitary matrix U = [u1|u2| · · · |un], and Λ =
diag(λ1, . . . , λn). It suffices to prove that

A =

n∑

i=1

λiuiu
∗
i . (74)

By definition of A = UΛU∗, we have Ajk = rjΛck where rj is the jth row of U and ck is the kth column of U∗.
But rj = (u1j , u2j, . . . , unj) and ck = (u1k, u2k, . . . , unk)

∗. Hence

Ajk =
∑

i

uijλiu
∗
ik.

This proves (74). We just set Pi = uiu
∗
i in the theorem. Q.E.D.
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¶85. Hermitian Matrices and Real Numbers. We show a remarkable family analogies between Hermitian
matrices and real numbers. First, real numbers can be positive, negative or zero. We have analogous but more
subtle classification of Hermitian matrices. A matrix A is positive semidefinite (resp., positive definite) if
x∗Ax ≥ 0 (resp., x∗Ax > 0) for all nonzero vector x. Analogous definitions can be given by replacing “positive”
by “negative”.

Theorem 23. Let H be Hermitian.
(i) All its eigenvalues are real.
(ii) H is positive definite iff all its eigenvalues are positive.
(iii) H is positive semidefinite iff all its eigenvalues are non-negative.

Proof. Let H = UΛU∗ for some unitary U and diagonal Λ.
(i) Since H is Hermitian, we have H = H∗ = UΛ∗U∗. Hence Λ = Λ∗, i.e., Λ is real.
(ii) Let the columns of U be x1, . . . , xn. Each xi is an eigenvector ofH with associated eigenvalue λi. Since x∗iHxi =
λi|xi|2, the positive definiteness of H implies λi > 0. Conversely, if each λi > 0 we can show that H is positive
definite: any non-zero vector x ∈ C can be expressed as

∑n
i=1 cixi (ci ∈ C). Then x∗Hx =

∑n
i=1 λi|ci|2|xi|2 > 0

(iii) The proof is similar to (ii). Q.E.D.

¶86. Analogy between Hermitian Matrices and Real Numbers. The above connection between Hermitian
matrices with real numbers goes much deeper. The special role of real numbers in the complex field C is mirrored
in many ways by the Hermitian matrices in the context of complex matrices. This analogy can be extended as
follows:

real number ↔ Hermitian
pure complex number ↔ anti-Hermitian
complex sign, |z| = 1 ↔ unitary

positive real ↔ positive definite Hermitian
non-negative real ↔ positive semidefinite Hermitian

In the following, z is a complex number. The complex conjugate of z = x + iy is z = x − iy. We point out the
matrix analogues of the following properties:

1. z is real iff z = z; z is pure complex iff z = −z.

2. z is real iff iz is pure complex; z is pure complex iff iz is real.

3. z + z is real and z − z is pure complex.

4. zz = zz is real.

5. z can be uniquely written as z = x+ iy where x, y are real.

6. z can be uniquely written as z = x+ w where w is real and w is pure complex.

7. A real number r is non-negative iff there is a real number s such that r = s2.

8. A z has the polar form, z = rs where r is non-negative real, and s is a complex sign, |s| = 1. This form is
unique if z is non-zero.

9. A complex sign s can be uniquely written as s = eiθ for some real θ.

In the following, let A ∈ Cn×n.

1. A is Hermitian iff A = A∗; A is anti-Hermitian iff A∗ = −A.
Thus, the matrix analogue of complex conjugation, z 7→ z, is conjugate transpose, A 7→ A∗.

2. A is Hermitian iff iA is anti-Hermitian; A is anti-Hermitian iff iA is Hermitian.

3. A+A∗ is Hermitian and A−A∗ is anti-Hermitian.

4. A∗A and AA∗ are both Hermitian.

5. A can be uniquely written as G+ iH where G,H are Hermitian.
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6. A can be uniquely written as A = G+ F where G is Hermitian and F is anti-Hermitian.
This is just a restatement of the previous property.

7. A Hermition matrix H is positive semidefinite iff H = G∗G for some positive semidefinite G.

8. A has two polar forms, A = HU and A = U ′H ′, where H,H ′ are positive semidefinite Hermitian, and U,U ′

are unitary. If A is non-singular, then these polar forms are unique.

9. A unitary A can be uniquely written as eiH for some Hermitian H .

Let us prove the non-obvious cases of the properties.
Property 5: Let G = (A + A∗)/2 and H = (A − A∗)/2i. Then clearly A = G + iH and from the preced-
ing, we conclude that G and H are Hermitian. Conversely, if A = G + iH for some Hermitian G and H , then
A∗ = G∗ + (iH)∗ = G∗ − iH∗ = G− iH . It follows that G = (A+A∗)/2 and H = (A−A∗)/2i.
Property 7: If A is positive semidefinite, we know that A = UΛU∗ for some unitary U and diagonal Λ =
diag(λ1, . . . , λn), where λi > 0. If B = Udiag(

√
λ1, . . . , diag

√
λnU

∗, then BB∗ = A.
Property 8:
Property 9:

¶87. Operator functions. If A ∈ Cn×n, how can we define exp(A) or
√
A? More generally, if f : C → C is a

function, we want to extend f to a function on matrices f : Cn×n → Cn×n. When extended in this way, we call f
an operator function (since matrices represent operators). We do not define f(A) for arbitrary A ∈ Cn×n, but
only when A is normal. The definition is rather simple using the spectral decomposition (Theorem 22) of A. If
A =

∑
i λiPi, we just define f(A) =

∑
i f(λi)Pi.

¶88. Jordan Form. The ultimate canonical form under general similarity transformation is the Jordan form.

¶89. Hilbert Space. Let S be a complex vector space (or linear space), endowed with an inner product 〈x, y〉 ∈ C

such that for all x, y, z ∈ S and a ∈ C,

• (linearity) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉

• (homogeneity) 〈x, ay〉 = a〈x, y〉, a ∈ CC.

• (skew symmetry) 〈x, y〉 = 〈y, x〉

• (positivity) 〈x, x〉 is real and 〈x, x〉 ≥ 0 with equality iff x = 0

There is an asymmetry in the two arguments of the inner product: it follows from the above axioms that

〈ax, y〉 = 〈y, ax〉 = a〈y, x〉 = a〈x, y〉.

How does such inner products arise? Suppose H is a matrix and we define 〈x, y〉 to be x∗Hy. Linearity and
homogeneity are obvious: x∗H(y + z) = (x∗Hy) + (x∗Hz) and x∗H(ay) = a(x∗Hy). If H is Hermitian then skew
symmetry holds: 〈y, x〉 = (y∗Hx)∗ = x∗H∗y = x∗Hy = 〈x, y〉. It follows from theorem 23 that if H is positive
definite then positivity also holds. The simplest case is to choose H to be the identity matrix I.

The norm ‖x‖ of x ∈ S is defined to be
√
〈x, x〉. An infinite sequence x = (x1, x2, . . . , xk, . . .) is Cauchy if

for every ε > 0 there is some k such that for all i, j ≥ k, ‖xi − xj‖ < ε. The limit of x is the element x0 ∈ S such
that ‖xk − x0‖ → 0 as k → ∞ (clearly, x0 is unique). The space S is complete if every Cauchy sequence has a
limit. A Hilbert space is a complex vector space S with an inner product and norm as defined, and which is
complete. The literature sometimes require Hilbert space to be infinite dimensional; for our limited purposes, we
will actually assume S is finite dimensional. The infinite dimensional setting is somewhat more complicated. For
instance, in the finite dimensional setting, if an operator A satisfies A∗A = I (i.e., it is unitary), then AA∗ = A∗A.
This property may fail in the infinite dimensional setting.

¶90. Duality. For each x ∈ S we obtain a linear function fx : S → C where fx(y) = 〈x|y〉:

fx(cy) = cfx(y), fx(y + z) = fx(y) + fx(z).

The function fx is also continuous where the underlying topology on S is given by the metric d(x, y) = ‖x − y‖.
Conversely, if φ : S → C is linear and continuous, there exists y ∈ S such that φ = fy. This duality between
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elements of S and continuous linear functions on S gives rise to the |x〉 (this is just x) and 〈y| notation (this is fy).
Moreover, 〈y||x〉 = fy(x) = 〈y, x〉.

Exercises

Exercise A.1: Show that det(AB) = det(A) det(B). ♦

Exercise A.2: Give the spectral decomposition of

[
4 3
3 4

]
. ♦

Exercise A.3: Show if AB = I then BA = I and B is unique. HINT: let the (i, j)-cofactor of A be (−1)i+j

times the determinant of the matrix A with the ith row and jth column deleted. Consider the matrix C
whose (i, j)th entry is the (j, i)-cofactor. How close is C to the inverse of A? Show that AC = CA. ♦

Exercise A.4: Show a positive definite matrix that is not Hermitian. ♦

Exercise A.5: Let Cij denote the (i, j)-cofactor of A, defined to be (−1)i+j times the determinant of A after
the i-th row and j-th column is deleted. Assume the following fact: for all i, det(A) =

∑n
j=1 aijCij where

aij = (A)ij .
(i) Prove that if det(A) 6= 0 then there existsB such thatAB = BA = I. HINT: Consider the “adjoint” adj(A)
of a matrix A where the (i, j)-th entry of adj(A) is the (j, i)-cofactor Cji (note the transposed subscripts).
(ii) Assume AB = BA = I. Suppose AB′ = I or B′A = I for some other B′. Prove that B = B′. [From (i)
and (ii), we conclude that inverses are defined and unique whenever detA 6= 0. ♦

Exercise A.6: Consider n× n matrices with complex entries which are either orthogonal or unitary.
(i) If n = 1, what do these matrices look like?
(ii) If n = 2, what do these matrices look like? ♦

Exercise A.7: Let λ1, . . . , λk be distinct eigenvalues of A and for i = 1, . . . , k, Bi is a set of linearly independent
vectors of the invariant subspace Eλi . Then the set B = ∪ki=1Bi is linearly independent. ♦

Exercise A.8: (SVD) The singular value decomposition (SVD) of an m × n matrix A is A = UΣV where U ∈
Cm×m and V ∈ Cn×n are both unitary, and Σ is diagonal. The diagonal entries of Σ are called the singular
values of A. Show that every A has a SVD. Further, up to complex signs and ordering of the singular values
in Σ, the columns of U and rows of V are unique. ♦

Exercise A.9: A polynomial q(z) is a minimal polynomial for a matrix A if q(A) = 0 and q has minimal degree.
(i) Show that q(z) divides the characteristic polynomial of A.
(ii) Characterize the matrices A ∈ Cn×n such that the minimal polynomial of A is zn ♦

End Exercises
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Lecture XXIII

THEORY OF REAL COMPUTATION

The “computable” numbers may be described briefly as the real numbers whose expressions as a decimal
are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions of an integral variable or a
real or computable variable, computable predicates, and so forth. The fundamental problems involved
are, however, the same in each case, and I have chosen the computable numbers for explicit treatment
as involving the least cumbrous technique. I hope shortly to give an account of the relations of the
computable numbers, functions, and so forth to one another. This will include a development of the
theory of functions of a real variable expressed in terms of computable numbers. According to my
definition, a number is computable if its decimal can be written down by a machine.

—Alan Turing (1936)

April 13, 2009
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¶1. REMARK: Rewrite this chapter based on my paper ”Theory of Real Computation according to EGC”. This
requires generalization to partial functions on nominal domains, introducing explicit set theory, explicit algebraic
structures, etc.

Until now, we have treated computation over a discrete, countable domain such as natural numbers (N) or finite
strings (Σ∗). We now treat computations over an uncountable domain R. Although computation over R is one of
the earliest motivations for computability theory, it has remained relatively underdeveloped. Nevertheless, it is an
extremely important aspect of computability and complexity since it forms a large part of numerical analysis and
scientific computation. For some current views on this, see Smale [5], Blum [1], and Braverman and Cook [3].

While theory of discrete computability has a widely accepted foundation, the foundation for “continuous”
computability over uncountable domains has a less settled status. We shall return to these questions at the end
of this chapter. For the main part, we shall follow the development based on the school of “computable analysis”,
also known as the Polish School or type-2 Theory of Computability. Our basic references are Ko [4] and Weihrauch
[7]. The strong influence of [4] should be evident in these notes.

§1. Introduction

¶2. Turing’s paper [6] in 1936 is usually noted for its introduction of the computing device that now bear
his name. But a major part of his paper addresses the computability of real numbers and their functions. But
subsequent development of computability focused mainly on computations over countable domains such as natural
numbers or finite strings. Turing promised in the paper to further develp the computability of real numbers,
although it was not forthcoming. Grzegorczyk (1955) and Lacombe (1955) introduced the model of real computation
that is today spearheaded by the “TTE school” [7]. The starting point of this approach is the representations of
real numbers as Cauchy sequences. We can directly manipulate the infinite Cauchy sequence, or we can use an
oracle view of such sequences [4]. Another approach, the “Russian School” of Ceitin (1959), focus on representing
real numbers as finite objects (programs) that are intepreted by universal machines. In recent years, Smale and
co-workers have promoted the algebraic model as the correct model for real computation. The algebraic model is
the de facto model used in theoretical algorithms. For a survey of these and related approaches, see [7, Chap. 9].

¶3. The foundation of the real number system R was clarified by the analysts of the 19th century, and comes
down to us in several equivalent forms:

• (i) The Dedekind Approach: real numbers are defined as (Dedekind) cuts, defined to be any proper non-
empty subset C of Q with the properties that C has no maximum value, and if p ∈ C and q < p then q ∈ C.
For instance, if p ∈ Q then the set of all rational numbers less than p is a cut which we denote by p∗. We
then identify real numbers with these cuts.

• (ii) The Cauchy Approach: This is the idea of real numbers as a Cauchy sequence, i.e., an infinite sequence

a = (a0, a1, a2, . . .) (1)

of rational numbers with the property that for all ε > 0, there exists k = k(ε) such that for all m > n > k,
|am − an| ≤ ε. We call ai the ith convergent of the Cauchy sequence. It is easy to see that each Cauchy
sequence corresponds to a unique real number x ∈ R. To compute with such sequences, we need some
additional assumptions about the rate of convergence: we say (1) is rapidly converging if |an − x| ≤ 2−n

for all n. In the following, all Cauchy sequences are rapidly converging.

• (iii) Binary Expansion Approach: Perhaps the view of real numbers is as an ω-sequence of bits (0, 1), preceded
by a sign (+,−), and containing a single binary point (.) somewhere in this sequence. E.g., −3 is represented
by −11.0ω, and 1/3 is represented by

+.01010101 · · · = +.(01)ω. (2)

We assume the reader is familiar with such representations, but recall here some basic properties. Leading
zeros up to the first non-zero symbol (either 1 or binary point) are insignificant. A representation with no
such leading zeros is said to be normalized. Thus, 1/3 has infinitely many non-normalized representations,
given by the regular expression +0+.(01)ω. Two normalized sequences represent the same real number iff
they have the form w01ω and w10ω respectively.

Among these 3 ways to representation real numbers, it turns out that Cauchy sequences is the most appropriate.
Turing’s original paper explicitly suggested the use of decimal expansion, which is just a variant of binary expansion.
But such expansions turned out to be rather limiting, as shown in the Exercise.
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¶4. Dyadic Numbers. The Dedekind Approach and the Cauchy Approach both rely on the rational numbers
Q. The main property we need is that Q is dense in R. In the following development, we prefer to replace Q by
the dyadic rationals (or dyadic numbers),

D := {m2n : m,n ∈ Z} .

Alternatively, we could define D as the ring Z[ 12 ]. Each d ∈ D can be represented as a finite sequence

±b0b1 · · · bi.bi+1 · · · bn =

n∑

j=0

bj2
i−j ,

with a binary point between bi and bi+1. This is just the finite version of Binary Expansion of real numbers above.
This set D is countable and dense in the reals. It has nicer complexity properties than Q in practical algorithms.

We now (re)define Dedekind cuts as non-empty, proper subsets of D that has no maximum value, and such that
if p ∈ C and q < p then q ∈ C. Similarly, Cauchy sequences is (re)defined as in (1), but with ai’s in D.

¶5. Sets such as Q and D will be called base reals because they will be our computational surrogate for
approaching real numbers and real functions. In practice, D will be the preferred set of base reals because of
efficient algorithms in this setting. We introduce several notations related to D:

• Dn := {m2−n : m ∈ Z} is the set of all dyadic rationals with at most n bits after the binary point. For
instance, if n < 0, then Dn comprise those integers that are divisible of 2−n > 1.

• D[a, b] := D[a, b] is the restriction of D to an interval [a, b] ⊆ R. Combining these two notations, we could
write Dn[a, b] for Dn ∩ [a, b].

• We generalize the standard floor and ceiling functions of number theory. For any x ∈ R, let ⌊x⌋n denote
the largest dyadic in Dn that is ≤ x. Similarly, ⌈x⌉n is the smallest dyadic in Dn that is ≥ y. Thus
⌊x⌋n ≤ x ≤ ⌈x⌉n. The usual floor and ceiling functions are ⌊x⌋ = ⌊x⌋0 and ⌈x⌉0 = ⌈x⌉.

¶6. Basic Operations on Dyadics. We gather some well-known facts about operations on dyadic numbers.
Because of our emphasis on bit-sizes, it is useful to approximate lg |x| = log2 |x| where x ∈ R. Define

cℓg R→ Z

where cℓg x) = ⌈lg |x|⌉ if x 6= 0, and cℓg 0) =↑. Similarly, fℓg R→ Z is defined using floor instead of ceiling.

Lemma 1. Assume that dyadic numbers are represented by their binary expansions.
(i) The restrictions of cℓg x) and fℓg x) to x ∈ D can be computed in polynomial time.
(ii) The restrictions of ⌈x⌉ and ⌊x⌋ functions to x ∈ D can be computed in polynomial time.
(iii) Comparision of two dyadic numbers can be computed in linear time.
(iv) The ring operations ±,× and division by powers of 2 on D is computable in polynomial time.

Proof. Assume d 6= 0, and
d = ±bnbn−1 . . . b1b0.b−1 . . . b−m

for some m,n ≥ 0 and each bi ∈ {0, 1}.
(i) Let k ∈ {n, . . . ,−m} be the largest index such that bk = 1, and ℓ ∈ {n, . . . ,−m} be the smallest index such
that bℓ = 1. Then fℓg d) = k and cℓg d) = −k − δ(k 6= ℓ) where δ(P ) = 1 if the predicate P is true and δ(P ) = 0
else.
(ii) and (iii): This is clear.
(iv) Division by powers of two amounts to shifting the binary point. Addition is easy. Multiplication can be done
by the high-school algorithm in quadratic time. Q.E.D.

REMARK: An alternative to binary expansions is to represent the dyadic number m2n (m,n ∈ Z) by the
pair (m,n), where m,n are represented in binary. The size of this representation is lg(2|mn|). We may call this
the floating point representation. The complexity bounds under this representation is unchanged as far as the
operations in this lemma is concerned. But for other operations, the two complexity bounds can be rather different.
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¶7. Partial Functions. Following [7], we distinguish partial from total functions in our notations. Suppose
R,S are sets. We write

f :⊆ R→ S

to indicate that f a partial function, with nominal domain R and range S. So for all x ∈ R, f(x) is either
an element of S or it is undefined. We write f(x) =↑ if it is undefined, and f(x) =↓ when f(x) ∈ S. Call
domain(f) := {x ∈ R : f(x) =↓} the proper domain of f . Also range(f) := {f(x) : x ∈ domain(f)} is the
proper range of f . We say f is onto or surjective iff its nominal and proper ranges agree. In case the nominal
domain and proper domain of f agree, we call f a total function and indicate this in the standard way, f : R→ S.

We remark that the distinction between nominal domain and proper domain has import when we discuss
computation of partial functions: an algorithm to compute the given function is expected to receive inputs from
its nominal domain, and the algorithm should be able to recognize improper inputs. Thus, we will see an example
of a computable function which becomes uncomputable simply by enlarging the nominal domain.

¶8. Computing real functions with Type-2 Turing Machines. How do we compute a real function
f : R→ R? It is understood that we intend to use one of the above representations of real numbers. But there are
still some other decisions.

We can take any standard Turing machine M that, besides the standard work tape(s), has two extra tapes for
input and output. The dedicated input tape is read-only, and store the input real number x, represented by an
infinite string in one of the three formats (Dedekind, Cauchy, Binary). This input string can be any representation
of x. The dedicated output tape is write-only, and will “compute in the limit” some representation of f(x) in the
chosen format (Dedekind, Cauchy, Binary). Computing in the limit means, for any n, if we wait long enough,
the output tape of M will contain the first n symbols of the representation of f(x). Note that M is necessarily
non-halting.

A Turing machine that computes in this manner is called a type-2 Turing Machine. Thus, f is type-2
computable iff there is a type-2 Turing machine that computes f in the above sense. See [7] for this approach.
We will shortly introduce an alternative machine formalism for computing real functions, using the concept of
“oracle Turing machines”.

Exercises

Exercise 1.1: Show that (2) represents 1/3. NOTE: It is not considered a proof if you show that multiplying the
string of (2) by the binary expansion of 3 gives the binary expansion of 1. This procedure assumes that the
multiplication algorithm for binary numbers is correct. ♦

Exercise 1.2: Show that if we assume the binary expansion of real numbers, then the function x 7→ 3x is not
computable by a type-2 Turing machine. HINT: consider x = 1/3. ♦

Exercise 1.3: Our definition of type-2 machine forces the the Turing machine to compute forever even when both
the input output could have some finite representation.
(i) Let us extend these representations by giving them some finite means to indicate an infinite sequence.
Finite Cauchy Representation: the sequence (1) can be finite. It just means that the last entry is repeated
forever. Finite Binary Representation: we allow a finite string provided it has the form x(y) where x
denotes an element of D and y ∈ {0, 1}+. This is just a finite way of writing the binary expansion xyω. E.g.,
1/3 has the finite representation +.(01), and −1/2 has the finite representations −.111(1) or −.(1). What
kinds of real numbers hve finite representations?
(ii) An extended type-2 Turing machine now accepts the usual representation as well as the finite variant.
Its output can be the usual infinite representation, or if it halts, it produces the finite variant. Show that
extended type-2 Turing machines do not compute any larger class of real functions.
(iii) Characterize the real functions that are computed by extended type-2 Turing machines that always halt.

♦

End Exercises

§2. Representation of Real Numbers
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Figure 1: K3,3

¶9. Representation of graphs The concept of representations is central to computing. This is the starting
point of Turing’s analysis of computability. We illustrate these ideas using the the concept of finite graphs (both the
directed and undirected varieties). Graphs are relatively abstract objects, and to manipulate them in computers,
we need concrete representations. For instance, consider the “utilities graph” K3,3 illustrated in Figure 1.

The main point about K3,3 is that the vertices of K3,3 are unlabeled (anonymous). We shall introduce labeled
graphs shortly. A standard representation of graphs is via Boolean matrices. The following Boolean matrices M1

and M2 are both representations of K3,3:

M1 =




0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0




and M2 =




0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0




.

Let G andM be the set of (unlabeled) undirected graphs and Boolean matrices, respectively. We view K3,3 as an
element of G. The representation of undirected graphs by Boolean matrices can be formalized as a partial injective
function,

ρGM :⊆ M→ G.
It is a partial function because not all Boolean matrices represent an element of G, only the symmetric ones do.
It is surjective because every element of G has at least one representation, but an n-vertex graph has at most n!
representations.

We are not done yet: Boolean matrices are still too abstract for computers (Turing machines). We need a
representation by strings. But here, there is the obvious representation of Boolean matrices by strings:

ρMS :⊆ {0, 1}∗ →M

where each M ∈M is represented by listing its rows in order. For instance,

ρMS(000111000111000111111000111000111000) = M1, ρMS(010101101010010101101010010101101010) = M2.

Again, ρMS is a partial surjective function, but now it happens to also be injective (every Boolean matrix has a
unique representation). By composing these two representations, we get a representation of graphs that is suitable
for computing:

ρGS :⊆ {0, 1}∗ → G
where ρGS(w) = ρGM (ρMS(w)). In other words, the representation of a representation of an object G is a repre-
sentation of G.

Another well-known representation of graphs is by a pair (V,E) where V is a finite set and E ⊆ V 2. We call
(V,E) a a labeled directed graph. It is a “labeled” graph where the identity of each node is relevant. Two
labeled directed graphs (V,E) and (V ′, E′) are isomorphic if there is renaming of the elements of V that turns
E to E′. There are also standard representations of undirected graphs G as such labeled directed graphs. To
ultimately get a representation by strings, we need to compose this with some representation for finite sets, and
also representations for the vertices (elements of V ). This is developed in the Exercise.

In normal usage, we move between the concepts of labeled graphs and unlabeled graphs without much fanfare
(often there is not even a name to distinguish them). Any concrete representation has invariably a great deal of
superfluous details, but in practice we learned to automatically filter out these details. For instance, even the sets
requires a representation which is some arbitrary listing of its elements (perhaps with duplicates!). But we learned
quite early to filter out duplicates in set representations, and how to re-order elements (by sorting) so that we can
quickly check equivalent representations of sets.
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¶10. Representations. All computations over abstract mathematical domains must ultimately be reduced to
manipulation of more concrete representations. We saw this with finite graphs above. In particular, computating
over real numbers require such representations. Representations1 of real numbers and their properties are treated
in depth by Weihrauch [7].

Let S and T be sets. A representation for S (with representig set T ) is a partial, onto function of the form

ρ :⊆ T → S. (3)

If ρ(x) =↓, we say x is proper (or ρ-proper), otherwise improper. We may call a proper x a representating
element (or ρ-representation) of ρ(x) ∈ S. Each s ∈ S has at least one, but possibly many more, representations.
If ρ(x) = ρ(y) then we say that x, y are ρ-equivalent.

There is an important special case already used in Chapter 0: when the representing set T is Σ∗ for some
alphabet Σ, we call ρ a notation. Without loss of generality, we assume Σ = {0, 1} unless otherwise noted.

¶11. Discussion. The set S is normally more abstract than its representing set T . We deduce properties of
s ∈ S by manipulating its representating elements. If a representation is meant to used for computation, then it
must ultimately be a notation. Nevertheless it is useful to introduce intermediate representations. We consider
T = N or T = Σ∗ to be adequate for computation.

We emphasize that the function ρ itself is not an object of computation. In particular, the issue of “effective”
ρ does not arise. Rather, ρ lies in the realm of mathematical analysis; they are used in discussion and in proving
properties of algorithms that use this representation. We will discuss effectivity concepts related to ρ later (under
“decidable sets”).

¶12. Convention for representations. Invariably, there is a gap between abstract mathematical objects
and their representations. The example of graphs illustrate this gap. Although we must use representations in
computation, at other times, we prefer to talk directly about the ideal or abstract objects. To make the gap between
objects and representations as nonobtrusive as possible, we use a convention.

Let S be a set with a representation system ρ. In most discussions, ρ may be assumed to
be held fixed, and we could effectively suppress ρ. This can be achieved by writing

x, y, z, etc. (4)

for the ρ-representations of x, y, z, . . . ∈ S.
Thus “x” denotes an arbitrary but fixed element of ρ−1(x). Within the scope of discussion,
the choice of this element will be held fixed.

This convention is similar to the asymptotic notations such as O(f) or Ω(f) in that it is a way to hide details
(like ρ) that could be obtrusive.

¶13. Higher type classes and objects. We want to view natural numbers as type-0 objects, real numbers as
type-1 objects, and real functions as type-2 objects. This explains the Weihrauch’s terminology of type-2 Turing
machines, as they compute real functions. Here we give a simplified account of types.

For sets R and S, let the set of all partial functions from R to S be denoted

[R⇒ S]. (5)

Let us define a type-0 class to be a countable set S. Note that S can be finite or denumerable. If R is a type-i class
and S is a type-j class, then R×S is a type-max {i, j} class and [R⇒ S] is type-k class where k = 1+max {i, j}.

If the representation x of an object x comes from a type-i class, we call x a type-i object.
Natural numbers, dyadic numbers, finite graphs, etc, can be viewed as type-0 objects. Rational numbers are

also type-0 objects because they are represented by a pair of type-0 objects. Real numbers are represented by
elements of [N⇒ D], so they are type-1 objects. Real functions f :⊆ R→ R are represented by elements of

[[N⇒ D]⇒ [N⇒ D]]

and so are type-2 objects.

1The “representations” in Weihrauch [7] are representations in our sense, but with representing set restricted to Σω. Our notation
terminology follows Weihrauch. By a “naming system”, Weihrauch refers to either a “representation” or a notation.
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¶14. Induced Representations. The representation of higher-type objects is normally induced from repre-
sentations of the underlying type-0 objects. Let ρ :⊆ T → R be a notation of R. Consider a k-ary function
f :⊆ Rk → R. We call f :⊆ (T )k → T a (ρ-induced) representation of f if for all (x1, . . . , xk) ∈ T k,

ρ(f(x1, . . . , xk)) = f(ρ(x1), . . . , ρ(xk)). (6)

Equation (6) is interpreted in the strong sense that the LHS is undefined iff the RHS is undefined.
We say f is computable if there exists a notation ρ such that the ρ-induced notation f is computable.

¶15. We now build up the representation of real numbers and their operations.

• Dyadic numbers and ring operations. We had described a notation system for the dyadic numbers D.
This is the function

ρ :⊆ Σ∗ → D

where Σ = {0, 1, •,−,+} and the proper strings have the form ±b0b1 · · · bi • bi+1 · · · bn, which is a notation
for the number ±∑n

j=0 bj2
i−j . E.g., ρ(−01 • 01) = −1.25. Since N ⊆ Z ⊆ D, this notation for dyadics is an

extension of standard notation for natural numbers and integers.

Consider the representation of ring operations over D. Relative to an induced ρ, the multiplication function
× : D2 → D has an induced representation

Mul : (Σ∗)2 → Σ∗

such that Mul(m,n) = m× n for all m,n ∈ Z. Similarly, the other ring operations has induced repre-
sentations Add, Sub and Sub with the properties Add(m,n) = m + n and Sub(m,n) = m− n. There are
well-known algorithms for implementing Mul, Add and Sub.

• Real Numbers. A Cauchy representation of real number x ⊆ R is a total function x : N→ D such that
|x(n)− x| ≤ 2−n for all n ∈ N. Let

ρ :⊆ [N⇒ D]→ R

where ρ maps each Cauchy sequence to the corresponding real numbers. Thus ρ is a representing system for
real numbers.

¶16. Standard Cauchy function. Every real number x can be written as

n + 0.b1b2 · · ·

where n ∈ Z and bi ∈ {0, 1}. The bi’s are uniquely determined by x when x 6∈ D. Otherwise, there are two
possibilities (either bi’s are eventually 0 or eventually 1). We obtain uniqueness by requiring that bi’s are eventually
0. Using this unique sequence, we define the standard Cauchy function of x to be

βx[p] = n +

p∑

i=1

bi2
−i.

For instance, −5/3 is written −2 + 0.01010101 · · · . This function has nice monotonicity properties:

Lemma 2. Let x ∈ R and p ∈ N.
(i) βx[p] ≤ βx[p + 1] ≤ x.
(ii) x− βx[p] < 2−p.
(iii) If y ∈ R and |y − βx[p]| ≤ 2−p, then for all n ≤ p, we also have |y − βx[n]| ≤ 2−n. In particular, there is a
representation y such y[n] = βx[n] for all n ≤ p.

Proof. We only prove (iii). We use induction on p−n. The result is true for p−n = 0. If p−n ≥ 1, then we have
either βx[n] = βx[n+1] or βx[n] = βx[n+1]−2−n−1. In the former case, |y−βx[n]| = |y−βx[n+1]| ≤ 2−n−1 < 2−n,
so the result holds. Otherwise, |y − βx[n]| = |y − βx[n + 1] + 2−n−1| ≤ |y − βx[n + 1|+ 2−n−1 ≤ 2−n (by induction
hypothesis). Q.E.D.

¶17. Gödel numbers of real numbers. If x is a type-1 object, it is represented as a function x : S → T . This
is generally an infinite object. Now, if x can be computed by the ith Turing machine Mi, then we say that i (the
Gödel number of Mi) is a representation of x. Extending the convention of ¶12, for any real number x, let x refer
to the Gödel number of a Turing machine that computes any representation x of x.
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¶18. Convention for approximation of real numbers. The following convention facilitates the manipulation
of expressions involving approximate numbers.

The expression “x± δ” refers to a real value of the form x + θδ, for some |θ| ≤ 1. Thus θ is
an anonymous variable in this notation (like the big-Oh notation).
In general, any occurrence of the symbol “±” in an approximate expression calls for a textual
substitution by “+θ” for some anonymous variable θ satisfying |θ| ≤ 1. Different occurences
of “±” may call for different θ’s depending on the context.

Thus, we write “x̃ = x± 2−p” to indicate that x̃ = x + θ2−p for some θ ∈ [−1, 1]. We call x̃ a p-bit absolute
approximation of x in this case.

Examples of manipulations using this notation: We have x = y±2−p iff y = x±2−p. Also, x = (y±2−p)±2−p =
y ± 2−p+1.

Exercises

Exercise 2.1: For each of the following sets S, provide a string representation. Use Σ∗ for the representing set,
where you can choose the alphabet Σ. For complex representations, we want you to use composition of simpler
representations whenever possible. E.g., the representation in each part is supposed to use the representation
constructed in the earlier part.
(i) S is the set of finite subsets of {0, 1}∗.
(ii) S is the set of labeled directed graphs whose vertices are elements of {0, 1}∗. We want you to represent
each graph as a pair (V,E) as described in the text.
(iii) S is the set of (unlabeled) directed graphs.
(iv) S is the set of (unlabeled) binary trees. Note that nodes in a binary tree distinguishes between its left
and right children. Even when it has one child, this child is either a left or a right child. ♦

Exercise 2.2: For each of the representations in the previous exercise, describe any reasonable algorithm for
checking equivalence. Polynomial time complexity may be hard to achieve in some cases. ♦

Exercise 2.3: Let us explore the notion of types. Write τ(R) = i if R is a type-i class.
(a) What is the cardinality of the sets [N⇒ {0, 1}] and [{0, 1} ⇒ N]? This suggests that if T = [R⇒ S] then
τ(T ) = max {τ(R) + 1, τ(S)}. What are some properties of this definition of type?
(b) What is the cardinality of the sets [R × S ⇒ T ], [R⇒ S × T ]? What does this suggest about extending
the notion of types to sets which are constructed recursively by using the two operations of forming functions
[· ⇒ ·] and Cartesian product (· × ·)?
(c) What is the cardinality of [R⇒ [S ⇒ T ]] and [[R⇒ S]⇒ T ]? ♦

End Exercises

§3. Computable Real Functions

¶19. We introduce oracle Turing machines (OTM). Such machines are alternatives to type-2 Turing machines
(¶8) as devices for computing real functions f :⊆ R→ R.

Let M denote such an OTM. Intuitively, the input real number x to M is viewed2 as an “oracle”. The oracle is
just a Cauchy representation x = (a0, a1, . . .) for x. For any given n ∈ N, the oracle x returns the nth convergent
an. We must provide M with a special tape to query the oracle, and to receive answers. What is the output of this
OTM on oracle x? Well, we want it to compute an oracle for f(x). An oracle for f(x) must take an input p ∈ N

and output the pth convergent of some Cauchy representation of f(x). Hence, the machine M needs another input
tape (the precision tape) to hold p. We often write

Mx[p] (7)

to denote the output of M , or the entire computation, on x and p,
An advantage of OTM over type-2 Turing machines is that we avoid the concept of “computing in the limit”.

It also allows a more natural definition of complexity. Similar oracles could be defined if x were represented by a
binary expansion or a Dedekind cut.

2An oracle is a black box which will supply answers to any (valid) query. The temples of ancient Greece often have such oracles.
The most famous of these temple oracles is at Delphi.
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¶20. Oracle view of real functions. We generalize OTM’s to allow any number of oracles. For instance, to
compute a function f :⊆ Rk → R, we need an OTM M that takes as input k oracles, x1, . . . , xk corresponding to
an input (x1, . . . , xk) = x ∈ Rk. A query to the oracle amounts to placing a pair (i, n) on the oracle tape, and the
output is the nth convergent in xi.

Let f : Rk → R be partial k-ary real function. An oracle function for f is any function

f :⊆ Rk × N→ D (8)

such that for all x ∈ Rk and p ∈ N, f(x, p) is defined iff x ∈ domain(f). In case it is defined, we have |f(x, p) −
f(x)| ≤ 2−p. Alternatively, f(x, p) = f(x)± 2−p.

An OTM M can be viewed as computing oracle functions (cf. (7)). For any x ∈ Rk, and for all Cauchy
representations x, and p ∈ N, the OTM computes Mx[p] = f(x)± 2−p. The output depends not just on x, but on
the specific representation x. In case k = 0, f is just a real number x and the oracle function f is just a Cauchy
representation for x. The OTM reduces to an ordinary Turing machine.

¶21. Absolute approximation of real functions. An (absolute) approximation f̃ for f is just the restric-
tion of an oracle function f to dyadic numbers. Instead of (8), we have

f̃ :⊆ Dk × N→ D

such that (domain(f) ∩ Dk)× N = domain(f̃), and for all x ∈ Dk and p ∈ N, we have

f̃(x, p) =

{
f(x)± 2−p if x ∈ domain(f)
↑ else.

Let Af denote the set of all absolute approximations of f .
We drop the qualifier “absolute” if this is clear from context; the reason for this qualification is that we will

later introduce “relative approximation”. Since the input and output of approximations are dyadic numbers, they
can be computed by ordinary Turing machines. We say that f is (absolutely) approximable if some f̃ ∈ Af is
computable in the standard sense, by an ordinary Turing machine.

A real number x can be viewed as 0-ary real function; in this case, there is no difference between oracle functions
x for x or absolute approximations x̃ of x. We may write Ax instead of Af . Thus oracle functions or absolute
approximations of real numbers are just another form of rapidly convergent Cauchy sequences.

¶22. Special treatment of precision parameter. The precision parameter p in oracle functions and in
absolute approximations has different status from the other arguments. This fact will be seen later, when we
discuss complexity of computing such functions. To visually distinguish this parameter from the others, we may
write either “f(x)[p]” or “f(x; p)” instead of f(x, p). Note that “f(x)[p]” refers to any p-bit approximation of f(x),
and this value depends on the context. In particular, if x is a real number, then we may write “x[p]” or “x(p)” for
the pth convergent of x.

¶23. Oracle machines. Since oracle machines are our official computational model for real functions, we will
provide the details in full.

An oracle Turing machine (OTM) is a Turing machine M that has, in addition to the standard work tape(s),
also three special tapes, called the oracle tape, the precision tape and the output tape. It also has two special
states,

q?, q! (9)

called the query state and the answer state. We view M as computing a function f : R×N→ R. The input is
x ∈ Ax, and a precision p ∈ N placed on the precision tape. The computation of M begins with the When it enters
the query state q?, we assume the oracle tape contains a binary number n. In the next instant, M will enter the
answer state q!, and simultaneously the string n is replaced by a representation of the nth convergent x[n]. Then
M continues computing as usual. Finally, M halts and on the output tape should contain d where d ∈ D such that
|d− f(x)| ≤ 2−p. We shall denote the output d by Mx[p].

¶24. Computing partial real functions. Let S ⊆ Rk for some k ≥ 0. Typically, we have S = Rk or
S = [a, b] ⊆ R. We even allow k = 0 (in which case S = ∅). To compute a partial function

f :⊆ Rk → R (10)
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we need an OTM that accepts k oracles xi (i = 1, . . . , k) with the following properties. A query on the oracle tape
consists of a pair 〈n, i〉 ∈ N × {1, . . . , k}, and the response will be a representation of xi[n] on the oracle tape. If
x = (x1, . . . , xk), we write x for (x1, . . . , xk).

We say that the OTM M computes the partial function f if for all x ∈ S, representations x, and p ∈ N,

Mx[p] =

{
f(x)± 2−p if x ∈ domain(f),
↑ if x ∈ S \ domain(f).

(11)

Such an f is said to be computable. Moreover, we may define domain(M) as domain(f).
In case f is a 0-ary function, f is a real number x, and we call x a computable real; this means x has a

recursive Cauchy function x̃ : N→ D.

¶25. Remarks.
0. In (11), the notation

Mx[p] =↑
means that the OTM goes into an infinite loop, i.e., does not halt. If we omit this requirement, but have no require-
ments at all when x 6∈ domain(f), then we say that M conditionally computes the function f . Equivalently, it
means we promise not to feed improper inputs to the OTM.
1. Instead of weakening the notion of computability, we can strengthen it: assume the OTM has two special states,

q↑, q↓ (12)

called the improper and proper states. We require that, for all inputs x, the OTM must halt in the state q↑
if x ∈ domain(f), and otherwise it halts in the state q↓ (with the correct output). In this case, we say the OTM
strongly computes f .
2. Note that we have define the “computability” of partial functions, not the “partial computability” of functions.
We will avoid the terminology of “partially computable”, which is commonly used in discrete computability theory.
3. To distinguish between computability and partial computability in discrete computability from real computabil-
ity, we will use the terms recursive and partially recursive for computability over a discrete domain.
4. We extend this distinction when complexity is taken into account. E.g., we say polynomial-time recursive
to refer to discrete functions that can be computed in polynomial-time. This is the functional analogue of the
well-known class P comprising languages that are recognized in deterministic polynomial time. Write FP for the
class of polynomial-time recursive functions.

¶26. Example: OTM to multiply by three. Let us construct an OTM M3 to compute the function f(x) = 3x.
With an oracle x and p ∈ N, M3 first place p + 2 on the oracle tape and enter q?. Let the response be d ∈ D. Then
M3 computes 3d on the output tape and halt, using any algorithm for multiplying binary numbers. To see that
M3 computes f(x) = 3x, note that |d− x| ≤ 2−p−2 and so |3d− f(x)| ≤ 3 · 2−p−2 < 2−p, as desired.

¶27. Example: Division is a computable partial function. Is the partial function ÷ : (x, y) 7→ x/y
computable? To show this is so, we must make sure that y = 0 iff our OTM loops. This is not hard to do: for
p = 0, 1, 2, · · · , we query the y-oracle for the pth convergent and check if |y[p]| > 2−p. If y = 0, then the condition
|y[p]| > 2−p will never hold and we loop. Otherwise, we know that y 6= 0, and we proceed to compute x/y ± 2−p.

Here is the procedure: first we find a k ∈ N such that |y| ≥ 2−k and |x| ≤ 2k. In fact, if |y[p]| > 2−p then
we may choose k greater than lg(|y[p]| − 2−p). We now query the oracle for the values x′ = x[p + 3k + 3] and
y′ = y[p + 3k + 3]. Thus |y′| ≥ |y| − 2−p−3k−3 > 2−k−1. Note that

∣∣∣∣
x′

y′
− x

y

∣∣∣∣ =

∣∣∣∣
x′y − xy′

yy′

∣∣∣∣

<
2k+1

y
|x′y − xy′|

=
2k+1

y

∣∣(x± 2−p−3k−3)y − x(y ± 2−p−3k−3)
∣∣

≤ 2−p−2k−2((x/y) + 1)

≤ 2−p−2k−2(22k + 1)

≤ 2−p−1.

We then compute z′ as a (p + 1)-bit approximation of x′/y′ (there are standard algorithms for this). Then
|z′ − (x/y)| ≤ |z′ − (x′/y′)|+ |(x′/y′)− (x/y)| ≤ 2−p.
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¶28. Computable reals. We discuss two special cases of computing a real function f . The case when the
range of f is a finite set is discussed under “real predicates” below. Here we discuss the case where f is a constant
function:

When k = 0 in (10), the OTM M that computes f is just computing a real number x ∈ R. We may regard
M is just an ordinary Turing machine (no oracles). For any p ∈ N, we have |M [p] − x| ≤ 2−p. We call x ∈ R a
computable real number if such an M exists.

¶29. Uncomputable reals. Any rational number is computable. So is any real algebraic number. To construct
an uncomputable real, we use an idea of Specker (1949). For A ⊆ N, define the number xA :=

∑
n∈A 2−n. We can

also write xA =
∑∞

n=0 χA(n)2−n where χA : N→ {0, 1} is the characteristic function of A.

Lemma 3. xA is computable iff A is recursive.

Proof. If A is recursive, then the standard Cauchy representation β = βxA
is easily seen to be computable:

β[p] =
∑p

i=0 χA(i)2−i.
Conversely, suppose x = xA is a computable representation of xA. If xA ∈ D, then clearly A is recursive. So

assume otherwise. It is sufficient to show that the standard Cauchy representation β of xA is computable. This is
because p ∈ A iff β[p] > β[p− 1]. To compute β[p], we compute the first n = n(p) such that

[x[n]− 2−n, x[n] + 2−n] ∩ Dp = ∅. (13)

Such an n exists since x 6∈ D. The predicate (13) is also computable. Then β[p] = max {d ∈ Dp : d < x[n]}.
Q.E.D.

Corollary 4. If A is nonrecursive, xA is uncomputable. In particular, if A is the set DIAG = {i ∈ N : φi(i) =↓}
then xA is uncomputable.

¶30. The field of computable reals.

Lemma 5. The field operations of ±,×,÷ are computable functions.

Proof. The case of ÷ has been shown in ¶27. Let us consider addition and subtraction: we can define

x± y[n] := x[n + 1]± y[n + 1].

Correctness is clear from the fact that

x + y[n] = (x± 2−n−1) + (y ± 2−n−1) = (x + y)± 2−n.

Similarly for subtraction, x− y.
The remaining operation is multiplication: first compute some k ∈ N such that x, y satisfy |x| + |y| < 2k−1.

Then define
xy[n] := x[n + k]× y[n + k].

Correctness follows from:

xy[n] = (x± 2−n−k)(y ± 2−n−k)
= xy ± x2−n−k ± y2−n−k ± 2−2(n+k)

|xy[n]− xy| ≤ (|x|+ |y|)2−n−k + 2−2(n+k)

= 2−n−1 + 22n−1 = 2−n.

Q.E.D.

Theorem 6. The class of computable real numbers is a subfield of R.

Proof. Clearly, 0 and 1 are computable reals. If x, y are computable reals, then we claim that so are

x± y, xy, x/y

provided x/y is defined (i.e., y 6= 0). According to the previous lemma, there are OTM’s that compute each of the
four field operations. Let us consider the case of (x, y) 7→ x + y, as the other cases are similar. Let the OTM M+

with oracles x and y and precision parameter p, produce a p-bit approximation of x + y, denoted Mx,y
+ [p]. Since

x, y are computable, there exists Turing machines Mx and My that computes some x and y. We must show that
x + y is computable. Let us now construct a Turing machine Mx+y which computes x + y from x and y. On input
precision p, Mx+y will simulates M+ in a step-by-step manner. But whenever M+ queries its oracles for x or y, we
simulate Mx or My to obtain the answer. Thus, Mx+y[p] computes the pth convergent of x + y. Thus x + y is a
computable real. In a similar way, the numbers x− y, xy and x/y are computable. Q.E.D.
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¶31. Function composition.

Lemma 7. Let f, g :⊆ R → R be partial functions. If f and g are computable, so is their function composition,
f ◦ g : R→ R

Proof. Suppose Mf and Mg are OTMs to compute f and g. To compute h = f ◦ g, we construct an OTM Mh

that, on input x ∈ Ax and p ∈ N, begins to simulate Mf on input g(x) and p. Whenever Mf attempts to query its
oracle g(x) with some precision p′, Mh will first place p′ in the precision tape of Mg in order to compute Mx

g [p′].
Upon getting this value, it can resume the simulation of Mf . Eventually, Mh will halt with the correct output
f(g(x)). It is also clear that if x 6∈ domain(g), then Mx

h [p] ↑. Q.E.D.

In contrast to this result, suppose f and g are (absolutely) approximable. There is no obvious way to approximate
f ◦ g.

Exercises

Exercise 3.1: Show that the following partial functions are computable: lnx and f(x) = p(x)/q(x) where f is a
rational function defined by integer polynomials p, q. Note: lnx is undefined iff x ≤ 0, and f(x) is undefine
when q(x) = 0. ♦

Exercise 3.2: Recall a function f : R→ R is type-2 computable if it is computed by a Type-2 Turing machine (see
¶8). What is the relationship between type-2 computability and our notion of computability using OTM’s?
(i) Show that f is type-2 computable iff f is computable.
(ii) In type-2 computation, if the machine halts or produces only a finite output sequence, it’s output is
considered undefined. How does the result of (i) extend to partial functions f :⊆ R→ R? ♦

Exercise 3.3: Show that the real number xA is uncomputable if A is a r.e., but not recursive. ♦

Exercise 3.4: If f :⊆ R → R is a computable partial function and x ∈ domain(f) is computable, then f(x) is
computable. ♦

Exercise 3.5: What does it mean for an OTM M to compute a real function f : R→ R using the Dedekind cut
representation? The oracle for x ∈ R is just the Dedekind cut x ⊆ D. Our oracle, given any d ∈ D, will return
with 1 if d ∈ x and return 0 otherwise. Instead of the precision tape, our input tape now contains a dyadic
d′. Then Mx(d′) will output 1 iff d′ ∈ f(x). Prove that a function f is computable using Cauchy oracles iff
it is computable usind Dedekind oracles. ♦

Exercise 3.6: Complete the proof of Lemma 5. ♦

End Exercises

§4. Real Predicates

¶32. Real functions with countable range. Consider the computation of partial real functions whose range
range(f) := {f(x) : x ∈ domain(f)} is a countable set. Without loss of generality, assume

f :⊆ Rk → D. (14)

In the special case where range(f) is a finite set, we call f a real predicate. In computability theory, one often
speaks of “deciding” predicates instead of “computing” predicates.

In typical predicates, we have range(f) = {0, 1}; call these “logical predicates” of standard two-valued logic.
But in the field of computational geometry, predicates with range(f) = {−1, 0,+1} is more common (call these
“geometric predicates”). An example of a geometric predicate is f(p,C) = 0 if point p lies on circle C, f(p,C) = −1
if p lies outside C, or f(p,C) = +1 if p lies inside C.

The computation of a function f such as in (14) presents some difficulties: suppose the domain domain(f)
contains an open set S, and f restricted to S is not a constant function, then f cannot be continous.

Since all computable functions are continuous (see below), this implies that f is uncomputable. One solution is
to relax the notion of computability for such functions, by considering conditional computability. Recall that this
means we do not restrict the behavior of the OTM for inputs outside of domain(f).
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For example, consider the function
f0 :⊆ R→ D (15)

where f0(x) =↑ if x 6∈ N; otherwise f0(x) := 2−n if φx(x) (i.e., the j-th STM on input j) halts in n steps.
We can conditionally compute f0 as follows: on input oracle x and p ∈ N, we first compute a j ∈ N such

that x = j iff x ∈ N. Note that we cannot be sure if x ∈ N, that is why our algorithm is only a “conditional”
computation of f0. Nevertheless, we may simulate φj(j) for p steps. If it halts in k ≤ p steps, we output 2−k.
Otherwise, we output 0. It is not hard to prove that the this procedure is correct.

¶33. The equality and comparison predicates. Consider the following real predicates:

• (Equality) f= : R2 → {0, 1} where f=(x, y) = 1 if x = y and f=(x, y) = 0 otherwise.

• (Comparison) f6= : R2 → {0, 1} where f6=(x, y) = 1 if x > y, f6=(x, y) = 0 if x < y and f6=(x, y) =↑ if x = y.

Theorem 8.
(i) The predicate f= is uncomputable.
(ii) The predicate f6= is computable.

Proof. (i) This holds for the simple reason noted above: after a finite number of steps, an OTM does not have
enough information to determine equality of the input numbers. By way of contradiction, assume there is an OTM
M= to decide f=. Consider the operation of M= on the input x = (0, 0, 0, . . .) comprising all zeros, and the input
y = (1, 1/2, 1/3, . . .) whose pth convergent is 1/(p + 1). Clearly, M= outputs 1, and there is some k ∈ N such that
the oracles only queries x[p] and y[p] where p ≤ k. We modify y so that for all p > k, the pth convergent is now
1/(k + 1). So the output on the modified input ought to have been 0. But M=’s behavior on the modified input is
exactly as before, and will wrongly output 1.

(ii) We construct an OTM M 6= with oracles x and y operates as follows: for p = 0, 1, 2, . . ., it checks if

|x[p]− y[p]| > 2−p+1.

If so, it outputs 1 iff x[p] > y[p] and otherwise outputs 0. If the input satisfies x 6= y, our M 6= will eventually
produce an output. If x = y, then M 6= ↑.

Q.E.D.

¶34. The Russian approach. We try to give a deeper reason for why the function f= is uncomputable, by
avoiding arguments based on an OTM’s inability to process the entire input before producing an output. To do
this, we use the Russian Approach to real computation [7, Chapter 9]. Here, a real number x is represented by
its Gödel number x ∈ N (see ¶17).

First, we connect the Russian Approach to the Polish Approach. Consider an enumeration M0,M1, . . . of all
STM’s, where each Mi is interpreted to compute a partial function of the form

φi :⊆ N→ D.

Moreover, there is a deterministic UTM U such that U(i, n) = φi(n) for all i, n. If |φi[p]− x| ≤ 2−p for all p ∈ N,
then we say i is a Gödel number of the real number x. The following is immediate:

Lemma 9. A real number x is computable iff it has a Gödel number x.

This shows that the Russian approach is necessarily confined to computable reals.

¶35. Russian computability. A function f :⊆ R2 → R is Russian computable if there exists a STM M
that for all x, y ∈ R, if f(x, y) =↓, then on any input of the form (x, y) M will output some Gödel number of the

form f(x, y).
Remarks:

(a) This definition uses a regular Turing machine, as opposed to oracle Turing machines.
(b) Only the behavior of f and M on computable real inputs are relevant. In particular, the behavior of M is
irrelevant if the input are not valid Gödel numbers.
(c) A necessary condition for f to be computable is that for all computable x, y, the real number f(x, y) must be
computable.
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¶36. Equality is not Russian computable.

Lemma 10. The predicate f= is not Russian computable.

Proof. For any n, let

hn(k) =

{
1 if Mn(n) halts in ≤ k steps,
0 else.

Consider the real number xn :=
∑∞

i=0 hn(i)2−i. Note that n ∈ co-DIAG iff xn = 0. We can construct the Gödel

number xn of the Turing machine which, on input k, outputs
∑k

i=0 hn(i)2−i. Hence xn is the Gödel number of xn.
Let Z be the set of n ∈ N such that xn = 0. Since the function t : n 7→ xn is computable, we have just shown

that
co-DIAG ≤m Z (via t).

This proves that Z is not recursive. If f= is Russian computable, then Z is recursive, which is a contradiction.
Q.E.D.

The general conclusion is that we cannot decide equality of real numbers. This is equivalent to the undecidability
of checking if a given real number is zero (Exercise).

Later, we will return to the question of computing predicates: then we will introduce a way to approximate
predicates which is motivated by recognizing subsets of Rk.

¶37. Is square root computable? The answer depends on how we define the nominal domain of the square
root function. Consider the following three definitions of the square root function:

• sqrt1 :⊆ R→ R, with sqrt(x) =↑ if x < 0, and sqrt(x) =
√

x for x ≥ 0.

• sqrt0 : (0,∞)→ R. This is the restriction of sqrt(x) to (0,∞).

• sqrt : [0,∞)→ R. This is the restriction of sqrt(x) to [0,∞).

We regard sqrt as the main definition among these three variants. Note that 0 is in the proper domains of sqrt1
and sqrt, but not in the proper domain of sqrt0. One might suggest that both sqrt1 and sqrt should not be
computable since it is undecidable if an input real number is 0 or not (¶33). But note that sqrt1 and sqrt only
has to “approximate 0 in its the output”, not to “decide if the input is 0”. There is an important difference — in
approximating, the oracle machine can output a representation of zero (as precision p→∞) without ever knowing
(for any particular p) whether the input is 0. Indeed, the next result shows that we can approximate zero in case
of sqrt.

Theorem 11. (i) The function sqrt0 is computable.
(ii) The function sqrt1 :⊆ R→ R is uncomputable.
(iii) The function sqrt : [0,∞)→ R is computable.

Of course (iii) implies (i). However we will prove (iii) under the assumption (i).
Proof of (ii): Suppose M is an OTM to compute sqrt1. To obtain a contradiction, consider the oracle function

0− for zero where 0−[p] = −2−p for all p. Consider the output of M on input 0− and p = 1. Clearly, M must
halt after some t steps. Now, consider another oracle function x where x[p] = 0−[p] if p ≤ t, and x[p] = −2−t for
all p > t. Clearly, x represents the negative number 2−t, but M on input x and p = 1 will halt with an output as
before, contradiction.

Proof of (iii): This proof assume (i) holds. To show the computability of sqrt, we must ensure that, in case the
input represents 0, then we output a representation of 0. We do this as follows. On input x and p where x ≥ 0, we
first compute x[2p + 2] and compare this to 2−2p−1. If x[2p + 2] ≥ 2−2p−1 then x ≥ 2−2p−2, and we can compute a
p-bit approximation of

√
x using an algorithm for sqrt0 (from part(i)). Otherwise, we simply output 0. We show

that this output of 0 is correct: since x[2p + 2] < 2−2p−1, we have x < 2−2p, or
√

x < 2−p. Hence 0 is a p-bit
approximation to

√
x.

¶38. Proof that sqrt0 is computable. We now prove (i).

1. The function sqrt0 is approximable. This means that for each x ∈ D ∩ (0,∞), and p ∈ N, we can compute
some

√
(x)[p] ∈ D which is a p-bit approximation to

√
x.

There are well-known efficient Newton-type methods for doing this. However, since we do not care about
time bound, we can naively compute z by binary search among the elements of Dp+1[0, ⌈y⌉]. More precisely,
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suppose we know an interval [a, b] containing
√

x where a, b ∈ Dp+1[0, ⌈y⌉]. let c = ⌊(a + b)/2⌋p+1 is the

nearest element in Dp+1 to that is ≤ (a + b)/2. By computing c2 and computing it to x, we can decide
whether c ≥ √x or c ≤ √x. If c2 ≥ x, then we narrow our interval to [a, c]; otherwise we narrow it to [c, b].

2. We need a basic estimate: If |ρ| ≤ 1/2 then
√

1 + ρ = 1± 5ρ
8 .

This amounts to a linearized estimate of the squareroot of (1 + ρ), when ρ is small. For instance, this implies
that if |ρ| ≤ 1/2 then

√
1 + ρ = 1± ρ. The proof is standard, using Taylor’s expansion of

√
1 + ρ. We leave

it as an Exercise.

3. We are ready to present the OTM for computing sqrt0, assuming an input oracle x for x > 0, and a precision
p ∈ N. We want to compute some z ∈ D such that z =

√
x± 2−p.

• STEP 1. Iteratively compute x[2n] for n = 1, 2, 4, 8, . . ., until x[2n] ≥ 2−2n+1 holds. This iteration must
terminate because x > 0.

• STEP 2. Determine the unique ℓ such that 2−2ℓ+1 ≤ x[2n] < 2−2ℓ+2. This implies that ℓ ≤ n. It follows
that

x ≤ x[2n] + 2−2n < 2−2ℓ+3

and
x ≥ x[2n]− 2−2n ≥ 2−2ℓ.

Hence 2−ℓ ≤ √x < 2−ℓ+1.

• STEP 3. Compute y := x[ℓ + p + 4]. Then y = x± 2−ℓ−p−4 = x(1± 2ℓ−p−2).

• STEP 4. Using our approximation function
√̃

above, compute an approximation z := sqrt(y)[p + 1] =√
y ± 2−p−1. Output this z. To see that this output is correct, it suffices to show that

√
y =
√

x
√

1± 2ℓ−p−2 =
√

x(1± 5

8
2ℓ−p−2) =

√
x± 2−p−1.

Exercises

Exercise 4.1: Let f=0 : R→ R be the predicate such that f=0(x) = 1 iff x = 0.
(i) Show that f=0 is computable iff f= is computable.
(ii) Show that f=0 is Russian computable iff f= is Russian computable. ♦

Exercise 4.2: The predicate f= is total and undecidable. Let us show that it is undecidable for a much stronger
reason. Consider a partial function analogue: define g= :⊆ R2 → R where g=(x, y) =↑ if x 6= y and
g=(x, x) = 1. Show that g= is conditionally undecidable. ♦

Exercise 4.3: Let f : R→ R have a finite range, i.e., {f(x) : x ∈ domain(f)} is a finite set. ♦
Exercise 4.4: Give an alternative proof that sqrt0 is approximable, by using Newton iteration. This should be

more efficient than the binary search method of ¶38. Analyze the complexity of your algorithm. ♦
Exercise 4.5: We want to bound

√
1 + ρ (¶38(b)). Let n!! denote the double factorial defined by n!! = (n−2)!!·n

when n ≥ 1, and (−1)!! = 0!! = 1.
(i) Show that

(1 + ρ)1/2 = 1 +
ρ

2
−

∑

k≥1

ρ2k (4k − 3)!!

4k(2k)!

(
1− ρ

4k − 1

4k + 2

)
.

HINT: use the Binomial Theorem to expand (1 + ρ)1/2 = 1 + ρ
2 + (1/2)(−1/2)

2! ρ2 + · · · .
(ii) If |ρ| ≤ 1

2 then
√

1 + ρ = 1 + ρ/2−K where 0 ≤ K ≤ 3ρ2

16(1−ρ) .

(iii) If |ρ| ≤ 1
2 then

√
1 + ρ = 1± 5ρ/8. ♦

Exercise 4.6: Prove that in the Taylor expansion,

√
1 + ρ == 1 +

ρ

2
− 1

8
ρ2 +

1

16
ρ3 − 5

128
ρ4 +

7

256
ρ5 + · · ·

every coefficient is a dyadic number. ♦

End Exercises

§5. Continuity of Computable Functions
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¶39. Compact Domains. It is often simpler to work with real functions whose domains are real intervals. For
[a, b] ⊆ R, let C[a, b] be the set of real functions f : [a, b]→ R which are continuous.

¶40. Modulus of continuity. Let f : [a, b]→ R. In analysis, we say that f is continuous if for all ε > 0 there
is a δ > 0 such that |x− y| ≤ δ implies |f(x)− f(y)| ≤ ε. We will work with a quantitative version of this concept:
a function m : N→ N is a modulus of continuity (or modulus function) for f if for all n ∈ N, and x, y ∈ [a, b],

|x− y| ≤ 2−m(n) ⇒ |f(x)− f(y)| ≤ 2−n.

The following is immediate:

Lemma 12. f : [a, b]→ R is continuous iff it has a modulus function.

Proof. If f is continuous, then for every n ∈ N, there is a δ(n) such that |x−y| ≤ δ(n) implies |f(x)−f(y)| ≤ 2−n.
We may choose m(n) = ⌈lg(1/δ(n))⌉. Conversely, if m is a modulus function, then for every ǫ > 0 we choose
δ = 2−m(n) where n = ⌈lg(1/ǫ)⌉. Q.E.D.

¶41. Heine-Borel Theorem. Let S ⊆ R and I be any index set. A collection {Ci : i ∈ I} where each Ci ∈ R

is an open set is called an open cover of S if S ⊆ ⋃
i∈I Ci. The Heine-Borel Theorem is a fundamental fact about

the real numbers: it says that if S is compact, i.e., S is closed and bounded, and {Ci : i ∈ I} is an open cover of
S, then there exists a finite subset J ⊆ I such that {Cj : j ∈ I} is also an open cover of S.

¶42. Suppose M is an OTM that computes a partial function g :⊆ R→ R. Define the function

kM (x, p) := the largest k such that the computation of Mβx [p] queries βx[k].

Note that this definition assumes that M uses the standard Cauchy representation βx as oracle. If this oracle was
never queried, define kM (x, p) = 0.

Write k(x, p) = kM (x, p) when M is understood. For each x ∈ [a, b], define the open interval I(x, p) :=
(ℓ(x, p), r(x, p)) where

ℓ(x, p) = βx[k(x, p)]− 2−k(x,p),

r(x, p) = βx[k(x, p)] + 2−k(x,p).

Lemma 13. Suppose y ∈ I(x, p) ∩ [a, b] then |f(y)− f(x)| ≤ 2−p+1.

Proof. Consider the representation y with the property

y[n] =

{
βx[n] if n ≤ k(x, p),
βy[n] if n > k(x, p).

By Lemma 2(iii), we know that y is a representation of y. Our construction of y ensures that the computation of
Mβx [p] is indistinguishable from My[p]. Therefore

|f(y)− f(x)| ≤ |f(y)−My[p]|+ |Mβx [p]− f(x)|
≤ 2−p + 2−p = 2−p+1.

Q.E.D.

¶43. Computability implies continuity. The key lemma is the following:

Lemma 14 (Continuity). If f : [a, b]→ R is computable then f has a recursive modulus function m : N→ N.

Proof. Let M be an OTM that computes f , and let k(x, p) = kM (x, p). We will fix p ∈ N for most of this
argument.

Consider the set C = {I(x, p + 3)) : x ∈ [a, b]}. Note that x ∈ I(x, p + 3) because the center of I(x, p + 3) is
βx[k(x, p + 3)] and x− βx[k(x, p + 3)] < 2−k(x,p+3) (by Lemma 2(ii)). Hence C is an open cover of [a, b].

Hence C contains a finite subcover by Heine-Borel. Let the finite subcover be {I(xi, p + 3) : i = 1, 2, . . . , t}.
Next note that if we replace x by x′ = βx[k(x, p + 3)], the interval I(x′, p + 3) is identical to I(x, p + 3). Hence
wlog, assume that each xi is equal to the dyadic number βxi

[k(xi, p + 3)].
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Writing I(xi, p + 3) = (ℓi, ri) and we may assume that ℓ1 < ℓ2 < · · · < ℓt and r1 < r2 < · · · < rt. Define

m(p) = 2 + max{k(xi, p + 3) : i = 1, . . . , t}.

We will show that m(p) acts as a modulus function.
CLAIM 1: If y, z ∈ [a, b], and 0 < z − y ≤ 2−m(n) then there is some i, j = 1, . . . , t such that either (A)

ℓi < y < z < ri

or (B)
ℓi < y ≤ ℓj < ri < z < rj .

To see this, let i be the maximum index such that ℓi < y and j the minimum index such that z < rj . If i = j,
then we have the situation of (A). If i = j − 1, we have the situation of (B). If i < j − 1, then y ≤ ℓi+1 < ri+1 ≤ z.
Thus z − y ≥ ri+1 − ℓi+1 = 21−k(xi+1,p+3) > 2−m(n), contradicting our assumption about z − y.

CLAIM 2: The function m(p) is a modulus function.
To see this, let y, z as in CLAIM 1. We want to show |f(y) − f(z)| ≤ 2−p. There are two cases in CLAIM 1.

In case (A), we have
|f(y)− f(z)| ≤ |f(y)− f(xi)|+ |f(xi)− f(z)|

where |f(y)−f(xi)| and |f(xi)−f(z)| are each upper bounded by 2−p−2 (Lemma 13). Hence |f(y)−f(z)| ≤ 2−p−1.
In case (B), choosing any u ∈ (ℓ(xj), r(xi)), we have

|f(y)− f(z)| ≤ |f(y)− f(xi)|+ |f(xi)− f(u)|+ |f(u)− f(xj)|+ |f(xj)− f(z)|

Again Lemma 13 that each absolute value on the right hand side is at most 2−p−2 and so |f(y)−f(z)| ≤ 2−p. This
proves our CLAIM.

Although m(p) is a modulus function, its recursiveness is unclear. But here is a recursive version m∗: on input
p ∈ N, search for the smallest s∗ = 0, 1, 2, · · · such that

[a, b] ⊆
⋃

d∈Ds∗

I(d, p + 3). (16)

Note that this search will terminate since there exists an s such that {x1, . . . , xt} ⊆ Ds and so [a, b] ⊆ ⋃t
i=1 I(xi, p+

3). If (16) holds, we may redefine the modulus function as m∗(p) = 2 + max {k(d, p + 3) : d ∈ D∗
s ∩ [a, b]}. It is

clear that m∗ is recursive. Since m∗(p) ≥ m(p), we conclude that it is also a modulus for f . Q.E.D.

¶44. We conclude that discontinous functions such as the step function x 7→ δx > 0, or floor function x 7→ ⌊x⌋,
are not computable. One view is that this conclusion is “to be expected”. Some people in computing hold the
position that input data in real computation is inherently uncertain, and this conclusion is consistent with such
a view. Nevertheless, there are many problems in real computation where data is not at all uncertain. Examples
include the standard problems in the field of computational geometry, in automatic theorem proving for elementary
geometry, or intersections of algebraic surfaces within a CAD model. For such applications, discontinuity is essential,
and so such a conclusion is unacceptable. We shall return to this important issue.

¶45. Characterization of computability. The previous lemma leads to an important characterization of
computable real functions.

Theorem 15. A function f : [a, b]→ R is computable iff f is absolutely approximable and has a recursive modulus
function.

Proof. Suppose f has a recursive modulus function m : N → N and a computable absolute approximation f̃ .
Consider the following OTM M to compute f : give an oracle function x and precision p ∈ N, M first computes
m(p + 1) and then obtains from the oracle y = x[m(p + 1)]. Finally, M computes and outputs z = f(y)[p + 1].
Note that

z = f(y)± 2−p−1 = (f(x)± 2−p−1)± 2−p−1 = f(x)± 2−p,

as desired.
Conversely, suppose f is computable. By Lemma 14, f has a computable modulus m, so it remains to show

that f is absolutely approximable. Let M be an OTM that computes f . It is easy to construct an ordinary Turing
machine M ′ that, on input d ∈ D and p ∈ N, simulates M on the oracle βd and p. M will output Mβd [p] which is
clearly a p-bit approximation of f(d). Q.E.D.
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¶46. We seek examples of continuous functions are not computable. Let β ∈ R. Consider the function
gβ :⊆ R → R where gβ(x) =↑ iff x ≥ β. We may assume gβ is continuous within its proper domain [β,∞).
Nevertheless, gβ is uncomputable since we can reduce the problem of checking if an input x is equal to β to gβ .
The reader will rightfully object to such examples because they say nothing about the nature of the function
restricted to its proper domain. We will provide more acceptable examples later.

Exercises

Exercise 5.1: Show that gβ is uncomputable. ♦

Exercise 5.2: Generalize the characterization of computable f to the case where domain(f) = R. HINT: use
localized modulus function as described in the text. ♦

Exercise 5.3: Modify the proof of Lemma 14, to show that if t is the time complexity of an OTM which a real
function f , then t is also a modulus function for f . See below for definition of time complexity. ♦

Exercise 5.4: Generalize the continuity characterization of computable functions to multidimensional real func-
tions, f : [0, 1]k → R. ♦

End Exercises

§6. Complexity of Real Functions

¶47. Time complexity. A complexity function T is any partial real function T :⊆ Rm → R.
For example, T (x) =

√
x and T (x) = x lg x are complexity functions. So is T (x, y) = x2y + yx lg x.

Let f :⊆ Rk → R be a partial real function.

• (i) A local time complexity of f is T :⊆ Rk+1 → R such that for some OTM M that computes f , and
for all x, x ∈ domain(f) and p ∈ N, Mx[p] halts in ≤ T (x, p) steps.

• (ii) A global time complexity of f is T :⊆ R→ R such that for some OTM M that computes f , and for
all x where x ∈ domain(f), and p ∈ N, Mx[p] halts ≤ T (p) steps.

¶48. Remarks.
1. If T is a local complexity function for f , then domain(f)× N ⊆ domain(T ).
2. Note that when x 6∈ domain(f), then we do not care how much time the computation Mx[p] takes.
3. The bit size of p is normally take to be O(log p) and complexity T implies the machine uses ≤ T (log p) steps.
However, that is not our definition; the precision parameter p is not treated like ordinary input parameters. Instead,
the precision parameter p has (precision) size p. One way to ensure this special treatment of precision is to require
that an OTM can only write in unary notation on the query tape.
4. It is desirable not to assume unary notation for representing p. So, in practice, we expect p to be represented in
binary. But we still regard the precision size to be “p” and not “lg p”.

¶49. Complexity of approximations. In the local time complexity T (x, p), the parameter (x1, . . . , xk) = x ∈
Rk is not really an ”input size” measure for complexity: we could have

∑k
i=1 |xk| that are arbitrarily small but

representing arbitrarily complex input values. For each fixed x, the function Tx(p) := T (x, p) is closer to our usual
idea of a complexity function. However, we have no idea of its dependence on x. On the other hand, global time
complexity T (p) explicitly exclude any dependence on x. In either case, it is counter-intuitive to our usual ideas of
complexity functions.

We propose to look at another complexity function which looks at some choices of x. Let

f̃ :⊆ Dk × N→ D

be an absolute approximation of f . Define input size of x ∈ Dk to be the length of the string representation x
(this depends on the convention that the representation of dyadic numbers are held fixed). Write size(x) for this
input size. The precision size of p is declared to be p (as before).

We say f̃ has time complexity T : R2 → R if there is a Turing machine M such that on input x ∈ domain(f̃)
and p ∈ N, M takes ≤ T (size(x), p) steps. We say f is polynomial-time approximable if it has a approximating

function f̃ whose time complexity is polynomial.
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¶50. Polynomial time computability. We focus on real functions that are efficiently computable.

• Let T (x, p) be a local time complexity of an OTM M . We say that M is locally polynomial-time if for
each x ∈ domain(M), the function Tx(p) = T (x, p) is bounded by a polynomial in the parameter p.

• Let T (p) be the global time complexity of an OTM M . We say that M is globally polynomial-time if
T (p) is bounded by a polynomial in the parameter p.

• Define
PC[a,b]

to be the set of real functions f : [a, b]→ R with global time complexity T (p) that is a polynomial.

• We say the function f is polynomial-time approximable if some absolute approximation f̃ :⊆ Dk×N→ D

can be computed in time that is polynomial in size(d) + p where the input is d ∈ Dk and p ∈ N.

• Alternatively, f is polynomial-time approximable if f̃ ∈ FP where FP denotes the class of discrete functions
h : Σ∗ → Σ∗ that are computed in polynomial-time by ordinary Turing machines.

Theorem 16. The field operations (±,×,÷) are locally polynomial-time computable functions.

Proof. We just verify that the algorithms for the field operations as presented in (¶27,¶30) are locally polynomial-
time. Q.E.D.

¶51. We extend the continuity characterization of computable function to PC[0,1]. We say f : [0, 1] → R has a

polynomial modulus m : N→ N if m is a modulus and m(n) = O(nk) for some constant k > 0.

Theorem 17. f ⊆ PC[0,1] iff f is polynomial-time approximable and f has a polynomial modulus.

Proof. (⇒) Suppose f ∈ PC[0,1] is computable by an OTM M in global polynomial time T (p). In the proof of
Lemma 14, we show that function m(p) := 2 + kM (x, p + 3) serves as a modulus function. Since T (p) ≥ kM (x, p)
for all x, p, it follows that m(p) := 2 + T (p + 3) is a polynomial modulus function.

It remains to show that the approximation function f(d)[p] can be computed in polynomial-time. To do this,
we simulate M on input d and p. Whenever M queries the oracle d[n] on some precision n, we can easily compute
the answer in O(size(d) + n) steps. So the overall computation is polynomial in size(d) + p.

(⇐) Conversely, from m is a polynomial modulus and f̃ ∈ FP . We construct an OTM M whose operation for
M ex[p] goes as follows: it computes m(p + 1) and asks the oracle for y = x[m(p + 1)]. Finally it outputs f(y)[p + 1].
The proof of Theorem 15 shows the correctness of this output. We now observe that this computation is polynomial
time in p. Q.E.D.

Exercises

Exercise 6.1: Modify our proof of Lemma 14 to show that if an OTM M computes f in uniform time T : R→ R

then m(n) := 2 + T (n + 2) is a modulus function for f . ♦

End Exercises

§7. Recursively Open Sets

In the previous section we characterized computable functions with a compact domain, of the form f : [a, b]→ R.
In this section we want to extend this characterization to two other classes of functions: (1) Total functions with
non-compact domain such as f : R → R or f : (a, b) → R. (2) Partial functions f :⊆ R → R. We will need the
concept of recursively open sets.
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¶52. Let φ : N→ D. This function defines a sequence (I0, I1, I2, . . .) of open intervals where In = (φ(2n), φ(2n+
1)). We say φ is an interval representation of the open set S =

⋃
n≥0 In.

A set S ⊆ R is recursively open if there is an interval representation of S that is recursive. We say S is
recursively closed if its complement R \ S is recursively open.

Note that if φ(2n) ≥ φ(2n + 1) then the open interval (φ(2n), φ(2n + 1) is empty. In particular, the empty set
S = ∅ is recursively open. So is S = R. On the other hand, the sets [0, 1] and (0, 1] are not recursively open, since
recursively open sets are open sets in the standard topology of R.

Theorem 18. The following statements are equivalent:
(i) S ⊆ R is recursively open.
(ii) S is equal to domain(f) for some computable f :⊆ R→ R.

Proof. Let f :⊆ R → R be computed by an OTM M . We want to show that S := domain(f) is recursively
open. Wlog, assume domain(f) 6= ∅. For k ∈ N, define

Ak :=
{
d ∈ D : Mβd [1] halts within k steps

}
.

Note that Ak ⊆ Ak+1. Also, Ak is recursive.
CLAIM 1: d ∈ Ak implies that if x = d ± 2−k then x ∈ S. Pf: if x = d ± 2−k then there is a representation x

such that x[n] = βd(n) for all n ≤ k. Then Mx[1] = Mβd [1]. So Mx[1] halts, and x ⊆ S. QED
CLAIM 2: if x ∈ S then there is a k such that d ∈ Ak and x = d± 2−k. Pf: Consider Mβx [1]. It halts in some

k steps. Let d = βx[k]. Then Mβd [1] halts in k steps. So d ∈ Ak. Moreover, d = x± 2−k. QED.
From CLAIMS 1 and 2, we conclude that S =

⋃
k≥1

⋃
d∈Ak

(d− 2−k, d + 2−k). This shows that S is recursively
open.

Conversely, suppose S =
⋃

n≥0(φ(2n), φ(2n + 1)) where φ is recursive. We construct a OTM M such that M
on input x and p will halt iff x ∈ S. We just use dovetailing to check the following list of conditions:

φ(2n) < x < φ(2n + 1), (n = 0, 1, 2, . . .).

If any of these conditions hold, we halt. Otherwise we loop. Q.E.D.

¶53. Squareroots again. Does this result contradict our result in ¶37, where the function sqrt : [0,∞) → R

was shown computable. The set domain(sqrt) = [0,∞) is clearly not open. This is not a contradiction because the
nominal domain of sqrt is not R as required by the theorem. Indeed, ¶37 show that the related sqrt1 :⊆ R→ R

with domain(sqrt1) = [0,∞) is not computable, consistent with the present more general result. The generalization
of the previous theorem to such situations such as sqrt is treated in the Exercise.

¶54. Local modulus function We observe that Lemma 14 which shows the existence of computable modulus
functions can be slightly generalized as follows: if [a, b] ⊆ domain(f), the original proof still leads to a modulus
function m, but for the restriction of f to [a, b]. This suggests the following generalization of modulus functions to
arbitrary functions.

Let f :⊆ R→ R. A function
m :⊆ D2 × N→ N

is called a local modulus function for f if for all d1, d2 ∈ D and p ∈ N, if [d1, d2] is not contained in domain(f),
then m(d1, d2, p) =↑. Otherwise, for all x, y ∈ [d1, d2], if |x− y| ≤ 2−m(d1,d2,p) then |f(x)− f(y)| ≤ 2−p.

Note m is now a partial function.

Lemma 19. Let f :⊆ R→ R with recursively open domain(f). If f is computable, then f has a computable local
modulus function.

Proof. Let OTM M compute f , and φ a recursive interval representation for domain(f). We construct a
computable local modulus function m for f as follows: on input d1, d2 ∈ D and p ∈ N, we first check that d1, d2

belong to the domain of f by computing Mβd [1] where d = d1 and d2. Assuming both computations halt, we next

compute Φ(i) =
⋃i

j=0(φ(2j), φ(2j + 1)) for i = 0, 1, 2, . . .. Note that Φ(i) is just a union of disjoint intervals, which
we can maintain as a list of their endpoints. We stop when we verify that (d1, d2) ⊆ Φ(i) for some i.

We proceed to compute a value m(d1, d2, p) as in the proof of Lemma 14. For s = 0, 1, 2, . . ., as in (16), we
check if

[d1, d2] ⊆
⋃

d∈Ds

I(d, p + 3),
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adopting notations from that proof. This process is guaranteed to halt for some s∗. Then we output m(d1, d2, p) =
2 + max {k(d, p + 3) : d ∈ D∗

s ∩ [a, b]}. Q.E.D.

From this, we can conclude:

Theorem 20. Let f :⊆ R→ R with recursively open domain(f). Then f is computable iff f has a local modulus
function and f is approximable.

Exercises

Exercise 7.1:
(i) Give the proof of Theorem 20.
(ii) Show by a counter example that the hypothesis that domain(f) is recursively open cannot be dropped.

♦

Exercise 7.2: Let S ⊆ R. Suppose f :⊆ S → R is computable. Show that domain(f) is relatively open in S. ♦

End Exercises

§8. Recursively Closed Sets

¶55. Let f : [0, 1] → R be a computable function with modulus function m and approximation f̃ . Let y = y0

have the computable Cauchy representation y. We aim to show that f−1(y0) is recursively closed. The result is
trivial if f−1(y0) is empty. Hence we assume there exists an x0 ∈ [0, 1] such that f(x0) = y0.

For p ∈ N, define

y∗ = y∗(p) := max
{
f(d)[p + 2] : d ∈ Dm(p+2)[0, 1] and f(d)[p + 2] ≤ y[p + 2]

}
, (17)

y∗ = y∗(p) := min
{
f(d)[p + 2] : d ∈ Dm(p+2)[0, 1] and f(d)[p + 2] ≥ y[p + 2]

}
. (18)

The definitions of y∗ and y∗ involve maximizing and minimizing over sets that may be empty. When the corre-
sponding set is empty, y∗ (resp., y∗) is defined to be +∞ (resp., −∞).

Lemma 21.
(i) Consider the set Y =

{
f(d)[p + 2] : d ∈ Dm(p+2)[0, 1]

}
. If y, z ∈ Y , y < z then z − y > 3 · 2−p−2. Then there

exists w ∈ Y such that y < w < z.
(ii) Suppose there is an x ∈ [0, 1] such that f(x) < y0 − 2−p+1 (resp., f(x) > y0 + 2−p+1). Then y∗ (resp., y∗) is
finite and y∗ ≥ y0 − 2−p (resp., y∗ ≤ y0 + 2−p).

Proof. (i) This follows from the fact that if d1, d2 ∈ Dm(p+2)[0, 1] and d1 = d2 ± 2−m(p+2) then f̃(d1) =

f̃(d2)± 3 · 2−p−2:

f̃(d1) = f(d1)± 2−p−2 = f(d2)± 2 · 2−p−2 = f̃(d2)± 3 · 2−p−2.

(ii) Let d = ⌊x⌋m(p+2) and d0 = ⌊x0⌋m(p+2). We assume f(x) < y0 − 2−p+1 (the case f(x) > y0 + 2−p+1 is

symmetric). If f(d0)[p + 2] ≤ y[p + 2] then it is immediate that y∗ ≥ f(d0)[p + 2] > y0 − 2−p. Hence we may now
assume f(d0)[p + 2] > y[p + 2].

Note that f(d)[p + 2] ≤ y[p + 2] since

f(d)[p + 2] ≤ f(d) + 2−p−2

≤ f(x) + 2−p−1

≤ y0 − 3 · 2−p−1

< y[p + 2].

This shows that y∗ is finite. But from f(d0)[p + 2] > y[p + 2] ≥ f(d)[p + 2] and part (i), we know that there is a
w ∈ Y such that f(d0)[p + 2] > y[p + 2] ≥ w and f(d0)[p + 2]−w ≤ 3 · 2−p−2. Hence f(d0)[p + 2] ≤ y∗ + 3 · 2−p−2.
Finally, we derive y0 ≤ f(d2)[p + 2] + 2−p−2 ≤ (y∗ + 3 · 2−p−2) + 2−p−2 = y∗ + 2−p. Q.E.D. .
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¶56. Inverse of a computable value is recursively closed. Using y∗, y∗, define the sets

Ap :=
{
d ∈ Dm(p+2)[0, 1] : f(d)[p + 2] > y∗ + 2−p

}
, (19)

Bp :=
{
d ∈ Dm(p+2)[0, 1] : f(d)[p + 2] < y∗ − 2−p

}
. (20)

For d ∈ Ap ∪Bp, define the interval Id := (d− 2−m(p+2), d + 2−m(p+2)).

Theorem 22. If f : [0, 1]→ R is computable and y0 is a computable real then the set f−1(y0) is recursively closed.
In fact, f−1(y0) = [0, 1] \ S where

S :=
⋃

p∈N

⋃

d∈Ap∪Bp

Id

is recursively open.

Proof. We claim that S is recursively open: for each p = 0, 1, 2, . . ., and each d ∈ Dm(p+2)[0, 1], we can decide if
d ∈ Ap ∪Bp. This is because we can compute y∗(p) and y∗(p), and can thus decide whether f(d)[p + 2] > y∗ + 2−p

or f(d)[p + 2] < y∗ − 2−p. If d ∈ Ap ∪Bp, and if d is the ith value so determined by this procedure, we define φ by
the equation Id = (φ(2i), φ(2i + 1)). Thus φ is a recursive interval representation of S, establishing our claim.

First we show that f−1(y0) ⊆ [0, 1] \ S. If x ∈ Id where d ∈ Bp, then

f(x) ≤ f(d) + 2−p−2 (|x− d| ≤ 2−m(p+2))
≤ f(d)[p + 2] + 2−p−1 (f(d) ≤ f(d)[p + 2] + 2−p−2)
< y∗ − 2−p−1 (f(d)[p + 2] < y∗ − 2−p)
< y0 (y∗ ≤ y[p + 2] ≤ y0 + 2−p−2).

Similarly, if x ∈ Id where d ∈ Ap, then f(x) > y0. This proves that Id ∩ f−1(y0) = ∅, and so f−1(y0) ⊆ [0, 1] \ S.
We now show that [0, 1] \ S ⊆ f−1(y0). This is equivalent, [0, 1] \ f−1(y0) ⊆ S. Suppose x ∈ [0, 1] \ f−1(y0).

Choose p ∈ N such that either f(x) < y0 − 5 · 2−p−1 or f(x) > y0 + 5 · 2−p−1. By symmetry, it suffices to consider
the case

f(x) < y0 − 5 · 2−p−1. (21)

Let d := ⌊x⌋m(p+2). We show that d ∈ Bp:

y∗ − 2−p ≥ (y0 − 2−p)− 2−p (Lemma 21(ii))
> f(x) + 2−p−1 (y0 − 5 · 2−p+1 > f(x))
≥ f(d) + 2−p−2 (f(x) ≥ f(d)− 2−p−2)
≥ f(d)[p + 2].

Furthermore, |d− x| < 2−m(p+2), so that x ∈ Id. Thus x ∈ S, as desired. Q.E.D.

Exercises

Exercise 8.1: Let y0 be a computable real and T ⊆ [0, 1] a recursively closed set. Construct a real function
f : [0, 1]→ R such that T = f−1(y0). ♦

End Exercises

§9. Linear Approximations

¶57. Let f : [0, 1] → R. Sometimes, it is easier to approximate f by constructing a sequence of functions that
converges to f .

A sequence (fn : n ∈ N) of real functions is said to rapidly converge to f if for each n, we have domain(fn) =
domain(f) and f(x) = fn(x)± 2−n.

Assume each fn in the sequence (fn : n ∈ N) is piecewise linear, with breakpoints contained in D, and let
fn(D) ⊆ D. It follows that for all d ∈ D, fn(d) ∈ D. Hence the sequence (fn : n ∈ N) may be represented by a
function

F : N× D[0, 1]→ D

where F (n, d) = fn(d). Call F a uniform linear approximation of f in case F represents a sequence (fn : n ∈ N)
that rapidly converges to f .

Chee-Keng Yap Page 22 April 13, 2009



§10. Numerical Functionals and Operators Lecture XXIII Page 23

¶58.

Theorem 23. A function f : [0, 1]→ R is computable iff f has a computable modulus function m and a computable
uniform linear approximation F .

Proof. In view of the characterization of Theorem 15, we may assume that f has a computable modulus m. We
only have to show that the existence of of a computable approximation f̃ : D×N→ D is equivalent to the existence
of a computable uniform linear approximation F .

Given a computable F , we define f̃ by f(d)[n] = F (n, d). Clearly, f̃ is computable and is an approximation of
f .

Conversely, given f̃ , we define fn(d) = f(d)[n + 3] for all d ∈ Dm(n+3), and fn(x) is obtained by linear
interpolation if x 6∈ Dm(n+3). Clearly, F (n, d) = fn(x) is computable.

To show that (fn : n ∈ N) rapidly converges to f , recall the generalized floor ⌊x⌋n and ceiling ⌈x⌉n functions.
Note that fn(x) lies between fn(⌊x⌋m(n+3)) and fn(⌈x⌉m(n+3)). Moreover,

|fn(⌈x⌉
m(n+3)) − fn(⌊x⌋

m(n+3))|

≤ |fn(⌈x⌉
m(n+3)) − f(⌈x⌉

m(n+3))| + |f(⌈x⌉
m(n+3)) − f(⌊x⌋

m(n+3))| + |f(⌊x⌋
m(n+3)) − fn(⌊x⌋

m(n+3))|

≤ 3 · 2−n−3
< 2−n−1

Hence fn(x) = fn(⌊x⌋m(n+3))± 2−n−1. Finally,

|f(x)− fn(x)| ≤ |f(x)− f(⌊x⌋m(n+3))|+ |f(⌊x⌋m(n+3))− fn(⌊x⌋m(n+3))|+ |fn(⌊x⌋m(n+3))− fn(x)|
≤ 2n−3 + 2−n−1 + 2n−3 < 2−n.

Q.E.D.

§10. Numerical Functionals and Operators

¶59. Higher-type Computations. Consider the following problems:

• Evaluation Problem:
EV AL : C[0, 1]× [0, 1]→ R

where EV AL(f, x) = f(x).

• Maximization Problem:
MAX : C[0, 1]→ C[0, 1]

where MAX(f) is the function g ∈ C[0, 1] given by g(x) = max {f(y) : 0 ≤ y ≤ x}. We can specialize MAX
by defining

MAX1 : C[0, 1]→ R

where MAX1(f) = max {f(y) : 0 ≤ y ≤ 1}. Alternatively, MAX1(f) = MAX(f)(1).

• Integration Problem:
INT :⊆ C[0, 1]→ C[0, 1]

where INT (f) is the function g ∈ C[0, 1] given by g(x) =
∫ x

0
f . We can specialize INT by defining

INT1 :⊆ C[0, 1]→ R

where INT1(f) =
∫ 1

0
f .

A (numerical) functional F is a function from real functions to R. A (numerical) operator H is a function
from real functions to real functions.

Thus, EV AL, INT1,MAX1 are functionals, while MAX and INT are operators. A functional F belongs to
[R ⇒ R] ⇒ R, and an operator H belongs [R ⇒ R] ⇒ [R ⇒ R]. The input of functionals and operators include
real functions (type-2 objects). Thus they are type-3 objects by our classification.
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¶60. How should we compute such objects? We need to introduce suitable input and output representations.

• Let f : [0, 1] → R, viewed as input to an OTM for computing a functional F or operator H. We say f is

represented by a pair (m, f̃) where
m : D[0, 1]× N→ D

is a modulus function for f and
f̃ : D[0, 1]× N→ D

is an absolute approximation (¶21) for f . If m and f are both recursive, then we call (m, f̃) a recursive
representation of f . This definition is justified by Theorem 15.

• For functional F , the output is R. We use the same trick as for computing functions: instead of the OTM
outputing a representation x of real numbers (i.e., a Cauchy representation x : N → D), we incorporate the
precision argument p of x into the OTM, so that the OTM only outputs x[p] ∈ D (cf. ¶20).

We say an OTM M computes the functional F if, on oracle inputs m, f̃ and precision input p, computes a
dyadic number

Mm, ef [p]

such that |Mm, ef [p]− F (f)| ≤ 2−p.

• For operator H, instead of the OTM outputing a representation of a function g : [0, 1] → R, we incorporate
the argument x for g and the precision desired for g(x) into the input of the OTM. We say an OTM M

computes the operator H if, on oracle inputs m, f̃ , x and precision input p, computes a dyadic number

Mm, ef,x[p]

such that |Mm, ef,x[p]− I(f)(x)| ≤ 2−p.

The technique used to define computation of functionals and operators amounts to reducing the type of the
range: by moving arguments from the range into the domain of functions. For instance, instead of computing
f ∈ [A⇒ [B ⇒ C]], we compute f ′ ∈ [[A×B]⇒ C]. This is called “Currying” (after the logician Curry).

¶61. Non-polynomial computability of INT1 Let F : D → R be a functional for some D ⊆ C[0, 1]. We

say F is polynomial time if there is an OTM M and polynomials q, q′ such that for all representations (m, f̃) of

f ∈ D, Mm, ef [n] runs in time polynomial in n.
We will now prove that the INT1 operator cannot be computed in polynomial time.
Suppose OTM M computes INT1 in polynomial time t(n). Choose n sufficiently large so that t(n) < 2n−3. We

now run Mm, ef [n] for suitably chosen m and f̃ . The modulus function is the constant 1: m(n) = 1 for all n. First,

let f̃ be the constant 0: f̃(d;n) = 0 for all d, n. Let Mm, ef [n] query f̃ on the t ≤ t(n) inputs

(d1, n1), . . . , (dt, nt).

Wlog, assume d1 < d2 < · · · < dt. For each query, the oracle returns 0, f(di)[ki] = 0.

Next, we replace f̃ by another function g̃ which is an approximation to the piecewise linear g defined as follows:
the break points of g are d1, . . . , dt and also (di +di+1)/2 for i = 1, . . . , t−1. Then g is determined by these values:
g(di) = 0 for i = 1, . . . , t, and g((di +di+1)/2) = (di+1−di)/2. See Figure 2 for an illustration. Our approximation

g̃ also has the property that g(di)[n] = 0 for all n (i = 1, . . . , t). It follows that Mm, ef [n] and Mm,eg[n] has identical
behavior and must output the same answer.

d3 d4d1 d2

x

0 1

Figure 2: Function g to fool the integrator OTM
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We note that ∫ 1

0
g =

∑t−1
i=1

(
di+1−di

2

)2

≥ 1
t

(∑t−1
i=1

di+1−di

2

)2

(Schwartz′sinequality)

= 1
4t .

Since t ≤ t(n) < 2n−3 (by choice of n), we conclude that
∫ 1

0
g > 2−n+1. If d = Mm, ef [n] = Mm,eg[n], then |d−

∫ 1

0
f |

or |d−
∫ 1

0
g| > 2n, contradiction.

Exercises

Exercise 10.1: Consider an alternative to representing functions. Suppose our representation of f does not include
a modulus function. Instead, we represent f by a pair (f̃ , f̃ ′) where f̃ is an absolute approximation of f , and

f̃ ′ an absolute approximation of f ′. We say an OTM M “computes” the EV AL functional if, on oracle inputs

f̃ , x and precision input p, the machine M
ef,x[p] eventually outputs EV AL(f, x) ± 2−p. Prove or disprove:

EV AL cannot be computed in this sense. ♦

End Exercises

§11. Maximization of Functions

¶62. Maximum value and maximum points. For f : [0, 1] → R, define max(f) := max {f(x) : x ∈ [0, 1]},
and maxDom(f) := {x ∈ [0, 1] : f(x) = max(f)}.

Call max(f) the maximum value of f and each x ∈ maxDom(f) is a maximum point of f .
We study the maximization of real functions. Finding maximum points efficiently is connected to the P = NP

question. Extending this analogy, there is a parallel between the polynomial-time hierarchy and problems defined
by alternating maximization- and minimization- of real functions.

¶63. Computability of maximum value.

Lemma 24. Let f be computable and f ∈ C[0, 1]. Then max(f) is a computable real.

Proof. Let m be a recursive modulus function and f̃ a recursive approximation of f . We compute a p-bit
approximation of max(f) as follows: we compute n = m(p + 1) and then compute

y∗ = max {f(d)[p + 1] : d ∈ Dn} .

Let x∗ be a maximum point, i.e., f(x∗) = max(f). If d∗ = ⌊x∗⌋n, then

y∗ ≥ f(d∗)[p + 1]

≥ f(d∗)− 2−p−1

≥ (f(x∗)− 2−p−1)− 2−p−1 = f(x∗)− 2−p.

If y∗ = f(d)[p + 1] then f(x∗) ≥ f(d) ≥ y∗ − 2−p−1. Thus y∗ is an p-bit approximation of max(f). Q.E.D.

Corollary 25. maxDom(f) is recursive closed.

Proof. Since y0 = max(f) is computable and maxDom(f) = f−1(y0), this follows from Theorem 22. Q.E.D.

¶64. Uncomputable continuous functions.

Corollary 26. Let f : [0, 1]→ R. If max(f) is an uncomputable real, then f is uncomputable function.

This furnishes us with simple examples of continuous but uncomputable functions. For α ∈ R, define the
piecewise linear function fα : [0, 1]→ R with a breakpoint at 1/2, and fα(1/2) = α and fα(0) = fα(1) = 0.

Corollary 27. The function fα is computable iff α is computable.
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¶65. Characterization of maximum points. The proof is similar to Theorem 28.

Theorem 28. Let T ⊆ [0, 1]. The following statements are equivalent:
(1) T is recursively closed.
(2) T = maxDom(f) where f is computable and f ∈ C[0, 1].

Proof. (2)⇒(1) is just Corollary 25. To show (1)(⇒)(2), suppose T is recursively closed. We may write
T = [0, 1] \⋃

n≥0 In, for some recursive φ : N→ D such that each In = (φ(2n), φ(2n + 1)).
We construct a function f such that T = maxDom(f). For each interval In = (φ(2n), φ(2n + 1), we define

the piecewise linear function gn : [0, 1] → R with breakpoints are φ(2n) + φ(2n + 1))/2 and also the endpoints of
In ∩ [0, 1]. Then gn is completely specified if we define

gn

(
φ(2n) + φ(2n + 1))

2

)
= −1

and gn(x) = 0 for x 6∈ In. Note that gn(x) ≤ 0 for all x ∈ [0, 1]. In case In ∈ [0, 1], the graph of gn has a “V” shape
on the interval In.

Now define

f(x) :=
∞∑

n=0

2−ngn(x).

Clearly, max(f) = 0. We claim that T = maxDom(f). To see this, if x ∈ T then f(x) = 0, and so T ⊆ maxDom(f).
Conversely, if x 6∈ T , then x ∈ In for some n and gn(x) < 0. Thus f(x) < 0 and x 6∈ maxDom(f).

It remains to prove that f is computable. Let fn(x) =
∑n

i=0 2−igi(x). Clearly, the sequence (fn) rapidly
converges to f since |f(x) − fn(x)| ≤ ∑

i≥n+1 2−i ≤ 2−n. The uniform linear approximation function F (n, x) =
fn(x) is clearly computable. By our characterization (¶58) of computable functions by linear approximations, it
remains to show that f has a computable modulus function m. We define m(n) to be any k such that

|fn+2(x)− fn+2(y)| ≤ 2−n−2. (22)

whenever |x− y| ≤ 2−k. This would imply

|f(x)− f(y)| ≤ 3 · 2−n−2 < 2−n,

so that m(n) = k is a modulus function. Without loss of generality, assume φ(2i) ≤ φ(2i + 1) for all i, and let
k′ := − lg min {φ(2i + 1)− φ(2i) : i = 0, . . . , n + 2}. We choose k = n + 2 + max {0, ⌊k′⌋} For i ≤ n + 2, we have
|gi(x) − gi(y)| ≤ 2k′−1|x − y|. Hence if |x − y| ≤ 2−k, then |gi(x) − gi(y) ≤ 2−n−3. Thus |fn+2(x) − fn+2(y)| ≤∑n+2

i=0 2−i2−n−3 ≤ 2−n−2, satisfying (22). Q.E.D.

We can even assume in this result that f is polynomial-time computable (Exercise).

¶66. Uncomputable maximum points. This result is from Specker.

Lemma 29. There is a computable function f0 : [0, 1] → R such that maxDom(f0) is an uncountable set of all
uncomputable reals.

Proof. By the previous theorem, it suffices to construct a closed set containing only uncomputable reals. Equiv-
alently, we construct an open set S ⊆ [0, 1] which contains all computable reals in [0, 1].

Let φ0, φ1, . . . be an enumeration of the partial recursive functions. Define the open interval

Ii := (φi(i + 4)− 2−i−3, φi(i + 4) + 2−i−3)

provided φi(i+4) represents a dyadic number in [0, 1]. The set S :=
⋃ {Ii : φi(i + 4) ∈ D} is recursively open since

we can dovetail all the computations of φi(i + 4) (i ∈ N), and whenever φi(i + 4) halts and returns an element of
D[0, 1], we output the corresponding Ii.

Note that if x ∈ R is recursive, then there is some i such that φi computes a Cauchy function of x. This means
that |φi(i + 4)− x| ≤ 2−i−4 and hence x ∈ Ii. Thus x ∈ S. Finally, to ensure that S is a proper subset of [0, 1], we
see that the measure of S is at most

∑
i≥0 2−i−2 = 1/2. This concludes the construction. Q.E.D.
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¶67. Computability of the MAX operator. By examining the proof of Lemma 24, we see that it also shows
that the operator MAX1 : C[0, 1] → R is computable. Recall (¶60) that it means there is an OTM M taking a

pair of oracles (m, f̃) representing f ∈ C[0, 1] and a precision p ∈ N, and the output is a p-bit approximation of
MAX1(f). We can further generalize this argument:

Lemma 30. The functional MAX : C[0, 1]→ C[0, 1] is computable.

Proof. We describe an OTM M that takes as input a pair (m, f̃) of modulus and approximation that represents
f ∈ C[0, 1]. It takes a third oracle x representing x ∈ R, and finally a precision p ∈ N. We want to output a value
MAX(f)(x)[p]: We first compute n = m(p + 1). Then we compute the set

{f(d)[p + 1] : d ∈ Dn, d[p + 1] > x[p + 2]} .

Let y∗ be the maximum of this set. ... Q.E.D.

¶68. Smooth bump function. Consider the “sigmoid” function

h(x) :=

{
e−1/x2

if x > 0
0 if x ≤ 0.

Note that 0 ≤ h(x) ≤ 1 and h′(x) = e−1/x2

(2x−3) > 0 for x > 0. Then

h′(x) =
2

x3
· 1

1 + x−2 + x−42! + x−63! + · · ·
=

2

x3 + x + x−12 + x−36 + · · ·

and thus h′(x)→ 0 as x→ 0+. Hence h′(0) = 0. We can similarly show that h(n)(0) = 0 for all n ≥ 2.

Figure 3: Sigmoid function h

This function is shown in Figure 3. We now modify h(x) to H(x) to create a more pronounced step-like function:

H(x) :=
h(x)

h(1− x) + h(x)

Observe that

H(x) =





0 if x ≤ 1,
1 if x ≥ 1,
1
2 if x = 1

2 ,
strictly increasing 0 < x < 1.

Finally, we create a “bump function”

B(x) :=

{
H(2x) x ≤ 1/2,
H(2− 2x) x ≥ 1/2.

Observe that

B(x) =





0 x ≤ 0 or x ≥ 1,
1 x = 1/2,
strictly increasing 0 < x < 1/2,
strictly decreasing 1/2 < x < 1.

For all n ≥ 1, H(n)(0) = H(n)(1) = 0.
FIGURE: functions h and H and B
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¶69. A smooth function f1 such that MAX(f1) is polynomial time iff P = NP . Suppose A ∈ NP .
Assume that w ∈ A iff (∃y)[|y| ≤ p(|w|) ∧ R(y, w)] where p(n) is a polynomial function and R(y, w) is a
polynomial-time predicate. We construct f1 as follows.

We will partition [0, 1) into countably many pairwise disjoint intervals of the form Is = [as, bs) where s ∈ {0, 1}∗.
The width w(Is) of the interval is 2−1−2|s|, and the 2|s| strings of length |s| will have their intervals laid out
consecutively, followed by all the strings of length |s| + 1, etc. Thus the total width of all intervals with width
2−1−2|s| is 2−1−|s|.

FIGURE: Layout of [0, 1)
The half-interval [as, (as +bs)/2] is subdivided into 2−p(|s|) subintervals, each corresponding to a string of length

p(|s|).
INCOMPLETE.

Exercises

Exercise 11.1: Show that in Theorem 28, the function f can be assumed to be polynomial-time. ♦

Exercise 11.2: Here is a simpler proof of Lemma 24: Let f ∈ C[0, 1] be computable by an OTM M . Then
max(f) = f(x∗) for some x∗ ∈ R. Hence Mx∗

[p] yields a p-bit absolute approximation of max(f). Since p is
arbitrary, we have shown the approximability of max(f). Why is the error? ♦

Exercise 11.3: State and prove the analogue of Lemma 24 for partial functions f :⊆ R→ R. ♦

Exercise 11.4: Show that fα is computable iff α is computable. ♦

Exercise 11.5: Show that the function f in ¶65 may be assumed to be polynomial-time computable. HINT:
Define f(x) :=

∑
n≥∞ gn(x)2−t(n) where t(n) bounds the number of steps it takes to compute φ(i) for

i = 0, . . . , 2n + 1. ♦

End Exercises

§12. Roots of Functions

¶70. Zero sets of computable functions are recursively closed. The zero set of a function f :⊆ R→ R

is f−1(0) = {x ∈ R : f(x) = 0}, denoted Zero(f). Elements of Zero(f) is called a zero of f .
We have the another characterization of recursively closed subsets of [0, 1], with basically the same proof as

Theorem 28.

Theorem 31. Let T ⊆ [0, 1]. The following statements are equivalent:
(1) T is recursively closed.
(2) T = Zero(f) where f is computable and f ∈ C[0, 1].

Proof. (2)⇒(1): this follows from Theorem 22 by choosing y0 = 0.
(1)⇒(2): the function f constructed in Theorem 28 has the property that Zero(f) = maxDom(f). Q.E.D.

¶71. Isolated Zeros. Zero sets (like recursively closed sets) of computable functions can be very complex: a zero
set may be an uncountable set of uncomputable reals (¶66). The zeros in this example involve non-isolated zeros.
Nice functions (e.g., analytic functions) have only isolated zeros. The following result speaks to such functions:

Lemma 32. Let f : [0, 1]→ R be computable. Then isolated zeros of f are computable.

Proof. Let x0 be an isolated zero of f . If x0 ∈ D, then it is clearly computable. Assuming otherwise, we show
how to compute an n-bit approximation of x0: we may assume that Zero(f)∩ [a, b] = {x0} for some a, b ∈ D[0, 1].
Then, for each d ∈ Dn[a, b], we compute f(d)[p] for p = 0, 1, 2, . . . , until |f(d)[p]| > 2−p. When this happens, we
know the sign of f(d), since sign(f(d)) = sign(f(d)[p]). We also assume that the sign of f(a) and f(b) is computed
in this way. Since x0 is unique zero in [a, b], there is a unique d1, d2 ∈ Dn[a, b] ∪ {a, b} such that f(d1)f(d2) < 0
and |d1 − d2| ≤ 2−n. Now either d1 or d2 can be used as an n-bit approximation of x0. Q.E.D.
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¶72. Complexity of isolated zeros. Although isolated zeros are computable, they can have arbitrarily high
complexity:

Lemma 33. Let x0 ∈ [0, 1] be a computable real. Then there is a strictly increasing computable function f0 : [0, 1]→
R such that Zero(f0) = {x0}.

Proof. Suppose x : N → D is a computable approximation of x0. Without loss of generality, assume a, b ∈ D

such as 0 < a < x0 < b < 1. We construct a uniform linear approximation F : N × D[0, 1] → D for f0 as follows:
for each n ∈ N and d ∈ D[0, 1], define

x∗(n) = max
{
a, x[i]− 2−i : i = 0, . . . , n

}
.

and
x∗(n) = min

{
b, x[i] + 2−i : i = 0, . . . , n

}
.

Thus,
x∗(n) ≤ x∗(n + 1) ≤ x0 ≤ x∗(n + 1) ≤ x∗(n)

for all n. We define gn : [0, 1] → R to be the piecewise linear function with breakpoints at x∗(n) and x∗(n). For
d ∈ {0, 1, x∗(n), x∗(n)}, we have

gn(d) :=





−2−n if d = 0,
0 if d = x∗(n) or d = x∗(n),
+2−n if d = 1.

SEE FIGURE ILLUSTRATING gn

Note that for each t and for i large enough (i > i(t)) we have

gi(t)





= 0 if t = x0,
< 0 if t < x0,
> 0 if t > x0.

Now define the function Fn where Fn(t) =
∑n

i=0 gi(t). Note that as n→∞, Fn(t) converges to

f0(t) =

∞∑

i=0

gi(t)





= 0 if t = x0,
< 0 if t < x0,
> 0 if t > x0.

Thus Zero(f0) = {x0}.
It is easy to see that each gn is strictly increasing, and hence f0 is strictly increasing.
The {Fn(d) = F (n, d) : n ∈ N} rapidly converges to f0 since for all t ∈ [0, 1],

|Fn(t)− f0(t)| ≤
∞∑

i=n+1

2−i ≤ 2−n.

Clearly, the uniform linear approximation function F (n, d) := Fn(d) is clearly recursive.
Finally, to show that f0 is computable, it remains to show that f0 has a recursive modulus function. Note that

the slope of each gi is non-negative but at most

1

2i min {a, 1− b} ≤ 2−i−k0

for some integer constant k0. That means that if |x − y| ≤ 2−n then |gi(x) − gi(y)| ≤ 2−n−i−k0 . Summing,
|f0(x) − f0(y)| ≤ ∑n

i 2−n−i−k0 < 2−n−k0+2. Hence, we may define m(n) = n + k0 + 2. This is clearly recursive.
Q.E.D.

§13. Derivatives
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¶73. Computability of Derivatives

Lemma 34 (Pour-El and Richards). Let f : [0, 1]→ R be computable and f ′ is defined and continuous. Then f ′ is
computable iff f ′ has a recursive modulus.

Proof. One direction is immediate from a characterization of computable functions. In the other direction,
suppose f ′ has a recursive modulus m. To show that f ′ is computable, it is sufficient to show that it is approximable.
Given d ∈ D and p ∈ N, we compute a p-bit approximation f ′(d)[p] as the following value

y = (f(d′)[m(p + 1) + p + 1]− f(d)[m(p + 1) + p + 1])2m(p+1) (23)

where d′ = d + 2−m(p+1). To show that y is a correct value, note that the mean value theorem implies that
f ′(x) = (f(d′)− f(d))2m(p−1) for some x ∈ [d, d′]. Hence

f ′(d) = f ′(x)± 2−p−1

= (f(d′)− f(d))2m(p+1) ± 2−p−1

=
(
f̃(d′)± 2−m(p+1)−p−1 − f̃(d)± 2−m(p+1)−p−1

)
2m(p+1) ± 2−p−1

=
(
f̃(d′)− f̃(d)

)
2m(p+1) ± 2−p−1 ± 2−p−1

= y ± 2−p.

Q.E.D.

Ko observed that an analogous lemma is true for polynomial-time computable derivatives:

Lemma 35. Let f : [0, 1] → R be polynomial-time computable and f ′ is defined and continuous. Then f ′ is
polynomial-time computable iff f ′ has a polynomial-time recursive modulus.

Proof. We just note that in the previous proof, the value (23) can be computed in polynomial time, since m(p)
is polynomial time computable. Q.E.D.

§14. Recognition of Sets

¶74. Approximation of predicates. Let S ⊆ Rk be any set. What does it mean to “compute” S? The
standard approach is identify this with the deciding membership in S, i.e., with computability of the characteristic
function χS : Rk → {0, 1} where χS(x) = 1 iff x ∈ S. Unfortunately, this means S is uncomputable except for
the trivial cases of S = ∅ or S = Rk. This issue was discussed at length above (¶32) since χS is a predicate. One
way to circumvent this is to introduce measures on sets. Then we can say that S is decidable (in measure) if there
is an OTM M that correctly decides membership in S except for an input set of measure 0. But measure theory
may be an overkill for some applications. Here we use an elementary approach, based on metrics ‖ · ‖ on Rk (see
Braverman [2]).

To be specific, assume the Euclidean metric ‖x‖ =
√∑k

i=1 x2
i where x = (x1, . . . , xk). Let B(d, n) denote the

corresponding closed Euclidean ball centered at d ∈ Rk with radius 2−n.
Let f : Rk → {0, 1} be a predicate. A function f̃ : Dk × D → {0, 1} is called a positive approximation of f

if, for all d ∈ Dk and p ∈ D, we have

f̃(d; p) =

{
1 if f(d′) = 1 for some d′ where ‖d− d′‖ ≤ 2−p

0 if f(d′) = 0 for all d′ where ‖d− d′‖ ≤ 21−p (24)

Note that the two clauses in this definition is not exhaustive. In cases not covered by the clauses, f̃(d; p) may be
0 or 1 (we do not care which).

We say f̃ above is a negative approximation of f if, for all d ∈ Dk and p ∈ D, we have

f̃(d; p) =

{
0 if f(d′) = 0 for all d′ where ‖d− d′‖ ≤ 2−p

1 if f(d′) = 1 for some d′ where ‖d− d′‖ ≤ 21−p (25)

As usual, we write f(d)[p] for f̃(d; p).
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A set S ⊆ Rk is positively recognizable if its characteristic function χS is positively approximable. If f is
the characteristic function of a set S, then f̃ is also called a positive approximation of S. Thus, (24) becomes

χS(d)[p] = f̃(d; p) =

{
1 if B(d; p) ∩ S 6= ∅
0 if B(d; p− 1) ∩ S = ∅

As before, these two clauses is incomplete. To express the requirements in a “complete form”, we may write

χS(d)[p] = 1 ⇒ B(d; p) ∩ S 6= ∅
χS(d)[p] = 0 ⇒ B(d; p− 1) ∩ S = ∅

There is an analogous definition for negative recognizability:

χS(d)[p] = f̃(d; p) =

{
0 if B(d; p) ∩ S = ∅
1 if B(d; p− 1) ∩ S 6= ∅

Finally, we say S is recognizable if it is both positively and negatively recognizable.

¶75. Distance function. We shall study recognizability via the distance function. The distance function of
S is dS : Rk → R∪{∞} where dS(x) = inf{‖x−y‖ : y ∈ S}. In case S = ∅, we have dS(x) =∞ for all x. However,
to avoid this trivial case, from now on, we assume S is non-empty. The next lemma shows that dS is continuous
in a very strong sense:

Lemma 36. The distance function dS has Lipschitz constant 1, i.e., for all x,y ∈ Rk,

|dS(x)− dS(y)| ≤ ‖x− y‖.

. Proof. Wlog, let dS(x) ≥ dS(y) and dS(y) = ‖y − z‖ for some z ∈ S. Then

|dS(x)− dS(y)| = dS(x)− dS(y)

≤ ‖x− z‖ − ‖y − z‖
≤ ‖x− y‖.

Q.E.D.

Corollary 37. dS is computable iff dS is approximable.

Proof. The Lipschitz constant of 1 for dS implies that dS has a recursive modulus function, namely m(n) = n.
The result follows from the characterization of computable functions, Theorem 15. Q.E.D.

Theorem 38. Let S ⊆ Rk be non-empty. Then S ⊆ Rk is positively recognizable iff its distance function dS is
computable.

Proof. (⇐) Assume dS is computable. Given d, p, we want to compute a positive approximation χ̃S(d; p). The
algorithm computes

y = dS(d)[p + 1]

and then outputs 1 iff y ≤ 3 · 2−p−1. The correctness of this output is checked in two cases. If the output is 1, this
means dS(d) ≤ y + 2−p−1 ≤ 2−p+1, and this is correct. If the output is 0, this means dS(d) ≥ y − 2−p−1 > 2−p.
and this is correct too.

(⇒) Assume χS is positively approximable. To compute dS(d)[p], consider the uniform grid centered at d with

grid size 2−p′

where p′ = p+
⌈
lg
√

k
⌉
. We “systematically search” the vertices of the grid, starting from the vertices

closest to d. At each vertex y, we compute χS(y)[p]. If y0 is the first vertex such that χS(y0)[p] = 1, we output
z := (‖d − y0‖)[p + 1] − 2−p−1 as our estimate (note that we cannot compute ‖d − y‖ exactly, so we compute a
p + 1-bit approximation).

REMARK: “systematically searching” is a bit nontrivial: it is somewhat reminiscent of Dijkstra’s algorithm.
However, here is a slightly more brute force solution: we search each concentric square (centered at d) of increasing
size. Suppose we found the first vertex which returns a 1 in a square of side length d. We must still continue to
search squares whose side length is up to

⌈
d
√

2
⌉
. Among those vertices that returns a 1, we pick the one whose
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distance to the center is minimum. This algorithm (or the Dijkstra-based algorithm) depends of the ability to
compare two square roots of integers, but this is clearly possible.

Correctness of this procedure: first we show that this procedure halts. Now, the diameter of a grid cell is√
k2−p′

= 2−p. Hence, if any of the 2k grid cells adjacent to a vertex y contains a point of S, then χS(y)[p] will
output a 1.

To show that the output is correct, let the point a ∈ S be closest to d. Then dS(d) = ‖d− a‖, and we have

‖d− y‖ ≤ ‖d− a‖ ≤ ‖d− y‖+ 2−p.

On the other hand, we also have
‖d− y‖ ≤ z ≤ ‖d− y‖+ 2−p.

Thus |dS(d)− z| ≤ 2−p, i.e., z is a p-bit approximation of dS(d). Q.E.D.

The following shows why positive recognizability is a generalization of computability:

Lemma 39. Let a ∈ R. Then a is computable iff the singleton A = {a} is positively recognizable.

Proof. Suppose a is computable. Then we out χA(x)[p] to be 1 iff |a[p + 2]− x| ≤ 3 · 2−p−1. To see that this is
correct, consider two possibilities: if we output 1 then |a[p+2]−x| ≤ 3·2−p−1, and |a−x| ≤ 3·2−p−1+2−p−1 = 2−p+1.
This is correct. If we output 0 then |a[p + 2]− x| > 3 · 2−p−1, and |a− x| > 3 · 2−p−1 − 2−p−1 = 2−p, which is also
correct.

Suppose A is positively recognizable. Wlog, a > 0. To compute a[p], we find the smallest i ∈ N such that
χA(i2−p−1)[p−1] = 1. Note that |a− i2−p−1| ≤ 2−p, from the definition of positive approximation of χA. Further-
more, this procedure must halt because if i ∈ N is the largest value such that i2−p−1 ≤ a, then χA(i2−p−1)[p−1] = 1.
Thus, our procedure would have halted by step i. Q.E.D.

¶76. Set Operators and Set Oracles. Functions whose input arguments are sets and whose output is also a
set are called set operators (cf. ¶59). E.g., the “set union operator” is given by

UNION : (A,B) 7→ A ∩B.

We use OTM’s to compute such operators: each input set A is viewed as an input oracle, with its own oracle tape.
In fact, the oracle for A will be any positive approximation of A. To query an oracle A, we write on A’s oracle
tape a pair (d, p) where d ∈ Dk, p ∈ D, and then enter the special query state q?. In the next instant, the OTM
will enter one of the two special states, q0 or q1. Entering state qx (x = 0, 1) amounts to the oracle saying that
χA(d)[p] = x.

Suppose M is an OTM for computing UNION. Then the input for M is the quadruple (A,B,d, p) where A,B
are sets (represented by some positive approximations), and d ∈ Dk, p ∈ D. The OTM must eventually halt in one
of special states qx (x = 0 or x = 1). We declare the output of M to be MA,B(d; p) = x. We say M computes
the UNION operator if MA,B(d; p) is a positive approximation to χA∩B, for all A,B.

Lemma 40. The set UNION operator, A,B ⊆ Rk 7→ A ∪B is computable.

Proof. We claim that χA∪B(x)[p] can be computed as

χA(x)[p] ∨ χB(x)[p].

To see that this is correct, if χA(x)[p] = 1 or χB(x)[p] = 1 then dA∪B(x) ≤ dA(x) ≤ 21−p, and so an output of 1 is
warranted. If χA(x)[p] = 0 and χB(x)[p] = 0 then dA∪B(x) ≥ 2−p, and so an output of 0 is warranted. Q.E.D.

Next, we ask whether the intersection operator is computable? The Exercise asks you to give a direct proof
that no OTM can compute the operator INTERSECT : (A,B) 7→ A ∩B. However, here is a stronger result:

Lemma 41. There exist positively recognizable sets A,B such that A∩B is non-empty and not positively recognizable.

Proof. Let D = D0 ⊎ D1 be any partition of D into two disjoint sets, each dense in the reals. To be specific,
we first partition the set (0, 1] ∩ D into D0 ⊎D1 where D0,D1 are both dense in (0, 1]. Each number in (0, 1] ∩ D

has the unique form 0.b1b2 · · · bn where n ≥ 1 and bn = 1. We put this number into D0 iff n is even. Then
D0 = Z + D0 = {n + d : n ∈ Z, d ∈ D0} and D1 = Z + D1. Now let A = D0 ∪ {a} and B = D1 ∪ {a} for some
uncomputable real number a. Clearly, A and B are both positively recognizable: the approximation function is
χ(d)[p] = 1 for all d, p ∈ D. However, A ∩B = {a} is not positively approximable, by lemma 39. Q.E.D.

Remark: the proof exploit the fact that positive recognizability of A cannot detect the presence or absence of
non-dyadic numbers x, provided the set of dyadic numbers in A is dense in the neighborhood of x. For instance,
A = [0, a) and A′ = [0, a] are indistinguishable.
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¶77. Graphs of functions. We now consider the relationship between a function

f : [0, 1]→ R

and its graph, Graph(f) = {(x, f(x)) : x ∈ [0, 1]} ⊆ R2. The following lemma is easy to see geometrically:

Lemma 42. Let S be the graph of f : [0, 1]→ R. If |f(x)− y| > a then dS(x, y) > a/
√

2.

We leave the proof as an exercise. Now we may show:

Theorem 43 (Braverman). Suppose f : [0, 1] → R is continuous. Then f is computable iff S = graph(f) is
positively recognizable.

Proof. (⇒) Suppose f is computable. Then we positively approximate χS as follows:

χS(x, y)[p] = 1 iff |f(x)[p + 2]− y| ≤ 7 · 2−p−2.

To show that this is correct, suppose |f(x)[p+2]− y| ≤ 7 · 2−p−2. Then |f(x)− y| ≤ 8 · 2−p−2 = 21−p. This implies
dS(x, y) ≤ 21−p. Next suppose |f(x)[p+2]− y| > 7 · 2−p−2. Then |f(x)− y| > 6 · 2−p−2 = 3 · 2−p−1. By Lemma 42,
this implies dS(x, y) ≥ 3 · 2−p−1/

√
2 < 2−p.

(⇐) Suppose S is positively recognizable. We compute f(x)[p] by iterating the following loop

i← 0;while (χS(x, i · 2−p−3)[p + 3] = 0), i := i + 1

It is clear that this halts. At halting, we have dS(x, i · 2−p−3)) ≤ i · 2−p−2. By Lemma 42, we conclude that
|f(x)− i · 2−p−3)| ≤

√
2i · 2−p−2 < 2−p. Hence we can outpot i · 2−p−3. Q.E.D.

Exercises

Exercise 14.1: Prove Lemma 42 ♦

Exercise 14.2: Extend the above theorem that, for continuous functions f : [0, 1]k → R, f is computable iff
Graph(f) is positively recognizable. ♦

Exercise 14.3: Show that the set COMPLEMENT operator is not computable. ♦

Exercise 14.4: Show that the INTERSECT operator is not computable. ♦

Exercise 14.5: Let α > 0 and f : Rk → {0, 1}. Call f̃ : Dk×D→ {0, 1} an α-approximation if for all x ⊆ Rk and

p ∈ N, f̃(x; p) = 1 if there is some y such that ‖x−y‖ ≤ 2−p(1+α) and f(y) = 1. Also, f̃(x; p) = 0 if there is
no y such that ‖x−y‖ ≤ 2−p and f(y) = 1. Thus “positive approximation” is the same as 1-approximation.
Is the following true: if f is α-approximable for some α, then it is β-approximable for all β > 0. ♦

Exercise 14.6: (Braverman) Let S ⊆ Rk be bounded. Then the following are equivalent:
(1) S is positively recognizable
(3) For any ε > 0, we can compute a finite set T such that the Hausdorff distance d(S, T ) ≤ ε. ♦

End Exercises

§15. Theory of Real Approximations

¶78. Need for Approximability and Zero Decision. There are two severe restrictions in the theory developed
so far: (1) not being able to decide equality f= (¶33), and (2) only continuous functions are computable (Lemma 14).
There are many situations where both of these restrictions are undesirable or even unacceptable:

• Suppose we want to evaluate the polynomial p(X) = 1 + X + X2 + · · ·+ Xn−1. The application of Horner’s
rule requires 2n− 1 ring operations. But suppose we use the formula p(X) = 1−Xn

1−X . When X 6= 1, this gives
us a method with 2 lg n + O(1) operations, including one division. We must detect the case where the input
is X = 1, and in this case output n. This is an exponential speed up in terms of the number of operations.
But in the current theory, such an algorithm is not possible since we cannot decide if X = 1.
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• A similar situation arise in evaluating the determinant of an n × n matrix. We can do this in O(n3) field
operations by using Gaussian elimination. But this requires testing that the pivot is non-zero, and to do
pivoting if necessary. But the current computational model cannot support a pivoting algorithm. Therefore,
we must compute the determinant using the expansion of determinants with n! terms. We can save a little
by exploiting a dynamic programming trick, but we still incur an exponential time complexity.

• Let us consider the problem of automatic theorem proving. Suppose we want to prove the following theorem...

• Practically all the problems of computational geometry are discontinous in a certain sense.

¶79. Decidable sets. We now consider a way out of this dilemma. First, we demand some additional properties
from notations.

A set S is decidable if it has notation ρ such that the following two sets are decidable:
{
w ∈ {0, 1}∗ : ρ(w) =↓

}

and
{
(w,w′) ∈ ({0, 1}∗)2 : ρ(w) = ρ(w′)

}
. We call ρ a dedidable notation. Thus, given w,w′ we can decide if

they are proper, and if they are, we can decide if they are ρ-equivalent. Necessarily, decidable sets are countable.

Lemma 44. Let S, T be decidable sets. Then the following sets are decidable:
(i) Finite sets,
(ii) disjoint union S ⊎ T ,
(iii) Cartesian product S × T ,
(iv) Finite sequences S∗,

(v) Finite power set 2
S
.

Proof. Let us sketch some of these constructions: suppose ρ : {0, 1}∗ → S and ρ′ : {0, 1}∗ → T are two decidable
notations. Then a decidable notation ρ′′ for S ⊎ T may be given by ρ′′(0w) = ρ(w) and ρ′′(1w) = ρ′(w).

In case of Cartesian product, we define ρ′′(w#w′) = (ρ(w), ρ′(w′)) using the representing set Σ∗ = {0, 1,#}∗.
For finite power set, we just represent each set by a list of its elements (we may allow or disallow duplicates).

To test for equality of two sets, we first eliminate duplicates (if they are allowed) to obtain an equal number n of
elements in each set (else they are unequal). Then we do at most n2 equality tests to determine equality of the
sets. Q.E.D.

Note that set union and set intersection are not among the decidable operations.

¶80. Decidable algebraic structures. An algebraic structure is a set R together with a finite number of
algebraic operators and predicates. We say R is decidable if R has a decidable notation ρ and all its operators
and predicates have ρ-notations.

E.g., The integers R = Z is an ordered ring with operators {+,−,×, 0, 1} and a total ordering < on R. It is
easy to see that Z is a decidable ordered ring.

Lemma 45. If R is a decidable ring, then so is its quotient field Q(R), and the polynomial ring R[X].

Proof. (i) The standard quotient construction via pairs x, y such that x, y ≡ x′, y′ iff xy′ ≡ x′y. Since xy′ and
x′y are both computable and we can decide if elements of R are equal, we are done.

(ii) We view polynomials in R[X] as finite sequences a0, . . . , an over R, representing the coefficients. Equality
of two polynomials a0, . . . , an ≡ b0, . . . , bm is easy to decide. All the ring operations are decidable. Q.E.D.

Theorem 46. The algebraic closure F of a decidable field is a decidable field.

Proof. Q.E.D.

Theorem 47. There is a decidable real field that extend the field of algebraic numbers.

Proof. Use our decidability of shortest path result? Q.E.D.

¶81. Real basis. Dedekind has shown how to use rationals as the basis for constructing the reals. It is well-
known that the role of rational numbers could be replaced by dyadics, which is to be preferred for computational
purposes. In fact, in the world of computing (programming languages), elements of D are often called “reals”. Both
Q and D illustrates what might be called the “basis” for real computation. Our theory of approximation can begin
with any such set.
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¶82. Remarks. Despite our interest in approximations, it is important to emphasize that we are not really
interested (per se) in functions of the form f̃ :⊆ D→ D, but in functions of the form f : :⊆ R→ R. The reason

is this: there are not enough properties in functions in f̃ :⊆ D → D. Indeed, all the standard tools of analysis
(continuity, differentiability, etc) we use to understand real functions are lost. But by focusing on f :⊆ R → R

we retain all these properties. In short, we insist on discussing real functions even after we decide to substitute
approximability for computability. In other words, we must not yield to the intuitionistic impulse to conflate the
world of computation with the world of analysis. Both worlds are necessary and have complementary roles: observe
that notations such as ρ :⊆ Σ∗ → S serve to connect these two worlds. Moreover, there is no direct computational
purpose in ρ – in general, it is meaningless to speak of “computing ρ”. Remove the world of analysis, and the soul
of our functions is lost.

§16. Transfer Theorem

¶83. A computational basis (or simply, basis) is any set Ω of partial real functions. So each f ∈ Ω has an
arity k ∈ N and f :⊆ Rk → R. Note that if f has arity 0, then f represents a real constant.

Examples:

1. Ω0 = {+,−,×} ∪ Z

2. Ω1 = Ω0 ∪ {÷}

3. Ω2 = Ω1 ∪
{√·

}

¶84. The Real RAM Model is an idealized computing model which has infinitely many registers, and each
register can store an arbitrary real number (or could be undefined). Each machine in this model is a finite sequence
of instructions which has the usual set of instructions found in modern assembly language, including the ability to
index any register by an integer i. We could increment and decrement the contents of registers by 1. The constants
0 and 1 are available. We could compare the contents of any two registers and branch based on the result of the
comparison. However, the operations which we allow on real numbers may vary, depending on the choice of a basis
Ω.

An algebraic model over a basis Ω is a Real RAM Model in which the machines could also perform operations
of the form:

Z = f(X1, . . . ,Xk)

where Z,X1, . . . ,Xk are variables and f ∈ Ω has arity k ≥ 0. Note that the result of this operation is stored in
register Z; note that the content of Z may be undefined in case f is undefined at its arguments.

An algebraic machine over the basis Ω may also be called an Ω-machine.

¶85. Suppose P is a problem that shown to computable in the algebraic model. Let us assume for simplicity
that P is a simple numerical problem,

f :⊆ R∗ → R. (26)

Let M be an algebraic machine. We say M A-approximates P if, for x ∈ R∗ and p ∈ R, if f(x) =↑, then M halts
in a special state q↑. Otherwise, M halts in another special state q↓ and a special output register will contain a
value z such that |z − f(x)| ≤ 2−p.

We have two other variations of this definition:

1. If the output of M satisfies z = f(x) whenever f(x) ↓, we say M exactly solves P .

2. If the output of M satisfies |z − f(x)| ≤ 2−p|f(x)| whenever f(x) ↓, we say M R-approximates P .

¶86. Transfer Theorem. Now, we say f in (26)
Now, it turns out that many of the algorithms in numerical analysis are not immediately approximation algo-

rithms in our sense. For instance, consider the problem of computing the largest eigenvalue of a matrix.
For this, we need to prove some general theorems.
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