
MODERN FORMAL METHODS AND APPLICATIONS



Modern Formal Methods 
and Applications

Edited by

HOSSAM A. GABBAR
Okayama University, Okayama, Japan



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10  1-4020-4222-1 (HB)
ISBN-13  978-1-4020-4222-5 (HB)
ISBN-10  1-4020-4223-X (e-book)
ISBN-13  978-1-4020-4223-2 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
© 2006 Springer 
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.



Table of Contents

PREFACE xi

ABOUT THE EDITOR xiii

ABOUT THE AUTHORS xv

LIST OF FIGURES xix

LIST OF TABLES xxiii

1 FUNDAMENTALS OF FORMAL METHODS 1

1.1 Overview 1
1.2 Logic 4

1.2.1 Predicates 8
1.2.2 Function signs 9
1.2.3 Elementary logic 9

1.3 Argument & Proofs 9
1.4 Automata Theory 10

1.4.1 Deterministic finite state machine or deterministic
finite automaton (DFA) 10

1.4.2. Nondeterministic finite state machine or
nondeterministic finite automaton (NFA) 11

1.4.3. Quick Facts about: Nondeterministic Finite Automata,
with transitions (FND- or -NFA) 12

v



1.5 Algorithms 12
1.5.1 Algorithm design 12
1.5.2 Problem solving 14

1.6 Logic Programming 14
1.6.1 Example 16
1.6.2 Dynamic typing 16
1.6.3 Unification 16

1.7 Formal Languages 17
1.7.1 Formal language anatomy 17
1.7.2 Object language versus meta-language 17
1.7.3 18

1.8 Conclusion 20
1.9 References 20

2 FORMAL METHODS FOR PROCESS SYSTEMS
ENGINEERING 21

2.1 Introduction 21
2.2 Process Systems Engineering 22
2.3 Why Formal Language? 23
2.4 25
2.5 SOP synthesis 25

2.5.1 SOP structure 25
2.5.2 Tokens 26
2.5.3 Domain knowledge 27
2.5.4 Formulas
2.5.5 Synthesis of meta-operation 29
2.5.6 Examples of meta-operation 29
2.5.7 Isolation 29
2.5.8 Cleaning 30
2.5.9 Heating 30
2.5.10 Recovery 31

2.6 Meta-Operation for Master Recipe 31
2.7 Control Recipe Generation
2.8 Conclusion 33
2.9 References 34

3 FORMAL METHODS FOR PRODUCTION CHAIN
MANAGEMENT 37

3.1 Introduction 37
3.2 Production Chain Operation Framework 38

Table of Contentsvi

28

32

Formal language examples

Operation Engineering



Table of Contents vii

3.2.1 Unit operation knowledge model 39
3.3 Formal Representation of OM 43
3.4 Case Study Production Chain 44
3.5 Conclusions 45
3.6 References 45

4 FORMALIZING WASTE MANAGEMENT 47

4.1 Introduction 47
4.2 The Formal Method 48
4.3 PSSP Ontology 49
4.4 The Universal Properties 50

4.4.1 Purpose 50
4.4.2 Structure 51
4.4.3 State 52
4.4.4 Performance 53

4.5 Central Objects 54
4.5.1 Event 54
4.5.2 Medium 56
4.5.3 Event-medium composite 57
4.5.4 Process 61
4.5.5 Product 63

4.6 Application to Waste Management 63
4.6.1 What is waste? 63
4.6.2 Traditional view 63
4.6.3 Waste as PSSP object 65

4.7 What Is Waste Management? 72
4.7.1 Traditional view 72
4.7.2 Waste management in PSSP format 72

4.8 A Case 76
4.9 Discussion 80
4.10 Acknowledgement 81
4.11 References 81

5 FORMAL METHODS FOR MODELING BIOLOGICAL
REGULATORY NETWORKS 83

5.1 Introduction 83
5.2 Qualitative Dynamics of Biological Regulatory Networks 86

5.2.1 Biological regulatory graphs 87
5.2.2 Models of biological regulatory graphs 89
5.2.3 Dynamics of models 91



viii Table of Contents

5.3 Differential Modelling 93
5.3.1 Ordinary differential equation systems 93
5.3.2 Discretization map and domains 94
5.3.3 Dynamics of differential equation systems 96
5.3.4 Coherent discrete and differential modeling 97
5.3.5 Feedback circuit functionality 99

5.4 Formal Methods 105
5.4.1 Temporal logic 106
5.4.2 Model checking 108
5.4.3 A tool for the selection of models: SMBioNet 111

5.5 Immunity Control in Bacteriophage Lambda 112
5.5.1 Biological regulatory graph 113
5.5.2 Temporal properties 113
5.5.3 Selected models 114
5.5.4 Validation of models 115

5.6 Conclusion 118
5.7 Acknowledgements 119
5.8 References 120

6 FORMAL METHODS FOR SPECIFYING AND
ANALYZING COMPLEX SOFTWARE SYSTEMS 123

6.1 Introduction 124
6.2 Formal Specification Techniques 125

6.2.1 Visualizing the structures of software architectures 125
6.2.2 Modeling the behaviors of software architectures 126
6.2.3 The syntax and static semantics of PrT nets 127
6.2.4 Dynamic semantics of PrT nets 128
6.2.5 Specifying SAM architecture properties 130

6.3 Formal Methods for Designing Software Architectures 133
6.3.1 Developing element level specifications 133
6.3.2 Developing composition level specifications 135
6.3.3 Specify element instances 137

6.4 Formal Software Architecture Analysis 137
6.4.1 Formal analysis techniques 137
6.4.2 Element level analysis 139
6.4.3 Composition analysis 141
6.4.4 Refinement analysis 142
6.4.5 Studying dependability attributes using SAM 142

6.5 Related Work 144
6.6 Concluding Remarks 145
6.7 Acknowledgements 146



Table of Contents ix

6.8 References 146

7 AN ALGEBRAIC APPROACH TO HARDWARE
COMPILATION 151

7.1 Introduction 151
7.2 A Language of Communicating Processes 154

7.2.1 Syntax 154
7.2.2 Algebraic laws 156

7.3 Compiling Strategy 161
7.4 Handshake Protocol 163

7.4.1 Definition 4.1 (two wire control interface) 163
7.5 Data Processes 166

7.5.1 Variables 166
7.5.2 Expressions 167

7.6 Control Processes 169
7.7 Hardware Device 171
7.8 Conclusion 175
7.9 References 175

8 FORMAL METHODS FOR UML 177

8.1 Introduction 177
8.2 From UML to SMV 180

8.2.1 Classes 180
8.2.2 State machines 181
8.2.3 Activation of a submachine 183
8.2.4 Submachine deactivation 184
8.2.5 Transitions 185
8.2.6 Actions 186
8.2.7 Activity diagrams 186

8.3 Verification 187
8.3.1 Property patterns 188
8.3.2 Property classification 190
8.3.3 Other considerations 192

8.4 Related work 192
8.5 Conclusions and Future Lines of Work 194
8.6 References 195

INDEX 197



Preface

Problem solving techniques and methods are widely used in different disciplines
such as medical, engineering, social, marine, business, etc., where it is required
to find optimum or desired solution in the problem domain. Formal methods
are introduced as a way to transform the problem from the informal space
to the formal space where it becomes easier for computational methods and
technologies to be adopted and applied to solve the underlying problem.

Formal methods, or automata theory, were originally introduced in the 1930’s
by computer scientists, mathematicians, and linguistics. The area of formal
methods includes subjects such as: formal languages, formal specifications,
predicate logic, knowledge representation, and automata. In principle, formal
methods are used to describe the problem in a way that will help in finding
the solution. Initially, it is widely used with software engineering to specify
the target system to be able to design, develop, and to validate the underlying
system. Formal methods are also used with product/process design, and with
biological and human diagnostic applications.

Studying formal methods as a pure science is necessary but not adequate to
address the relevant problems and to get hands on in the different disciplines.
To address the variety of needs, this book provides basic concepts of formal
methods and presents state-of-the art methods and their applications to critical
problems in different disciplines such as engineering, natural resource & waste
management, production chain management, biological systems, software, and
hardware related problems.

This book will give both high-level and insights for specialists and practi-
tioners who are interested in the area of formal methods and willing to apply
these methods in their problem domains.

This book is organized in chapters that will give the reader basic background
about formal languages, in Chapter 1. Chapters 2 and 3 show some practical

xi



xii Preface

applications of formal methods in engineering and supply chain. Chapter 4 de-
scribes another important engineering application of waste management prac-
tices. And in completely different disciplines, forma methods are using for
biological network modeling (Chapter 5), software specifications (Chapter 6),
and for hardware compilation (Chapter 7). The final chapter (Chapter 8) of this
book shows another example of the use of formal language to formally specify
UML for modeling and validating system models.

Acknowledgement
It is our pleasure to produce such useful scientific communication in the area

of formal methods, which we believe will have great value to all categories of
readers from undergraduate and researchers as well as from industry who can
apply theses methods, practices, and examples to their own cases.



About the Editor

He is elected as senior member of IEEE in 2004 for his research achieve-
ments and contribution to industry. He is a member in several scientific organ-
izations such as IEEE-CSS / SMC, Japan Ergonomics Society (JES), Society of
Chemical Engineering – Japan (SCEJ), and Society of Instrument and Control
Engineers (SICE). He is the author/co-author of more than 50 recognized pub-
lications, including papers, books, and technical reports. He is the first-name
inventor of a patent for batch recipe synthesis and control, which has been
implemented successfully in Mitsubishi Chemicals Co., Japan, and acquired

xiii

Hossam A. Gabbar is an Associate Professor in the Graduate School of Natural
Science & Technology, Division of Industrial Innovative Sciences, Okayama
University, Japan. In 1988, he obtained his B.Sc. from Computer Science
& Automatic Control, Faculty of Engineering, Alexandria University (Egypt),
with final grade distinction with class of honor. In 1990, he completed the mas-
ter courses from the same department. He worked as a software engineer, IT
project manager, and senior consultant in several industrial projects in different
disciplines such as: oil & gas, manufacturing, investment, telecomm, marine,
and chemical/pharmaceutical industries. In the academic side, he worked in re-
search centers in the areas of marine supply automation and coast protection. He
joined Tokyo Institute of Technology and Japan Chemical Innovative Institute
(JCII), where he participated in national projects related to batch plant control,
oil & gas offsite systems, biomass production systems, and plastic production
chain with recycling. His research focus and interests include process systems
engineering, where he investigates learning systems for process, safety and risk
management, plant operation, maintenance management, and fault diagnostic
with the considerations of life cycle activities. His recent research interests in-
clude integrated resource planning system, and its application on the planning
of future energy production systems.



xiv About the Editor

by Japanese venture company to be realized in Japanese and international in-
dustries. His recent research achievements are the development of innovative
solution for oil & gas offsite process control and operation, with Yokogawa Co.,
Japan.



About the Authors

Adrien Richard
Adrien Richard was born in January 1968, France. In 2003, he obtained
his Ph.D. degree in D.E.A. Mathematics and Computer Science, applied to
Biology from CNRS and University of Evry, France. Since 2002, he was
engaged in research in modeling of biological regulatory networks and in the
verification of properties of such systems.

Carlos E. Cuesta
Carlos E. Cuesta received the B.Sc., M.Eng. and Ph.D. degrees in Computer
Science from the University of Valladolid, Spain. He is presently an Associate
Professor in the Department of Computer Science of the University of
Valladolid, and his research interests are software architecture and engineering,
and formal methods.

He Jifeng
Professor He Jifeng has been a Senior Research Fellow at the United Nations
University International Institute for Software Technology (UNU/IIST) in
Macau since 1998. Between 1984 and 1998 he was a senior researcher at
the Oxford University Computing Laboratory Programming Research Group
in England where he worked extensively with Sir Tony Hoare. His research
interest lies in the sound methods of specification of computer systems,
communications, application and standards, and the techniques for designing
and implementing those specifications in software and/or hardware, with
high reliability and at low cost. He has authored books on “Provably Correct
Systems” and (with Tony Hoare) “Unifying Theories of Programming” as well
as numerous research papers. He is Professor of Computer Science at two
Chinese universities, East China Normal University since 1986 and Shanghai

xv



xvi About the Authors

Jiao Tong University since 1996.

Jean-Paul Comet
Professor Jean-Paul Comet was born in October 1968, France. In 1992, he has
graduated in Applied Computer Science Engineering from the Department of
applied mathematics of INSA-Rouen, France. He was awarded the Ph.D. de-
gree in 1998 in Computer Science at The French National Institute for Research
in Computer Science and Control (INRIA). He spent 1 year at The Whitehead
Institute/MIT Center for Genome Research (Cambridge (MA), USA) in 1999.
Jean-Paul Comet is now Assistant Professor at the University of Evry-Val
d’Essonne, France. During 1994-1998, he was engaged in research in the field
of biological sequence comparison, where he participated in research program
for DNA chips data analysis. He is now interested in the modeling of bio-
logical regulatory networks and in the verification of properties of such systems.

Jonathan Bowen
Professor Jonathan Bowen is at London South Bank University, UK, where
he is Professor of Computing and heads the Centre for Applied Formal
Methods. From 1995 to March 2000, Bowen was a lecturer at the Department
of Computer Science, University of Reading where he led the Formal Methods
and Software Engineering Group. Previously he was a senior researcher at
the Oxford University Computing Laboratory Programming Research Group
where he worked under the guidance of Sir Tony Hoare. Between 1979
and 1984 he worked at Imperial College, London as a research assistant,
latterly in the interdepartmental Wolfson Microprocessor Laboratory. He has
been involved with the fields of electronics and computing in both industry
(including Marconi Instruments, Logica and Silicon Graphics Inc.) and
academia since 1977. His interests include formal methods, safety-critical
systems, the Z notation, provably correct systems, rapid prototyping using
logic programming, decompilation, hardware compilation, software/hardware
co-design, the history of computing and online museums. He has produced
around 250 publications, including 13 books, and has served on over 60
programme committees. During 2001 Bowen received the Freedom of the
Worshipful Company of Information Technologists. In 2002, Bowen was
elected Chair of the British Computer Society FACS Specialist Group on
Formal Aspects of Computing Science and Fellow of the Royal Society for the
Arts. He is a member of the ACM and IEEE Computer Society, and holds an
MA degree in Engineering Science from Oxford University.

M. Encarnacion Beato
M. Encarnacion Beato received the M.Eng. and Ph.D. degrees in computer
science from the University of Valladolid, Spain. He is presently Associate



About the Authors xvii

Professor in the Department of Computer Science of the University Pontificia
of Salamanca, and his research interests are Software Engineering and formal
methods.

Manuel Barrio-Solorzano
Manuel Barrio-Sol zano received the Ph.D. degree in computer science from
the University of Valladolid, Spain. He is presently Associate Professor in
the Department of Computer Science of the University of Valladolid, and his
research interests are software engineering and formal methods.

Pablo de la Fuente
Pablo de la Fuente received the Ph.D. degree in 1989 from the University
of Valladolid, Spain. He is an associate professor in the Computer Science
Department at the University Valladolid, Spain. His main research interests
are in the areas of architecture-based software development and text retrieval.
He is a member of the ACM, and IEEE Computer Society.

Veikko Pohjola
Professor Veikko Pohjola, obtained his M.Sc. (Eng) from Helsinki University
of Technology in 1967. In 1970, he obtained the Lic.Tech from Helsinki Uni-
versity of Technology. And in 1974, he obtained the D.Tech from Helsinki
University of Technology. From 1986 till 2004, he was Pofessor of Chemical
Process Engineering at the University of Oulu. He is a member of the Board
of Nordem Oy since 2001. Currently, he is Emeritus professor at the Univer-
sity of Oulu since 2004. His recent research interests include the development
and applications of PSSP ontology based methods in various fields including,
knowledge management, education and training, and Design.



List of Figures

Figure 1-1. Problem solving framework 1
Figure 1-2. Formalization spectrum 3
Figure 1-3. Problem solving 14
Figure 1-4. Unification example 16
Figure 2-1. Process systems engineering roadmap 22
Figure 2-2. ANSI/ISA-S88 operation model 26
Figure 2-3. Operation ontology 28
Figure 2-4. Visualization of isolation meta-operation 33
Figure 3-1. Hierarchical levels of production chain operation 39
Figure 3-2. Knowledge structure of unit operation model as defined

within POOM
39

Figure 3-3. UP model of POOM 40
Figure 3-4. Material stocking UP model 42
Figure 3-5. Visualization of the operation “Move Bottle FROM UP1 TO

UP2”
44

Figure 4-1. The ‘four-category’ ontology 48
Figure 4-2. The four universal properties 49
Figure 4-3. Expanding of structural hierarchy in two dimensions 52
Figure 4-4. Semantic relationship between state and behavior 53
Figure 4-5. The universal sub-classes 54
Figure 4-6. Graphical notation of event: (a) single event, (b) aggregate

of two events, (c) template for characterizing an event
56

Figure 4-7. Graphical notation of medium: (a) single medium, (b) ag-
gregate of two media, (c) template for characterizing a me-
dium

57

xix



List of Figures

Figure 4-8. (a) Graphical notation of event-medium composite.
(b) Ownership relation as a network of mutual monitor-
ing/manipulation links

58

Figure 4-9. (a) Event occurring in a single medium. (b) Event occurring
simultaneously in two sub-media taken as a single (pseudo-
homogeneous) whole. (c) Event (interaction across bound-
ary) occurring in a heterogeneous medium

59

Figure 4-10. Life cycle of an event-medium composite 60
Figure 4-11. Process viewed as an aggregate of three event-medium com-

posites: interior, exterior and interaction-boundary
62

Figure 4-12. (a) Externalizing private knowledge. (b) Information con-
tent of a document

67

Figure 4-13. (a) Externalizing metaknowledge. (b) Information content
of a metadocument

67

Figure 4-14. Society’s stand on exhaust gas emissions 74
Figure 4-15. Waste management by retrofitting to reduce harmful com-

ponents’ release
74

Figure 4-16. Waste management by ideal design: Useless artifact disas-
sembles into useful parts

75

Figure 4-17. Example of waste formation due to excessive use of artifact 75
Figure 4-18. Progress of information transfer from newspaper to reader

on reading
76

Figure 4-19. Trading ownership and transferring used newspapers to a
new owner

77

Figure 4-20. Linking social control and process control 77
Figure 4-21. Incineration (a waste management option) described as a

single event-medium composite
78

Figure 4-22. Incineration process as a waste management option 80
Figure 5-1. A genetic regulatory network. The gene u synthesizes a

protein which activates the expression of gene v and itself
by binding the promoters Pv and Pu respectively. In turn,
the protein of gene v inhibits the expression of gene u when
it binds Pu. Then, the arrow from a gene to its protein
represents the transcription and translation processes and the
arrow from a protein to a promoter abstracts the diffusion
and the fixation of the protein on the promoter

86

Figure 5-2. (a) Sigmoid relations between the concentration of u and
the rate of synthesis of v and itself. As u is an activator of
v and itself, see figure 5-1, both sigmoids are increasing.
(b) Resulting qualitative levels of u

87

xx



List of Figures

Figure 5-3. (a) Biological regulatory graph deduced from the genetic
regulatory network of figure 5-1. (b) States of the biological
regulatory graph

88

Figure 5-4. Time delays. Gene v has a unique regulator u which is an
activator. Initially, both u and v are absent. Then, protein
u appears and stimulates the expression of v (Kv,ωv(qu) =
Kv,{u} = 1). The resulting protein appears after the delay
∆tv. Finally, the protein u disappears, the gene v is no
more stimulated (Kv,ωv(qu) = Kv,{ } = 0), and the protein
v disappears after the different delay

92

Figure 5-5. Synchronous and asynchronous dynamics for the model,
given in table 5-1, of the biological regulatory graph of fig-
ure 5-3

93

Figure 5-6. Example of UDS of the biological regulatory graph of fig-
ure 5-3. Parameters are: ku = 20, kvu = 35, kuu = 40,
θvu = 10, θuu = 20, λu = 5 for the first equation and
kv = 0, kuv = 25, θuv = 16, and λv = 2 for the second.
Notice that θuv < θuu since 1 = tuv < tuu = 2

94

Figure 5-7. Domains of the phase space Ω of the UDS of figure 5-6
(θ1

u = θuv and θ2
u = θuv)

95

Figure 5-8. (a) The asynchronous state graph of the model M(G) of
table 5-1. (b) A trajectory of an UDS of M(G). The dot-
ted arrows represent the extensions of solutions towards the
attractors

99

Figure 5-9. Equilibrium points and their steadiness. Grey regions, a rect-
angle in (a) and a segment in (b), correspond to the Cartesian
product Ψ(x) = [minq∈N(x) κu(q),maxq∈N(x) κu(q)] ×
[minq∈N(x) κv(q),maxq∈N(x) κv(q)] for a singular state x.
In (a) x = (θuv, θvu) is an equilibrium point (x ∈ Ψ(x))
and since all variables are singular, it is steady. In (b) the
singular state is such that xu > θuu and xv = θvu and it is
not an equilibrium point (x /∈ Ψ(x))

101

Figure 5-10. Representation of the steady singular states of model of
Table 5-1

104

Figure 5-11. Semantics of temporal connectives of CTL 109
Figure 5-12. The life cycle of bacteriophage lambda 112
Figure 5-13. Biological regulatory graph G for immunity control 114
Figure 5-14. Likely paths from the initial state to the lytic and immune

states (in bold). The dotted arrow is absent for the 44 models
such that Kcro,{cro},cI = 3, M(G) included, whereas the
dashed ones are absent for others

116

xxi



List of Figures

Figure 5-15. Dynamics of the mutant λcI−cro− obtained from M(G) 116
Figure 6-1. A SAM architecture model 126
Figure 6-2. A PrT net model of the dining philosophers problem 129
Figure 6-3. (a) A PrT model of checkout; (b) a PrT model of return; (c) a

connected PrT model; (d) a PrT model of checkout
135

Figure 6-4. A refined PrT model of transactions 136
Figure 6-5. The reachability tree of Figure 4 140
Figure 8-1. Tool architecture 179
Figure 8-2. Class diagram 181
Figure 8-3. Statemachine ATM class 183
Figure 8-4. Statemachine card class 183
Figure 8-5. checkErrors activity 187
Figure 8-6. checkPin activity 188
Figure 8-7. Property patterns 189
Figure 8-8. Scope 189
Figure 8-9. Classification of properties to be added 191
Figure 8-10. Value comparison of an attribute 191

xxii



List of Tables

Table 1-1. Symbolic statements 5
Table 1-2. First order predicate calculus 5
Table 1-3. Truth table of: (a) ¬p, (b) p∨q, and (c) p∧q 6
Table 1-4. (¬p)∨q 6
Table 1-5. Examples of conditional statements 7
Table 1-6. Biconditional statements 7
Table 2-1. Examples of tokens within EFL 27
Table 2-2. Meta-operation example for master recipe 32
Table 3-1. “MAKE” OM of the enterprise UP, on the basis of POOM 41
Table 3-2. “RECEIVE” OM of the stock UP, on the basis of POOM 42
Table 3-3. “COOLING” OM for batch process 42
Table 3-4. Examples of generic inventory & process constraints 44
Table 3-5. EFL for operating procedures to move produced product

from UP1 to UP2
44

Table 5-1. One possible model for the biological regulatory graph of
figure 5-3. The table gives for each state the corresponding
attractors and tendencies deduced from the model

90

Table 5-2. Possible values of parameters for the selected models. Bold
numbers correspond to the model M(G)

115

Table 5-3. Basins of attraction for a collection of mutants 117
Table 6-1. A possible run of five dining philosophers problem 130
Table 8-1. Absence pattern 190
Table 8-2. Related work 194

xxiii



1 Fundamentals of Formal 
Methods

Author
Hossam A.Gabbar, 
Graduate School of Natural Science & Technology, 
Okayama University

Summary 
Formal methods, specifications, and languages are used as part of the problem-
solving paradigm. This chapter presents basics of these subjects and presenting 
the progress and advances made until now. 

Keywords: formal methods, learning, reasoning, formal specifications, formal 
languages. 

1.1 Overview
Sometimes it is illuminating to go back to the origin of a word and this is 
indeed the case: “method” comes from Greek and means “way through”; the 
Latin substitute for it quite significantly is “via et ratio” but also “ratio et via”, 
both conveying the meaning of “something rational with the purpose of 
achieving something, together with the way of achieving it”. 

Figure 1-1. Problem Solving Framework 

Formalism doesn’t mean method; in principle formalism can be associated with 
different methods, or lead to no useful method at all. The combined terms 

1

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 1–20.
© 2006 Springer. Printed in the Netherlands.



‘Formal Methods’ is regarded as the use of formality to represent methods that 
are used in/for process or system engineering. Formal methods are practical 
and precise way of solving problems [4]. Figure 1-1 shows basic problem 
solving framework, which comprises formal and informal domains. It is quite 
important to find suitable and comprehensive way to define and describe the 
underlying problem so that it becomes easier to find solution. 

The formal methods can be viewed as the formal way to describe problem or to 
model system. One of the first definitions of formal methods is: A broad view 
of formal methods includes all applications of (primarily) discrete mathematics 
to software engineering problems. This application usually involves modeling 
and analysis where the models and analysis procedures are derived from or 
defined by an underlying mathematically- precise foundation. [Leveson 90]. 
Such definition is limited to software problems, however, it has been 
dramatically extended to include biological systems, engineering systems, 
social systems, and other disciplines. Formal methods support precise and 
rigorous specifications of those aspects of the underlying system capable of 
being used to manage the system throughout its life cycle. 

This can be extended to another advanced definition of formal methods as:  
mathematically based techniques for the specification, development and 
verification of the underlying system. 

Formal methods can include graphical languages. For example, Data Flow 
Diagrams (DFDs) are the most well-known graphical technique for specifying 
the function of a system. DFDs can be considered a semi-formal method, and 
researchers have explored techniques for treating DFDs in a completely formal 
manner. Petri nets provide another well-known graphical technique, often used 
in distributed systems [Peterson 77]. Another example is Petri nets, which are a 
fully formal technique. Yet, another formal method is the Finite state machines, 
which are commonly presented in tabular form. 

There is an increasing interest about formal methods and their applications, 
where mathematical synthesis and analysis techniques are applied to the 
development of (computer) controlled systems. Although formal methods were 
around for more than 25 years, but their use was limited to software and 
hardware systems. The recent years witnessed revolutionary computational 
systems where intelligent systems are required to manage complex systems in 
different industrial disciplines. Formal methods have the potential to provide 
increased confidence in a system by satisfying the standards set by regulatory 
bodies.

Formality level can be varied from application to application and from domain 
to domain, based on the requirements and available specification detailed level. 
Figure 1-2 shows different levels of formalization spectrum. In such figure 
specification language is used as a set of formulae in a formal language to 
describe the underlying system.  

Fundamentals of Formal Methods2



Objects that satisfy a given specification in the semantic domain of a given 
language can be non-unique. Several objects may be equivalent as far as a 
particular specification is concerned. Because of this non-uniqueness, the 
specification is at a higher level of abstraction than the objects in the semantic 
domain. The specification language permits abstraction from details that 
distinguish different implementations, while preserving essential properties.  
Different specification methods defined over the same semantic domain allow 
for specifying different aspects of specified objects. These concepts can be 
defined more precisely using mathematics. The advantage of this mathematics 
is that it provides tools for formal reasoning about specifications. 
Specifications can then be examined for completeness and consistency.  

Figure 1-2. Formalization Spectrum 

Specification languages can be classified by their semantic domains. Examples 
of major classes of semantic domains are [Wing 90]:  

Abstract Data Type specification languages  
Process specification languages  
Programming languages 

The distinction between operational and definitional methods provides another 
important dimension for classifying formal methods [Avizienis 90]. 

Modern Formal Methods and Applications 3



Operational methods have also been described as constructive or model-
oriented [Wing 90]. In an operational method, a specification describes a 
system directly by providing a model of the system. The behavior of this model 
defines the desired behavior of the system. Typically, a model will use abstract 
mathematical structures, such as relations, functions, sets, and sequences. An 
early example of a model-based method is the specification approach 
associated with Harlan Mills' functional correctness approach. In this approach, 
a computer program is defined by a function from a space of inputs to a space 
of outputs. In effect, a model-oriented specification is a program written in a 
very high-level language. It may actually be executed by a suitable prototyping 
tool.

Definitional methods are also described as property-oriented [Wing 90] or 
declarative [Place 90]. A specification provides a minimum set of conditions 
that a system must satisfy. Any system that satisfies these conditions is 
functionally correct, but the specification does not provide a mechanical model 
showing how to determine the output of the system from the inputs. Two 
classes of definitional methods exist, algebraic and axiomatic. In algebraic 
methods, the properties defining a program are restricted to equations in certain 
algebras. Abstract Data Types are often specified by algebraic methods. Other 
types of axioms can be used in axiomatic methods. Often these axioms will be 
expressed in the predicate calculus. Edsger Dijkstra's method of specifying a 
system’s (or process’s) function by preconditions and post-conditions is an 
early example of an axiomatic method. 

The use of formal methods will support knowledge modeling, learning, and 
reasoning of the underlying domain, for engineering system. To achieve that, it 
is essential to understand fundamentals of formal methods, which are based on 
predicate logic. 

1.2 Logic
Logic or propositional calculus is based on statements, which have truth values 
(true or false). A proposition, or statement, is any declarative sentence, which is 
either true (T) or false (F). We refer to T or F as the truth value of the statement. 
The calculus provides a means of determining the truth values associated with 
statements formed from “atomic” statements. An example: 

If p stands for “pressure is high in pipe P1” and q for “pipe P1 is leaking” then 
we may form statements such as shown in table 1-1. 

Fundamentals of Formal Methods4



Table 1-1. Symbolic Statements 

Symbolic Statement Translation
p  q p or q 
p  q p and q 
p  q p logically implies q 
p  q p is logically equivalent to q 

p (also ~p) Not p 

Note that , , , and  are all binary connectives. They are sometimes 
referred to, respectively, as the symbols for disjunction, conjunction, 
implication and equivalence. Also  is unary and is the symbol for negation.  

If propositional logic is to provide us with the means to assess the truth value 
of compound statements from the truth values of the `building blocks' then we 
need some rules for how to do this. For example, the calculus states that “p 
q” is true if either p is true or q is true (or both are true). Similar rules apply for 
all the ways in which the building blocks can be combined. The language of 
predicate calculus requires: Variables and Constants. Table 1-2 shows first 
order predicate calculus. 

Table 1-2. First Order predicate calculus 

Quantification is non-logical constants that include names and entities. For 
example: X.man(X)  mortal(X), means all men are mortal. X.Tank(X),
means there is at least one tank. 

It is possible to form a new proposition from old one. For example, p: "There is 
Pump with 300 rpm in Plant Model Plant-1." The negation of p is p, which is 
defined as: There is no Pump with 300 rpm in Plant Model Plant-1." Anther 
example: if p: "1 + 4 < 5", q: "1 + 4 = 5", then ~p ~q: "1 + 4 > 5". 

Modern Formal Methods and Applications 5



To generate new knowledge from old ones, one can use the truth table, which 
provides basic definition of predicate calculus. Table 1-3 (a), (b), and (c) shows 
the truth table for p, p, p q, and p q.

Table 1-3. Truth Table of: (a) p, (b) p q, and (c) p q.

(a) Negation 
p p
T F 
F T 

(b) Disjunction 
p q p q
T T T 
T F T 
F T T 
F F F 

(c) Conjunction 
p q p q
T T T 
T F F 
F T F 
F F F 

There are set of more complex expressions, that can be further simplified to 
validate the underlying system. Conditional and bidirectional are other forms of 
predicate calculus. For example, if p, then q can also be represented as: p 
implies q, and we write p q. This can be represented as ( p) q. Table 1-4 
shows the truth table of such logic. 

Table 1-4. ( p) q.

p q p q p ( p) q
T T T F T 
T F F F F 
F T T T T 
F F T T T 

Fundamentals of Formal Methods6



Table 1-5. Examples of Conditional Statements 

If p, then q.  p implies q.   
q follows from p.  Not p unless q.   
q if p.  p only if q.   
Whenever p, q.  q whenever p.   
p is sufficient for q.  q is necessary for p.   
p is a sufficient condition for q. q is a necessary condition for p.   

The biconditional p q, which we read "p if and only if q" or "p is equivalent 
to q," is defined by the truth table, shown in table 1-6. 

Table 1-6. Biconditional Statements. 

p q p q
T T T 
T F F 
F T F 
F F T 

These primitive statements and predicate calculus can be used for rules 
inference.

Modus Ponens or Direct Reasoning can be defined as: [(p q) p] q, which 
can be represented as: 

p q   (if p then q, or p implies q) 
p  (p, which is true or false) 
------

q

Similarly, 
(p q)  (r s)
(p q)
------------------- 

(r s)

Modus Tollens or Indirect Reasoning can be defined as: 
[(p q) q] p

In words, if p implies q, and q is false, then so is p.  
p q

q
------

p

Modern Formal Methods and Applications 7



Disjunctive Syllogism or One-or-the-Other: 
[(p q)  ( p)] q
[(p q)  ( q)] p

Distributive Laws: 
p  (q r) (p q)  (p r)
p  (q r) (p q)  (p r)

Applying Modus Ponens 
1. (p q)  (r s)
2. r s
3. p q

Statement (p q) appears twice in lines (1) and (3). Looking at Modus Ponens, 
we see that we can deduce (r s) from these lines. Thus, we can enlarge our 
list as follows:

1. (p q)  (r s)   Premise 
2. r s   Premise 
3. p q  Premise 
4. r ( s)    1,3 Modus Ponens   

Summary of Rules of Inference 
T1 Any tautology that appears on the list at the end of the last section 
can be used as a rule of inference.
T2 We can add any tautology that appears in the list of tautologies at 
the end of the last section as a new line in our list of true statements.  
S (Substitution): We can replace any part of a compound statement 
with a tautologically equivalent statement.  
C (Conjunction): If A and B are any two lines in a proof, then we can 
add the line AB to the proof.  
P (Premise): We can write down a premise as a line in a proof. 

1.2.1 Predicates 

Upper case Roman letters, plus square brackets: 
Examples: 
H[a] : a is happy 
R[a, b] : a respects b 
S[a,b,g] : a sold b to g 
H[a,b,g,d] : a is happy that b sold g to d 

Fundamentals of Formal Methods8



Lower case Roman letters, plus parentheses: 
Examples: 
m(a) : the mother of a 
s(a,b) : the sum of a and b 
s(a,b,g) : the sum of a, b, g 
Variables: lower case Roman letters: z, y, x, … 

1.2.3 Elementary Logic 

Broadly speaking, logic is the study of good reasoning - and good reasoning is
of considerable importance in many subjects. Elementary logic covers certain
aspects of logic, which are regarded as fundamental. In elementary logic,
compound terms, such as x + y, are not used where the focus is on the part of
logic concerned with purely logical rules rather than with rules deriving from 
mathematical practice, or from some other specific domain. This restriction
enables the use of a fairly simple syntax, and to make certain parts of the 
underlying logic practice fairly efficient. 

It is recommended to stick to zero-order (i.e. propositional calculus) and first-
order (predicate calculus) logic. 

In general, elementary logic can include the following: 
sentences S 
noun phrases N 
predicates Nk S
function signs Nk N
connectives Sk S
quantifiers V+S S
description operator V+S N

1.3 Argument & Proofs 
Precisely, an argument is a list of statements called premises followed by a 
statement called the conclusion.  

An argument is a list of statements called premises followed by a statement 
called the conclusion.

P1 Premise   
P2 Premise   
P3 Premise   
………..

1.2.2 Function Signs 

Modern Formal Methods and Applications 9



Pr Premise   
---------------
C  Conclusion

The argument is said to be valid if the statement: (P1 P2  . . .  Pr) C, is a 
tautology. In other words, validity means that if all the premises are true, then 
the conclusion must be true. 

After having this quick highlights on logic or propositional and predicate 
calculus, the next sections shows aspects that are related to formal methods. 

1.4 Automata Theory 
Automata are abstract mathematical models of machines that perform 
computations on an input by moving through a series of states or 
configurations. Automata theory has close ties to formal language theory, since 
there is a correspondence between certain families of automata and classes of 
languages generated by grammar formalisms. A language is accepted by an 
automaton when it accepts all of the strings in the language and no others. The 
most restricted family of automata is finite automata consisting of only a finite 
number of states and a "read-only" tape containing the input to be read in one 
direction. Finite automata recognize the class of languages generated by regular 
(Type 3) grammars. These automata can be given a limited amount of extra 
power with the addition of certain forms of storage. For example, pushdown 
automata involve a pushdown store: a sequence in which symbols can only be 
added and removed from one end, with the effect that the first symbols in, are 
the last ones out. Pushdown automata accept the languages generated by 
context-free (Type 2) grammars. Automata theory gave rise to the notion of 
deterministic computation, hence deterministic languages. In a deterministic 
computation each configuration of the machine has only one possible 
successor. For some families of automata (e.g., finite automata and Turing 
machines) deterministic and nondeterministic automata are equivalent. For 
others (e.g., pushdown automata) there are languages that can be accepted by a 
non-deterministic automata of that family but cannot be accepted by any 
deterministic automata. 

1.4.1 Deterministic finite state machine or deterministic finite 
automaton (DFA) 

It is a finite state machine where for each pair of state and input symbol there is 
a deterministic next state. 
A DFA is a 5-tuple, (S, , T, s, A), consisting of: 
A finite set of states (S) 

Fundamentals of Formal Methods10



A finite set called the alphabet ( )
A transition Quick Facts about: function 
A mathematical relation such that each element of one set is associated with at 
least one element of another set function (T: S ×  S). 
A start state (s . S) 
A set of accept states (A . S) 

Let M be a DFA such that M = (S, , T, s, A), and X = x1x2 ... xn be a string 
over the alphabet . M accepts the string X if a sequence of states, r0,r1, ..., rn, 
exists in S with the following conditions: 
1. r0 = s 
2. ri+1 = T(ri, xi), for i = 0, ..., n-1 
3. rn � A. 

As shown in the first condition, that machine starts in the start state s. The 
second condition says that given each character of string X, the machine will 
transition from state to state as ruled by the transition function T. The last 
condition says that the machine accepts if the last input of X causes the 
machine to be in one of the accepting states. Otherwise, it is said to reject the 
string. The set of strings it accepts form a language, which is the language the 
DFA recognizes. 

1.4.2 Nondeterministic finite state machine or 
nondeterministic finite automaton (NFA) 

Is a finite state machine where for each pair of state and input symbol there 
may be several possible next states. 
A NFA is a 5-tuple, (S, , T, s, A), consisting of: 
A finite set called the alphabet ( )
A finite set of states (S) 
A transition Quick Facts about: function 
A mathematical relation such that each element of one set is associated with at 
least one element of another set function (T : S × (  �)  P(S)). 
A start state (s � S) 
A set of accept states (A � S) where P(S) is the power set of S and  is the 
empty Quick Facts about: string A linear sequence of symbols (characters or 
words or phrases) string. 

Let M be an NFA such that M = (S, , T, s, A), and X be a string over the 
alphabet  that can be written as x1x2 ... xn where each xi � (  �). M accepts 
the string X if a sequence of states, 
r0,r1, ..., rn, exists in S with the following conditions: 
1. r0 = s 

Modern Formal Methods and Applications 11



2. ri+1 � T(ri, xi), for i = 0, ..., n-1 
3. rn � A. 

The machine starts in the start state and reads in a string of symbols from its 
alphabet. It uses the transition relation T to determine the next state(s) using the 
current state and the symbol just read or the empty string. If, when it has 
finished reading, it is in an accepting state, it is said to accept the string, 
otherwise it is said to reject the string. The set of strings it accepts form a 
language, which is the language the NFA recognizes. 

Every NFA has an equivalent DFA. Therefore it is possible to convert an 
existing NFA into a DFA for the purpose of implementing a simpler machine. 
This can be performed using the powerset construction, which may lead to an 
exponential raise in the number of necessary states. 

1.4.3 Quick Facts about: Nondeterministic Finite Automata, 
with transitions (FND- or -NFA) 

Besides of being able to jump to more (or none) states with any symbol, these 
can jump on no symbol at all. This is, if a state has transitions labeled with, 
then the NFA can be in any of the states reached by the -transitions, directly or 
through other states with -transitions. The set of states that can be reached by 
this method from a state q, is called the -closure of q. It can be shown, though, 
that all these automata can accept the same languages. You can always 
construct a DFA M that accepts the same language that a NFA M'. 

1.5 Algorithms
In the context of formal methods, it is essential to brief the concepts of 
algorithms and its relation to problem solving. An algorithm is a sequence of 
simple steps that can be followed to solve a problem. These steps must be 
organized in a logical, and clear manner. 

1.5.1 Algorithm Design 

We design algorithms using three basic methods of control: sequence, 
selection, and repetition. 

Fundamentals of Formal Methods12



Sequential Control means that the steps of an algorithm are carried out in a 
sequential manner where each step is executed exactly once. Let’s look at the 
following problem: We need to obtain the temperature expressed in Fahrenheit 
degrees and convert it to degrees Celsius. An algorithm to solve this problem 
would be: 1. Read temperature in Fahrenheit 2. Apply conversion formula 3. 
Display result in degrees Celsius. 

In this example, the algorithm consists of three steps. Also, note that the 
description of the algorithm is done using a so-called pseudocode. A 
pseudocode is a mixture of English (or any other human language), symbols, 
and selected features commonly used in programming languages. Here is the 
above algorithm written in pseudocode: 

READ degrees_Farenheit 
Degrees_Celcius=(5/9)*(degrees_Farenheit-32) 
DISPLAY degrees_Celcius 

Another option for describing an algorithm is to use a graphical representation 
in addition to, or in place of pseudocode. The most common graphical 
representation of an algorithm is the flowchart. 

Selection Control 

In Selection Control only one of a number of alternative steps is executed. 
Let’s see how this works in specific examples. 
Example: Control access to a computer depending on whether the user has 
supplied a username and password that are contained in the system database. 

IF (user name in database AND password corresponds to user) 
THEN Accept user 
ELSE Deny user 

Repetition
In Repetition one or more steps are performed repeatedly. 
Example: Read numbers and add them up until their total value reaches (or 
exceeds) a set value represented by S. 

WHILE (total<S)
DO Read number 

total=total+number 
ENDDO 

Sequential control 

Modern Formal Methods and Applications 13



1.5.2 Problem Solving 

Problem solving is to find set of actions to achieve the desired goals. 

Figure 1-3. Problem Solving 

Problem solving goes through several steps starting from defining the initial 
problem, generating tentative solutions, eliminate errors, then solve new 
problem till convergence or satisfaction. 

P1 -- the initial problem  
TS -- generate tentative solutions
EE -- eliminate errors  
P2 -- the new problem 

Problem solving process is to search for optimum solution in the problem 
domain. This can be achieved using the following steps: 

Define initial state 
Describe set of all possible actions, with state space and transition 
caused by these actions 
Define goals and performance indicators 
Define path cost function that assigns and calculates the cost for each 
possible path from initial state to final goal 

Key feature in the problem solving process is the formal representation of the 
problem elements, i.e. initial state, actions, goals, and path costs. The search 
algorithm will greatly help to find the optimum solution with minimum cost. 

1.6 Logic Programming 
Knowledge can be represented in the form of semantic networks. Quine’s web 
of belief (Quine, 1963, Quine and Ullian, 1970) shows the mind as a graph of 
connections (Kowalski 1975, 1979; Siekmann and Wrightson, 2002) among 
sentences expressed in a logical form. Sentences are in a special, simplified 
form, called clausal form; and the connections between sentences are also a 
simplified form of inference, called resolution [5]. Connection graphs have 

Fundamentals of Formal Methods14



computational and logical interpretation. For example, activating a connection 
between a clause that represents a goal and a clause that represents a belief is a 
form of backward reasoning, which reduces the goal to sub-goals, similar to 
way in which a procedure call activates a procedure and invokes other 
procedure calls. Backward reasoning is the basic idea of logic programming 
(Kowalski, 1974) and the programming language Prolog. 

Connection graphs can also simulate production systems. Activating a link 
between a clause that represents the record of an observation and a clause that 
represents a implicational goal is a form of forward reasoning (modus ponens), 
which derives a new goal, including the special case of a goal that is an atomic 
action.

In principle, Algorithm = Logic + Control.  

In addition to logic programming, the term constraint functional logic 
programming was introduced. 

The idea of Constraint Functional Logic Programming arose around 1990 as an 
attempt to combine two lines of research in declarative programming, namely 
Constraint Logic Programming and Functional Logic Programming. Constraint 
logic programming was started by a seminal paper published by J. Jaffar and 
J.L. Lassez in 1987, where the CLP scheme was first introduced. The aim of 
the scheme was to define a family of constraint logic programming languages 
CLP(D) parameterized by a constraint domain D, in such a way that the well 
established results on the declarative and operational semantics of logic 
programs could be lifted to all the CLP(D) languages in an elegant and uniform 
way. The best updated presentation of the classical CLP semantics can be 
found in [6]. In the course of time, CLP has become a very successful 
programming paradigm, supporting a clean combination of logic programming 
and domain-specific methods for constraint satisfaction, simplification and 
optimization, and leading to practical applications in various fields. On the 
other hand, functional logic programming refers to a line of research started in 
the 1980s and aiming at the integration of the best features of functional 
programming and logic programming. The first attempt to combine functional 
and logic languages was done by J.A. Robinson and E.E. Sibert when 
proposing the language LOGLISP [6]. 

Compositional logic programming is a combinator is a predicate that takes one 
or more partially applied predicates as arguments. A compositional logic 
programming language allows programs to be constructed using both the 
primitive connectives of the language and user-defined combinators such that 
the termination behavior of the program is independent of the way in which it 
is composed. 

Modern Formal Methods and Applications 15



1.6.1 Example

A Prolog program is a set of clauses (logical sentences) written in a subset of 
first-order logic called Horn clause logic, which means that they can be 
interpreted as if–statements. A predicate is a set of clauses that defines a 
relation, i.e. all the clauses have the same name and arity (number of 
arguments).
Predicates are often referred to by the pair name/arity. For example, the 
predicate in_tree/2 defines membership in a binary tree: 

in_tree(X, tree(X,_,_)). 
in_tree(X, tree(V,Left,Right)) :- X<V, in_tree(X, Left). 
in_tree(X, tree(V,Left,Right)) :- X>V, in_tree(X, Right). 

(Here “:- “ means if, the comma “,” means and, variables begin with a capital 
letter, tree(V,L,R) is a compound object with three fields, and the underscore 
“_” is an anonymous variable whose value is ignored.) In English, the 
definition of in_tree/2 can be interpreted as: “X is in a tree if it is equal to the 
node value (first clause), or if it is less than the node value and it is in the left 
subtree (second clause), or if it is greater than the node value and it is in the 
right subtree (third clause).” 

1.6.2 Dynamic typing 

Compound data types are first class objects, i.e. new types can be created at 
run-time and variables can hold values of any type. Common types are atoms 
(unique constants, e.g. foo, abcd), integers, lists (denoted with square brackets, 
e.g. [Head|Tail], [a,b,c,d]), and structures (e.g. tree(X,L,R), quad(X,C,B,F)). 
Structures are similar to C structs or Pascal records—they have a name (called 
the functor) and a fixed number of arguments (called the arity). Atoms, integers, 
and lists are used also in Lisp. 

1.6.3 Unification

Figure 1-4. Unification Example 

Fundamentals of Formal Methods16



Unification is a pattern-matching operation that finds the most general common 
instance of two data objects. A formal definition of unification is given by 
Lloyd [42]. Unification is able to match compound data objects of any size in a 
single primitive operation. Binding of variables is done by unification. As a 
part of matching, the variables in the terms are instantiated to make them equal. 
For example, unifying s(X,Y,a) and s(Z,b,Z) (Figure 1-4) matches X with Z, Y 
with b, and a with Z. The unified term is s(a,b,a), Y is equal to b, and both X 
and Z are equal to a. 

1.7 Formal Languages 
In general languages can be split up into two main groups: natural languages, 
such as French, English and German, and formal languages (or computer 
languages), such as Pascal, COBOL and FORTRAN. Formal languages are 
formed from symbols, strings, and alphabets. Symbol can be one of the 
following:

- One of the digits 0-9; 
- One of the upper case letters A-Z; 
- One of the lower case letters a-z; 
- A (, followed by any characters, provided that “(“ and “)” are 

properly nested. 

Formal language F is specified by: 
(1) The vocabulary of F 
(2) The rules of formation of F 

1.7.1 Formal Language Anatomy 

Vocabulary
(1) Upper case Roman letters: A B C …… 
(2) Nothing else is a symbol of F. 

Formation Rules 
(1) If a string STR begins with ‘P’, then it is a formula. 
(2) Nothing else is a formula of F. 

1.7.2 Object Language versus Meta-Language 

Consider French; there are two types of French grammar books; those written 
in French, and those written in a "foreign" language (say, English). In both 
cases, French is the subject of discussion (or object of discussion). However, 
whereas the former book is also written in French, the latter book is written in 

Modern Formal Methods and Applications 17



English. In both cases, French is the language under discussion, the object 
language. What about the language of use? The meta-language? Well, in the 
former case, French is also the language of use (the meta-language); in the 
latter case, English is the language of use. 

1.7.3 Formal Language Examples 

1.7.3.1 Abstract State Machines 

Abstract State Machine is a formal method for specification and verification. 
The Abstract State Machine (ASM) Project (formerly known as the Evolving 
Algebras Project) was started by Yuri Gurevich as an attempt to bridge the gap 
between formal models of computation and practical specification methods.  

To write a program in a language like C or Java, various statements are used, 
such as: conditional statements, loop statements, and so forth. ASM statements 
are called rules. The most basic rule7 is the update rule, which has the form: 
foo(t1, t2,. . . tn) := t0 

Here, foo is an n-argument function, and t0 through tn are terms, or expressions. 
Executing the rule updates the value of the function foo at the specified 
arguments to the specified value. 

1.7.3.2 B-Method

The B-Method is a collection of mathematically based techniques for the 
specification, design and implementation of software components. Systems are 
modeled as a collection of interdependent Abstract Machines, for which an 
object-based approach is employed at all stages of development. 

An Abstract Machine is described using the Abstract Machine Notation (AMN). 
A uniform notation is used at all levels of description, from specification, 
through design, to implementation. AMN is a state-based formal specification 
language in the same school as VDM and Z. An Abstract Machine comprises a 
state together with operations on that state. In a specification and a design of an 
Abstract Machine the state is modelled using notions like sets, relations, 
functions, sequences etc. The operations are modelled using Pre- and Post-
conditions using AMN. 

In an implementation of an abstract machine the state is again modeled using a 
set-theoretical model, but this time we already have an implementation for the 
model. The operations are described using a pseudo-programming notation that 
is a subset of AMN. 

Fundamentals of Formal Methods18



The B-Method prescribes how to check the specification for consistency 
(preservation of invariant) and how to check designs and implementations for 
correctness (correctness of data refinement and correctness of algorithmic 
refinement). 

The B-Method further prescribes how to structure large designs and large 
developments, and promotes the re-use of specification models and software 
modules, with object orientation central to specification construction and 
implementation design. 

A great deal of attention has been paid to making the notational aspect of the 
method as simple as possible. To the engineer, the formal notation looks like a 
simple pseudo programming notation. And as mentioned above, there is no real 
distinction between the specification notation and the programming notation.  

1.7.3.3 Petri Nets 

The concept of Petri nets has its origin in Carl Adam Petri's dissertation 
Kommunikation mit Automaten, submitted in 1962 to the faculty of 
Mathematics and Physics at the Technische Universität Darmstadt, Germany. 

A Petri net is a graphical and mathematical modeling tool. It consists of places, 
transitions, and arcs that connect them. Input arcs connect places with 
transitions, while output arcs start at a transition and end at a place. There are 
other types of arcs, e.g. inhibitor arcs. Places can contain tokens; the current 
state of the modeled system (the marking) is given by the number (and type if 
the tokens are distinguishable) of tokens in each place. Transitions are active 
components. They model activities, which can occur (the transition fires), thus 
changing the state of the system (the marking of the Petri net). Transitions are 
only allowed to fire if they are enabled, which means that all the preconditions 
for the activity must be fulfilled (there are enough tokens available in the input 
places). When the transition fires, it removes tokens from its input places and 
adds some at all of its output places. The number of tokens removed / added 
depends on the cardinality of each arc. The interactive firing of transitions in 
subsequent markings is called token game. 

Petri nets are a promising tool for describing and studying systems that are 
characterized as being concurrent, asynchronous, distributed, parallel, 
nondeterministic, and/or stochastic. As a graphical tool, Petri nets can be used 
as a visual-communication aid similar to flow charts, block diagrams, and 
networks. In addition, tokens are used in these nets to simulate the dynamic and 
concurrent activities of systems. As a mathematical tool, it is possible to set up 
state equations, algebraic equations, and other mathematical models governing 
the behavior of systems.  

Modern Formal Methods and Applications 19



1.8 Conclusion
This chapter presented essential basics about formal methods where reader can 
understand fundamental concepts of logic, logic programming, formal 
languages, automata theory, problem solving methods, and recognize some 
examples of known formal languages. 

1.9 References
[1] Tom M. Mitchell. Machine Learning. ISBN 0-07-042807-7. 
[2] Hossein Saiedian, Michael G. Hinchey (1996). Challenges in the successful transfer 

of formal methods technology into industrial applications. Information and 
Software Technology, Vol. 38 (1996), 313-322. 

[3] Robert L. Vienneau (1993). Data & Analysis Center for Software, New York, 
http://www.dacs.dtic.mil/techs/fmreview/title.html.

[4] Egidio Astesiano, Gianna Reggio (2000). Formalism and method. Theoretical 
Computer Science, Vol. 236, 3-34. 

[5] Robert Kowalski. Logic and Modules. Technical Notes, Department of Computing, 
Imperial College London, Apr-2005. http://www-
lp.doc.ic.ac.uk/UserPages/staff/rak/papers/Modularity.pdf.

[6] F. Javier López-Fraguas, Mario Rodríguez-Artalejo and Rafael del Vado Vírseda 
(2005). Constraint Functional Logic Programming Revisited. Electronic Notes in 
Theoretical Computer Science, Volume 117, 20 January 2005, Pages 5-50. 

[7] Hardegree (2003). Metalogic and Formal Languages. 
http://people.umass.edu/gmhwww/595/pdf/metatheory/MetaTheory-01-
Formal%20Languages%201.pdf.

[8] James K. Huggins, Charles Wallace (2002). An Abstract State Machine Primer. 
http://www.eecs.umich.edu/gasm/

[9] Georges Mariano (2004). The B Formal Method Bibliography. 
http://download.gna.org/brillant/docs/B-Bibliography/B-Bibliography.pdf.

Fundamentals of Formal Methods20



2 Formal Methods for Process 
Systems Engineering 

Author
Hossam A.Gabbar, 
Graduate School of Natural Science & Technology, 
Okayama University

Summary 
This chapter presents formal methods and approaches for process systems 
engineering. This requires giving a brief introduction on process systems 
engineering and the difficulties and challenges and how formal methods can 
address these difficulties. 

Among the challenges that faces process systems engineering is the process 
design and plant operation engineering and management. This chapter will 
provide practical formal methods approaches that are useful for process design 
and plant operation practices. 

Keywords: SOP synthesis; Operating Procedures Synthesis; Operation 
Engineering; EFL; Engineering Formal Language 

2.1 Introduction
Many researchers around the world in the area of chemical engineering have 
recognized the lack of practical automated solutions that can adequately 
support life cycle activities of chemical processes. The problem has been 
initiated from two angels, (1) when trying to develop automated solutions to 
support process design and operation, there was a gap between process models 
and views and systems models, which led to the unrealistic computer-aided 
engineering solutions, (2) when trying to analyze life cycle activities to 
improve process design and operation, there was lack in the available process 
modeling techniques, and many researchers tried to use system modeling 
concepts, which were not satisfactory for process engineering views.. 

Process Systems Engineering is becoming increasingly popular with engineers 
and scientists serving the process industries. It includes useful practices for 
academia and industry as well as challenges and future trends, and innovative 
work in all aspects of process systems engineering, which includes (but not 
limited to): modeling and simulation methodologies, process / product design, 
process control, plant operation, plant maintenance, planning, optimization, 

21

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 21–35.
© 2006 Springer. Printed in the Netherlands.



manufacturing execution systems, production management, supply chain, 
hybrid dynamic systems plant maintenance, process safety, environmental 
assessment and risk management. In process systems engineering domain nano, 
micro, with macro levels are integrated smoothly to support life cycle activities 
using mathematical and artificial intelligence practices. In such complex 
domain, the use of knowledge engineering, expert system, and advanced 
technologies of multimedia and augmented reality will be investigated and 
applied to provide better computer-aided process engineering solutions. 

2.2 Process Systems Engineering 
Process Systems Engineering is becoming increasingly popular with engineers 
and scientists serving the process industries. There are many challenges that 
face plant and product life cycle, which requires innovative process 
engineering practices including (but not limited to): modeling and simulation 
methodologies, process / product design, process control, plant operation, plant 
maintenance, planning, optimization, manufacturing execution systems, 
production management, supply chain, hybrid dynamic systems plant 
maintenance, process safety, environmental assessment and risk management. 
There are new innovative solutions and ideas that integrate nano, micro, and 
macro level processes to better support life cycle activities. In such complex 
domain, the use of knowledge engineering, expert system, and advanced 
technologies will be the cornerstone to provide better computer-aided process 
engineering solutions. 

Figure 2-1. Process Systems Engineering Roadmap 

Figure 2-1 shows layers of process systems engineering, which includes 
modeling and simulation of nano, micro, and macro levels. The operation and 
control practices are necessary for safe, optimum, and steady production, which 

22 Formal Methods for Process Systems Engineering



will be achieved through management, planning and scheduling. Cost, quality, 
health, risk, and other factors will be evaluated throughout life cycle activities. 

2.3 Why Formal Language? 
Formal representation provides a systematic framework to construct and 
validate the syntax of the underling system towards building standard 
representation approaches. Formal languages are used in most of the 
engineering applications to reduce the time and efforts required to 
communicate and manage the underling system or process. Formal language 
implies absolutely accurate and precise definitions of the underling system, 
which can be used to validate the system / process and can be used as a base for 
computer-aided solutions. One can say that the use of formal languages will 
help overcoming various engineering problems. 

Engineering problems are always referred to performance, optimization, risk, 
user friendliness, cost effective, etc. These factors are always studied using 
conceptual or mathematical modeling. However, both ways of modeling 
approach requires detailed domain knowledge which is always incomplete, or 
there is no formal way to ensure its continuation and tuning throughout the 
progress of process / product life cycle. 

The construction of domain knowledge can be systemized if a robust model 
formalization methodology is used. Many researchers have investigated the 
construction of process and plant models, and proposed modeling 
methodologies to build the corresponding domain knowledge. Most of these 
modeling methodologies showed that plant model includes three views: 
structure, behavior, and operation (Gabbar et al., 2000; Lu et al., 1995, 1997).  

Among the different challenges that face engineering systems is the automatic 
and accurate synthesis of operating procedures, especially when having large 
chemical plants with complex plant operation. Operating procedures are sets of 
tasks / activities that are carried out to produce the target products using input 
materials and the available topological resources. Researchers viewed the 
automation of operating procedures synthesis from different angles. One key 
view is during process design where operation is considered while defining 
plant structure and selecting behaviors and topology paths. Another view is 
product design and conversion process from input raw materials to producing 
the final output. One more view is the operation optimization which is achieved 
through thorough design of plant operation. 

In all these views, there is a need to systematically define operating procedures 
and represent them in a way that both machine and human can understand. This 
leads us to the use of formal methods with simplified representation. Formal 
representations of operating procedures facilitate engineering of plant operation 

Modern Formal Methods and Applications 23



and also human computer interaction. From the other side, formal 
representation will provide means to build and organize domain knowledge 
more efficiently. 

Many researchers are motivated to use computer languages such as HTML, 
XML, or even build their own languages on the basis of these computer 
languages to describe their systems or processes. For example, world batch 
forum proposed the use of XML to represent batch recipe (WBF). However, it 
is essential to define engineering language in a higher layer, which can deal 
with the syntax and semantics of operating procedures as linked to plant model 
(structure and behavior), before addressing the implementation issues using 
computer languages such as XML, HTML, etc. It will be practical if two 
separate layers are defined to represent operating procedures. The higher layer 
will enable designers and engineers to define operating procedures in standard 
and formal way as mapped to the underling system, regardless of the 
implementation way. This will enable them to think freely without the 
limitations of any computer language. Based on the higher layer, the lower 
layer can be designed or selected for implementation. In general, the design of 
operating procedures requires flexible way to define and maintain the syntax 
and semantics of operating procedures as it involves different participants with 
different views. It is relatively easy to maintain the syntax of the defined higher 
layer language, as it doesn’t involve modifications to computer languages and 
programs. There could be mapping or translation from high level formal 
language into computer language, which is relatively easy and can be 
implemented for any destination (i.e. host) computer language in the lower 
layer (e.g. HTML, XML, C, etc.). 

As described by Carre’ (1989) and reported by Toyn (1998), formal language 
should be logically sound and unambiguous and the semantics must not be too 
complex, otherwise formal reasoning will become impractical. 

The proposed engineering formal language is based on the definition of simple 
and clear English-like statements, which are composed of keywords that are 
mapped to domain knowledge. The structure of the statements defines the 
syntax while the mapping to domain knowledge defines the semantics. The 
proposed engineering formal language will fulfill the basic requirements of any 
formal language where hierarchical definitions are used to simplify the 
representation of complex expressions. For example, one can say: “valve is 
active-structure”, “pump is active-structure”, while “tank is passive-structure”. 
Also, “tank” can be further explored as “tank has input-ports” and “tank has 
output-ports”. 

As a conclusion, the use of formal representation will facilitate the design and 
validation of engineering systems in structured way as mapped to domain 
knowledge. In addition, the use of formal language will facilitate the 
development of automated computer-aided engineering solutions for the 
advancement of process engineering. 

24 Formal Methods for Process Systems Engineering



2.4 Operation Engineering 
Within process engineering practices, formal methods can be used in different 
applications such as process design, maintenance, and operation engineering. 
This section will describe how formal methods could be used in operation 
engineering.

Plant operation goes through different stages and activities from conceptual 
design, detailed design, till engineered design. In fact it is similar to process 
design, which goes also through different stages such as conceptual design, 
detailed design, etc.

Operation engineering requires complete understanding of process design and 
the how to produce the target product(s). In addition, it is essential to 
understand the operational aspects of each structure unit and control 
requirements. There are different challenges that face operation engineering 
such as operating procedures structuring, operating procedure representation, 
process design knowledge structuring, and operation optimization. In addition, 
it is essential to understand the different hazardous situations, safety constraints, 
and regulations, and the counteractions that need to be considered to ensure 
process safety throughout plant operation. 

Operating procedures synthesis is quite complex process which can be viewed 
in different levels of complexities. SOP or standard operating procedures 
usually include all engineering aspects of the underlying plant, which satisfy 
three major targets: safe, optimum, and steady operation. 

The structuring and representation of SOP is quite important to facilitate the 
operation understanding, automatic generation, and validation of operating 
procedures. In the next section, structure of SOP will be presented. 

2.5 SOP Synthesis 
2.5.1 SOP Structure 

Operation is viewed as sequence of actions / tasks that require resources such 
as materials, equipments, human, etc. There are useful standards that tried to 
provide unified structure for operating procedures. For batch recipe, 
ANSI/ISA-S88 proposed hierarchical structure that links plant structure with 
plant operation. Figure 2-2 shows the proposed structure by ANSI/ISA-S88, 
where operating procedures are classified as procedure, unit procedure, 
operation, and phase. These operation levels are mapped to plant structure 
hierarchy, which shows: cell, unit, and equipment module. Operating 

Modern Formal Methods and Applications 25



procedures are classified as general recipe, site recipe, master recipe, and 
control recipe. Each level can be defined in terms of procedure, unit procedure, 
operation and phase.

Figure 2-2. ANSI/ISA-S88 Operation Model 

The automatic synthesis of SOP requires systematic definition and 
representation of plant structure hierarchy and operation domain and structured 
formal representation using domain knowledge. 

Each procedure, unit procedure, operation, and phase can be represented as a 
set of tasks. Each task includes action, pre-condition and post-condition. To 
systematically construct SOP, it is essential to find a way to synthesize 
operation actions, pre-condition, and post-condition. Each task can be 
structured following a standard syntax such as: 

Action
Pre-condition
Post-condition

Each of these three components of SOP task can be constructed, represented, 
and validated using formal methods and simplified engineering formal 
language. The proposed engineering formal language (or EFL) consists of 
vocabulary and formal rules. Vocabulary is formed from domain knowledge, 
while formal rules are constructed from process constraints and control rules. 

2.5.2 Tokens

In this section, a systematic method will be illustrated to extract the vocabulary 
of EFL. Vocabulary is composed of keywords or tokens, which are extracted 
usually from domain knowledge. There is a semantic meaning of these tokens 
and there are some relationships among them, which can be described using 
ontological engineering. The extracted tokens are classified in a way to support 
the construction of SOP using EFL. In addition, such token classification will 
enable the validation of the generated (or synthesized) SOP. 

26 Formal Methods for Process Systems Engineering



Table shows examples of the identified tokens from domain knowledge. 

Table 2-1. Examples of Tokens within EFL 

MOVE Constant 
Equip-id Lookup 
Material-id Lookup 
Role-id Lookup 
upper-limit Input 
Transportation-Actions Variable 
Transformation-Actions Variable 

In such table, “Constant” is used to define tokens that are used as they are 
within EFL. “Lookup” is used to show tokens that are used to link EFL with 
list of options or alternatives within corresponding database. “Input” is used 
when user is required to provide some inputs. And “Variable” is used when the 
token will be further explained using another EFL statement. 

2.5.3 Domain Knowledge 

As part of the requirement analysis and process system engineering practices, 
domain knowledge is modeled; this includes all concepts and their 
classifications. 

Ontology modeling can be used to construct such operation hierarchies and can 
be used to define the set of tokens, constraints, and conditions associated with 
each operation. The association between operation, behavior, and structure can 
also be represented within the proposed ontology model. Figure 2-3 shows 
parts of the developed ontology model within ontology editor. The developed 
ontology model is used as a base to construct EFL statements and to validate 
the semantics of operating procedures tasks. Currently, base ontology model 
has been developed using ontology editor and converted into database 
repository, which is used by operating procedures synthesis automated 
solutions to design plant operation. 

In case of batch plants, master and control recipe statements are defined on the 
basis of EFL where keywords are linked to domain knowledge such as plant 
design model, material, functions, products, recipe formula, etc. For example, 
master recipe statement (MOVE material1 FROM t1 TO t2) is derived from 
EFL statements S1 & S2. 

Modern Formal Methods and Applications 27

Transportation_Action :: MOVE material FROM Topology_Area TO 
Topology_Area         
[S1]



Where material1 is selected from a lookup list of all materials defined within 
the domain knowledge of the used plant model. “FROM” and “TO” are 
constant keywords, while t1 and t2 are equipment id’s, which are selected from 
lookup list of all equipments defined in the plant model. 

Figure 2-3. Operation Ontology 

28 Formal Methods for Process Systems Engineering

2.5.4 Formulas 

Within operating procedures, formulas are mathematical equations that are 
used to calculate the quantitative amounts associated with each SOP task. 
There are different ways to formalize formulas. EFL can be used to 
systematically structure formulas where basic EFL statements are constructed 
and used to construct more complex formulas. For example, the formula “x = 
y^2 + z*a” can be constructed using “variable is (expression operator 
expression) | variable”. There are well proven simulation solvers, which are 
based on robust mathematical representations that can be used to solve very 
complex equations. 

Topology_Area :: cell_id | unit_id | oia_id | ([class_function] 
[class_material] equip_class) | equipment_id    
[S2]



2.5.5 Synthesis of Meta-Operation 

In case of batch plants, and in the course of defining master recipe of batch 
plants, there are different tasks that are repeated in different operations. For 
example, cleaning operation can be applied to different structure units in 
different unit procedures such as reaction, separation, etc. The description and 
detailed tasks of the cleaning operation are the same, while the associated 
values, condition, and plant structure might be different. Providing complete 
and generic description of such repeated operations will reduce the volume and 
complexity of operating procedures and will enable operation designers to 
describe and build complex operations from simplified smaller operation tasks 
(i.e. libraries or modules). Repeated and generic operations will be called meta-
operation, which can be identified by experts who are knowledgeable of plant 
design and operations. This process (i.e. building meta-operation libraries) is 
time consuming and can be considered as an ongoing process, which might 
involve teams from different departments / sections / enterprises to iteratively 
tune and modify meta-operations. In current situation, teams and individuals 
use different operation formats, terminologies, and tools, which made it 
difficult to work together in one format and talk the same language. This can be 
improved by providing automated environment to manage such iterative 
process and to enable the different teams to maintain their operating procedures 
as well as meta-operation in standard format. EFL can provide a standard 
format and unified language, which can be used as a base to provide automated 
solution to synthesize operating procedures. The proposed automated solution 
includes EFL editor and parser, which will enable the synthesis of standard 
operating procedures and will facilitate the exchange of operation libraries and 
meta-operations in neutral format i.e. EFL. 

2.5.6 Examples of Meta-Operation 
2.5.7 Isolation

Isolation is one example of common operations, which might be used when 
maintenance work is required, or as a recovery operation when process 
equipment encounters a failure. Kim (2000) and Asprey (1999) showed some 

Modern Formal Methods and Applications 29

examples to synthesize safe operation. Kim (2000) used SMV or symbolic 
model verifier to find errors and to synthesize safe operation, while Asprey 
(1999) used simulation based approaches to avoid unsafe situations. Both 
proposed useful ideas to synthesize safe operation, which requires robust 
mechanism to represent recovery operation. 

Isolation, as a recovery operation, has the generic meaning of closing all in and 
out connections around the underling process equipment or topology area. This 
is equivalent to closing all control valves surrounding that process equipment. 
The isolation might be partial where only upstream or downstream control 
devices are required to be closed. 



2.5.8 Cleaning 

Cleaning is another example, which might be included in different operations 
and executed in different topology areas. There are different scenarios that can 
decide the way to perform cleaning operation. For example, fluid type (i.e. gas 
or liquid), pressure and temperature levels can decide how to perform cleaning 
operation. From the underling domain knowledge, fluid type and method of 
cleaning can be decided. For example, high-pressure gas, high flow rate water, 
or hot water could be used to clean specific tank. During the design stage, 
cleaning method might be defined for some structure units as part of process 
design model. MDOOM (Lu et al., 1995; 1997) and POOM (Gabbar et al., 
2000; 2004; 2005) are process modeling methodologies, which show three 
views to describe process design: structure/static, behavior/dynamic, and 
operation/function. Operation related information about the cleaning operation 
might be associated with structure units as part of the operation view. For 
example tank “T1” might be associated with cleaning method, which has water 
as cleaning fluid. This will dictate the selection of the suitable cleaning 
operation.

Cleaning operation can be described in generic form as: move cleaning-fluid 
from cleaning-fluid-source to cleaning-fluid-destination. Such generic cleaning 
operation can be assigned to a given topology area, which will define the type 
of cleaning fluid and will specify the source and destination topology areas. 
Semantic errors can be discovered using the defined domain knowledge. For 
example, if there is no water source for tank “T1”, then such water-cleaning 
operation cannot be performed. 

2.5.9 Heating 

Another example of the use of meta-operations is the heating operation, which 
is commonly used in chemical processes. Heating operation can be performed 
using heating source in the underling structure unit. Heat source could be hot 
air, fuel, hot water, etc. Similar to the cleaning operation, operation-related 
information might be stored as associated with the structure unit, i.e. type and 

30 Formal Methods for Process Systems Engineering

name of heating fluid. The generic form of heating operation could be in the 
form: supply heating source to the specified structure unit. This operation 
might have some parameters such as time for heating, temperature, etc. Some 
of this information will be associated with the control devices (servo or 
regulatory controllers) associated with the underling structure unit. 

Cooling operation can be represented similarly where cooling source will be 
used instead of heating source. 



The following section describes the proposed mechanism to construct and 
utilize meta-operations for a case study batch plant using RFDL. 

2.6 Meta-Operation for Master Recipe 
Meta-operation is a useful technique to optimize master recipe where repeated 
operations can be generalized in the form of meta-operation. This will enable 
operation designers to define sorts of operation libraries, which will be used 
with different plant structures and unit procedures. This will reduce the time 
and effort to construct master recipe and will reduce the errors where meta-
operations will be defined once and used in different places. Meta-operation 
will have id and description. While creating master recipe, once user selects 
one meta-operation from the meta-operation list (i.e. using the id or 
description), the associated definition (i.e. in the form of EFL) will be copied to 
that master recipe operation task. As per the definition of meta-operation, the 
initiation & termination triggers as well as action will be defined for all 
elements of the corresponding operation level task (i.e. initiation trigger of 
meta-operation is copied to the initiation of the operation level task, and same 
for termination trigger and action). As mentioned in the above cooling 
example, one meta-operation could be “move cooling-fluid from cooling-fluid-
source to cooling-fluid-destination in topology-area”. This might have a 
generic precondition, which should be defined during the selection of that 
meta-operation in master recipe. The generic form of precondition of meta-
operation is in the form “i_precondition”, or “i_postcondition”, or “i_action”. 
The master recipe editor will understand that such generic task element should 
be defined during the selection of the meta-operation in master recipe. 

Modern Formal Methods and Applications 31

2.5.10 Recovery

There are different ways to realize recovery operation, based on the topology 
area and type of failure as well as fault propagation scheme. Some of the 
recovery operations can be realized using isolation meta-operation. For 
example, In case of leak (or other abnormal situations), close all upstream 
valves associated with such unit (e.g. tank). This requires generic precondition, 
which can be described as “if abnormal situation occurred”. 

Meta-operation is used mainly with the operation level master recipe (i.e. for 
specific unit procedure), however, it can also be used with unit procedure. In 
such case, meta-operation will be defined as two levels meta-operation (i.e. 
meta-unit-procedure and meta-operation underneath). For example, user can 
define initial setting as one meta-unit-procedure, where it includes isolation, 
initial cooling, and isolation meta-operations. Once user selects such meta-unit-
procedure, system will create one unit procedure as “initial setting”, which 
includes three operations: “isolation”, “initial cooling”, and “isolation”. Each 
will have set of generic tasks associated with precondition, postcondition, and 



Table 2-2. Meta-operation Example for Master Recipe 

Meta-Operation: id: MO-UP001, Description: Initial Setting, Type: [Unit 
Procedure], Parameters: (Unit) 
Task-1
Precondition: i_precondition 
Postcondition: i_postcondition 
Action: i_action 

Meta-Operation: id: MO-UP001-OP001, Description: Isolation, Type: 
[Operation], Paramters: (Topology_Area) 
Task-1
Precondition: i_precondition 
Postcondition: i_postcondition 
Action: CLOSE ALL VALVES OF Topology_Area 

Meta-Operation: id: MO-UP001-OP002, Description: Initial Cooling, Type: 
[Operation], Paramters: (Topology_Area) 
Task-1
Precondition: i_precondition 
Postcondition: i_postcondition 
Action: MOVE cooling-fluid FROM cooling-fluid-source TO cooling-fluid-
destination OF Topology_Area 

Meta-Operation: id: MO-UP001-OP003, Description: Isolation, Type: 
[Operation], Paramters: (Topology_Area) 
Task-1
Precondition: i_precondition 
Postcondition: i_postcondition 
Action: CLOSE ALL VALVES OF Topology_Area 

32 Formal Methods for Process Systems Engineering

actions. Table 3 shows detailed structure of meta unit-procedure, which 
includes three meta-operations. One user selects such meta-unit-procedure, all 
meta-operation will be selected as well. User will be prompted to define values 
for the identified parameters.  

The corresponding control recipe of the defined master recipe of “CLOSE ALL 
UPSTREAM VALVES OF AJ4101” can be viewed in figure 2-4. It shows the 
close of all upstream valves of the tank AJ4101 (both the jacket and the inner 
tank).

2.7 Control Recipe Generation 



Figure 2-4. Visualization of Isolation Meta-operation 

2.8 Conclusion
Formal methods can be used effectively to synthesize and validate operating 
procedures. Engineering formal language, or EFL, is proposed to construct 
master recipe statements and synthesize the corresponding control recipe. For 
systematic construction of operating procedures, meta-operation is introduced 
where it is used to define group of operations that are likely to frequently occur.  
Meta-operation is used to describe generic operations of chemical batch plants, 
which can also be used in continuous and discrete manufacturing / production 
plants. EFL or engineering formal language is used to represent meta-operation 
(and operating procedures in neutral and standard format, which enable the 
synthesis of operating procedures. Batch plant is used as a case study where 
master recipe is synthesized using EFL. Case studies are used from chemical 
batch plant to show the proposed synthesis and representation mechanisms of 
meta-operations. 

The proposed solution will enable operation designers to synthesize meta-
operations, which can be used while defining master recipe as well as control 
recipe of chemical batch plants. The proposed EFL and representation 

Modern Formal Methods and Applications 33

mechanism will enable the smooth and accurate generation of SOP of any 
complex chemical plants. In addition, it can be used efficiently to validate and 
visualize SOP. 

Further research work is required to define a systematic mechanism to define 
hierarchical and more complex meta-operations for complex plants. Also it is 
required to define generic conditions (i.e. precondition and postcondition), 
which could be linked to product quality, batch planning, and plant 
maintenance details. 



2.9  References 
ANSI/ISA-S88.01, 1995. Batch Control. Part 1. Models and terminology. 
Aoyama, A., Yamada, I., Batres, R., & Naka, Y. (2000). Development of batch process 

operation management platform. The 10th European Symposium on Computer 
Aided Process Engineering. Special Issue of Computers & Chemical Engineering, 
24, 519-524. 

Arzen, K.E. (1994). Grafcet for intelligent supervisory control applications. Automatica 
30(10), 1513-1525. 

Asprey, S., Batres, R., Fuchino, T., and Naka, Y. (1999). Simulation-based operations 
planning in the presence of quantitative safety constraints. Proceedings of 2nd

Conference on Process Integration, Modeling and Optimization for Energy Saving 
and Pollution Reduction (PRES’99), Budapest, Hungary, pp.133-138 (1999). 

Gabbar, H.A., Aoyama, A., Naka, Y. (2003). Model-Based Computer-Aided Design 
Environment for Operational Design. Journal of Computers & Industrial 
Engineering (Submitted). 

Gabbar, H.A., Aoyama, A., Naka, Y. (2003). AOPS an Automated Solution for 
Operating Procedures Synthesis for Batch Plants. Journal of Computers & Chemical 
Engineering (Submitted). 

Gabbar, H.A., Aoyama, A., Naka, Y. (2003). Recipe Formal Definition Language For 
Operating Procedures Synthesis. Journal of Computers & Chemical Engineering 
(Submitted). 

Gabbar, H.A., Chung, P.W.H., Suzuki, K., and Shimada, Y. (2000). Utilization of 
unified modeling language (UML) to represent the artifacts of the plant design 
model. Proceedings of “PSE Asia 2000” International Symposium on Design, 
Operation and Control of Next Generation Chemical Plants, PS54, 387-392, Kyoto-
Japan. 

Gabbar, H.A. and Naka, Y. (2003). Computer-Aided Operation Design Environment for 
Chemical Production Plants. ICCTA’2003 – IEEE, 12th International Conference on 
Computer Theory and Applications, Aug-2003, Alexandria, Egypt, P27. 

Johnsson, C. and Arzen, K.E. (1998). Grafchart for recipe based batch control. 
Computers & Chemical Engineering, 22, 1811-1228 

Kim, J. and Moon, I. (2000). Synthesis of safe operating procedure for multi-purpose 
batch processes using SMV. Computers & Chemical Engineering, Vol. 24 (2000), 
Issues 2-7, 385-392. 

Kim, M.and Lee, I.B. (1997). Rule-based reactive rescheduling system for multi-
purpose batch processes. Computers & Chemical Engineering, Vol. 21, Suppl. Pp. 
S1197-S1202. 

34 Formal Methods for Process Systems Engineering

Kirkwood, R.L., Locke, M.H., and Douglas, J.M. (1988). A prototype expert system for 
synthesizing chemical process flowsheets. Computers & Chemical Engineering, Vol. 
12 (1988), Issue 4, 329-343. 

Lakshmanan, R. and Stephanopoulos, G. (1990). Synthesis of operating procedures for 
complete chemical plants – I Hierarchical, structured modelling for nonlinear. 
Computers & Chemical Engineering, Volume 14 (1990), Issue 3, 301-317. 

Lu, M. L., Batres, R., Li, H. S., and Naka, Y. (1997). A G2 based MDOOM testbed for 
concurrent process engineering. Computers & Chemical Engineering, Vol. 21, 
Suppl., pp. S11-S16. 

Lu, M. L., Naka, Y., Shibao, K., Wang, X. Z., and McGreavy, C. (1995). A multi-
dimensional object-oriented model for chemical engineering. Proceedings of the 
Second International Conference on Concurrent Engineering, Research and 
Application, Virginia, Aug. 1995, USA, pp. 21-29. 



Naka, Y. and McGreavy, C. (1994). Modular approach for startup operational 
procedures of chemical plant. Proceedings of PSE’94, 1007-1013. 

Naka, Y., Batres, R., and Fuchino, T.; Operational design and its benefits in real-time 
use, Foundations of computer aided process operations (1999), ISBN 0-8169-0776-
5, pp: 570. 

Ruiz, D., Canton, J., Nougues, J.M., Espuna, A., and Puigjaner, L. (2001). On-line fault 
diagnosis system support for reactive scheduling in multipurpose batch chemical 
plants. Computers & Chemical Engineering, Vol. 25, pp. 829-837. 

Viswanathan, S., Johnsson, C., Srinivasan, R., and Venkatasubramanian, V., & Arzen, 
K.E. (1998). Automating operation procedure synthesis for batch processes: Part I. 
Knowledge representation and planning framework. Computers & Chemical 
Engineering, 22, 1673-1685. 

Modern Formal Methods and Applications 35



3 Formal Methods for Production 
Chain Management 

Author
Hossam A.Gabbar, 
Graduate School of Natural Science & Technology, 
Okayama University

Summary 
To meet the dynamically changing market requirements, production enterprises 
are collaborating in the form of production chains to improve production 
efficiency and product quality in view of the dynamic market changes and 
demands. In order to overcome the difficulties of operating such heterogeneous 
enterprises and to link the operation of different hierarchical levels within each 
enterprise, a robust operation representation framework is required. This 
research paper presents a formal representation approach for production chain 
operation, which ensures unified operation between the micro level, i.e. 
process, and macro level, i.e. production line, of enterprises within production 
chain. The proposed formal methods are used to represent operating 
procedures, process constraints, and control rules. Case study production chain 
is used to illustrate the proposed operation representation approach. 

Keywords: formal representation, production chain operation, operation 
representation, SOPFL, ODM 

3.1 Introduction
To meet the dynamically changing market requirements it is essential to 
provide flexible manufacturing enterprises, which will be able to dynamically 
tune their production systems as per market requirements and social demands. 
To achieve such level of dynamic or agile manufacturing, it is required to 
reduce the gap between enterprise management, production, and process levels, 
as well as between suppliers and customers in the so-called production chains. 
Production chains are networks of enterprises, service providers, clients / 
customers where raw materials and services are transformed from provider / 
manufacturer to client / customer as “finished’’ goods (Williams, 2003). 
Production chain is a way of collaboration among manufacturing enterprises to 
improve the response to changes in upstream and downstream production 
stages and to share lifecycle production data / knowledge. Successful 
production chains will be able to meet internal (business) and external (social) 
objectives with optimized performance in terms of cost, quality, time, 

37

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 37–46.
© 2006 Springer. Printed in the Netherlands.



environmental issues, risk, etc. Production chains are formed with common 
objective to produce final product(s). For example, car manufacturing 
enterprises are linked to tire, glass, seats, mirrors, and lock manufacturing 
enterprises with the final objective to produce efficient car as a final product. It 
is part of the production chain design to find the strategic partner for productive 
collaboration. 

Basically, production chains are virtual organizations that have lifecycle as 
composed of: concept stage, design, and operation stage. The operation design 
is usually starts during the concept and design stages of the underlying 
production chains and iteratively tuned till its maturity. 

The design and execution of the operation of the underlying production chain is 
a complex process, which requires systematic way to integrate lifecycle aspects 
of process, production and management levels. In addition, it requires linking 
the upstream and downstream enterprises along with their hierarchical 
management and control schemes. To consider all aspects of production chain 
operation, formal representation framework is required to enable the definition 
of the different elements in the different hierarchical levels of the underlying 
production chain operation. 

This research work proposes the use of formal methods to design the operation 
of production chains based on knowledge representation framework. The use of 
formal methods will facilitate the design and synthesis of production chain 
operation in different hierarchical levels and will provide robust base for 
automated engineering solutions to synthesize and manage the operation of 
production chains. 

In the next section, operation framework will be described where operation 
model elements are explained for the different hierarchical operation levels. 
The third section describes the proposed formal method and knowledge 
representation approach, which is used to represent the operation of process 
level (i.e. micro) and production level (i.e. macro) of a case study PET bottle 
production chain. 

3.2 Production Chain Operation Framework 
The operation of system or process can be viewed in two main tracks: steady 
and transient operation. Steady operation is related to the operation during the 
steady state, which is based on the inventory control scheme. Transient 
operation deals with the operation during the changes in system state such as 
startup, shutdown, or fallback recovery. Operating a process (or system) 
implies satisfying safety, environmental, quality, management constraints and 
process conditions in all hierarchical control levels. For example, the operation 
of batch process might have one main objective to achieve the stated operation 

Formal Methods for Production Chain Management38



objectives such as production rate, production amount, and product quality, 
while satisfying safety constraints and process controls. 

Production chain operation can be defined in hierarchical levels, as shown in 
figure 3-1. The operation of virtual organizations (i.e. VO’s) includes tasks to 
supply material and resource as well as products between enterprises / 
organizations. Enterprise operation handles tasks among the different 
departments and units within an enterprise. Plant level operation handles tasks 
within one plant to produce the required product from the stated resources. 
Process level operation defines the tasks and controls to produce the expected 
products for the underlying process. Equipment level operation changes the 
status of the state descriptor of the underlying equipment. 

Figure 3-1. Hierarchical Levels of Production Chain Operation 

3.2.1 Unit Operation Knowledge Model 

Figure 3-2. Knowledge Structure of Unit Operation Model as Defined 
within POOM 

VO

Enterprise Enterprise

Plant

Process

Equip Equip

Process

Plant Plant Level
Operation

Process Level
Operation

VO Level
Operation

Enterprise Level
Operation

Equipment Level
Operation

Production Chain

Operation

Purpose

Method

Control

Intention
Function

Oper. Procedure
Resources

Rule
Constraints

Sequence/ Order

39Modern Formal Methods and Applications



In order to build complex operation for large scale systems / processes, it is 
essential to define robust knowledge structure for unit operation, which will be 
used as building blocks for the complete operation of the underlying system / 
process. Plant/Process object oriented modeling methodology or POOM, 
showed how process model could be constructed in three dimensions: static, 
dynamic, and operation. Operation knowledge can be structured in view of the 
proposed operation model as expressed in POOM. In each of the hierarchical 
levels of production chain operation, operation knowledge can be structured as 
a collection of operation elements that includes: purpose, methods, and control, 
as shown in figure 3-2. The method includes actions, procedures used to 
achieve the intended function using set of resources in specific sequence. Rules 
and constraints are used to determine the control framework for the underlying 
operation. During the design and execution of such operation model additional 
knowledge will be accumulated such as the execution timing, which includes 
planned, scheduled, and actual time. 

The above proposed operation model is mapped to other views within POOM, 
where function is linked to the dynamic view i.e. behavior model, while the 
resources include structural units and materials from the structure view. The 
method and control are mapped to the operation view. The intention and 
function are usually mapped to the objective and plan defined in higher level 
i.e. in the hierarchical production chain model. 

UML proposed unified processes, which are best practices to realize target 
functions. Production chain model is constructed using building blocks of unit 
processes or UP, as shown in figure 3-3. Each UP will have input ports, output 
ports, and is described in three views: structure – SM, behavior – BM, and 
operation – OM. In such UP Model, “IS” is input stock UP and “MN” is 
manufacturing UP. Ports are used for energy, material, control, sensor, or 
information transfer. 

Figure 3-3. UP Model of POOM 

Formal Methods for Production Chain Management40



The highest level of the whole production chain can be viewed as top level UP, 
which is composed of smaller UP’s. For example, UP1 is composed of UP1.1 
and UP1.2, etc. The operation model of each UP will be described in the form 
of OM of POOM. 

In higher level within the production chain model i.e. enterprise UP, the 
enterprise OM can be described using the knowledge structure defined within 
POOM. For example, “MAKE” OM is used to define the process to 
manufacture product(s) and byproduct(s) from input raw materials, as shown in 
table 3-1. 

Table 3-1. “MAKE” OM of the Enterprise UP, on the basis of POOM 

OM1: MAKE
Function: Make product from raw materials / intermediate products 
Intention:

- Manufacture product(s) and byproduct(s) 
- Use raw material from input stock and produce products / byproducts 

into output stock 
- Fulfill production orders 

Method:
- Plan required raw material as per required production rate/amount 
- Get raw materials from input stock 
- Operate production line with specified configuration 
- Stock products and byproducts in the output stock 

Control:
- If raw material is not available, then replenish stock 
- If production line is busy, then wait or cancel operation 
- If output stock is full, then stop production or find extra stock space 

Within the enterprise UP, there are smaller UP’s such as stock UP, as shown in 
Figure 3-4. In such UP, process variables are defined for input material (i.e. 
IM-Flowrate for the input material flow rate), output material (i.e. OM-Cost for 
the unit cost of output material), and warehouse (i.e. St-OperCost for the unit 
operating cost). Two operations are defined for the stock UP: receive and issue. 
The “receive” operation is explained on the basis of POOM, as in table 3-1. 

41Modern Formal Methods and Applications



Figure 3-4. Material Stocking UP Model 

Table 3-2. “RECEIVE” OM of the Stock UP, on the basis of POOM 

OM2: RECEIVE
Function: Receive Material from output material port into warehouse 
Intention:

- Add material to stock 
- Transfer material from input port into warehouse 
- Increase stock 
- Replenish stock 
- Return material to stock 

Method:
- When material is available in input port, Open material input port 
- Check material 
- Decide suitable warehouse location 
- Take material from input port into the decided warehouse location 
- Update stock level of that material 

Control:
- If material is not suitable, then reject material 
- If no space available, then reject material 
- If stock exceeds maximum stock level, then reject material 

Similarly, other operations can be defined, such as stock take (reconciliation). 
Similarly, operation such as “COOLING” from batch process can be 
represented using the same operation knowledge structure model, as shown in 
table 3-4. 

Table 3-3. “COOLING” OM for batch process 

OM2: COOLING
Function: Cooling of structure equipment Receive Material from output 
material port into warehouse 
Intention:

- Add material to stock 

M- Stocking

Receive Issue

IM- Amount
IM- Flowrate

IM- Cost

OM- Amount
OM- Flowrate

OM- Cost

St- Level
St- OperCost
St- LossRate

Formal Methods for Production Chain Management42



- Transfer material from input port into warehouse 
- Increase stock 
- Replenish stock 
- Return material to stock 

Method:
- When material is available in input port, Open material input port 
- Check material 
- Decide suitable warehouse location 
- Take material from input port into the decided warehouse location 
- Update stock level of that material 

Control:
- If material is not suitable, then reject material 
- If no space available, then reject material 

From the above two examples, which are taken from two levels of the 
hierarchical production chain model, there are two major challenges: finding a 
formal method for systematic representation of the operation model elements, 
and linking the operation model elements in different hierarchical levels, such 
as the “RECEIVE” OM in stock UP and “MAKE” OM in the enterprise UP. 

The following section will explain proposed solution to address these two 
issues, based on formal methods and knowledge representation techniques. 

3.3 Formal Representation of OM 
In order to achieve efficient production chain operation, it is essential to 
provide suitable representation mechanism for all operation model elements, 
which is suitable for all hierarchical operation levels. 

The following section explains the proposed model formalization method and 
its use to construct the underline production chain model on the basis of 
operational design concept. The third section describes the proposed control 
layer and its mechanism to support steady operation of production chain. The 
fourth section explains the utilization of the control layer to synthesize 
operating procedures for production chain. 

Table 3-4 shows examples of generic inventory control rules that can be 
applied to any structure class marked with inventory flag as “Yes”. 

43Modern Formal Methods and Applications



IF INVENTORY LEVEL = MAX THEN CLOSE UPSTREAM MATERIAL 
CONTROL 
IF INVENTORY LEVEL = MIN THEN OPEN UPSTREAM MATERIAL 
CONTROL 
IF PROCESS VARIABLE = VALUE THEN OPEN UPSTREAM 
PRODUCT CONTROL 

Inventory rules are used to control the upstream material control devices, while 
process constraints are used to control downstream or upstream control 
devices. If conflict occurs in one level (i.e. Open C1 and Close C1), the 
proposed control layer will resolve such conflict by consulting control layers of 
upper control levels. 

3.4 Case Study Production Chain 
For example, table 3-5 shows operating procedures, which are represented 
using EFL, to move produced product from UP1 to UP2. In this case topology 
analyzer will define the associated topology area boundaries, which are C16, 
C17, and C19. 

Table 3-5. EFL for Operating Procedures to Move Produced Product from 
UP1 to UP2 

OPEN C18 
CLOSE C19 
CLOSE C16 
CLOSE C17 

Figure.3-5 shows the visualization of the above operation, where red circle is 
used when the control device is closed, while green circle is used to show that 
the control device is opened. 

Figure 3-5. Visualization of the Operation “Move Bottle FROM UP1 TO 
UP2”

Table 3-4. Examples of Generic Inventory & Process Constraints 

Formal Methods for Production Chain Management44



3.5 Conclusions
Typically, plant operation is executed in hierarchical manner where process 
level operation is integrated with production level operation to ensure smooth 
integration of the different hierarchical control levels. 

In this chapter, POOM modeling methodology is used to construct plant model 
as building blocks called UP’s. Each UP is represented in three views: static, 
dynamic, and operation. POOM is used to construct operating procedures in the 
different hierarchical levels. EFL or engineering formal language is proposed 
to represent operating procedures in the different hierarchical levels, which has 
been implemented within computer-aided modeling environment called CAPE-
ModE. In such environment, operating procedures are visualized to show the 
hierarchical operating procedures, such as “OPEN” or “CLOSE” of actionable 
structural units. 

The proposed solution is effective for automatic synthesis of operating 
procedures (SOP) in hierarchical levels of production plants. It will facilitate 
the job of operators to understand the different hierarchical operation and take 
right decision in less time. 

3.6 References
ANSI/ISA-95 (2000). Enterprise-Control System Integration Part 1 & Part 2. American 

National Standard. 
Aoyama, A., Naka, Y., Shimizu, A., Hamada, K., Kameda, K., Kagiyama, T., 

Matsumoto, I., and Tsujikawa, Y. (2003). GPLS: A modeling and simulation system 
for product lifecycle design. 4th International Conference on Foundations of 
Computer-Aided Process Operations, January, 2003, Florida, USA. 

Gabbar, H.A. and Naka, Y. (2003). Control Mechanism for Production Chain Operation. 
12th International Conference on Computer Theory and Applications (ICCTA’2003 – 
IEEE), 26-Aug-2003, Alexandria, Egypt, P28. 

Gabbar, H.A., Chung, P.W.H., Suzuki, K., and Shimada, Y. (2000). Utilization of 
unified modeling language (UML) to represent the artifacts of the plant design 
model. Proceedings of “PSE Asia 2000” International Symposium on Design, 
Operation and Control of Next Generation Chemical Plants, PS54, 387-392, Kyoto-
Japan. 

Japan Chemical Innovation Institute (JCII) (2001). Development of Plastic Production 
Chain With Recycling”, Project Report, Tokyo Institute of Technology, Yokohama, 
Japan, Mar-2002. 

Johnson, M. (2003). Transforming B2B exchange into collaborative trading 
communities. MaterialWorld technologysolutions, Miami Beach Convention Center, 
17-19 March, 2003, www.techexchange.com/thelibrary/exchange_to_collab.html.

Lakhal, S., Martel, A., Kettani, O., Oral, M. (2001). On the optimization of supply 
chain networking decisions. European Journal of Operational Research, Vol. 129, 
259-270, 2001. 

45Modern Formal Methods and Applications



Lu, M. L., Batres, R., Li, H. S., and Naka, Y. (1997). A G2 based MDOOM testbed for 
concurrent process engineering. Computers & Chemical Engineering, Vol. 21, 
Suppl., pp. S11-S16. 

Lu, M. L., Naka, Y., Shibao, K., Wang, X. Z., and McGreavy, C. (1995). A multi-
dimensional object-oriented model for chemical engineering. In Concurrent 
Engineering, A Global Perspective, Virginia, Aug. 1995, Concurrent Technology 
Corporation, USA, pp. 21-29. 

Naka, Y., Aoyama, A., Shimizu, A., Hamada, K., Kameda, K., Kagiyama, T., 
Matsumoto, I., Tsujikawa, Y., Ranajit, C., and Gabbar, H.A. (2002). Development of 
plastic production chain with recycling. Technical Report of Japan Millennium 
Project, Yokohama, Japan.  

Naka, Y., Batres, R., and Fuchino, T. (1999). Operational design and its benefits in real-
time use, Foundations of computer aided process operations (1999), ISBN 0-8169-
0776-5, pp: 570. 

Naka, Y., Hirao, M., Shimizu, Y., Muraki, M., and Kondo, Y. (2000). Technological 
information infrastructure for product lifecycle engineering. Computers and 
Chemical Engineering, Vol. 24, 665-670, 2000. 

Naka, Y. and McGreavy, C. (1994). Modular approach for startup operational 
procedures of chemical plant. Proceedings of PSE’94, 1007-1013. 

Supply Chain Council. SCOR Model. www.supply-chain.org. 
Eric Williams (2003). Forecasting material and economic flows in the global 

production chain for silicon. Technological Forecasting & Social Change, 70 (2003) 
341–357. 

Zhou, Z., Cheng, S., Hua, B. (2000). Supply chain optimization of continuous process 
industries with sustainability considerations, Computers and Chemical Engineering, 
Vol. 24, 1151-1158, 2000. 

Formal Methods for Production Chain Management46



4 Formalizing Waste 
Management

Author
Pohjola V.J. 
University of Oulu 
Finland

Summary 
PSSP ontology is introduced as a basis for holistic worldview and as an 
approach to formalize and systematize any domain. PSSP ontology defines 
Event and Medium as two primitive kinds of objects that more complex objects 
of Process or Product kind are composed of. In practice anything is a process. 
All objects have four predefined properties: Purpose, Structure, State and 
Performance. The result is a unified representation of reality. PSSP approach is 
applied to formalize and systematize waste management. This is a challenging 
task, because the domain has extremely fuzzy boundaries and the waste 
management decisions must be based on integrating knowledge of technical, 
social and ethical issues.

4.1 Introduction

Waste management is a domain, which through centuries has stubbornly 
resisted becoming systematized. Although pervading all human civilization, the 
domain lacks a holistic methodology or theory of waste management. This is 
primarily due to the lack of commonly accepted universal definition of waste. 
The major challenge for systematization efforts thus resides in the confusion 
concerning what is it we call waste: How to manage something you cannot take 
a hold? 

Because of its pervading nature the boundaries of the domain of waste 
management are fuzzy. It is not possible to say strictly which issues form the 
substance of the domain and which ones are irrelevant. Thus the starting point 
of systematization needs to be an ontological one and the ontology to be 
adequate instead of domain ontology. 

47

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 47–82.
© 2006 Springer. Printed in the Netherlands.



This paper introduces the PSSP ontology as the formal approach applied for 
defining waste and, on that basis, for systematizing waste management. The 
adequate PSSP ontology provides a system, which pre-defines the set of 
universals: Purpose, Structure, State and Performance, as the necessary and 
sufficient set of properties of objects of all kinds. Thus the primitive objects of 
both Event and Medium kind manifest their way of being through these four 
properties. Also more complex objects of Process and Product kind, which are 
aggregates of event-medium composites, are characterized by these properties. 

It is shown in this paper that the PSSP ontology gives a totally new insight into 
the domain of waste management. A new set of definitions of waste emerges 
from the holistic perspective opened. The attributes Purpose and Performance 
have the central role in these definitions. Ownership as an abstract object of 
Relation type plays a central role both in defining waste and in systematizing 
waste related activities. 

4.2 The formal method 

Ontological approach does not take as its starting point the current usage of 
expressions of natural language, which are vague and understood differently by 
different people. Neither does it accept as its starting point the multitude of 
practices in a domain, as standardization efforts normally do. The ontological 
starting point is our a priori knowledge of reality as it is in itself, that is, what 
we know about the kinds of objects there can be and the kinds of properties
they can have. It is against such a framework of knowledge of universals that 
our domain knowledge of particulars, based on perception and reasoning, is 
identified and specified. This is what Lowe has named a four-category ontology 
[1], and can be depicted as in Figure.4-1. 

Figure 4-1. The ‘four-category’ ontology 

Entities

Universals Particulars 

Kinds of objects 
(Classes)

Kinds of properties 
(Attributes) 

Objects Properties 

Formalizing Waste Management48



The ontological approach taken to waste management does not suggest that the 
terms ‘waste’ and ‘waste management’, or the current waste management 
practices, were useless and should be replaced by something else, but only that 
they can be, and should be, re-interpreted and re-engineered in a new 
conceptual framework, which is holistic as opposed to being restrained by the 
narrow scope and bias of tradition.

4.3 PSSP ontology 

The formal method to be applied to identifying and specifying waste 
management is built upon the PSSP ontology [2, 3, 4]. The name of the 
ontology is an acronym of the four universal properties or attributes that 
objects can have: Purpose, Structure, State and Performance. The basic 
commitment of PSSP ontology is that this set of attributes is the necessary and 
sufficient set of attributes of all objects. It should be easy to apprehend that this 
commitment leads to a highly unified worldview, which has crucial 
consequences for our thinking, like becoming more holistic and more creative.  

Figure 4-2. The four universal properties 

What we perceive are differences and similarities in properties of objects. 
While what we perceive and reason is subjective, the fact itself that objects can 
have similarities and differences is independent of human thinking. To be 
similar or different implies that objects must have properties. Attributes are our 
a priori knowledge of reality (‘as it is in itself’) in the sense that no empirical 
knowledge, that is, knowledge based on perception and reasoning, can be 
articulated without first knowing what properties there can be. Purpose, 
Structure, State and Performance are through which an object manifests its way 
of being, independent of, and to be distinguished from, whether or how 
truthfully human is capable of characterizing an object by specifying the four 
types of properties.  

On the basis of what we know by perception and reasoning about a 
particular object’s properties we aim to identify the object as belonging to some 
object class. Objects can be similar or different with respect to one or several 
properties and to varying degrees. That is why classifications (taxonomies) 

Attribute

Purpose Performance Structure State 

49Modern Formal Methods and Applications



based on empirical knowledge can be almost whatever. There are, however, 
some similarities and differences, which are relatively easy to accept as 
fundamental and of which we can intuitively have knowledge of a priori type. 
This is ontological knowledge, which forms the topmost layer of most of the 
proposed hierarchies representing our knowledge of what can be. 

4.4 The universal properties 

An object manifests its particular way of being by having particular 
properties, which are instances of the four universal properties, Purpose, 
Structure, State and Performance. An object’s way of being is a whole, not a 
collection of individual properties. This is to say that the four properties are 
deeply related to each other. An object’s potential to function, which becomes 
manifest as its behavior (state) in the object’s coexistence with other objects, is 
embedded in the object’s structure. The way an object behaves in particular 
situations is its performance when set against how the object should behave in 
all these situations in order to justify its existence, that is, against its purpose.

4.4.1 Purpose 

Purpose is an object’s claim of justification to exist (currently, in the future, 
or in the past). Hence, all objects manifest their purpose by existing (actually 
coexisting) and surviving. For an object to survive is to adapt its behavior to 
face the challenges of the coexistence. Capability of adaptation arises from an 
object’s functionality (potential to function), which is hidden in an object’s 
structure. An object has a given structure and, consequently, a given 
functionality hidden in that structure, just because there is a claim of 
justification for that structure. Thus, an object’s purpose becomes manifest in 
its structure and in how the object behaves in particular situations, that is, in 
particular relations to other objects. Fulfilling what is claimed is by which an 
object justifies its existence and survival. Fulfillment can be of varying degree 
and vary with time, which entails that an object once justified to exist may not 
survive in other situations and would then be doomed to lose its identity. 

Purpose is a universal property no matter whether it is possible for human 
to figure out what might be the purpose of a particular object. This means, in 
particular, that in the PSSP ontology, purpose is a property of both natural 
objects and artificial objects (artifacts). Aiming to justify the existence of a 
particular artifact is specifying, that is deciding upon, its purpose by the owner 
(designer, builder or user) of the artifact. On the other hand, whatsoever may be 
the purpose of a particular natural object, whose identity and existence are not 

Formalizing Waste Management50



dependent of human, is not to be decided, and in many cases not even 
hypothesized, by human. Indeed, whether a particular purpose of an object can
be known to human can be used as an indicative guide for distinguishing 
artificial objects from natural objects. The borderline between natural objects 
and artifacts is, however, fuzzy. Sometimes an object can be identified as an 
artifact by some of its structural features (like type of material or shape of 
boundary) but the original purpose may remain unknown, because the links to 
the production or usage processes are difficult or impossible to trace (take an 
archeological finding as an example). Nevertheless, in this case, the purpose 
could be known if sufficient knowledge were available. Human being is a good 
exemplar of an object, whose purpose as a human being tends to remain a 
mystery to human being himself, and, on that basis, human being should be 
viewed as a natural object. However, during his life, each human being is 
assigned a multitude of purposes in various roles as a member of society, which 
supports viewing human being as an artifact. For instance, an employee fired 
loses his identity in the role he had in his job. In the case of not having other 
roles and the associated assigned purposes, he would find himself perplexed by 
his purpose as a natural object.

An object manifests its purpose under the constraints arising from its 
relation to other objects. The constraints have a role of an object’s performance
criteria. The extent of fulfillment of the claim of an object’s justification to 
exist is the object’s performance. If sufficient, the existence of an object in the 
given relation (coexistence) is justified. Thus, purpose and performance are 
inseparable.

Characterizing reality in the PSSP format is using the PSSP ontology as a 
language. Human specifies and informs about the purpose of a particular 
artifact by assigning a value for the Purpose attribute of the PSSP object 
representing the artifact. In design, where the artifact under design does not 
exist yet, the value is assigned as a requirement or expectation concerning the 
functionality (potential to function) of the artifact. The value of the 
Performance attribute is an assessment of the artifact’s performance against the 
performance criteria listed and weighted under the Purpose attribute. 

4.4.2 Structure

Structure is a hierarchy of relations. An object can manifest its structure as 
a set of sub-objects and a set of causal, spatial and temporal relationships 
between state variables of these sub-objects. Each of the sub-objects can do the 
same, and so on infinitely. This applies to both natural and artificial objects. It 
is easy to sympathize Korzybski’s stand, that whatever human says about 
structure it is more [5]. On the other hand, depending on the purpose of a 

51Modern Formal Methods and Applications



particular description, only certain aspects of an object’s structural information 
is relevant. 

In PSSP ontology the structural hierarchy is viewed to expand in two 
dimensions, topological (or fractal) and unit-structural. In the former, an object 
disaggregates into sub-objects such that the object and the sub-objects are 
instances of the same class. The mutually linked sub-objects (nodes) form the 
topological structure. In the latter dimension a node decomposes to sub-objects 
(parts), which are instances of other classes than the node and, as linked to 
each other, form the unit structure of the node. Structural specification of an 
object in the two dimensions results in a powerful description, which can be 
continued to any level of detail. 

Figure 4-3. Expanding of structural hierarchy in two dimensions 

An object’s structure embeds all the information about object’s 
functionality. If an artifact has been designed ignoring some structural parts 
and links (like a customer’s usage process), it may not have proper 
functionality (may not behave as required in that usage process) resulting in 
poor performance. If an artifact breaks, some of its structural parts and links 
assume other than intended values, and some of the intended functionality is 
lost. This shows in the artifact’s behavior and performance. 

4.4.3 State

State is how an object’s functionality becomes manifest in particular 
situations of coexistence. State may appear to human as static or dynamic. 
Quoting Bohm [6]: ‘Whenever one thinks of anything, it seems to be 
apprehended either as static, or as a series of static images. Yet, in the actual 
experience of movement, one senses an unbroken, undivided process of 
flow…’. Dynamic state is often called behavior. Dynamic state may appear as 

Structure

Aggregate Composite 

Nodes Relations Parts Relations 

Formalizing Waste Management52



transient like an object’s transition from one stationary state to another, or as 
pseudo-stationary like an object’s continuous fluctuation around equilibrium or 
some other desired steady state.  

Figure 4-4. Semantic relationship between state and behavior. 

In PSSP ontology, state refers to temporal distribution of the state variables 
of an object, where state variables are those distributed amongst the structural 
relationships in the two dimensions (topological and unit-structural) throughout 
the object’s structural hierarchy. Description of a particular state, based on 
perception and/or reasoning, can be done in any appropriate way, numerically, 
graphically or verbally, in the form of empirical time-series data, mathematical 
function, results of numerical simulation, as a snap-shot at certain location on 
the time axis, etc. 

Complex objects usually have a structure, where the state variables 
distributed throughout the structural hierarchy are also in a hierarchical 
relationship to each other such that some states control some other states. This 
is of course the principal way for functionality to become enriched both among 
natural and artificial objects. 

4.4.4 Performance

Performance is by which an object manifests how it manages to fulfill its 
justification to exist and to survive. Because the challenges of coexistence are 
usually manifold, survival typically implies readiness to many types of 
behavior. An object may need a structure, which provides functionality for 
effective transitions from the current to more beneficial ‘operating conditions’ 
or for maintaining the current (pseudo-stationary) state distribution in face of 
disturbances. It is here that various control structures and strategies play a 
central role.

Performance can be viewed as a measure of how good an object is for its 
purpose. An object capable of self-control and self-organization assesses its 
own performance against the built-in performance criteria. When an external 
agent assesses the performance of an object, the assessment must be based on 
performance criteria set by the agent. In particular, assessment of the 

State

Dynamic (Behavior) Static

53Modern Formal Methods and Applications



performance of a natural object is not possible for human unless a hypothetical 
purpose is specified first. Of course an external agent’s opinion of an object’s 
right to exist is as justified as is the external specification of its purpose.  

4.5 Central objects 

In PSSP ontology, the top-level object class Entity divides into two sub-classes 
Event and Medium. The division is intuitively appealing due to the fundamental 
difference between the generic structure of events and the generic structure of 
media. Consequently, there are generic level differences also in the other 
properties of the two types of primitive objects.

Events are known to be intangible, advancing in time and becoming manifest 
only via the medium in which they occur. Medium, thus, holds information 
about events. Information about events that can occur in a medium is 
embedded in the structure of the medium. Information about events occurring
in a medium is manifested by the medium’s state (behavior). Obviously events 
cannot exist independently but always associated with some medium. 
Similarly, if there is no event occurring in a medium, there is always at least a 
potential in any medium for some event to occur. Thus, events and media 
coexist as composite objects.  

Event-Medium composites can be regarded as the operative primitives of 
reality. They are the building blocks of yet larger composites or aggregates 
called processes and products. Process and Product are two object classes with 
high structural similarity but differing by purpose, state and performance. 
Practically any object can be identified either as a process or a product. This 
applies to waste and waste management as well, as will become apparent. 

Figure 4-5. The universal sub-classes. 

4.5.1 Event 

The division of reality into events and media is not only ontologically 
fundamental but also practical. Events are a pervading type of objects, 

Event-Medium

Class

Event Product Medium Process

Formalizing Waste Management54



including spontaneous physico-chemical phenomena and human mental and 
physical activities and are mostly easy to recognize. Event is distinguished 
from medium by its inner structure, or unit structure, to apply the PSSP usage. 
While event can disaggregate into sub-events and these further into sub-sub-
events, etc., each of these has a unique unit structure composed of the 
predefined parts, cause, effect and precondition, and causality linking the parts. 

Causality is rather the name of the type of relation associated with event, 
linking cause to effect and preconditions, than commitment to an idea that all 
causal relations were deterministic or could be specified. Causality is the 
mechanism by which an event advances. Sometimes, like for some physico-
chemical phenomena advancing in matter, it is possible to construct a 
deterministic theory (often based on probabilistic considerations) for specifying 
the causal relation and to predict the effect from cause and preconditions. 
Causality applies to human activities as well, but at least at an individual 
actor’s level the mechanisms are unknown. Fortunately human, as opposed to 
inanimate matter, can explain his doings. Thus a human actor may be asked to 
report how he is going to act, or why the activity advanced as it did. This 
rationale can be viewed to correspond to causal relation and forms an 
invaluable type of knowledge concerning human activities. 

The state of an event is its rate and extent of advancing. These state 
variables are to be understood as distributed along time axis. Rate is linked to 
the effect and extent to the cause. While rate can be regarded as the principal 
state variable, extent applies when an event pursues a goal. Goal is usually a 
desired state of the medium. Rate can be constant, in which case an event 
advances steadily, while extent approaches the value corresponding to the goal. 
Otherwise event is in a dynamic (accelerating or decelerating) state. When an 
event does not advance, its rate is zero. This state may be associated either with 
an event, which does not exist, or with an event which does not exist yet but 
whose potential to be born is in the structure of a medium. An event may be 
apparently non-advancing when idling after the goal has been reached, which is 
the state fluctuating around the desired state. 

Because to exist for events is to advance, the general-level purpose can be 
expressed as follows. For physico-chemical phenomena the purpose is to 
advance under the constraints posed by Nature like those, which have been 
formalized as entropy principle and Hamilton’s principle, and which we use to 
explain these natural events. The constraints apply no matter whether the 
medium is natural or artificial. The purpose of human activity is to advance 
under the complex of natural constraints concerning body and the mental 
constraints concerning mind. 

Events cannot be seen and thus not depicted figuratively. In PSSP 
formalism an event is referred to by a horizontal oval as shown in Figure.4-6. 
The same notation is used when characterizing a particular event by specifying 
its attributes (Figure.4-6 (c)). 

55Modern Formal Methods and Applications



Figure 4-6. Graphical notation of event: (a) single event, (b) aggregate of 
two events, (c) template for characterizing an event. 

4.5.2 Medium

The ontological division of objects into events and media makes it possible 
for human to identify an object to be a medium, simply whenever an object, as 
a constituent of an event-medium composite, does not identify as an event. 
Medium’s structure is typically an aggregate of tangible and intangible sub-
media, in which an intangible medium (energy, mind) becomes manifest via 
tangible medium (material, body). Individual aggregates can build up larger 
collectives like continuous matter as a population or aggregate of molecules, or 
organization as a group of human beings. A collective medium’s functionality 
resides in the relations both between and inside the lower level aggregates. 

A medium’s functionality remains latent and its state only spatially 
distributed, if no event occurs in it. Consider an artifact (product), made of 
solid material, lying on a vendor’s shelf. It most certainly has some 
functionality as a product, because it was designed and manufactured to have 
one. However, the material (medium) does not manifest any other behavior 
than its stagnancy in terms of spatial distributions of state variables like 
thermodynamic state variables temperature, density and weight fractions of 
sub-materials. Apart from its functionality as an artifact, originating from 
human, there is in the material a potential for some spontaneous phenomena to 
occur. If, for instance, the material is heat conducting, there is potential for heat 
conduction to take place. Heat conductivity is one of the material’s inherent 
functionalities embedded in its deeper structure. The deeper structure, of 
course, refers to macroscopic material as an aggregate of molecules or atoms. 

Because medium and event are inseparable, it can be assumed that the 
general-level purpose of medium has to do with potential events. One is thus 
tempted to propose that at least one, if not the sole, justification for medium to 
exist is to make advancing of events possible. Medium provides a potential for 
an event to occur by having a given structure and by being in a given state. 
Besides providing the potential for heat conduction to occur, a heat conducting 
material provides the cause for heat conduction to advance, if there is a 

Name (ID) = … 
Purpose = … 
Structure = … 
State = … 
Performance = … 

(a) (b) (c) 

Event
Event

Sub-event Sub-event 

Formalizing Waste Management56



temperature gradient in the material. As another example, consider a mixture of 
two components as a medium providing the potential for the two components 
to react chemically with each other. Besides providing the potential by having 
the given structure, the medium provides the phenomenon with the cause and 
preconditions, by having the components in proportions not corresponding to 
chemical equilibrium (the minimum of the Gibb’s energy) and by having a 
temperature level making the molecular level collisions sufficiently energetic 
for the chemical reaction to advance. 

The graphical notation of Medium is fully analogous to that of Event as 
shown in Fig.4-7. 

Figure 4-7. Graphical notation of medium: (a) single medium, (b) 
aggregate of two media, (c) template for characterizing a medium. 

4.5.3 Event-Medium composite 

Event-medium composites are, as the name implies, objects with a generic 
unit structure composed of an event and a medium interlinked by a relation of 
causal type. The properties of event and medium can be taken as two 
projections of the properties of the composite, viewing them from different 
angles and mapping into each other by the causal relation as depicted in 
Figure.4-8.

The rate at which an event advances at any moment is associated with its 
effect, which is a transition of the medium from a state to another. The cause 
for an event to advance is associated with a deviation of the medium’s state 
from a desired state. Preconditions for an event to advance come from the 
medium’s energy level. The causal relation, that is, how the rate of an event 
depends on its cause and preconditions is thus the same as how the change of 

Name (ID) = … 
Purpose = … 
Structure= … 
State = … 
Performance = … 

(a) (b) (c) 

Medium 

Medium 

Sub-medium 

Sub-medium 

57Modern Formal Methods and Applications



the medium’s state depends on its deviation from a desired state and on the 
medium’s energy level. 

Figure 4-8. (a) Graphical notation of event-medium composite. (b) 
Ownership relation as a network of mutual monitoring/manipulation links. 

Reality as a whole can be viewed as a single event-medium composite. In 
this holistic worldview both event and medium can be conceived of as 
aggregates of sub-events and sub-media, respectively, and these sub-objects as 
aggregates of even lower level sub-objects and so on. At any hierarchical level 
certain events and certain media are interlinked building up lower-level event-
medium composites. Not any event can link to any medium. Which events can
link to a given medium is dictated by the medium’s structure, which is where 
the medium’s potential to function is embedded. This potential has also been 
referred to as ownership relation [4,7]. By ownership one means the right or 
responsibility of a medium (or an event-medium composite) to manipulate its 
properties by providing an event the cause and preconditions to advance (see 
Figure.4-8.).  

Several sub-events can occur in a single medium. Because information 
about a particular sub-event is obtained indirectly by making observations 
concerning the structure and the state of the medium, the interpretation of 
observations may be difficult when several sub-events are occurring 
simultaneously in a single medium, as is often the case.  

A single event can occur simultaneously in several sub-media. The 
ownership relation is then between the event and the medium as a whole, that 
is, the aggregate of the sub-media. It is the medium as a whole, which provides 

Event Medium 

Event-Medium composite Purpose

Structure 

State 

Performance

Event-Medium composite 

Purpose
Structure 
   Preconditions 
   Cause 
   Effect 
   Causality 
State 
   Rate 
   Extent 
Performance

Detailing 

(a) (b) 

Formalizing Waste Management58



the cause and experiences the effect of the event. This applies even when one 
of the sub-media is conventionally viewed as ‘an actor’ and another as ‘a 
target’ or ‘a patient’. Such a view arises from the subject-verb-object structure 
of modern natural languages and has had a detrimental effect on our thinking 
[5, 6, 8]. The formal language built on PSSP ontology implements exactly what 
a language, which is in harmony with reality, should do: the central role should 
be given to the verb rather than to the noun. Quoting Bohm [6]: instead of 
saying ‘An observer is looking at on object’, we can more appropriately say 
‘Observation is going on in an undivided movement involving those 
abstractions customarily called ‘the human being’ and ‘the object he is looking 
at’. In PSSP terms, the undivided movement is the top-level event-medium 
composite involving an observation event advancing in a medium, which is an 
aggregate of ‘an observer’ and ‘a target’. Observation can occur only when the 
two sub-media make a whole. In other words, there is no ownership relation 
involved, and thus no manipulation of the properties of the medium (or the 
event-medium composite) can occur, if the two sub-media do not make a 
whole.

Figure.4-9 depicts three situations for characterizing the ownership 
relation: (a) full ownership in a truly homogeneous medium, like freedom of 
material or human mind to spontaneously reorganize, (b) socially controlled 
ownership in a pseudo-homogeneous medium, like restricted freedom to 
manipulate itself of an aggregate of humans, or an aggregate of humans and 
artifacts, and (c) indirect ownership across a boundary in heterogeneous 
medium, like interaction between interior and exterior of a process. 

Figure 4-9. (a) Event occurring in a single medium. (b) Event occurring 
simultaneously in two sub-media taken as a single (pseudo-homogeneous) 

whole. (c) Event (interaction across boundary) occurring in a 
heterogeneous medium. 

(a) (b) (c) 

Interior 

Exterior 

Interaction
across
boundary 

Pseudo-
homogeneous
medium

Homogeneous
medium

Heterogeneous 
medium

59Modern Formal Methods and Applications



Birth, survival and death of a particular event-medium composite follow 
from reorganization of medium. For illustrating this statement, consider a 
person reading a newspaper. In order that the reading activity can take place the 
person needs to have a newspaper. A medium capable of manipulating its 
properties by providing the reading activity (information transfer) with a cause 
and preconditions to advance should be borne first. We may say ignoring the 
surrounding air and a proper lighting that a person and a newspaper need to 
own each other to make up an aggregate medium having that functionality. We 
may also say that after the reading activity (information transfer) has reached 
its desired state, the ownership, and thus the existence of the aggregate 
medium, is no more necessary for that purpose.  

Continuing the previous example, the primary cause for a person to own a 
newspaper is his being aware that there are newspapers equipped with 
probably attractive information, while the primary cause for a newspaper to 
own a reader is its being meant to be read and to have its information content 
sufficiently attractive. In the realm of inanimate objects, random movement 
rather than conscious search is the mechanism for objects to find each other. 
After the ownership relation has formed between a newspaper and its reader, 
the cause for a reading activity within the aggregate medium (like that in 
Figure.4-9 (b)) comes from the medium’s spatially unevenly distributed 
information content, or a lack of information on the reader’s side. Both the 
level of intelligence of the reader and the legibility and comprehensibility of 
the text are included in the preconditions of reading. An obvious effect of 
reading is that the reader becomes more informed. Information flow differs 
from material and energy flows in the fundamental respect that information 
output does not decrease a medium’s information content. Thus reading has no 
effect on a newspaper’s information content. However, as a part of the 
aggregate the newspaper ultimately loses its primary functionality (although it 
may still retain other useful functionalities). This happens when there is no 
more cause and/or preconditions for reading left in the aggregate medium. 
When detached from the aggregate the newspaper has, of course, all its original 
functionality left to utilize by another reader.  

Figure 4-10. Life cycle of an event-medium composite. 

Newspaper 

Owner/Reader
Information transfer 

Time axis

Used newspaper 

Owner

Newspaper 

Person 

Used newspaper 

Informed person 

Formalizing Waste Management60



A newspaper and especially its information content remain intact under 
reading, because information flows in one direction only and does not imply 
simultaneous material transfer. The electromagnetic radiation (light) necessary 
for carrying the information is not generated but only reflected by the paper-ink 
medium and does not alter the medium’s structure or state. From the effect’s 
perspective it may be tempting to say that the reader monitors the text, and the 
text manipulates the reader. A more appropriate way is to say that reading 
(information transfer from newspaper to reader) advances in the aggregate 
medium, which is the manifestation of the medium’s right to manipulate itself 
for moving it towards the desired state. Whenever there is actual material or 
energy transfer involved between an observer and the object being observed, 
also the latter experiences an effect. Maybe quantum measurement and the 
associated Heisenberg Uncertainty Principle is the best-known example. When 
an object being observed is human, the ‘observer effect’ is known to be 
present. Even prediction of human behavior, when made public, is known to 
have an effect on the actual behavior.  

4.5.4 Process

Reality as a whole, if viewed as a single event-medium composite, has no 
bounds. On the other hand, if there is a boundary, there obviously should be 
something beyond the boundary and possibly some interaction across the 
boundary. If this view is taken, reality as a whole is rather a process, that is, an 
aggregate of what remain on both sides of the boundary, together with the 
boundary itself and the interaction across it.  

Boundary is a peculiar object (see e.g. Smith and Varzi [9]). Boundary can 
be viewed as an intangible medium and as such perceptible only via the media 
on both sides. Some boundaries are just mental constructs and thus related to 
the way human reasons about reality. On the other hand, most if not all event-
medium composites at lower levels of object hierarchy coexist as aggregates, 
which manifest their structure and obtain their identity via boundary. These 
aggregates are either processes or products having the generic unit structure 
composed of boundary, interior, exterior and interaction. As an illustration, 
consider an artifact (product), made of solid material. It manifests its structure 
via the solid-air interface, which is the boundary to be perceived by seeing or 
touching the solid material on the other side. On the other hand, the boundary 
of a project (which is a process) has no shape and cannot be perceived but only 
reasoned as a label specifying which objects there are in the interior and which 
belong to the exterior.  

61Modern Formal Methods and Applications



Interaction is an event of specific type. It is a material, energy or 
information transfer phenomenon or activity occurring across a boundary 
between the media on both sides. Thus the medium necessary for providing a 
potential for interaction to occur is an aggregate of the internal and the external 
media and the boundary. The cause for transfer phenomenon or activity is a 
deviation from a desired state of the aggregate. Usually this means that there is 
a lack of material, energy or information on either side. Boundary’s 
contribution for the causal relation is in controlling the transfer rate.  

Boundary obtains its properties like shape and permeability from the media 
on both sides. The shape of the solid-air interface of a solid piece of material 
comes from the spatial distribution of the solid material. Boundary may be 
selective meaning that the transfer rates of different material, energy or 
information types differ from each other. That a solid piece of material can be 
touched stems from the fact that the air on one side of the boundary is fully 
permeable to hand while the solid material on the other side is fully 
impermeable. That a piece of metal feels different from a piece of wood on 
touching comes from various properties of the solid material like its surface 
pattern and heat capacity and the resulting differences in energy transfer across 
the boundary. If a piece of material deforms on touching, we may say that its 
boundary is permeable to mechanical energy. What sort of information is 
transferred, and at what rate, across a project boundary is a matter of agreement 
made between the human resources in the project’s interior and those in the 
exterior.

Figure 4-11. Process viewed as an aggregate of three event-medium 
composites: Interior, Exterior and Interaction-Boundary. 

Internal medium Internal event 

 Interaction 
Process

External event External medium 

Interior

Exterior

Boundary 

Formalizing Waste Management62



may manifest itself as a process. This is, when an artifact (a product of human 
origin) is under design or being used. In both situations a product needs to be 
understood to be a process, where an internal medium with specific built-in 
functionalities interacts with an external medium, which is the medium of a 
customer’s usage process. When designed and implemented but not in use, an 
artifact is mostly passive and just waiting for an ownership, which would 
appreciate its specific functionalities and make the intended interaction active. 
In this passive state, like when a fresh newspaper is still in a mailbox, a product 
is just a medium equipped with a boundary, which gives it an identity as a 
product.

By the same token, during certain phases of its life cycle a process may 
manifest itself as a product. A process is the product (artifact) of a process 
design or embodiment project. Process refers then to documented information 
about the process to be built, or to the embodiment to be taken into use. 

4.5.5 Product

At the level shown in Fig.5-1, process and product are structurally 
indistinguishable. The same graphical notation can be used for product. The 
difference is in how the structural parts, especially interaction, in reality 
manifest their way of being. During certain phases of its life cycle a product 

4.6 Application to waste management

4.6.1 What is waste? 

‘Waste’, or its equivalent in other natural languages, is a word used to refer 
to objects regarded as waste by people in various situations in various cultures. 
Thus, wastes are linked to human assessment, and their existence to human 
civilization. The concept of waste has a meaning only in the context of 
artifacts, which are objects of human origin. 

In this paper, a new set of definitions of waste is proposed. Based on that 
set a new perspective into what is called waste management is opened. A 
particular emphasis is on changing the focus more onto proper design and 
manufacturing of artifacts for preventing or minimizing waste formation from 
techniques of treatment of existing waste. 

4.6.2 Traditional view 

The following list [10] puts together a set of definitions of waste launched by a 
few major organizations:  

63Modern Formal Methods and Applications



EU: ‘Waste shall mean any substance or object in the categories set out in 
Annex I which the holder discards or is required to discard.’ 
OECD: ‘Wastes are materials other than radioactive materials intended for 
disposal, for reasons specified in this Table.’ 
UNEP: ‘Wastes are substances or objects, which are disposed of or are 
intended to be disposed of or are required to be disposed of by the provisions of 
national law.’

Quoting earlier papers [8, 11] the common denominator in these definitions is 
that waste is something that the holder has disposed of/discarded or is going to 
dispose of/discard. Principally, both ‘dispose’ and ‘discard’ mean 
‘abandonment’, perhaps ‘disposal’ is more putting it in a suitable place, while 
discard has the connotation of being useless or undesirable/ ‘tossed aside’. It 
was assumed that the purpose behind the use of the expression ‘discard’ instead 
of ‘disposal’ by the EU Directive was to broaden its reach, and in the final 
destination of the discarded things. An interesting approach is to try to replace 
the term ‘waste’ with ‘a thing that the holder discarded/intends to discard’. 
‘Minimizing the amount of things that the holder intends to discard’ does not 
appear to embody the essence of waste prevention; it can be argued that it 
encourages re-use, recycling or recovery measures. The type of definition, ‘a 
thing what its holder discarded’ assumes that the waste is already there and the 
holder intends to dispose of it, while the principal meaning of waste 
minimization is to avoid waste production at the source. This waste definition 
thus fails to support the highest-ranking waste management option. The 
problem with the waste definitions listed above, is that they deal with existing 
waste. Such definitions seem to accept the fact that people/institutions throw 
things away, and therefore, existing legislation appears to be concerned with 
the ‘what to do with it’-dilemma. This is understandable, as the main goal of 
European legislation on waste is the protection of public health and the 
environment. To conceptually describe waste is not the main purpose of these 
definitions. The label ‘waste’ does not necessarily mean that the thing is an 
ultimate waste; rather it means that it will be treated as waste. It appears that it 
is not feasible to come up with a comprehensive definition that unambiguously 
categorizes every discarded object as waste or not.

Quoting further the same source [loc.cit.], the goal of European waste-related 
legislation is to protect public health and the environment, and so far it has had 
a significant impact. However, given the lack of precision of the definition of 
waste in the European Community’s Directive each Member State makes a 
different interpretation of the definition of waste with regard to specific 
materials, resulting in trade barriers and the impact of this upon the recycling 
industry is not to be underestimated. Under the present European definition of 
waste, recoverable material is seen more as a potential pollutant than as a 
potential raw material. As such, its movement between EU and non-OECD 
states falls under the restrictive conditions of EEC Council Regulations, if they 
are ‘‘hazardous’’. The essence of the legal definitions is that the owner does 

Formalizing Waste Management64



explain why the owner does not want it. A proposed definition for waste is: 
‘‘Either an output with (‘a negative market’) no economic value from an 
industrial system or any substance or object that has ‘been used for its intended 
purpose’ (or ‘served its intended function’) by the consumer and will not be 
reused’’. The second half of the definition suggests that the product was 
designed for one single purpose, and as soon as the purpose was fulfilled it 
turns to waste. It may still be functional, but it is no longer used nor re-used. It 
may also mean that the product lost its original properties and cannot fulfill its 
function anymore. On the other hand, the first half of the definition suggests 
that waste is a substance that no one ever wanted; it was created to be waste. 
The obvious question is why? Another problem with most of these definitions 
is that they do not suggest that creating waste is an unsustainable option. It 
seems acceptable to discard something no longer wanted, or to create 
something with no eventual long-term use at all. Yet, there are other types of 
wastes.  

4.6.3 Waste as PSSP object 

not want it; thus waste exists only where it is not wanted. Other definitions also 

The traditional way of defining waste can be viewed as an inductive search 
of common denominators for objects regarded as wastes. The systematic search 
of a new definition of waste on PSSP basis comprises identifying the candidates 
of waste as belonging to one of the few fundamental PSSP classes: Event-
Medium composite, Product or Process, and characterizing them in terms of 
the universal properties: Purpose, Structure, State and Performance. This top-
down approach starts with Purpose as an object’s justification of existence. The 
following proposition results immediately:  

An object, which does not deserve being existent, can be labeled as waste. 

But being waste is a human assessment. It is not in the hands of human to 
decide upon whether or not objects in general deserve being existent. In this 
respect there is, however, a difference between natural and artificial objects. 
The difference is in the nature of the ownership relation. The ownership 
between a human being and a natural object can be thought of being 
spontaneous and shared among all human beings, while between human beings 
(individuals and organizations) and artifacts it is given, taken, or traded, and 
private. For instance, people, like all creatures, can freely breath the 
surrounding air, that is, to manipulate its state in terms of the state variables 
like oxygen, carbon dioxide and water content. But no one can privately own 
all the air. Air can be used as a raw material for making artificial products like, 
say, liquefied air, which can be privately owned. It is possible that such a 
product appears to be of no use and not to deserve being existent. But it is air in 
the role of an artifact only, which can be labeled as waste. Based on the 
difference in the nature of ownership relation a more narrow proposition results 
(see Fig.12(b)):

65Modern Formal Methods and Applications



An artifact, which does not deserve being existent, can be labeled as waste. 

There still remains an ambiguity due to the fuzziness of the borderline 
between natural objects and artifacts, which cannot be fully eliminated, and a 
possibility for ethical problems to arise from the ambiguity, which needs to be 
recognized. As discussed earlier, purpose is the property, which can be used to 
draw a line between natural and artificial objects. An object’s belonging to 
either of these sub-classes may be tentatively tested by whether or not it is 
possible for human to know its specific purpose.  

With an artifact it is the matter (right or responsibility) of human in the role 
of a private owner (designer, producer or user) to decide upon its purpose. To 
decide is to manipulate. Thus, the one who decides that the purpose of an 
object is that and so can be said to know that the purpose is that and so. People, 
who are not private owners of a particular artifact, may recognize it as an 
artifact by its structure or state (or behavior), and on that basis know that it 
must have a purpose assigned to it by its private owner, although they do not 
necessarily know what it is. For instance, parts of technical artifacts have 
specific purposes, assigned to them by their designers. Typically these are not 
known to ordinary people, not even in the role of a private owner of such parts. 
In many cases people even do not care to know the purpose, if a part behaves 
as it should and thus provides the device, that it is a part of, with acceptable 
performance. Yet, by knowing that a part behaves properly, they know that 
there must be a specific purpose (functional requirement) assigned to the part.  

To summarize, an artifact’s owner has a right to manipulate the artifact 
including decision upon its purpose. Under certain constraints certain types of 
natural objects can become privately owned and thus be assigned a purpose. 
Deciding upon an artifact’s purpose (or assigning a purpose) is to manipulate
an artifact in the same sense as changing an artifact’s structure is to manipulate 
an artifact. Manipulation is usually intentional and built on some knowledge. 
Characterizing an artifact’s purpose does not imply ownership. In order to 
characterize, a person monitors (perceives and reasons about) an artifact, or 
becomes informed by the owner. In most cases monitoring does not involve 
manipulation. The information internalized, that is, extracted or received and 
personally interpreted, becomes the person’s subjective knowledge of the 
purpose. That knowledge is the person’s capability of characterizing the artifact 
(see Fig.12(a)). So, people either know or do not know what is the purpose of 
an artifact, and in the case of not knowing, they know that they possibly could
know if informed properly. Also people know that they possibly cannot know 
what is the purpose of a natural object. People know that it is possible for 
human only to hypothesize, not to know and least to decide, what the specific 
purpose of a natural object might be. Thus, it is obvious that waste cannot be 
defined without reference to knowledge.

Formalizing Waste Management66



When knowledge, which leads to characterizing an artifact as a candidate 
of waste, is externalized in PSSP format, it either has its Purpose specified as 
‘None’ or its Performance specified as ‘Unacceptable’. When an artifact 
acceptably has no purpose, its performance does not matter. An artifact with 
unacceptable performance always has a well-specified purpose. 

Figure 4-12. (a) Externalizing private knowledge. (b) Information content 
of a document 

An artifact becomes a candidate of waste when manipulated by its owner 
and characterized as having no justification to survive. The crucial question is, 
what should be required of the knowledge that the acts of manipulation and 
characterization are based on, in order for the acts to be justifiable leading to 
declaring an artifact as waste. This question extends the task of defining waste 
one level up (to metalevel) and calls for metaknowledge, that is knowledge of 
knowledge. At the same time the definition of waste expands from an 
individual’s perspective to a society’s perspective. To become assessed at a 
society’s level (metalevel), personal knowledge both at the base level and the 
metalevel needs to be shared by externalizing as information (see Figure.4-
12(b), 4-13(b)). 

Person

Manipulating/
Characterizing 

Artifact 

Document

 Externalizing 

Reasoning
Purpose  
Structure
  Preconditions  
  Cause  
  Effect 
  Causality (Rationale)= ??
State
Performance 

Artifact
Purpose = None (candidate for waste)
Structure
State
Performance

(a) (b) 

Figure 4-13. (a) Externalizing metaknowledge. (b) Information content of a 
metadocument.

Private ownership relation, once formed, is a restricted relationship. An 
owner of an artifact has no unlimited right to decide that the artifact has no
purpose in general. This applies especially for individuals and small groups as 

Society 
Characterizing 

Document

Metadocument

 Externalizing 

Document  
Purpose = To justify the artifact’s declaration as waste
Structure = Incomplete: No rationale given
State = Not working
Performance = Unacceptable for the purpose

(a) (b) 

67Modern Formal Methods and Applications



private owners. Such an owner, doing so, would make decisions on behalf of 
potential other owners. An artifact could be declared terminally useless, and 
thus waste, on possibly selfish grounds to get rid of the artifact. How 
comprehensive, then, a human medium should be to have an unquestioned right 
as an owner to declare an artifact as waste? Should such decisions be made on 
local society’s basis, nationally or globally? This must be dependent on the 
type and quantity of waste. 

A private owner can freely argue that an artifact has no purpose for him,
because he has no (more) use for it. What he then actually argues, is that there 
is no (more) justification for a given event-medium composite to survive For 
instance, although a newspaper/reader aggregate retains its potential to keep up 
reading activity going on even after everything has been thoroughly read, the 
rate of information transfer ultimately approaches zero. Beyond some point the 
composite does not perform satisfactorily in this respect any more. This state of 
affairs generates a need for the medium to do something about (manipulate) its 
own structure, if it aims to survive. In the newspaper/reader aggregate the 
active part is of course the reader. In principle his choices to manipulate are 
either to maintain the aggregate medium’s topology and the associated 
ownership relation, or to cut the ownership relation to kill the composite as 
illustrated in Fig 10.  

A newspaper is an artifact, which after being read is no more of use as an 
information carrier for its owner and is, when assessed from this perspective 
only, an obvious candidate for a waste. However, as discussed earlier, its 
information content remains intact on reading and about the same applies for 
the carrier material. A newspaper thus retains functionalities, which make its 
continued existence in the same or in another ownership relation justified. For 
instance, it can be stored or circulated for its information content. Suppose, that 
an owner decides to maintain the ownership relation for a while and to burn his 
newspapers in a fireplace. He uses his (assumed) right to manipulate the 
artifacts he owns. Upon burning a newspaper loses its identity. The medium, 
which originally had newspaper and reader as its primary constituents, splits 
and what was paper and ink (with embedded information) becomes an 
aggregate of materials including gaseous products and ash. 

The materials formed on burning are still artifacts, but probably useless to 
the owner except possibly for their heat content. They are not artifacts in the 
sense of having purposively designed properties. Returned to the atmosphere 
and soil they become rehabilitated into natural products. At the same time the 
private ownership and the associated responsibilities dissolve, which appears to 
make burning a handy means for individuals of getting rid of old newspapers. 
In general the act of rehabilitating is not based on an individual’s decision, but 
a decision of a society. This is because the decision should be based on shared 
knowledge. After the primary use of artifacts, not any exploitation of the 
remaining functionalities in a large scale is permitted by a society. In the case 
of used newspapers acceptable ways include de-inking and recycling to 

Formalizing Waste Management68



papermaking process, converting cellulose to other useful chemicals in various 
chemical or biochemical processes, and releasing the bond energy, stored in the 
molecular structure of lignocellulose, by incineration to make heat. Incineration 
gas and ash are unavoidable byproducts. If they cannot be disposed of as such, 
they are unwanted and thus waste. In individual cases, however, the fuzziness 
of the borderline between artifacts and natural objects may be exploited. For 
instance, after becoming a private owner of an amount of wood material, the 
owner has a right to manipulate (process) it. Upon processing, the material 
loses its original structure and identity, and some byproducts are generated, 
which cannot be utilized in the process. Because the byproducts have their 
origin in wood, there is a temptation to argue that they represent a part of the 
wood material that was actually never privately owned and thus remained 
natural and thus can be freely returned to where they came from. Untreated 
exhaust gas of combustion engines or discarded empty beer cans are two 
further examples of make-believe natural objects. 

Reading a newspaper is not different from pouring milk form a container 
when viewed as an act of consuming the content of a packaging. The difference 
is in what is transferred: information in the former and material in the latter. At 
the end of consumption activity, a milk container is empty. It can be said to 
have less functionalities left than a newspaper, which still contains its 
information, and thus to have less justification for existence as an artifact. 
However, the information content would make a newspaper more valuable 
(less obvious candidate for waste) than a milk carton only, if it were a unique 
exemplar instead of just one of thousands of copies. If one copy is burned, the 
same information is still available in thousands of others. In this sense, 
newspaper can be regarded as a packaging and to belong to a different category 
than books for instance. As a packaging the possible constraints for destroying 
it are purely technical rather than ethical ones, which is opposite to what holds 
for books. We may conclude: 

An artifact having no purpose for its owner can be labeled as waste, if 
accepted by society. 

The ultimate reason for an artifact to become a candidate for waste is its 
poor performance. Performance can appear poor when assessed against any of 
the criteria set and committed to by the designer, maker or user of an artifact. 
An artifact with poor performance behaves in a manner, which makes it 
unwanted to its owner. An artifact either lacks a required functionality or owns 
unwanted functionalities, which become manifest in unexpected situations. 
Poor performance of an artifact results from its structure being improper in the 
artifact’s intended usage process. An improper structure can become manifest 
already before an artifact is subjected to use. An artifact may appear on 
inspection to be improperly designed or made. An initially proper structure can 
deteriorate in use due to wear or to being used improperly, and become, often 
unexpectedly, manifest as breakdown of the usage process. Obviously each of 
the processes of designing, making (manufacturing) and using artifacts can be 

69Modern Formal Methods and Applications



responsible of poor performance. These processes are central for waste 
management and actually are the context, in which the concept of waste obtains 
its full meaning.  

Including the potential for improving the processes of designing, making 
(manufacturing) and using of artifacts, the proposition for a definition of waste 
can be further narrowed. At the same time the definition of waste becomes 
inseparable from the definition of waste management. This is only natural by 
the same token as waste is inseparable from human. If there is no means for 
manipulating an artifact’s purpose or structure to make its performance 
acceptable, we end up with the following definition:  

An artifact whose performance is terminally unacceptable is waste. 

To express this definition in terms of conventional classes, let us return to the 
waste taxonomies proposed elsewhere. The traditional taxonomies classify 
wastes by phase of material (solid, liquid, gas), by origin  (processing, 
household, packaging, or cleaning; construction and demolition; emissions 
treatment; energy conversion, etc.), or by functionality (inert, combustible, bio-
degradable, hazardous, nuclear, etc.) [10].  

Take a newspaper and a milk carton as examples. By traditional taxonomy, 
they are solid and combustible and originate from household and packaging. 
By the new definition, having passed through the consumption process they are 
artifacts left with no performance, when assessed by the owner against the 
original purpose. Being combustible they still may have an acceptable 
performance with respect to combustibility as a secondary functionality, if used 
as a fuel. If the owner does not want to use the artifact, having fulfilled the first 
purpose, for that secondary purpose, he obviously regards its performance 
unacceptable. But due to this secondary functionality (and possibly others), the 
performance is not terminally unacceptable. Newspaper and milk carton are not 
yet waste for the society. They are justified to survive at least in order to serve 
for burning as the secondary usage process, and for this (or some other) 
purpose their ownership should be traded. If the owner has a customer ready to 
accept the ownership and its associated responsibilities, the owner has a right to 
define the artifact as waste of his usage process (reading or milk consumption) 
and trade its ownership. What the original owner would get from this trade is 
the freedom from the ownership. The other alternative is of course that the 
owner recognizes some of the secondary functionalities himself and uses the 
artifact in a proper usage process, provided that it is accepted by the society. 

The considerations above concerning the definition of waste can be summed up 
in a convenient format, following the waste taxonomy proposed [12]. Based on 
the reason why an artifact ends up becoming waste, the following four top-
level classes arise: 

Formalizing Waste Management70



Class 1: An unwanted unavoidable artifact created with no purpose.
Class 2: An artifact with no secondary purpose having fulfilled the 

primary purpose. 
Class 3: An artifact with unacceptable performance assessed against its 

purpose.
Class 4: An artifact with acceptable performance, but not used for the 

intended purpose.

These classes represent the common denominators, which are argued to offer a 
holistic view into the field of waste management and a key for its 
systematization. When descending to the lower levels of taxonomy, the 
conventional classes of waste are encountered.  

According to the taxonomy [loc.cit.] the following sub-classes of waste appear: 
‘To Class 1 belong outputs with negative market value, non-useful by-products, 
emissions, processing and process wastes, cleansing wastes, etc.; Class 2 is the 
group of single use or disposable products; most of the packaging, single use 
cameras, disposable diapers, etc.; Class 3 comprises non-functional, obsolete 
products, old furniture, discarded household appliances, non-rechargeable 
batteries, demolition waste, spoiled products, etc.; Class 4 contains products 
used in excess, or simply products that the owners do not wish to own 
anymore.’  

By the PSSP approach the idea of what can be waste easily reaches beyond the 
traditional scope. In particular, consider human being itself as a process. An 
individual human being is a process, whose interior is an event-medium 
composite of mental/physico-chemical phenomena occurring in the mind/body 
medium. The products of this process are both of material and information 
type. Theoretically, when an individual is viewed in isolation, both the human 
process and its products are natural. When we view an individual, as we have 
to, in the context of the society, which is an artificial collective human process, 
also his outputs, while individually natural, turn to artifacts and thereby to 
candidates of waste. What is important here is to realize that also information is 
an artificial product and can have properties by which it may become labeled as 
waste. However, information waste and information waste management are not 
a part of the traditional waste management discourse. 

It should be mentioned that information waste has not been any major issue 
under systematic scrutiny in the field of information science and technology 
either. Karabeg [8] proposes four criteria for assessing performance of 
information, one of which is nourishment. Using a food metaphor he argues 
that embedded in factual information there are ‘information nutrients’ and 
‘information poisons’ that we usually are not aware of. Obviously ‘poisonous’ 
information would belong to Class 3 above. We leave the discussion of 
information waste outside the scope of this paper. Not because it were 
uninteresting, but because it deserves being discussed on a separate forum. 

71Modern Formal Methods and Applications



4.7 What is waste management? 
4.7.1 Traditional view 

Quoting earlier papers [10,11], in Article 1 the European Council Directive on 
waste  defined waste management as: ‘‘Waste management shall mean 
collection, transport, recovery and disposal of waste, including the supervision 
of such operations and after-care of disposal sites’’. This definition of waste 
management has the same ‘organizational’ approach as the definition of waste. 
It is concerned with the existing amount of waste, trying to minimize the 
human-waste or environment-waste interface, to minimize potential impact. 
The Council Directive on waste prescribes that waste is to be recovered or 
disposed by means of the most appropriate methods and technologies to ensure 
a high level of protection for the environment and public health. In this context, 
‘the environment’ means ‘the whole of the natural world inhabited by living 
organisms, especially considered vulnerable to pollution’. 

On the other hand, the ‘waste management hierarchy’, which is a widely 
accepted list of preferred waste management options, gives priority to waste 
minimization, which includes changing processes to prevent waste. Here, there 
is some conflict between the two interpretations of waste management. The 
definition of waste management suggests its role to be merely to get rid of 
existing waste, while the hierarchy suggests that, ideally, we should avoid 
having (producing) waste. How then shall we understand waste management? 

Semantically, the expression is an interesting use of words. ‘To manage’ is, 
according to the Merriam Webster On-line Dictionary ‘‘to handle or direct with 
a degree of skill, to work upon or try to alter for a purpose, to succeed in 
accomplishing or to direct or carry on business or affairs’’. While 
‘management’ is defined as: ‘‘judicious use of means to achieve an end’’. It 
appears from these definitions, and it is also our understanding of management 
as presented in an earlier paper [13] that management is control of activities, 
while the expression of ‘waste management’ syntactically suggests that it is 
control of materials. 

4.7.2 Waste management in PSSP format 

Possibility for a causal relationship to be established between an event and 
a medium is the pre-requisite for an event-medium composite to build up. 
Ownership is a right or responsibility of an event-medium composite to 
monitor and manipulate itself. Upon manipulation, properties of both the 
medium and the event change observing some causal law. When the medium is 
homogeneous in the sense that it is not an aggregate of (spatially) separate sub-

Formalizing Waste Management72



media, the right (at least in principle) is unlimited like when homogeneous 
material approaches thermodynamic equilibrium (entropy principle of Nature) 
or an individual’s (embodied) mind reorganizes itself in thinking (principle of 
freedom of thought). In the domain of waste management the medium is a 
heterogeneous aggregate of human and artifact. Because human being cannot 
be defined in isolation, but always as a member of a society, the ownership 
over an artifact and the associated right and responsibility to manipulate it is 
under social control. This makes waste management ultimately a social rather 
than an individual activity. 

The PSSP-based classification of wastes is a sound starting point for 
systematizing waste management. Taxonomy on the basis of why an artifact 
ends up becoming waste will yield classification of activities aiming either to 
eliminate reasons for artifacts to turn to waste of any of the four types, or to do 
something about already existing wastes of these four types.  

Waste under Class 1 is created as an unwanted but not avoided output with no 
purpose. Most technical processes aim at specific products and can seldom 
avoid producing unintended, often undesired, by-products that we call waste. 
This applies to all industrial processes and technical devices, especially those 
using fossil fuels. In these processes the material manipulated typically 
undergoes a profound structural change. The products and by-products may be 
either material or energy or both. For instance, automobile exhaust gas is an 
unavoidable purposeless material by-product of a process (or device) producing 
mechanical energy (via heat energy) as its product (see Figure.4-14). 

Figure 4-14. Society’s stand on exhaust gas emissions. 

Solid 
Internal 
phenomena 

Monitoring/ 
Documenting 

Combustion process 
interior 

Process owner 

Gas

Exhaust gas 
Purpose = None
Structure
State 
  Nox = xxx
  CO = xxx
Performance Monitoring/ 

Documenting 

Society

Combustion process interior 
Purpose
Structure
State
Performance = Unacceptable

Document Document 

At the highest level of waste management the unavoidability of an unwanted 
output should be questioned. Can the process or device be designed, built,
retrofitted and operated such that an unwanted output is eliminated? If the 
answer is no, can the output be reduced? If not to the extent, which satisfies the 

73Modern Formal Methods and Applications



society, then the process or device may not have justification for existence 
(Figure.4-15). However, an unwanted output of one process may be a valuable 
input for another. A viable solution might then be found by searching for 
possibilities of waste-trade.

Figure 4-15. Waste management by retrofitting to reduce harmful 
components’ release. 

Waste under Class 2 forms after an artifact has fulfilled its single intended 
purpose. The best example of this category is packaging. It is already at the 
design phase that waste management should take the responsibility of the fate 

Solid 
Internal 
phenomena 

Manipulating structure 
of solid 

Combustion process 
interior 

Process owner 

Gas

Solid 

Exhaust gas 

Air

Fuel

Burning 
phenomenon 

Catalytic 
conversion 

Combustion process 
interior 

Process
retrofitting 

of packaging after it has fulfilled its primary purpose. The responsibility is 
taken by designing packaging to have appropriate secondary functionalities 
embedded in its structure. When the most probable fate is to end up in landfill,
proper secondary functionalities would include such as low weight, small 
volume, collapsible shape and flexible walls. If material recovery seems 
feasible, it is essential to use materials that are the most economical to recycle. 
If incineration is planned, it is vital to omit chemicals that may lead to toxic 
emissions. Incineration as an option of waste management is illustrated in the 
Case to follow. 

Waste under Class 3 is created, when an artifact does not behave, as it is 
required. As discussed earlier, each of the processes of designing, making 
(manufacturing) and using artifacts can be responsible of poor performance. 
From an artifact’s life cycle perspective waste management should focus on an 
artifact’s design stage and seek to produce goods with a maximum lifetime. 
Most products, however, have a discrete lifetime and after this time, often 
cease to be useful. Design should focus on the ease of assembly and 
disassembly so that even if the product as a whole ceases to be useful, some 
parts of it still can be utilized, as illustrated in Figure.4-16.

Formalizing Waste Management74



Figure 4-16. Waste management by ideal design: Useless artifact 
disassembles into useful parts. 

Waste under Class 4 is created because its owner does not use an artifact for its 
intended purpose. The discussion in [12] illustrates the kinds of waste 
management activities, which arise in this category. ‘Gourlay considers the 
small amount of mustard left on a plate at the end of a meal. This is neither 
useless, nor has it lost its properties. It has become waste because the owner 
failed to consume it. Gourlay also points out other cases, such as agricultural 
production and fish farming, when substances that fail to reach their target 
(nitrates leaching into soil, food and chemicals fed to fish ending up at the 

Part1 

Event 

Monitoring/ 
Documenting 

Artifact

Owner 

User

Artifact
Purpose = xxx
Structure = Deficient
State = Improper functioning
Performance = Unacceptable

Document 

Part2 

Part1/
User1

Event2

Monitoring/ 
Documenting 

Owner 

Part1 and Part2 
Purpose = xxx
Structure = OK
State = OK
Performance = OK

Document 

Event1

Part2/
User2

Artifact
disassembly 

bottom of the sea) are wasted not because the owner failed to use them, but 
because he used them in excess (see Figure.4-17). Both of these waste types 
defy ‘the owner discards or wants to discard’ class of definition. Did the farmer 
want to discard useful fertilizer? Did the fish-farmer have any intention of 
discarding perfectly useful fish food? Clearly not, but the fish food dispersed to 
the bottom of the sea is unavailable to the fish; the fertilizer washed down the 
watercourses is wasted and non-retrievable by any means. Why did they 
become waste?’ 

Figure 4-17. Example of waste formation due to excessive use of artifact. 

Fish food 

Fish
Material transfer 

Time axis

Excess fish food 

Fish

Fish food 

Fish

Wasted fish food 

Nourished fish 

75Modern Formal Methods and Applications



Waste of the above type invites waste management to focus on legal,
educational and ethical issues. While there is a possibility of controlling 
consumers through legislation or by the use of motivational tools, the best way 
to influencing people is by raising consumer awareness. By increasing their 
knowledge through education, consumers become aware of their actions and 
the possibilities and responsibilities in environmental protection. Legislation is 
essential, but the greatest gains will be achieved through a well-informed, 
environmentally conscious, ethical public. 

4.8 A case 
Let us start by considering the natural ownership relation between paper 

and the surrounding air. There is a potential for some physico-chemical 
phenomena to occur in this medium but usually the preconditions are minimal 
and practically nothing happens. When used newspapers keep on accumulating, 
the medium’s inertness creates a problem, which soon becomes a waste 
management issue. Society needs to make a decision what to do with 
accumulating newspapers. Various choices exist. We do not consider in this 
paper whether some alternative might better than another. From the point of 
view of demonstrating the power of the PSSP formalism, any choice will do. 
So, we pick up incineration.

The PSSP formalism does not pose any restriction for where to start 
modeling the case. So lets start from an easy end that has been treated already 
earlier, a person reading a newspaper. As discussed, the person and the 
newspaper make up an aggregate medium in which the reading activity 
advances. After some while the reading person feels that he has extracted 
everything essential from the information content and ceases the activity (see 
Figure.4-18). From that on the paper is useless for him. It has become a 
candidate for waste. The problem to solve is, from all such readers’ 
perspective, how to get rid of the old newspapers. 

Figure 4-18. Progress of information transfer from newspaper to reader on 
reading 

Newspaper 

Owner/Reader
Information transfer 

Start End
Time axis

Used newspaper 

Owner

Formalizing Waste Management76



While in theory all used newspapers could be burnt in private fireplaces by 
individual owners, it cannot be the ultimate newspapers incineration method. 
Incineration needs to be done under society’s control. One important reason for 
that is the risk of pollution due to harmful releases. That is why, in modern 
society, strictly controlled incineration plants are the preferred solution. This 
would give an opportunity for individual newspaper owners to trade the 
ownership with an incineration company (Figure 4-19). 

Figure 4-19. Trading ownership and transferring used newspapers to a 
new owner. 

Taking a view from the other end of the case, a human (or social) medium, 
which is an aggregate of the incineration process owner and the rest of the 
society, keeps up an activity, which can be called social control. It legalizes the 
ownership transfer concerning used newspapers. It poses conditions for, and 
keeps the society informed about, the incineration business and its social and 
environmental impacts. The process owner, meaning the whole personnel 
responsible of running the business, acts as a link between the society and the 
incineration process (Figure.4-20).

Figure 4-20. Linking social control and process control. 

Prior to landing to incineration as the waste management option, the 
society has identified the used newspapers as waste of Class 2, that is, artifact 
having fulfilled its primary purpose and not having been assigned a secondary 
one. The decision to make at this stage is whether to declare the material as a 

Original owner 

Potential new owner 

Ownership trading/Newspaper transfer 

New owner 

Used newspaper 

Used newspaper 

Ex owner 

Time  

Process owner 

Other people 
Social control 

Process owner 

Process
Process control 

natural product, which of course is not a realistic choice, or to assign it a 
secondary purpose based on the remaining functionalities. The decision should 
be based on knowledge. Having knowledge is being able to build scenarios for, 

77Modern Formal Methods and Applications



or simulate, the various options. In PSSP terms, knowledge is being able to 
specify the attributes of each of the objects involved. What is especially needed, 
is knowledge of the causalities/rationales of all the relevant events involved, 
both physico-chemical phenomena and human activities. 

Although incineration is a complex process, we may still approach its 
description by starting from the simple event-medium composite depicted in 
Fig.19, to the right. However, a much more detailed description of the 
composite, than in the case of reading a newspaper, is necessary. There are 
important sub-events, whose description implies including in the model several 
other sub-media. The medium for the burning phenomenon is the medium of 
the incineration process interior and includes, besides used newspaper, also the 
other participating material components, both the reactants and the residues. 
The medium of the incineration process exterior is that of the whole 
‘infrastructure’, which directly or indirectly interacts with the incineration 
process interior. Direct interaction includes material transfer in the form of 
input of newspaper and air, and output of gaseous products and ash. The 
external sub-media in direct interaction include newspaper (as feed), 
atmosphere, soil, water (as heat receiving material) and people. Indirect 
interaction includes the control activities shown in Fig.20. Upon detailing the 
event-medium composite becomes as depicted in Figure.4-21. 

Detailing by disaggregating, as done in Figure.4-21, does not yet make 
explicit the roles of sub-media either as the medium of process interior or 
process exterior. This is, however, what we want to do when taking a holistic 
process view into incineration as a waste management option. Regrouping sub-
events and sub-media as belonging either to incineration process interior or 
exterior, a more illustrating formal description follows (Figure.4-22). 

Figure 4-21. Incineration (a waste management option) described as a 
single event-medium composite. 

New owner

Used newspaper 

Solids (Newspaper, Ash) 

Gas

Air
Soil 

Water

Process owner 

Other people 

Incineration process internal material 

Social medium 

Social control  

Process control  
Burning phenomenon 

Material/Heat transfer 

Detailing 

Newspaper 
External phenomena  

Formalizing Waste Management78



In the PSSP model depicted in Fig.22, the members of the society, that is, 
people around the incineration plant, are in two roles: as an external medium 
and as a controlling medium. In the former role people are among the external 
material and take part in the interaction between the incineration process 
interior and exterior. They are agents mediating the newspaper feed of the plant 
and also agents who experience the effects of the plant’s material and energy 
outputs. The same people in the role of a controlling medium are the ones, who 
are ultimately responsible of having made the choice to implement this waste 
management option. It is thus the society as a whole, which is responsible of 
accepting that the material output of the incineration plant can be taken as 
natural products and as such natural and harmless components of atmosphere, 
soil and people. ‘Harmless’ means that no unwanted spontaneous phenomena 
would occur in the external medium with the result that people can breath air 
and cultivate soil as before without fear of risking their health or without need 
to stand unpleasant odors, noise or other nuisance. 

Society can be viewed as a pseudo-homogeneous medium having a right 
and responsibility to monitor and manipulate itself. A society’s ownership over 
itself is not unlimited in the same sense as it is for truly homogeneous media 
like homogeneous matter or individual human mind. In manipulating itself a 
society needs to take the interests of individual people or of groups of people 
into account, that is, to observe the principle of democracy. Society as a 
pseudo-homogeneous human medium is similar to individual human being in 
its capability to act at more than one level at the same time: both as a base level 
actor and as a controlling actor. Both an individual and a society in the self-
controlling role pose goals to themselves and monitor, and allocate resources 
for, their own progress as base-level actors in pursuing the goals. 

In Figure.4-22, the process owner, despite being depicted as a separate 
medium, is a base-level actor of the society, when the latter is viewed as a 
pseudo-homogeneous medium. Thus the process owner is also among the 
decision-makers when it comes to the choice and the conditions of incineration 
as a waste management option for used newspapers. The process owner, again 
despite being depicted as a separate medium, acts at the two levels also as a 
part of the incineration process exterior: as a base-level actor, and 
simultaneously as a decision maker when it comes to operating conditions of 
incineration, both as a technical process and a business process. 

We may conclude that the private ownership over used newspapers 
migrates from individuals to incineration process owner and ultimately to the 
society. It is the society, which blesses the waste management decisions and 
declares the outputs of the incineration plant as natural products. If a society 
makes a fatal mistake here, no one can help, if it is not Nature. 

79Modern Formal Methods and Applications



Figure 4-22. Incineration process as a waste management option. 

4.9 Discussion

In PSSP ontology waste management is a process. It is a process, because 
anything in reality having a boundary can be taken as a process. Waste 
management has a boundary, because it is restricted to concern events and 
media related to human civilization. The realm of waste management has 
various extensions. In one case the effects of waste related activities are local, 
in another case far-reaching. It is up to the society to set the boundaries in each 
case. This is done based on the knowledge, ignorance and attitudes a decision-
maker has. The worst decisions are those based on blindness or ignorance 
concerning what a decision-maker should know for a decision to be 
responsible. The only remedy for that is to have a holistic view based on a 
holistic representation of waste management as a process including all relevant 
technical, social and ethical issues in an integral format. Such a representation 
is possible only when built upon an adequate ontology. No domain ontology 

Internal material Burning phenomenon 

Material/Heat transfer (Interaction)

Incineration process 

Process
control Process

owner Society
Social
control 

External phenomena External medium 

Regrouping 

Interior

Exterior

would do for two reasons. First, there is no predefined domain of waste 
management in the sense that the issues, which can be relevant for waste 
management, cannot be exhaustively listed. Second, the issues, which are 
known to be relevant for waste management, reside in various conventional 
domains and are loaded with conventional domain specific meanings, which 
unfortunately is often an unsurpassable obstacle for knowledge integration. 

PSSP ontology has been offered as an approach to ignorance management 
[14]. As such it is also a tool for formalizing, and an approach to systematizing, 
waste management. 

Formalizing Waste Management80



4.10 Acknowledgement
The comments of Dr. Eva Pongrácz are gratefully acknowledged. 

4.11 References

1. Lowe, E.J., Recent Advances in Metaphysics, Facta Philosophica 5
(2003) 3-24. 

2. Pohjola, V.J., POEM Guide Book. Introduction to SHE conscious 
process design. University of Oulu Press, 2001, Oulu, Finland. 

3. Pohjola, V.J., Fundamentals of safety conscious process design. Safety 
Science 41 2-3 (2003) 181-218. 

4. Pohjola, V.J., Ontology supporting knowledge integration, in 
Milutinovic, V. and Vujovic, I. (eds) Advances in the Internet 
Technology: Concepts and Systems, IPSI and Academic Press, 
Belgrade, 2004, p. 146-159.    

5. Korzybski, A., Science and Sanity, The International Non-Aristotelian 
Library Publishing Company, 1980. 

6. Bohm, D., Wholeness and the implicate order, Routledge and Kegan 
Paul, 1980, London. 

7. Pongrácz, E., Pohjola, V.J., The importance of the concept of 
ownership in waste management. Proceedings of the 15th International 
Conference on Solid Waste Technology and Management, December 
12-15, 1999, Philadelphia, PA. 

8. Karabeg, D., Information design – an informing for the 21st century. 
Proceedings of IPSI-2004 Stockholm, September 24-26, 2004, 
Stockholm, Sweden. 

9. Smith, B., Varzi, A.C., Fiat and bona fide boundaries, in SC Hirtle. 
S.C. and Frank, A.U. (eds), Spatial Information Theory, COSIT '97, 
1997, Laurel Highlands, PA. 

10. Pongrácz, E., Pohjola, V.J., Re-defining waste, the concept of 
ownership and the role of waste management. Conservation and 
Recycling 40 (2004) 141-153. 

11. Pongrácz, E., Re-defining the concepts of waste and waste 
management: Evolving the Theory of Waste Management. Doctoral 
dissertation. University of Oulu, 2002, Finland. 

12. Pongrácz, E., Pohjola, V.J., The conceptual model of waste 
management. Proceedings of the ENTREE’97, November 12-14, 1997, 
Sophia Antipolis, France, p. 65-77. 

13. Pongrácz, E., Pohjola, V.J., Object-oriented modeling of waste 
management. Proceedings of the 14th International Conference on 
Solid Waste Technology and Management, November 1-4, 1998, 
Philadelphia, PA. 

81Modern Formal Methods and Applications



14. Pohjola, V.J., Ignorance management by contextual templates. 
Proceedings of IPSI-2004 Stockholm, September 24-26, 2004, 
Stockholm, Sweden. 

Formalizing Waste Management82



5 Formal Methods for Modeling 
Biological Regulatory Networks 

Author
Adrien Richard, Jean-Paul Comet and Gilles Bernot 
CNRS & Université d'Évry, France 

Summary 

5.1 Introduction
Biological systems are one of the most fascinating aspects in biology. They 
control such diverse dynamics phenomena as temperature control in warm-
blooded animals; differentiation of a zygote into the various specialized organs, 
tissues and cells of the mature organism; the fate of certain viruses, called 
temperate bacteriophages, which upon infection of a bacterial population can 
behave in two extremely different ways. Most of these infected cells display a 
response called lytic: virus multiplies and kills cells. But, a fraction of the cells 
become lysogenic bacteria and carry the viral genome in a dormant form 
making the host immune towards infection of other virus. 

This chapter presents how the formal methods can be used to analyse 
biological regulatory networks, which are at the core of all biological 
phenomena as, for example, cell differentiation or temperature control. The 
dynamics of such a system, i.e. its semantics, is often described by an ordinary 
differential equation system, but has also been abstracted into a discrete 
formalism due to R. Thomas. This second description is well adapted to state-
of-the-art measurement techniques in biology, which often provide qualitative 
and coarse-grained descriptions of biological regulatory networks. This 
formalism permits us to design a formal framework for analysing the dynamics 
of biological systems. The verification tools, as model checking, can then be 
used not only to verify if the modelling is coherent with known biological 
properties, but also to help biologists in the modelling process. Actually, for a 
given biological regulatory network, a large class of semantics can be 
automatically built and model checking allows the selection of the semantics, 
which are coherent with the biological requirement, i.e. the temporal 
specification. This modelling process is illustrated with the well studied genetic 
regulatory network controlling immunity in bacteriophage lambda. 

83

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 83–122.
© 2006 Springer. Printed in the Netherlands.



Computational systems biology tries to establish methods and techniques 
that enable us to understand such systems as systems, including their 
robustness, design and manipulation. It means to understand : the structures 
and the dynamics of systems, methods to control, design and modify systems to 
cope with desired properties. The modelling contributes in a major way to 
reach these aims by introducing methods for understanding, simulating and 
predicting the behaviour of the systems. However, the modelling of biological 
systems is currently subject to two major difficulties: the biochemical reaction 
mechanisms underlying the interactions of systems are usually not or 
incompletely known and quantitative information on kinetic parameters or 
molecular concentration is rarely available. Thus the modelling activity needs 
an interaction with the experimental biology to confront models to biological 
objects. Consequently as in the design of large computing systems, two 
activities can be distinguished in the modelling step: 

1. Build a rigorous model of the system satisfying the assumed behaviour 
corresponding to biological knowledge, 

2. Design experiments to verify a posteriori the model predictions. 

Here we would like to show that some methods from computer science can be 
reused in the context of system biology, as, for example, formal methods for 
validation and verification used for the design of large computing systems. For 
designing experiments, we just mention that the test methods via test 
generation from model theories may be an efficient way to propose 
experiments permitting biologists to validate or refute models. For building a 
rigorous model, the model checking verification tool is particularly suited. In 
this chapter we present an application of this formal method to build qualitative 
models of biological regulatory networks. 

A biological regulatory network describes interactions between the 
biological entities, often macromolecules or genes, of a given system. It is 
statically represented by an interaction graph whose vertices abstract biological 
entities and arcs their interactions. For describing the evolution of the system, 
the concentration level of each entity is represented by a value associated to the 
corresponding vertex. The temporal evolution of these levels constitutes the 
dynamics of the system. 

Ordinary differential equation systems have been first used for describing 
the dynamics of networks. They are powerful tools particularly to model 
metabolic processes [33]. However, due to the non-linearity of biological 
regulations, these differential equation systems cannot often be solved 
analytically. They can be solved numerically to any desired precision, but this 
precision itself may be misleading because the values of the parameters and the 
shape of interactions often have to be guessed for lack of experimental data. 
This remark led Thomas to simplify the models: he introduced in the 70's a 

84 Formal Methods for Modeling Biological Regulatory Networks



Boolean approach to capture the qualitative nature of the dynamics and he 
proved its usefulness in the context of immunity in bacteriophages [30, 27]. 
Later on, he generalized his formalism to multi-valued levels of concentration 
(the so called multi-valued logic or ``generalized logical approach'' [32]) since 
the Boolean idealization may be too caricatured to correctly model biological 
systems. It has been proved that this qualitative description allows the 
representation of the essential qualitative features of an ordinary differential 
equation system provided that the differential equations are piece-wise 
linear [22]. The underlying parameters of the qualitative description can be 
deduced from the kinetic parameters of the continuous system but can take only 
a finite number of values. Consequently, all possible qualitative features of the 
system can be reduced to a finite number of models i.e. parameterisations. 

Certainly the most important concepts of the generalized logical analysis 
are those of positive and negative feedback circuits. If an entity tends to favour 
(resp. decrease) its own production via the feedback circuit, the circuit is said 
positive (resp. negative). It has been conjectured by Thomas [28] and then 
proved in different contexts [18, 23, 5, 6, 25] that at least one positive circuit is 
necessary to generate multi-stationarity whereas at least one negative circuit is 
necessary to obtain a stable oscillatory behaviour. These concepts are 
especially important since when modelling biological systems, differentiation 
and homeostasis have often to be taken into consideration. In such cases, these 
biological constraints can reduce drastically the set of models to consider. 
These properties can be reinforced by introducing some more complex 
properties on the dynamics of the system extracted from the biological 
knowledge or hypotheses. It becomes necessary to construct models which are 
coherent not only with the previous conditions of multi-stationarity/homeostatis 
but also with the additional ones. Formal methods from computer science 
should be able to help modeller to automatically perform this verification [3, 
17] and to select exhaustively all suitable models. 

The chapter is organized as follows. Section 5.2 introduces the formalism 
due to Thomas for modelling the dynamics of a biological regulatory network. 
The resulting dynamics corresponds to a Kripke structure, which can be 
deduced easily from the interaction graph. Section 5.3 describes the link 
between this transition system and the dynamics obtained with the classical 
modelling using piece-wise linear ordinary differential equation systems. 
Section 4 explains how formal methods can improve the modelling process of 
regulatory networks. The temporal properties have first to be translated into a 
temporal specification language. Then one has to answer automatically the 
question: does a given model satisfy the given temporal specifications? Model 
checking makes this stage automatic and its principle is also presented in this 
section. Section 5 illustrates the use of model checking to model the well 
studied genetic regulatory network of temperate bacteriophage lambda rapidly 
described before. A model of this system has already been proposed by 
Thieffry and Thomas in [26]. We show that our approach, using model 
checking, automatically selects this model as well as other models satisfying 
the same criteria of validation. 

Modern Formal Methods and Applications 85



5.2 Qualitative dynamics of biological 
regulatory networks 

The multi-valued modelling of Thomas is able to represent the qualitative 
dynamics of biological regulatory networks whose entities can be molecules, 
macromolecules, cells, organs, or organisms, if no societies. In fact, all systems 
whose regulations have a sigmoid shape can be modelled in this formalism. 
The regulations of genetic regulatory networks have almost always a sigmoidal 
nature that explains why this formalism has been introduced in this context and 
why its main application domain remains the genetic regulatory networks. In 
such systems, the concentration of a protein encoded by a gene u may activate 
or inhibit the synthesis of proteins encoded by other genes or itself (figure 5-1). 

Figure 5-1. A genetic regulatory network. The gene u synthesizes a protein 
which activates the expression of gene v and itself by binding the 

promoters Pv and Pu respectively. In turn, the protein of gene v inhibits the 
expression of gene u when it binds Pu. Then, the arrow from a gene to its 

protein represents the transcription and translation processes and the 
arrow from a protein to a promoter abstracts the diffusion and the fixation 

of the protein on the promoter. 

If the protein of u activates (resp. inhibits) the expression of a gene v, we said 
that u is a positive (resp. negative) regulator of v. In such situation an 
increasing of the concentration of the protein encoded by u induces an 
increasing of the rate of synthesis of the protein encoded by v. Generally, the 
relation between the concentration of a regulator and the rate of synthesis of its 
target is, as we have seen before, sigmoidal. When the sigmoid is steep, as in 
figure 5-2-(a), u has a little effect on v if it is below the concentration threshold 

uv and at higher concentration a plateau is reached representing the maximal 
rate of synthesis of v under the effect of u. Naturally, for an negative regulator, 
the sigmoid is decreasing. 

86 Formal Methods for Modeling Biological Regulatory Networks



Figure 5-2. (a) Sigmoid relations between the concentration of u and the 
rate of synthesis of v and itself. As u is an activator of v and itself, see 

figure 5-1, both sigmoids are increasing. (b) Resulting qualitative levels of 
u.

This section presents successively how the regulations can be summarized into 
a regulatory graph corresponding to the static part of the modelling, then 
introduces the parameters, which encode the effects of regulators on their 
targets in all possible situations, and finally presents how the dynamics can be 
deduced from these parameters. 

5.2.1 Biological regulatory graphs 

To formally define the static part of biological regulatory networks, we use 
labelled directed graphs. Vertices represent the biological entities of the 
network and arcs their regulations. 

Definition 1  [Biological regulatory graph]  A biological regulatory graph is a 
labelled directed graph G=(V,E) where 

each vertex v of V, called variable, is provided with a boundary bv IN
less or equal to the out-degree of v in G.
each arc  u v of E is labelled with a couple (tuv, uv) where tuv is an 
integer between 1 and bv , called qualitative threshold and where 

uv {+, } is the sign of the regulation.

Moreover it is required that for any variable u with bu > 0,  i {1,2,...,bu},
there exists a successor v of u such that tuv = i. 

Modern Formal Methods and Applications 87



In a biological regulatory graph G, the set of the regulators of a variable v
corresponds to the set of its predecessors in G, denoted by G (v), and the set of 
its targets corresponds to the set of its successors in G, denoted by G+(v). Each 
regulation u v is labelled by a sign uv, which indicates if u is an activator or 
an inhibitor of v, and by a qualitative threshold tuv. Thresholds t are integers and 
do not correspond to biological thresholds IR, most often difficult to 
measure, but they give the order of the continuous thresholds: if tuv = i then the 
corresponding continuous threshold uv is the ith lowest threshold among 
{ uv | v G+(u)}. That explains the requirement on qualitative thresholds of the 
previous definition, which implies that bv is the number of different thresholds 
“outgoing” from v.

Figure 5-3-(a) gives an example of biological regulatory graph, which can be 
deduced from the genetic regulatory networks described in figure 5-1. Figure 5-
2 assumes that uv< uu, and consequently tuv = 1 and tuu = 2. 

Figure 5-3. (a) Biological regulatory graph deduced from the genetic 
regulatory network of figure 5-1. (b) States of the biological regulatory 

graph.

Obviously concentration levels are associated to variables. For describing the 
evolution of the concentration level of each variable, it is necessary to know 
which regulators have an effect on the variable. Only the position of the 
regulator concentration with regard to their thresholds is sufficient. The 
concentrations are then discretized according to thresholds and each variable 
can take a finite number of values called abstract qualitative levels. For 
example, in figure 5-2-(b), the variable u has three different behaviours with 
regard to its targets: 

In the first region (the concentration of u is less than uv), u acts neither 
on v nor on itself. 
In the second region (the concentration of u is between uv and uu), u
acts on v but it still not act on itself. 

88 Formal Methods for Modeling Biological Regulatory Networks



Three qualitative levels emerge, 0, 1 and 2, corresponding to the three previous 
regions and constitute the only relevant information from a qualitative point of 
view. More generally, a variable v can take bv+1 qualitative levels, from 0 to bv,
and the qualitative level q means that v acts on all targets v' such that tvv' q. A 
state of the system is then defined as a vector constituted by qualitative levels 
of variables. 

Definition 2  [Qualitative state]  Let G=(V,E) be a biological regulatory 
graph. A qualitative state of G is a vector q=(qv)v V such that for all v V,
qv {0,1,…,bv}. The set Q of states of G is then defined by Q= v V {0,1,...,bv}.

In the last region (the concentration of u is greater than uu), u acts both 
on v and on itself. 

In the sequel, we write v = l for denoting qv = l if it does not cause confusion. 
Figure 5-3-(b) shows the possible states of the biological regulatory graph of 
figure 5-3-(a). 

5.2.2 Models of biological regulatory graphs 

Remember that the sigmoid nature of a regulation u v leads to distinguish 
two different situations: if u tuv, then the regulation is active and if u < tuv, it is 
not. We said that u is a resource of v when u induces an increasing of v:

If the regulation u v is positive, u is a resource of v when the 
regulation is active, 
If the regulation u v is negative, u is a resource of v when the 
regulation is not active. 

From the point of view of resources, the absence of an inhibitor acts as the 
presence of an activator. 

Definition 3  [Resources]  Let G=(V,E) be a biological regulatory graph, v V
and q Q. The set v(q) of resources of v at the state q is the subset of G (v)
defined by:

v(q)={u G (v) | (qu  tuv and uv = +) or (qu < tuv and uv = )}.

At the state q, the evolution of variable v depends on its resources v(q). It 
remains to define in which direction evolves v at the state q. The parameter 
Kv, v(q), called the attractor of v when the resources are v(q), denotes the level 
towards which v is attracted: 

if qv < Kv, v(q) then v tends to increase, 

Modern Formal Methods and Applications 89



Different values for these parameters are possible and we call model of a 
biological regulatory graph, a possible instantiation of these parameters. 

Definition 4  [Model of a biological regulatory graph]  Let G=(V,E) be a 
regulatory graph. A model of G, denoted M(G) by abuse of notation, is a family 
of natural numbers Kv,  indexed by the set of couples (v, ) such that

v V,
G (v),

Kv,  bv.

It is often additionally required that: 

if qv = Kv, v(q) then v does not evolve and 

if qv > Kv, v(q) then of v tends to decrease. 

Kv, Kv, '  for all  v V,  and  for all , ' G (v) such that 
'.           (1) 

These constraints, called Snoussi's constraints in the remainder, mean that the 
more a variable has resources the greater is the level towards which it is 
attracted. In other words, neither the presence of an activator nor the absence of 
an inhibitor can induce a decrease of the considered target (see the following 
section for the mathematical grounds of these constraints). This property, as 
well as signs of regulations, can often be deduced from biological knowledge 
and when it can be used, the number of models to consider for a given 
biological regulatory graph decreases drastically. 

Table 5-1. One possible model for the biological regulatory graph of figure 
5-3. The table gives for each state the corresponding attractors and 
tendencies deduced from the model. 

Model
Ku,{} = 0 

Ku,{u} = 2 

Ku,{v} = 0 

Ku,{u,v} = 2 

Kv,{} = 0 

Kv,{u} = 1 

u v Attractors Tendencies 
0 0 Ku,{v} = 2 Kv,{} = 0 
0 1 Ku,{} = 0 Kv,{} = 0 
1 0 Ku,{v} = 2 Kv,{u} = 1 
1 1 Ku,{} = 0 Kv,{u} = 1 
2 0 Ku,{u,v} = 2 Kv,{u} = 1 
2 1 Ku,{u} = 2 Kv,{u} = 1 

90 Formal Methods for Modeling Biological Regulatory Networks



Models M(G) of the biological regulatory graph G of figure 5-3 are all possible 
instantiations of six parameters: Ku,{}, Ku,{v}, Kv,{}, Kv,{u}, Kv,{v}, Kv,{u,v}.
Because bu = 1 (resp. bv = 2) each Ku,… (resp. Kv,…) can take 2 (resp. 3) 
different values. So 22× 34=324 different models can be a priori associated to 
G, but only 60 of them respect the Snoussi's constraints. Table 5-1 gives the 
tendencies of variables resulting from such a model. 

More generally there are v V (bv+1)2|G (v)|
 models associated to a 

biological regulatory graph G. This number increases exponentially with the 
number of predecessors of each variable and even if static constraints on 
parameters are used, as the Snoussi's constraints, it remains huge. Moreover, 
since parameters K are most often not measurable in vivo, additional properties 
deduced from biological experiments are needed to eliminate the models whose 
dynamics do not satisfy them.  

5.2.3 Dynamics of models 

The classical approach to describe the dynamics of models is to define the state 
of the system at time t +1 from its state at time t. One possibility is to consider 
that the next state is directly the attractor of the current state: if q is the current 
state then q' = (Kv, v(q))v V is the next one and we said that there is a transition 
from q to q' (figure 5-5-(a)). This description raises serious problems for its 
application to biological systems: 

1. From any initial state, the system will follow a well-defined path, 
without any branching or possibility of choice whereas biological 
systems typically include choices among several pathways (as 
illustrated for example by the numerous different pathways leading to 
various cell lines from a zygote during embryonic development). 

2. Suppose that v is a gene which can take two values (bv = 1) and that the 
current state is q. If qv = 0, then Kv, v(q) = 1 means that resources of v
induce the production of the corresponding protein. This protein will 
appear after a time delay corresponding, for example, to the time of 
diffusion of its regulators (figure5-4). Similarly the same phenomenon 
is observed when qv = 1 and Kv, v(q) = 0 with an a priori different 

delay. However, when q differs from q' = (Kv, v(q))v V by at least two 
components, the corresponding variables change simultaneously 
(dashed arrow in figure 5-5-(a)). This synchronous description thus 
assumes that time delays are equal which is unlikely. 

Modern Formal Methods and Applications 91



Figure 5-4. Time delays. Gene v has a unique regulator u which is an 
activator. Initially, both u and v are absent. Then, protein u appears and 

stimulates the expression of v (Kv, v(qu) = Kv,{u} = 1). The resulting protein 
appears after the delay vt . Finally, the protein u disappears, the gene v is 

no more stimulated (Kv, v(qu) = Kv,{} = 0), and the protein v disappears 
after the different delay vt .

3. If the attractor of a variable is sufficiently away from its current value, 
one can have |qv Kv, v(q)| > 1. In such cases the qualitative level 
increases abruptly and jumps several thresholds (dotted arrow in figure 
5-5-(a)). Since the dynamics of the model abstracts a continuous 
phenomenon, during a transition, each variable can pass through at 
most one threshold. 

These points lead us to introduce the following asynchronous description. 

Definition 5  [Asynchronous state graph]  Let G=(V,E) be a biological 
regulatory graph and M(G) be a model of G. The asynchronous state graph of 
M(G) is a directed graph whose set of vertices is the set Q of states of G, and 
such that there is an edge from q to q' if:

For all variables v V, qv = q'v = Kv, v(q) or
There exist a variable v V such that:

o For any variable u   v, qu =q' u and
o qv < Kv, v(q)  and  q'v = qv+1     or     qv > Kv, v(q) and q'v = qv

1.

In this definition, a state q which has itself as successor, is a stable steady state
of the asynchronous state graph: qv = Kv, v(q) for all v V. Otherwise, if q is a 

state for which n variables tend to evolve (n variables v such that qv Kv, v(q)),
q has n successors and each of them differs from q by only one component 
corresponding to one of these n variables. Thus, when time delays are 

92 Formal Methods for Modeling Biological Regulatory Networks



unknown, the asynchronous state graph contains all the a priori possible 
transitions. Some of them can be removed when time delays are taken into 
consideration.

Figure 5-5 shows the synchronous and asynchronous dynamics of the 
model of table5-1. The attractors are the same in both descriptions but paths 
differ: the asynchronous state graph contains a circuit (0,0)  (1,0)  (1,1) 
(0,1)  (0,0), which is absent in the synchronous description. 

Figure 5-5. Synchronous and asynchronous dynamics for the model, given 
in table 5-1, of the biological regulatory graph of figure 5-3. 

5.3 Differential modelling 
We have seen that the asynchronous dynamics is more suited than the 
synchronous one for describing biological regulatory networks. This section 
proves how this asynchronous description can be deduced from a discretization 
of a particular class of ordinary differential equation systems classically used 
for describing biological regulatory networks. 

5.3.1 Ordinary differential equation systems 

Classically, the dynamic of a biological regulatory graph G=(V,E) is modelled 
by ordinary differential equation systems [10, 22, 29], called here underlying
differential systems (UDSs for short) of G, whose form is  

vx  = fv(x) - v xv,     for all v V,
where x = (xv)v V is a vector, whose components xv IR+ give the concentrations 
of variables v. The vector x is called the quantitative state of G. The previous 
equations define the rate of change of each concentration xv as the difference of 
the synthesis rate fv(x) and the degradation rate vxv of v. The function fv
expresses how the synthesis rate of v depends on the concentrations xu of its 
regulators u G (v). It can be defined as,      

Modern Formal Methods and Applications 93



fv(x) = kv +
u G (v)

kuv s uv(xu, uv),     

where:
kv IR+ and kuv IR+* are kinetic parameters, 
the function s uv gives the effect of a regulator u and its target v. This 
function is usually a sigmoid depending on the sign uv and on the 
quantitative threshold uv IR+* of the interaction. 

Since the qualitative thresholds t of G give the order of the continuous 
thresholds  (see the section 5.2.1), it is required that for all targets v' G+(u) of 
u different than v, uv < uv' if tuv < tuv' and uv > uv' if tuv > tuv'. By denoting u

l

the threshold(s) uv such that v G+(u) and tuv=l we then have: 

u
1  < u

2  < < u
1   < u

bu

The sigmoidal function s uv is often approximated by a step function in order to 
make possible the analytical analysis of the system. s uv is then defined as a 
Boolean function which indicates if u is or not a resource of v:

),(1  ),(  and   
 if  ,0
 if  ,1

  ),( uvuuvu
uvu

uvu
uvu xsxs

x
x

xs     

Notice that these functions are not defined for xu = uv and that the system 
becomes a piecewise linear equation system. Figure 5-6 gives an example of an 
UDS of the biological regulatory graph of figure 5-6. 

 2)16(25
 5)20(  40)10(  35  20

vuv

uuvu

 x - ,x s x
 x - ,xs  ,xsx

Figure 5-6. Example of UDS of the biological regulatory graph of figure5-3. 
Parameters are: ku = 20, kvu = 35, kuu = 40, vu = 10, uu = 20, u = 5 for the 

first equation and kv = 0, kuv = 25, uv = 16, and v = 2 for the second. Notice 
that uv < uu since 1 = tuv < tuu = 2. 

5.3.2 Discretization map and domains 

Since the step functions s uv are not defined for xu = uv, the differential 
equation system is not defined for the states x for which at least one component 
xv equals a threshold vv', v' G+(v). Such states are called singular states.
Consequently, the properties of the system can be analysed in the |V|-
dimensional phase space  defined by 

94 Formal Methods for Modeling Biological Regulatory Networks



=
v V

v    with    v= IR+ \{ vv'  | v' G+(v)} for all v V.

 corresponds to the set of regular states. We are now in position to define the 
discretization map d : Q  by d(x) = (dv(xv))v V with, for every v V, dv : v

Qv defined by 

dv(xv) = |{ vv' | v' G+(v) and vv' < xv}|.

This discretization map gives directly the cardinal of the set of thresholds less 
than the concentration of v. If dv(xv) = l, then xv is greater than the l smallest 
thresholds and less than others. For all v G+(u) we have xu > uv  du(xu) tuv

and xu < uv  du(xu) < tuv. Consequently, for all state x :

s uv(xu, uv) = 1 u v(d(x)). 

Then, for all x , fv can be rewritten as 

fv(x) = kv +
u v (d(x))

kuv.                                                     (2) 

The infinite set of continuous states whose discretization gives q Q is an 
hyper-rectangular region D(q) of , called domain, defined by: 

D(q) = 
v V

Dv(qv)      with      Dv(qv)= {xv v | dv(xv) = qv} for all v V.

A domain D(q) is bounded by hyperplanes corresponding to thresholds: for all 
variable v, if qv>0 then v

qv is the lower bound of Dv(qv) and if qv < bv then v
qv +1

is the upper bound of Dv(qv) (see the figure 5-7). 

Figure 5-7. Domains of the phase space  of the UDS of figure 5-6 ( u
1  = uv

and u
2  = uv).

Modern Formal Methods and Applications 95



In a domain D(q), each function fv reduces to the constant kv+ u v(q) kuv (see 
equation 1). The system thus simplifies to a linear and uncoupled differential 
equation system whose solution in D(q), starting at x0 D(q), is given by 

xv(t) = v(x0  ) ( v(x0  )  xv
0  ) e vt

,     for all v V,

with v(x) = fv(x)/ v for all x . Function v is also reduced to a constant 
(kv+ u v(q) kuv)/ v in D(q), denoted v(q) by abuse of notation. The state (q)

= ( v(q))v V acts as an attractor in D(q). Indeed, it is easy to verify that in D(q),
x(t) has the following properties: 

1. if v(q) Dv(qv) then, xv(t) monotonically converges from xv
0   towards 

v(q) and reaches v(q) in infinite time. Thus, if (q) D(q), x(t) does 
not leave D(q) and the state (q) is the unique stable steady state in 
D(q).

2. if v(q) Dv(qv), then, if xv
0  < v(q) (resp. xv

0   > v(q)), xv(t) monotonically 
increases (resp. decreases) from xv

0  until to reach the threshold value v
qv+1

(resp. v
qv). The threshold is reached in a finite time iff v(q) is different 

from it. Throughout this section, we suppose that the parameters k and 
 are taken such that (q)  for all q Q. Consequently, if (q) D(q),

x(t) leaves in a finite time D(q) by reaching a threshold hyperplane. 

If v(q) Dv(qv), xv(t) reaches its corresponding threshold at time tv given by 

0  )(
  )( ln  1   

vv

q
vv

v
v

xq
qt

v

with  = 1 if xv
0   < v(q) and  = 0 if xv

0   > v(q). If at least two components xu(t)
and xv(t) reach their thresholds simultaneously, one can deduce that x0  belongs 
to an at most (|V| 1)-dimensional surface of zero Lebesgue measure in D(q). 
Therefore, we do not consider this case and reason now as for almost every x0

D(q).

Suppose that tv is the smallest value in {tu | u(q) Du(qu)}, in other words, 
suppose that v is the variable whose concentration first leaves the domain. The 
component xv(t) reaches vq

v  at the singular state x1 given by 

xv
1  = vq

v      and      xu
1  = xu(tv)   for all   u v.

At this time, the trajectory exits from the domain D(q) and enters into D(q') 
defined by: 

5.3.3 Dynamics of differential equation systems 

96 Formal Methods for Modeling Biological Regulatory Networks



But at the singular state x1,  the differential equation system is not defined as 
well as v(x1).  The linear differential equation system of D(q') is then extended 
by continuity to the hyperplane xv = vq

v . Thus v(x1)  is defined, and the 
trajectory is extended with the solution of the differential system of D(q') from 
the new starting point x1.

5.3.4 Coherent discrete and differential modeling 

Let M(G) be a model of a biological regulatory graph G=(V,E). The UDSs of G
such that:

dv( v(q)) = Kv, v(q)    for all v V and q Q

are called underlying differential systems of M(G). A model M(G) has UDSs if 
and only if it satisfies the Snoussi's constraints (equation 1) since we have: 

)(    and     allfor   ,/ , vGVvKkkd vv
u

uvvv

and thus ' implies u kuv u ' kuv which implies Kv, Kv, '. For 
example the UDS of figure 5-6 is an UDS of the model described in Table 5-1. 
The following propositions show the coherence between the asynchronous 
dynamics of M(G) and the dynamics of its UDSs. 

Proposition 1
If there is an UDS of M(G) such that x D(q) is a stable steady state, 
then q is a stable state of the asynchronous state graph S of M(G).
Conversely, if q is a stable state of S then, for all UDSs of M(G), there 
is a stable steady state in the domain D(q).

Proof. A state x D(q) is a stable steady state iff xv = v(q) for all v V. That 
implies dv(xv) = dv( v(q))  qv = Kv, v(q) for all v V and thus, q is a stable 

state of S. Conversely, if q Q is a stable state, then qv = Kv, v(q) = dv( v(q)) for 
all v V. Thus, v(q) Dv(qv) for all v V and consequently, (q) D(q) is a 
stable steady state. 

We define now the boundary of a domain as the set of singular states whose 
distance to the domain is null. 

Du(q'u) = Du(qu) for all u v, since only v reached its threshold, 
Dv(q'v) = Dv(qv+1) if  = 1 and Dv(q'v) = Dv(qv 1) if  = 0. 

Modern Formal Methods and Applications 97



If there is an UDS of M(G) for which there is a trajectory starting in 
D(q) which reaches directly from D(q) the hyperplane separating D(q)
and an adjacent domain D(q'), then q  q' is a transition of the 
asynchronous state graph S of M(G).
Conversely, there exist UDSs of M(G) such that, for each successor q' 
of q in S, there is a trajectory starting in D(q) which reaches directly 
from D(q) the hyperplane separating D(q) and D(q').

Proof. We have seen in section 5.3.3 that if a trajectory starting at x0 D(q)
reaches the hyperplane separating D(q) and an adjacent domain D(q'), then 
there is a unique variable v V such that q'v qv and we have q'v = qv+1 if xv

0  < 
v(q) or q'v =qv 1 if xv

0  > v(q). Moreover, v(q) Dv(qv) thus xv
0   < v(q) iff dv(xv

0  ) 
< dv( v(q)) which is equivalent to qv < Kv, v(q). Similarly xv

0 > v(q) iff dv(xv
0  ) > 

dv( v(q)) which is equivalent to qv > Kv, v(q). According to definition 5, q q'
is a transition of S.

Now, we prove the second part of the proposition. Consider the UDSs of 
M(G) such that u=  for all u V and an initial state x0 D(q). The trajectory 
starting at x0 describes the part of the segment connecting x0 to (q) which 
belongs to D(q).

Let q' be a successor of q in S. We have (q) D(q). Let us choose a point 
x1 of the boundary of D(q) belonging to the hyperplane separating D(q) from 
the domain D(q') and whose only one component equals a threshold. The 
trajectories starting at a point of the line connecting x1 and (q) which belongs 
to D(q), reach x1.             

We deduce from the previous propositions that all the regular stable steady 
states of an UDS of M(G) are represented in its asynchronous state graph S.
Moreover if a trajectory of an UDS of M(G) passes successively through the 
domains D(q0), D(q1), ..., D(qn) then q0  q1  ... qn is a path of S. But if q0

q1  ... qn is a path of S, it does not mean that there is a trajectory 
passing successively through the domains D(q0), D(q1), ..., D(qn) . Using the 
terminology of [14], the qualitative modelling is said sound. A graphical 
comparison between the asynchronous dynamics of a model and a trajectory of 
one of its UDS is given in figure 5-8. 

Proposition 2 

Any UDS of a biological regulatory graph G is an UDS of a model of G
satisfying the Snoussi's constraints. Thus the trajectories of the infinite set of 
UDSs of G are summarized by a finite set of asynchronous state graphs (for the 
biological regulatory graph of figure 5-3, we have 42 different state graphs 
deduced from the 60 different models satisfying the Snoussi's constraints). 

98 Formal Methods for Modeling Biological Regulatory Networks



Figure 5-8. (a) The asynchronous state graph of the model M(G) of Table 5-
1. (b) A trajectory of an UDS of M(G). The dotted arrows represent the 

extensions of solutions towards the attractors. 

5.3.5 Feedback circuit functionality 

Feedback circuits play a major role for the dynamics of systems since they can 
generate multi-stationarity or homeostasis. A positive (resp. negative) circuit is 
said functional if it generates multi-stationarity (resp. homeostasis). The 
functionality of circuits is strongly related to the the stationarity of particular 
singular states and to discontinuities of the UDS. To deal with them, we first 
introduce the differential inclusion systems. 

5.3.5.1 Differential inclusion systems 

To deal with ordinary differential equation systems with discontinuous right-
hand sides, Filippov [9] proposed to extend them to systems of differential 
inclusions. For the regulatory networks, the UDSs can be extended to the 
following differential inclusions systems: 

xv Hv(x),  for all v V,    
      (3) 

where Hv is a set-valued function, defined as follow: 

for all regular state x, Hv(x) = { fv(x) v xv}. For all x D(q), since 
fv(x)/ v= v(q), Hv(x) can be rewritten as Hv(x) = { v ( v(q) xv)}.

for all singular state x,

Hv(x) = 
___
co  ({ v( v(q) xv) | q N(x)}).

where
___
co (E) designs the smallest closed convex set of a set E which is 

the intersection of all closed convex sets containing E, and where N(x)
is the set of qualitative states which correspond to domains whose 
boundary contains x:

Modern Formal Methods and Applications 99



.
)( with  if or  1

 if  ),(
,  )(

uGvxtt
xxd

qVuQqxN
uvuuvuv

uuuu
u

 Obviously we have 

vvv
xNq

vvv
xNq

v xqxqxH )(max  ,  )(min)(
)()(

Consider the example of figure 5-7. For x such that xu = u
2  = uu and xv > u

2 , we 
have N(x) = {(1,1), (2,1)} and for these states, u(1,1) = {} is included in 

u(2,1) = {u} and v(1,1) = v(2,1) = {u}. We deduce that Hu(x) = [ u( u(1,1) 
xu), u( u(2,1) xu)] and Hv(x) = { v( v(1,1) xv)}. Intuitively, at the singular 

state x, the regulation u v is clearly defined: s+(xu, uv) = 1. This is why the 
set Hv(x) of the possible derivatives of xv is single-valued. However, as xu = uu
the self regulation of u remains undefined and Hu(x) is a priori not single-
valued: the derivative of xu is comprised between the derivatives obtained with 
s+( uu, uu) = 0 and s+( uu, uu) = 1. 

An absolutely continuous function x(t) is solution of the system (3) in the 
sense of Filippov if )(txv Hv(x(t)) for all v V and for almost all t  0. The 
qualification ``for almost all t  0'' means that the set time-points for which the 
condition does not holds if of measure 0. In particular, the condition is not 
satisfied at time-points when the solution arrives or leaves a threshold 
hyperplane. 

We do not analyse the solutions in the sense of Filippov in this section (see 
[7, 11] for a detailed analysis), but the previous formalism will be useful for 
analysis of the steadiness of singular states. 

5.3.5.2 Steadiness of singular states 

It is not surprising that a state x, regular or singular, is an equilibrium point (in 
the sense that there is a solution x(t) such that x(t) = x for all t  0) when 
0 Hv(x) for all v V. For a regular state x D(q), we have, as for differential 
equation systems: 

0 Hv(x)  0 { v( v(q) xv) } xv = v(q).

In this case, x is a regular stable steady state. For a singular state, the inclusion 
can be written as an inequality: 

)(max)(min

)(max0)(min 0

)()(

)()(

qxq

xqxqxH

v
xNq

vv
xNq

vvv
xNq

vvv
xNq

v

100 Formal Methods for Modeling Biological Regulatory Networks



and if xv v the inequality becomes strict: 
)(max)(min 0

)()(
qxqxH v

xNq
vv

xNq
v

because v(q) v for all q N(x). Among all singular equilibrium points, those 
for which we have minq N(x) v(q)  = xv = maxq N(x) v(q) for xv v, are 
singular steady states [7, 24]. Figure 5-9 shows a graphical representation of 
the conditions for the steadiness of singular states. 

Proposition 3  Let x be a singular state and v a variable. If for all u G (v)
xu uv, then v(q) is constant for all q N(x).

Proof. For all u G (v) we have xu u or xu = uv' uv with v' G+(u). In the 
first case, it is evident that qu = q'u for all q and q' in N(x). In the second case, 
for all q and q' in N(x), qu and q'u belong to {tuv' 1,tuv'} and tuv' tuv. Then qu and 
q'u are on the same side of tuv. Consequently, for all q and q' in N(x) we have 

v(q)= v(q') which implies v(q)= v(q').        

Figure 5-9. Equilibrium points and their steadiness. Grey regions, a 
rectangle in (a) and a segment in (b), correspond to the Cartesian product 

(x)= [minq N(x) u(q), maxq N(x)  u(q)] × [minq N(x) v(q), maxq N(x) v(q)] for 
a singular state x. In (a) x = ( uv, vu) is an equilibrium point (x (x)) and 
since all variables are singular, it is steady. In (b) the singular state is such 

that xu > uu and xv = vu and it is not an equilibrium point (x (x)).

5.3.5.3 Circuit characteristic states 

Definition 6  [Circuit]   Let G=(V,E) be a biological regulatory graph. A 
circuit of G is a finite sequence of distinct elements of V, denoted C = 
v1,v2,...,vn, such that vn v1 E and vi vi+1 E for all i {1,...,n 1}.

In the sequel, {C} denotes the set of variables of a circuit C and i+1 (resp. i 1)
is always computed modulo n: vi  (resp. vi 1) denotes the successor (resp. 
predecessor) of vi in C. Two circuits C and C' are disjointed if they have no 
variable in common. In a pedagogical objective, we focus here on the 
properties of a single circuit, but all results can be extended to a union of 

Modern Formal Methods and Applications 101



A singular state x is said characteristic of a circuit C = v1,v2,...,vn if the 
concentration xvi of each variable vi of the circuit is equal to the threshold vivi+1

and if the concentrations of other variables are regular: xu u, u {C}.

Proposition 4  A singular steady state is a characteristic state of a circuit of 
the biological regulatory graph G.

Proof. Let x be a singular state and S = {v | xv v} be the set of variables 
equal to a threshold at the state x. If x is steady, we have for all v S : 

)(max)(min
)()(

qxq v
xNq

vv
xNq

.

According to the proposition 3, if for all u G (v) we have xu uv then 
minq N(x) v(q) = maxq N(x) v(q) and x is not steady. Thus v has at least one 
predecessor u such that xu = uv, which implies that u S. Moreover, because 

uv' uv for all v' G (u), the successor v of u is the only one such that xu = uv.
Each variable v of S has then a unique predecessor u in S such that xu = uv.

         

Now, we prove that all the steady singular states can be identified in the 
qualitative modelling. 

Proposition 5  Let G be a biological regulatory graph containing a circuit C = 
v1,...,vn. Consider a UDS of a model M(G) and a characteristic state x of C. Let 
q N(x). If x is steady, then M(G) is such that 

Kv, v(q) = qv

for all
v {C}
Kvi, vi(q)\{vi 1} < tvivi+1 Kvi, vi(q)  {vi 1}

for all 
i {1,…,n}

disjointed circuits [24]. Moreover we take into consideration only regulatory 
graphs where for any variable the out-thresholds are distinct (bv = |G+(v)|, 

v V).

Proof. Let v {C}. Since x is characteristic of C, we have xv v. If x is steady, 
then minq N(x) v(q) = xv = maxq N(x) v(q). That means that v(q) is constant for 
all q N(x) and we have dv(xv) = dv( v(q)) which is equivalent to qv = Kv, v(q).

Let vi {C}. As x is characteristic of C, vi 1 is the unique predecessor of vi

such that xvi 1 = vi 1vi. Thus, vi(q) \ vi(q') equals {} or {vi 1} for all q and q'
in N(x). Moreover there is at least one state q N(x) such that qvi 1 = tvi 1vi and 

102 Formal Methods for Modeling Biological Regulatory Networks



another one such that qvi 1 = tvi 1vi 1. Thus, there is a state q+ N(x) such that 
vi 1 vi(q

+) and a state q  with vi 1 vi(q ). We deduce that for all q N(x),

v(q) {vi 1} = vi(q
+) and v(q)\{vi 1} = vi(q ). So maxq N(x) vi(q) = vi(q

+)
and minq N(x) vi(q) = vi(q ). Since xvi = vivi+1, if x is steady, we have for all 
q N(x):

vi(q ) < vivi+1 < vi(q
+) dvi vi(q )) < vivi+1 < dvi vi(q

+))

Kvi, vi(q ) < tvivi+1 Kvi, vi(q+)

Kvi, vi(q)\{vi 1} < tvivi+1 Kvi, vi(q)

{vi 1}

Definition 7  [Quasi-characteristic qualitative states]  Let G=(V,E) be a 
biological regulatory graph containing a circuit C = v1,...,vn. A state q Q is 
quasi-characteristic of C if qvi = tvivi+1 for all vi {C}.

The quasi-characteristic states are useful to locate the singular characteristic 
states of the UDS. 

Proposition 6  Let G be a biological regulatory graph containing a circuit C = 
v1,...,vn and a quasi-qualitative characteristic state q of C. If a model M(G) 
satisfies the Snoussi's constraints and if 

Kv, v(q) = q for all
v {C}
Kvi, vi(q)\{vi 1} < tvivi+1 Kvi, vi(q)  {vi 1} for all 

i {1,…,n}

then, for all the UDSs of M(G), there exists a unique steady characteristic state 
x of C such that du(xu) = qu  for all u {C}.

As the proof is quite similar to the previous one, it is omitted.  

The previous proposition makes easy the determination of all steady 
singular states underlying of a qualitative model. Let us consider for instance 
the model M(G) of Table 5-1. The corresponding biological regulatory graph G

(4)

(Figure 5-3-(a)) contains two circuits, C1 = u,v and C2 = u. The unique quasi-
characteristic state of C1 is (tuv,tvu). It satisfies 

Ku, u(tuv,tvu)\{v} < tuv = 1 Ku, u(tuv,tvu) {v}        and         Kv,{} < tvu = 1 

Kv,{u}.

Modern Formal Methods and Applications 103



Indeed the first inequality is verified because u(tuv,tvu) = {}, Ku,{} = 0 and Ku,{v}

= 2, the second is also verified since Kv,{} = 0 and Kv,{u} = 1. Consequently, 
the characteristic state ( uv, uv) is steady in all the UDSs of M(G).
For circuit C2, there are two quasi-characteristic states: (tuu,0) and (tuu,1).

The first one, (tuu,0), does not satisfy 

Ku, u(tuu,0)\{u} < tuu = 2 Ku, u(tuv,0) {u}   and Kv, v(tuu,0) = 0. 

since v(2,1) = {u} and Kv,{u} = 1. Thus there is not any steady 
characteristic state of C2 such that xv < vu.

The second quasi-characteristic state, (tuu,1), satisfies 

Ku, u(tuu,1)\{u} < tuu = 2 Ku, u(tuv,1) {u} and Kv, v(tuu,1) = 1. 

since v(2,1) = {u}, Kv,{u} = 1, u(2,1) = {u}, Ku,{} = 0 and Ku,{u} = 2. 
For all UDSs of M(G) there is a unique steady characteristic state x of 
C2 such that xv > vu.

The detected singular states are represented in the asynchronous state graph of 
M(G) in figure 5-10. 

Figure 5-10. Representation of the steady singular states of model of 
Table 5-1. 

5.3.5.4 Circuit functionality 

Each variable of a feedback circuit has an influence on its target but also an 
indirect effect on all following variables including itself. A circuit is said 
positive (resp. negative) if each variable has a positive (resp. negative) 
influence on itself. The sign of a circuit is determined by the number of 
inhibitions: if it is odd, the circuit is negative and otherwise, the circuit is 
positive. Negative and positive circuits have different typical behaviours. 

104 Formal Methods for Modeling Biological Regulatory Networks



In a negative circuit, a high level of a variable tends to make decrease 
itself and conversely. Thus the circuit makes the level of each variable 
to tend to (or oscillate around) an equilibrium concentration. It 
generates stable oscillation behaviour corresponding to homeostasis in 
biology. 
In a positive circuit, a high (resp. low) level of a variable tends to make 
it increase (resp. decrease). Thus each variable stays either at a low or 
high concentration and the positive circuit generates multi-stationarity 
corresponding to differentiation in biology. 

A circuit which presents a typical behaviour is said functional. Several authors 
have proved that at least one positive circuit is necessary to generate multi-
stationarity whereas at least one negative circuit is necessary to obtain a stable 
oscillatory behaviour [5, 6, 18, 23, 25]. Snoussi and Thomas realized that when 
a characteristic state is steady, the corresponding circuit is functional [24]. In 
the qualitative formalism, the circuit functionality is then defined as follow. 

Definition 8  [Functional circuit]  Let M(G) be a model of a biological 
regulatory graph G containing a circuit C. If there is a quasi-characteristic 
state q of C satisfying the constraint (4) then C is functional.

We deduce from the proposition 6 that if a circuit C is functional, there is, for 
all underlying differential systems, a steady characteristic state x of C such that 
xu = du(qu) for all u {C}. In the model of Table 5-1, both circuits u u and u

v u are functional. As a result, multi-stationarity and homeostasis are 
present in the corresponding asynchronous state graph (figure 5-10). 

Summing up, homeostasis and/or multi-stationarity are dynamical 
properties almost always present in biological systems. Circuit functionality is 
then useful for modelling such systems. For example, it has been used to model 
immunity control in lambda phage [26], pattern formation during the 
embryonic development of Drosophilae [19, 20] and flower morphogenesis in 
Arabidopsis thaliana [16]. 

5.4 Formal methods 
To study the behaviour of the genetic regulatory network, the ordinary 
differential equation systems are well adapted if all the parameters are well 
known. Unfortunately they are most often unknown and are difficultly 
measurable in vivo. The discrete approach of Thomas and co-workers 
simplifies the problem of determining the suitable parameters since the number 
of possible models is finite. Indeed finding suitable classes of those parameters 
constitutes a major issue of the modelling activity. Even if the Snoussi's 
constraints on parameters are used, the number of remaining models is too 
large to analyse them by hand. Then biological knowledge or hypotheses on the 

Modern Formal Methods and Applications 105



behaviour of the system can be used as an indirect criterion to constrain the 
parameters. For example homeostasis (resp. multi-stationarity) is 
experimentally observable and it indicates that a negative (resp. positive) 
feedback circuit is functional, this functionality leading to some constraints on 
the parameters (see section 5.3). 

To go further, conditions of multi-stationarity and homeostasis can be 
reinforced by introducing other conditions on the dynamics of the system. The 
available knowledge on the evolution of the system, as temporal properties, can 
be taken into consideration for constraining the values of parameters. Among 
all suitable models only a part of them are coherent with these temporal 
properties. Since numerous models have to be checked against those properties, 
a formal language is needed to perform automatically these checkings.  

5.4.1 Temporal logic 

The properties as the deadlock can be easily checked by exploring the 
transition system, called asynchronous state graph in section 5.2. For more 
complex properties on the dynamics of the system it is necessary to use a well 
adapted formal language: a temporal language which allows the specification 
of properties along the execution paths of the transition system. The step of the 
specification of the properties can then be distinguished from the specification 
of the system since it is not necessary to know the dynamic structure of the 
system to be checked for specifying the properties. 

Expressing temporal properties on a transition system needs to define the 
atomic propositions which depends of the considered regulatory graph 
G=(V,E). Generally the set of atomic propositions is denoted by AP. The subset 
of AP containing all the atomic propositions which are true in a state q, is given 
by the labelling function L:

L(q) = { (v = qv)  | v V }

where (v = qv) signifies that the variable v has the concentration level qv. The 
pair composed of a transition system and a labelling function is called a Kripke 
structure.

Execution traces of the transition system model implicitly a discrete time: 
if an execution passes from the state s0 to s1, the instant associated to the state 
s1 follows the one corresponding to the state s0. The temporal logics allow one 
to specify dynamical properties referring to this discrete time [8]. The Linear 
Temporal Logic, LTL, is used to specify properties on an execution of the 
system. If the system is determinist, from any initial state there is a unique 
execution, LTL is appropriated to specify properties of the system. 
Nevertheless the qualitative behaviour of a biological regulatory network is 
represented by an asynchronous state graph, which is non determinist: the 
current state can have several possible futures. Since time has a tree structure, 
we prefer the Computation Tree Logic, CTL, in which it is possible to express 
properties of the form ''it is possible in the future that...''. 

106 Formal Methods for Modeling Biological Regulatory Networks



Definition 9  [Syntax of CTL] A CTL formula on the set of atomic propositions 
AP is inductively defined by:

 and any atomic proposition of AP are formulae
if  and  are formulae, then (¬ ), ( ), ( ), ( ), ( ),
AX , EX , A[ U ], E[ U ], AG , EG , AF , EF  are formulae.

The semantics of CTL is defined on the execution trees of the transition system 
which are completely defined by their initial state and the transition relation. 
The semantics is given by the definition of the satisfaction relation s
meaning that the formula  is satisfied on the execution tree starting at s.

Definition 10  [Semantics of CTL] Let s0 be a state. The semantics of CTL is 
defined inductively by:

s0 and  s0 ,
 p AP, s0  p  iff   p L(s0),

s0 ¬    iff    s0 ,
s0 1 2  iff  s0 1 and s0 2,
s0 1 2  iff s0 1 or s0 2,
s0 1 2  iff  s0 1 or s0 2,
s0 1 2  iff  s0 ( 1 2) ( 2 1),
s0 AX   iff  for all successors s1 of s0, we have s1 ,
s0 EX   iff  for any successor s1 of s0, we have s1 ,
s0 AG   iff  for all paths s0,s1...si..., and for all si along the path we 
have si ,
s0 EG   iff  for a particular path s0,s1...si... we have for all si along 
the path si ,
s0 AF   iff  for all paths s0,s1...si..., there exists si along the path such 
that si ,
s0 EF   iff  for a particular path s0,s1...si..., there exists si along the 
path such that si ,
s0 A[ 1U 2]  iff  for all paths s0,s1...si..., there exists si along the path 
such that si 2 and for each j<i we have sj 1,
s0 E[ 1U 2]  iff  for a particular path s0,s1...si..., there exists si along 
the path such that si 2 and for each j<i we have sj 1.

is the always true formula;  is the always false formula; a state s
satisfies all the atomic formulae of L(s); ¬, , , ,  are the usual 
connectives (respectively not, and, or, implication, equivalence). All the 
temporal connectives are pairs of symbols: the first element is A or E 

Modern Formal Methods and Applications 107



A for All paths choices X neXt state 
E for at least one path choice (Exist) F some Future state 
  G all future states (Globally) 

U Until

Consider the example of Figure 5-5(b) where variables are u and v. The atomic 
proposition are AP={(u = 0),(u = 1),(u = 2),(v = 0),(v = 1)}. AX(v = 1) means 
that in all next states accessible from the current state in the asynchronous state 
graph, the concentration level of v is 1. This formula is true iff the current state 
is (1,1), (2,0) or (2,1). EG( (u = 2)) means that there exists at least one path 
starting from the current state where the concentration level of u is constantly 
strictly less than 2. In Figure 5-5(b), all states for which u is strictly less than 2 
satisfy the formula. Then (u = 2)  EG( (u = 2)) is satisfied for all states. 
A[(v = 1)U(v = 0)] means that for any possible path from the current state there 
exists a future state where v = 0 and in between v remains equal to 1. Note that 
(2,1) is the only state, which does not satisfy the formula. And so on for other 
temporal connectives. 

It is now possible to translate a biological temporal property into a CTL 
formula. Classically a biological system can have several steady states 
corresponding to distinct phenotypes. Let us suppose that two distinct stable 
states, ss1 and ss2, are possible and that formulae 1 and 2 characterize the 
states ss1 and ss2 respectively. If the system is able to go from state s0,
characterized by the formula 0, either to state ss1 or to state ss2, these temporal 
properties can be translate into formulae: 

1  AG 1 stability of state ss1

2  AG 2 stability of state ss2

followed by X, F, G or U whose meanings are given in the next table and 
illustrated in Figure 5-11. 

( 0  EF 1) ( 0  EF 2) reachability of ss1 and ss2 from s0

Such formulae are used in the concrete example of section 5.5 for expressing 
biological knowledge on the immunity control in bacteriophage lambda. 

5.4.2 Model checking 

The model checking is a verification method that proves automatically if a 
Kripke structure satisfies a temporal formula [13]. We briefly present the basic 
algorithm of model checking for a CTL formula. Since the connectives ,
and  can be rewritten in term of  and , and since we have the following 
equivalence:

108 Formal Methods for Modeling Biological Regulatory Networks



Figure 5-11. Semantics of temporal connectives of CTL. 

AX EX( )
EG AF( )
EF E( U )
AG EF( )
A[ 1U 2]  ( E[ 2U( 1 2)]  EG( 2) ) 

We consider in the sequel formulae containing only the connectives: , , EX, 
AF and EU. Obviously any CTL formula can be transformed into a 
semantically equivalent CTL formula, which uses only those connectives.  

The model checking for a CTL formula  consists of labelling each state s
of the transition system with sub-formulae of  which is satisfied at the state s.
These sub-formulae are added to L(s) containing initially the atomic 
propositions true in s. Suppose that  is a sub-formula of  and that states 
satisfying all the immediate sub-formulae of  have already been labelled. The 
labelling algorithm for  uses a case analysis to label states with :

if AP, then the labelling is given directly by L(s)
if  = p q, then L(s) = L(s)  {p q} for all s such that p, q L(s)
if  = p, then L(s) = L(s)  { p} for all s such that p L(s)

Modern Formal Methods and Applications 109



if  = EXq, then L(s) = L(s)  {EXq} for all predecessors s of a state t
such that q L(t)
if  = AFq, then 

1. L(s) = L(s)  {AFq} for all s such that q L(s)
2. Repeat: L(s) = L(s)  {AFq} for all states s such that all 

successors are labelled with AF q, until there is no change. 
if  = E[qUr], then 

1. L(s) = L(s)  {E[qUr] } for all s such that r L(s),
2. Repeat: L(s) = L(s)  {E[qUr]} for all states s such that 

q L(s) and which have a successor labelled with E[qUr], until 
there is no change. 

It can be proved that this labelling algorithm ends and that states are labelled 
with all sub-formulae of  that they satisfy. Thus s  if the state s is labelled 
with . By extension if all states are labelled with , we say that the considered 
Kripke structure satisfies .

The model checking algorithm is linear with the size of the system and the 
size of the formula. Unfortunately, practical applications lead to transition 
systems with an enormous number of states, and the previous algorithm is often 
inefficient. To push back these limits, symbolic model checking [15] has been 
developed. It consists in computations on symbolic representation of subspaces 
of states.

To sketch the symbolic model checking, let us introduce the operator Pre.
Let S be the set of states and x be a subset of S. Pre(x) gives the set of states 
which have a successor in x. The set sat( ) of states satisfying  can then be 
defined inductively: 

if AP, sat( ) = {s S | L(s)}
sat( ) = S \ sat( )
sat( ) = sat( ) sat( )
sat( ) = sat( ) sat( )
sat(EX ) = Pre(sat( ))
sat(AX ) = S \ Pre(S \ sat( ))
The connectives AF  and E[ 1U 2] are more difficult to define. Let us 
remark that we have the following equivalence: 

AF  (AX (AF ))
E[ 1U 2] 2  ( 1  EX(E[ 1U 2]) ). 

Then sat(AF ) and sat(E[ 1U 2]) can be defined as the smallest fixed 
points of equations: 

110 Formal Methods for Modeling Biological Regulatory Networks



Since functions f1 and f2 are monotone and that the set of states is finite, 
the iterative computation of the smallest fixed point ends. 

The Binary Decision Diagrams, or BDD for short, are data structures allowing 
the representation of Boolean expressions in a very compact way. Then subsets 
of states can be coded with such Boolean expressions and necessary operations 
for computing sat can be defined on these structures. Numerous works detail 
utilization of BDDs for the verification of systems, see for example [13, 15]. 

5.4.3 A tool for the selection of models: SMBioNet 

We have designed a software for a computer aided modelling based on the 
previous described formal methods [3]. This software, SMBioNet1, helps the 
biologist and/or the modeller to verify systematically the coherence of models 
of a given biological system, and to select suitable models which satisfy the 
temporal properties extracted from knowledge or hypothesis. More precisely 
inputs of SMBioNet consist in: 

                                                     
1 Selection of Models for Biological Networks, see 
http://smbionet.lami.univ-evry.fr

f1(x) = sat( ) sat(AX x)
f2(x) = sat( 2)  (sat( 1) sat(EX x )).

a biological regulatory graph representing the interactions of the 
biological system and 
a CTL formula expressing its known or hypothetical dynamical 
properties.

Then it generates all the models of the biological regulatory graph and gives as 
output those satisfying the CTL formula. For each generated model, SMBioNet 
calls the model checker NuSMV [4] and selects it if the formula is satisfied. 
For each selected model, the asynchronous state graph and the steady states 
(regular and singular) are given. Depending on the available biological 
knowledge, the user can 

Reduce the domain of variation of some parameters, 
Apply general constraints on parameters as, for example, the Snoussi's 
and observability2 constraints, 
Specify a set of steady states (regular and singular) and a set of 
functional circuits. 

These direct constraints on parameters decrease significantly the number of 
models to generate and consequently increase the efficiency of the selection. 

2 Presented in the next section. 

Modern Formal Methods and Applications 111



In the next section, we shows how SMBioNet can be used for modelling the 
immunity control in bacteriophage lambda.  

5.5 Immunity control in bacteriophage 
lambda

One of the most studied genetic regulatory networks is probably the one 
controlling immunity in temperate bacteriophage lambda, which is a temperate 
virus. As described in figure 5-12, after infection of a bacterial population, 

                                                     

However, one can test directly the coherence of the regulatory graph (i.e. is 
there at least one suitable model ?), without enumeration of models by using a 
symbolic description of the set of all models. 

Figure 5-12. The life cycle of bacteriophage lambda. 

112 Formal Methods for Modeling Biological Regulatory Networks



of immunity due to the expression of the repressor. The choice between the 
lytic and lysogenic pathways is very similar to cell differentiation, in the sense 
that a given virus, infecting apparently identical cells, can behave in two 
extremely different ways. 

It is actually in the context of this biological system that Thomas started to 
develop his formalism. Although he proposed various models of the immunity 
control [26, 29, 30], we focus in this section on the model developed by 
Thieffry and Thomas in [26], which is denoted M(G) in the sequel. We will 
show that SMBioNet allows one to select, automatically and with very few 
biological knowledge, a set of models containing M(G) and satisfying the 

second lysogenic. In the lysogenic bacteria, viral DNA has integrated into the 
bacterial chromosome and will be faithfully transmitted to the bacterial 
progeny. In this condition, the viral gene cI, produces a repressor which blocks 
the expression of all the other genes of the phage, thus making the viral 
genome harmless for the bacterium. Moreover, cI makes lysogenic bacteria 
immune towards other infections. Lysogenization necessitates two events, 
integration of the viral DNA into the bacterial chromosome and development 

many bacteria soon lyse and produce new phages but some survive and carry 
lambda genome in a dormant form. The first response is called lytic and the 

validation criteria given by Thieffry. All models of this set have to be 
considered since they have a priori the same prediction capacity than M(G).

5.5.1 Biological regulatory graph 

The biological regulatory graph G summarizes the main regulations of the 
immunity control (Figure 5-13). Obviously it contains gene cI, but also three 
others (cro, cII, and N), which play a predominant role. Gene cI is activated by 
cII. Once on, gene cI remains on because its product activates its own 
synthesis, but at the same time, gene cI switches off the other lambda genes, 
including cII which had just switched it on. In addition gene cro exerts a 
negative control on cI, directly and indirectly, by repressing gene cII. Finally, 
gene N exerts a positive control on cII and is itself under negative control of cI 
and cII. According to the thresholds fixed by Thieffry, variables cI, cro, cII and 
N are 3-,4-,2- and 2-valued respectively, leading to 48 possible states. In the 
remainder, the state of the system is represented by the vector (cI,cro,cII,N). 

5.5.2 Temporal properties 

When the viral genome integrates a cell, all the viral proteins are initially 
absent. Thus (0,0,0,0) corresponds to the initial state of the system. The 
existence of both responses, lytic and lysogenic, implies that there exist two 
paths starting from the initial state leading respectively to the lytic state and to 
the immune one. The lytic state is known to be characterized by high 
concentration of cro and a low concentration of cI, cII and N whereas immune 

Modern Formal Methods and Applications 113



Figure 5-13. Biological regulatory graph G for immunity control. 

state is characterized by high concentration of cI and low concentration of cro, 
cII and N. In [26], both states (0,2,0,0) and (0,3,0,0) correspond to the lytic 
state and (2,0,0,0) is the only state corresponding to the immunity. Without 
change of the environment, the choice between the lytic and the lysogenic 
pathways is irreversible, thus the lytic and immune states are steady. Then if 
the system reaches one state of the sets A={(0,2,0,0),(0,3,0,0)} or 
B={(2,0,0,0)}, then it will never leave it. These sets of states are said steady 
sets.   

Summing up, dynamics of models to consider have to contain paths from 
(0,0,0,0) to the steady sets of states A and B. These properties are translated 
into the CTL formula  as follow: 

init = ((cI = 0)  (cro = 0)  (cII = 0)  (N = 0))
lytic = ((cI = 0)  (cro  2)  (cII = 0)  (N = 0))
immune = ((cI = 2)  (cro = 0)  (cII = 0)  (N = 0))

A = lytic  AG(lytic)
B = immune  AG(immune)
r = init  ( EF(lytic) EF(immune) ) 

= A B r

The sub-formulae init, lytic and immune characterize the initial state, and the 
sets A and B. The steadiness of A and B is translated by A and B. The 
formula r expresses reachability of A and B from the initial state and 
represents the temporal properties to use for the selection of models.  

5.5.3 Selected models 

There is near 7 thousands of millions of models associated to G leading to 
about 3 millions of different asynchronous state graphs. If we consider the 

114 Formal Methods for Modeling Biological Regulatory Networks



for each regulation u v  there is a set G (v) such that Kv, Kv, {u}

which stands for the observability of any regulation. If u v does not satisfy 
the constraints, the attractor of v does not depend on the level of u. It seems 
then quite obvious that any model should satisfy this property in order that all 
regulations play a role in the dynamics. Taking into account these constraints, 
SMBioNet selects among the 882 remaining models, 88 models satisfying the 
formula . The model M(G) proposed by Thieffry and Thomas is one of them. 
Table 5-2 shows the possible values of parameters for the selected models. 17 
parameters among 24 are fixed by formula  (in particular, all the parameters 
associated to N). 

Snoussi's constraints (equation1) as Thieffry and Thomas did, it remains 
151200 models. Moreover, we use the activity constraints [2]: 

KcI,{} = 0
KcI,{cI} = 1 or 2 
KcI,{cro} = 0,1 or 2
KcI,{cII} = 0,1 or 2
KcI,{cI,cro} = 2
KcI,{cI,cII} = 1 or 2
KcI,{cro} = 2
KcI,{cI,cro,cII} = 2

Kcro,{} = 0
Kcro,{cI} = 2
Kcro,{cro} = 0
Kcro,{cI,cro } = 2 or 3

KcII,{} = 0
KcII,{cI} = 0
KcII,{cro} = 0
KcII,{N} = 0
KcII,{cI,cro} = 0 or 1 
KcII,{cI,N} = 0 or 1 
KcII,{cro,N} = 0 or 1 
KcII,{cI,cro,N} = 1

KN,{} = 0
KN,{cI} = 0
KN,{cro} = 0
KN,{cI,cro } = 1

Table 5-2. Possible values of parameters for the selected models. Bold 
numbers correspond to the model M(G).

5.5.4 Validation of models 

Thieffry and Thomas exhibited one model whose coherence is analysed 
through the likelihood of some paths of the asynchronous state graph of M(G)
and through the pertinence of predictions on the dynamics of some mutants. 
Our approach leads to select 88 models, which have to be evaluated with the 
same biological criteria of validation. 

Although 4 positive feedback circuits are present in the regulatory 
graph, the 88 selected models present only two steady states (regular or 
singular): (2,0,0,0) is always steady and the other one is either (0,2,0,0) 

Modern Formal Methods and Applications 115



Even if several pathways are possible from the initial state to immune 
state, all selected models present the most likely pathway in M(G) from 
initial state to A (see Figure 5-13). 

or a singular state adjacent to (0,2,0,0) and (0,3,0,0). These steady 
states correspond to the lytic and immune states, and no other stable 
behaviour (phenotype) can be observed. 

Similarly the pattern of dynamics present in M(G) allowing the system 
to evolve from initial state to lytic state, is also present in all selected 
models. 

Biological knowledge on mutants is available and can be used for 
validating models. The considered mutations correspond to the 
inactivation of different combinations of genes. Then simulations of 
the behaviour of these mutants can be performed and confronted to the 
biological knowledge. For example, the dynamics of the mutant cI-cro-,
where genes cI and cro are inactivated, is obtained from M(G) by 
setting to 0 all parameters associated to cro or cI. Consequently, from 
an initial state where cI and cro are absent, they will never appear. The 
dynamics of this mutant is given in Figure 5-14. 

Figure 5-14. Likely paths from the initial state to the lytic and immune 
states (in bold). The dotted arrow is absent for the 44 models such that 
Kcro,{cro,cI} = 3, M(G) included, whereas the dashed ones are absent for 

others.

Figure 5-15. Dynamics of the mutant cI-cro- obtained from M(G).

116 Formal Methods for Modeling Biological Regulatory Networks



The dynamics of mutants obtained from M(G) are coherent from a 
biological point of view, since the remaining basins of attraction allow 
the prediction of the behaviour of mutants. For any selected model, 
results are the same and are given in table 5-3. 

Among the 88 selected models, some differences can be highlighted. For 
example, 2 states are unreachable from the initial state in M(G) whereas for 
some selected models 15 states are unreachable. In such models, all states with 
cI = 2 and cro = 3 are not reachable, which is reasonable because high 
concentration of cI and cro is rarely observed. Moreover, such models do not 
contain the path (0,0,0,0)  (1,0,0,0)  (2,0,0,0) present in the dynamics of 
M(G) and which is unlikely in view of the low expression of cI when cII is 
absent.

Mutants Basins of attraction 
cI- A
cro- B
cII- A and B 
N- A and B 
cI-cro- {(0,0,1,1)} 
cII-N- A and B 
cro-N- A
cro-cII- A
cro-cII-N- A

Table 5-3. Basins of attraction for a collection of mutants. 

In conclusion, these 88 selected models satisfy the same criteria of validation 
that M(G) and have also to be considered. These models have been selected 
using a formula  expressing the well known properties of the system. Thieffry 
and Thomas have exhibited their model with the circuit functionality and some 
hypothesis. We can notice that the used constraints for functionality are not 
necessary to reproduce the biological properties (expressed by ) because 
some of the models selected by  do not satisfy these functionality constraints. 
Moreover some parameters are valuated according to hypotheses (KcII,{cI,N} =
2 for example) which have to be slacken since some models selected by 

propose different values for these parameters.  

Modern Formal Methods and Applications 117



5.6 Conclusion
We have defined a formal description of biological regulatory networks, which 
allows a computer aided manipulation of the semantics of the discrete 
modelling of Thomas, this manipulation being proved correct by construction. 
Our approach allows biology to take advantage of the whole corpus of formal 
methods from computer science. Model checking is a first powerful tool 
offered by the formalization of biological regulatory networks. In particular, 
temporal properties can be added into the specifications of the system, and the 
modelling task consists in exhibiting one or more generally all models that are 
coherent with the previous specifications expressing a part of the biological 
knowledge concerning the dynamics of the system. All potential models have 
to be checked against temporal formulae, and this task can be done 
automatically using model checking. This brute force approach permits one to 
exhibit exhaustively all suitable models, i.e. all models satisfying the temporal 
formulae. Information provided by a new experiment or a new theoretical point 
of view will refine the set of selected models.  

The available temporal properties concern generally the homeostasis, the 
multi-stationarity, stable steady states and the accessibility of some stable 
steady states from a partially specified initial state. Unfortunately the stable 
steady states are some time singular and not formally represented in the 
asynchronous state graph of Thomas. Then the specifications cannot easily 
contain temporal properties concerning such singular states. This would 
necessitate to rewrite these temporal properties with only atomic propositions 
of regular states, and this task is generally difficult.

De Jong et al. [7] introduced the singular states into their qualitative 
dynamics. Their qualitative modelling of genetic regulatory networks is also 
based on piecewise-linear differential equations. Authors propose a 
mathematically well founded method to deal with singular states using 
differential inclusions [9, 11]. Our approach consisting in adding temporal 
properties into the specifications for determining the suitable parameter values, 
would allows in this context to treat regular states as well as singular states. 

More generally the formal methods can be applied in the field of biological 
regulatory networks and systems biology in order to explicit some behaviours 
or to take into account biological knowledge which have been ignored for the 
moment. The cooperation between biology and formal methods from computer 
science opens a large horizon of research perspectives. 

The introduction of transitions in the regulatory graph could help to 
specify how the different regulators cooperate for inducing or 
repressing their common target [1]. One can also separate inhibitors 
from activators [2] to increase the expressivity of the approach, or take 
into account time delays [31] between the beginning of the activation 
order and the synthesis of the product and conversely for the turn-off 
delays. 

118 Formal Methods for Modeling Biological Regulatory Networks



Automatic generation of experiment schema from suitable models. In 
order to reduce again the set of suitable models, we would like to 
propose the biologist to perform an determining experiment. The result 
is then confronted to each model and only those, which are coherent 
with the experiment, have to be kept. An experiment often consists to 
put the system in a particular state (partially specified) and to observe 
after a while if one or several gene products are present or not. This 
implies to extract the specificities of the biological application domain 
in order to define patterns of formulae expressing feasible experiments. 
The modelling of a regulatory network concerns generally only a small 
part of the global regulatory network of the cell. It becomes crucial to 
prove that the dynamical properties of this sub-network are preserved 
when it is embedded into the global network. This is correlated to the 
treatment of knock-out mutants, identification of functional patterns 
[21] as well as the structure of huge regulatory networks. 

To achieve such development several directions have to be considered. High-
level Petri nets are graphical oriented languages for design, specification, 
simulation and verification of systems. They are in particular well-suited for 
systems in which communication, synchronization and resource sharing are 
important. Clearly, biological systems present these characteristics, and 
modelling by such nets would allows us to take advantage of all results and 
tools in the field of high-level Petri nets. 

Hybrid automata can take into account the continuous aspects of a 
regulatory network: it is a mathematical model for hybrid systems, which 
combines, in a single formalism, automaton transitions for capturing discrete 
changes with differential equations for capturing continuous changes. Symbolic 
model checkers, as HyTech [12], have been developed for the subclass of linear 
hybrid automata. It becomes possible to perform parametric analysis, i.e. to 
determine the values of parameters for which a linear hybrid automaton 
satisfies a temporal-logic requirement. 

These research perspectives aim to link modelling and experiments 
together, by furnishing to biologists model structuring methods and model 
validation tools from current researches in theoretical computer science. The 
resulting formal models are not only a posteriori explanations of biological 
results, they are guides for biological experiments whose success will be in fine
the discriminating criterion. 

5.7 Acknowledgements
The authors thank genopole®-research in Evry (H. Pollard and P. Tambourin) 
for constant supports. We gratefully acknowledge the members of the 
genopole® working groups observability and G3 for stimulating interactions.  

Modern Formal Methods and Applications 119



[1] V. Bassano and G. Bernot. Marked regulatory graphs: a formal 
framework to simulate biological regulatory networks with simple 
automata. In 14'th International Workshop on Rapid System Prototyping,
pages 93-99, San Diego, 2003. 

[2] G. Bernot, F. Cassez, J.-P. Comet, F. Delaplace, C. Müller, O. Roux, and 
O.H. Roux. Semantics of biological regulatory networks. In Proceedings 
of the Workshop on Concurrent Models in Molecular Biology 
(BioConcur'2003), 2003. 

[3] G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. A fruitful application 
of formal methods to biological regulatory networks: Extending Thomas' 
asynchronous logical approach with temporal logic. J. Theor. Biol.,
229(3):339-347, 2004. 

[4] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a 
reimplementation of SMV. In Proceeding of the International Workshop 
on Software Tools for Technology Transfer (STTT-98), BRICS Notes 
Series, NS-98-4, pages 25-31, 1998. 

[5] O. Cinquin and J. Demongeot. Positive and negative feedback: striking a 
balance between necessary antagonists. J. Theor. Biol., 216(2):229-241, 
2002. 

[6] O. Cinquin and J. Demongeot. Roles of positive and negative feedback in 
biological systems. C.R.Biol., 325(11):1085-1095, 2002. 

[7] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, S. Tewfik, and 
J. Geiselmann. Qualitative simulation of genetic regulatory networks 
using piecewise-linear models. Bull. Math. Biol., 66(2):301-340, 2004. 

[8] E.A. Emerson. Handbook of theoretical computer science, Volume B : 
formal models and semantics, chapter Temporal and modal logic, pages 
995-1072. MIT Press, 1990. 

[9] A.F. Filippov. Differential equations with discontinuous right-hand 
sides. Kluwer Academic Publishers, 1988. 

[10] L. Glass and S.A. Kauffman. The logical analysis of continuous non 
linear biochemical control networks. J. Theor. Biol., 39(1):103-129, 
1973. 

[11] J.-L. Gouzé and S. Tewfik. A class of piecewise linear differential 
equations arising in biological models. Dynamical Syst., 17:299-316, 
2003. 

[12] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker 
for hybrid systems. Software Tools for Technology Transfer, 1:110-122, 
1997. 

[13] M. Huth and M. Ryan. Logic in Computer Science: Modelling and 
reasoning about systems. Cambridge University Press, 2000. 

[14] B.J. Kuipers. Qualitative reasoning: modeling and simulation with 
incomplete knowledge. MIT Press, 1994. 

[15] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 
1993. 

5.8 References
120 Formal Methods for Modeling Biological Regulatory Networks



[17] S. Pérès and J.-P. Comet. Contribution of computational tree logic to 
biological regulatory networks: example from pseudomonas aeruginosa. 
In International workshop on Computational Methods in Systems 
Biology, volume 2602 of LNCS, pages 47-56, February 24-26, 2003. 

[18] E. Plathe, T. Mestl, and S.W. Omholt. Feedback loops, stability and 
multistationarity in dynamical systems. J. Biol. Syst., 3:569-577, 1995. 

[19] L. Sánchez and D. Thieffry. A logical analysis of the drosophila gap-
gene system. J. Theor. Biol., 211(2):115-141, 2001. 

[20] L. Sánchez, J. van Helden, and D. Thieffry. Establishment of the dorso-
ventral pattern during embryonic development of drosophila 
melanogaster: a logical analysis. J. Theor. Biol., 189(4):377-389, 1997. 

[21] S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the 
transcriptional regulation network of Escherichia coli. Nat. Genet.,
31(1):64-68, 2002. 

[22] E.H. Snoussi. Qualitative dynamics of a piecewise-linear differential 
equations : a discrete mapping approach. Dynamics and stability of 
Systems, 4:189-207, 1989. 

[23] E.H. Snoussi. Necessary conditions for multistationarity and stable 
periodicity. J. Biol. Syst., 6:3-9, 1998. 

[24] E.H. Snoussi and R. Thomas. Logical identification of all steady states : 
the concept of feedback loop characteristic states. Bull. Math. Biol.,
55(5):973-991, 1993. 

[25] C. Soulé. Graphical requirements for multistationarity. ComPlexUs,
1:123-133, 2003. 

[26] D. Thieffry and R. Thomas. Dynamical behaviour of biological 
regulatory networks - II. Immunity control in bacteriophage lambda. 
Bull. Math. Biol., 57(2):277-297, 1995. 

[27] R. Thomas. Logical analysis of systems comprising feedback loops. J.
Theor. Biol., 73(4):631-656, 1978. 

[28] R. Thomas. On the relation between the logical structure of systems and 
their ability to generate multiple steady states or sustained oscillations. 
Springer Series in Synergies 9, pages 180-193, 1980. 

[29] R. Thomas and R. d'Ari. Biological Feedback. CRC Press, 1990. 
[30] R. Thomas, A.M. Gathoye, and L. Lambert. A complex control circuit. 

Regulation of immunity in temperate bacteriophages. Eur. J. Biochem.,
71(1):211-227, 1976. 

[31] R. Thomas and M. Kaufman. Multistationarity, the basis of cell 
differentiation and memory. II. Logical analysis of regulatory networks 
in terms of feedback circuits. Chaos, 11:180-195, 2001. 

[32] R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour of 
biological regulatory networks - I. Biological role of feedback loops an 
practical use of the concept of the loop-characteristic state. Bull. Math. 
Biol., 57(2):247-276, 1995. 

[16] L. Mendoza, D. Thieffry, and E.R. Alvarez-Buylla. Genetic control of 
flower morphogenesis in arabidopsis thaliana: a logical analysis. 
Bioinformatics, 15(7-8):593-606, 1999. 

Modern Formal Methods and Applications 121



[33] E.O. Voit. Computational Analysis of biochemical systems: a practical 
guide for biochemists and molecular biologists. Cambridge University 
Press, 2000. 

122 Formal Methods for Modeling Biological Regulatory Networks



Specifying and Analyzing 
Complex Software Systems

Author
Xudong He1, Huiqun Yu2, and Yi Deng1

1School of Computer Science 
Florida International University, U.S.A. 
2Department of Computer Science and Engineering 
East China University of Science and Technology, China 

Summary 
Software has been a major enabling technology for advancing modern society, 
and is now an indispensable part of daily life.  Because of the increased 
complexity of these software systems, and their critical societal role, more 
effective software development and analysis technologies are needed.  How to 
develop and ensure the dependability of these complex software systems is a 
grand challenge.

It is well-known that a highly dependable complex software system cannot be 
developed without a rigorous development process and a precise specification 
and design documentation. Formal methods are one of the most promising 
technologies for precisely specifying, modeling, and analyzing complex 
software systems. Although past research experience and practice in computer 
science have convincingly shown that it is not possible to formally verify 
program behavior and properties at the program source code level due to its 
extreme huge size and complexity, recently advances in applying formal 
methods during software specification and design, especially at software 
architecture level, have demonstrated significant benefits of using formal 
methods.

In this chapter, we will review several well-known formal methods for software 
system specification and analysis. We will present recent advances of using 
these formal methods for specifying, modeling and analyzing software 
architectural design.  

Formal Methods for6

123

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 123–150.
© 2006 Springer. Printed in the Netherlands.



It is wildly agreed that the main obstacle to “help computers help us more” and 
relegate to these helpful partners even more complex and sensitive tasks is not 
inadequate speed and unsatisfactory raw computing power in the existing 
machines, but our limited ability to design and implement complex systems 
with sufficiently high degree of confidence in their correctness under all 
circumstances [CGP99]. This problem of design validation – ensuring the 
correctness of the design at the earliest stage possible – is the major challenge 
in any responsible system development process, and the activities intended for 
its solution occupy an ever increasing portion of the development cycle cost 
and time budgets.  

Two major approaches to analyze the system quality are testing and 
verification. Traditional and widely used quality assurance techniques based on 
software testing are inadequate to ensure the reliability of complex systems. In 
addition to the inherent limitation of testing from being able to guarantee 
system properties, many of today’s software systems are designed to adapt in a 
wide range of environments and evolve over time. Because of this, the range of 
possible testing scenarios at code level becomes extremely large and potentially 
uncontrollable. 

Formal methods [Har87, Hoa85, Mil89, MP92, Mur89] for software 
specification and verification have been viewed as a promising way to address 
the problems associated with testing. These methods are precise and rigorous 
and can prevent and detect system defects introduced at the early stages of 
development, which are often more costly to fix and have more severe 
consequences. Despite of tremendous advances, however, widely spread 
application of formal methods in practical system development still remains to 
be seen [CGR95]. A major cause for the problem is that results on formal 
methods are to large extent fragmented. Formal techniques are viewed as 
difficult and expensive to use because their application is ad hoc, and they are 
too fine grained to deal with the complexity in practical-sized development. 
Thus it is necessary to precisely define, measure, and analyze software 
dependability at a level higher than source code. Recent research has shown 
that it is especially important to explore technologies how to handle 
dependability attributes at the software architecture level for the following 
reasons:

A software architecture description presents the highest-level design 
abstraction of a system. As a result it is relative simple compared to a 
detailed system design. Thus it is more likely to develop an effective 
methodology to study dependability attributes.  
As the highest-level design abstraction, a software architecture description 
precedes and logically and structurally influences other system 
development products. Thus an error in a software architecture has a much 

6.1 Introduction
124 Formal Methods for Specifying Complex Software Systems



extremely important. Hence, it is necessary to study and measure 
dependability attributes before the actual software systems are developed 
and deployed. 

Many studies, especially those done at the Software Engineering Institute at 
Carnegie Mellon University, have shown that a software architecture reveals, 
influences, or even dictates many system dependability features such as 
reliability, performance, security, and faulty-tolerance. Therefore, the 
dependability attributes measured at software architecture level can serve as the 
basis to predict and validate the dependability attributes of the developed and 
deployed systems. 

In this chapter, we will review several well-known formal methods for complex 
software system specification and analysis. We will illustrate these methods 
and their applications in the Software Architecture Model (SAM) [WHD99, 
HD02], which is a general software architecture model for developing and 
analyzing software architecture specifications. 

6.2 Formal Specification Techniques 

6.2.1 Visualizing the Structures of Software Architectures 

Specification is the process of describing a system and its desired properties. 
Formal specification uses a language that is usually composed of three primary 
components: (1) a syntax that defines the specific notation with which the 
specification is represented, (2) a semantics that helps to define a “universe of 
objects” [Win90] that will be used to describe the system, and (3) a set of 
relations that define the rules that indicate which objects properly satisfy the 
specification.

In SAM, a software architecture is visualized by a hierarchical set of boxes 
with ports connected by directed arcs. These boxes are called compositions.
Each composition may contain other compositions. The bottom-level 
compositions are either components or connectors. Various constraints can be 
specified. This hierarchical model supports compositionality in both software 
architecture design and analysis, and thus facilitates scalability. Figure 6-1 
shows a graphical view of an SAM software architecture, in which connectors 
are not emphasized and are only represented by thick arrows. Each component 
or connector is defined using a Petri net. Thus the internal logical structure of a 
component or connector is also visualized through the Petri net structure. 

larger impact than an error introduced at a later development stage. 
Prevention and detection of errors at software architectural level are thus 

Modern Formal Methods and Applications 125



Figure 6-1. –A SAM Architecture Model 

Textually, an SAM software architecture is defined by a set of compositions C
= {C1, C2, …,Ck} (each composition corresponds to a design level or the 
concept of sub-architecture) and a hierarchical mapping h relating 
compositions. Each composition Ci = {Cmi, Cni, Csi} consists of a set Cmi of 
components, a set Cni of connectors, and a set Csi of composition constraints. 
An element Cij = (Sij, Bij), (either a component or a connector) in a composition 
Ci has a property specification Sij (a temporal logic formula) and a behavior 
model Bij (a Petri net). Each composition constraint in Csi is also defined by a 
temporal logic formula. The interface of a behavior model Bij consists of a set 
of places (called ports) that is the intersection among relevant components and 
connectors. Each property specification Sij only uses the ports as its atomic 
propositions / predicates that are true in a given marking if they contain 
appropriate tokens. A composition constraint is defined as a property 
specification, however it often contains ports belonging to multiple components 
and / or connectors. A component Cij can be refined into a lower-level 
composition Cl, which is defined by h(Cij) = Cl.

6.2.2 Modeling the Behaviors of Software Architectures 

In SAM, the behavior of a component or a connector is explicitly defined using 
a Petri net. The behavior of an overall software architecture is implicitly 

126 Formal Methods for Specifying Complex Software Systems



derived by composing all the bottom-level behavior models of components and 
connectors. SAM provides both the modeling power and flexibility through the 
choice of different Petri net models. We have used several Petri net models 
including time Petri nets [WHD99], condition event nets, and predicate 
transition nets [HD00, HD02] in our previous work. The selection of a 
particular Petri net model is based on the application under consideration. A 
simple Petri net model such as condition event nets is adequate when we only 
need to deal with simple control flows and data-independent constraints; while 
a more powerful Petri net model such as predicate transition nets is needed to 
handle both control and data. To study performance related constraints, a more 
specialized Petri net model such as stochastic Petri nets is more appropriate and 
convenient. In the following sections, we give a brief definition of predicate 
transition nets (PrT nets) using the conventions in [He96]. 

6.2.3 The Syntax and Static Semantics of PrT Nets 

A PrT net is a tuple (N, Spec, ins) where 
(1) N = (P, T, F) is the net structure, in which  

(i) P and T are non-empty finite sets satisfying P  T =  (P and T are the 
sets of places and transitions of N respectively),  

(ii) F  (P T)  (T P) is a flow relation (the arcs of N);
(2) Spec = (S, OP, Eq) is the underlying specification, and consists of a 

signature S = (S, OP) and a set Eq of S-equations. Signature S = (S, OP)
includes a set of sorts S and a family OP= (OPs1,...,sn, s ) of sorted 
operations for s1, ..., sn, s S. For each s S, we use CONs to denote OP ,s
(the 0-ary operation of sort s), i.e. the set of constant symbols of sort s. The 
S-equations in Eq define the meanings and properties of operations in OP.
We often simply use familiar operations and their properties without 
explicitly listing the relevant equations. Spec is a meta-language to define 
the tokens, labels, and constraints of a PrT net. Tokens of a PrT net are 
ground terms of the signature S, written MCONS. The set of labels is 
denoted using LabelS (X) (X is the set of sorted variables disjoint with OP).
Each label can be a multiple set expression of the form {k1x1, ..., knxn}.
Constraints of a PrT net are a subset of first order logic formulas (where 
the domains of quantifiers are finite and any free variable in a constraint 
appears in the label of some connecting arc of the transition), and thus are 
essentially propositional logic formulas. The subset of first order logical 
formulas contains the S-terms of sort bool over X, denoted as 
TermOP,bool(X).

(3) ins = ( , L, R, M0) is a net inscription that associates a net element in N
with its denotation in Spec:
(i) : P (S) is the data definition of N and associates each place p

in P with a subset of sorts in S.

Modern Formal Methods and Applications 127



(ii) L: F LabelS (X) is a sort-respecting labeling of PrT net. We use 
the following abbreviation in the following definitions: 

L x y
L x y x y F

( , )
( , ) ( , )

 
 

 
 
 
 

iff

otherwise

(iii) R: T TermOP,bool(X) is a well-defined constraining mapping, 
which associates each transition t in T with a first order logic formula 
defined in the underlying algebraic specification. Furthermore, the 
constraint of a transition defines the meaning of the transition. 

(iii) M0: P MCONS is a sort-respecting initial marking. The initial 
marking assigns a multi-set of tokens to each place p in P.

6.2.4 Dynamic Semantics of PrT Nets 

(1) Markings of a PrT net N are mappings M: P MCONS;
(2) An occurrence mode of N is a substitution  = {x1 c1, …, xn cn},

which instantiates typed label variables. We use e: to denote the result of 
instantiating an expression e with , in which e can be either a label 
expression or a constraint; 

(3) Given a marking M, a transition t T, and an occurrence mode , t is 
_enabled at M iff the following predicate is true: p: p P.( L (p,t): )

M(p)) R(t): ;
(4) If t is _enabled at M, t may fire in occurrence mode .  The firing of t with 

 returns the marking M’ defined by M’(p) = M(p) L (p,t): L (t,p):
for p P. We use M[t/ >M’ to denote the firing of t with occurrence 
under marking M. As in traditional Petri nets, two enabled transitions may 
fire at the same time as long as they are not in conflict; 

(5) For a marking M, the set [M> of markings reachable from M is the smallest 
set of markings such that M  [M> and if M’  [M> and M’[t/ >M’’ then 
M’’  [M>, for some t T and occurrence mode  (note: concurrent 
transition firings do not produce additional new reachable markings); 

(6) An execution sequence M0T0M1T1… of N is either finite when the last 
marking is terminal (no more enabled transition in the last marking) or 
infinite, in which each Ti is an execution step consisting of a set of non-
conflict firing transitions; 

(7) The behavior of N, denoted by Comp(N), is the set of all execution 
sequences starting from the initial marking. 

The Dining Philosophers problem is a classic multi-process synchronization 
problem introduced by Dijkstra. The problem consists of k philosophers sitting 
at a round table who do nothing but think and eat. Between each philosopher, 
there is a single chopstick. In order to eat, a philosopher must have both 
chopsticks. A problem can arise if each philosopher grabs the chopstick on the 
right, then waits for the stick on the left. In this case a deadlock has occurred. 

128 Formal Methods for Specifying Complex Software Systems



The challenge in the Dining Philosophers problem is to design a protocol so 
that the philosophers do not deadlock (i.e. the entire set of philosophers does 
not stop and wait indefinitely), and so that no philosopher starves (i.e. every 
philosopher eventually gets his/her hands on a pair of chopsticks). The 
following is an example of the PrT net model of the Dining Philosophers 
problem.  

Eating

Putdown

Thinking
f1 f2

Pickup Chopstick

f3

f4

f5 f6

Figure 6-2. – A PrT Net Model of the Dining Philosophers Problem 

There are three places (Thinking, Chopstick and Eating) and two transitions 
(Pickup and Putdown) in the PrT net. In the underlying specification Spec = (S,
OP, Eq), S includes elementary sorts such as Integer and Boolean, and also 
sorts PHIL and CHOP derived from Integer. S also includes structured sorts 
such as set and tuple obtained from the Cartesian product of the elementary 
sorts; OP includes standard arithmetic and relational operations on Integer, 
logical connectives on Boolean, set operations, and selection operation on 
tuples; and Eq includes known properties of the above operators. 

The net inscription ( , L, R, M0) is as follows: 
Sorts of predicates:  

(Thinking) = (PHIL), (Eating) = (PHIL CHOP CHOP),  
(Chopstick) = (CHOP), 

where  denotes power set.
Arc definitions:

L(f1) = {ph} , L(f2) = {ch1,ch2}, L(f3) = {<ph,ch1,ch2>} ,  
L(f4) = {<ph,ch1,ch2>}, L(f5) = {ph}, L(f6) = {ch1,ch2}.

Constraints of transitions: 
R(Pickup) = (ph = ch1)  (ch2 = ph  1),  R(Putdown) = true. 

The initial marking m0  is defined as follows: 
M0(Thinking) = {1, 2, ..., k}, M0(Eating) = { }, M0(Chopstick) = {1, 2, ..., 

k}.

Modern Formal Methods and Applications 129



The above specification allows concurrent executions such as multiple non-
conflicting (non-neighboring) philosophers picking up chopsticks 
simultaneously, and some philosophers picking up chopsticks while others 
putting down chopsticks. The constraints associated with transitions Pickup and 
Putdown also ensure that a philosopher can only use two designated chopsticks 
defined by the implicit adjacent relationships. Table 6-1 gives the details of a 
possible run of five dining philosophers PrT net. 

Table 6-1. A Possible Run of Five Dining Philosophers Problem

Markings mi Transitions ni

Thinking Eating Chopstick Fired 
Transition

Token(s) consumed 

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=1, ch1=1, ch2=2 
{2,3,4,5} {<1,1,2>} {3,4,5} Putdown <ph,ch1,ch2>=<1,1,2> 
{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=2, ch1=2, ch2=3 
{1,3,4,5} {<2,2,3>} {1,4,5} Pickup ph=4, ch1=4, ch2=5 
{1, 3, 5} {<2,2,3>, 

<4,4,5>}
{1} Putdown <ph,ch1,ch2>=<2,2,3> 

{1, 2, 3, 5} {<4, 4, 5>} {1,2,3} Putdown <ph,ch1,ch2>=<4,4,5> 
{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=5, ch1=5, ch2=1 
{1,2,3,4} {<5,5,1>} {2,3,4} Pickup ph=3, ch1=3, ch2=4 
{1,2,4} {<5,5,1>, 

<3,3,4>}
{2} Putdown <ph,ch1,ch2>=<3,3,4> 

{1,2,3,4} {<5,5,1>} {2,3,4} Putdown <ph,ch1,ch2>=<5,5,1> 
{1,2,3,4,5} { } {1,2,3,4,5} … … 

6.2.5 Specifying SAM Architecture Properties 

In SAM, software architecture properties are specified using a temporal logic. 
Depending on the given Petri net models, different temporal logics are used. In 
this section, we provide the essential concepts of a generic first order linear 
time temporal logic to specify the properties of components and connectors.
We follow the approach in [Lam94] to define vocabulary and models of our 
temporal logic in terms of PrT nets without giving a specific temporal logic. 

6.2.5.1 Values, State Variables, and States  

The set of values is the multi-set of tokens MCONS defined by the Spec of a 
given PrT net N. Multi-sets can be viewed as partial functions. For example, 
multi-set {3a, 2b} can be represented as {a 3, b 2}.

130 Formal Methods for Specifying Complex Software Systems



The set of state variables is the set P of places of N, which change their 
meanings during the executions of N. The arity of a place p is determined by its 
sort  (p) in the net inscription.  

The set of states St is the set of all reachable markings [M0> of N. A marking is 
a mapping from the set of state variables into the set of values. We use M[|x|] to 
denote the value of x under state (marking) M.

Since state variables take partial functions as values, they are flexible function 
symbols. We can access a particular component value of a state variable. 
However there is a problem associated with partial functions, i.e. many values 
are undefined. The above problem can easily be solved by extending state 
variables into total functions in the following way: for any n-ary state variable 
p, any tuple c n

SMCON and any state M, if p(c) is undefined under M, then 
let M[| p(c) |] = 0. The above extension is consistent with the semantics of PrT 
nets. Furthermore we can consider the meaning [|p(c)|] of the function 
application p(c) as a mapping from states to Nat using a postfix notation for 
function application M[|p(c) |].  

6.2.5.2 Rigid Variables, Rigid Function and Predicate Symbols 

Rigid variables are individual variables that do not change their meanings 
during the executions of N. All rigid variables occurring in our temporal logic 
formulas are bound (quantified), and they are the only variables that can be 
quantified. Rigid variables are variables appearing in the label expressions and 
constraints of N. Rigid function and predicate symbols do not change their 
meanings during the executions of N. The set of rigid function and predicate 
symbols is defined in the Spec of N.

6.2.5.3 State Functions, Predicates, and Transitions 

A state function is an expression built from values, state variables, rigid 
function and predicate symbols. For example [|p(c) + 1|] is a state function 
where c and 1 are values, p is a state variable, + is a rigid function symbol. 
Since the meanings of rigid symbols are not affected by any state, thus for any 
given state M, M[|p(c) + 1|] = M[|p(c) |] + 1. 

A predicate is a boolean-valued state function. A predicate p is said to be 
satisfied by a state M iff M[|p|] is true. 

Modern Formal Methods and Applications 131



A transition is a particular kind of predicates that contain primed state 
variables, e.g. [|p’(c) = p(c) + 1|]. A transition relates two states (an old state 
and a new state), where the unprimed state variables refer to the old state and 
the primed state variables refer to the new state. Therefore the meaning of a 
transition is a relation between states. The term transition used here is a 
temporal logic entity. Although it reflects the nature of a transition in a PrT net 
N, it is not a transition in N. For example, given a pair of states M and M':
M[|p’(c) = p(c) + 1|]M’ is defined by M’[|p’(c) |]= M[|p(c) |]+ 1. Given a 
transition t, a pair of states M and M’ is called a “transition step” iff  M[|t |]M’
equals true. We can easily generalize any predicate p without primed state 
variables into a relation between states by replacing all unprimed state 
variables with their primed versions such that M[|p’|]M’ equals M’[|p|] for any 
states M and M’.

6.2.5.4 Temporal Formulas 

Temporal formulas are built from elementary formulas (predicates and 
transitions) using logical connectives ¬ and  (and derived logical connectives 

, , and ), universal quantifier  and derived existential quantifier ,
and temporal operators always , sometimes , and until U.

The semantics of temporal logic is defined on behaviors (infinite sequences of 
states). The behaviors are obtained from the execution sequences of PrT nets 
where the last marking of a finite execution sequence is repeated infinitely 
many times at the end of the execution sequence. For example, for an execution 
sequence M0,...,Mn, the following behavior  = <<M0,...,Mn,Mn,... >> is 
obtained. We denote the set of all possible behaviors obtained from a given PrT 
net as St .

Let u and v be two arbitrary temporal formulas, p be an n-ary predicate, t be a 
transition, x, 1,..., nx x be rigid variables,  = <<M0, M1, ... >> be a behavior, 

and k  = <<Mk, Mk+1, ... >> be a k step shifted behavior sequence; we define 
the semantics of temporal formulas recursively as follows: 

(1)  [|p( 1,..., nx x )|] M0[| p( 1,..., nx x )|]  
(2)  [|t|] M0[| t|]M1
(3)  [|¬u|]   ¬  [|u|]  
(4)  [|u  v|]  [|u|]  [| v |] 
(5)  [| x. u|] x.  [|u|]     
(6)  [| u|] n Nat. n [|u|] 
(7)  [|uUv|] k. k [|v|]  0 n k. n [|u|] 

132 Formal Methods for Specifying Complex Software Systems



A temporal formula u is said to be satisfiable, denoted as  |= u, iff there is an 
execution  such that  [|u|] is true, i.e.  |= u St .  [|u|]. u is valid
with regard to N, denoted as N |= u, iff it is satisfied by all possible behaviors 
St  from N: N |= u St .  [|u|]. 

2.3.5 Defining System Properties in Temporal Logic 

Specifying architecture properties in SAM becomes defining PrT net properties 
using temporal logic. Canonical forms for a variety of system properties such 
as safety, guarantee, obligation, response, persistence, and reactivity are given 
in [MP92]. For example, the following temporal logic formulas specify a safety 
property and a liveness property of the PrT net in Fig.2 respectively: 

Mutual exclusion: 

{1, ..., } ( , _, _ 1, _, _ )ph k ph Eating ph Eating ,

which defines that no adjacent philosophers can eat at the same time. 
Starvation freedom: {1, ..., } ( , _, _ )ph k ph Eating ,

which states that every philosopher will eventually get a chance to eat. 

6.3 Formal Methods for Designing Software 
Architectures

There are two distinct levels of software architecture specification 
development in SAM: element level and composition level. The element level 
specification deals with the specification of a single component or connector, 
and the composition level specification concerns how to combine (horizontal) 
specifications at the same abstraction level together and how to relate (vertical) 
specifications at different abstraction levels. 

6.3.1 Developing Element Level Specifications 

In SAM, each element (either a component or a connector) is specified by a 
tuple <S, B>. S is a property specification, written in temporal logic, that 
specifies the required properties of the element, and B is a behavior model, 
defined by a PrT net, that defines the behavior of the element. S and B can be 
viewed as the specification and the implementation respectively as in many 
other software architecture models such as Wright [AG97]. Therefore to 
develop the specification of an element is essentially to write S and B.

Modern Formal Methods and Applications 133



Although many existing techniques for writing temporal logic specifications 
[MP92, Lam94] and for developing Petri nets [Rei92, HY92, Jen92] may be 
directly used here. There are several unique features about <S, B>. First, S and 
B are related and constrain each other. Thus we have to develop either S or B
with respect to a possibly existing B or S. Depending on our understanding of a 
given system; we can either develop S or B first. Second, the predicate symbols 
used in S are exterior (either input or out) ports of B. Third, S should in general 
be weaker than B, i.e. B may satisfy more properties than S. Thus the view of 
implementation as implication is valid here. With the above unique features in 
mind, we offer the following heuristics for developing S and B:

Heuristic 1 - How to Write S
To define an element constraint, we can either directly formulate the given user 
requirements or carry out a cause effect analysis by viewing input ports as 
causes and output ports as effects. Canonical forms [MP92] for a variety of 
properties such as Safety, Guarantee, Obligation, Response, Persistence, and 
Reactivity are used as guidelines to define property specifications.

A simple example of applying Heuristic 1 is as follows. Let us consider a 
simple automated library system that supports typical transaction types such as 
checkout and return a book. A transaction is initiated with a user request that 
contains user identification, a book title, and a transaction type (checkout / 
return). The transaction is processed by updating the user record and the book 
record, and is finished by sending the user a message – either successful or a 
failure reason. One desirable property of an automated library system is that 
each request must be proposed. This property is a type of response property 
[MP92], and thus can be defined as 

(req).( (Request(req) Response(msg))),  
where req and msg stand for a request and message (Success or Failure) 
respectively, and Request and Response are predicate symbols, and must 
correspond to an input port and an output port respectively. 

Heuristic 2 - How to Develop B
We follow the general procedure proposed in [HY92] to develop B.  
Step 1 - use all the input and output ports as places of B; 
Step 2 - identify a list of events directly from the given user requirements or 
through Use Case analysis [BRJ99];
Step 3 - represent each event with a simple PrT net;  
Step 4 - merge all the PrT nets together through shared places to obtain B;  
Step 5 - apply the transformation techniques [HL91] to make B more structured 
and / or meaningful.

Again, we use the above simple library system as an example. We only 
provide a partial behavior model without the complete net inscription to 
illustrate the application of Heuristic 2. A more complete example of a PrT net 
specification of a library system can be found in [HY92]. Since we developed a 

134 Formal Methods for Specifying Complex Software Systems



property specification first in this case and we identified an input port Request 
and an output port Response, we use them as places in the behavior model B
according to Step 1. We can easily identify two distinct types of events: 
checkout and return. According to Step 3, we come up with the following two 
PrT nets Figure 3 (a) and (b), each of which models an event type. Figure 3 (c) 
is obtained by merging shared places according Step 4, and Figure 3 (d) is 
obtained by restructuring Figure 6-3  (c) through combining Checkout and 
Return into a generic transaction type. 

Figure 6-3. (a) A PrT model of Checkout; (b) a PrT model of Return; 
       (c) a connected PrT model; (d) A PrT model of Checkout 

6.3.2 Developing Composition Level Specifications 

SAM supports both top-down and bottom-up system development 
approaches. The top-down approach is used to develop a software architecture 
specification by decomposing a system specification into specifications of 
components and connectors and by refining a higher level component into a set 
of related sub-components and connectors at a lower level. The bottom-up 
approach is used to develop a software architecture specification by composing 
existing specifications of components and connectors and by abstracting a set 
of related components and connectors into a higher level component. Thus the 
top-down approach can be viewed as the inverse process of the bottom-up 
approach. Often both the top-down approach and the bottom-up approach have 
to be used together to develop a software architecture specification.  

Heuristic 3 - How to Refine an Element Specification <S, B>

Request ResponseChecko

                     (a)

Request ResponReturn

(b)

Request ResponChecko

(c)

Return

Request ResponTransaction

(d)

Modern Formal Methods and Applications 135



Step 1 – Refining B: 
A behavior model B may be refined in several ways, for example, structure 

driven refinement, in which several sub-components and their connectors are 
identified, or functionality driven refinement, in which several functional units 
can be identified. Although, we do not exactly know what refinement 
approaches are effective in general. One thing is for sure, i.e. the input and 
output ports of the element must be maintained at a lower level. Petri net 
specific heuristics [HY92, HL91] may be used to maintain the validity of 
resulting lower level B’. If only behavior-preserving transformations are used 
to obtain B’ from B, we can assure the correctness of <S, B’> based on the 
correctness of <S, B>; otherwise new analysis is needed to ensure the 
satisfiability of S [He98].

Step 2 – Refining S: 
Refining S into S’ in general indicates the change of requirements (a 

special case is when S is logically equivalent to S’), and thus results in the 
change of B. Once S’ is known, the new B’ can be developed using the 
approach for developing element level specification. Not any S’ can be taken as 
a refinement of S. We require that S’ maintain S, which can be elegantly 
expressed as S’  S [3]. Simple heuristics such as strengthening S always 
result in a valid refinement S’. 

Figure 6-4. A Refined PrT Model of Transactions 

As an example, Figure 6-4 shows a possible refinement of transaction into 
two possible scenarios in the dotted box, one is for valid request and the other 
for invalid request. A corresponding refinement of the property specification is 

(req).( (Request(req) req  Valid Response(S)))
(req).( (Request(req) req  Valid Response(F)))

Where S and F stand for success and failure respectively. This refinement 
implies the original property specification and is thus a correct refinement 
according to Heuristic 3. 

Heuristic 4 - How to Compose Two Element Specifications <S1, B1>
and <S2, B2>

Request ResponsUpdateValidate ValidReque

ReportFailure

136 Formal Methods for Specifying Complex Software Systems



In SAM, only a pair of related component and connector can be composed 
meaningfully.  
Step 1 - compose B1 and B2 by merging identical ports;  
Step 2 - compose S1 and S2 by conjoining S1  S2.
The soundness of viewing specification composition as logical conjunction has 
been shown by several researchers [AL93, ZJ93]. 

If we view the two transaction types, Checkout and Return, in the preceding 
library example as two separate components, then Figure 3 (c) illustrates the 
application of Heuristic 4. 

6.3.3 Specify Element Instances 

An element specification <S, B> obtained above is generic when the initial 
marking in B is ignored. In PrT net, instances sharing the same net structure are 
distinguished through token identifications. Thus to obtain concrete elements, 
we only need to provide specific initial marking and generalize transition 
constraints to differentiate tokens with unique identifications. In general, there 
is no need to change the property specification S. For example, let 1B , 2B , and 

3B  be three PrT nets with the same net structure and net inscription except the 
initial markings; then <S, 1B >, <S, 2B >, and <S, 3B > are three element 
specifications. The above view shows the expressive power of PrT nets and 
first order temporal logic over that of low-level Petri nets and propositional 
temporal logic. 

6.4 Formal Software Architecture Analysis 

6.4.1 Formal Analysis Techniques  

A SAM architecture description is well-defined if the ports of a component are 
preserved (contained) in the set of exterior ports of its refinement and the 
proposition symbols used in a property specification are ports of the relevant 
behavior model(s). The correctness of a SAM architecture description is 
defined by the following criteria:  

(1) Element (Component / Connector) Correctness – the property 
specification Sij holds in the corresponding behavior model Bij, i.e. Bij
|= Sij. Note we use Bij here to denote the set of behaviors or execution 
sequences defined by Bij;

Modern Formal Methods and Applications 137



(2) Composition Correctness – the conjunction of all constraints in Csi of
Ci is implied by the conjunction of all the property specifications Sij of 
Cij, i.e. Sij | Csi. An alternative weaker but acceptable criterion is 
that the conjunction of all constraints in Csi holds in the integrated 
behavior model Bi of composition Ci; i.e. Bi |= Csi;

(3) Refinement Correctness – the property specification Sij of a component 
Cij must be implied by the composition constraints Csl of its refinement 
Cl with Cl = h(Cij), i.e. Csl | Sij. An alternative weaker but 
acceptable criterion is that Sij holds in the integrated lower level 
behavior model Bl of Cl, i.e. Bl |= Sij.

The refinement correctness is equivalent to the composition correctness when 
the property specification Sij is inherited without change as the composition 
constraint Csl of its refinement Cl = h(Cij). The above correctness criteria are 
the verification requirements of a SAM architecture description. 

To ensure the correctness of a software architecture specification in SAM, we 
have to show that all the constraints are satisfied by the corresponding behavior 
models. The verification of all three correctness criteria given can be done by 
demonstrating that a property specification S holds in a behavior model B and, 
i.e. B |= S. The structure of SAM architecture specifications and the underlying 
formal methods of SAM nicely support an incremental formal analysis 
methodology such that the verification of above correctness criteria can be 
done hierarchically (vertically) and compositionally (horizontally). 

Two well-established approaches to verification are model checking and 
theorem proving. 

Model checking is a technique that relies on building a finite 
model of a system and checking that a desired property holds in that 
model. Roughly speaking, the check is performed as an exhaustive state 
space search that is guaranteed to terminate since the model is finite. The 
technical challenge in model checking is in devising algorithms and data 
structures that allow us to handle large search spaces. Model checking 
has been used primarily in hardware and protocol verification [CK96]; 
the current trend is to apply this technique to analyzing specifications of 
software systems. 

Theorem proving is a technique by which both the system and its 
desired properties are expressed as formulas in some mathematical logic. 
This logic is given by a formal system, which defines a set of axioms and 
a set of inference rules. Theorem proving is the process of finding a proof 
of a property from the axioms of the system. Steps in the proof appeal to 
the axioms and rules, and possibly derived definitions and intermediate 
lemmas. Although proofs can be constructed by hand, here we focus only 
on machine-assisted theorem proving. Theorem provers are increasingly 

138 Formal Methods for Specifying Complex Software Systems



being used today in the mechanical verification of safety-critical 
properties of hardware and software designs. 

6.4.2 Element Level Analysis 

For each <Sij, Bij> in composition Ci, we need to show that Bij satisfies Sij, i.e. 
Bij Sij. Both model checking and theorem proving techniques are applicable 
to element level analysis. In the following, we briefly introduce model 
checking technique by reachability tree [Mur89], and theorem proving 
technique by temporal logic [He95, He01].  

(1) Model Checking 

A reachability tree is an unfolding of a PrT net, which explicitly enumerates all 
possible markings or states that the behavior model Bij generates. The nodes of 
a reachability tree are reachable markings and directed edges represent feasible 
transitions [Mur89]. The main advantage of reachability tree technique is that 
the tree can be automatically generated. Once the tree is generated, different 
system properties can be analyzed. The main problem is space explosion when 
a PrT net has too many reachable states or even infinite reachable states. One 
possible way to deal with the above problem is to truncate the tree whenever a 
marking is covered by a new marking and this results in a variant of 
reachability trees called coverability trees. In this case, information loss is 
unavoidable. Thus this technique may not work in some cases. The following 
heuristic provides some guidelines to use the reachability tree analysis 
technique.

The basic idea of model checking technique for element level analysis is: (1) 
generating a reachability tree from Bij, (2) evaluating Sij using the generated 
reachability or coverability tree. It should be noted that when a formula 
contains an always operator , the formula needs to be evaluated in all nodes 
of the tree before a conclusion can be made. 

As an example, we use the simple library system given in Figure 4 with the 
assumption of one valid token req1 and one invalid token req2 in place 
Request. When transition Update receives a valid request, it updates the user 
and book records, and generates a response S denoting success. When 
transition ReportFailure receives an invalid request, it produces a failure 
message F. The resulting reachability tree of Step (1) is shown in Figure 6-5. 

Modern Formal Methods and Applications 139



Figure 6-5. – The Reachability Tree of Figure 4 

Based on Step (2), it is easy to see that the following property specification    

(req).( (Request(req) req  Valid Response(S)))

is satisfied in the reachability tree by all three possible paths: Validate – 
Update, ReportFailure – Validate – Update, and Validate – ReportFailure – 
Update. Similarly, we can evaluate the following property specification: 

(req).( (Request(req) req  Valid Response(F))).

(2)Theorem Proving 

The basic idea is to axiomatize Bij [HL90, HD92] and then use the obtained 
axiom system to prove Sij, i.e. Axiom(Bij) Sij. The axiom system consists of 
general system independent axioms and inference rules and system dependent 
axioms and inference rules [MP83]. Each transition in Bij generates a system 
dependent temporal logic rule that captures the causal relationships between the 
input places and output places of the transition. The canonical form of system 
dependent inference rules has the form: fired(t/M) enabled(t/M), where t is a 
transition, M is a given marking. Fired and Enabled are two predicates 
representing the post-condition and precondition of t under M respectively. The 
advantage of this technique is that a syntactic approach rather than a semantic 
approach is used in verification. Since no explicit representation of states is 
needed, there is no space explosion problem as in the reachability tree 
technique. The main problems are that the technique is often difficult to 
automate and its application requires substantial knowledge of first order 
temporal logic and general knowledge of theorem proof. 

({req1, req2}, { }, { } ) 

({req2}, {req1 }, { } ) 

({req2}, { }, {S} ) 

Validate

Update

({req1}, { }, {F} ) 
ReportFailure

Validate

({ }, { req1}, {F} ) 
ReportFailure

Update
ReportFailure

({ }, { }, {S, F} ) 

140 Formal Methods for Specifying Complex Software Systems



To demonstrate the application of this Heuristic, we axiomatize the net 
structure in Figure 4, and the resulting system dependent inference rules after 
Step1 are: 

(1) M[|ValidRequest(x)|] M’[|ValidRequest(x)|] M[|Request(x)|] 
M[|R(Validate)|] 

(2) M[|Response(S)|] M’[|Response(S)|] M[|ValidRequest(x)|] 
M[|R(Update)|] 

(3) M[|Response(F)|] M’[|Response(F)|] M[|Request(x)|] 
M[|R(ReportFailure)|] 

In the above inference rules, M and M’ stand for a given marking and its 
successor marking, respectively. R(t) is the constraint associated with transition 
t. To prove property specification  

(req).( (Request(req) req  Valid Response(S)))

We instantiate to a marking M’ and apply rule (2) to obtain 
M[|ValidRequest(x)|], and we apply rule (1) to obtain M[|Request(x)|]. With 
some simple logical manipulations, we can easily deduce the required property. 

6.4.3 Composition Analysis 

We need to show that the connected behavior model Bi (again a PrT net) of 
composition Ci obtained from all the individual behavior models Bij (j = 1,…,k) 
of components and connectors satisfies all the constraints c

iCsc
^ in Csi, i.e. Bi

c
iCsc

^ . Due to the SAM framework, the analysis techniques at element level 

can be directly applied here. This global approach works in general, but may 
not be efficient. 

An ideal approach is to carry out the composition level analysis 
compositionally. In this approach, we first analyze components and connectors 
individually, i.e. Bij Sij for all components and connectors in a composition 
Ci, and then synthesize the properties, i.e. Sij c

iCsc
^ . Despite some 

existing results on compositional verification techniques in temporal logic 
[AL93] and Petri nets [HL91], their general use and application to SAM are not 
ready yet. 

Following is a modest yet effective incremental analysis approach.  
Step 1: Identify partial order relationships among the components and 

connectors based on their causal relationships; 
Step 2: Compose and analyze the components and connectors in a partial order 

incrementally, starting from the least element (most independent); 

Modern Formal Methods and Applications 141



Step 3: Compose and analyze mutually dependent components and connectors 
together;

Step 4: Once we have shown that the initial condition or marking used to prove 
every individual element can be ensured by the composed behavior model, 
then we can conclude that all the property specifications hold 
simultaneously. 

To illustrate the ideas of this approach, let us view the refined PrT model of 
transactions in Figure 6-4 as a composition, which consists of three trivial 
components Request, ValidRequest, and Response, and three trivial connectors 
Validate, Update, and ReportFailure. Based on the PrT net structure, we can 
identify the following incremental analysis order: 

(1) (Request, Validate, ValidateRequest), 
(2) (ValidateRequest, Update, Response), 
(3) (Request, Validate, ValidateRequest, Update, Response), 
(4) (Request, ReportFailure, Response). 

Where (4) is independent of the first three analyses.  

To further improve the effectiveness of this approach, we are working on some 
Petri net reduction techniques such that the behavior models used in 
incremental analysis are simplified versions of the original behavior models.  

6.4.4 Refinement Analysis 

For each component Cij = <Sij, Bij> with h(Cij) = Cl, we need to show that either 
the connected behavior model Bl of composition Cl satisfies Sij, i.e. Bl Sij  or 
alternatively Csl Sij. Three techniques discussed in element analysis can 
be used to show Bl Sij. Formal temporal deduction technique [HD92, He95] 
can be used to prove Csl Sij.

As an example, if we view Figure 4 as a refinement of Figure 3(d). We can 
easily prove the following to assure the correctness of the refinement: 

(req).( (Request(req) req  Valid Response(S))) 
(req).( (Request(req) req  Valid Response(F)))  
(req).( (Request(req) Response(msg))).  

6.4.5 Studying Dependability Attributes Using SAM 

We have studied a variety of functional properties and several non-functional 
dependability attributes at software architecture level using a software 
architecture model called SAM ([WHD99], [HD02]). We have applied SAM to 

142 Formal Methods for Specifying Complex Software Systems



specify and analyze schedulability [XHD02], performance including end-to-
end latency ([WHD99], [YHG02], [SH03a]), security [HD02], fault-tolerance 
[SH02], reliability ([SH03a], [SH03b]) and many other functional behavior 
properties such as deadlock and response ([HDD02], [SH02], [HYS03]).  

We have used SAM in specifying and verifying several non-functional 
dependability attributes including performance (end-to-end latency) [WDH99], 
schedulability [YHD02], security [HD02], fault tolerance [SH02], and 
reliability ([SH03a], [SH03b]). Since several Petri net models and temporal 
logics as well as a variety of formal analysis techniques were used to specify 
and verify the above system architectures and dependability attributes. Here we 
just briefly mentioned our approach without providing technical details.    

End-to-End Latency 
In [WDH99], time Petri nets [BD91] and real-time computational tree logic 
(CTL) [EMS92] were used to specify the software architecture of a control 
and command system. End-to-end latency was then verified by generating 
a reachability tree from the time Petri net model and evaluating timing 
properties specified in real-time CTL formulas. We also used stochastic 
Petri nets to study latency [SH03a]. 

Schedulability 
In [YHG02], predicate transition nets (PrT nets) [Mur89] and first-order 
linear-time temporal logic (FOLTTL) ([MP92], [MP95]) were used to 
specify the software architecture of a simplified multi-media system. 
Timing requirements were dealt with by adding a time stamp attribute in 
tokens and by adding lower and upper bounds in transition constraints in 
predicate transition nets. Timing properties were specified in first-order 
temporal logic formulas by an additional clock variable. Verification of 
schedulability was again done using the theorem prover STeP. 

Security 
In [HD02], PrT nets and FOLTTL were used to specify the software 
architecture of an access authorization subsystem. Several system 
components were explicitly modeled to handle security check process. 
Security policies were defined as part of transition constraints within these 
security-checking components. Security related properties were specified 
using FOLTTL. Verification of security properties was done using 
reachability tree technique at the component level and using theorem 
proving at the composition level. 

Fault-Tolerance
In [SH02], PrT nets and FOLTTL were used to specify the software 
architecture a communication protocol. To handle possible communication 
faults such as loss of information, additional system timer components 
were introduced to detect such losses. Fault-related properties were 
specified using FOLTTL and were verified using the symbolic model 
checker SMV [McM93]. 

Modern Formal Methods and Applications 143



Reliability 
In ([SH03a], [SH03b]), PrT nets were used to model a software 
architecture. PrT nets were then unfolded into stochastic reward nets 
(SRNs). Probabilistic real-time Computation Tree Logic (PCTL) [HJ94] 
was used to specify system reliability. The probability of system failure 
was then calculated using tool SPNP [Tri99] in [SH03a] and tool SMART 
[CJM02] in [SH03b]. 

6.5 Related Work 

Many formal methods have been developed and applied to specifying and 
verifying complex software systems.  For example, Z [Spi92] was used to 
specify software architecture [AAG95], CSP [Hoa85] was used as the 
foundation of Wright [AG97], and CHAM [IW95] (an operational formalism) 
was proposed to specify software architectures. Rapide [LKA95] used a 
multiple language approach in specifying software architectures, while some 
language has a well-defined formal foundation (for example the specification 
language uses a combination of algebraic and pattern constraints), others offer 
constructs similar to those in a typical high-level programming language.  

Two complementary formal methods, Petri nets and temporal logic, are used in 
SAM to define behavior models and property specifications respectively. The 
selection of the above formal methods is based on the following reasons. Well-
known model-oriented formal methods include Petri nets and finite state 
machines. Finite state machines are simple, but have difficulty to deal with 
concurrent systems especially distributed systems. Petri nets are well suited for 
modeling concurrent and distributed systems, which characterize the majority 
of embedded systems being used by NASA and other government agencies. 
However Petri nets are often misunderstood and even prejudiced in the U.S. 
Many researchers’ knowledge of Petri nets is limited to the 1st generation low-
level Petri nets used primarily for modeling control flows. Petri nets have 
evolved tremendously in the past 20 years, from the 2nd generation high-level 
Petri nets in 1980s ([JR91]) and the 3rd generation hierarchical and modular 
Petri nets in early 1990s ([HL91], [He96], [Jen92]) to the 4th generation object-
oriented Petri nets in late 1990s [ADR01]. More importantly, Petri nets have 
been extended in many different ways to study system performance, reliability, 
and schedulability ([MBC94], [Wan98], [Haa02]); which are the central 
attributes of complex dependable systems. There are vast existing research 
results on Petri nets (over 8000 publications). Despite many different types of 
temporal logic, for example, propositional vs. first-order, linear time vs. branch 
time, timed vs. un-timed, probabilistic vs. non-probabilistic, it is widely 
accepted that temporal logic in general is an excellent property-oriented formal 
method for specifying behavioral properties of concurrent systems. We are 
familiar with and have extensive experience in using Manna & Pnueli’s linear-

144 Formal Methods for Specifying Complex Software Systems



time first order temporal logic ([MP92], [MP95]), Lamport’s linear-time first 
order temporal logic (Temporal Logic of Actions) [Lam94], and Clarke and 
Emerson’s branch time propositional logic CTL [CE81] and its extension 
CTL* [CES86]; and various timed versions of the above temporal logics 
([AH92], [AM94], [EMS92]). One major problem of using a dual-formalism is 
how to integrate two formal methods in a consistent and meaningful way, our 
own research results ([HL90], [HD92], [He92]) and others work [MMP96] 
have provided a satisfactory solution to integrate Petri nets and temporal logic 
in SAM. 

Almost all ADLs support the specification and analysis of major system 
functional properties such as safety and liveness properties [MT00]. Several 
ADLs also provide capabilities to represent some dependability attributes. 
MetaH [BEJ96] supported the description of non-functional properties such as 
real-time schedulability, reliability and security in components but not in 
connectors. Unicon [SDK95] supported the definition of real-time 
schedulability in both components and connectors. Rapide [LKA95] supported 
the modeling of time constraints in architectural configurations.  The analysis 
of non-functional properties in the above ADLs was not performed at the 
architecture specification level instead of during the simulation and 
implementation. As pointed out in [SR98] “ADLs need to be extended with 
appropriate linguistic support for expressing dependability constraints. They 
also need to be furnished with an appropriate semantics, to enable formal 
verification of architectural properties.”  

6.6 Concluding Remarks 

Commercial pressure to produce higher quality software is always increasing. 
Formal methods have already demonstrated success in specifying commercial 
and safety-critical software, and in verifying protocol standards and hardware 
designs. In this chapter, we have provided a well-defined integration of two 
well-known formal methods predicate transition nets and first order linear-time 
temporal logic as the foundation for writing software architecture specifications 
in SAM. This dual formal methods approach supports both behavioral 
modeling and property analysis of software architectures. Unlike many other 
architecture description language research efforts that primarily focus on the 
representation issues of software architectures, we have further presented a 
unified framework with a set of heuristics to develop and analyze software 
architecture specifications in SAM. The heuristics are supported by well-
developed existing techniques and methods, with potential software tool 
assistance. We have demonstrated the applications of several of the heuristics 
with regard to the development and analysis in a non-trivial example. Our 
contributions are not limited to software architecture research, but also shed 

Modern Formal Methods and Applications 145



some light on how mature formal methods can be effectively used in real-world 
software development. While it is true that every formal method has its limits 
and weaknesses, it is important to rely on its strengths while avoiding and 
minimizing its weaknesses in practical applications. The above philosophy has 
been used both in designing our dual formal methods foundation of SAM as 
well as our framework consisting of a variety of development and analysis 
techniques.

SAM has been applied to model and analyze the software architectures of 
several systems, including a control and command system [WHD99], a flexible 
manufacturing system [WD99], popular architectural connectors [HD00], the 
alternating bit communication protocol, and a resource access decision system 
here. We are carrying out more case studies to explore the effectiveness of 
combining different development and analysis techniques and to determine the 
practical limitations of each individual technique. To support this whole SAM 
framework, we are adding software components to our existing SAM 
environment, which consists of a graphical editor for building behavioral 
models, a textual editor for defining property specifications, a simulator to 
execute behavioral models, and an analyzer to model check the property 
specifications in the behavioral models. 

6.7 Acknowledgements

This research was supported in part by the National Science Foundation of 
the USA under grant HRD-0317692, and by the National Aeronautics and 
Space Administration of the USA under grant NAG2-1440.  

6.8 References

[AAG95] G. Abowd, R. Allen, and D. Garlan: “Formalizing Style to 
Understand Descriptions of Software Architecture”, ACM Transaction on 
Software Engineering and Methodology, vol.4, no.4, 1995. 

[AG97] R. Allen, and D. Garlan: “A formal Basis for Architectural 
Connection”, ACM Transaction on Software Engineering and 
Methodology, vol.6, no.3, 1997, 213-249.  

[AL91] M. Abadi and L. Lamport: “The existence of refinement mappings”,
Theoretical Computer Science, 82, 1991, 253-284. 

[AL93] M. Abadi and L. Lamport: “Composing specification”, ACM Trans. on 
Programming Languages and Systems, Vol. 15, 1993, 73-130. 

146 Formal Methods for Specifying Complex Software Systems



[BD91] B. Berthomieu and M. Diaz, Modeling and Verification of Time 
Dependent Systems Using Time Petri Nets, IEEE Trans. Software 
Engineering, Vol. 17, No. 3, 1991, 259-273.  

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson: The Unified Modeling 
Language – User Guide, Addison Wesley, 1999. 

[CE81] E.M. Clarke and E.A. Emerson, “Characterizing Properties of Parallel 
Programs as fixpoints”, Proc. of the 7th International Colloquim on 
Automata, Languages, and Programming, Lecture Notes in Computer 
Science, vol.85, 1981. 

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Verification 
of Finite-State Concurrent Systems using Temporal Logic Specifications”, 
ACM Trans. on Programming Languages and Systems, vol.8, no.2, 1986, 
244-263.  

[CK96] E. M. Clarke, O. Grumberg and D. A, Peled, Model Checking, The 
MIT Press, 1999. 

[CGR95] D. Craigen, S. Gerhart, and T. Ralston: “Formal Methods 
Reality Check: Industrial Usage”, IEEE Trans. On Software 
Engineering, vol.21, no.2, 1995.

[CJM02] G. Ciardo, R. Jones, R. Marmorstein, A. Miner, and R. Siminiceanu, 
“SMART: Stochastics model-checking analyzer for reliability and timing”, 
Proc. of Int’l Conf. on Dependable Systems and Networks, Washington, 
June 2002.  

[CK96] E. M. Clarke and R. Kurshan, “Computer-aided verification”, IEEE
Spectrum, Vol.33, No.6 , 1996, 61-67. 

[CW96] E. Clarke and J. Wing: “Formal Methods: State of the Art and Future”, 
ACM Computing Surveys, vol.28, no.4, 1996, 626-643. 

[DWB03] Y. Deng, J. Wang, K. Beznosov and J. J.P. Tsai, "An approach for 
modeling and analysis of security system architectures", IEEE 
Transactions on Knowledge and Data Engineering, Vol. 15, No. 2, 
March/April 2003. 

[EMS92] E. Emerson, A. Mok, A. Sistla, and J. Srinivasian: “Quantitative 
Temporal Reasoning”, Real-Time Systems, vol.4, 1992, 331-352. 

[Haa02] P. Haas: Stochastic Petri Nets: Modeling, Stability, Simulation,
Springer-Verlag, 2002. 

[Har87] D. Harel: Statecharts: a visual formalism for complex systems. Science
of Computer Programming, vol. 8, 231-274. 

[HD92] X. He and Y. Ding: "A Temporal Logic Approach for Analyzing 
Safety Properties of Predicate Transition Nets", Proc. of the 12th IFIP 
World Computer Congress (Information Processing’92), Madrid, Spain, 
1992, 127-133. 

[HD00] X. He and Y. Deng: “ Specifying software architectural connectors in 
SAM”, International Journal of Software Engineering and Knowledge 
Engineering, 10, 2000, 411-432. 

[HD02] X. He and Y. Deng: “A Framework for Developing and Analyzing 
Software Architecture Specifications in SAM”, The Computer Journal,
vol.45, no.1, 2002, 111-128. 

Modern Formal Methods and Applications 147



[HDD02] X. He, J. Ding, and Y. Deng: “Analyzing SAM Architectural 
Specifications Using Model Checking”, Proc. of SEKE2002, Italy, 2002. 

[He92] X. He: "Temporal Predicate Transition Nets - A New Formalism for 
Specifying and Verifying Concurrent Systems", International Journal of 
Computer Mathematics, vol.45, no.1/2, 1992, 171-184.  

[He95] X. He: “A method for analyzing properties of hierarchical predicate 
transition nets”, Proc. of the 19th Annual International Computer Software 
and Applications Conference (COMPSAC'95), Dallas, Texas, August, 
IEEE Computer Society Press, U.S.A., 1995, 50-55 

[He96] X. He: "A Formal Definition of Hierarchical Predicate Transition 
Nets", Proc. of the 17th International Conference on Application and 
Theory of Petri Nets (ICATPN'96), Lecture Notes in Computer Science,
vol. 1091, Osaka, Japan, 1996, 212-229.  

[He98] X. He: “Transformations on hierarchical predicate transition nets: 
abstractions and refinements”, Proc. of the 22nd International Computer 
Software and Application Conference (COMPSAC’98), Vienna, Austria, 
August , IEEE Computer Society Press, U.S.A., 1998, 164-169 

[He01] X. He: “PZ nets - a formal method integrating Petri nets with Z”, 
Information and Software Technology, 43, 2001, 1-18. 

[HJ94] H. Hansson and B. Johnson, “A Logic for Reasoning about Time and 
reliability”, Formal Aspects of Computing, vol.6, no.4, 1994, 512-535. 

[HL90] X. He and J.A.N. Lee, “Integrating predicate transition nets and first 
order temporal logic in the specification of concurrent systems”, Formal 
Aspects of Computing, vol.2, no.3, 1990, 226-246.  

[HL91] X. He and J.A.N. Lee, “A methodology for constructing predicate 
transition net specifications”, Software - Practice & Experience, 21, 1991, 
845-875. 

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 
1985. 

[HY92] X. He and C.H. Yang: “Structured analysis using hierarchical predicate 
transition nets” , Proc. of the 16th Int'l Computer Software and 
Applications Conf. (COMPSAC'92), Chicago, September, IEEE Computer 
Society Press, U.S.A., 1992, 212-217. 

[KKC00] R. Kazman, M. Klein, P. Clements: “ATAM: A Method for 
Architectural Evaluation” Software Engineering Institute Technical Report 
CMU/SEI-2000-TR-004.
[Kni02] J. Knight: “Dependability of Embedded Systems”, Proc. of ICSE’02,
Orlando, 2002, 685-686.  
[Jen92] K. Jensen, K. Coloured Petri Nets, Springer-Verlag, Berlin, 1992. 
[Lam94] L. Lamport: “The Temporal Logic of Actions”, ACM Transactions on 

Programming Languages and Systems, vol.16, no.3, 1994, 872-923. 
[LKA95] D.C. Luckham, J. Kenney, L. Augustin et al: Specification and 

Analysis of System Architecture Using Rapide, IEEE Transaction on 
Software Engineering, vol.21, no.4, 1995, 336-355. 

[MBC94] M. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis: 
Modeling with Generalized Stochastic Petri Nets, John Wiley and Sons, 
1994. 

148 Formal Methods for Specifying Complex Software Systems



[McM93] K. L. McMillan, Symbolic Model Checking, Kluwer Academic 
Publishers, Boston, 1993. 
[Mil89] R. Milner, Communication and Concurrency, Prentice-Hall, 1989. 
[MMP96] D. Mandrioli, A. Morzenti, M. Pezze, P. Pietro  S. and S. Silva. A 

Petri net and logic approach to the specification and verification of real 
time systems. Formal Methods for Real time Computing, 1996.

[MP83] Z. Manna and A. Pnueli: “How to cook a temporal proof system for 
your pet language”, Proc. Of the 10th ACM Symp. On Principle of 
Programming Languages, Austin, Texas, ACM Press, 1983, 141-154 

[MP92] Z. Manna and A. Pnueli: The Temporal Logic of Reactive and 
Concurrent Systems - Specification, Springer-Verlag, 1992. 

[MP95] Z. Manna and A. Pnueli: The Temporal Verification of Reactive 
Systems - Safety, Springer-Verlag, 1995. 

[MT00] N. Medvidovic and R. Taylor: “A Classification and Comparison 
Framework for Software Architecture Description Languages”, IEEE
Transaction on Software Engineering, vol.26, no.1, 2000, 70-93. 

[Mur89] T. Murata: “ Petri nets, Properties, analysis and applications”, Proc. of 
IEEE, vol.77, no.4, 1989, 541-580.  

[Rei92] W. Reisig. A Primer in Petri Net Design, Springer-Verlag, Berlin, 
1992. 

[SDK95] M. Shaw, R. Deline, D. Klein et al: Abstractions for Software 
Architecture and Tools to Support Them, IEEE Trans. on Software Eng.,
vol. 21, no.4, 1995, 314-335. 

[SG96] M. Shaw and D. Garlan, Software Architecture, Prentice-Hall, 1996. 
[SH02] T. Shi and X. He: “Modeling and Analyzing the Software Architecture 

of A Communication Protocol Using SAM”, Proc. of the 3rd Working 
IEEE/IFIP Conference on Software Architecture, Montreal, August, 2002. 

[SH03a] T. Shi and X. He: “Dependeability Analysis using SAM”, Proc. of the 
ICSE Workshop on Software Architectures for Dependable Systems, May 
3, Portland, Oregon, USA, 2003.1 

[SH03b] T. Shi and X. He: “A Methodology for Dependability and 
Performability Analysis in SAM”, Proc. of The International Conference 
on Dependable Systems and Networks, San Francisco, CA, June 22nd - 
25th, 2003. 

[Spi92] Spivey, Z Reference Manual, Prentice-Hall, 1992. 
[SR98] V. Stavridou and R. Riemenschneider: “Provably Dependeable 
Software Architectures”, Proc. of 3rd International Software Architecture 
Workshop, Florida, 1998, 133-136. 
[Tri99] K. Trivedi, SPNP User’s Manual, version 6.0, Department of ECE, 
Duke University, 1999. 
[Wan98] J. Wang: Timed Petri Nets, Theory and Application, Kluwer 
Academic Publisher, 1998. 
[WHD99] J. Wang, X. He, Y. Deng: “Introducing Software Architecture 

Specification and Analysis in SAM through An Example”, Information and 
Software Technology, vol.41, 1999, 451-467. 

[Win90] J. Wing: “A Specifier’s Introduction to Formal Methods”, IEEE
Computer, 23(9): 8-24, 1990. 

Modern Formal Methods and Applications 149



[XHD02] D. Xu, X. He, and Y. Deng: “Compositional Schedulability Analysis 
of Real-Time Systems Using Time Petri Nets”, IEEE Trans. On Software 
Engineering, vol.28, no.10, 2002. 

[YHD02] H. Yu, X. He, S. Gao and Y. Deng: “ Modeling and Analyzing SMIL 
Documents in SAM”, Proc. of Fourth IEEE International Symposium on 
Multimedia Software Engineering, Newport Beach, California, USA, 
pp.132-139, 2002 

[ZJ93] P, Zave and M. Jackson: “Conjunction as composition”, ACM 
Transaction on Software Engineering and Methodology, 2, 1993, 379-411. 

150 Formal Methods for Specifying Complex Software Systems



7 An Algebraic Approach to 
Hardware Compilation 

Authors
Jonathan P. Bowen1   and   He Jifeng2

1 London South Bank University 
Centre for Applied Formal Methods, Institute for Computing Research 
Faculty of Business, Computing and Information Management, UK 

2 The United Nations University 
International Institute for Software Technology, China 

Summary
This chapter presents a provably correct compilation scheme that 
converts a program into a network of abstract components that 
interact with each other by exchanging request and 
acknowledgement signals. We provide a systematic and modular 
technique for correctly realizing the abstract components in 
hardware device, and use a standard programming language to 
describe both algorithms and circuits. The resulting circuitry, which 
behaves according to the program, has the same structure as the 
program. The circuit logic is asynchronous, with no global clock.  

Keywords: compilation; formal methods; hardware design 

7.1 Introduction
With chip sizes consisting of millions of transistors, the complexity of VLSI 
algorithms – i.e., algorithms implemented as a digital VLSI circuits – is 
approaching that of software algorithms – i.e., algorithms implemented as code 
for a stored-program computer. For many applications, particularly where 
speed of execution or security is important, a customer-built circuit is better 
than the traditional processor-and-software combination. The speed is 
improved by the absence of the machine language layer and also by introducing 
parallelism, whereas security is improved by the impossibility of 
reprogramming. Moreover, there are spacing saving compared to a 
combination of software and processor. 

151

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 151–176.
© 2006 Springer. Printed in the Netherlands.



Yet design methods for VLSI algorithms lag far behind the potential of the 
technology. The design methods for digital circuits that are commonly found in 
textbooks resemble the low-level machine-language programming methods. 
Selecting individual logic gates in a circuit is something like selecting 
individual machine instruction in a program. These methods may have been 
adequate for small circuit design when they were introduced, and they may still 
be adequate for large circuits that are simply repetitions of a small circuit (such 
as a memory), but they are not adequate for circuits that perform complicated 
customer algorithm. 

Since a VLSI system is a highly concurrent computation, we propose an 
approach to VLSI design based on concurrent computing. The circuit to be 
designed is first implemented as a concurrent program that fulfils the logical 
specification of the circuit. The program is then compiled into a circuit by 
applying semantics-preserving transformations. Hence, the circuit obtained is 
correct by construction. 

Communication in VLSI is becoming increasingly expensive, compared to 
switching, as the size of the wire determines both the switching costs and the 
area of a chip. In order to reflect those cost ratios, a model in which 
communication is explicit is more appropriate to control the cost of 
communication. Hence, we opted for a notation based on the notion of 
concurrent processes communicating by explicit message-passing and 
assignments to variables. We adopt a high level programming language like 
Occam [7] as a behavior specification language for hardware device. Occam is 
a language for designing and describing concurrent systems, and hardware 
designers exploit concurrency in their pursuit of increased performance. For 
example, today’s fastest microprocessors typically contain a number of 
cooperating agents: a bus interface that directs traffic among the main memory 
and caches; an instruction fetch unit that reads and decodes instructions from 
the cache; and several execution units that carry out the decoded instructions. 
The components of the microprocessor synchronize when they need to 
exchange information, but otherwise proceed at their own pace. Such a system 
is naturally described as a set of communicating processes. 

This chapter presents a provably correct compilation scheme that converts 
a program into a network of abstract components that interact with each other 
by exchanging request and acknowledgement signals. We provide a systematic 
and modular technique for correctly realizing the abstract components in 
hardware device, and use a standard programming language to describe both 
algorithms and circuits. The resulting circuits, which behave according to the 
program, have the same structure as the program. The circuit logic is 
asynchronous, with no global clock. 

152 An Algebraic Approach to Hardware Compilation



Why is it significant that our compilation scheme is verified?  Highly 
concurrent systems are notoriously difficult implement correctly; there is little 
chance of getting them right unless a disciplined approach is taken early in 
their specification and design. Occam’s concise notation makes it easy to see 
whether a given description captures the designer’s intent. Furthermore, Occam 
has a well-understood mathematical model [4] and a complete set of algebraic 
laws [13], allowing potential system misbehavior to be detected by analysis 
rather than simulation. However, rigorous reasoning at the source level is for 
naught if the compilation scheme itself introduces misbehavior. The 
importance of detecting flaws before a product goes to market was understood 
by the Pentium disaster of 1994: Intel was forced to write off $475 million due 
to an obscure bug in the Pentium’s floating-point division unit [8]. 

The VHDL [10] and Verilog [15] languages are presently being used by 
industry. They provide a way to express formally and symbolically the 
constituent components of a hardware circuit and their interconnections, and 
allow circuits designers to describe circuits more conveniently, but they are not 
translated automatically to circuits. There are interactive synthesis tools to aid 
in the construction of synchronous circuits from a subset of these languages. 
The circuits are then verified by simulation. 

There are other high-level circuit design methods that have been developed 
and reported in the literature. Martin at CalTech developed a method of 
compiling a communicating process [6] into a set of transistors via an 
intermediate mapping to production rules. In [1, 2], a similar approach (and a 
similar circuit design language) was taken, except that specifications are 
mapped into connections of small components for which standard transistor 
implementations exist. In [16], circuits are modeled as networks of finite state 
machines, using their formalism to assist in proving the correctness of their 
compiled circuits. Page at Oxford developed a prototype compiler in the 
functional language SML, which converted an Occam-like language to a netlist
[1]. After further processing by vendor software the netlist can be loaded into 
Xilinx FPGA chips [17]. This work is most similar to ours, but their designs 
have a global clock; ours do not. Moreover, the algebraic approach in this 
chapter offers the significant advantages of providing a provably compiling 
method, and it is also expected to support a wide range of design optimization 
strategies.

The rest of this chapter is organized as follows. Section 7.2 presents a 
simple language of communicating processes as the source language. An 
overview of our compilation strategy is given in Section 7.3. Section 
7.4introduces the concepts of handshake protocol and context-dependent 
refinement. Section 7.5 is devoted to the implementation of program variables 
and Boolean expressions. In Section 7.6, we convert the sequential subset of 
the language into a network of abstract components, and validate the 
compilation scheme. Section 7.7 shows how to use a set of primitive circuits to 
implement the control processes generated by our hardware compilation 
scheme. 

Modern Formal Methods and Applications 153



7.2 A Language of Communicating Processes 
7.2.1 Syntax

Our language of communicating processes contains the features that are typical 
of Occam and Occam-like languages:  

• Boolean state variables can be used in expressions and updated by 
assignment.  

• Programs can be composed in sequence, in parallel, or made to execute 
conditionally or repeatedly.  

• Concurrently executing programs can synchronize through shared 
objects called channels.  

• Programs offer several channels on which to synchronize may choose 
among them.  

The syntax for the language is given by the following BNF rules, where x
stands for a program variable of Boolean type, ch for a channel name, b for a 
Boolean expression, and P for a process, and for sequence catenation.  

Informally, the process terms stand for the following processes:  

1. Execution of skip does nothing, and leaves all variables unchanged.  
2. Execution of x := b assigns the value of expression b to variable x.
3. ch?x is input from a channel named ch to variable x.
4. ch!b is output to a channel named ch of the value of expression b.
5. The construct P . Q  executes either P  or Q , where the choice between 

P and Q is made non-deterministically, without consent of its 
environment. 
In general, let P be a finite non-empty set of processes. We use the 
notation .P to denote the non-deterministic choice over the members 
of P.
We define a relation . between programs such that P  holds whenever, 
for any purpose, the observable behavior of P is good as, or better than, 
that of Q:

P . Q =df (P . Q) = Q

154 An Algebraic Approach to Hardware Compilation



6. The sequential composition P;Q executes P first, and then executes Q
after P terminates; it terminates when Q terminates.  

7. P || Q stands for the parallel composition of P and Q, wherein all 
communications between P and Q are concealed from the environment. 
Let E be the set of communication events between P and Q. The 
synchronization construct QP E||  behaves like the parallel 
composition P || Q except that the communication events of E remain 
visible to the external environment  

QP ||  =  ( QP E||  ) \ E
where \ denotes the Communicating Sequential Processes (CSP) hiding 
operator [6, 14].  

8. The Boolean guarded process b P cannot appear outside of a 
conditional or iterative statement; it is triggered only when the initial 
value of b is true and its execution completes when P terminates. 
Several guarded processes may be composed into a sequence.  

9. The conditional if BG fi examines its guarded processes in order, 
selects the first one whose Boolean guard is true, and executes its 
associated process. It terminates when that process terminates. If none 
of its guards is true, the behavior of the conditional becomes totally 
unpredictable like a chaotic program. 
For notational simplicity, we will use P . b . Q  to describe a program 
which behaves like P if the initial value of b is true, or like Q if the 
initial value of b is false: 

10. The iterative construct do BG od is similar to the conditional if BG fi,
except that it repeatedly evaluates its guarded processes until none of 
its guards is true, and then it terminates.  

11. The guarded alternation alt G tla offers to its environment a choice 
over the input guards of its alternatives. If the environment performs a 
communication on c, and c?x P is the unique element of sequence G
with the input on c as the guard, then the construct alt G tla will behave 
like process P. If there are a number of guarded processes in G with the 
input on c as their guards, then the choice among them will be made 
non-deterministically. 
We adopt the CSP notation P [] Q to stand for the external choice 
between P and Q, which offers the environment the choice of the first 
events of P and Q and then behaves accordingly. The alternation 
construct can be rewritten as external choice:

 Let A = (a1,…,an}be a finite set of communication events. The notation 
x : A P (x)

abbreviates

Modern Formal Methods and Applications 155



12. The Boolean expressions include true (“high voltage” or “power”) and 
false (“low voltage” or “ground”). The Boolean unary operator  is 
negation. The Boolean binary operators include  (conjunction) and 
(disjunction).  

A local variable x can be introduced by the declaration command var x P. We 
will also use chaos to represent the chaotic program whose behavior is totally 
uncontrollable and unpredictable. 

In the rest of this chapter, we take a more general form of recursion and use 
the notation X P(X) to stand for the weakest fixed point (with respect to the 
relation .) of the equation X = P(X).

Example 2.1 (clock) 
A clock can be modeled by a recursive process CLOCK which can repeatedly 
engage in the event tick

Example 2.2 (a single place buffer) 
A singe place buffer, which inputs messages on channel left and outputs them 
on channel right, can be modeled by the recursive process COPY:

Example 2.3 (wire) 
The process WIRE(a,c) can emit an output event c in response to an input event 
a. It is also receptive in the sense that it does not refuse input, but may diverge 
if given an input that it is not prepared to handle.  

Example 2.4 (iteration) 

The iteration oddo ),...,( 11 nn PbPb  can be rewritten as the tail 
recursion:

7.2.2 Algebraic laws 

The basic laws defining Occam-like programs are given in [13]. This section 
gives a number of algebraic laws that are used in the design and verification of 
the hardware compilation scheme presented later in this chapter. 

The non-deterministic choice operator is idempotent, symmetric, 
associative and disjunctive. It has chaos as its zero. 

156 An Algebraic Approach to Hardware Compilation



Law 1 (non-deterministic choice) 

1.1 P . P = P
1.2 P . Q = Q . P
1.3 P . (Q . R) = (P . Q) . R
1.4 P . (Q . R) = (P . Q) . (P . R)
1.5 P . chaos = chaos
The relation . induced by the non-deterministic choice operator is a partial 
order; i.e., it is reflexive, transitive and anti-symmetric. The chaotic program 
chaos is the bottom of the relation . . 

Law 2 (refinement) 

2.1 P . chaos
Sequential composition is associative and disjunctive, and has unit skip and left 
zero chaos.

Law 3 (sequence) 

3.1 (P;Q);R = P;(Q;R)
3.2 (P . Q );R = (P;R) . (Q;R)
3.3 P; (Q . R) = (P;Q) . (P;R)
3.4 skip;Q = Q = Q;skip
3.5 chaos;Q = chaos

Conditionals are product. It is idempotent, skew-symmetric, associative and 
disjunctive. Sequential composition distributes leftward over the conditional. 

Law 4 (conditional) 

4.1 P .b .P = P
4.2 P .true .Q = P
4.3 P .b .Q = Q .¬b .P
4.4 (P .b .Q) .c .R = P .b  c  . (Q .c .R)
4.5 P .b . (Q  .c .R) = (P .b .Q) .c .(P .b .R)
4.6 P .b . (Q  .R) = (P .b .Q) .(P .b .R)
4.7 (P .b . Q); R = (P;R) .b .(Q;R)

The following law connects the “if” construct with conditional. 

Modern Formal Methods and Applications 157



Law 5 (if) 

5.1 if b P fi = P .b .chaos
5.2 if <b P>. BG fi = P .b .(if BG fi)
The external choice operator [] is idempotent, symmetric associative and 
disjunctive, and has chaos as its zero. It distributes over sequential composition 
when all its components are guarded. 

Law 6 (external choice) 

6.1 P [] P = P
6.2 P [] Q = Q [] P
6.3 P [] (Q [] R) = (P [] Q) [] R
6.4 P [] (Q .R) = (P [] Q) .(P [] R)
6.5 (a P) [](a Q) = a  (P .Q)
6.6 P [] chaos = chaos
6.7 (x:A P(x));Q = x:A  (P(x);Q)

The parallel operators || and ||E are symmetric, associative and disjunctive, and 

have chaos as zero. 

Law 7 (parallel) 

7.1 P || Q = Q || P
7.2 P || (Q || R) = (P || Q) || R
7.3 P || (Q .R) = (P || Q) .(P || R)
7.4 P || chaos = chaos

When P can perform any events A, being equivalent to a process of the form 
x:A P(x), and Q can perform the events in B, respectively y:B Q(y), then 
P ||E Q can perform any event of  

The first component of this union are the events P can perform on its own 
(because they are not in E); similarly, the second are the events Q can do by 
itself. The final components are the events on which they can synchronize (i.e., 
the ones that they both can do). The law expressing this is the following: 

Law 8 (expansion law of ||E)

Let P = x:A P(x) and Q = y:B Q(y).
8.1 P ||E Q = (x:A\E  (P(x) ||E Q) [] (y:B\E  (P ||E Q(y)) [] (z:A B  (P(z) ||E
Q(z))

158 An Algebraic Approach to Hardware Compilation



The expansion law of || is more complicated because any event in A B can 
occur silently and will be treated as an internal communication, and thus is 
concealed from the environment: 

Law 9 (expansion law of || ) 

9.1 P || Q = (x:A\E  (P(x) ||E Q) [] (y:B\E  (P ||E Q(y))
[] (.z A B  (P(z) ||E Q(z))) .(.z A B  (P(z) ||E Q(z))) 

Both expansions laws enable us to transfer a parallel program into a sequential 
one, and are widely used in the later proof. 

The program X P(X) can be implemented as a single non-recursive call 
of a parameterless procedure with name X and with body P(X). Occurrences of 
X within P(X) are implemented as recursive calls on the same procedure. The 
following laws [15] state that X P(X) is indeed a fixed point of P, and that it 
is the weakest one. 

Law 10 (weakest fixed point) 

10.1 X P(X)  = P( X P(X))
10.2 if  Y  . P(Y)  then Y  . X P(X)
All the recursion we have seen (such as CLOCK, COPY and WIRE) and all 
most all recursions one meets in practice) have a property that makes them 
easier to understand and reason about. They are guarded, i.e., each recursive 
call comes after a communication that is introduced by the recursive definition. 
The point about a guarded recursion is that the first-step behavior does not 
depend on at all on a recursive call, and when a recursive call is reached, the 
first step of its behavior, in turn, can be computed without any deeper call. This 
leads to the principle of unique fixed point for guarded recursion. 

Law 11 (unique fixed point) 

If X P(X) is a guarded recursion and Y satisfies the equation Y = P(Y) then Y
= X P (X).

The following laws express the basic properties of assignment: that variables 
not mentioned on the left of “:=” remain unchanged, that the order of the listing 
is immaterial, and that evaluation of an expression or a condition uses the value 
most recently assigned to its variables. 

Modern Formal Methods and Applications 159



Let  be the set of events which the process P can perform. Given L  and a 
divergence-free process P, the process P \\ L represents an abstract view of P in 
the set \ L, and is defined in [14] by: 

Divergences(P \\ L) =df .
Failures(P \\ L) =df {(s (  \ L), X) | (s, X  (  \ L)) Failures(P)}

The process projection construct P \\ L differs from the hiding construct P \ L
in the following way: in the failure-divergence model the latter will introduce a 
divergence whenever P can perform an infinite sequence of events of L, but the 
former becomes deadlock. 

Law 13 (projection) 

13.1 If the alphabet of Pi is disjoint from the set L1-i for i = 0, 1, then  

(P0 || P1) \\ (L0 L1) = (P0 \\ 0) || (P1 \\ 1)
13.2 If P is a process without containing the process variable X, then

X (a P [] b X) \\ {a} = a  (P \\ {a})

As an example to show how to apply algebraic laws, we are going to establish 
the following fact: two wires can be connected into a single one.

Lemma 2.5 (connecting wires)

WIRE(a,h) || WIRE(h,c) = WIRE(a,c)

Law 12 (assignment) 

12.1 (x, y := e, y) = x := e
12.2 (x, …, y, … := e, …, f,…) = (y, …, x, … := f, …, e,…)
12.3 (x := e; x := f(x)) = x := f(e)
12.4 (x := e); (P .b(x) .Q) = (x := e; P); .b(e) .(x := e; Q)

Proof:  Let FULL(a,c)  =df   (a? chaos [] c! WIRE(a,c)). We have
WIRE(a,c) = a? FULL(a,c)

160 An Algebraic Approach to Hardware Compilation



which together with the unique fixed point theorem Law 10 implies that  

 LHS = X (a?  (a? chaos [] c! X)) = RHS

7.3 Compiling Strategy 
The main difference between software programming and VLSI programming is 
that in VLSI, concurrency is free and sequencing is costly, whereas it is just the 
opposite in software. In hardware, concurrency is implemented by mere 
juxtaposition of circuits. Sequencing requires synchronization. We therefore 
avoid sequencing as much as possible, and implement it as a restricted form of 
concurrency. This is the compilation strategy adopted in this chapter. 

One small technicality is that rather than implement P directly, we choose 
to implement a reusable version of P, specified as a

r (P) below
a
r (P) =df X  ((r? P); (a! X))

where
• r, the request signal, activates the process P, and
• a, an acknowledgement signal, indicates that P has terminated.

The process a
r (P) can be activated many times, while P cannot. 

Modern Formal Methods and Applications 161



Essentially, a source program P is split into communicating processes M
(P) and D (P), where

1. M (P) models the control flow of P.
2. D (P) implements variables, expressions and communication channels.  

The compilation function Ca
r is simply defined by  

Our main goal is to prove that the target program produced by the compilation 
scheme serves as a refinement of the reusable version of P:

The verification task is broken into three steps  

• First, we prove that the parallel composition of M (P) and D (P) is a legal 
replacement of the source program P.

• Then we show: 

• Finally, we are going to prove that the composite mapping a
r �M is 

indeed a homomorphism. Taking sequential composition as an example 
a
r �M is a homomorphism means that the control process of P0;P1 can 

be implemented by the parallel composition of those of its components: 

where SEQ is designed to model the sequential composition operator: 

In this way, all the programming operators will eventually be replaced 
by parallel operator.  

The control process M (P) involves only synchronized communications with D
(P) which maintains the state of variables and channels. To avoid deadlock on 
the internal links between M (P) and D (P), we shall ensure that the 
communications on these channels satisfy the related handshake protocol. This 
is the topic of the next section. 

162 An Algebraic Approach to Hardware Compilation



7.4 Handshake protocol 
In languages such as Occam, communication between processes is synchronous
in the sense that a communication event can take place only when both the 
sender and the receiver agree on it. It is the synchronous nature of 
communication that gives these languages the expression power. In our 
approach, source programs are compiled into networks of primitive 
components, and synchronous communications of source programs are 
implemented by a communication protocol involving multiple asynchronous
communication events. 

Each primitive component has one or more ports that are used to connect it 
to its neighbors. Within each port, the components and their neighbors obey a 
handshaking protocol: events, called request, start the execution of the module 
or its neighbors, while events, called acknowledgement, indicate that the 
execution has completed. The compilation scheme ensures that no component 
attempts to send either a request or acknowledgement event to its partner unless 
the latter is waiting for such an input. With this guarantee, synchronous 
communications can be replaced by asynchronous ones. 

The translation from synchrony to asynchrony is a necessary step in 
compiling our language to hardware, because the basic hardware building 
blocks cannot refuse input events from their environment, whereas 
synchronous communication implies the ability of a process to refuse to 
participate in a communication event. Any unexpected inputs to a circuit may 
lead to aberrant behavior; it is the obligation of the circuit’s environment to 
provide input only when the circuit is waiting for it. 

The simplest signal interface is the two-wire interface, which consists of 
one request and one acknowledgement signal. A handshake begins when a user 
module sends an event to a server along the wire r (for request), the user then 
waits a response on the wire a (for acknowledgement). When it has received an 
acknowledgement from the server, the handshake is complete. 

7.4.1 Definition 4.1 (two wire control interface) 

The handshake protocol HP(r, a), used in the control interface of the target 
processes, behaves like a one-place buffer, repeatedly engaging in an 
acknowledgement event a after receipt of a request event r.

where the alternative skip is present to enable HP(r,a) to respond to its parallel 
partners’ termination request.  

Modern Formal Methods and Applications 163



A sequence of HP(r,a) is still a handshake protocol. 

Lemma 4.2 (sequence of handshake protocols) 

 HP(r,a);HP(r,a) = HP(r,a)
Proof: Algebraically using Laws 6.4 & 6.5, 11 (twice), 1.1 and 10.1.

Definition 4.3 

A process Q satisfies the handshake protocol on (r,a) if  

 (Q ||{r,a} HP(r,a))  = Q
This fact will be denoted by .HP(r,a) Q.

Lemma 4.4 

If .HP(r,a) Q, then  
 (Q;R) ||{r,a} HP(r,a)  = Q;(R ||{r,a}HP(r,a))

Lemma 4.5 

(1)  .HP(r,a) Q skip.
(2)  .HP(r,a) Q stop.
(3)  If both P and Q satisfy the handshake protocol, so do P;Q and P . Q.

 .HP(r,a) (P;Q) and .HP(r,a) (P .Q).
(4)  If Q satisfies the handshake protocol, so does the guarded recursion 

X (Q;X).

Proofs:
Of (3):

Of (4): 

164 An Algebraic Approach to Hardware Compilation



In the next section, we will present the handshake protocols to pass data 
between the master control process M (P) and the data process D (P). For 
example, the handshake protocol for access of a Boolean variable has a single 
event req for requesting the current value of that variable, but contains two 
acknowledgement events, val.0 and val.1, for returning the value. Thus it is 
necessary to generalize HP(r,a).

Let I be a finite set, and let A be an I-indexed family of finite set of 
events, and let B = {(r(i), A(i)) | i I}. The handshake protocol on B can then 
be defined as follows:

This definition allows a handshake beginning with event r(i) to be completed 
by one of the events of A(i). A process Q is said to obey the handshake protocol 
on the set B if  

Definition 4.6 (handshake refinement) 

The handshake refinement relation .HP(B) between processes is defined by  

i.e., the process S is a refinement of R in any environment which obeys the 
handshake protocol HP(B).

Lemma 4.7 

 (R .HP(B) S) .(.HP(B) Q) .(R || Q) . (S || Q)

Proof:

Modern Formal Methods and Applications 165



7.5 Data processes 
In order to simplify the presentation, we will only deal with the sequential 
subset of the language in this section, and postpone the treatment of 
communication and concurrency to section 8. 

7.5.1  Variables 

A Boolean program variable x is realized by a communication process V (x),
which has two handshake ports, one for reading and one for writing. To read 
the value of variable x, a reader send a request on x.req and the variable 
responds wither either x.val0 or x.val1, depending upon the stored value. To 
response a read request correctly, the process V (x) has to comply with the 
following requirement  
(Req1)   (x.req! x.val?v  Q ) || V (x) = (v := x); (Q || V (x))
To write a value, a writer sends a request on either x.write.0 or x.write1. After 
the stored value has been updated, the variable responds on x.ack. Accordingly, 
V (P) needs to meet the second requirement  
(Req2)   (x.write!v x.ack?  Q ) || V (x) = (x := v); (Q || V (x))
The construction of V(x) starts with design of a process CELL(x) acting as the 
state holder of variable x
 CELL(x) =df READ(x) [] WRITE(x) [] skip
where

• READ(x) is a simple handshake protocol, acting as the read interface.  
 READ(x) =df x.req? x.val!x  CELL(x)

To avoid deadlock on the newly introduced channels x.req and x.val, it 
is required that the user of READ(x) obeys the handshake protocol 
HP(x.req,x.val).

• The process WRITE(x) plays the role of the write interface, and is also a 
handshake protocol  

 WRITE(x) =df x.write?x x.ack!  CELL(x)
  The user of WRITE(x) is required to obey the handshake protocol on the 

channels (x.write,x.ack).
CELL(x) provides single user the desirable service of variable x.

Lemma 5.1   (Read and write) 

Let Chan(CELL(x)) Chan(Q). Then
(1)   (x.req! x.val?v  Q ) || V (x) = (v := x); (Q || V (x))
(2)   (x.write!v x.ack?  Q ) || V (x) = (x := v); (Q || V (x))
Proof:  Direct from the expansion law, Law 9.2.

166 An Algebraic Approach to Hardware Compilation



One difficulty with building a process to implement a program variable is that 
it must support multiple readers and writers. We accomplish this by introducing 
multiplex processes RMUL and WMUL. In order to avoid interference among 
multiple-user request, we shall treat the read and write actions as atomic ones. 
For this purpose RMUL and WMUL are constructed as follows  

where the sets I and J are both finite.
Putting the three processes in parallel, we finish the design of V (x)

which is equipped with the following channels: 

Every user of the program variable x will be allocated a pair  

of channels for its read operation, and it is asked to obey the handshake 
protocol over the corresponding channels. The writers of x will be treated in a 
similar way. 

Suppose that Var(P) = {x1, x2, …, xn}. Then the following process  

is included in D (P) to represent the variable state of P.

7.5.2 Expressions

The Boolean constants true and false are realized by the TRUE and FALSE
modules. The modules use the read interface and always return a particular 
acknowledgement – val0 for false and val1 for true.

For each Boolean expression b of P, the data process D (P) contains a 
component process E (b) to model its behavior. The process E (b) operates in a 
similar way as the read port process READ. For example, the process OR
(defined below to implement x y) first waits for a request signal from its user, 
and then reads the value of x from V(x) to its local variable w. If w has the 
value true, then this value is passed to its user, otherwise it reads the value of y
from V (y) and then passes it to the user.  

Modern Formal Methods and Applications 167



Taking the multiple-user issue into account, we end with the following design  

where RMUL(req,val) is the process RMUL(x.req,x.val) after proper channel 
renaming.  
The module AND, used to implements the Boolean expression x y, is defined 
by  

The module NEG, used to realize the negation x, is defined by  

A composite expression b = b1 b2 can be implemented in the same way as 
x y except that the former will communicate with the expression E (b1) and E
(b2) rather than the variable processes V (x) and V (y). To avoid the name clash 
among the expression processes, we will rename the channels req and val in the 
process E (b) by b.req and b.val respectively. The definition of modules for 
b1 b2 and b are similar.  
Let },....,{)( 1 mbbPExp , we define

For a sequential program P without communication, its data process D (P) is 
formed by

The following theorems validate our design. 

Lemma 5.2   (Evaluation of expression) 

Let Chan (D (P)) Chan (Q). If i RI (b), then

Proof:  From the expansion law, Law 9.2.
To be able to execute the expression processes in parallel with the master 
control process, we must make sure that the processes representing expressions 
have disjoint sets of channels. In particular, since most expression processes 
may need to access the variable processes, the allocation of the channels x.reqi

168 An Algebraic Approach to Hardware Compilation



is available at the disposal of the control process M (P). For an expression 
process E(b), we take a similar convention that all channels in the set  

can be employed to access the current value of b. As a result, the set of free 
handshake channels of the data process D (P) is

To simplify the proof of our compiling function in the later sections, we exploit 
the regularity of handshake protocols to construct SD (P), a sequential version 
of D (P), which does not contain parallel composition.  

Since all users of D (P) must obey the handshake protocol HP(B), from Lemma 
4.3 we can replace D (P) by SD (P) within such a context. 

Lemma 5.3 D (P)  =HP(B) SD (P)

Lemma 5.4 SD (P); SD (P)  = SD (P)

and x.vali  turns out to be an important issue in the hardware compilation 

scheme. For simplicity, we assume that there are index functions RI and WI.
For each variable process V (x), in addition to the channels used by expression 
processes the following set of channels 

7.6 Control processes 
Construction of control processes is based on a translator M whose task is to 
replace each evaluation of a Boolean expression b by a sequence of 
asynchronous communications with the process E (b), and to replace every 
assignment to a program variable x by interactions with the variable process V
(x).

Control processes of the primitive commands have straightforward 
definitions:

Modern Formal Methods and Applications 169



The definition of M (x := b) suggests that the choice of channels used to 
communicate with V (x) and E (b) are irrelevant. In particular, it allows the use 
of any available read interface to evaluate b and then write the result to x. This 
non-determinism allows us later to allocate a specific pair (i, j) of channel 
indices for implementation of M (x := b).

A control process of a sequential composition is formed by those of its 
components:  

The control process M (if b fi) evaluates the Boolean guard b by interacting with 
the expression process E (b)

Conditional with multiple branches behaves as if its Boolean guards are 
calculated sequentially.  

The process M(doBG od) evaluates its guards in sequel and terminates when 
none of them is true. As expected, it is implemented by a tail recursion  

where

From the definition of M and Lemma 4.5 we conclude that all the control 
processes M (P) obey the handshaking protocol HP(B), where the set B was 
defined in the previous section. 

Lemma 6.1 

 (M (P);Q) || SD (P)  =  (M (P) || SD (P)); (Q || SD (P))  
Our compilation strategy is validated by the following theorem.  

Theorem 6.2  (Correctness of the control processes)  

 P .M (P) || D (P)

170 An Algebraic Approach to Hardware Compilation



Outline of proof: The proof is based on structural induction using the 
following base case and inductive steps.  
(1) Basic case: P = (x := b)
(2) Inductive Step: 
(2.1) P = Q ; R
(2.2) P = if (b Q) fi
(2.3) P = if (b Q [] BG) fi
(2.4) P = do (b Q) od
(2.5) P = do (b Q [] BG) od

Now we can establish the correctness of the compiling function M.

Theorem 6.3  (correctness of compiling function) 

Proof: Using Lemmas 4.7 & 5.3, Law 9.1, Lemma 6.1, Lemmas 4.7 & 5.3 
(again), Theorem 6.2 and Law 9.2.

The process a
r (P) enjoys a number of algebraic laws. The first one says the 

additional wires used to connect a
r (P) with its environment has no effect. 

Lemma 6.4 

Let r0 and r0 be fresh events. Then 

The second law enables us to implement the sequential composition by the 
parallel composition. 

Lemma 6.5 

Let Q and R be processes with disjoint sets of variables and channels. If h is a 
fresh event, then 

7.7 Hardware device 

In this section we are going to divide the control process a
r (M (P )) into a set 

of primitive handshake modules within an environment obeying both HP(r,a)
and HP(B), where B denotes the set of channels used to access the data process 
D (P), and was defined in Section 4. We define  

Modern Formal Methods and Applications 171



Lemma 7.1 

If Q obeys the handshake protocols HP(B) and HP(r,a), then

The main objectives of our design are to preserve the modular structure of the 
source program, and to generate a small number of hardware devices. We have 
already presented a number of handshake modules such as CELL(x) and OR in 
Section 4. The following includes four further examples. 

First, the command skip can be implemented by a wire.  

Theorem 7.2  (skip) 

Proof:

where S =df B  {r, a}
and PROT =df HP(B) || HP(r,a) describes the behavior of the environment 
which obeys the handshake protocols HP(B) and HP(r,a).

The control process of x := b can be implemented by a set of wires, where a pair 
Error! of channels is chosen as the read interface with E (b), and Error! as the 
write interface with V (x).

Theorem 7.3  (assignment) 

, where

Proof:  Similar to Theorem 7.2.  
Surprisingly, the sequential composition operator can also be implemented by a 
set of wires.

172 An Algebraic Approach to Hardware Compilation



Theorem 7.4  (sequential composition) 

Let P0 and P1 be processes with disjoint channels. If h is not used by P0 and
P1, then

Proof:  From Lemma 6.5.

The final two theorems show that the control processes of conditional and 
iteration can be implemented by the hardware device M(in1, in2: out), which 
merges signals received from its input ports in0 and in1

Theorem 7.5  (conditional) 

Let i RI(b). If none of {r, b.reqi, b.vali, a0, a1, a} is used by Q and R, then 

Proof:  Define

We are going to establish the following fact  
NEW .LHS

For notational convenience, we will drop the port parameters of M and  in the 
proof below.  

Modern Formal Methods and Applications 173



from which together with Law 10.2 it follows that  

(2)  Similar to (1).  

Theorem 7.6  (iteration) 

Let i RI(b). If none of }.,.,,,{ ii valbreqbaâr  is used by Q, then 

Proof:  Define

We are going to show that (V1, W1) and (V2, W2) satisfy the same guarded
recursive equation. 

174 An Algebraic Approach to Hardware Compilation



From Laws 8 and 9 it follows that: 

From the unique fixed point theorem Law 11 we obtain V1 = V2 as required. 

7.8 Conclusion
Hardware compilation is an exciting development in the array of techniques 
available to generate a implementation from a high-level description. It allows 
hardware to be generated very quickly from software. What is more, it is 
possible to formally prove the relationship between a high-level program 
(software) and a low-level netlist of components connected with wires 
(hardware) is correct [3,5]. 

In this chapter we have presented a small programming language that can 
be compiled into hardware. A set of algebraic laws are given for the language 
that allow programs to be transformed in a provably correct manner. A 
compilation strategy from this language to a hardware description in the form 
of a netlist is given for each of the constructs in the language. These are posited 
as theorems that can be proved correct in an algebraic style. Some sample 
proofs are given. 

For the future, it is expected that hardware will increasingly be generated 
from high-level descriptions, especially when the available design time is 
limited, costs need to be kept down and speed of execution is not an overriding 
factor. In addition, this approach can help to raise the level of confidence in the 
correctness of the implementation since, as demonstrated in this chapter, it is 
possible to mathematically prove that the transformation from the high-level 
description to the low-level implementation is correct, not just for individual 
cases, but for all designs that are generated following such a compilation 
scheme. 

7.9 References
[1] K. van Berkel, J. Kessels, M. Roncken, R. W. J. J. Saeijs and F. Schalij. 

The VLSI language Tangram and its translation into handshake circuits. 
In Proceedings of the European Design Automation Conference, (1991). 

[2] K. van Berkel. Handshake Circuits: An Asynchronous Architecture for 
VLSI Programming. Cambridge University Press, (1993). 

Modern Formal Methods and Applications 175



[3] J. P. Bowen and J. He. An approach to the specification and verification 
of a hardware compilation scheme. The Journal of Supercomputing
19(1):23–39, (2001). 

[4] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe. A theory of 
communicating sequential processes. Journal of the ACM 31(3):560–
599, (1984). 

[5] J. He. An algebraic approach to the VERILOG programming. In Formal 
Methods at the Crossroads, Lecture Notes in Computer Science 2757, 
pages 65–80, Springer-Verlag, (2003). 

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall 
International Series in Computer Science, (1985). 

[7] Inmos Limited. Occam 2 Reference Manual. Prentice Hall International, 
(1988).

[8] Intel Corporation. 1994 Annual Report. (1995). 
[9] A. J. Martin. Programming in VLSI: From communicating processes to 

delay-insensitive circuits. In Developments in Concurrency and 
Communication, C. A. R. Hoare (ed.), pages 1–64, Addison-Wesley, 
(1990).

[10] I. Page and W. Luk. Compiling occam into field-programmable gate 
arrays. In Field-Programmable Gate Arrays, W. Moore and W. Luk 
(eds.) pages 271–283, Abingdon EECS Books, (1991). 

[11] S. Palnitkar. Verilog HDL, 2nd edition. Prectice Hall PTR, (2003). 
[12] V. A. Pedroni, Circuit Design with VHDL. The MIT Press, (2004). 
[13] A. W. Roscoe and C. A. R. Hoare. Laws of Occam programming. 

Theoretical Computer Science 60:177–229, (1988). 
[14] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall 

International Series in Computer Science, (1997). 
[15] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. 

Pacific Journal of Mathematics, 5:285–309, (1955). 
[16] S. W. Weber, B. Bloom and G. Brown. Compiling Joy into silicon. In 

Advanced Research in VLSI and Parallel Systems, T. Knight and J. 
Savage (eds.), MIT Press, (1992). 

[17] Xilinx Inc. Programmable Logic Devices, FPGA & CPLD.
www.xilinx.com, San Jose, California, USA, (2005). 

176 An Algebraic Approach to Hardware Compilation



8 Formal Methods for UML 

Authors
Mª Encarnación Beato  
Escuela Universitaria de Informática 
Universidad Pontificia de Salamanca, Spain 

Manuel Barrio-Solórzano, Carlos E. Cuesta, and Pablo de la Fuente 
Departamento de Informática 
Universidad de Valladolid, Spain 

Summary 
The use of the UML specification language is very widespread due to some of 
its features. However, the ever more complex systems of today require 
modelling methods that allow errors to be detected in the initial phases of 
development. The use of formal methods makes such error detection possible 
but the learning cost is high. 

This paper presents a tool, which avoids this learning cost, enabling the active 
behavior of a system expressed in UML to be verified in a completely 
automatic way by means of formal method techniques. It incorporates an 
assistant for the verification that acts as a user guide for writing properties so 
that she/he needs no knowledge of either temporal logic or the form of the 
specification obtained. 

Keywords: formal methods, formal specifications, Formal Verification, Model 
Checking, SMV. 

8.1 Introduction
Unified modeling language (UML) is a widely used graphic language accepted 
as the standard for modeling any kind of software system, following an object-
oriented philosophy. It is organized in diagrams that provide different views 
covering all aspects of a development. 

177

Hossam A. Gabbar (ed.), Modern Formal Methods and Applications, 177–196.
© 2006 Springer. Printed in the Netherlands.



UML has unquestionable advantages as a visual modeling technique, and this 
has meant that its applications have multiplied rapidly since its inception. To 
the characteristics of UML itself must be added numerous tools that exist in the 
market to help in its use (Rational Rose, Argo UML, Rhapsody ...). However, 
unfortunately, none of them guarantee specification correction.  

It is widely accepted that error detection in the early phases of development 
substantially reduces cost and development time, as the errors detected are not 
transmitted to or amplified in later phases. It would thus be very useful to have 
a tool that would allow the integration of this semi-formal development method 
with a formal method to enable system verification. This paper presents a tool 
to carry out this integration by providing a formal framework in which to verify 
the UML active behavior.  

The formal specification language chosen is SMV as it has the adequate 
characteristics for representing the active behavior of a specification in UML. 
The main reason for this is that it is based on labeled transition systems and 
because it allows the user's own defined data types to be used, thus facilitating 
the definition of variables. It also uses symbolic model checking for the 
verification, which means that the test is automatic, always obtains an answer 
and (more importantly, should the property not be satisfied) generates a means 
of identifying the originating error.  

The tool carries out, with no intervention on the user's part, a complete, 
automatic transformation of the active behavior specified in UML into an SMV 
specification, focusing mainly on the reactive systems in which the active 
behavior of the classes is represented through state diagrams, while activity 
diagrams are used to reflect the behavior of class operations. XMI (XML 
Metadata Interchange) is used as the input format, thus making it independent 
of the tool used for the system specification. Nowadays, most UML CASE 
tools on the market incorporate the possibility of exporting the specification 
through XMI (Rational Rose, Argo UML, Rhapsody ...). 

On the other hand, the tool has a versatile assistant that guides the user in 
writing properties to be verified using temporal logic. The verification is 
carried out in such a way that the user needs no knowledge of either formal 
languages or temporal logic to be able to take advantage of its potential; 
something which has traditionally been difficult to overcome when deciding on 
the use of formal methods. In addition, notions of the form of the specification 
obtained are unnecessary: that is, knowledge of the internal structure of 
variables or modules obtained is not required for verification. The tool's 
architecture can be seen in Figure 8.1. 

178 Formal Methods for UML



��������	
���

��������	
����������������������������������
���� !"#$�%&���"�!$&��'���()))�()���*��+�
),-��-�����).&/�
%&�)0	*�1-
)�2��0��
 �3-+��-�).&/%�4��+����
�%&��������	
�����������+���
+-�0����&�����������(��(56�7��4���
��%&��8�-��	�
���%&�����*��+-+���
����%&����0�	+�	�.�
9
�: 3�7�)%&����0�	+�	�
����%&����0�	+�	,�	
�����4�5�)%&����0�	+�	,�	
���
���)%&�����*��+-+���
���%&����+-����������-������.&/��������	
��������4�)�
��)%&��8�-��	�
�%&����+�+�
���������������������������2��0���&���'��-�������;&����<
�������������������������
�&����=&--����+�&���������������>�����
���?�*�-+��� �	��&����$����+�-����2��0���&���'��-����)?�*�-+��� �	
��&����$����+�-���
���?�*�-+��� �	��&����$����+���
�1���+9������-�*����@0*1���@�)�
���?�*�-+��� �	��&����$����+��
�0���'��-+��������-�*����@'-�
�@)�
���?�*�-+��� �	��>��	-��A-1��$����+��
3��+������-�*����@'-�
�@)�
���?�*�-+��� �	��>��	-��A-1��$����+��
/�-'������-�*����@'-�
�@)�
���?�*�-+��� �	��>��	-��A-1��$����+��
B1
+	-�+������-�*����@'-�
�@)�
���?�*�-+��� �	��C-��
0-����D��$����+�
�������������������������������2��0���&���'��-���((E�+�	��
�-2�	�FE4?G?745$��7�F����;B

���-+��<�������������������������
�����?�*�-+��� �	��B

���-+�������������>��5���
�������?�*�-+��� �	��&����$����+�-����)?�*�-+��� �	��&����$����+�-��
�
�������?�*�-+��� �	��&����$����+���
�1���+9������-�*����@0*1���@�)�
�������?�*�-+��� �	��&����$����+��
�0���'��-+��������-�*���
�@'-�
�@)�
�������?�*�-+��� �	��>��	-��A-1��$����+��
3��+������-�*���
@'-�
�@)�
�������?�*�-+��� �	��>��	-��A-1��$����+��
/�-'������-�*���
@'-�
�@)�
�������?�*�-+��� �	��>��	-��A-1��$����+��
B1
+	-�+������-�*���
@'-�
�@)�
�������?�*�-+��� �	��B

���-+�������+���
�����������������������������������2��0���&���'��-���((E�+�	��
�-2�	�FE4?G?745$��7�F�H3����I����;B

���-+��$�<�������������������������
���������?�*�-+��� �	��B

���-+��$������������>������

#-	-�0��	�-�0	*�1-��-�*+����-������-�+	-
'�	�-��J�	�-��A-�-K�-
L
�����
*��-����AK��
����
-	�����	�'��-	��-��
0���'��-��J����*
�
�
+��-�M*��	���2-�+��-
��-
��-	-�+�	L
+��-
����.&/K�9�M*��0�	��+-
����*�	�M*���-�+	-
'�	�-��J����&,K��������0�	+-���+��-�+������
�*-��
0���'��-��J�	�-��A-�-���.&/K��
���		��+-�

 �����'�����M*���
+-����0	�1-��J�
��	�-��������'�	�-�0	��	�
��-K�
�
8-����������-�	�0	�
�+-��J����*���
���
�
+��-���
�����
+�+�

�����
����0	�'*���-�K����'�	�-�M*��
�����0	*�1���-�-�*�������

-
0��+�
�+	-+-��
����-�+	-
'�	�-��J��#*��N��
������-	�-��-
����*
�J�M*��������0�	+-���+��-�+����	�'��2-������-��
0���'��-��J
��.&/�
����		�
0����������	�'��2-������&,��#-	-�	�-��A-	��
+-
���0	�1-��J�
�������	O�0	�0���-��
�+��0�	-��
�-���*-�-
�M*��0�	��+-
-
��*	-	��-���		����J�����-��
0���'��-��J��/-��
0���'��-��J����&,
�1+���-�0-	-��-�-�*�������
�
�
+��-
�0*�������+	-	
������
-0N����PQ	�'E
��$2��0��
F�

 ����0*+�����0-	+��-�
��*+���A-�*�
�
+��-���������M*��	�'��2-���
���0�	+-���+�����*��-2�	��-*+��O+�����$
+��
�
+��-�
�	O���
+����
��
��
+�+-
�0�	
Q�0��Q�+�Q��-
K�����A-���0�	�*�0�M*�R���������
��+-���K�����*-��
�	O�	�'�-������	0�	O������-	-�+�	L
+��-
��O

���0��2-
�M*��0�	��+-�����*�	���*-���
+-���+-��-�-�����
�
+��-��$�
�12�+����M*��
��0�	
��*�K��
�M*���-��-9�	L-������
����0�	+-���+�
�M*�
0*����	�'��2-	
����*-��
0���'��-��J���.&/K�
����*�+	��+-�1�N
��-��*�������
��-
�
�����2��0����#�	�����K�2*+��������
�
+��-����
�-2�	��-*+��O+���K�
��0	�
�+-����
�
+��-����*-�'�+���0�-��	-�M*�
0�	��+�����0	�1-	�M*����
��
+-��
����8�
+�	�-�'*���-���		��+-��+��

/-���	�'��-��J����+��-
��
+-
��
0���'��-����
���
������+-	O�SQ��Q�
�-Q���Q�+��-��-����0	�1-��J�����-��-����A�����-�+	-
'�	�-��J
	�-��A-�-�-��&,��C��8-9�M*�������-	K�����S�����+�K�M*����
0	���0-���12�+��������
+-�+�
�
���
�
+�����+��	-	��-�*+���A-��J
����N+���
�'�	�-��
�H�&,I����*��N+����
����'�	�-��-�0��-��+�
*+���A-���9�	��������K�.&/K�����-�	-�
����+	-
0-	�+��-��*
*-	���
���'�	�-�M*��
�-�0�
�1���-0	����8-	��-
���+-2-
������
��N+���

'�	�-��
K�M*��0�	��+��	�-��A-	�0	*�1-
�'�	�-��
�����
�
+��-K����-

'-
�
�����-��
�������
-		��������
�'+D-	�K�-���-+-������-������-
������0�
�1����-���+����J�����		�	�
K�
��+��	�����������+����
M*��
�-����
-	��������	�*��N+����'�	�-�������M*��	�-��A-	��-
�
0���'��-��J�����
�
+��-�9��-��
0���'��-��J����0	�0���-��
�

�����������	
���

���������
��
����

������
������������

��������
������������

������
������
������

����
�
�����

���
��������

���

���
�������

����
���������

������� !"��������	
���

�������

�����

����
�#��
���
����

���
���
����
���
��������
�$����

�
�%�&!

�

�
����'����
�$����

�
������
�$����

�
�()

���
���

�������������
����

���
��
����

�*���'��*�����
��
����

���
��'�
�������

���
���
"����


�����
��
����

���
��'����
�$����

�
�+

�����#��
����

'�������,�
"��������
�

����
� 

��
��

�$
��
��


�

��
�&!

�����

���

�������

%%��	���������
����-.
%%��	���������
���
����-.
%%��	�����������
�����
-.

������

		
������
�����������

���		
������
����
���������

		
������
�����������

		
������
������������

���		
������
��
���������

%%������ %%������
%%������

%%������
%%������

���������	
��

$���

�
���
�������
���/�0

-����
������	��	�.

�����
�����	���
���
����

0	�0�=T(�-

�	+�>H!-	2�+-�
+-��-��=�0�	-+��-
U��+	�#��U�P	�+���-����%

H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-IIV
0	�07=T(-

�	+�>H0� �		��+�����?
!-	2�+-�
+-��-��=���0	�1-	�-���IV
0	�04=T(�-

�	+�>H!-	2�+-�
+-��-��=���0	�1-	#�
U�	�+���-���

%H!-	2�+-�
+-��-��
+=���0	�1-���#������+W�DIIV
0	�05=T(�-

�	+
>H!-	2�+-�
+-��-��=�1+��	#�B��-��-�����

!-	2�+-�
+-��-��=�1+��	#��+	��*����IV
0	�0�=T(�-

�	+
>H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-���

?H!-	2�+-�
+-��-��=�1+��	#�B��-��-���U
�������������������%�?
!-	2�+-�
+-��-��=�1+��	#��+	��*����IIV
0	�0T=T(�-

�	+�?H!-	2�+-�
+-��-��=���0-	-	#��
I
��
�����������������HP!-	2�+-�
+-��-��=���0-	-	#��

.

H!-	2�+-�
+-��-��=�1+��	#��+	��*�����U
�������������������P!-	2�+-�
+-��-��=���0-	-	#��

U
�������������������%HP!-	2�+-�
+-��-��=���0-	-	#��

.

!-	2�+-�
+-��-��=������'��-	#�B��-��-��IIIV
0	�06=T(�-

�	+�>H�		�	#����
%H�-2�	��
+-��-��=���0	�1-	IIV
0	�0�=T(�-

�	+�>H'�!	-+-���+�$		�	����%
�-2�	��
+-��-��=�
0�	-#�IV
0	�0�=T(�-

�	+�>H	�+���-����%
�-2�	��
+-��-��
+=���0	�1-	$		�	�
�����+W�DIV

�������"12
1������/�0�


-���������2�
��������.

��

��	����


314�����
-��������5��
	�5�$$$.

$*��

)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXXXX�&-��&��*���XXXXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
&��./$��-�HI�E

)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXX����-������-	-+��
��XXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)

����+	�!-	2�+-(1����-V
���1�+��0�	-���(1����-V
����+	�#�(1����-V
���0*�
-	 -���-	(1����-V

���0� �		��+�(1����-V
����		�	#�(1����-V
���-�+*-��A-	�-���!-	2�+-(1����-V

�����0*�
-	!-	2�+-(1����-V
���-�+*-��A-	�-��� -2�	�(1����-V
���	�+���-(1����-V
����		�	(1����-V
�����		��+�(1����-V
���'�!	-+-���+�$		�	(1����-V

)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXX� �-

��
+-��
�XXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)

)XXXXX��
+-����'���-

(�!-	2�+-�XXXXX)
���!-	2�+-�
+-��-(!-	2�+-H'�!	-+-���+�$		�	K�0*�
-	 -���-	K
)XXXXX��
+-����'���-

(��-2�	��XXXXX)
����-2�	��
+-��-(�-2�	�H�+	�#�K��+	�!-	2�+-K��		�	K
)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXXXXX�#	�0�	+��
�XXXXXXXXXXXXXXXXXXX)
)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
0	�0�=T(�-

�	+�>H!-	2�+-�
+-��-��=�0�	-+��-�U��+	�#��U�P	�+���-����%
�������������������H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-IIV
0	�07=T(-

�	+�>H0� �		��+�����?�!-	2�+-�
+-��-��=���0	�1-	�-���IV
0	�04=T(�-

�	+�>H!-	2�+-�
+-��-��=���0	�1-	#��U�	�+���-���
�������������������%H!-	2�+-�
+-��-��
+=���0	�1-���#������+W�DIIV
0	�05=T(�-

�	+�>H!-	2�+-�
+-��-��=�1+��	#�B��-��-�����
�������������������!-	2�+-�
+-��-��=�1+��	#��+	��*����IV
0	�0�=T(�-

�	+�>H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-���
�������������������?H!-	2�+-�
+-��-��=�1+��	#�B��-��-���U
�������������������%�?�!-	2�+-�
+-��-��=�1+��	#��+	��*����IIV
0	�0T=T(�-

�	+�?H!-	2�+-�
+-��-��=���0-	-	#��
I���
�����������������HP!-	2�+-�
+-��-��=���0-	-	#��
�.
�������������������H!-	2�+-�
+-��-��=�1+��	#��+	��*�����U
�������������������P!-	2�+-�
+-��-��=���0-	-	#��
�U
�������������������%HP!-	2�+-�
+-��-��=���0-	-	#��
�.
�������������������!-	2�+-�
+-��-��=������'��-	#�B��-��-��IIIV

6
���71�
�����"12

������������

8
����	��
���
����

�
���
��������
��

��������
�������� ��	
��
������� �������	
������
������� ��	�������	
���
�������������� ��		����
������������	
�������
��������������� ��	����
�����	
�� ����

	
��������
�������� ��	��
������� 
�� �	����
��
������� ��	
���!���	���������
�������������� ��	����
�����	
�� �	����
����
��������������� ��	����
�����	
����	����
����

������������
�������� ��	��
������� �������	������
������� ��	�������	���
�������������� ��		����
������������	�������
��������������� ��	����
�����	�� ����

���� -�������
��/��������9�/����
����314.

�������

)  & : ;<= > ? @<;A

) ) ) ) ) ) ) ) +
) ) ) ) ) ) ) ) +

�����

���

�

�
���

�

�
��� ) ) ) ) ) ) ) ) +

������� ������� ������� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� ������� ������� ������� �������

����������������������������������� ���������� ����� �����

�������
�

�����
����

�������
�

������
�*�������
��

��������
1�����
���

Figure 8-1. Tool architecture 

The rest of the paper is structured as follows. Section two presents the 
philosophy used to carry out the transformation of the UML active behavior to 
SMV, with the help of simple examples to aid understanding. Section three 
focuses on verification, showing how the assistant functions and the 
classification of properties. Finally, the conclusions are presented along with 
possible future work. 

Modern Formal Methods and Applications 179



8.2 From UML to SMV 

Three kinds of diagram are taken into account when transforming the active 
behaviour from UML to SMV: class, state and activity diagrams. The first 
provides information concerning the elements that make up the system and 
their relationships while the second and third provide information about the 
behaviour, through time, of each of those elements.  

In order to show the functionality of the tool TABU, a banking ATM example 
has been developed. For the system to work correctly, the user is supposed to 
insert a card followed by the pin number. If this number is correct, the user will 
be allowed to push the button getMoney. At this point the system checks the 
card balance and ATM money availability, updates them and delivers both the 
money and the card. 

If the user introduces an erroneous pin number, the system will ask for the 
correct number once more. If a wrong pin number is introduced three times the 
function is aborted and the card kept. Additionally, users can always push the 
button cancel producing an error signal and forcing the system to deliver the 
card back to the user. Figures 8.2, 8.3, 8.4, 8.5 and 8.6 show the UML diagrams 
that specify this behaviour. 

8.2.1 Classes

The fundamental concept taken as our starting point is that of the active class, 
that is, where objects have one or more processes or threads of execution and 
can thus initiate control activities. The behaviour of each active class is 
reflected in a different SMV module, which in turn is instantiated in the main 
module by each of the class objects. Although it is possible to change the 
number of objects in a dynamic way in UML, this is not possible in SMV, as it 
cannot support such dynamism. This means that the number of instances of the 
classes must be fixed and known a priori. 

Each SMV module, representing a class, needs the signals the class receives as 
its input parameters, and those the class emits as output parameters. Thus, the 
said signals are reflected in the class diagram using the stereotypes <<send>>
and <<signal>> as shown in figure 8.2. Here, the signal updateBalanceCard 
correspond to the signal emitted by the Card class, while checkCard y 
pushCancel are the received. 

180 Formal Methods for UML



Figure 8-2. Class Diagram 

An additional class called environment also has to be included. It has no 
associated behaviour and contains details of the signals produced outside the 
system and which are input signals.  

Classes can have attributes, specifying the type of data and the initial value, if 
they have one. These attributes modify their value in line with the system's 
evolution, typically through the firing of a transition. Their evolution will thus 
be reflected in a similar way to that of the state machines discussed below. 

On the other hand, a class may include operations whose behaviour will be 
reflected in an activity diagram. This is activated by the occurrence of an 
activity carried out by a state of the machine of that class. The activities are 
dealt with in section 1.2.7. 

8.2.2 State machines 

State machines represent the active behaviour through time of the objects in a 
class. They are principally the states through which they pass in response to 
events or signals. Thus, to correctly control the evolution of a state machine, 
the state it is in at any given moment must be known. This is achieved by using 
a separate variable to store this information for each machine. 

Modern Formal Methods and Applications 181



A state machine is initiated using the SMV operator init with the variable 
that controls the machine's states. If the machine is not initially active, or it has 
no initial state, then it will be initiated in an indeterminate state we shall call 
dontKnow. Thus, the first thing to determine for each machine is whether or 
not it is initially active. The most external machine, that describes the class 
behaviour, is always active, while the rest are initially active if their ancestors 
were initially active. 

As for their evolution, the operator next is used. This represents the value 
taken by the variable in the following step. The syntaxes used is as shown 
below:

next(est_<machine>):= case { 
t1 | t11 | … | t1n : <state1>;...
tn | tn1 | … | tnn : <staten>;
default: est_<machine>; 

};

Where t1, t11, … tnn represent the firing of transitions t1, t11, … tnn. The first 
transitions, up to t1n correspond to those entering the state <state1> and tn … tnn
to those entering the state <staten>. The evolution of a machine's states through 
time is thus represented. All that is needed is to look at the different transitions 
entering each state. 

The order default represents the behaviour where there is no change of 
state, that is, when no transition present in the machine is fired and it remains 
in the same state during the following step.  

In addition, the fact that combined states, both sequential and concurrent, may 
appear within a machine must be taken into account. This means it is also 
necessary to deal with the submachines of the said states. These will be dealt 
with following the same reasoning as for the main machine, with the exception 
of the peculiarities they possess with respect to activation and deactivation.  

For example, the representation in SMV of the external state machine of ATM 
class, (see Figure 8.3) is as follows: 

   init(st_ATM) := inactive; 
   next(st_ATM) := case { 
      tr_G_9 : checkingBalance; 
      tr_G_7 : waitingOperation; 
      tr_G_29 : inactive; 
      tr_G_16 : inactive; 
      tr_G_2 : active; 
      tr_G_12 : returningCard; 
      tr_G_14 : returningCard; 
      default : st_ATM; 
   }; 

182 Formal Methods for UML



Figure 8-3. Statemachine ATM class 

In fact, this is the scheme followed by the most external state machine. It is 
also important to take into account the conditions that cause each submachine 
to be activated or deactivated. 

Figure 8-4. Statemachine Card class 

8.2.3 Activation of a submachine 

There are two different ways to activate a state submachine: 
Explicit activation. This is when the submachine is activated concretely 
in one of its states. This happens when a transition is fired which has 
that state as its destination and in the step prior to the firing the 
submachine was inactive. 
Activation by default. Here the submachine is activated, passing to its 
initial state if it has one. Otherwise it passes to an indeterminate state. 

Modern Formal Methods and Applications 183



Explicit activation is already contemplated in the previous scheme, as it occurs 
when a transition is fired whose destination is a state of the submachine. The 
case, which is not reflected is that of activation by default. There are numerous 
actions, which cause activation of a submachine by default: 

1. The firing of input transitions to the state containing the 
submachine.

2. If the state containing the submachine is initial, the input 
transitions to its father or ancestors, as long as these are still initial. 

3. If the containing state is initial and has concurrent antecedents, 
and all the antecedents up to the concurrent one are initial, the firing 
of transitions that explicitly activate any of the sibling regions of that 
concurrent antecedent. 

4. If the containing state is concurrent, the firing of transitions 
that activate any of the concurrent sibling regions. 

5. Finally, it can be activated by its history. For instance, if the 
containing state has a sibling which is a history state, the input 
transitions to this history state could activate it.  

8.2.4 Submachine deactivation 

As for deactivation, the general reasons for deactivation of a submachine are: 
1. The firing of any of the output transitions of any of the ancestors.  
2. The firing of the transitions that originate in any of the descendants and 

do not have as their destination a state, which is a descendant of that 
submachine.

3. The firing of transitions that deactivate it by concurrence, that is, they 
deactivate any of the sibling regions, even though they are not directly 
related.

For instance, the behaviour of the concurrent submachines, 
checkingBalanceCard and checkingBalanceATM (see Figure 8.3) is 
represented as follows: 

/***** Evolution of statemachine for state: 
chechingBalanceATM *****/ 
   init(st_chechingBalanceATM) := DontKnow; 
   next(st_checkingBalanceATM) := case { 
      tr_G_12 : DontKnow; 
      tr_G_14 : DontKnow; 
      tr_G_9 : checkingATM; 
      tr_G_46 : updateATM; 
      tr_G_48 : FINAL; 
      default : st_checkingBalanceATM; 
   }; 

184 Formal Methods for UML



/***** Evolution of statemachine for state: 
chechingBalanceCard*****/
   init(st_chechingBalanceCard) := DontKnow; 
   next(st_chechingBalanceCard) := case { 
      tr_G_12 : DontKnow; 
      tr_G_14 : DontKnow; 
      tr_G_9 : beginChecking; 
      tr_G_37 : checkingCard; 
      tr_G_39 : FINAL; 
      default : st_chechingBalanceCard; 
   }; 

Where the transition that activates the submachines by default is tr_G_9
and transitions tr_G_12 and tr_G_14 deactivate them.  

8.2.5 Transitions

Transitions are used to connect machine states. Their firing causes the machine 
to pass from the state of origin to the state of destination. It also causes the 
effects associated with it. For a transition to be fired the source state must be 
active and, if there is a trigger event or a guard condition, the trigger event 
must occur. At that moment, the guard condition must also be met. 

The guard condition is an expression evaluated from a Boolean result. Given 
that in UML no formal grammar is defined for such expressions, it will be 
assumed that they are written following SMV grammar and, if the value of an 
attribute is accessed, then the nomenclature is <class>.<attribute>.  

On the other hand, three different conditions that fire a transition can be 
distinguished. For all of them, the firing is represented in SMV by the fact that 
a variable, which identifies the transition, takes a certain value. 

Fire by means of a firing event. This is the most general case where the 
transition has an event, which causes the firing. 
Fire due to termination. If the transition has no firing event, it can be 
fired when its state of origin ends the activity it was carrying out, or 
when the internal submachine of the state of origin of the transition 
ends.
Fire by the passage of time. These are known as after transitions and 
are fired when a particular period of time has passed since attaining the 
state of origin of the transition. To represent this passage of time, a 
variable is used which acts as a chronometer and which increases with 
each step, as long as the state of origin of the transition is still active. 

For example in the statechart of the Figure 8.3, the fire transition tr_G_14 is 
represented as: 

Modern Formal Methods and Applications 185



8.2.6 Actions

The evolution of an active object can lead to different actions, including 
sending signals and modifying the value of class attributes. With regard to 
sending signals, it can happen in any of the following situations:  

1. The firing of a transition, if the signal is among the transition effects  

   tr_G_14:=in_checkingBalance & 
in_FINALcheckignBalanceCard

              & in_FINALcheckignBalanceATM; 

2. The activation of a state, if the signal is among its entry actions; and  
3. The deactivation of a state, if the signal is among its exit actions.  

Taking into account that both state activation and deactivation are due to the 
firing of some transition, signal evolution can be represented in a similar way 
to state machine evolution. 

As for modifying the value of an attribute, very much the same philosophy can 
be followed. This means that it will be specified through the use of the SMV 
operators init and next. Attributes will be initialised with init if they 
have an initial value in the class diagram, whereas their evolution (next) will 
depend on the firing of transitions. For instance, the SMV behaviour for the 
attribute errorCounter in class ATM, which keeps track of how many 
wrong consecutive pin numbers have been introduced, is the following (see 
Figures 8.2, 8.3 and 8.5).  

/***** Attribute: contadorErrores *****/ 
   init(ATM_errorCounter):=0; 
   next(ATM_errorCounter) := case { 
      tr_G_57: ATM_errorCounter +1; 
      tr_G_29: 0; 
      tr_G_16: 0; 
      default : ATM_errorCounter; 
   }; 

The same reasoning is followed in the evolution of the value of the attributes of 
the class that can be modified in the input or output actions of a state and in the 
effects of a transition. 

8.2.7 Activity diagrams 

A class operation control flow can be modelled using activity diagrams, which, 
fundamentally, show the control flow between activities. Its SMV specification 
can be found in the module that reflects class behaviour. These activity 
diagrams are activated whenever a call to an activity is produced within a state 
using the notation do<activity>. 

186 Formal Methods for UML



Activity diagrams can be considered as a special case of state diagrams where 
the majority of states are activity states and most transitions are fired by 
termination. So the mechanism used to represent them is similar to that used for 
state machines. The only difference is that, for concurrent evolution, the special 
states of division and union (fork and join) are used. They are activated 
whenever any state, which has a call to this activity inside it is activated. 

Likewise, they are deactivated whenever a transition is produced that 
deactivates the state in which it is contained. 

The activity diagrams to the operation of the ATM class, checkErrors and 
checkPin are represented in the Figures 8.5 and 8.6. 

Figure 8-5. checkErrors activity 

8.3 Verification

Having obtained a system specification in a formal language with a solid 
mathematical basis means that it is possible to check whether the system 
complies with certain desirable properties. As with the formal specification 
methods, the increasing complexity of software systems requires the 
development of new verification methods and tools to carry it out either 
automatically or semi-automatically. 

In this paper, verification is carried out using the SMV tool model checker 
(Cadence SMV3). With this, it is possible to make the verification process 
completely automatic. That is, given a property, a positive or negative reply is 
always obtained. 

The property must be expressed in a temporal logic present in SMV, CTL 
(Computation Tree Logic) or LTL (Linear Temporal Logic). This property 
writing is not a trivial problem. To write them correctly, advanced knowledge 
of logics and the type of specification obtained from the system is necessary. 

Modern Formal Methods and Applications 187



Figure 8-6. checkPin activity 

Our tool overcomes this problem as it has an assistant that guides the user 
through the writing of properties until the property to be verified is finally 
obtained following the appropriate syntax. 

Our starting point was the pattern classification proposed by Dwyer et al [7] to 
which our own cataloguing of the different properties to be automatically 
verified has been added. In any case, an expert user also has the possibility of 
introducing manually the property to be checked. 

8.3.1 Property patterns 

Dwyer et al [7] establish a first classification between patterns of occurrence
and order. Occurrence patterns describe properties with respect to the 
occurrence of a state or signal during the evolution of a system. These include
absence (never), universality (always), existence (sometimes) and bounded 
existence (appearing a certain number of times). 

                                                     
3 http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/ 

188 Formal Methods for UML



Figure 8-7. Property patterns 

Order patterns establish properties with respect to the order in which they 
occur. They include: precedence (s precedes p), response (s responds to p), and 
combinations of both: chain precedence (s and t precede p or p precedes s and 
t), chain response (s and t respond to p or p responds to s and t), and constrain 
chain (s and t without z respond to p). 

On the other hand, each kind of pattern has a scope of application, which 
indicates the system execution on which it must be verified. There are five 
basic scopes:  

1. Global. The entire program execution. 
2. Before R. The execution up to a given property R.
3. After Q. The execution after a given property Q.
4. Between Q and R. Any part of the execution from a given property Q to 

another given property R.
5. After Q until R. Like between but the designated part of the execution 

continues even if the second property does not occur.  

Figure 8-8. Scope 

Once the type and scope of the property to be verified are known, we can 
complete the property pattern. As an example, Table 8.1 shows the LTL 
Absence pattern. The rest of patterns can be found in [3]. 

Modern Formal Methods and Applications 189



Global G(~P)

Before R F(R) -> (~P U R) 

After Q G(Q -> G(~P)) 

Between Q and R G((Q & ~R & F R) -> (~P U R)) 

After Q until R G(Q & ~R -> (~P W R)) 

Table 8.1 Absence pattern 

8.3.2 Property classification 

The different properties to be verified have been catalogued to establish limits 
for the scopes (Q and R) and to specify the order of properties when more than 
one must be determined (s, t o z), so that the user does not need to know or 
understand the structure of the specification obtained in SMV to carry out 
verification

The established property types are:  

A state machine with one active object is in a particular state. The 
information that has to be introduced is the name of the class to which 
the machine belongs, the identification of the object being referred to 
and the name of the state. 
An object activity is in a particular state. The information that must be 
introduced by the user is the same as in the above case. 
A signal or event is produced. Only the name of the signal is needed. 
Value comparison of an attribute. For this, the user must introduce the 
class name, the object identification, the name of the attribute, the kind 
of comparison (equality, inequality, less than, less than or equal to, 
greater than, greater than or equal to) and the value (see Figure 8.10). 

The tool will automatically generate the property in the adequate format, in 
accordance with the chosen option and the selected pattern and scopes. Once 
we have the properties to be verified, it is possible, using the tool itself, to 
execute the SMV model checker to carry out the verification. If the property is 
not satisfied, it generates a trace showing a case where it is not verified. 

190 Formal Methods for UML



Figure 8-9. Classification of properties to be added 

Figure 8-10. Value comparison of an attribute 

Modern Formal Methods and Applications 191



8.3.3 Other considerations 

Besides the generation and automatic verification of properties, the tool also
allows some additional considerations concerning the verification to be carried 
out, also automatically. These considerations are as follows: 

1. Assume a property. The user can assume a property to be true to assist 
in the verification of another.  

2. Modular verification. The system can be verified by parts. That is,
some of the active objects can be hidden so as to consider only the rest. 
The user must specify which objects should be hidden. 

3. Treatment of fairness. It is sometimes necessary to suppose that som
e signals, generally produced outside the system, cannot be infinitely 

absent, thus forcing the system to evolve. The user should introduce
the signals that must comply with this consideration. 

8.4 Related work 
Most works dealing with UML verification using formal method techniques 
focus on state diagram verification. Many such papers are based on previous 
works that, using formal methods, verified the classic statechart Harel [10] on 
which the UML state diagrams are based. 

Yet today, as the use of UML is so widespread, researchers are looking to take 
a step further in UML verification with formal methods. Research is focusing 
on obtaining tools that automatically give the system specification in a formal 
language without the user's intervention and, as far as is possible, to achieve an 
automatic verification process. 

The tools developed for verifying UML system specifications can be classified 
according to the formal language used, as a language prior to verification, for 
representing the system.  

Promela Language (tool Spin). Most work done on UML verification 
has been developed for the model checker Spin. The main 
contributions in this field are: 

vUML [13,17]. vUML is a tool for the automatic verification of 
UML models, focusing on state diagrams. It is easy to use, 
generating automatically a representation of the system in Spin and 
performing an automatic verification to check that states of error 
are never reached and that states catalogued as desirable are 
reached.

192 Formal Methods for UML



Latella, Majzik and Massink[12] work with UML state diagrams, 
encoding them through hierarchical automata (HA) from which 
they generate the specification for Spin. The transformation is not 
carried out automatically, although they have achieved this in later 
works using XMI [6]. 

HUGO[18,11]. This project includes a set of tools to apply model 
checking to UML state diagrams and collaborating ones. The latter 
are used to check whether the interaction represented in the 
collaboration diagram can be performed using state machines. That 
is, for the verification. The step from UML to Spin is carried out 
automatically using XMI. 

SMV language. There are also some works in the literature which try 
to verify UML by using the SMV model checker.  

VeriUML [5] are a set of integrated tools developed in the 
University of Michigan that allow UML state diagrams to be 
verified and to check whether the model is syntactically correct. 

This first set of tools, developed in the year 2000, was later 
extended [19,20], allowing verification of the model's static part. 
The points of entry for this approach are the class diagram, the 
restrictions imposed on the said diagram written in OCL and an 
object diagram, all in XMI format. 

TCM (Toolkit for Conceptual Modelling), is a set of tools 
developed by R. Eshuis [8] which allows activity diagrams to be 
verified by converting them to transition systems that can be 
verified using nuSMV. The transformation is automatic, although 
it is not based on XMI. 

If a comparison is made between the work presented in this paper and the 
above-mentioned work, it can be concluded that the main characteristics of this 
paper focus on the possibility of performing an automatic verification of the 
behaviour of a UML specification in which the said behaviour is reflected 
through state and activity diagrams and is also semi-transparent for the user. 
Most works do not carry out an automatic verification and vUML [13,17], 
which does, does not use the potential of temporal logic, performing a very 
reduced verification. 

It should also be pointed out, though it has not been discussed here through 
lack of space, that the representative elements of both state and activity 
diagrams are included in this approach (except for synchronization states, 
events with parameters, and the dynamic creation and destruction of objects), 

Modern Formal Methods and Applications 193



something that cannot be said of other contributions in this field, in which few 
of the characteristics provided by UML (history states, deferred events, 
transitions fired by termination...) are dealt with.  

Tool Formal
Specification

Formal
Verification Language UML

[12] No automatic No automatic Promela 
(Spin) Statechart

vUML 
[13,17] 

Automatic 
No XMI 

Automatic 
Limit to error states 

Promela 
(Spin) Statechart

HUGO 
[18,11] 

Automatic 
XMI 

Automatic 
Use Collaborations 

Promela 
(Spin) Statechart

veriUML 
[5,19,20] 

Automatic 
XMI No automatic SMV Statechart

Class D. 

TCM
[8] 

Automatic 
No XMI No automatic SMV Activity D. 

TABU
[1,2,3] 

Automatic 
XMI 

Semi-automatic 
LTL SMV Statechart

Activity D. 

8.5 Conclusions and future lines of work 

This paper presents a tool whose main aim is to integrate formal methods with 
semi-formal ones in such a way as to be transparent for the user. To be precise, 
it verifies the UML active behaviour using SMV. Although this is not a new 
idea, as far as we know at the present time, nowhere activity and state diagrams 
are jointly verified, using the former to represent the behaviour of the class 
operations.

However, the most innovative characteristic of the tool is that, in spite of using 
the potential of temporal logic to verify systems, the user need have no 
knowledge of its working. In addition, the user needs no knowledge of the 
structure of the specification obtained either, thus eliminating one of the major 
inconveniences of using formal methods. 

As for future lines of work, some kind of treatment of the traces obtained in the 
verification when the property is not satisfied would seem to be of great 
interest. More precisely, that the representation of the traces should be visual 
instead of written, by using either some of the UML diagrams or an animated 
representation of the state and activity machines which could help the user to 
locate the error source very quickly.  

Table 8-2. Related work 

194 Formal Methods for UML



8.6 References
[1] M.E. Beato, M. Barrio-Solórzano, C. E. Cuesta and P. de la Fuente. 

UML Automatic Verification Tool with Formal Methods. Electronic 
Notes in Theoretical Computer Science, 127(4):3-16, 2005.

[2] M. E. Beato, M. Barrio-Solórzano, C. E. Cuesta and P. de la Fuente. UML 
Automatic Verification Tool (TABU). Technical Report 04-09. Department of 
Computer Science, Iowa State University, pages 106-110. October 2004. 

[3] M. E. Beato. Verificación Formal del Comportamiento Activo de UML usando 
Métodos Formales. PhD thesis, Universidad de Valladolid, October 2004. 

[4] G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language.
Addison-Wesley, 1999 

[5] K. Compton, Y. Gurevich, J. Huggins and W. Shen.l An Automatic Verification 
Tool for UML, Technical Report CSE-TR-423-00, University of Michigan, 
2000.  

[6] A. Darvas, I. Majzik and B. Benyó. Verification of UML Statechart Models of 
Embedded Systems. In B. Straube, E.J. Marinissen, Z. Kotasek, O.Novak, J. 
Hlavicka and R. Ruzicka, editors, Proc. 5th IEEE Design and Diagnostics of 
Electronic Circuits and Systems Workshop (DDECS 2002), IEEE Computer 
Society TTTC, pages 70-77, April 2002. 

[7] M. B. Dwyer, G. S. Avrunin and J. C. Corbett. Patterns in Property 
Specifications for Finite-State Verification. In Proceedings of the 21st 
International Conference on Software Engineering, May 1999. 

[8] R. Eshuis. Semantics and Verification of {UML} Activity Diagrams for 
Workflow Modelling. PhD thesis, University of Twente, October 2002 

[9] T. Grose, G. Doney and S. Brodsky. Mastering XMI. Java Programming with 
XMI, XML and UML. OMG Press, 2002 

[10] D. Harel. STATECHARTS: A visual Formalism for Complex Systems. Science 
of Computer Programming, North Holland, 8:231-274, 1987.

[11] A. Knapp and S. Merz. Model Checking and Code Generation for UML State 
Machines and Collaborations. In Proc. 5th Wsh. Tools for System Design and 
Verification, pages 59-64. Institut für Informatik, Universität Augsburg, 
Dominik Haneberg, Gerhard Schellhorn and Wolfgang Reeif, editors, 2002.  

[12] D. Latella, I. Majzik and M. Massink. Automatic verification of a behavioral 
subset of UML statechart diagrams using the SPIN model-checker. Formal 
Aspects of Computing. The International Journal of Formal Methods,
6(11):637-664, 1999.  

[13] J. Lilius and I. Porres. vUML: a Tool for Verifying UML Models. Technical 
Report TUCS 272, Turku Centre for Computer Science, Abo Akademi 
University, May 1999.  

[14] K. L. McMillan. Symbolic Model Checking. An approach to the state explosion 
problem. PhD thesis, Carnegie Mellon University, May 1992. 

[15] OMG. Unified Modeling Language Specification v. 1.4. OMG Document 01-
09-67, 2001 

[16] OMG. XML Metadata Interchange (XMI), OMG Document ad/98-10-05, 1998 
[17] I. Porres. Modeling and Analyzing Software Behavior in UML. PhD thesis, 

Department of Computer Science, Abo Akademi University, November 2001. 
[18] T. Schäfer, A. Knapp and S. Merz. Model Checking UML State Machines and 

Collaborations, Proc. Wsh. Software Model Checking of Electronic Notes in 
Theoretical Computer Science, 55(3):1-13, 2001. 

Modern Formal Methods and Applications 195



[19] W. Shen, K. Compton and J. Huggins. A validation Method for UML Model 
Based on Abstract State Machines. In R. Moreno-and A. Quesada-editors, 
Proceeding of EUROCAST 2001, pages 220-223, February 2001.  

[20] W. Shen, K. Compton and J. Huggins. A Toolset for Supporting UML Static 
and Dynamic Model Checking. In COMPSAC, pages 147-152. IEEE 
Computer Society, 2002. 

196 Formal Methods for UML



Absence pattern.........................196 
Abstract State Machine 18, 20, 202 
Algorithm Design .......................12 
Algorithms ..................................12 
atomic propositions..109, 113, 122, 

130
Automata Theory ........................10 
biological regulatory graphs .......91 
biological regulatory networks v, vi, 

84, 85, 87, 89, 95, 121, 122, 124, 
125, 126 

B-Method ..............................18, 19 
Constraint Functional Logic 

Programming ....................15, 20 
dependability attributes....128, 129, 

147, 149 
deterministic languages...............10 
Direct Reasoning...........................7 
Dynamic typing...........................16 
EFL xix, 21, 26, 27, 28, 29, 31, 33, 

43, 44 
Elementary logic ...........................9 
Feedback circuits ......................101 
finite state machine ix, 10, 11, 149, 

157
Formal Languages.......................17 
formal method i, ii, iii, v, vi, vii, 1, 2, 

4, 10, 12, 18, 20, 36, 37, 42, 47, 
48, 84, 85, 87, 114, 122, 124, 
127, 128, 129, 142, 148, 150, 
152, 182, 183, 184, 198, 200, 201 

functional language...................157 
genetic regulatory network ..84, 87, 

88, 90, 108, 115, 122, 124 
inference rules...........143, 144, 145 
Lebesgue measure.......................99 
lysogenic bacteria ...............85, 115 

machine-language.....................156 
metaknowledge....................xvi, 67 
model checking......84, 85, 87, 112, 

113, 122, 143, 144, 183, 199 
Modus Ponens...........................7, 8 
Petri nets 2, 19, 123, 131, 132, 138, 

141, 146, 147, 148, 152, 153 
plant maintenance ...........21, 22, 33 
predicate transition nets ...131, 147, 

150, 152, 153 
Problem Solving .....................1, 14 
Prolog....................................15, 16 
propositional calculus ...............4, 9 
propositional logic ........5, 131, 149 
provably correct ..vi, 155, 157, 180 
PSSPviii, 46, 47, 48, 49, 50, 51, 52, 

53, 54, 55, 58, 65, 66, 71, 73, 77, 
78, 80, 81, 82 

Pushdown automata ....................10 
qualitative behaviour ................109 
regulatory network v, vi, xi, xvi, 84, 

85, 86, 87, 89, 95, 102, 109, 121, 
122, 123, 124, 125, 126 

SMV 115, 124, 148, 182, 183, 185, 
186, 187, 188, 191, 192, 194, 
196, 197, 199, 200 

software architecture....v, 127, 128, 
129, 130, 131, 134, 137, 138, 
139, 142, 147, 148, 150 

Temporal formulas ...................136 
Temporal logic..........................108 
Unification ..................................16 
Unified modeling language.......183 
Vocabulary............................17, 26 
Waste management..46, 72, 73, 74, 

75, 81 
XMI .......... 183, 199, 200, 201, 202 

Index

197


